Sample records for large deviations analysis

  1. Numerical Large Deviation Analysis of the Eigenstate Thermalization Hypothesis

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Toru; Iyoda, Eiki; Sagawa, Takahiro

    2018-05-01

    A plausible mechanism of thermalization in isolated quantum systems is based on the strong version of the eigenstate thermalization hypothesis (ETH), which states that all the energy eigenstates in the microcanonical energy shell have thermal properties. We numerically investigate the ETH by focusing on the large deviation property, which directly evaluates the ratio of athermal energy eigenstates in the energy shell. As a consequence, we have systematically confirmed that the strong ETH is indeed true even for near-integrable systems. Furthermore, we found that the finite-size scaling of the ratio of athermal eigenstates is a double exponential for nonintegrable systems. Our result illuminates the universal behavior of quantum chaos, and suggests that a large deviation analysis would serve as a powerful method to investigate thermalization in the presence of the large finite-size effect.

  2. A Large Deviations Analysis of Certain Qualitative Properties of Parallel Tempering and Infinite Swapping Algorithms

    DOE PAGES

    Doll, J.; Dupuis, P.; Nyquist, P.

    2017-02-08

    Parallel tempering, or replica exchange, is a popular method for simulating complex systems. The idea is to run parallel simulations at different temperatures, and at a given swap rate exchange configurations between the parallel simulations. From the perspective of large deviations it is optimal to let the swap rate tend to infinity and it is possible to construct a corresponding simulation scheme, known as infinite swapping. In this paper we propose a novel use of large deviations for empirical measures for a more detailed analysis of the infinite swapping limit in the setting of continuous time jump Markov processes. Usingmore » the large deviations rate function and associated stochastic control problems we consider a diagnostic based on temperature assignments, which can be easily computed during a simulation. We show that the convergence of this diagnostic to its a priori known limit is a necessary condition for the convergence of infinite swapping. The rate function is also used to investigate the impact of asymmetries in the underlying potential landscape, and where in the state space poor sampling is most likely to occur.« less

  3. Precision analysis for standard deviation measurements of immobile single fluorescent molecule images.

    PubMed

    DeSantis, Michael C; DeCenzo, Shawn H; Li, Je-Luen; Wang, Y M

    2010-03-29

    Standard deviation measurements of intensity profiles of stationary single fluorescent molecules are useful for studying axial localization, molecular orientation, and a fluorescence imaging system's spatial resolution. Here we report on the analysis of the precision of standard deviation measurements of intensity profiles of single fluorescent molecules imaged using an EMCCD camera.We have developed an analytical expression for the standard deviation measurement error of a single image which is a function of the total number of detected photons, the background photon noise, and the camera pixel size. The theoretical results agree well with the experimental, simulation, and numerical integration results. Using this expression, we show that single-molecule standard deviation measurements offer nanometer precision for a large range of experimental parameters.

  4. Gait analysis in children with cerebral palsy.

    PubMed

    Armand, Stéphane; Decoulon, Geraldo; Bonnefoy-Mazure, Alice

    2016-12-01

    Cerebral palsy (CP) children present complex and heterogeneous motor disorders that cause gait deviations.Clinical gait analysis (CGA) is needed to identify, understand and support the management of gait deviations in CP. CGA assesses a large amount of quantitative data concerning patients' gait characteristics, such as video, kinematics, kinetics, electromyography and plantar pressure data.Common gait deviations in CP can be grouped into the gait patterns of spastic hemiplegia (drop foot, equinus with different knee positions) and spastic diplegia (true equinus, jump, apparent equinus and crouch) to facilitate communication. However, gait deviations in CP tend to be a continuum of deviations rather than well delineated groups. To interpret CGA, it is necessary to link gait deviations to clinical impairments and to distinguish primary gait deviations from compensatory strategies.CGA does not tell us how to treat a CP patient, but can provide objective identification of gait deviations and further the understanding of gait deviations. Numerous treatment options are available to manage gait deviations in CP. Generally, treatments strive to limit secondary deformations, re-establish the lever arm function and preserve muscle strength.Additional roles of CGA are to better understand the effects of treatments on gait deviations. Cite this article: Armand S, Decoulon G, Bonnefoy-Mazure A. Gait analysis in children with cerebral palsy. EFORT Open Rev 2016;1:448-460. DOI: 10.1302/2058-5241.1.000052.

  5. Efficient characterisation of large deviations using population dynamics

    NASA Astrophysics Data System (ADS)

    Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.

    2018-05-01

    We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.

  6. Extended-range high-resolution dynamical downscaling over a continental-scale spatial domain with atmospheric and surface nudging

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    Extended-range high-resolution mesoscale simulations with limited-area atmospheric models when applied to downscale regional analysis fields over large spatial domains can provide valuable information for many applications including the weather-dependent renewable energy industry. Long-term simulations over a continental-scale spatial domain, however, require mechanisms to control the large-scale deviations in the high-resolution simulated fields from the coarse-resolution driving fields. As enforcement of the lateral boundary conditions is insufficient to restrict such deviations, large scales in the simulated high-resolution meteorological fields are therefore spectrally nudged toward the driving fields. Different spectral nudging approaches, including the appropriate nudging length scales as well as the vertical profiles and temporal relaxations for nudging, have been investigated to propose an optimal nudging strategy. Impacts of time-varying nudging and generation of hourly analysis estimates are explored to circumvent problems arising from the coarse temporal resolution of the regional analysis fields. Although controlling the evolution of the atmospheric large scales generally improves the outputs of high-resolution mesoscale simulations within the surface layer, the prognostically evolving surface fields can nevertheless deviate from their expected values leading to significant inaccuracies in the predicted surface layer meteorology. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil moisture, and snow conditions, toward their expected values obtained from a high-resolution offline surface scheme is therefore proposed to limit any considerable deviation. Finally, wind speed and temperature at wind turbine hub height predicted by different spectrally nudged extended-range simulations are compared against observations to demonstrate possible improvements achievable using higher spatiotemporal resolution.

  7. Analysis of change orders in geotechnical engineering work at INDOT.

    DOT National Transportation Integrated Search

    2011-01-01

    Change orders represent a cost to the State and to tax payers that is real and often extremely large because contractors tend to charge very large : amounts to any additional work that deviates from the work that was originally planned. Therefore, ef...

  8. Large deviation function for a driven underdamped particle in a periodic potential

    NASA Astrophysics Data System (ADS)

    Fischer, Lukas P.; Pietzonka, Patrick; Seifert, Udo

    2018-02-01

    Employing large deviation theory, we explore current fluctuations of underdamped Brownian motion for the paradigmatic example of a single particle in a one-dimensional periodic potential. Two different approaches to the large deviation function of the particle current are presented. First, we derive an explicit expression for the large deviation functional of the empirical phase space density, which replaces the level 2.5 functional used for overdamped dynamics. Using this approach, we obtain several bounds on the large deviation function of the particle current. We compare these to bounds for overdamped dynamics that have recently been derived, motivated by the thermodynamic uncertainty relation. Second, we provide a method to calculate the large deviation function via the cumulant generating function. We use this method to assess the tightness of the bounds in a numerical case study for a cosine potential.

  9. Ranking and validation of spallation models for isotopic production cross sections of heavy residua

    NASA Astrophysics Data System (ADS)

    Sharma, Sushil K.; Kamys, Bogusław; Goldenbaum, Frank; Filges, Detlef

    2017-07-01

    The production cross sections of isotopically identified residual nuclei of spallation reactions induced by 136Xe projectiles at 500AMeV on hydrogen target were analyzed in a two-step model. The first stage of the reaction was described by the INCL4.6 model of an intranuclear cascade of nucleon-nucleon and pion-nucleon collisions whereas the second stage was analyzed by means of four different models; ABLA07, GEM2, GEMINI++ and SMM. The quality of the data description was judged quantitatively using two statistical deviation factors; the H-factor and the M-factor. It was found that the present analysis leads to a different ranking of models as compared to that obtained from the qualitative inspection of the data reproduction. The disagreement was caused by sensitivity of the deviation factors to large statistical errors present in some of the data. A new deviation factor, the A factor, was proposed, that is not sensitive to the statistical errors of the cross sections. The quantitative ranking of models performed using the A-factor agreed well with the qualitative analysis of the data. It was concluded that using the deviation factors weighted by statistical errors may lead to erroneous conclusions in the case when the data cover a large range of values. The quality of data reproduction by the theoretical models is discussed. Some systematic deviations of the theoretical predictions from the experimental results are observed.

  10. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2018-03-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2}). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3}) and the level sets of the Gaussian free field ({d≥ 3}). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  11. Quenched Large Deviations for Simple Random Walks on Percolation Clusters Including Long-Range Correlations

    NASA Astrophysics Data System (ADS)

    Berger, Noam; Mukherjee, Chiranjib; Okamura, Kazuki

    2017-12-01

    We prove a quenched large deviation principle (LDP) for a simple random walk on a supercritical percolation cluster (SRWPC) on {Z^d} ({d ≥ 2} ). The models under interest include classical Bernoulli bond and site percolation as well as models that exhibit long range correlations, like the random cluster model, the random interlacement and the vacant set of random interlacements (for {d ≥ 3} ) and the level sets of the Gaussian free field ({d≥ 3} ). Inspired by the methods developed by Kosygina et al. (Commun Pure Appl Math 59:1489-1521, 2006) for proving quenched LDP for elliptic diffusions with a random drift, and by Yilmaz (Commun Pure Appl Math 62(8):1033-1075, 2009) and Rosenbluth (Quenched large deviations for multidimensional random walks in a random environment: a variational formula. Ph.D. thesis, NYU, arXiv:0804.1444v1) for similar results regarding elliptic random walks in random environment, we take the point of view of the moving particle and prove a large deviation principle for the quenched distribution of the pair empirical measures of the environment Markov chain in the non-elliptic case of SRWPC. Via a contraction principle, this reduces easily to a quenched LDP for the distribution of the mean velocity of the random walk and both rate functions admit explicit variational formulas. The main difficulty in our set up lies in the inherent non-ellipticity as well as the lack of translation-invariance stemming from conditioning on the fact that the origin belongs to the infinite cluster. We develop a unifying approach for proving quenched large deviations for SRWPC based on exploiting coercivity properties of the relative entropies in the context of convex variational analysis, combined with input from ergodic theory and invoking geometric properties of the supercritical percolation cluster.

  12. Entanglement transitions induced by large deviations

    NASA Astrophysics Data System (ADS)

    Bhosale, Udaysinh T.

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B , is computed analytically using a Coulomb gas method. It is shown that this probability, for large N , goes as exp[-β N2Φ (ζ ) ] , where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ (ζ ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A , using the properties of the density matrix's partial transpose ρ12Γ. The density of states of ρ12Γ is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ . Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  13. Entanglement transitions induced by large deviations.

    PubMed

    Bhosale, Udaysinh T

    2017-12-01

    The probability of large deviations of the smallest Schmidt eigenvalue for random pure states of bipartite systems, denoted as A and B, is computed analytically using a Coulomb gas method. It is shown that this probability, for large N, goes as exp[-βN^{2}Φ(ζ)], where the parameter β is the Dyson index of the ensemble, ζ is the large deviation parameter, while the rate function Φ(ζ) is calculated exactly. Corresponding equilibrium Coulomb charge density is derived for its large deviations. Effects of the large deviations of the extreme (largest and smallest) Schmidt eigenvalues on the bipartite entanglement are studied using the von Neumann entropy. Effect of these deviations is also studied on the entanglement between subsystems 1 and 2, obtained by further partitioning the subsystem A, using the properties of the density matrix's partial transpose ρ_{12}^{Γ}. The density of states of ρ_{12}^{Γ} is found to be close to the Wigner's semicircle law with these large deviations. The entanglement properties are captured very well by a simple random matrix model for the partial transpose. The model predicts the entanglement transition across a critical large deviation parameter ζ. Log negativity is used to quantify the entanglement between subsystems 1 and 2. Analytical formulas for it are derived using the simple model. Numerical simulations are in excellent agreement with the analytical results.

  14. Motor equivalence during multi-finger accurate force production

    PubMed Central

    Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2014-01-01

    We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311

  15. Density Large Deviations for Multidimensional Stochastic Hyperbolic Conservation Laws

    NASA Astrophysics Data System (ADS)

    Barré, J.; Bernardin, C.; Chetrite, R.

    2018-02-01

    We investigate the density large deviation function for a multidimensional conservation law in the vanishing viscosity limit, when the probability concentrates on weak solutions of a hyperbolic conservation law. When the mobility and diffusivity matrices are proportional, i.e. an Einstein-like relation is satisfied, the problem has been solved in Bellettini and Mariani (Bull Greek Math Soc 57:31-45, 2010). When this proportionality does not hold, we compute explicitly the large deviation function for a step-like density profile, and we show that the associated optimal current has a non trivial structure. We also derive a lower bound for the large deviation function, valid for a more general weak solution, and leave the general large deviation function upper bound as a conjecture.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Scott F.; Linder, Eric V.; Lawrence Berkeley National Laboratory, Berkeley, California

    Deviations from general relativity, such as could be responsible for the cosmic acceleration, would influence the growth of large-scale structure and the deflection of light by that structure. We clarify the relations between several different model-independent approaches to deviations from general relativity appearing in the literature, devising a translation table. We examine current constraints on such deviations, using weak gravitational lensing data of the CFHTLS and COSMOS surveys, cosmic microwave background radiation data of WMAP5, and supernova distance data of Union2. A Markov chain Monte Carlo likelihood analysis of the parameters over various redshift ranges yields consistency with general relativitymore » at the 95% confidence level.« less

  17. Scaling Deviations for Neutrino Reactions in Aysmptotically Free Field Theories

    DOE R&D Accomplishments Database

    Wilczek, F. A.; Zee, A.; Treiman, S. B.

    1974-11-01

    Several aspects of deep inelastic neutrino scattering are discussed in the framework of asymptotically free field theories. We first consider the growth behavior of the total cross sections at large energies. Because of the deviations from strict scaling which are characteristic of such theories the growth need not be linear. However, upper and lower bounds are established which rather closely bracket a linear growth. We next consider in more detail the expected pattern of scaling deviation for the structure functions and, correspondingly, for the differential cross sections. The analysis here is based on certain speculative assumptions. The focus is on qualitative effects of scaling breakdown as they may show up in the X and y distributions. The last section of the paper deals with deviations from the Callan-Gross relation.

  18. The Laplace method for probability measures in Banach spaces

    NASA Astrophysics Data System (ADS)

    Piterbarg, V. I.; Fatalov, V. R.

    1995-12-01

    Contents §1. Introduction Chapter I. Asymptotic analysis of continual integrals in Banach space, depending on a large parameter §2. The large deviation principle and logarithmic asymptotics of continual integrals §3. Exact asymptotics of Gaussian integrals in Banach spaces: the Laplace method 3.1. The Laplace method for Gaussian integrals taken over the whole Hilbert space: isolated minimum points ([167], I) 3.2. The Laplace method for Gaussian integrals in Hilbert space: the manifold of minimum points ([167], II) 3.3. The Laplace method for Gaussian integrals in Banach space ([90], [174], [176]) 3.4. Exact asymptotics of large deviations of Gaussian norms §4. The Laplace method for distributions of sums of independent random elements with values in Banach space 4.1. The case of a non-degenerate minimum point ([137], I) 4.2. A degenerate isolated minimum point and the manifold of minimum points ([137], II) §5. Further examples 5.1. The Laplace method for the local time functional of a Markov symmetric process ([217]) 5.2. The Laplace method for diffusion processes, a finite number of non-degenerate minimum points ([116]) 5.3. Asymptotics of large deviations for Brownian motion in the Hölder norm 5.4. Non-asymptotic expansion of a strong stable law in Hilbert space ([41]) Chapter II. The double sum method - a version of the Laplace method in the space of continuous functions §6. Pickands' method of double sums 6.1. General situations 6.2. Asymptotics of the distribution of the maximum of a Gaussian stationary process 6.3. Asymptotics of the probability of a large excursion of a Gaussian non-stationary process §7. Probabilities of large deviations of trajectories of Gaussian fields 7.1. Homogeneous fields and fields with constant dispersion 7.2. Finitely many maximum points of dispersion 7.3. Manifold of maximum points of dispersion 7.4. Asymptotics of distributions of maxima of Wiener fields §8. Exact asymptotics of large deviations of the norm of Gaussian vectors and processes with values in the spaces L_k^p and l^2. Gaussian fields with the set of parameters in Hilbert space 8.1 Exact asymptotics of the distribution of the l_k^p-norm of a Gaussian finite-dimensional vector with dependent coordinates, p > 1 8.2. Exact asymptotics of probabilities of high excursions of trajectories of processes of type \\chi^2 8.3. Asymptotics of the probabilities of large deviations of Gaussian processes with a set of parameters in Hilbert space [74] 8.4. Asymptotics of distributions of maxima of the norms of l^2-valued Gaussian processes 8.5. Exact asymptotics of large deviations for the l^2-valued Ornstein-Uhlenbeck process Bibliography

  19. Comparative analysis of the processing accuracy of high strength metal sheets by AWJ, laser and plasma

    NASA Astrophysics Data System (ADS)

    Radu, M. C.; Schnakovszky, C.; Herghelegiu, E.; Tampu, N. C.; Zichil, V.

    2016-08-01

    Experimental tests were carried out on two high-strength steel materials (Ramor 400 and Ramor 550). Quantification of the dimensional accuracy was achieved by measuring the deviations from some geometric parameters of part (two lengths and two radii). It was found that in case of Ramor 400 steel, at the jet inlet, the deviations from the part radii are quite small for all the three analysed processes. Instead for the linear dimensions, the deviations are small only in case of laser cutting. At the jet outlet, the deviations raised in small amount compared to those obtained at the jet inlet for both materials as well as for all the three processes. Related to Ramor 550 steel, at the jet inlet the deviations from the part radii are very small in case of AWJ and laser cutting but larger in case of plasma cutting. At the jet outlet, the deviations from the part radii are very small for all processes; in case of linear dimensions, there was obtained very small deviations only in the case of laser processing, the other two processes leading to very large deviations.

  20. From the Law of Large Numbers to Large Deviation Theory in Statistical Physics: An Introduction

    NASA Astrophysics Data System (ADS)

    Cecconi, Fabio; Cencini, Massimo; Puglisi, Andrea; Vergni, Davide; Vulpiani, Angelo

    This contribution aims at introducing the topics of this book. We start with a brief historical excursion on the developments from the law of large numbers to the central limit theorem and large deviations theory. The same topics are then presented using the language of probability theory. Finally, some applications of large deviations theory in physics are briefly discussed through examples taken from statistical mechanics, dynamical and disordered systems.

  1. A Priori Subgrid Analysis of Temporal Mixing Layers with Evaporating Droplets

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    1999-01-01

    Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using three sets of results from a Direct Numerical Simulation (DNS) database, with Reynolds numbers (based on initial vorticity thickness) as large as 600 and with droplet mass loadings as large as 0.5. In the DNS, the gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. The Large Eddy Simulation (LES) equations corresponding to the DNS are first derived, and key assumptions in deriving them are first confirmed by computing the terms using the DNS database. Since LES of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be the sum of the filtered variables and a correction based on the filtered standard deviation; this correction is then computed from the Subgrid Scale (SGS) standard deviation. This model predicts the unfiltered variables at droplet locations considerably better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: the Smagorinsky approach, the Gradient model and the Scale-Similarity formulation. When the proportionality constant inherent in the SGS models is properly calculated, the Gradient and Scale-Similarity methods give results in excellent agreement with the DNS.

  2. Statistical analysis of the 70 meter antenna surface distortions

    NASA Technical Reports Server (NTRS)

    Kiedron, K.; Chian, C. T.; Chuang, K. L.

    1987-01-01

    Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.

  3. Finite-Time and -Size Scalings in the Evaluation of Large Deviation Functions. Numerical Analysis in Continuous Time

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provide a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to a selection rule that favors the rare trajectories of interest. However, such algorithms are plagued by finite simulation time- and finite population size- effects that can render their use delicate. Using the continuous-time cloning algorithm, we analyze the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of the rare trajectories. We use these scalings in order to propose a numerical approach which allows to extract the infinite-time and infinite-size limit of these estimators.

  4. Truncated Linear Statistics Associated with the Eigenvalues of Random Matrices II. Partial Sums over Proper Time Delays for Chaotic Quantum Dots

    NASA Astrophysics Data System (ADS)

    Grabsch, Aurélien; Majumdar, Satya N.; Texier, Christophe

    2017-06-01

    Invariant ensembles of random matrices are characterized by the distribution of their eigenvalues \\{λ _1,\\ldots ,λ _N\\}. We study the distribution of truncated linear statistics of the form \\tilde{L}=\\sum _{i=1}^p f(λ _i) with p

  5. Large deviations in the presence of cooperativity and slow dynamics

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen

    2018-06-01

    We study simple models of intermittency, involving switching between two states, within the dynamical large-deviation formalism. Singularities appear in the formalism when switching is cooperative or when its basic time scale diverges. In the first case the unbiased trajectory distribution undergoes a symmetry breaking, leading to a change in shape of the large-deviation rate function for a particular dynamical observable. In the second case the symmetry of the unbiased trajectory distribution remains unbroken. Comparison of these models suggests that singularities of the dynamical large-deviation formalism can signal the dynamical equivalent of an equilibrium phase transition but do not necessarily do so.

  6. Efficiency and large deviations in time-asymmetric stochastic heat engines

    DOE PAGES

    Gingrich, Todd R.; Rotskoff, Grant M.; Vaikuntanathan, Suriyanarayanan; ...

    2014-10-24

    In a stochastic heat engine driven by a cyclic non-equilibrium protocol, fluctuations in work and heat give rise to a fluctuating efficiency. Using computer simulations and tools from large deviation theory, we have examined these fluctuations in detail for a model two-state engine. We find in general that the form of efficiency probability distributions is similar to those described by Verley et al (2014 Nat. Commun. 5 4721), in particular featuring a local minimum in the long-time limit. In contrast to the time-symmetric engine protocols studied previously, however, this minimum need not occur at the value characteristic of a reversible Carnot engine. Furthermore, while the local minimum may reside at the global minimum of a large deviation rate function, it does not generally correspond to the least likely efficiency measured over finite time. Lastly, we introduce a general approximation for the finite-time efficiency distribution,more » $$P(\\eta )$$, based on large deviation statistics of work and heat, that remains very accurate even when $$P(\\eta )$$ deviates significantly from its large deviation form.« less

  7. Cosmological implications of a large complete quasar sample.

    PubMed

    Segal, I E; Nicoll, J F

    1998-04-28

    Objective and reproducible determinations of the probabilistic significance levels of the deviations between theoretical cosmological prediction and direct model-independent observation are made for the Large Bright Quasar Sample [Foltz, C., Chaffee, F. H., Hewett, P. C., MacAlpine, G. M., Turnshek, D. A., et al. (1987) Astron. J. 94, 1423-1460]. The Expanding Universe model as represented by the Friedman-Lemaitre cosmology with parameters qo = 0, Lambda = 0 denoted as C1 and chronometric cosmology (no relevant adjustable parameters) denoted as C2 are the cosmologies considered. The mean and the dispersion of the apparent magnitudes and the slope of the apparent magnitude-redshift relation are the directly observed statistics predicted. The C1 predictions of these cosmology-independent quantities are deviant by as much as 11sigma from direct observation; none of the C2 predictions deviate by >2sigma. The C1 deviations may be reconciled with theory by the hypothesis of quasar "evolution," which, however, appears incapable of being substantiated through direct observation. The excellent quantitative agreement of the C1 deviations with those predicted by C2 without adjustable parameters for the results of analysis predicated on C1 indicates that the evolution hypothesis may well be a theoretical artifact.

  8. Transport Coefficients from Large Deviation Functions

    NASA Astrophysics Data System (ADS)

    Gao, Chloe; Limmer, David

    2017-10-01

    We describe a method for computing transport coefficients from the direct evaluation of large deviation function. This method is general, relying on only equilibrium fluctuations, and is statistically efficient, employing trajectory based importance sampling. Equilibrium fluctuations of molecular currents are characterized by their large deviation functions, which is a scaled cumulant generating function analogous to the free energy. A diffusion Monte Carlo algorithm is used to evaluate the large deviation functions, from which arbitrary transport coefficients are derivable. We find significant statistical improvement over traditional Green-Kubo based calculations. The systematic and statistical errors of this method are analyzed in the context of specific transport coefficient calculations, including the shear viscosity, interfacial friction coefficient, and thermal conductivity.

  9. Importance sampling large deviations in nonequilibrium steady states. I.

    PubMed

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T

    2018-03-28

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  10. Importance sampling large deviations in nonequilibrium steady states. I

    NASA Astrophysics Data System (ADS)

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.

    2018-03-01

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  11. Simulation of reflecting surface deviations of centimeter-band parabolic space radiotelescope (SRT) with the large-size mirror

    NASA Astrophysics Data System (ADS)

    Kotik, A.; Usyukin, V.; Vinogradov, I.; Arkhipov, M.

    2017-11-01

    he realization of astrophysical researches requires the development of high-sensitive centimeterband parabolic space radiotelescopes (SRT) with the large-size mirrors. Constructively such SRT with the mirror size more than 10 m can be realized as deployable rigid structures. Mesh-structures of such size do not provide the reflector reflecting surface accuracy which is necessary for the centimeter band observations. Now such telescope with the 10 m diameter mirror is developed in Russia in the frame of "SPECTR - R" program. External dimensions of the telescope is more than the size of existing thermo-vacuum chambers used to prove SRT reflecting surface accuracy parameters under the action of space environment factors. That's why the numerical simulation turns out to be the basis required to accept the taken designs. Such modeling should be based on experimental working of the basic constructive materials and elements of the future reflector. In the article computational modeling of reflecting surface deviations of a centimeter-band of a large-sized deployable space reflector at a stage of his orbital functioning is considered. The analysis of the factors that determines the deviations - both determined (temperatures fields) and not-determined (telescope manufacturing and installation faults; the deformations caused by features of composite materials behavior in space) is carried out. The finite-element model and complex of methods are developed. They allow to carry out computational modeling of reflecting surface deviations caused by influence of all factors and to take into account the deviations correction by space vehicle orientation system. The results of modeling for two modes of functioning (orientation at the Sun) SRT are presented.

  12. Sub-Scale Analysis of New Large Aircraft Pool Fire-Suppression

    DTIC Science & Technology

    2016-01-01

    discrete ordinates radiation and single step Khan and Greeves soot model provided radiation and soot interaction. Agent spray dynamics were...Notable differences observed showed a modeled increase in the mockup surface heat-up rate as well as a modeled decreased rate of soot production...488 K SUPPRESSION STARTED  Large deviation between sensors due to sensor alignment challenges and asymmetric fuel surface ignition  Unremarkable

  13. Large deviation analysis of a simple information engine

    NASA Astrophysics Data System (ADS)

    Maitland, Michael; Grosskinsky, Stefan; Harris, Rosemary J.

    2015-11-01

    Information thermodynamics provides a framework for studying the effect of feedback loops on entropy production. It has enabled the understanding of novel thermodynamic systems such as the information engine, which can be seen as a modern version of "Maxwell's Dæmon," whereby a feedback controller processes information gained by measurements in order to extract work. Here, we analyze a simple model of such an engine that uses feedback control based on measurements to obtain negative entropy production. We focus on the distribution and fluctuations of the information obtained by the feedback controller. Significantly, our model allows an analytic treatment for a two-state system with exact calculation of the large deviation rate function. These results suggest an approximate technique for larger systems, which is corroborated by simulation data.

  14. Cosmological implications of a large complete quasar sample

    PubMed Central

    Segal, I. E.; Nicoll, J. F.

    1998-01-01

    Objective and reproducible determinations of the probabilistic significance levels of the deviations between theoretical cosmological prediction and direct model-independent observation are made for the Large Bright Quasar Sample [Foltz, C., Chaffee, F. H., Hewett, P. C., MacAlpine, G. M., Turnshek, D. A., et al. (1987) Astron. J. 94, 1423–1460]. The Expanding Universe model as represented by the Friedman–Lemaitre cosmology with parameters qo = 0, Λ = 0 denoted as C1 and chronometric cosmology (no relevant adjustable parameters) denoted as C2 are the cosmologies considered. The mean and the dispersion of the apparent magnitudes and the slope of the apparent magnitude–redshift relation are the directly observed statistics predicted. The C1 predictions of these cosmology-independent quantities are deviant by as much as 11σ from direct observation; none of the C2 predictions deviate by >2σ. The C1 deviations may be reconciled with theory by the hypothesis of quasar “evolution,” which, however, appears incapable of being substantiated through direct observation. The excellent quantitative agreement of the C1 deviations with those predicted by C2 without adjustable parameters for the results of analysis predicated on C1 indicates that the evolution hypothesis may well be a theoretical artifact. PMID:9560182

  15. Allan deviation analysis of financial return series

    NASA Astrophysics Data System (ADS)

    Hernández-Pérez, R.

    2012-05-01

    We perform a scaling analysis for the return series of different financial assets applying the Allan deviation (ADEV), which is used in the time and frequency metrology to characterize quantitatively the stability of frequency standards since it has demonstrated to be a robust quantity to analyze fluctuations of non-stationary time series for different observation intervals. The data used are opening price daily series for assets from different markets during a time span of around ten years. We found that the ADEV results for the return series at short scales resemble those expected for an uncorrelated series, consistent with the efficient market hypothesis. On the other hand, the ADEV results for absolute return series for short scales (first one or two decades) decrease following approximately a scaling relation up to a point that is different for almost each asset, after which the ADEV deviates from scaling, which suggests that the presence of clustering, long-range dependence and non-stationarity signatures in the series drive the results for large observation intervals.

  16. Offshore fatigue design turbulence

    NASA Astrophysics Data System (ADS)

    Larsen, Gunner C.

    2001-07-01

    Fatigue damage on wind turbines is mainly caused by stochastic loading originating from turbulence. While onshore sites display large differences in terrain topology, and thereby also in turbulence conditions, offshore sites are far more homogeneous, as the majority of them are likely to be associated with shallow water areas. However, despite this fact, specific recommendations on offshore turbulence intensities, applicable for fatigue design purposes, are lacking in the present IEC code. This article presents specific guidelines for such loading. These guidelines are based on the statistical analysis of a large number of wind data originating from two Danish shallow water offshore sites. The turbulence standard deviation depends on the mean wind speed, upstream conditions, measuring height and thermal convection. Defining a population of turbulence standard deviations, at a given measuring position, uniquely by the mean wind speed, variations in upstream conditions and atmospheric stability will appear as variability of the turbulence standard deviation. Distributions of such turbulence standard deviations, conditioned on the mean wind speed, are quantified by fitting the measured data to logarithmic Gaussian distributions. By combining a simple heuristic load model with the parametrized conditional probability density functions of the turbulence standard deviations, an empirical offshore design turbulence intensity is determined. For pure stochastic loading (as associated with standstill situations), the design turbulence intensity yields a fatigue damage equal to the average fatigue damage caused by the distributed turbulence intensity. If the stochastic loading is combined with a periodic deterministic loading (as in the normal operating situation), the proposed design turbulence intensity is shown to be conservative.

  17. Ku-band radar threshold analysis

    NASA Technical Reports Server (NTRS)

    Weber, C. L.; Polydoros, A.

    1979-01-01

    The statistics of the CFAR threshold for the Ku-band radar was determined. Exact analytical results were developed for both the mean and standard deviations in the designated search mode. The mean value is compared to the results of a previously reported simulation. The analytical results are more optimistic than the simulation results, for which no explanation is offered. The normalized standard deviation is shown to be very sensitive to signal-to-noise ratio and very insensitive to the noise correlation present in the range gates of the designated search mode. The substantial variation in the CFAR threshold is dominant at large values of SNR where the normalized standard deviation is greater than 0.3. Whether or not this significantly affects the resulting probability of detection is a matter which deserves additional attention.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  19. Cumulants and large deviations of the current through non-equilibrium steady states

    NASA Astrophysics Data System (ADS)

    Bodineau, Thierry; Derrida, Bernard

    2007-06-01

    Using a generalisation of detailed balance for systems maintained out of equilibrium by contact with 2 reservoirs at unequal temperatures or at unequal densities, one can recover the fluctuation theorem for the large deviation function of the current. For large diffusive systems, we show how the large deviation function of the current can be computed using a simple additivity principle. The validity of this additivity principle and the occurrence of phase transitions are discussed in the framework of the macroscopic fluctuation theory. To cite this article: T. Bodineau, B. Derrida, C. R. Physique 8 (2007).

  20. Particle Orbit Analysis in the Finite Beta Plasma of the Large Helical Device using Real Coordinates

    NASA Astrophysics Data System (ADS)

    Seki, Ryousuke; Matsumoto, Yutaka; Suzuki, Yasuhiro; Watanabe, Kiyomasa; Itagaki, Masafumi

    High-energy particles in a finite beta plasma of the Large Helical Device (LHD) are numerically traced in a real coordinate system. We investigate particle orbits by changing the beta value and/or the magnetic field strength. No significant difference is found in the particle orbit classifications between the vacuum magnetic field and the finite beta plasma cases. The deviation of a banana orbit from the flux surfaces strongly depends on the beta value, although the deviation of the orbit of a passing particle is independent of the beta value. In addition, the deviation of the orbit of the passing particle, rather than that of the banana-orbit particles, depends on the magnetic field strength. We also examine the effect of re-entering particles, which repeatedly pass in and out of the last closed flux surface, in the finite beta plasma of the LHD. It is found that the number of re-entering particles in the finite beta plasma is larger than that in the vacuum magnetic field. As a result, the role of reentering particles in the finite beta plasma of the LHD is more important than that in the vacuum magnetic field, and the effect of the charge-exchange reaction on particle confinement in the finite beta plasma is large.

  1. Analysis of iodinated haloacetic acids in drinking water by reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry with large volume direct aqueous injection.

    PubMed

    Li, Yongtao; Whitaker, Joshua S; McCarty, Christina L

    2012-07-06

    A large volume direct aqueous injection method was developed for the analysis of iodinated haloacetic acids in drinking water by using reversed-phase liquid chromatography/electrospray ionization/tandem mass spectrometry in the negative ion mode. Both the external and internal standard calibration methods were studied for the analysis of monoiodoacetic acid, chloroiodoacetic acid, bromoiodoacetic acid, and diiodoacetic acid in drinking water. The use of a divert valve technique for the mobile phase solvent delay, along with isotopically labeled analogs used as internal standards, effectively reduced and compensated for the ionization suppression typically caused by coexisting common inorganic anions. Under the optimized method conditions, the mean absolute and relative recoveries resulting from the replicate fortified deionized water and chlorinated drinking water analyses were 83-107% with a relative standard deviation of 0.7-11.7% and 84-111% with a relative standard deviation of 0.8-12.1%, respectively. The method detection limits resulting from the external and internal standard calibrations, based on seven fortified deionized water replicates, were 0.7-2.3 ng/L and 0.5-1.9 ng/L, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Accuracy of computer-aided design models of the jaws produced using ultra-low MDCT doses and ASIR and MBIR.

    PubMed

    Al-Ekrish, Asma'a A; Alfadda, Sara A; Ameen, Wadea; Hörmann, Romed; Puelacher, Wolfgang; Widmann, Gerlig

    2018-06-16

    To compare the surface of computer-aided design (CAD) models of the maxilla produced using ultra-low MDCT doses combined with filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASIR) and model-based iterative reconstruction (MBIR) reconstruction techniques with that produced from a standard dose/FBP protocol. A cadaveric completely edentulous maxilla was imaged using a standard dose protocol (CTDIvol: 29.4 mGy) and FBP, in addition to 5 low dose test protocols (LD1-5) (CTDIvol: 4.19, 2.64, 0.99, 0.53, and 0.29 mGy) reconstructed with FBP, ASIR 50, ASIR 100, and MBIR. A CAD model from each test protocol was superimposed onto the reference model using the 'Best Fit Alignment' function. Differences between the test and reference models were analyzed as maximum and mean deviations, and root-mean-square of the deviations, and color-coded models were obtained which demonstrated the location, magnitude and direction of the deviations. Based upon the magnitude, size, and distribution of areas of deviations, CAD models from the following protocols were comparable to the reference model: FBP/LD1; ASIR 50/LD1 and LD2; ASIR 100/LD1, LD2, and LD3; MBIR/LD1. The following protocols demonstrated deviations mostly between 1-2 mm or under 1 mm but over large areas, and so their effect on surgical guide accuracy is questionable: FBP/LD2; MBIR/LD2, LD3, LD4, and LD5. The following protocols demonstrated large deviations over large areas and therefore were not comparable to the reference model: FBP/LD3, LD4, and LD5; ASIR 50/LD3, LD4, and LD5; ASIR 100/LD4, and LD5. When MDCT is used for CAD models of the jaws, dose reductions of 86% may be possible with FBP, 91% with ASIR 50, and 97% with ASIR 100. Analysis of the stability and accuracy of CAD/CAM surgical guides as directly related to the jaws is needed to confirm the results.

  3. Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.

  4. Large Deviations for Stochastic Models of Two-Dimensional Second Grade Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Jianliang, E-mail: zhaijl@ustc.edu.cn; Zhang, Tusheng, E-mail: Tusheng.Zhang@manchester.ac.uk

    2017-06-15

    In this paper, we establish a large deviation principle for stochastic models of incompressible second grade fluids. The weak convergence method introduced by Budhiraja and Dupuis (Probab Math Statist 20:39–61, 2000) plays an important role.

  5. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow.

    PubMed

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-07

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  6. Large deviation theory for the kinetics and energetics of turnover of enzyme catalysis in a chemiostatic flow

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Gangopadhyay, Gautam

    2018-05-01

    In the framework of large deviation theory, we have characterized nonequilibrium turnover statistics of enzyme catalysis in a chemiostatic flow with externally controllable parameters, like substrate injection rate and mechanical force. In the kinetics of the process, we have shown the fluctuation theorems in terms of the symmetry of the scaled cumulant generating function (SCGF) in the transient and steady state regime and a similar symmetry rule is reflected in a large deviation rate function (LDRF) as a property of the dissipation rate through boundaries. Large deviation theory also gives the thermodynamic force of a nonequilibrium steady state, as is usually recorded experimentally by a single molecule technique, which plays a key role responsible for the dynamical symmetry of the SCGF and LDRF. Using some special properties of the Legendre transformation, here, we have provided a relation between the fluctuations of fluxes and dissipation rates, and among them, the fluctuation of the turnover rate is routinely estimated but the fluctuation in the dissipation rate is yet to be characterized for small systems. Such an enzymatic reaction flow system can be a very good testing ground to systematically understand the rare events from the large deviation theory which is beyond fluctuation theorem and central limit theorem.

  7. Data assimilation in the low noise regime

    NASA Astrophysics Data System (ADS)

    Weare, J.; Vanden-Eijnden, E.

    2012-12-01

    On-line data assimilation techniques such as ensemble Kalman filters and particle filters tend to lose accuracy dramatically when presented with an unlikely observation. Such observation may be caused by an unusually large measurement error or reflect a rare fluctuation in the dynamics of the system. Over a long enough span of time it becomes likely that one or several of these events will occur. In some cases they are signatures of the most interesting features of the underlying system and their prediction becomes the primary focus of the data assimilation procedure. The Kuroshio or Black Current that runs along the eastern coast of Japan is an example of just such a system. It undergoes infrequent but dramatic changes of state between a small meander during which the current remains close to the coast of Japan, and a large meander during which the current bulges away from the coast. Because of the important role that the Kuroshio plays in distributing heat and salinity in the surrounding region, prediction of these transitions is of acute interest. { Here we focus on a regime in which both the stochastic forcing on the system and the observational noise are small. In this setting large deviation theory can be used to understand why standard filtering methods fail and guide the design of the more effective data assimilation techniques. Motivated by our large deviations analysis we propose several data assimilation strategies capable of efficiently handling rare events such as the transitions of the Kuroshio. These techniques are tested on a model of the Kuroshio and shown to perform much better than standard filtering methods.Here the sequence of observations (circles) are taken directly from one of our Kuroshio model's transition events from the small meander to the large meander. We tested two new algorithms (Algorithms 3 and 4 in the legend) motivated by our large deviations analysis as well as a standard particle filter and an ensemble Kalman filter. The parameters of each algorithm are chosen so that their costs are comparable. The particle filter and an ensemble Kalman filter fail to accurately track the transition. Algorithms 3 and 4 maintain accuracy (and smaller scale resolution) throughout the transition.

  8. Statistics of velocity fluctuations of Geldart A particles in a circulating fluidized bed riser

    DOE PAGES

    Vaidheeswaran, Avinash; Shaffer, Franklin; Gopalan, Balaji

    2017-11-21

    Here, the statistics of fluctuating velocity components are studied in the riser of a closed-loop circulating fluidized bed with fluid catalytic cracking catalyst particles. Our analysis shows distinct similarities as well as deviations compared to existing theories and bench-scale experiments. The study confirms anisotropic and non-Maxwellian distribution of fluctuating velocity components. The velocity distribution functions (VDFs) corresponding to transverse fluctuations exhibit symmetry, and follow a stretched-exponential behavior up to three standard deviations. The form of the transverse VDF is largely determined by interparticle interactions. The tails become more overpopulated with an increase in particle loading. The observed deviations from themore » Gaussian distribution are represented using the leading order term in the Sonine expansion, which is commonly used to approximate the VDFs in kinetic theory for granular flows. The vertical fluctuating VDFs are asymmetric and the skewness shifts as the wall is approached. In comparison to transverse fluctuations, the vertical VDF is determined by the local hydrodynamics. This is an observation of particle velocity fluctuations in a large-scale system and their quantitative comparison with the Maxwell-Boltzmann statistics.« less

  9. Vacuum stability and naturalness in type-II seesaw

    DOE PAGES

    Haba, Naoyuki; Ishida, Hiroyuki; Okada, Nobuchika; ...

    2016-06-16

    Here, we study the vacuum stability and perturbativity conditions in the minimal type-II seesaw model. These conditions give characteristic constraints to the model parameters. In the model, there is a SU(2) L triplet scalar field, which could cause a large Higgs mass correction. From the naturalness point of view, heavy Higgs masses should be lower than 350GeV, which may be testable by the LHC Run-II results. Due to the effects of the triplet scalar field, the branching ratios of the Higgs decay (h → γγ,Zγ) deviate from the standard model, and a large parameter region is excluded by the recentmore » ATLAS and CMS combined analysis of h → γγ. Our result of the signal strength for h → γγ is R γγ ≲ 1.1, but its deviation is too small to observe at the LHC experiment.« less

  10. Finite-key analysis for measurement-device-independent quantum key distribution.

    PubMed

    Curty, Marcos; Xu, Feihu; Cui, Wei; Lim, Charles Ci Wen; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2014-04-29

    Quantum key distribution promises unconditionally secure communications. However, as practical devices tend to deviate from their specifications, the security of some practical systems is no longer valid. In particular, an adversary can exploit imperfect detectors to learn a large part of the secret key, even though the security proof claims otherwise. Recently, a practical approach--measurement-device-independent quantum key distribution--has been proposed to solve this problem. However, so far its security has only been fully proven under the assumption that the legitimate users of the system have unlimited resources. Here we fill this gap and provide a rigorous security proof against general attacks in the finite-key regime. This is obtained by applying large deviation theory, specifically the Chernoff bound, to perform parameter estimation. For the first time we demonstrate the feasibility of long-distance implementations of measurement-device-independent quantum key distribution within a reasonable time frame of signal transmission.

  11. Large-visual-angle microstructure inspired from quantitative design of Morpho butterflies' lamellae deviation using the FDTD/PSO method.

    PubMed

    Wang, Wanlin; Zhang, Wang; Chen, Weixin; Gu, Jiajun; Liu, Qinglei; Deng, Tao; Zhang, Di

    2013-01-15

    The wide angular range of the treelike structure in Morpho butterfly scales was investigated by finite-difference time-domain (FDTD)/particle-swarm-optimization (PSO) analysis. Using the FDTD method, different parameters in the Morpho butterflies' treelike structure were studied and their contributions to the angular dependence were analyzed. Then a wide angular range was realized by the PSO method from quantitatively designing the lamellae deviation (Δy), which was a crucial parameter with angular range. The field map of the wide-range reflection in a large area was given to confirm the wide angular range. The tristimulus values and corresponding color coordinates for various viewing directions were calculated to confirm the blue color in different observation angles. The wide angular range realized by the FDTD/PSO method will assist us in understanding the scientific principles involved and also in designing artificial optical materials.

  12. Gait Deviations in Children With Osteogenesis Imperfecta Type I.

    PubMed

    Garman, Christina R; Graf, Adam; Krzak, Joseph; Caudill, Angela; Smith, Peter; Harris, Gerald

    2017-08-02

    Osteogenesis imperfecta (OI) is a congenital connective tissue disorder often characterized by orthopaedic complications that impact normal gait. As such, mobility is of particular interest in the OI population as it is associated with multiple aspects of participation and quality of life. The purpose of the current study was to identify and describe common gait deviations in a large sample of individuals with type I OI and speculate the etiology with a goal of improving function. Gait analysis was performed on 44 subjects with type I (11.7±3.08 y old) and 30 typically developing controls (9.54±3.1 y old ). Spatial temporal, kinematic, and kinetic gait data were calculated from the Vicon Plug-in-Gait Model. Musculoskeletal modeling of the muscle tendon lengths (MTL) was done in OpenSim 3.3 to evaluate the MTL of the gastrocnemius and gluteus maximus. The gait deviation index, a dimensionless parameter that evaluates the deviation of 9 kinematic gait parameters from a control database, was also calculated. Walking speed, single support time, stride, and step length were lower and double support time was higher in the OI group. The gait deviation index score was lower and external hip rotation angle was higher in the OI group. Peak hip flexor, knee extensor and ankle plantarflexor moments, and power generation at the ankle were lower in the OI group. MTL analysis revealed no significant length discrepancies between the OI group and the typically developing group. Together, these findings provide a comprehensive description of gait characteristics among a group of individuals with type I OI. Such data inform clinicians about specific gait deviations in this population allowing clinicians to recommend more focused interventions. Level III-case-control study.

  13. Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions

    NASA Astrophysics Data System (ADS)

    Latos, Dorota; Kolanowski, Bogdan; Pachelski, Wojciech; Sołoducha, Ryszard

    2017-12-01

    Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object's behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar).

  14. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  15. 78 FR 6232 - Energy Conservation Program: Test Procedures for Conventional Cooking Products With Induction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... Surface efficiency deviation interval technology unit % % ( ) % Large A Electric Coil... 1 69.79 1.59 1.97... Surface efficiency deviation interval technology unit % % ( ) % Large A Electric Coil... 1 64.52 0.87 1.08... technology unit % % ( ) % Large A Electric Coil... 1 79.81 1.66 2.06 B Electric........ 1 61.81 2.83 3.52...

  16. High storage capacity in the Hopfield model with auto-interactions—stability analysis

    NASA Astrophysics Data System (ADS)

    Rocchi, Jacopo; Saad, David; Tantari, Daniele

    2017-11-01

    Recent studies point to the potential storage of a large number of patterns in the celebrated Hopfield associative memory model, well beyond the limits obtained previously. We investigate the properties of new fixed points to discover that they exhibit instabilities for small perturbations and are therefore of limited value as associative memories. Moreover, a large deviations approach also shows that errors introduced to the original patterns induce additional errors and increased corruption with respect to the stored patterns.

  17. Dispersion in Rectangular Networks: Effective Diffusivity and Large-Deviation Rate Function

    NASA Astrophysics Data System (ADS)

    Tzella, Alexandra; Vanneste, Jacques

    2016-09-01

    The dispersion of a diffusive scalar in a fluid flowing through a network has many applications including to biological flows, porous media, water supply, and urban pollution. Motivated by this, we develop a large-deviation theory that predicts the evolution of the concentration of a scalar released in a rectangular network in the limit of large time t ≫1 . This theory provides an approximation for the concentration that remains valid for large distances from the center of mass, specifically for distances up to O (t ) and thus much beyond the O (t1 /2) range where a standard Gaussian approximation holds. A byproduct of the approach is a closed-form expression for the effective diffusivity tensor that governs this Gaussian approximation. Monte Carlo simulations of Brownian particles confirm the large-deviation results and demonstrate their effectiveness in describing the scalar distribution when t is only moderately large.

  18. A General Conditional Large Deviation Principle

    DOE PAGES

    La Cour, Brian R.; Schieve, William C.

    2015-07-18

    Given a sequence of Borel probability measures on a Hausdorff space which satisfy a large deviation principle (LDP), we consider the corresponding sequence of measures formed by conditioning on a set B. If the large deviation rate function I is good and effectively continuous, and the conditioning set has the property that (1)more » $$\\overline{B°}$$=$$\\overline{B}$$ and (2) I(x)<∞ for all xε$$\\overline{B}$$, then the sequence of conditional measures satisfies a LDP with the good, effectively continuous rate function I B, where I B(x)=I(x)-inf I(B) if xε$$\\overline{B}$$ and I B(x)=∞ otherwise.« less

  19. A Modified Differential Coherent Bit Synchronization Algorithm for BeiDou Weak Signals with Large Frequency Deviation.

    PubMed

    Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi

    2017-07-04

    BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.

  20. A global probabilistic tsunami hazard assessment from earthquake sources

    USGS Publications Warehouse

    Davies, Gareth; Griffin, Jonathan; Lovholt, Finn; Glimsdal, Sylfest; Harbitz, Carl; Thio, Hong Kie; Lorito, Stefano; Basili, Roberto; Selva, Jacopo; Geist, Eric L.; Baptista, Maria Ana

    2017-01-01

    Large tsunamis occur infrequently but have the capacity to cause enormous numbers of casualties, damage to the built environment and critical infrastructure, and economic losses. A sound understanding of tsunami hazard is required to underpin management of these risks, and while tsunami hazard assessments are typically conducted at regional or local scales, globally consistent assessments are required to support international disaster risk reduction efforts, and can serve as a reference for local and regional studies. This study presents a global-scale probabilistic tsunami hazard assessment (PTHA), extending previous global-scale assessments based largely on scenario analysis. Only earthquake sources are considered, as they represent about 80% of the recorded damaging tsunami events. Globally extensive estimates of tsunami run-up height are derived at various exceedance rates, and the associated uncertainties are quantified. Epistemic uncertainties in the exceedance rates of large earthquakes often lead to large uncertainties in tsunami run-up. Deviations between modelled tsunami run-up and event observations are quantified, and found to be larger than suggested in previous studies. Accounting for these deviations in PTHA is important, as it leads to a pronounced increase in predicted tsunami run-up for a given exceedance rate.

  1. Large Deviations: Advanced Probability for Undergrads

    ERIC Educational Resources Information Center

    Rolls, David A.

    2007-01-01

    In the branch of probability called "large deviations," rates of convergence (e.g. of the sample mean) are considered. The theory makes use of the moment generating function. So, particularly for sums of independent and identically distributed random variables, the theory can be made accessible to senior undergraduates after a first course in…

  2. Moderate deviations-based importance sampling for stochastic recursive equations

    DOE PAGES

    Dupuis, Paul; Johnson, Dane

    2017-11-17

    Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.

  3. Moderate deviations-based importance sampling for stochastic recursive equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Paul; Johnson, Dane

    Abstract Subsolutions to the Hamilton–Jacobi–Bellman equation associated with a moderate deviations approximation are used to design importance sampling changes of measure for stochastic recursive equations. Analogous to what has been done for large deviations subsolution-based importance sampling, these schemes are shown to be asymptotically optimal under the moderate deviations scaling. We present various implementations and numerical results to contrast their performance, and also discuss the circumstances under which a moderate deviation scaling might be appropriate.

  4. Impact of Penetration Wind Turbines on Transient Stability in Sulbagsel Electrical Interconnection System

    NASA Astrophysics Data System (ADS)

    Nurtrimarini Karim, Andi; Mawar Said, Sri; Chaerah Gunadin, Indar; Darusman B, Mustadir

    2018-03-01

    This paper presents a rotor angle analysis when transient disturbance occurs when wind turbines enter the southern Sulawesi electrical interconnection system (Sulbagsel) both without and with the addition of a Power Stabilizer (PSS) control device. Time domain simulation (TDS) method is used to analyze the rotor angle deviation (δ) and rotor angle velocity (ω). A total of 44 buses, 47 lines, 6 transformers, 15 generators and 34 loads were modeled for analysis after the inclusion of large-scale wind turbines in the Sidrap and Jeneponto areas. The simulation and computation results show the addition of PSS devices to the system when transient disturbance occurs when the winds turbine entering the Sulbagsel electrical system is able to dampen and improve the rotor angle deviation (δ) and the rotor angle velocity (ω) towards better thus helping the system to continue operation at a new equilibrium point.

  5. Evaluation of Large-scale Data to Detect Irregularity in Payment for Medical Services. An Extended Use of Benford's Law.

    PubMed

    Park, Junghyun A; Kim, Minki; Yoon, Seokjoon

    2016-05-17

    Sophisticated anti-fraud systems for the healthcare sector have been built based on several statistical methods. Although existing methods have been developed to detect fraud in the healthcare sector, these algorithms consume considerable time and cost, and lack a theoretical basis to handle large-scale data. Based on mathematical theory, this study proposes a new approach to using Benford's Law in that we closely examined the individual-level data to identify specific fees for in-depth analysis. We extended the mathematical theory to demonstrate the manner in which large-scale data conform to Benford's Law. Then, we empirically tested its applicability using actual large-scale healthcare data from Korea's Health Insurance Review and Assessment (HIRA) National Patient Sample (NPS). For Benford's Law, we considered the mean absolute deviation (MAD) formula to test the large-scale data. We conducted our study on 32 diseases, comprising 25 representative diseases and 7 DRG-regulated diseases. We performed an empirical test on 25 diseases, showing the applicability of Benford's Law to large-scale data in the healthcare industry. For the seven DRG-regulated diseases, we examined the individual-level data to identify specific fees to carry out an in-depth analysis. Among the eight categories of medical costs, we considered the strength of certain irregularities based on the details of each DRG-regulated disease. Using the degree of abnormality, we propose priority action to be taken by government health departments and private insurance institutions to bring unnecessary medical expenses under control. However, when we detect deviations from Benford's Law, relatively high contamination ratios are required at conventional significance levels.

  6. LD-SPatt: large deviations statistics for patterns on Markov chains.

    PubMed

    Nuel, G

    2004-01-01

    Statistics on Markov chains are widely used for the study of patterns in biological sequences. Statistics on these models can be done through several approaches. Central limit theorem (CLT) producing Gaussian approximations are one of the most popular ones. Unfortunately, in order to find a pattern of interest, these methods have to deal with tail distribution events where CLT is especially bad. In this paper, we propose a new approach based on the large deviations theory to assess pattern statistics. We first recall theoretical results for empiric mean (level 1) as well as empiric distribution (level 2) large deviations on Markov chains. Then, we present the applications of these results focusing on numerical issues. LD-SPatt is the name of GPL software implementing these algorithms. We compare this approach to several existing ones in terms of complexity and reliability and show that the large deviations are more reliable than the Gaussian approximations in absolute values as well as in terms of ranking and are at least as reliable as compound Poisson approximations. We then finally discuss some further possible improvements and applications of this new method.

  7. Photon counting statistics analysis of biophotons from hands.

    PubMed

    Jung, Hyun-Hee; Woo, Won-Myung; Yang, Joon-Mo; Choi, Chunho; Lee, Jonghan; Yoon, Gilwon; Yang, Jong S; Soh, Kwang-Sup

    2003-05-01

    The photon counting statistics of biophotons emitted from hands is studied with a view to test its agreement with the Poisson distribution. The moments of observed probability up to seventh order have been evaluated. The moments of biophoton emission from hands are in good agreement while those of dark counts of photomultiplier tube show large deviations from the theoretical values of Poisson distribution. The present results are consistent with the conventional delta-value analysis of the second moment of probability.

  8. Evaluating the accuracy and large inaccuracy of two continuous glucose monitoring systems.

    PubMed

    Leelarathna, Lalantha; Nodale, Marianna; Allen, Janet M; Elleri, Daniela; Kumareswaran, Kavita; Haidar, Ahmad; Caldwell, Karen; Wilinska, Malgorzata E; Acerini, Carlo L; Evans, Mark L; Murphy, Helen R; Dunger, David B; Hovorka, Roman

    2013-02-01

    This study evaluated the accuracy and large inaccuracy of the Freestyle Navigator (FSN) (Abbott Diabetes Care, Alameda, CA) and Dexcom SEVEN PLUS (DSP) (Dexcom, Inc., San Diego, CA) continuous glucose monitoring (CGM) systems during closed-loop studies. Paired CGM and plasma glucose values (7,182 data pairs) were collected, every 15-60 min, from 32 adults (36.2±9.3 years) and 20 adolescents (15.3±1.5 years) with type 1 diabetes who participated in closed-loop studies. Levels 1, 2, and 3 of large sensor error with increasing severity were defined according to absolute relative deviation greater than or equal to ±40%, ±50%, and ±60% at a reference glucose level of ≥6 mmol/L or absolute deviation greater than or equal to ±2.4 mmol/L,±3.0 mmol/L, and ±3.6 mmol/L at a reference glucose level of <6 mmol/L. Median absolute relative deviation was 9.9% for FSN and 12.6% for DSP. Proportions of data points in Zones A and B of Clarke error grid analysis were similar (96.4% for FSN vs. 97.8% for DSP). Large sensor over-reading, which increases risk of insulin over-delivery and hypoglycemia, occurred two- to threefold more frequently with DSP than FSN (once every 2.5, 4.6, and 10.7 days of FSN use vs. 1.2, 2.0, and 3.7 days of DSP use for Level 1-3 errors, respectively). At levels 2 and 3, large sensor errors lasting 1 h or longer were absent with FSN but persisted with DSP. FSN and DSP differ substantially in the frequency and duration of large inaccuracy despite only modest differences in conventional measures of numerical and clinical accuracy. Further evaluations are required to confirm that FSN is more suitable for integration into closed-loop delivery systems.

  9. Birth cohort increases in psychopathology among young Americans, 1938-2007: A cross-temporal meta-analysis of the MMPI.

    PubMed

    Twenge, Jean M; Gentile, Brittany; DeWall, C Nathan; Ma, Debbie; Lacefield, Katharine; Schurtz, David R

    2010-03-01

    Two cross-temporal meta-analyses find large generational increases in psychopathology among American college students (N=63,706) between 1938 and 2007 on the MMPI and MMPI-2 and high school students (N=13,870) between 1951 and 2002 on the MMPI-A. The current generation of young people scores about a standard deviation higher (average d=1.05) on the clinical scales, including Pd (Psychopathic Deviation), Pa (Paranoia), Ma (Hypomania), and D (Depression). Five times as many now score above common cutoffs for psychopathology, including up to 40% on Ma. The birth cohort effects are still large and significant after controlling for the L and K validity scales, suggesting that the changes are not caused by response bias. The results best fit a model citing cultural shifts toward extrinsic goals, such as materialism and status and away from intrinsic goals, such as community, meaning in life, and affiliation. Copyright 2009 Elsevier B.V. All rights reserved.

  10. The large deviation function for entropy production: the optimal trajectory and the role of fluctuations

    NASA Astrophysics Data System (ADS)

    Speck, Thomas; Engel, Andreas; Seifert, Udo

    2012-12-01

    We study the large deviation function for the entropy production rate in two driven one-dimensional systems: the asymmetric random walk on a discrete lattice and Brownian motion in a continuous periodic potential. We compare two approaches: using the Donsker-Varadhan theory and using the Freidlin-Wentzell theory. We show that the wings of the large deviation function are dominated by a single optimal trajectory: either in the forward direction (positive rate) or in the backward direction (negative rate). The joining of the two branches at zero entropy production implies a non-differentiability and thus the appearance of a ‘kink’. However, around zero entropy production, many trajectories contribute and thus the ‘kink’ is smeared out.

  11. Locality and nonlocality of classical restrictions of quantum spin systems with applications to quantum large deviations and entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Roeck, W., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Maes, C., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be; Schütz, M., E-mail: wojciech.deroeck@fys.kuleuven.be, E-mail: christian.maes@fys.kuleuven.be, E-mail: netocny@fzu.cz, E-mail: marius.schutz@fys.kuleuven.be

    2015-02-15

    We study the projection on classical spins starting from quantum equilibria. We show Gibbsianness or quasi-locality of the resulting classical spin system for a class of gapped quantum systems at low temperatures including quantum ground states. A consequence of Gibbsianness is the validity of a large deviation principle in the quantum system which is known and here recovered in regimes of high temperature or for thermal states in one dimension. On the other hand, we give an example of a quantum ground state with strong nonlocality in the classical restriction, giving rise to what we call measurement induced entanglement andmore » still satisfying a large deviation principle.« less

  12. Hoeffding Type Inequalities and their Applications in Statistics and Operations Research

    NASA Astrophysics Data System (ADS)

    Daras, Tryfon

    2007-09-01

    Large Deviation theory is the branch of Probability theory that deals with rare events. Sometimes, these events can be described by the sum of random variables that deviates from its mean more than a "normal" amount. A precise calculation of the probabilities of such events turns out to be crucial in a variety of different contents (e.g. in Probability Theory, Statistics, Operations Research, Statistical Physics, Financial Mathematics e.t.c.). Recent applications of the theory deal with random walks in random environments, interacting diffusions, heat conduction, polymer chains [1]. In this paper we prove an inequality of exponential type, namely theorem 2.1, which gives a large deviation upper bound for a specific sequence of r.v.s. Inequalities of this type have many applications in Combinatorics [2]. The inequality generalizes already proven results of this type, in the case of symmetric probability measures. We get as consequences to the inequality: (a) large deviations upper bounds for exchangeable Bernoulli sequences of random variables, generalizing results proven for independent and identically distributed Bernoulli sequences of r.v.s. and (b) a general form of Bernstein's inequality. We compare the inequality with large deviation results already proven by the author and try to see its advantages. Finally, using the inequality, we solve one of the basic problems of Operations Research (bin packing problem) in the case of exchangeable r.v.s.

  13. Testing the equivalence principle on cosmological scales

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Fleury, Pierre

    2018-05-01

    The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler's equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler's equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler's equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

  14. A Priori Subgrid Scale Modeling for a Droplet Laden Temporal Mixing Layer

    NASA Technical Reports Server (NTRS)

    Okongo, Nora; Bellan, Josette

    2000-01-01

    Subgrid analysis of a transitional temporal mixing layer with evaporating droplets has been performed using a direct numerical simulation (DNS) database. The DNS is for a Reynolds number (based on initial vorticity thickness) of 600, with droplet mass loading of 0.2. The gas phase is computed using a Eulerian formulation, with Lagrangian droplet tracking. Since Large Eddy Simulation (LES) of this flow requires the computation of unfiltered gas-phase variables at droplet locations from filtered gas-phase variables at the grid points, it is proposed to model these by assuming the gas-phase variables to be given by the filtered variables plus a correction based on the filtered standard deviation, which can be computed from the sub-grid scale (SGS) standard deviation. This model predicts unfiltered variables at droplet locations better than simply interpolating the filtered variables. Three methods are investigated for modeling the SGS standard deviation: Smagorinsky, gradient and scale-similarity. When properly calibrated, the gradient and scale-similarity methods give results in excellent agreement with the DNS.

  15. Prediction of deviations from the Rutherford formula for low-energy Coulomb scattering of wavepackets

    NASA Astrophysics Data System (ADS)

    Hoffmann, Scott E.

    2017-11-01

    We calculate the nonrelativistic scattering of a wavepacket from a Coulomb potential and find deviations from the Rutherford formula in all cases. These generally occur only at low scattering angles, where they would be obscured by the part of the incident beam that emerges essentially unscattered. For a model experiment, the scattering of helium nuclei from a thin gold foil, we find the deviation region is magnified for low incident energies (in the keV range), so that a large shadow zone of low probability around the forward direction is expected to be measurable. From a theoretical perspective, the use of wavepackets makes partial wave analysis applicable to this infinite-range potential. It allows us to calculate the everywhere finite probability for a wavepacket to wavepacket transition and to relate this to the differential cross section. Time delays and advancements in the detection probabilities can be calculated. We investigate the optical theorem as applied to this special case.

  16. Generic dynamical phase transition in one-dimensional bulk-driven lattice gases with exclusion

    NASA Astrophysics Data System (ADS)

    Lazarescu, Alexandre

    2017-06-01

    Dynamical phase transitions are crucial features of the fluctuations of statistical systems, corresponding to boundaries between qualitatively different mechanisms of maintaining unlikely values of dynamical observables over long periods of time. They manifest themselves in the form of non-analyticities in the large deviation function of those observables. In this paper, we look at bulk-driven exclusion processes with open boundaries. It is known that the standard asymmetric simple exclusion process exhibits a dynamical phase transition in the large deviations of the current of particles flowing through it. That phase transition has been described thanks to specific calculation methods relying on the model being exactly solvable, but more general methods have also been used to describe the extreme large deviations of that current, far from the phase transition. We extend those methods to a large class of models based on the ASEP, where we add arbitrary spatial inhomogeneities in the rates and short-range potentials between the particles. We show that, as for the regular ASEP, the large deviation function of the current scales differently with the size of the system if one considers very high or very low currents, pointing to the existence of a dynamical phase transition between those two regimes: high current large deviations are extensive in the system size, and the typical states associated to them are Coulomb gases, which are highly correlated; low current large deviations do not depend on the system size, and the typical states associated to them are anti-shocks, consistently with a hydrodynamic behaviour. Finally, we illustrate our results numerically on a simple example, and we interpret the transition in terms of the current pushing beyond its maximal hydrodynamic value, as well as relate it to the appearance of Tracy-Widom distributions in the relaxation statistics of such models. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Alexandre Lazarescu was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  17. An Empirical Analysis of the Gender Gap in Mathematics. NBER Working Paper No. 15430

    ERIC Educational Resources Information Center

    Fryer, Roland G., Jr.; Levitt, Steven D.

    2009-01-01

    We document and analyze the emergence of a substantial gender gap in mathematics in the early years of schooling using a large, recent, and nationally representative panel of children in the United States. There are no mean differences between boys and girls upon entry to school, but girls lose more than two-tenths of a standard deviation relative…

  18. Non-specific filtering of beta-distributed data.

    PubMed

    Wang, Xinhui; Laird, Peter W; Hinoue, Toshinori; Groshen, Susan; Siegmund, Kimberly D

    2014-06-19

    Non-specific feature selection is a dimension reduction procedure performed prior to cluster analysis of high dimensional molecular data. Not all measured features are expected to show biological variation, so only the most varying are selected for analysis. In DNA methylation studies, DNA methylation is measured as a proportion, bounded between 0 and 1, with variance a function of the mean. Filtering on standard deviation biases the selection of probes to those with mean values near 0.5. We explore the effect this has on clustering, and develop alternate filter methods that utilize a variance stabilizing transformation for Beta distributed data and do not share this bias. We compared results for 11 different non-specific filters on eight Infinium HumanMethylation data sets, selected to span a variety of biological conditions. We found that for data sets having a small fraction of samples showing abnormal methylation of a subset of normally unmethylated CpGs, a characteristic of the CpG island methylator phenotype in cancer, a novel filter statistic that utilized a variance-stabilizing transformation for Beta distributed data outperformed the common filter of using standard deviation of the DNA methylation proportion, or its log-transformed M-value, in its ability to detect the cancer subtype in a cluster analysis. However, the standard deviation filter always performed among the best for distinguishing subgroups of normal tissue. The novel filter and standard deviation filter tended to favour features in different genome contexts; for the same data set, the novel filter always selected more features from CpG island promoters and the standard deviation filter always selected more features from non-CpG island intergenic regions. Interestingly, despite selecting largely non-overlapping sets of features, the two filters did find sample subsets that overlapped for some real data sets. We found two different filter statistics that tended to prioritize features with different characteristics, each performed well for identifying clusters of cancer and non-cancer tissue, and identifying a cancer CpG island hypermethylation phenotype. Since cluster analysis is for discovery, we would suggest trying both filters on any new data sets, evaluating the overlap of features selected and clusters discovered.

  19. Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time.

    PubMed

    Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien

    2017-06-01

    Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provides a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to selection rules that favor the rare trajectories of interest. Such algorithms are plagued by finite simulation time and finite population size, effects that can render their use delicate. In this paper, we present a numerical approach which uses the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of rare trajectories. The method we propose allows one to extract the infinite-time and infinite-size limit of these estimators, which-as shown on the contact process-provides a significant improvement of the large deviation function estimators compared to the standard one.

  20. Robust regression for large-scale neuroimaging studies.

    PubMed

    Fritsch, Virgile; Da Mota, Benoit; Loth, Eva; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Brühl, Rüdiger; Butzek, Brigitte; Conrod, Patricia; Flor, Herta; Garavan, Hugh; Lemaitre, Hervé; Mann, Karl; Nees, Frauke; Paus, Tomas; Schad, Daniel J; Schümann, Gunter; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2015-05-01

    Multi-subject datasets used in neuroimaging group studies have a complex structure, as they exhibit non-stationary statistical properties across regions and display various artifacts. While studies with small sample sizes can rarely be shown to deviate from standard hypotheses (such as the normality of the residuals) due to the poor sensitivity of normality tests with low degrees of freedom, large-scale studies (e.g. >100 subjects) exhibit more obvious deviations from these hypotheses and call for more refined models for statistical inference. Here, we demonstrate the benefits of robust regression as a tool for analyzing large neuroimaging cohorts. First, we use an analytic test based on robust parameter estimates; based on simulations, this procedure is shown to provide an accurate statistical control without resorting to permutations. Second, we show that robust regression yields more detections than standard algorithms using as an example an imaging genetics study with 392 subjects. Third, we show that robust regression can avoid false positives in a large-scale analysis of brain-behavior relationships with over 1500 subjects. Finally we embed robust regression in the Randomized Parcellation Based Inference (RPBI) method and demonstrate that this combination further improves the sensitivity of tests carried out across the whole brain. Altogether, our results show that robust procedures provide important advantages in large-scale neuroimaging group studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Large-deviation probabilities for correlated Gaussian processes and intermittent dynamical systems

    NASA Astrophysics Data System (ADS)

    Massah, Mozhdeh; Nicol, Matthew; Kantz, Holger

    2018-05-01

    In its classical version, the theory of large deviations makes quantitative statements about the probability of outliers when estimating time averages, if time series data are identically independently distributed. We study large-deviation probabilities (LDPs) for time averages in short- and long-range correlated Gaussian processes and show that long-range correlations lead to subexponential decay of LDPs. A particular deterministic intermittent map can, depending on a control parameter, also generate long-range correlated time series. We illustrate numerically, in agreement with the mathematical literature, that this type of intermittency leads to a power law decay of LDPs. The power law decay holds irrespective of whether the correlation time is finite or infinite, and hence irrespective of whether the central limit theorem applies or not.

  2. Endometrioid adenocarcinoma of the uterus with a minimal deviation invasive pattern.

    PubMed

    Landry, D; Mai, K T; Senterman, M K; Perkins, D G; Yazdi, H M; Veinot, J P; Thomas, J

    2003-01-01

    Minimal deviation adenocarcinoma of endometrioid type is a rare pathological entity. We describe a variant of typical endometrioid adenocarcinoma associated with minimal deviation adenocarcinoma of endometrioid type. One 'pilot' case of minimal deviation adenocarcinoma of endometrioid type associated with typical endometrioid adenocarcinoma was encountered at our institution in 2001. A second case of same type was received in consultation. We reviewed 168 consecutive hysterectomy specimens diagnosed with 'endometrioid adenocarcinoma' specifically to identify areas of minimal deviation adenocarcinoma of endometrioid type. Immunohistochemistry was done with the following antibodies: MIB1, p53, oestrogen receptor (ER), progesterone receptor (PR), cytokeratin 7 (CK7), cytokeratin 20 (CK20), carcinoembryonic antigen (CEA), and vimentin (VIM). Four additional cases of minimal deviation adenocarcinoma of endometrioid type were identified. All six cases of minimal deviation adenocarcinoma of endometrioid type were associated with superficial endometrioid adenocarcinoma. In two cases with a large amount of minimal deviation adenocarcinoma of endometrioid type, the cervix was involved. The immunoprofile of two representative cases was ER+, PR+, CK7+, CK20-, CEA-, VIM+. MIB1 immunostaining of four cases revealed little proliferative activity of the minimal deviation adenocarcinoma of endometrioid type glandular cells (0-1%) compared with the associated 'typical' endometrioid adenocarcinoma (20-30%). The same four cases showed no p53 immunostaining in minimal deviation adenocarcinoma of endometrioid type compared with a range of positive staining in the associated endometrioid adenocarcinoma. Minimal deviation adenocarcinoma of endometrioid type more often develops as a result of differentiation from typical endometrioid adenocarcinoma than de novo. Due to its deceptively benign microscopic appearance, minimal deviation adenocarcinoma of endometrioid type may be overlooked and may lead to incorrect assessment of tumour depth and pathological stage. There was a tendency for tumour with a large amount of minimal deviation adenocarcinoma of endometrioid type to invade the cervix.

  3. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE PAGES

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...

    2017-11-01

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  4. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  5. Multiscale analysis of the CMB temperature derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcos-Caballero, A.; Martínez-González, E.; Vielva, P., E-mail: marcos@ifca.unican.es, E-mail: martinez@ifca.unican.es, E-mail: vielva@ifca.unican.es

    2017-02-01

    We study the Planck CMB temperature at different scales through its derivatives up to second order, which allows one to characterize the local shape and isotropy of the field. The problem of having an incomplete sky in the calculation and statistical characterization of the derivatives is addressed in the paper. The analysis confirms the existence of a low variance in the CMB at large scales, which is also noticeable in the derivatives. Moreover, deviations from the standard model in the gradient, curvature and the eccentricity tensor are studied in terms of extreme values on the data. As it is expected,more » the Cold Spot is detected as one of the most prominent peaks in terms of curvature, but additionally, when the information of the temperature and its Laplacian are combined, another feature with similar probability at the scale of 10{sup o} is also observed. However, the p -value of these two deviations increase above the 6% when they are referred to the variance calculated from the theoretical fiducial model, indicating that these deviations can be associated to the low variance anomaly. Finally, an estimator of the directional anisotropy for spinorial quantities is introduced, which is applied to the spinors derived from the field derivatives. An anisotropic direction whose probability is <1% is detected in the eccentricity tensor.« less

  6. Validation of nuclear magnetic resonance structures of proteins and nucleic acids: hydrogen geometry and nomenclature.

    PubMed

    Doreleijers, J F; Vriend, G; Raves, M L; Kaptein, R

    1999-11-15

    A statistical analysis is reported of 1,200 of the 1,404 nuclear magnetic resonance (NMR)-derived protein and nucleic acid structures deposited in the Protein Data Bank (PDB) before 1999. Excluded from this analysis were the entries not yet fully validated by the PDB and the more than 100 entries that contained < 95% of the expected hydrogens. The aim was to assess the geometry of the hydrogens in the remaining structures and to provide a check on their nomenclature. Deviations in bond lengths, bond angles, improper dihedral angles, and planarity with respect to estimated values were checked. More than 100 entries showed anomalous protonation states for some of their amino acids. Approximately 250,000 (1.7%) atom names differed from the consensus PDB nomenclature. Most of the inconsistencies are due to swapped prochiral labeling. Large deviations from the expected geometry exist for a considerable number of entries, many of which are average structures. The most common causes for these deviations seem to be poor minimization of average structures and an improper balance between force-field constraints for experimental and holonomic data. Some specific geometric outliers are related to the refinement programs used. A number of recommendations for biomolecular databases, modeling programs, and authors submitting biomolecular structures are given.

  7. A method for age-matched OCT angiography deviation mapping in the assessment of disease- related changes to the radial peripapillary capillaries.

    PubMed

    Pinhas, Alexander; Linderman, Rachel; Mo, Shelley; Krawitz, Brian D; Geyman, Lawrence S; Carroll, Joseph; Rosen, Richard B; Chui, Toco Y

    2018-01-01

    To present a method for age-matched deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries (RPCs). We reviewed 4.5x4.5mm en face peripapillary OCT-A scans of 133 healthy control eyes (133 subjects, mean 41.5 yrs, range 11-82 yrs) and 4 eyes with distinct retinal pathologies, obtained using spectral-domain optical coherence tomography angiography. Statistical analysis was performed to evaluate the impact of age on RPC perfusion densities. RPC density group mean and standard deviation maps were generated for each decade of life. Deviation maps were created for the diseased eyes based on these maps. Large peripapillary vessel (LPV; noncapillary vessel) perfusion density was also studied for impact of age. Average healthy RPC density was 42.5±1.47%. ANOVA and pairwise Tukey-Kramer tests showed that RPC density in the ≥60yr group was significantly lower compared to RPC density in all younger decades of life (p<0.01). Average healthy LPV density was 21.5±3.07%. Linear regression models indicated that LPV density decreased with age, however ANOVA and pairwise Tukey-Kramer tests did not reach statistical significance. Deviation mapping enabled us to quantitatively and visually elucidate the significance of RPC density changes in disease. It is important to consider changes that occur with aging when analyzing RPC and LPV density changes in disease. RPC density, coupled with age-matched deviation mapping techniques, represents a potentially clinically useful method in detecting changes to peripapillary perfusion in disease.

  8. Point-based and model-based geolocation analysis of airborne laser scanning data

    NASA Astrophysics Data System (ADS)

    Sefercik, Umut Gunes; Buyuksalih, Gurcan; Jacobsen, Karsten; Alkan, Mehmet

    2017-01-01

    Airborne laser scanning (ALS) is one of the most effective remote sensing technologies providing precise three-dimensional (3-D) dense point clouds. A large-size ALS digital surface model (DSM) covering the whole Istanbul province was analyzed by point-based and model-based comprehensive statistical approaches. Point-based analysis was performed using checkpoints on flat areas. Model-based approaches were implemented in two steps as strip to strip comparing overlapping ALS DSMs individually in three subareas and comparing the merged ALS DSMs with terrestrial laser scanning (TLS) DSMs in four other subareas. In the model-based approach, the standard deviation of height and normalized median absolute deviation were used as the accuracy indicators combined with the dependency of terrain inclination. The results demonstrate that terrain roughness has a strong impact on the vertical accuracy of ALS DSMs. From the relative horizontal shifts determined and partially improved by merging the overlapping strips and comparison of the ALS, and the TLS, data were found not to be negligible. The analysis of ALS DSM in relation to TLS DSM allowed us to determine the characteristics of the DSM in detail.

  9. Use of the Gait Deviation Index for the Assessment of Gastrocnemius Fascia Lengthening in Children with Cerebral Palsy

    ERIC Educational Resources Information Center

    Cimolin, Veronica; Galli, Manuela; Vimercati, Sara Laura; Albertini, Giorgio

    2011-01-01

    Gait analysis (GA) is widely used for clinical evaluations and it is recognized as a central element in the quantitative evaluation of gait, in the planning of treatments and in the pre vs. post intervention evaluations in children with Cerebral Palsy (CP). Otherwise, GA produces a large volume of data and there is the clinical need to provide…

  10. Evidence for single top-quark production in the s-channel in proton–proton collisions at √s = 8TeV with the ATLAS detector using the Matrix Element Method

    DOE PAGES

    Aad, G.

    2016-03-08

    This Letter presents evidence for single top-quark production in the s-channel using proton–proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The analysis is performed on events containing one isolated electron or muon, large missing transverse momentum and exactly two b-tagged jets in the final state. The analysed data set corresponds to an integrated luminosity of 20.3 fb -1. The signal is extracted using a maximum-likelihood fit of a discriminant which is based on the matrix element method and optimized in order to separate single-top-quark s-channel events from the mainmore » background contributions, which are top-quark pair production and W boson production in association with heavy-flavour jets. The measurement leads to an observed signal significance of 3.2 standard deviations and a measured cross-section of σ s = 4.8 ± 0.8(stat.) -1.3 +1.6(syst.) pb, which is consistent with the Standard Model expectation. As a result, the expected significance for the analysis is 3.9 standard deviations.« less

  11. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  12. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE PAGES

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...

    2017-04-18

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doubrawa Moreira, Paula; Annoni, Jennifer; Jonkman, Jason

    FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral andmore » vertical directions under different atmospheric and turbine operating conditions.« less

  14. Random matrix approach to cross correlations in financial data

    NASA Astrophysics Data System (ADS)

    Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene

    2002-06-01

    We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices C of returns constructed from (i) 30-min returns of 1000 US stocks for the 2-yr period 1994-1995, (ii) 30-min returns of 881 US stocks for the 2-yr period 1996-1997, and (iii) 1-day returns of 422 US stocks for the 35-yr period 1962-1996. We test the statistics of the eigenvalues λi of C against a ``null hypothesis'' - a random correlation matrix constructed from mutually uncorrelated time series. We find that a majority of the eigenvalues of C fall within the RMT bounds [λ-,λ+] for the eigenvalues of random correlation matrices. We test the eigenvalues of C within the RMT bound for universal properties of random matrices and find good agreement with the results for the Gaussian orthogonal ensemble of random matrices-implying a large degree of randomness in the measured cross-correlation coefficients. Further, we find that the distribution of eigenvector components for the eigenvectors corresponding to the eigenvalues outside the RMT bound display systematic deviations from the RMT prediction. In addition, we find that these ``deviating eigenvectors'' are stable in time. We analyze the components of the deviating eigenvectors and find that the largest eigenvalue corresponds to an influence common to all stocks. Our analysis of the remaining deviating eigenvectors shows distinct groups, whose identities correspond to conventionally identified business sectors. Finally, we discuss applications to the construction of portfolios of stocks that have a stable ratio of risk to return.

  15. Severity of Illness Scores May Misclassify Critically Ill Obese Patients.

    PubMed

    Deliberato, Rodrigo Octávio; Ko, Stephanie; Komorowski, Matthieu; Armengol de La Hoz, M A; Frushicheva, Maria P; Raffa, Jesse D; Johnson, Alistair E W; Celi, Leo Anthony; Stone, David J

    2018-03-01

    Severity of illness scores rest on the assumption that patients have normal physiologic values at baseline and that patients with similar severity of illness scores have the same degree of deviation from their usual state. Prior studies have reported differences in baseline physiology, including laboratory markers, between obese and normal weight individuals, but these differences have not been analyzed in the ICU. We compared deviation from baseline of pertinent ICU laboratory test results between obese and normal weight patients, adjusted for the severity of illness. Retrospective cohort study in a large ICU database. Tertiary teaching hospital. Obese and normal weight patients who had laboratory results documented between 3 days and 1 year prior to hospital admission. None. Seven hundred sixty-nine normal weight patients were compared with 1,258 obese patients. After adjusting for the severity of illness score, age, comorbidity index, baseline laboratory result, and ICU type, the following deviations were found to be statistically significant: WBC 0.80 (95% CI, 0.27-1.33) × 10/L; p = 0.003; log (blood urea nitrogen) 0.01 (95% CI, 0.00-0.02); p = 0.014; log (creatinine) 0.03 (95% CI, 0.02-0.05), p < 0.001; with all deviations higher in obese patients. A logistic regression analysis suggested that after adjusting for age and severity of illness at least one of these deviations had a statistically significant effect on hospital mortality (p = 0.009). Among patients with the same severity of illness score, we detected clinically small but significant deviations in WBC, creatinine, and blood urea nitrogen from baseline in obese compared with normal weight patients. These small deviations are likely to be increasingly important as bigger data are analyzed in increasingly precise ways. Recognition of the extent to which all critically ill patients may deviate from their own baseline may improve the objectivity, precision, and generalizability of ICU mortality prediction and severity adjustment models.

  16. Genome-wide Scan of 29,141 African Americans Finds No Evidence of Directional Selection since Admixture

    PubMed Central

    Bhatia, Gaurav; Tandon, Arti; Patterson, Nick; Aldrich, Melinda C.; Ambrosone, Christine B.; Amos, Christopher; Bandera, Elisa V.; Berndt, Sonja I.; Bernstein, Leslie; Blot, William J.; Bock, Cathryn H.; Caporaso, Neil; Casey, Graham; Deming, Sandra L.; Diver, W. Ryan; Gapstur, Susan M.; Gillanders, Elizabeth M.; Harris, Curtis C.; Henderson, Brian E.; Ingles, Sue A.; Isaacs, William; De Jager, Phillip L.; John, Esther M.; Kittles, Rick A.; Larkin, Emma; McNeill, Lorna H.; Millikan, Robert C.; Murphy, Adam; Neslund-Dudas, Christine; Nyante, Sarah; Press, Michael F.; Rodriguez-Gil, Jorge L.; Rybicki, Benjamin A.; Schwartz, Ann G.; Signorello, Lisa B.; Spitz, Margaret; Strom, Sara S.; Tucker, Margaret A.; Wiencke, John K.; Witte, John S.; Wu, Xifeng; Yamamura, Yuko; Zanetti, Krista A.; Zheng, Wei; Ziegler, Regina G.; Chanock, Stephen J.; Haiman, Christopher A.; Reich, David; Price, Alkes L.

    2014-01-01

    The extent of recent selection in admixed populations is currently an unresolved question. We scanned the genomes of 29,141 African Americans and failed to find any genome-wide-significant deviations in local ancestry, indicating no evidence of selection influencing ancestry after admixture. A recent analysis of data from 1,890 African Americans reported that there was evidence of selection in African Americans after their ancestors left Africa, both before and after admixture. Selection after admixture was reported on the basis of deviations in local ancestry, and selection before admixture was reported on the basis of allele-frequency differences between African Americans and African populations. The local-ancestry deviations reported by the previous study did not replicate in our very large sample, and we show that such deviations were expected purely by chance, given the number of hypotheses tested. We further show that the previous study’s conclusion of selection in African Americans before admixture is also subject to doubt. This is because the FST statistics they used were inflated and because true signals of unusual allele-frequency differences between African Americans and African populations would be best explained by selection that occurred in Africa prior to migration to the Americas. PMID:25242497

  17. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2012-09-30

    Estimation Methods for Underwater OFDM 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. 6) Asynchronous Multiuser...multi-input multi-output ( MIMO ) OFDM is also pursued, where it is shown that the proposed hybrid initialization enables drastically improved receiver...are investigated. 5) Two Iterative Receivers for Distributed MIMO - OFDM with Large Doppler Deviations. This work studies a distributed system with

  18. Large deviations and mixing for dissipative PDEs with unbounded random kicks

    NASA Astrophysics Data System (ADS)

    Jakšić, V.; Nersesyan, V.; Pillet, C.-A.; Shirikyan, A.

    2018-02-01

    We study the problem of exponential mixing and large deviations for discrete-time Markov processes associated with a class of random dynamical systems. Under some dissipativity and regularisation hypotheses for the underlying deterministic dynamics and a non-degeneracy condition for the driving random force, we discuss the existence and uniqueness of a stationary measure and its exponential stability in the Kantorovich-Wasserstein metric. We next turn to the large deviations principle (LDP) and establish its validity for the occupation measures of the Markov processes in question. The proof is based on Kifer’s criterion for non-compact spaces, a result on large-time asymptotics for generalised Markov semigroup, and a coupling argument. These tools combined together constitute a new approach to LDP for infinite-dimensional processes without strong Feller property in a non-compact space. The results obtained can be applied to the two-dimensional Navier-Stokes system in a bounded domain and to the complex Ginzburg-Landau equation.

  19. Burnup calculations and chemical analysis of irradiated fuel samples studied in LWR-PROTEUS phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, P.; Guenther-Leopold, I.; Berger, H. D.

    2006-07-01

    The isotopic compositions of 5 UO{sub 2} samples irradiated in a Swiss PWR power plant, which were investigated in the LWR-PROTEUS Phase II programme, were calculated using the CASMO-4 and BOXER assembly codes. The burnups of the samples range from 50 to 90 MWd/kg. The results for a large number of actinide and fission product nuclides were compared to those of chemical analyses performed using a combination of chromatographic separation and mass spectrometry. A good agreement of calculated and measured concentrations is found for many of the nuclides investigated with both codes. The concentrations of the Pu isotopes are mostlymore » predicted within {+-}10%, the two codes giving quite different results, except for {sup 242}Pu. Relatively significant deviations are found for some isotopes of Cs and Sm, and large discrepancies are observed for Eu and Gd. The overall quality of the predictions by the two codes is comparable, and the deviations from the experimental data do not generally increase with burnup. (authors)« less

  20. Convex hulls of random walks in higher dimensions: A large-deviation study

    NASA Astrophysics Data System (ADS)

    Schawe, Hendrik; Hartmann, Alexander K.; Majumdar, Satya N.

    2017-12-01

    The distribution of the hypervolume V and surface ∂ V of convex hulls of (multiple) random walks in higher dimensions are determined numerically, especially containing probabilities far smaller than P =10-1000 to estimate large deviation properties. For arbitrary dimensions and large walk lengths T , we suggest a scaling behavior of the distribution with the length of the walk T similar to the two-dimensional case and behavior of the distributions in the tails. We underpin both with numerical data in d =3 and d =4 dimensions. Further, we confirm the analytically known means of those distributions and calculate their variances for large T .

  1. Work fluctuations for a Brownian particle between two thermostats

    NASA Astrophysics Data System (ADS)

    Visco, Paolo

    2006-06-01

    We explicitly determine the large deviation function of the energy flow of a Brownian particle coupled to two heat baths at different temperatures. This toy model, initially introduced by Derrida and Brunet (2005, Einstein aujourd'hui (Les Ulis: EDP Sciences)), not only allows us to sort out the influence of initial conditions on large deviation functions but also allows us to pinpoint various restrictions bearing upon the range of validity of the Fluctuation Relation.

  2. Large Deviations and Transitions Between Equilibria for Stochastic Landau-Lifshitz-Gilbert Equation

    NASA Astrophysics Data System (ADS)

    Brzeźniak, Zdzisław; Goldys, Ben; Jegaraj, Terence

    2017-11-01

    We study a stochastic Landau-Lifshitz equation on a bounded interval and with finite dimensional noise. We first show that there exists a pathwise unique solution to this equation and that this solution enjoys the maximal regularity property. Next, we prove the large deviations principle for the small noise asymptotic of solutions using the weak convergence method. An essential ingredient of the proof is the compactness, or weak to strong continuity, of the solution map for a deterministic Landau-Lifschitz equation when considered as a transformation of external fields. We then apply this large deviations principle to show that small noise can cause magnetisation reversal. We also show the importance of the shape anisotropy parameter for reducing the disturbance of the solution caused by small noise. The problem is motivated by applications from ferromagnetic nanowires to the fabrication of magnetic memories.

  3. Evaluation of bacterial motility from non-Gaussianity of finite-sample trajectories using the large deviation principle

    NASA Astrophysics Data System (ADS)

    Hanasaki, Itsuo; Kawano, Satoyuki

    2013-11-01

    Motility of bacteria is usually recognized in the trajectory data and compared with Brownian motion, but the diffusion coefficient is insufficient to evaluate it. In this paper, we propose a method based on the large deviation principle. We show that it can be used to evaluate the non-Gaussian characteristics of model Escherichia coli motions and to distinguish combinations of the mean running duration and running speed that lead to the same diffusion coefficient. Our proposed method does not require chemical stimuli to induce the chemotaxis in a specific direction, and it is applicable to various types of self-propelling motions for which no a priori information of, for example, threshold parameters for run and tumble or head/tail direction is available. We also address the issue of the finite-sample effect on the large deviation quantities, but we propose to make use of it to characterize the nature of motility.

  4. Mean-deviation analysis in the theory of choice.

    PubMed

    Grechuk, Bogdan; Molyboha, Anton; Zabarankin, Michael

    2012-08-01

    Mean-deviation analysis, along with the existing theories of coherent risk measures and dual utility, is examined in the context of the theory of choice under uncertainty, which studies rational preference relations for random outcomes based on different sets of axioms such as transitivity, monotonicity, continuity, etc. An axiomatic foundation of the theory of coherent risk measures is obtained as a relaxation of the axioms of the dual utility theory, and a further relaxation of the axioms are shown to lead to the mean-deviation analysis. Paradoxes arising from the sets of axioms corresponding to these theories and their possible resolutions are discussed, and application of the mean-deviation analysis to optimal risk sharing and portfolio selection in the context of rational choice is considered. © 2012 Society for Risk Analysis.

  5. Deviations from Newton's law in supersymmetric large extra dimensions

    NASA Astrophysics Data System (ADS)

    Callin, P.; Burgess, C. P.

    2006-09-01

    Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case.

  6. A SIMPLE METHOD FOR EVALUATING DATA FROM AN INTERLABORATORY STUDY

    EPA Science Inventory

    Large-scale laboratory-and method-performance studies involving more than about 30 laboratories may be evaluated by calculating the HORRAT ratio for each test sample (HORRAT=[experimentally found among-laboratories relative standard deviation] divided by [relative standard deviat...

  7. Frequency of Bolton tooth-size discrepancies among orthodontic patients.

    PubMed

    Freeman, J E; Maskeroni, A J; Lorton, L

    1996-07-01

    The purpose of this study was to determine the percentage of orthodontic patients who present with an interarch tooth-size discrepancy likely to affect treatment planning or results. The Bolton tooth-size discrepancies of 157 patients accepted for treatment in an orthodontic residency program were evaluated for the frequency and the magnitude of deviation from Bolton's mean. Discrepancies outside of 2 SD were considered as potentially significant with regard to treatment planning and treatment results. Although the mean of the sample was nearly identical to that of Bolton's, the range and standard deviation varied considerably with a large percentage of the orthodontic patients having discrepancies outside of Bolton's 2 SD. With such a high frequency of significant discrepancies it would seem prudent to routinely perform a tooth-size analysis and incorporate the findings into orthodontic treatment planning.

  8. Optimization-Based Calibration of FAST.Farm Parameters Against SOWFA: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreira, Paula D; Annoni, Jennifer; Jonkman, Jason

    2018-01-04

    FAST.Farm is a medium-delity wind farm modeling tool that can be used to assess power and loads contributions of wind turbines in a wind farm. The objective of this paper is to undertake a calibration procedure to set the user parameters of FAST.Farm to accurately represent results from large-eddy simulations. The results provide an in- depth analysis of the comparison of FAST.Farm and large-eddy simulations before and after calibration. The comparison of FAST.Farm and large-eddy simulation results are presented with respect to streamwise and radial velocity components as well as wake-meandering statistics (mean and standard deviation) in the lateral andmore » vertical directions under different atmospheric and turbine operating conditions.« less

  9. Windowed and Wavelet Analysis of Marine Stratocumulus Cloud Inhomogeneity

    NASA Technical Reports Server (NTRS)

    Gollmer, Steven M.; Harshvardhan; Cahalan, Robert F.; Snider, Jack B.

    1995-01-01

    To improve radiative transfer calculations for inhomogeneous clouds, a consistent means of modeling inhomogeneity is needed. One current method of modeling cloud inhomogeneity is through the use of fractal parameters. This method is based on the supposition that cloud inhomogeneity over a large range of scales is related. An analysis technique named wavelet analysis provides a means of studying the multiscale nature of cloud inhomogeneity. In this paper, the authors discuss the analysis and modeling of cloud inhomogeneity through the use of wavelet analysis. Wavelet analysis as well as other windowed analysis techniques are used to study liquid water path (LWP) measurements obtained during the marine stratocumulus phase of the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment. Statistics obtained using analysis windows, which are translated to span the LWP dataset, are used to study the local (small scale) properties of the cloud field as well as their time dependence. The LWP data are transformed onto an orthogonal wavelet basis that represents the data as a number of times series. Each of these time series lies within a frequency band and has a mean frequency that is half the frequency of the previous band. Wavelet analysis combined with translated analysis windows reveals that the local standard deviation of each frequency band is correlated with the local standard deviation of the other frequency bands. The ratio between the standard deviation of adjacent frequency bands is 0.9 and remains constant with respect to time. This ratio defined as the variance coupling parameter is applicable to all of the frequency bands studied and appears to be related to the slope of the data's power spectrum. Similar analyses are performed on two cloud inhomogeneity models, which use fractal-based concepts to introduce inhomogeneity into a uniform cloud field. The bounded cascade model does this by iteratively redistributing LWP at each scale using the value of the local mean. This model is reformulated into a wavelet multiresolution framework, thereby presenting a number of variants of the bounded cascade model. One variant introduced in this paper is the 'variance coupled model,' which redistributes LWP using the local standard deviation and the variance coupling parameter. While the bounded cascade model provides an elegant two- parameter model for generating cloud inhomogeneity, the multiresolution framework provides more flexibility at the expense of model complexity. Comparisons are made with the results from the LWP data analysis to demonstrate both the strengths and weaknesses of these models.

  10. Large Deviations for Stationary Probabilities of a Family of Continuous Time Markov Chains via Aubry-Mather Theory

    NASA Astrophysics Data System (ADS)

    Lopes, Artur O.; Neumann, Adriana

    2015-05-01

    In the present paper, we consider a family of continuous time symmetric random walks indexed by , . For each the matching random walk take values in the finite set of states ; notice that is a subset of , where is the unitary circle. The infinitesimal generator of such chain is denoted by . The stationary probability for such process converges to the uniform distribution on the circle, when . Here we want to study other natural measures, obtained via a limit on , that are concentrated on some points of . We will disturb this process by a potential and study for each the perturbed stationary measures of this new process when . We disturb the system considering a fixed potential and we will denote by the restriction of to . Then, we define a non-stochastic semigroup generated by the matrix , where is the infinifesimal generator of . From the continuous time Perron's Theorem one can normalized such semigroup, and, then we get another stochastic semigroup which generates a continuous time Markov Chain taking values on . This new chain is called the continuous time Gibbs state associated to the potential , see (Lopes et al. in J Stat Phys 152:894-933, 2013). The stationary probability vector for such Markov Chain is denoted by . We assume that the maximum of is attained in a unique point of , and from this will follow that . Thus, here, our main goal is to analyze the large deviation principle for the family , when . The deviation function , which is defined on , will be obtained from a procedure based on fixed points of the Lax-Oleinik operator and Aubry-Mather theory. In order to obtain the associated Lax-Oleinik operator we use the Varadhan's Lemma for the process . For a careful analysis of the problem we present full details of the proof of the Large Deviation Principle, in the Skorohod space, for such family of Markov Chains, when . Finally, we compute the entropy of the invariant probabilities on the Skorohod space associated to the Markov Chains we analyze.

  11. Motion-robust intensity-modulated proton therapy for distal esophageal cancer.

    PubMed

    Yu, Jen; Zhang, Xiaodong; Liao, Li; Li, Heng; Zhu, Ronald; Park, Peter C; Sahoo, Narayan; Gillin, Michael; Li, Yupeng; Chang, Joe Y; Komaki, Ritsuko; Lin, Steven H

    2016-03-01

    To develop methods for evaluation and mitigation of dosimetric impact due to respiratory and diaphragmatic motion during free breathing in treatment of distal esophageal cancers using intensity-modulated proton therapy (IMPT). This was a retrospective study on 11 patients with distal esophageal cancer. For each patient, four-dimensional computed tomography (4D CT) data were acquired, and a nominal dose was calculated on the average phase of the 4D CT. The changes of water equivalent thickness (ΔWET) to cover the treatment volume from the peak of inspiration to the valley of expiration were calculated for a full range of beam angle rotation. Two IMPT plans were calculated: one at beam angles corresponding to small ΔWET and one at beam angles corresponding to large ΔWET. Four patients were selected for the calculation of 4D-robustness-optimized IMPT plans due to large motion-induced dose errors generated in conventional IMPT. To quantitatively evaluate motion-induced dose deviation, the authors calculated the lowest dose received by 95% (D95) of the internal clinical target volume for the nominal dose, the D95 calculated on the maximum inhale and exhale phases of 4D CT DCT0 andDCT50 , the 4D composite dose, and the 4D dynamic dose for a single fraction. The dose deviation increased with the average ΔWET of the implemented beams, ΔWETave. When ΔWETave was less than 5 mm, the dose error was less than 1 cobalt gray equivalent based on DCT0 and DCT50 . The dose deviation determined on the basis of DCT0 and DCT50 was proportionally larger than that determined on the basis of the 4D composite dose. The 4D-robustness-optimized IMPT plans notably reduced the overall dose deviation of multiple fractions and the dose deviation caused by the interplay effect in a single fraction. In IMPT for distal esophageal cancer, ΔWET analysis can be used to select the beam angles that are least affected by respiratory and diaphragmatic motion. To further reduce dose deviation, the 4D-robustness optimization can be implemented for IMPT planning. Calculation of DCT0 and DCT50 is a conservative method to estimate the motion-induced dose errors.

  12. Complexity analysis based on generalized deviation for financial markets

    NASA Astrophysics Data System (ADS)

    Li, Chao; Shang, Pengjian

    2018-03-01

    In this paper, a new modified method is proposed as a measure to investigate the correlation between past price and future volatility for financial time series, known as the complexity analysis based on generalized deviation. In comparison with the former retarded volatility model, the new approach is both simple and computationally efficient. The method based on the generalized deviation function presents us an exhaustive way showing the quantization of the financial market rules. Robustness of this method is verified by numerical experiments with both artificial and financial time series. Results show that the generalized deviation complexity analysis method not only identifies the volatility of financial time series, but provides a comprehensive way distinguishing the different characteristics between stock indices and individual stocks. Exponential functions can be used to successfully fit the volatility curves and quantify the changes of complexity for stock market data. Then we study the influence for negative domain of deviation coefficient and differences during the volatile periods and calm periods. after the data analysis of the experimental model, we found that the generalized deviation model has definite advantages in exploring the relationship between the historical returns and future volatility.

  13. Genome-wide scan of 29,141 African Americans finds no evidence of directional selection since admixture.

    PubMed

    Bhatia, Gaurav; Tandon, Arti; Patterson, Nick; Aldrich, Melinda C; Ambrosone, Christine B; Amos, Christopher; Bandera, Elisa V; Berndt, Sonja I; Bernstein, Leslie; Blot, William J; Bock, Cathryn H; Caporaso, Neil; Casey, Graham; Deming, Sandra L; Diver, W Ryan; Gapstur, Susan M; Gillanders, Elizabeth M; Harris, Curtis C; Henderson, Brian E; Ingles, Sue A; Isaacs, William; De Jager, Phillip L; John, Esther M; Kittles, Rick A; Larkin, Emma; McNeill, Lorna H; Millikan, Robert C; Murphy, Adam; Neslund-Dudas, Christine; Nyante, Sarah; Press, Michael F; Rodriguez-Gil, Jorge L; Rybicki, Benjamin A; Schwartz, Ann G; Signorello, Lisa B; Spitz, Margaret; Strom, Sara S; Tucker, Margaret A; Wiencke, John K; Witte, John S; Wu, Xifeng; Yamamura, Yuko; Zanetti, Krista A; Zheng, Wei; Ziegler, Regina G; Chanock, Stephen J; Haiman, Christopher A; Reich, David; Price, Alkes L

    2014-10-02

    The extent of recent selection in admixed populations is currently an unresolved question. We scanned the genomes of 29,141 African Americans and failed to find any genome-wide-significant deviations in local ancestry, indicating no evidence of selection influencing ancestry after admixture. A recent analysis of data from 1,890 African Americans reported that there was evidence of selection in African Americans after their ancestors left Africa, both before and after admixture. Selection after admixture was reported on the basis of deviations in local ancestry, and selection before admixture was reported on the basis of allele-frequency differences between African Americans and African populations. The local-ancestry deviations reported by the previous study did not replicate in our very large sample, and we show that such deviations were expected purely by chance, given the number of hypotheses tested. We further show that the previous study's conclusion of selection in African Americans before admixture is also subject to doubt. This is because the FST statistics they used were inflated and because true signals of unusual allele-frequency differences between African Americans and African populations would be best explained by selection that occurred in Africa prior to migration to the Americas. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Approximate first-principles anharmonic calculations of polyatomic spectra using MP2 and B3LYP potentials: comparisons with experiment.

    PubMed

    Roy, Tapta Kanchan; Carrington, Tucker; Gerber, R Benny

    2014-08-21

    Anharmonic vibrational spectroscopy calculations using MP2 and B3LYP computed potential surfaces are carried out for a series of molecules, and frequencies and intensities are compared with those from experiment. The vibrational self-consistent field with second-order perturbation correction (VSCF-PT2) is used in computing the spectra. The test calculations have been performed for the molecules HNO3, C2H4, C2H4O, H2SO4, CH3COOH, glycine, and alanine. Both MP2 and B3LYP give results in good accord with experimental frequencies, though, on the whole, MP2 gives very slightly better agreement. A statistical analysis of deviations in frequencies from experiment is carried out that gives interesting insights. The most probable percentage deviation from experimental frequencies is about -2% (to the red of the experiment) for B3LYP and +2% (to the blue of the experiment) for MP2. There is a higher probability for relatively large percentage deviations when B3LYP is used. The calculated intensities are also found to be in good accord with experiment, but the percentage deviations are much larger than those for frequencies. The results show that both MP2 and B3LYP potentials, used in VSCF-PT2 calculations, account well for anharmonic effects in the spectroscopy of molecules of the types considered.

  15. Large-size space debris flyby in low earth orbits

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Grishko, D. A.; Razoumny, Y. N.

    2017-09-01

    the analysis of NORAD catalogue of space objects executed with respect to the overall sizes of upper-stages and last stages of carrier rockets allows the classification of 5 groups of large-size space debris (LSSD). These groups are defined according to the proximity of orbital inclinations of the involved objects. The orbits within a group have various values of deviations in the Right Ascension of the Ascending Node (RAAN). It is proposed to use the RAANs deviations' evolution portrait to clarify the orbital planes' relative spatial distribution in a group so that the RAAN deviations should be calculated with respect to the concrete precessing orbital plane of the concrete object. In case of the first three groups (inclinations i = 71°, i = 74°, i = 81°) the straight lines of the RAAN relative deviations almost do not intersect each other. So the simple, successive flyby of group's elements is effective, but the significant value of total Δ V is required to form drift orbits. In case of the fifth group (Sun-synchronous orbits) these straight lines chaotically intersect each other for many times due to the noticeable differences in values of semi-major axes and orbital inclinations. The intersections' existence makes it possible to create such a flyby sequence for LSSD group when the orbit of one LSSD object simultaneously serves as the drift orbit to attain another LSSD object. This flyby scheme requiring less Δ V was called "diagonal." The RAANs deviations' evolution portrait built for the fourth group (to be studied in the paper) contains both types of lines, so the simultaneous combination of diagonal and successive flyby schemes is possible. The value of total Δ V and temporal costs were calculated to cover all the elements of the 4th group. The article is also enriched by the results obtained for the flyby problem solution in case of all the five mentioned LSSD groups. The general recommendations are given concerned with the required reserve of total Δ V and with amount of detachable de-orbiting units onboard the maneuvering platform and onboard the refueling vehicle.

  16. A framework for the direct evaluation of large deviations in non-Markovian processes

    NASA Astrophysics Data System (ADS)

    Cavallaro, Massimo; Harris, Rosemary J.

    2016-11-01

    We propose a general framework to simulate stochastic trajectories with arbitrarily long memory dependence and efficiently evaluate large deviation functions associated to time-extensive observables. This extends the ‘cloning’ procedure of Giardiná et al (2006 Phys. Rev. Lett. 96 120603) to non-Markovian systems. We demonstrate the validity of this method by testing non-Markovian variants of an ion-channel model and the totally asymmetric exclusion process, recovering results obtainable by other means.

  17. Evaluation of True Power Luminous Efficiency from Experimental Luminance Values

    NASA Astrophysics Data System (ADS)

    Tsutsui, Tetsuo; Yamamato, Kounosuke

    1999-05-01

    A method for obtaining true external power luminous efficiencyfrom experimentally obtained luminance in organic light-emittingdiodes (LEDs) wasdemonstrated. Conventional two-layer organic LEDs with different electron-transport layer thicknesses wereprepared. Spatial distributions of emission intensities wereobserved. The large deviation in both emission spectra and spatialemission patterns were observed when the electron-transport layerthickness was varied. The deviation of emission patterns from thestandard Lambertian pattern was found to cause overestimations ofpower luminous efficiencies as large as 30%. A method for evaluatingcorrection factors was proposed.

  18. Annealed Scaling for a Charged Polymer

    NASA Astrophysics Data System (ADS)

    Caravenna, F.; den Hollander, F.; Pétrélis, N.; Poisat, J.

    2016-03-01

    This paper studies an undirected polymer chain living on the one-dimensional integer lattice and carrying i.i.d. random charges. Each self-intersection of the polymer chain contributes to the interaction Hamiltonian an energy that is equal to the product of the charges of the two monomers that meet. The joint probability distribution for the polymer chain and the charges is given by the Gibbs distribution associated with the interaction Hamiltonian. The focus is on the annealed free energy per monomer in the limit as the length of the polymer chain tends to infinity. We derive a spectral representation for the free energy and use this to prove that there is a critical curve in the parameter plane of charge bias versus inverse temperature separating a ballistic phase from a subballistic phase. We show that the phase transition is first order. We prove large deviation principles for the laws of the empirical speed and the empirical charge, and derive a spectral representation for the associated rate functions. Interestingly, in both phases both rate functions exhibit flat pieces, which correspond to an inhomogeneous strategy for the polymer to realise a large deviation. The large deviation principles in turn lead to laws of large numbers and central limit theorems. We identify the scaling behaviour of the critical curve for small and for large charge bias. In addition, we identify the scaling behaviour of the free energy for small charge bias and small inverse temperature. Both are linked to an associated Sturm-Liouville eigenvalue problem. A key tool in our analysis is the Ray-Knight formula for the local times of the one-dimensional simple random walk. This formula is exploited to derive a closed form expression for the generating function of the annealed partition function, and for several related quantities. This expression in turn serves as the starting point for the derivation of the spectral representation for the free energy, and for the scaling theorems. What happens for the quenched free energy per monomer remains open. We state two modest results and raise a few questions.

  19. Long-term strength and damage accumulation in laminates

    NASA Astrophysics Data System (ADS)

    Dzenis, Yuris A.; Joshi, Shiv P.

    1993-04-01

    A modified version of the probabilistic model developed by authors for damage evolution analysis of laminates subjected to random loading is utilized to predict long-term strength of laminates. The model assumes that each ply in a laminate consists of a large number of mesovolumes. Probabilistic variation functions for mesovolumes stiffnesses as well as strengths are used in the analysis. Stochastic strains are calculated using the lamination theory and random function theory. Deterioration of ply stiffnesses is calculated on the basis of the probabilities of mesovolumes failures using the theory of excursions of random process beyond the limits. Long-term strength and damage accumulation in a Kevlar/epoxy laminate under tension and complex in-plane loading are investigated. Effects of the mean level and stochastic deviation of loading on damage evolution and time-to-failure of laminate are discussed. Long-term cumulative damage at the time of the final failure at low loading levels is more than at high loading levels. The effect of the deviation in loading is more pronounced at lower mean loading levels.

  20. Equalization of energy density in boiling water reactors (as exemplified by WB-50). Development and testing of WB -50 computational model on the basis of MCU-RR code

    NASA Astrophysics Data System (ADS)

    Chertkov, Yu B.; Disyuk, V. V.; Pimenov, E. Yu; Aksenova, N. V.

    2017-01-01

    Within the framework of research in possibility and prospects of power density equalization in boiling water reactors (as exemplified by WB-50) a work was undertaken to improve prior computational model of the WB-50 reactor implemented in MCU-RR software. Analysis of prior works showed that critical state calculations have deviation of calculated reactivity exceeding ±0.3 % (ΔKef/Kef) for minimum concentrations of boric acid in the reactor water and reaching 2 % for maximum concentration values. Axial coefficient of nonuniform burnup distribution reaches high values in the WB-50 reactor. Thus, the computational model needed refinement to take into account burnup inhomogeneity along the fuel assembly height. At this stage, computational results with mean square deviation of less than 0.7 % (ΔKef/Kef) and dispersion of design values of ±1 % (ΔK/K) shall be deemed acceptable. Further lowering of these parameters apparently requires root cause analysis of such large values and paying more attention to experimental measurement techniques.

  1. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  2. Lower Current Large Deviations for Zero-Range Processes on a Ring

    NASA Astrophysics Data System (ADS)

    Chleboun, Paul; Grosskinsky, Stefan; Pizzoferrato, Andrea

    2017-04-01

    We study lower large deviations for the current of totally asymmetric zero-range processes on a ring with concave current-density relation. We use an approach by Jensen and Varadhan which has previously been applied to exclusion processes, to realize current fluctuations by travelling wave density profiles corresponding to non-entropic weak solutions of the hyperbolic scaling limit of the process. We further establish a dynamic transition, where large deviations of the current below a certain value are no longer typically attained by non-entropic weak solutions, but by condensed profiles, where a non-zero fraction of all the particles accumulates on a single fixed lattice site. This leads to a general characterization of the rate function, which is illustrated by providing detailed results for four generic examples of jump rates, including constant rates, decreasing rates, unbounded sublinear rates and asymptotically linear rates. Our results on the dynamic transition are supported by numerical simulations using a cloning algorithm.

  3. A posteriori noise estimation in variable data sets. With applications to spectra and light curves

    NASA Astrophysics Data System (ADS)

    Czesla, S.; Molle, T.; Schmitt, J. H. M. M.

    2018-01-01

    Most physical data sets contain a stochastic contribution produced by measurement noise or other random sources along with the signal. Usually, neither the signal nor the noise are accurately known prior to the measurement so that both have to be estimated a posteriori. We have studied a procedure to estimate the standard deviation of the stochastic contribution assuming normality and independence, requiring a sufficiently well-sampled data set to yield reliable results. This procedure is based on estimating the standard deviation in a sample of weighted sums of arbitrarily sampled data points and is identical to the so-called DER_SNR algorithm for specific parameter settings. To demonstrate the applicability of our procedure, we present applications to synthetic data, high-resolution spectra, and a large sample of space-based light curves and, finally, give guidelines to apply the procedure in situation not explicitly considered here to promote its adoption in data analysis.

  4. Search for resonances in diphoton events at √{s}=13 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, BH; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerda Alberich, L.; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocca, C.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, R.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanisch, S.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herget, V.; Hernández Jiménez, Y.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kentaro, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koehler, N. M.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, C.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Perez Codina, E.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valdes Santurio, E.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wolf, T. M. H.; Wolter, M. W.; Wolters, H.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zwalinski, L.

    2016-09-01

    Searches for new resonances decaying into two photons in the ATLAS experiment at the CERN Large Hadron Collider are described. The analysis is based on proton-proton collision data corresponding to an integrated luminosity of 3.2 fb-1 at √{s}=13 TeV recorded in 2015. Two searches are performed, one targeted at a spin-2 particle of mass larger than 500 GeV, using Randall-Sundrum graviton states as a benchmark model, and one optimized for a spin-0 particle of mass larger than 200 GeV. Varying both the mass and the decay width, the most significant deviation from the background-only hypothesis is observed at a diphoton invariant mass around 750 GeV with local significances of 3.8 and 3.9 standard deviations in the searches optimized for a spin-2 and spin-0 particle, respectively. The global significances are estimated to be 2.1 standard deviations for both analyses. The consistency between the data collected at 13 TeV and 8 TeV is also evaluated. Limits on the production cross section times branching ratio to two photons for the two resonance types are reported. [Figure not available: see fulltext.

  5. Photospheric Magnetic Field Properties of Flaring versus Flare-quiet Active Regions. II. Discriminant Analysis

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, G.

    2003-10-01

    We apply statistical tests based on discriminant analysis to the wide range of photospheric magnetic parameters described in a companion paper by Leka & Barnes, with the goal of identifying those properties that are important for the production of energetic events such as solar flares. The photospheric vector magnetic field data from the University of Hawai'i Imaging Vector Magnetograph are well sampled both temporally and spatially, and we include here data covering 24 flare-event and flare-quiet epochs taken from seven active regions. The mean value and rate of change of each magnetic parameter are treated as separate variables, thus evaluating both the parameter's state and its evolution, to determine which properties are associated with flaring. Considering single variables first, Hotelling's T2-tests show small statistical differences between flare-producing and flare-quiet epochs. Even pairs of variables considered simultaneously, which do show a statistical difference for a number of properties, have high error rates, implying a large degree of overlap of the samples. To better distinguish between flare-producing and flare-quiet populations, larger numbers of variables are simultaneously considered; lower error rates result, but no unique combination of variables is clearly the best discriminator. The sample size is too small to directly compare the predictive power of large numbers of variables simultaneously. Instead, we rank all possible four-variable permutations based on Hotelling's T2-test and look for the most frequently appearing variables in the best permutations, with the interpretation that they are most likely to be associated with flaring. These variables include an increasing kurtosis of the twist parameter and a larger standard deviation of the twist parameter, but a smaller standard deviation of the distribution of the horizontal shear angle and a horizontal field that has a smaller standard deviation but a larger kurtosis. To support the ``sorting all permutations'' method of selecting the most frequently occurring variables, we show that the results of a single 10-variable discriminant analysis are consistent with the ranking. We demonstrate that individually, the variables considered here have little ability to differentiate between flaring and flare-quiet populations, but with multivariable combinations, the populations may be distinguished.

  6. A New Control Paradigm for Stochastic Differential Equations

    NASA Astrophysics Data System (ADS)

    Schmid, Matthias J. A.

    This study presents a novel comprehensive approach to the control of dynamic systems under uncertainty governed by stochastic differential equations (SDEs). Large Deviations (LD) techniques are employed to arrive at a control law for a large class of nonlinear systems minimizing sample path deviations. Thereby, a paradigm shift is suggested from point-in-time to sample path statistics on function spaces. A suitable formal control framework which leverages embedded Freidlin-Wentzell theory is proposed and described in detail. This includes the precise definition of the control objective and comprises an accurate discussion of the adaptation of the Freidlin-Wentzell theorem to the particular situation. The new control design is enabled by the transformation of an ill-posed control objective into a well-conditioned sequential optimization problem. A direct numerical solution process is presented using quadratic programming, but the emphasis is on the development of a closed-form expression reflecting the asymptotic deviation probability of a particular nominal path. This is identified as the key factor in the success of the new paradigm. An approach employing the second variation and the differential curvature of the effective action is suggested for small deviation channels leading to the Jacobi field of the rate function and the subsequently introduced Jacobi field performance measure. This closed-form solution is utilized in combination with the supplied parametrization of the objective space. For the first time, this allows for an LD based control design applicable to a large class of nonlinear systems. Thus, Minimum Large Deviations (MLD) control is effectively established in a comprehensive structured framework. The construction of the new paradigm is completed by an optimality proof for the Jacobi field performance measure, an interpretive discussion, and a suggestion for efficient implementation. The potential of the new approach is exhibited by its extension to scalar systems subject to state-dependent noise and to systems of higher order. The suggested control paradigm is further advanced when a sequential application of MLD control is considered. This technique yields a nominal path corresponding to the minimum total deviation probability on the entire time domain. It is demonstrated that this sequential optimization concept can be unified in a single objective function which is revealed to be the Jacobi field performance index on the entire domain subject to an endpoint deviation. The emerging closed-form term replaces the previously required nested optimization and, thus, results in a highly efficient application-ready control design. This effectively substantiates Minimum Path Deviation (MPD) control. The proposed control paradigm allows the specific problem of stochastic cost control to be addressed as a special case. This new technique is employed within this study for the stochastic cost problem giving rise to Cost Constrained MPD (CCMPD) as well as to Minimum Quadratic Cost Deviation (MQCD) control. An exemplary treatment of a generic scalar nonlinear system subject to quadratic costs is performed for MQCD control to demonstrate the elementary expandability of the new control paradigm. This work concludes with a numerical evaluation of both MPD and CCMPD control for three exemplary benchmark problems. Numerical issues associated with the simulation of SDEs are briefly discussed and illustrated. The numerical examples furnish proof of the successful design. This study is complemented by a thorough review of statistical control methods, stochastic processes, Large Deviations techniques and the Freidlin-Wentzell theory, providing a comprehensive, self-contained account. The presentation of the mathematical tools and concepts is of a unique character, specifically addressing an engineering audience.

  7. Analysis of the irradiation data for A302B and A533B correlation monitor materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.A.

    1996-04-01

    The results of Charpy V-notch impact tests for A302B and A533B-1 Correlation Monitor Materials (CMM) listed in the surveillance power reactor data base (PR-EDB) and material test reactor data base (TR-EDB) are analyzed. The shift of the transition temperature at 30 ft-lb (T{sub 30}) is considered as the primary measure of radiation embrittlement in this report. The hyperbolic tangent fitting model and uncertainty of the fitting parameters for Charpy impact tests are presented in this report. For the surveillance CMM data, the transition temperature shifts at 30 ft-lb ({Delta}T{sub 30}) generally follow the predictions provided by Revision 2 of Regulatorymore » Guide 1.99 (R.G. 1.99). Difference in capsule temperatures is a likely explanation for large deviations from R.G. 1.99 predictions. Deviations from the R.G. 1.99 predictions are correlated to similar deviations for the accompanying materials in the same capsules, but large random fluctuations prevent precise quantitative determination. Significant scatter is noted in the surveillance data, some of which may be attributed to variations from one specimen set to another, or inherent in Charpy V-notch testing. The major contributions to the uncertainty of the R.G. 1.99 prediction model, and the overall data scatter are from mechanical test results, chemical analysis, irradiation environments, fluence evaluation, and inhomogeneous material properties. Thus in order to improve the prediction model, control of the above-mentioned error sources needs to be improved. In general the embrittlement behavior of both the A302B and A533B-1 plate materials is similar. There is evidence for a fluence-rate effect in the CMM data irradiated in test reactors; thus its implication on power reactor surveillance programs deserves special attention.« less

  8. A Genetic Algorithm for Flow Shop Scheduling with Assembly Operations to Minimize Makespan

    NASA Astrophysics Data System (ADS)

    Bhongade, A. S.; Khodke, P. M.

    2014-04-01

    Manufacturing systems, in which, several parts are processed through machining workstations and later assembled to form final products, is common. Though scheduling of such problems are solved using heuristics, available solution approaches can provide solution for only moderate sized problems due to large computation time required. In this work, scheduling approach is developed for such flow-shop manufacturing system having machining workstations followed by assembly workstations. The initial schedule is generated using Disjunctive method and genetic algorithm (GA) is applied further for generating schedule for large sized problems. GA is found to give near optimal solution based on the deviation of makespan from lower bound. The lower bound of makespan of such problem is estimated and percent deviation of makespan from lower bounds is used as a performance measure to evaluate the schedules. Computational experiments are conducted on problems developed using fractional factorial orthogonal array, varying the number of parts per product, number of products, and number of workstations (ranging upto 1,520 number of operations). A statistical analysis indicated the significance of all the three factors considered. It is concluded that GA method can obtain optimal makespan.

  9. Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.; Stock, Larry

    1997-01-01

    The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.

  10. Formability analysis of sheet metals by cruciform testing

    NASA Astrophysics Data System (ADS)

    Güler, B.; Alkan, K.; Efe, M.

    2017-09-01

    Cruciform biaxial tests are increasingly becoming popular for testing the formability of sheet metals as they achieve frictionless, in-plane, multi-axial stress states with a single sample geometry. However, premature fracture of the samples during testing prevents large strain deformation necessary for the formability analysis. In this work, we introduce a miniature cruciform sample design (few mm test region) and a test setup to achieve centre fracture and large uniform strains. With its excellent surface finish and optimized geometry, the sample deforms with diagonal strain bands intersecting at the test region. These bands prevent local necking and concentrate the strains at the sample centre. Imaging and strain analysis during testing confirm the uniform strain distributions and the centre fracture are possible for various strain paths ranging from plane-strain to equibiaxial tension. Moreover, the sample deforms without deviating from the predetermined strain ratio at all test conditions, allowing formability analysis under large strains. We demonstrate these features of the cruciform test for three sample materials: Aluminium 6061-T6 alloy, DC-04 steel and Magnesium AZ31 alloy, and investigate their formability at both the millimetre scale and the microstructure scale.

  11. MRI texture analysis (MRTA) of T2-weighted images in Crohn's disease may provide information on histological and MRI disease activity in patients undergoing ileal resection.

    PubMed

    Makanyanga, Jesica; Ganeshan, Balaji; Rodriguez-Justo, Manuel; Bhatnagar, Gauraang; Groves, Ashley; Halligan, Steve; Miles, Ken; Taylor, Stuart A

    2017-02-01

    To associate MRI textural analysis (MRTA) with MRI and histological Crohn's disease (CD) activity. Sixteen patients (mean age 39.5 years, 9 male) undergoing MR enterography before ileal resection were retrospectively analysed. Thirty-six small (≤3 mm) ROIs were placed on T2-weighted images and location-matched histological acute inflammatory scores (AIS) measured. MRI activity (mural thickness, T2 signal, T1 enhancement) (CDA) was scored in large ROIs. MRTA features (mean, standard deviation, mean of positive pixels (MPP), entropy, kurtosis, skewness) were extracted using a filtration histogram technique. Spatial scale filtration (SSF) ranged from 2 to 5 mm. Regression (linear/logistic) tested associations between MRTA and AIS (small ROIs), and CDA/constituent parameters (large ROIs). Skewness (SSF = 2 mm) was associated with AIS [regression coefficient (rc) 4.27, p = 0.02]. Of 120 large ROI analyses (for each MRI, MRTA feature and SSF), 15 were significant. Entropy (SSF = 2, 3 mm) and kurtosis (SSF = 3 mm) were associated with CDA (rc 0.9, 1.0, -0.45, p = 0.006-0.01). Entropy and mean (SSF = 2-4 mm) were associated with T2 signal [odds ratio (OR) 2.32-3.16, p = 0.02-0.004], [OR 1.22-1.28, p = 0.03-0.04]. MPP (SSF = 2 mm) was associated with mural thickness (OR 0.91, p = 0.04). Kurtosis (SSF = 3 mm), standard deviation (SSF = 5 mm) were associated with decreased T1 enhancement (OR 0.59, 0.42, p = 0.004, 0.007). MRTA features may be associated with CD activity. • MR texture analysis features may be associated with Crohn's disease histological activity. • Texture analysis features may correlate with MR-dependent Crohn's disease activity scores. • The utility of MR texture analysis in Crohn's disease merits further investigation.

  12. Results of the Australasian (Trans-Tasman Oncology Group) radiotherapy benchmarking exercise in preparation for participation in the PORTEC-3 trial.

    PubMed

    Jameson, Michael G; McNamara, Jo; Bailey, Michael; Metcalfe, Peter E; Holloway, Lois C; Foo, Kerwyn; Do, Viet; Mileshkin, Linda; Creutzberg, Carien L; Khaw, Pearly

    2016-08-01

    Protocol deviations in Randomised Controlled Trials have been found to result in a significant decrease in survival and local control. In some cases, the magnitude of the detrimental effect can be larger than the anticipated benefits of the interventions involved. The implementation of appropriate quality assurance of radiotherapy measures for clinical trials has been found to result in fewer deviations from protocol. This paper reports on a benchmarking study conducted in preparation for the PORTEC-3 trial in Australasia. A benchmarking CT dataset was sent to each of the Australasian investigators, it was requested they contour and plan the case according to trial protocol using local treatment planning systems. These data was then sent back to Trans-Tasman Oncology Group for collation and analysis. Thirty three investigators from eighteen institutions across Australia and New Zealand took part in the study. The mean clinical target volume (CTV) volume was 383.4 (228.5-497.8) cm(3) and the mean dose to a reference gold standard CTV was 48.8 (46.4-50.3) Gy. Although there were some large differences in the contouring of the CTV and its constituent parts, these did not translate into large variations in dosimetry. Where individual investigators had deviations from the trial contouring protocol, feedback was provided. The results of this study will be used to compare with the international study QA for the PORTEC-3 trial. © 2016 The Royal Australian and New Zealand College of Radiologists.

  13. Reliability generalization study of the Yale-Brown Obsessive-Compulsive Scale for children and adolescents.

    PubMed

    López-Pina, José Antonio; Sánchez-Meca, Julio; López-López, José Antonio; Marín-Martínez, Fulgencio; Núñez-Núñez, Rosa Ma; Rosa-Alcázar, Ana I; Gómez-Conesa, Antonia; Ferrer-Requena, Josefa

    2015-01-01

    The Yale-Brown Obsessive-Compulsive Scale for children and adolescents (CY-BOCS) is a frequently applied test to assess obsessive-compulsive symptoms. We conducted a reliability generalization meta-analysis on the CY-BOCS to estimate the average reliability, search for reliability moderators, and propose a predictive model that researchers and clinicians can use to estimate the expected reliability of the CY-BOCS scores. A total of 47 studies reporting a reliability coefficient with the data at hand were included in the meta-analysis. The results showed good reliability and a large variability associated to the standard deviation of total scores and sample size.

  14. Diagnostic classification of macular ganglion cell and retinal nerve fiber layer analysis: differentiation of false-positives from glaucoma.

    PubMed

    Kim, Ko Eun; Jeoung, Jin Wook; Park, Ki Ho; Kim, Dong Myung; Kim, Seok Hwan

    2015-03-01

    To investigate the rate and associated factors of false-positive diagnostic classification of ganglion cell analysis (GCA) and retinal nerve fiber layer (RNFL) maps, and characteristic false-positive patterns on optical coherence tomography (OCT) deviation maps. Prospective, cross-sectional study. A total of 104 healthy eyes of 104 normal participants. All participants underwent peripapillary and macular spectral-domain (Cirrus-HD, Carl Zeiss Meditec Inc, Dublin, CA) OCT scans. False-positive diagnostic classification was defined as yellow or red color-coded areas for GCA and RNFL maps. Univariate and multivariate logistic regression analyses were used to determine associated factors. Eyes with abnormal OCT deviation maps were categorized on the basis of the shape and location of abnormal color-coded area. Differences in clinical characteristics among the subgroups were compared. (1) The rate and associated factors of false-positive OCT maps; (2) patterns of false-positive, color-coded areas on the GCA deviation map and associated clinical characteristics. Of the 104 healthy eyes, 42 (40.4%) and 32 (30.8%) showed abnormal diagnostic classifications on any of the GCA and RNFL maps, respectively. Multivariate analysis revealed that false-positive GCA diagnostic classification was associated with longer axial length and larger fovea-disc angle, whereas longer axial length and smaller disc area were associated with abnormal RNFL maps. Eyes with abnormal GCA deviation map were categorized as group A (donut-shaped round area around the inner annulus), group B (island-like isolated area), and group C (diffuse, circular area with an irregular inner margin in either). The axial length showed a significant increasing trend from group A to C (P=0.001), and likewise, the refractive error was more myopic in group C than in groups A (P=0.015) and B (P=0.014). Group C had thinner average ganglion cell-inner plexiform layer thickness compared with other groups (group A=B>C, P=0.004). Abnormal OCT diagnostic classification should be interpreted with caution, especially in eyes with long axial lengths, large fovea-disc angles, and small optic discs. Our findings suggest that the characteristic patterns of OCT deviation map can provide useful clues to distinguish glaucomatous changes from false-positive findings. Copyright © 2015 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  15. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    USGS Publications Warehouse

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-01-01

    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very consistent and also agree with previous stress estimates in the eastern part of the Coso Geothermal Field. In order to obtain a reliable estimation of the stress orientation in this setting, it is necessary to sample the stress field on an interval long to capture several of the dominant wavelengths.

  16. Loss aversion, large deviation preferences and optimal portfolio weights for some classes of return processes

    NASA Astrophysics Data System (ADS)

    Duffy, Ken; Lobunets, Olena; Suhov, Yuri

    2007-05-01

    We propose a model of a loss averse investor who aims to maximize his expected wealth under certain constraints. The constraints are that he avoids, with high probability, incurring an (suitably defined) unacceptable loss. The methodology employed comes from the theory of large deviations. We explore a number of fundamental properties of the model and illustrate its desirable features. We demonstrate its utility by analyzing assets that follow some commonly used financial return processes: Fractional Brownian Motion, Jump Diffusion, Variance Gamma and Truncated Lévy.

  17. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    NASA Astrophysics Data System (ADS)

    Cofré, Rodrigo; Maldonado, Cesar

    2018-01-01

    We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.

  18. Constraints on large extra dimensions from the MINOS Experiment

    DOE PAGES

    Adamson, P.

    2016-12-16

    We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab’s Neutrinos at the Main Injector beam exposure of 10.56 ×10 20 protons on target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. Themore » ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than 0.45 μm at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Finally, stronger limits are obtained for nonvanishing masses.« less

  19. Constraints on large extra dimensions from the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Chen, R.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; de Rijck, S.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.; Minos Collaboration

    2016-12-01

    We report new constraints on the size of large extra dimensions from data collected by the MINOS experiment between 2005 and 2012. Our analysis employs a model in which sterile neutrinos arise as Kaluza-Klein states in large extra dimensions and thus modify the neutrino oscillation probabilities due to mixing between active and sterile neutrino states. Using Fermilab's Neutrinos at the Main Injector beam exposure of 10.56 ×1 020 protons on target, we combine muon neutrino charged current and neutral current data sets from the Near and Far Detectors and observe no evidence for deviations from standard three-flavor neutrino oscillations. The ratios of reconstructed energy spectra in the two detectors constrain the size of large extra dimensions to be smaller than 0.45 μ m at 90% C.L. in the limit of a vanishing lightest active neutrino mass. Stronger limits are obtained for nonvanishing masses.

  20. Measurement errors in polymerase chain reaction are a confounding factor for a correct interpretation of 5-HTTLPR polymorphism effects on lifelong premature ejaculation: a critical analysis of a previously published meta-analysis of six studies.

    PubMed

    Janssen, Paddy K C; Olivier, Berend; Zwinderman, Aeilko H; Waldinger, Marcel D

    2014-01-01

    To analyze a recently published meta-analysis of six studies on 5-HTTLPR polymorphism and lifelong premature ejaculation (PE). Calculation of fraction observed and expected genotype frequencies and Hardy Weinberg equilibrium (HWE) of cases and controls. LL,SL and SS genotype frequencies of patients were subtracted from genotype frequencies of an ideal population (LL25%, SL50%, SS25%, p = 1 for HWE). Analysis of PCRs of six studies and re-analysis of the analysis and Odds ratios (ORs) reported in the recently published meta-analysis. Three studies deviated from HWE in patients and one study deviated from HWE in controls. In three studies in-HWE the mean deviation of genotype frequencies from a theoretical population not-deviating from HWE was small: LL(1.7%), SL(-2.3%), SS(0.6%). In three studies not-in-HWE the mean deviation of genotype frequencies was high: LL(-3.3%), SL(-18.5%) and SS(21.8%) with very low percentage SL genotype concurrent with very high percentage SS genotype. The most serious PCR deviations were reported in the three not-in-HWE studies. The three in-HWE studies had normal OR. In contrast, the three not-in-HWE studies had a low OR. In three studies not-in-HWE and with very low OR, inadequate PCR analysis and/or inadequate interpretation of its gel electrophoresis resulted in very low SL and a resulting shift to very high SS genotype frequency outcome. Consequently, PCRs of these three studies are not reliable. Failure to note the inadequacy of PCR tests makes such PCRs a confounding factor in clinical interpretation of genetic studies. Currently, a meta-analysis can only be performed on three studies-in-HWE. However, based on the three studies-in-HWE with OR of about 1 there is not any indication that in men with lifelong PE the frequency of LL,SL and SS genotype deviates from the general male population and/or that the SL or SS genotype is in any way associated with lifelong PE.

  1. Reliable detection of fluence anomalies in EPID-based IMRT pretreatment quality assurance using pixel intensity deviations

    PubMed Central

    Gordon, J. J.; Gardner, J. K.; Wang, S.; Siebers, J. V.

    2012-01-01

    Purpose: This work uses repeat images of intensity modulated radiation therapy (IMRT) fields to quantify fluence anomalies (i.e., delivery errors) that can be reliably detected in electronic portal images used for IMRT pretreatment quality assurance. Methods: Repeat images of 11 clinical IMRT fields are acquired on a Varian Trilogy linear accelerator at energies of 6 MV and 18 MV. Acquired images are corrected for output variations and registered to minimize the impact of linear accelerator and electronic portal imaging device (EPID) positioning deviations. Detection studies are performed in which rectangular anomalies of various sizes are inserted into the images. The performance of detection strategies based on pixel intensity deviations (PIDs) and gamma indices is evaluated using receiver operating characteristic analysis. Results: Residual differences between registered images are due to interfraction positional deviations of jaws and multileaf collimator leaves, plus imager noise. Positional deviations produce large intensity differences that degrade anomaly detection. Gradient effects are suppressed in PIDs using gradient scaling. Background noise is suppressed using median filtering. In the majority of images, PID-based detection strategies can reliably detect fluence anomalies of ≥5% in ∼1 mm2 areas and ≥2% in ∼20 mm2 areas. Conclusions: The ability to detect small dose differences (≤2%) depends strongly on the level of background noise. This in turn depends on the accuracy of image registration, the quality of the reference image, and field properties. The longer term aim of this work is to develop accurate and reliable methods of detecting IMRT delivery errors and variations. The ability to resolve small anomalies will allow the accuracy of advanced treatment techniques, such as image guided, adaptive, and arc therapies, to be quantified. PMID:22894421

  2. Novel computer vision analysis of nasal shape in children with unilateral cleft lip.

    PubMed

    Mercan, Ezgi; Morrison, Clinton S; Stuhaug, Erik; Shapiro, Linda G; Tse, Raymond W

    2018-01-01

    Optimization of treatment of the unilateral cleft lip nasal deformity (uCLND) is hampered by lack of objective means to assess initial severity and changes produced by treatment and growth. The purpose of this study was to develop automated 3D image analysis specific to the uCLND; assess the correlation of these measures to esthetic appraisal; measure changes that occur with treatment and differences amongst cleft types. Dorsum Deviation, Tip-Alar Volume Ratio, Alar-Cheek Definition, and Columellar Angle were assessed using computer-vision techniques. Subjects included infants before and after primary cleft lip repair (N = 50) and children aged 8-10 years with previous cleft lip (N = 50). Two expert surgeons ranked subjects according to esthetic nose appearance. Computer-based measurements strongly correlated with rankings of infants pre-repair (r = 0.8, 0.75, 0.41 and 0.54 for Dorsum Deviation, Tip-Alar Volume Ratio, Alar-Cheek Definition, and Columellar Angle, p < 0.01) while all measurements except Alar-Cheek Definition correlated moderately with rankings of older children post-repair (r ∼ 0.35, p < 0.01). Measurements were worse with greater severity of cleft type but improved following initial repair. Abnormal Dorsum Deviation and Columellar Angle persisted after surgery and were more severe with greater cleft type. Four fully-automated measures were developed that are clinically relevant, agree with expert evaluations and can be followed through initial surgery and in older children. Computer vision analysis techniques can quantify the nasal deformity at different stages, offering efficient and standardized tools for large studies and data-driven conclusions. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Methodenvergleich zur Bestimmung der hydraulischen Durchlässigkeit

    NASA Astrophysics Data System (ADS)

    Storz, Katharina; Steger, Hagen; Wagner, Valentin; Bayer, Peter; Blum, Philipp

    2017-06-01

    Knowing the hydraulic conductivity (K) is a precondition for understanding groundwater flow processes in the subsurface. Numerous laboratory and field methods for the determination of hydraulic conductivity exist, which can lead to significantly different results. In order to quantify the variability of these various methods, the hydraulic conductivity was examined for an industrial silica sand (Dorsilit) using four different methods: (1) grain-size analysis, (2) Kozeny-Carman approach, (3) permeameter tests and (4) flow rate experiments in large-scale tank experiments. Due to the large volume of the artificially built aquifer, the tank experiment results are assumed to be the most representative. Hydraulic conductivity values derived from permeameter tests show only minor deviation, while results of the empirically evaluated grain-size analysis are about one magnitude higher and show great variances. The latter was confirmed by the analysis of several methods for the determination of K-values found in the literature, thus we generally question the suitability of grain-size analyses and strongly recommend the use of permeameter tests.

  4. The Standard Deviation of Launch Vehicle Environments

    NASA Technical Reports Server (NTRS)

    Yunis, Isam

    2005-01-01

    Statistical analysis is used in the development of the launch vehicle environments of acoustics, vibrations, and shock. The standard deviation of these environments is critical to accurate statistical extrema. However, often very little data exists to define the standard deviation and it is better to use a typical standard deviation than one derived from a few measurements. This paper uses Space Shuttle and expendable launch vehicle flight data to define a typical standard deviation for acoustics and vibrations. The results suggest that 3dB is a conservative and reasonable standard deviation for the source environment and the payload environment.

  5. Headway Deviation Effects on Bus Passenger Loads : Analysis of Tri-Met's Archived AVL-APC Data

    DOT National Transportation Integrated Search

    2003-01-01

    In this paper we empirically analyze the relationship between transit service headway deviations and passenger loads, using archived data from Tri-Met's automatic vehicle location and automatic passenger counter systems. The analysis employs twostage...

  6. Analysis of variances of quasirapidities in collisions of gold nuclei with track-emulsion nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulamov, K. G.; Zhokhova, S. I.; Lugovoi, V. V., E-mail: lugovoi@uzsci.net

    2012-08-15

    A new method of an analysis of variances was developed for studying n-particle correlations of quasirapidities in nucleus-nucleus collisions for a large constant number n of particles. Formulas that generalize the results of the respective analysis to various values of n were derived. Calculations on the basis of simple models indicate that the method is applicable, at least for n {>=} 100. Quasirapidity correlations statistically significant at a level of 36 standard deviations were discovered in collisions between gold nuclei and track-emulsion nuclei at an energy of 10.6 GeV per nucleon. The experimental data obtained in our present study aremore » contrasted against the theory of nucleus-nucleus collisions.« less

  7. Explicit Computations of Instantons and Large Deviations in Beta-Plane Turbulence

    NASA Astrophysics Data System (ADS)

    Laurie, J.; Bouchet, F.; Zaboronski, O.

    2012-12-01

    We use a path integral formalism and instanton theory in order to make explicit analytical predictions about large deviations and rare events in beta-plane turbulence. The path integral formalism is a concise way to get large deviation results in dynamical systems forced by random noise. In the most simple cases, it leads to the same results as the Freidlin-Wentzell theory, but it has a wider range of applicability. This approach is however usually extremely limited, due to the complexity of the theoretical problems. As a consequence it provides explicit results in a fairly limited number of models, often extremely simple ones with only a few degrees of freedom. Few exception exist outside the realm of equilibrium statistical physics. We will show that the barotropic model of beta-plane turbulence is one of these non-equilibrium exceptions. We describe sets of explicit solutions to the instanton equation, and precise derivations of the action functional (or large deviation rate function). The reason why such exact computations are possible is related to the existence of hidden symmetries and conservation laws for the instanton dynamics. We outline several applications of this apporach. For instance, we compute explicitly the very low probability to observe flows with an energy much larger or smaller than the typical one. Moreover, we consider regimes for which the system has multiple attractors (corresponding to different numbers of alternating jets), and discuss the computation of transition probabilities between two such attractors. These extremely rare events are of the utmost importance as the dynamics undergo qualitative macroscopic changes during such transitions.

  8. Ionospheric Anomalies on the day of the Devastating Earthquakes during 2000-2012

    NASA Astrophysics Data System (ADS)

    Su, Fanfan; Zhou, Yiyan; Zhu, Fuying

    2013-04-01

    The study of the ionospheric abnormal changes during the large earthquakes has attracted much attention for many years. Many papers have reported the deviations of Total Electron Content (TEC) around the epicenter. The statistical analysis concludes that the anomalous behavior of TEC is related with the earthquakes with high probability[1]. But the special cases have different features[2][3]. In this study, we carry out a new statistical analysis to investigate the nature of the ionospheric anomalies during the devastating earthquakes. To demonstrate the abnormal changes of the ionospheric TEC, we have examined the TEC database from the Global Ionosphere Map (GIM). The GIM ( ftp://cddisa.gsfc.nasa.gov/pub/gps/products/ionex) includes about 200 of worldwide ground-based receivers of the GPS. The TEC data with resolution of 5° longitude and 2.5° latitude are routinely published in a 2-h time interval. The information of earthquakes is obtained from the USGS ( http://earthquake.usgs.gov/earthquakes/eqarchives/epic/). To avoid the interference of the magnetic storm, the days with Dst≤-20 nT are excluded. Finally, a total of 13 M≥8.0 earthquakes in the global area during 2000-2012 are selected. The 27 days before the main shock are treated as the background days. Here, 27-day TEC median (Me) and the standard deviation (σ) are used to detect the variation of TEC. We set the upper bound BU = Me + 3*σ, and the lower bound BL = Me - 3*σ. Therefore the probability of a new TEC in the interval (BL, BU) is approximately 99.7%. If TEC varies between BU and BL, the deviation (DTEC) equals zero. Otherwise, the deviations between TEC and bounds are calculated as DTEC = BU/BL - TEC. From the deviations, the positive and negative abnormal changes of TEC can be evaluated. We investigate temporal and spatial signatures of the ionospheric anomalies on the day of the devastating earthquakes(M≥8.0). The results show that the occurrence rates of positive anomaly and negative anomaly are almost equal. The most significant anomaly on the day may occur at the time very close to the main shock, but sometimes it is not the case. The positions of the maximal deviations always deviate from the epicenter. The direction may be southeast, southwest, northeast or northwest with the almost equal probability. The anomalies may move to the epicenter, deviate to any direction, or stay at the same position and gradually fade out. There is no significant feature, such as occurrence time, position, or motion, and so on, which can indicate the source of the anomalies. References: [1].Le, H., J. Y. Liu, et al. (2011). "A statistical analysis of ionospheric anomalies before 736 M6.0+earthquakes during 2002-2010." J. Geophys. Res. 116. [2].Liu, J. Y., Y. I. Chen, et al. (2009). "Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw7.9 Wenchuan earthquake." J. Geophys. Res. 114. [3].Rolland, L. M., P. Lognonne, et al. (2011). "Detection and modeling of Rayleigh wave induced patterns in the ionosphere." J. Geophys. Res. 116.

  9. Large Fluctuations for Spatial Diffusion of Cold Atoms

    NASA Astrophysics Data System (ADS)

    Aghion, Erez; Kessler, David A.; Barkai, Eli

    2017-06-01

    We use a new approach to study the large fluctuations of a heavy-tailed system, where the standard large-deviations principle does not apply. Large-deviations theory deals with tails of probability distributions and the rare events of random processes, for example, spreading packets of particles. Mathematically, it concerns the exponential falloff of the density of thin-tailed systems. Here we investigate the spatial density Pt(x ) of laser-cooled atoms, where at intermediate length scales the shape is fat tailed. We focus on the rare events beyond this range, which dominate important statistical properties of the system. Through a novel friction mechanism induced by the laser fields, the density is explored with the recently proposed non-normalized infinite-covariant density approach. The small and large fluctuations give rise to a bifractal nature of the spreading packet. We derive general relations which extend our theory to a class of systems with multifractal moments.

  10. Accuracy comparison of guided surgery for dental implants according to the tissue of support: a systematic review and meta-analysis.

    PubMed

    Raico Gallardo, Yolanda Natali; da Silva-Olivio, Isabela Rodrigues Teixeira; Mukai, Eduardo; Morimoto, Susana; Sesma, Newton; Cordaro, Luca

    2017-05-01

    To systematically assess the current dental literature comparing the accuracy of computer-aided implant surgery when using different supporting tissues (tooth, mucosa, or bone). Two reviewers searched PubMed (1972 to January 2015) and the Cochrane Central Register of Controlled Trials (Central) (2002 to January 2015). For the assessment of accuracy, studies were included with the following outcome measures: (i) angle deviation, (ii) deviation at the entry point, and (iii) deviation at the apex. Eight clinical studies from the 1602 articles initially identified met the inclusion criteria for the qualitative analysis. Four studies (n = 599 implants) were evaluated using meta-analysis. The bone-supported guides showed a statistically significant greater deviation in angle (P < 0.001), entry point (P = 0.01), and the apex (P = 0.001) when compared to the tooth-supported guides. Conversely, when only retrospective studies were analyzed, not significant differences are revealed in the deviation of the entry point and apex. The mucosa-supported guides indicated a statistically significant greater reduction in angle deviation (P = 0.02), deviation at the entry point (P = 0.002), and deviation at the apex (P = 0.04) when compared to the bone-supported guides. Between the mucosa- and tooth-supported guides, there were no statistically significant differences for any of the outcome measures. It can be concluded that the tissue of the guide support influences the accuracy of computer-aided implant surgery. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Use of Standard Deviations as Predictors in Models Using Large-Scale International Data Sets

    ERIC Educational Resources Information Center

    Austin, Bruce; French, Brian; Adesope, Olusola; Gotch, Chad

    2017-01-01

    Measures of variability are successfully used in predictive modeling in research areas outside of education. This study examined how standard deviations can be used to address research questions not easily addressed using traditional measures such as group means based on index variables. Student survey data were obtained from the Organisation for…

  12. Visually Exploring Transportation Schedules.

    PubMed

    Palomo, Cesar; Guo, Zhan; Silva, Cláudio T; Freire, Juliana

    2016-01-01

    Public transportation schedules are designed by agencies to optimize service quality under multiple constraints. However, real service usually deviates from the plan. Therefore, transportation analysts need to identify, compare and explain both eventual and systemic performance issues that must be addressed so that better timetables can be created. The purely statistical tools commonly used by analysts pose many difficulties due to the large number of attributes at trip- and station-level for planned and real service. Also challenging is the need for models at multiple scales to search for patterns at different times and stations, since analysts do not know exactly where or when relevant patterns might emerge and need to compute statistical summaries for multiple attributes at different granularities. To aid in this analysis, we worked in close collaboration with a transportation expert to design TR-EX, a visual exploration tool developed to identify, inspect and compare spatio-temporal patterns for planned and real transportation service. TR-EX combines two new visual encodings inspired by Marey's Train Schedule: Trips Explorer for trip-level analysis of frequency, deviation and speed; and Stops Explorer for station-level study of delay, wait time, reliability and performance deficiencies such as bunching. To tackle overplotting and to provide a robust representation for a large numbers of trips and stops at multiple scales, the system supports variable kernel bandwidths to achieve the level of detail required by users for different tasks. We justify our design decisions based on specific analysis needs of transportation analysts. We provide anecdotal evidence of the efficacy of TR-EX through a series of case studies that explore NYC subway service, which illustrate how TR-EX can be used to confirm hypotheses and derive new insights through visual exploration.

  13. Large-deviation properties of Brownian motion with dry friction.

    PubMed

    Chen, Yaming; Just, Wolfram

    2014-10-01

    We investigate piecewise-linear stochastic models with regard to the probability distribution of functionals of the stochastic processes, a question that occurs frequently in large deviation theory. The functionals that we are looking into in detail are related to the time a stochastic process spends at a phase space point or in a phase space region, as well as to the motion with inertia. For a Langevin equation with discontinuous drift, we extend the so-called backward Fokker-Planck technique for non-negative support functionals to arbitrary support functionals, to derive explicit expressions for the moments of the functional. Explicit solutions for the moments and for the distribution of the so-called local time, the occupation time, and the displacement are derived for the Brownian motion with dry friction, including quantitative measures to characterize deviation from Gaussian behavior in the asymptotic long time limit.

  14. Large deviation approach to the generalized random energy model

    NASA Astrophysics Data System (ADS)

    Dorlas, T. C.; Dukes, W. M. B.

    2002-05-01

    The generalized random energy model is a generalization of the random energy model introduced by Derrida to mimic the ultrametric structure of the Parisi solution of the Sherrington-Kirkpatrick model of a spin glass. It was solved exactly in two special cases by Derrida and Gardner. A complete solution for the thermodynamics in the general case was given by Capocaccia et al. Here we use large deviation theory to analyse the model in a very straightforward way. We also show that the variational expression for the free energy can be evaluated easily using the Cauchy-Schwarz inequality.

  15. Large Deviations in Weakly Interacting Boundary Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    van Wijland, Frédéric; Rácz, Zoltán

    2005-01-01

    One-dimensional, boundary-driven lattice gases with local interactions are studied in the weakly interacting limit. The density profiles and the correlation functions are calculated to first order in the interaction strength for zero-range and short-range processes differing only in the specifics of the detailed-balance dynamics. Furthermore, the effective free-energy (large-deviation function) and the integrated current distribution are also found to this order. From the former, we find that the boundary drive generates long-range correlations only for the short-range dynamics while the latter provides support to an additivity principle recently proposed by Bodineau and Derrida.

  16. Current fluctuations in periodically driven systems

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Chetrite, Raphael

    2018-05-01

    Small nonequelibrium systems driven by an external periodic protocol can be described by Markov processes with time-periodic transition rates. In general, current fluctuations in such small systems are large and may play a crucial role. We develop a theoretical formalism to evaluate the rate of such large deviations in periodically driven systems. We show that the scaled cumulant generating function that characterizes current fluctuations is given by a maximal Floquet exponent. Comparing deterministic protocols with stochastic protocols, we show that, with respect to large deviations, systems driven by a stochastic protocol with an infinitely large number of jumps are equivalent to systems driven by deterministic protocols. Our results are illustrated with three case studies: a two-state model for a heat engine, a three-state model for a molecular pump, and a biased random walk with a time-periodic affinity.

  17. Estimating the effects of harmonic voltage fluctuations on the temperature rise of squirrel-cage motors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emanuel, A.E.

    1991-03-01

    This article presents a preliminary analysis of the effect of randomly varying harmonic voltages on the temperature rise of squirrel-cage motors. The stochastic process of random variations of harmonic voltages is defined by means of simple statistics (mean, standard deviation, type of distribution). Computational models based on a first-order approximation of the motor losses and on the Monte Carlo method yield results which prove that equipment with large thermal time-constant is capable of withstanding for a short period of time larger distortions than THD = 5%.

  18. Analysis of gait patterns pre- and post- Single Event Multilevel Surgery in children with Cerebral Palsy by means of Offset-Wise Movement Analysis Profile and Linear Fit Method.

    PubMed

    Ancillao, Andrea; van der Krogt, Marjolein M; Buizer, Annemieke I; Witbreuk, Melinda M; Cappa, Paolo; Harlaar, Jaap

    2017-10-01

    Gait analysis is used for the assessment of walking ability of children with cerebral palsy (CP), to inform clinical decision making and to quantify changes after treatment. To simplify gait analysis interpretation and to quantify deviations from normality, some quantitative synthetic descriptors were developed over the years, such as the Movement Analysis Profile (MAP) and the Linear Fit Method (LFM), but their interpretation is not always straightforward. The aims of this work were to: (i) study gait changes, by means of synthetic descriptors, in children with CP that underwent Single Event Multilevel Surgery; (ii) compare the MAP and the LFM on these patients; (iii) design a new index that may overcome the limitations of the previous methods, i.e. the lack of information about the direction of deviation or its source. Gait analysis exams of 10 children with CP, pre- and post-surgery, were collected and MAP and LFM were computed. A new index was designed asa modified version of the MAP by separating out changes in offset (named OC-MAP). MAP documented an improvement in the gait pattern after surgery. The highest effect was observed for the knee flexion/extension angle. However, a worsening was observed as an increase in anterior pelvic tilt. An important source of gait deviation was recognized in the offset between observed tracks and reference. OC-MAP allowed the assessment of the offset component versus the shape component of deviation. LFM provided results similar to OC-MAP offset analysis but could not be considered reliable due to intrinsic limitations. As offset in gait features played an important role in gait deviation, OC-MAP synthetic analysis was proposed as a novel approach to a meaningful parameterisation of global deviations in gait patterns of subjects with CP and gait changes after treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Vertical Structure of Heat and Momentum Transport in the Urban Surface Layer

    NASA Astrophysics Data System (ADS)

    Hrisko, J.; Ramamurthy, P.

    2017-12-01

    Vertical transport of heat and momentum during convective periods is investigated in the urban surface layer using eddy covariance measurements at 5 levels. The Obukhov length is used to divide the dataset into distinct stability regimes: weakly unstable, unstable and very unstable. Our preliminary analysis indicates critical differences in the transport of heat and momentum as the instability increases. Particularly, during periods of increased instability the vertical heat flux deviates from surface layer similarity theory. Further analysis of primary quadrant sweeps and ejections also indicate deviations from the theory, alluding that ejections dominate during convective periods for heat transport, but equally contribute with sweeps for momentum transport. The transport efficiencies of momentum at all 5 levels uniformly decreases as the instability increases, in stark contrast the heat transport efficiencies increase non-linearly as the instability increases. Collectively, these results demonstrate the breakdown of similarity theory during convective periods, and reaffirm that revised and improved methods for characterizing heat and momentum transport in urban areas is needed. These implications could ultimately advance weather prediction and estimation of scalar transport for urban areas susceptible to weather hazards and large amounts of pollution.

  20. High resolution FTIR spectroscopy of the ν7 band of CD3CCH

    NASA Astrophysics Data System (ADS)

    Pal, Ayan Kumar; Kshirsagar, R. J.

    2018-03-01

    The high-resolution Fourier transform spectrum of propyne-d3 (CD3CCH) at room temperature has been recorded in the region of the ν7 band (950-1200 cm-1) at an apodized resolution of 0.004 cm-1. About 2400 lines consisting of a total of 25 sub-bands ranging from KΔK = -13 to 12 have been assigned in the ν7 band of CD3CCH. In the fitting analysis, the ν4 = 1 state to which transitions have not been identified in the experimental spectrum included as a "shadow" state. The data have been analyzed taking into account of the strong x-y Coriolis interaction of the ν7 = 1 state with the ν4 = 1 state. l-type interactions between the ± l components of the ν7 = 1 state, and a weak k-type doubling interaction between ν7 = 1 and ν4 = 1 states have been included in the analysis. The vibration-rotation transitions for K ≥ 8 show fairly large amount of deviation and most likely interacted by other nearby states. The transitions upto K = 7 and Jmax = 61 could be fitted with a standard deviation of 0.0007 cm-1.

  1. Search for resonances in diphoton events at $$\\sqrt{s}=13 $$ TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2016-09-01

    Searches for new resonances decaying into two photons in the ATLAS experiment at the CERN Large Hadron Collider are described. The analysis is based on proton-proton collision data corresponding to an integrated luminosity of 3.2 fb –1 at √s = 13 TeV recorded in 2015. Two searches are performed, one targeted at a spin-2 particle of mass larger than 500 GeV, using Randall-Sundrum graviton states as a benchmark model, and one optimized for a spin-0 particle of mass larger than 200 GeV. Varying both the mass and the decay width, the most significant deviation from the background-only hypothesis is observedmore » at a diphoton invariant mass around 750 GeV with local significances of 3.8 and 3.9 standard deviations in the searches optimized for a spin-2 and spin-0 particle, respectively. The global significances are estimated to be 2.1 standard deviations for both analyses. As a result, the consistency between the data collected at 13 TeV and 8 TeV is also evaluated. Limits on the production cross section times branching ratio to two photons for the two resonance types are reported.« less

  2. Bethe Ansatz for the Weakly Asymmetric Simple Exclusion Process and Phase Transition in the Current Distribution

    NASA Astrophysics Data System (ADS)

    Simon, Damien

    2011-03-01

    The probability distribution of the current in the asymmetric simple exclusion process is expected to undergo a phase transition in the regime of weak asymmetry of the jumping rates. This transition was first predicted by Bodineau and Derrida using a linear stability analysis of the hydrodynamical limit of the process and further arguments have been given by Mallick and Prolhac. However it has been impossible so far to study what happens after the transition. The present paper presents an analysis of the large deviation function of the current on both sides of the transition from a Bethe Ansatz approach of the weak asymmetry regime of the exclusion process.

  3. CFD Based Computations of Flexible Helicopter Blades for Stability Analysis

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2011-01-01

    As a collaborative effort among government aerospace research laboratories an advanced version of a widely used computational fluid dynamics code, OVERFLOW, was recently released. This latest version includes additions to model flexible rotating multiple blades. In this paper, the OVERFLOW code is applied to improve the accuracy of airload computations from the linear lifting line theory that uses displacements from beam model. Data transfers required at every revolution are managed through a Unix based script that runs jobs on large super-cluster computers. Results are demonstrated for the 4-bladed UH-60A helicopter. Deviations of computed data from flight data are evaluated. Fourier analysis post-processing that is suitable for aeroelastic stability computations are performed.

  4. Selection of vegetation indices for mapping the sugarcane condition around the oil and gas field of North West Java Basin, Indonesia

    NASA Astrophysics Data System (ADS)

    Muji Susantoro, Tri; Wikantika, Ketut; Saepuloh, Asep; Handoyo Harsolumakso, Agus

    2018-05-01

    Selection of vegetation indices in plant mapping is needed to provide the best information of plant conditions. The methods used in this research are the standard deviation and the linear regression. This research tried to determine the vegetation indices used for mapping the sugarcane conditions around oil and gas fields. The data used in this study is Landsat 8 OLI/TIRS. The standard deviation analysis on the 23 vegetation indices with 27 samples has resulted in the six highest standard deviations of vegetation indices, termed as GRVI, SR, NLI, SIPI, GEMI and LAI. The standard deviation values are 0.47; 0.43; 0.30; 0.17; 0.16 and 0.13. Regression correlation analysis on the 23 vegetation indices with 280 samples has resulted in the six vegetation indices, termed as NDVI, ENDVI, GDVI, VARI, LAI and SIPI. This was performed based on regression correlation with the lowest value R2 than 0,8. The combined analysis of the standard deviation and the regression correlation has obtained the five vegetation indices, termed as NDVI, ENDVI, GDVI, LAI and SIPI. The results of the analysis of both methods show that a combination of two methods needs to be done to produce a good analysis of sugarcane conditions. It has been clarified through field surveys and showed good results for the prediction of microseepages.

  5. Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond

    PubMed Central

    Ge, Hao; Qian, Hong

    2011-01-01

    A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale dynamics of its mesoscopic counterpart. It shows a corresponding non-equilibrium phase transition among multiple stochastic attractors. As an example, in the canonical phosphorylation–dephosphorylation system with feedback that exhibits bistability, we show that the non-equilibrium steady-state (NESS) phase transition has all the characteristics of classic equilibrium phase transition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’, Lee–Yang's zero for a generating function and a critical point that matches the cusp in nonlinear bifurcation theory. To the biochemical system, the mathematical analysis suggests three distinct timescales and needed levels of description. They are (i) molecular signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic biochemical network. PMID:20466813

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mun, Eundeok; Bud'ko, Sergey L.; Canfield, Paul C.

    We present the magnetic field dependencies of transport properties for RPtBi ( R = Gd, Dy, Tm, and Lu) half-Heusler compounds. Temperature- and field-dependent resistivity measurements of high-quality RPtBi single crystals reveal an unusually large, nonsaturating magnetoresistance (MR) up to 300 K under a moderate magnetic field of H = 140 kOe. At 300 K, the large MR effect decreases as the rare earth is traversed from Gd to Lu and the magnetic field dependence of MR shows a deviation from the conventional H2 behavior. The Hall coefficient ( RH) for R = Gd indicates a sign change around 120more » K, whereas RH curves for R = Dy, Tm, and Lu remain positive for all measured temperatures. At 300 K, the Hall resistivity reveals a deviation from the linear field dependence for all compounds. Thermoelectric power measurements on this family show strong temperature and magnetic field dependencies which are consistent with resistivity measurements. A highly enhanced thermoelectric power under applied magnetic field is observed as high as ~100 μV/K at 140 kOe. Furthermore, analysis of the transport data in this series reveals that the rare-earth-based half-Heusler compounds provide opportunities to tune MR effect through lanthanide contraction and to elucidate the mechanism of nontrivial MR.« less

  7. Robustness and cognition in stabilization problem of dynamical systems based on asymptotic methods

    NASA Astrophysics Data System (ADS)

    Dubovik, S. A.; Kabanov, A. A.

    2017-01-01

    The problem of synthesis of stabilizing systems based on principles of cognitive (logical-dynamic) control for mobile objects used under uncertain conditions is considered. This direction in control theory is based on the principles of guaranteeing robust synthesis focused on worst-case scenarios of the controlled process. The guaranteeing approach is able to provide functioning of the system with the required quality and reliability only at sufficiently low disturbances and in the absence of large deviations from some regular features of the controlled process. The main tool for the analysis of large deviations and prediction of critical states here is the action functional. After the forecast is built, the choice of anti-crisis control is the supervisory control problem that optimizes the control system in a normal mode and prevents escape of the controlled process in critical states. An essential aspect of the approach presented here is the presence of a two-level (logical-dynamic) control: the input data are used not only for generating of synthesized feedback (local robust synthesis) in advance (off-line), but also to make decisions about the current (on-line) quality of stabilization in the global sense. An example of using the presented approach for the problem of development of the ship tilting prediction system is considered.

  8. Analysis of Different Fragmentation Strategies on a Variety of Large Peptides: Implementation of a Low Level of Theory in Fragment-Based Methods Can Be a Crucial Factor.

    PubMed

    Saha, Arjun; Raghavachari, Krishnan

    2015-05-12

    We have investigated the performance of two classes of fragmentation methods developed in our group (Molecules-in-Molecules (MIM) and Many-Overlapping-Body (MOB) expansion), to reproduce the unfragmented MP2 energies on a test set composed of 10 small to large biomolecules. They have also been assessed to recover the relative energies of different motifs of the acetyl(ala)18NH2 system. Performance of different bond-cutting environments and the use of Hartree-Fock and different density functionals (as a low level of theory) in conjunction with the fragmentation strategies have been analyzed. Our investigation shows that while a low level of theory (for recovering long-range interactions) may not be necessary for small peptides, it provides a very effective strategy to accurately reproduce the total and relative energies of larger peptides such as the different motifs of the acetyl(ala)18NH2 system. Employing M06-2X as the low level of theory, the calculated mean total energy deviation (maximum deviation) in the total MP2 energies for the 10 molecules in the test set at MIM(d=3.5Å), MIM(η=9), and MOB(d=5Å) are 1.16 (2.31), 0.72 (1.87), and 0.43 (2.02) kcal/mol, respectively. The excellent performance suggests that such fragment-based methods should be of general use for the computation of accurate energies of large biomolecular systems.

  9. Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach

    PubMed Central

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  10. Early improper motion detection in golf swings using wearable motion sensors: the first approach.

    PubMed

    Stančin, Sara; Tomažič, Sašo

    2013-06-10

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement.

  11. Collinearity in Least-Squares Analysis

    ERIC Educational Resources Information Center

    de Levie, Robert

    2012-01-01

    How useful are the standard deviations per se, and how reliable are results derived from several least-squares coefficients and their associated standard deviations? When the output parameters obtained from a least-squares analysis are mutually independent, as is often assumed, they are reliable estimators of imprecision and so are the functions…

  12. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiang; Department of Chemistry, Bohai University, Jinzhou 121000; Zhang, Ruiting

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significantmore » deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.« less

  13. Finding new pathway-specific regulators by clustering method using threshold standard deviation based on DNA chip data of Streptomyces coelicolor.

    PubMed

    Yang, Yung-Hun; Kim, Ji-Nu; Song, Eunjung; Kim, Eunjung; Oh, Min-Kyu; Kim, Byung-Gee

    2008-09-01

    In order to identify the regulators involved in antibiotic production or time-specific cellular events, the messenger ribonucleic acid (mRNA) expression data of the two gene clusters, actinorhodin (ACT) and undecylprodigiosin (RED) biosynthetic genes, were clustered with known mRNA expression data of regulators from S. coelicolor using a filtering method based on standard deviation and clustering analysis. The result identified five regulators including two well-known regulators namely, SCO3579 (WlbA) and SCO6722 (SsgD). Using overexpression and deletion of the regulator genes, we were able to identify two regulators, i.e., SCO0608 and SCO6808, playing roles as repressors in antibiotics production and sporulation. This approach can be easily applied to mapping out new regulators related to any interesting target gene clusters showing characteristic expression patterns. The result can also be used to provide insightful information on the selection rules among a large number of regulators.

  14. IRAS far-infrared colours of normal stars

    NASA Technical Reports Server (NTRS)

    Waters, L. B. F. M.; Cote, J.; Aumann, H. H.

    1987-01-01

    The analysis of IRAS observations at 12, 25, 60 and 100 microns of bright stars of spectral type O to M is presented. The objective is to identify the 'normal' stellar population and to characterize it in terms of the relationships between (B-V) and (V-/12/), between (R-I) and (V-/12/), and as a function of spectral type and luminosity class. A well-defined relation is found between the color of normal stars in the visual (B-V), (R-I) and in the IR, which does not depend on luminosity class. Using the (B-V), (V-/12/) relation for normal stars, it is found that B and M type stars show a large fraction of deviating stars, mostly with IR excess that is probably caused by circumstellar material. A comparison of IRAS colors with the Johnson colors as a function of spectral type shows good agreement except for the K0 to M5 type stars. The results will be useful in identifying the deviating stars detected with IRAS.

  15. On-Track Testing as a Validation Method of Computational Fluid Dynamic Simulations of a Formula SAE Vehicle

    NASA Astrophysics Data System (ADS)

    Weingart, Robert

    This thesis is about the validation of a computational fluid dynamics simulation of a ground vehicle by means of a low-budget coast-down test. The vehicle is built to the standards of the 2014 Formula SAE rules. It is equipped with large wings in the front and rear of the car; the vertical loads on the tires are measured by specifically calibrated shock potentiometers. The coast-down test was performed on a runway of a local airport and is used to determine vehicle specific coefficients such as drag, downforce, aerodynamic balance, and rolling resistance for different aerodynamic setups. The test results are then compared to the respective simulated results. The drag deviates about 5% from the simulated to the measured results. The downforce numbers show a deviation up to 18% respectively. Moreover, a sensitivity analysis of inlet velocities, ride heights, and pitch angles was performed with the help of the computational simulation.

  16. Multifractal Detrended Fluctuation Analysis of Self-Potential Field Prior to the M 6.5, October 24, 1993 Earthquake in MÉXICO

    NASA Astrophysics Data System (ADS)

    Cervantes, F.; González-Trejo, J. I.; Real-Ramírez, C. A.; Hoyos-Reyes, L. F.; Area de Sistemas Computacionales

    2013-05-01

    In the current literature on seismo electromagnetic, it has been reported many earthquakes which present electromagnetic anomalies as probable precursors of their occurrences. Although this methodology remains yet under discussion, is relevant to study many particular cases. In this work, we report a multifractal detrended fluctuation analysis (MFDFA) of electroseismic signals recorded in the Acapulco station during 1993. In October 24, 1993, occurred and earthquake (EQ) with M 6.5, with epicenter at (16.54 N, 98.98 W), 100Km away from the mentioned station. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. We discuss the dynamical meaning of this analysis and its possible relation with the mentioned EQ.

  17. Sex ratio of congenital abnormalities in the function of maternal age: a population-based study.

    PubMed

    Csermely, Gyula; Urbán, Robert; Czeizel, Andrew E; Veszprémi, Béla

    2015-05-01

    Maternal age effect is well-known in the origin of numerical chromosomal aberrations and some isolated congenital abnormalities (CAs). The sex ratio (SR), i.e. number of males divided by the number of males and females together, of most CAs deviates from the SR of newborn population (0.51). The objective of this analysis was to evaluate the possible association of maternal age with the SR of isolated CAs in a population-based large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-1996. First, SR of 24 CA entities/groups was estimated in 21,494 patients with isolated CA. In the next step SR of different maternal age groups was compared to the mean SR of the given CA-groups. The SR of four CA-groups showed some deviation in certain maternal age groups. Cases with anencephaly had female excess in young mothers (<25 years). Cases with skull's CAs particularly craniosynostosis had a male excess in cases born to women over 30 years. Two other CA groups (cleft lip ± palate and valvar pulmonic stenosis within the group of right-sided obstructive defect of heart) had significant deviation in SR of certain maternal age groups from the mean SR, but these deviations were not harmonized with joining age groups and thus were considered as a chance effect due to multiple testing. In conclusion, our study did not suggest that in general SR of isolated CAs might be modified by certain maternal age groups with some exception such as anencephaly and craniosynostosis. © 2014 Japanese Teratology Society.

  18. Chained Kullback-Leibler Divergences

    PubMed Central

    Pavlichin, Dmitri S.; Weissman, Tsachy

    2017-01-01

    We define and characterize the “chained” Kullback-Leibler divergence minw D(p‖w) + D(w‖q) minimized over all intermediate distributions w and the analogous k-fold chained K-L divergence min D(p‖wk−1) + … + D(w2‖w1) + D(w1‖q) minimized over the entire path (w1,…,wk−1). This quantity arises in a large deviations analysis of a Markov chain on the set of types – the Wright-Fisher model of neutral genetic drift: a population with allele distribution q produces offspring with allele distribution w, which then produce offspring with allele distribution p, and so on. The chained divergences enjoy some of the same properties as the K-L divergence (like joint convexity in the arguments) and appear in k-step versions of some of the same settings as the K-L divergence (like information projections and a conditional limit theorem). We further characterize the optimal k-step “path” of distributions appearing in the definition and apply our findings in a large deviations analysis of the Wright-Fisher process. We make a connection to information geometry via the previously studied continuum limit, where the number of steps tends to infinity, and the limiting path is a geodesic in the Fisher information metric. Finally, we offer a thermodynamic interpretation of the chained divergence (as the rate of operation of an appropriately defined Maxwell’s demon) and we state some natural extensions and applications (a k-step mutual information and k-step maximum likelihood inference). We release code for computing the objects we study. PMID:29130024

  19. QC-ART: A tool for real-time quality control assessment of mass spectrometry-based proteomics data.

    PubMed

    Stanfill, Bryan A; Nakayasu, Ernesto S; Bramer, Lisa M; Thompson, Allison M; Ansong, Charles K; Clauss, Therese; Gritsenko, Marina A; Monroe, Matthew E; Moore, Ronald J; Orton, Daniel J; Piehowski, Paul D; Schepmoes, Athena A; Smith, Richard D; Webb-Robertson, Bobbie-Jo; Metz, Thomas O

    2018-04-17

    Liquid chromatography-mass spectrometry (LC-MS)-based proteomics studies of large sample cohorts can easily require from months to years to complete. Acquiring consistent, high-quality data in such large-scale studies is challenging because of normal variations in instrumentation performance over time, as well as artifacts introduced by the samples themselves, such as those due to collection, storage and processing. Existing quality control methods for proteomics data primarily focus on post-hoc analysis to remove low-quality data that would degrade downstream statistics; they are not designed to evaluate the data in near real-time, which would allow for interventions as soon as deviations in data quality are detected.  In addition to flagging analyses that demonstrate outlier behavior, evaluating how the data structure changes over time can aide in understanding typical instrument performance or identify issues such as a degradation in data quality due to the need for instrument cleaning and/or re-calibration.  To address this gap for proteomics, we developed Quality Control Analysis in Real-Time (QC-ART), a tool for evaluating data as they are acquired in order to dynamically flag potential issues with instrument performance or sample quality.  QC-ART has similar accuracy as standard post-hoc analysis methods with the additional benefit of real-time analysis.  We demonstrate the utility and performance of QC-ART in identifying deviations in data quality due to both instrument and sample issues in near real-time for LC-MS-based plasma proteomics analyses of a sample subset of The Environmental Determinants of Diabetes in the Young cohort. We also present a case where QC-ART facilitated the identification of oxidative modifications, which are often underappreciated in proteomic experiments. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Design and Development of Lateral Flight Director

    NASA Technical Reports Server (NTRS)

    Kudlinski, Kim E.; Ragsdale, William A.

    1999-01-01

    The current control law used for the flight director in the Boeing 737 simulator is inadequate with large localizer deviations near the middle marker. Eight different control laws are investigated. A heuristic method is used to design control laws that meet specific performance criteria. The design of each is described in detail. Several tests were performed and compared with the current control law for the flight director. The goal was to design a control law for the flight director that can be used with large localizer deviations near the middle marker, which could be caused by winds or wake turbulence, without increasing its level of complexity.

  1. On the Geometry of Chemical Reaction Networks: Lyapunov Function and Large Deviations

    NASA Astrophysics Data System (ADS)

    Agazzi, A.; Dembo, A.; Eckmann, J.-P.

    2018-04-01

    In an earlier paper, we proved the validity of large deviations theory for the particle approximation of quite general chemical reaction networks. In this paper, we extend its scope and present a more geometric insight into the mechanism of that proof, exploiting the notion of spherical image of the reaction polytope. This allows to view the asymptotic behavior of the vector field describing the mass-action dynamics of chemical reactions as the result of an interaction between the faces of this polytope in different dimensions. We also illustrate some local aspects of the problem in a discussion of Wentzell-Freidlin theory, together with some examples.

  2. Large deviations of a long-time average in the Ehrenfest urn model

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Zilber, Pini

    2018-05-01

    Since its inception in 1907, the Ehrenfest urn model (EUM) has served as a test bed of key concepts of statistical mechanics. Here we employ this model to study large deviations of a time-additive quantity. We consider two continuous-time versions of the EUM with K urns and N balls: with and without interactions between the balls in the same urn. We evaluate the probability distribution that the average number of balls in one urn over time T, , takes any specified value aN, where . For long observation time, , a Donsker–Varadhan large deviation principle holds: , where … denote additional parameters of the model. We calculate the rate function exactly by two different methods due to Donsker and Varadhan and compare the exact results with those obtained with a variant of WKB approximation (after Wentzel, Kramers and Brillouin). In the absence of interactions the WKB prediction for is exact for any N. In the presence of interactions the WKB method gives asymptotically exact results for . The WKB method also uncovers the (very simple) time history of the system which dominates the contribution of different time histories to .

  3. Longitudinal and Cross-Sectional Analyses of Visual Field Progression in Participants of the Ocular Hypertension Treatment Study (OHTS)

    PubMed Central

    Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A

    2014-01-01

    Purpose Visual field progression can be determined by evaluating the visual field by serial examinations (longitudinal analysis), or by a change in classification derived from comparison to age-matched normal data in single examinations (cross-sectional analysis). We determined the agreement between these two approaches in data from the Ocular Hypertension Treatment Study (OHTS). Methods Visual field data from 3088 eyes of 1570 OHTS participants (median follow-up 7 yrs, 15 tests with static automated perimetry) were analysed. Longitudinal analyses were performed with change probability with total and pattern deviation, and cross-sectional analysis with Glaucoma Hemifield Test, Corrected Pattern Standard Deviation, and Mean Deviation. The rates of Mean Deviation and General Height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Results The agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, the agreement on absence of progression ranged from 97% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal change. Conclusions Despite considerable overall agreement, between 40 to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension. PMID:21149774

  4. Qualitative computer aided evaluation of dental impressions in vivo.

    PubMed

    Luthardt, Ralph G; Koch, Rainer; Rudolph, Heike; Walter, Michael H

    2006-01-01

    Clinical investigations dealing with the precision of different impression techniques are rare. Objective of the present study was to develop and evaluate a procedure for the qualitative analysis of the three-dimensional impression precision based on an established in-vitro procedure. The zero hypothesis to be tested was that the precision of impressions does not differ depending on the impression technique used (single-step, monophase and two-step-techniques) and on clinical variables. Digital surface data of patient's teeth prepared for crowns were gathered from standardized manufactured master casts after impressions with three different techniques were taken in a randomized order. Data-sets were analyzed for each patient in comparison with the one-step impression chosen as the reference. The qualitative analysis was limited to data-points within the 99.5%-range. Based on the color-coded representation areas with maximum deviations were determined (preparation margin and the mantle and occlusal surface). To qualitatively analyze the precision of the impression techniques, the hypothesis was tested in linear models for repeated measures factors (p < 0.05). For the positive 99.5% deviations no variables with significant influence were determined in the statistical analysis. In contrast, the impression technique and the position of the preparation margin significantly influenced the negative 99.5% deviations. The influence of clinical parameter on the deviations between impression techniques can be determined reliably using the 99.5 percentile of the deviations. An analysis regarding the areas with maximum deviations showed high clinical relevance. The preparation margin was pointed out as the weak spot of impression taking.

  5. Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC).

    PubMed

    Kwon, Deukwoo; Reis, Isildinha M

    2015-08-12

    When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles. We propose a simulation-based estimation approach using the Approximate Bayesian Computation (ABC) technique for estimating mean and standard deviation based on various sets of summary statistics found in published studies. We conduct a simulation study to compare the proposed ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014). In the estimation of the standard deviation, our ABC method performs better than the other methods when data are generated from skewed or heavy-tailed distributions. The corresponding average relative error (ARE) approaches zero as sample size increases. In data generated from the normal distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of assumed distribution. ABC is a flexible method for estimating the study-specific mean and standard deviation for meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be applied using other reported summary statistics such as the posterior mean and 95 % credible interval when Bayesian analysis has been employed.

  6. Large deviations and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major item is that risk, usually thought of as one-dimensional in the conventional mean-variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramér for large deviations in this context. We first treat a simple model with a single risky asset that exemplifies the distinction between the average return and the typical return and the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe daily price variations reasonably well. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean-variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.

  7. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  8. Fidelity deviation in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Bang, Jeongho; Ryu, Junghee; Kaszlikowski, Dagomir

    2018-04-01

    We analyze the performance of quantum teleportation in terms of average fidelity and fidelity deviation. The average fidelity is defined as the average value of the fidelities over all possible input states and the fidelity deviation is their standard deviation, which is referred to as a concept of fluctuation or universality. In the analysis, we find the condition to optimize both measures under a noisy quantum channel—we here consider the so-called Werner channel. To characterize our results, we introduce a 2D space defined by the aforementioned measures, in which the performance of the teleportation is represented as a point with the channel noise parameter. Through further analysis, we specify some regions drawn for different channel conditions, establishing the connection to the dissimilar contributions of the entanglement to the teleportation and the Bell inequality violation.

  9. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, A. L.; Müller, G.; Muller, M. A.; Müller, S.; Mussa, R.; Naranjo, I.; Nellen, L.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perlín, M.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roncoroni, M. J.; Roth, M.; Roulet, E.; Rovero, A. C.; Ruehl, P.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80o and energies in excess of 4 EeV (4 × 1018 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10-5 in the case of the angular power spectrum, and 2.5 × 10-3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.

  10. CMB-galaxy correlation in Unified Dark Matter scalar field cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertacca, Daniele; Bartolo, Nicola; Matarrese, Sabino

    We present an analysis of the cross-correlation between the CMB and the large-scale structure (LSS) of the Universe in Unified Dark Matter (UDM) scalar field cosmologies. We work out the predicted cross-correlation function in UDM models, which depends on the speed of sound of the unified component, and compare it with observations from six galaxy catalogues (NVSS, HEAO, 2MASS, and SDSS main galaxies, luminous red galaxies, and quasars). We sample the value of the speed of sound and perform a likelihood analysis, finding that the UDM model is as likely as the ΛCDM, and is compatible with observations for amore » range of values of c{sub ∞} (the value of the sound speed at late times) on which structure formation depends. In particular, we obtain an upper bound of c{sub ∞}{sup 2} ≤ 0.009 at 95% confidence level, meaning that the ΛCDM model, for which c{sub ∞}{sup 2} = 0, is a good fit to the data, while the posterior probability distribution peaks at the value c{sub ∞}{sup 2} = 10{sup −4} . Finally, we study the time dependence of the deviation from ΛCDM via a tomographic analysis using a mock redshift distribution and we find that the largest deviation is for low-redshift sources, suggesting that future low-z surveys will be best suited to constrain UDM models.« less

  11. Psychometric analysis of the Generalized Anxiety Disorder scale (GAD-7) in primary care using modern item response theory.

    PubMed

    Jordan, Pascal; Shedden-Mora, Meike C; Löwe, Bernd

    2017-01-01

    The Generalized Anxiety Disorder scale (GAD-7) is one of the most frequently used diagnostic self-report scales for screening, diagnosis and severity assessment of anxiety disorder. Its psychometric properties from the view of the Item Response Theory paradigm have rarely been investigated. We aimed to close this gap by analyzing the GAD-7 within a large sample of primary care patients with respect to its psychometric properties and its implications for scoring using Item Response Theory. Robust, nonparametric statistics were used to check unidimensionality of the GAD-7. A graded response model was fitted using a Bayesian approach. The model fit was evaluated using posterior predictive p-values, item information functions were derived and optimal predictions of anxiety were calculated. The sample included N = 3404 primary care patients (60% female; mean age, 52,2; standard deviation 19.2) The analysis indicated no deviations of the GAD-7 scale from unidimensionality and a decent fit of a graded response model. The commonly suggested ultra-brief measure consisting of the first two items, the GAD-2, was supported by item information analysis. The first four items discriminated better than the last three items with respect to latent anxiety. The information provided by the first four items should be weighted more heavily. Moreover, estimates corresponding to low to moderate levels of anxiety show greater variability. The psychometric validity of the GAD-2 was supported by our analysis.

  12. Psychometric analysis of the Generalized Anxiety Disorder scale (GAD-7) in primary care using modern item response theory

    PubMed Central

    Shedden-Mora, Meike C.; Löwe, Bernd

    2017-01-01

    Objective The Generalized Anxiety Disorder scale (GAD-7) is one of the most frequently used diagnostic self-report scales for screening, diagnosis and severity assessment of anxiety disorder. Its psychometric properties from the view of the Item Response Theory paradigm have rarely been investigated. We aimed to close this gap by analyzing the GAD-7 within a large sample of primary care patients with respect to its psychometric properties and its implications for scoring using Item Response Theory. Methods Robust, nonparametric statistics were used to check unidimensionality of the GAD-7. A graded response model was fitted using a Bayesian approach. The model fit was evaluated using posterior predictive p-values, item information functions were derived and optimal predictions of anxiety were calculated. Results The sample included N = 3404 primary care patients (60% female; mean age, 52,2; standard deviation 19.2) The analysis indicated no deviations of the GAD-7 scale from unidimensionality and a decent fit of a graded response model. The commonly suggested ultra-brief measure consisting of the first two items, the GAD-2, was supported by item information analysis. The first four items discriminated better than the last three items with respect to latent anxiety. Conclusion The information provided by the first four items should be weighted more heavily. Moreover, estimates corresponding to low to moderate levels of anxiety show greater variability. The psychometric validity of the GAD-2 was supported by our analysis. PMID:28771530

  13. SU-E-J-32: Dosimetric Evaluation Based On Pre-Treatment Cone Beam CT for Spine Stereotactic Body Radiotherapy: Does Region of Interest Focus Matter?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelli, A; Xia, P

    2015-06-15

    Purpose: Spine stereotactic body radiotherapy requires very conformal dose distributions and precise delivery. Prior to treatment, a KV cone-beam CT (KV-CBCT) is registered to the planning CT to provide image-guided positional corrections, which depend on selection of the region of interest (ROI) because of imperfect patient positioning and anatomical deformation. Our objective is to determine the dosimetric impact of ROI selections. Methods: Twelve patients were selected for this study with the treatment regions varied from C-spine to T-spine. For each patient, the KV-CBCT was registered to the planning CT three times using distinct ROIs: one encompassing the entire patient, amore » large ROI containing large bony anatomy, and a small target-focused ROI. Each registered CBCT volume, saved as an aligned dataset, was then sent to the planning system. The treated plan was applied to each dataset and dose was recalculated. The tumor dose coverage (percentage of target volume receiving prescription dose), maximum point dose to 0.03 cc of the spinal cord, and dose to 10% of the spinal cord volume (V10) for each alignment were compared to the original plan. Results: The average magnitude of tumor coverage deviation was 3.9%±5.8% with external contour, 1.5%±1.1% with large ROI, 1.3%±1.1% with small ROI. Spinal cord V10 deviation from plan was 6.6%±6.6% with external contour, 3.5%±3.1% with large ROI, and 1.2%±1.0% with small ROI. Spinal cord max point dose deviation from plan was: 12.2%±13.3% with external contour, 8.5%±8.4% with large ROI, and 3.7%±2.8% with small ROI. Conclusion: A small ROI focused on the target results in the smallest deviation from planned dose to target and cord although rotations at large distances from the targets were observed. It is recommended that image fusion during CBCT focus narrowly on the target volume to minimize dosimetric error. Improvement in patient setups may further reduce residual errors.« less

  14. Thin Disk Accretion in the Magnetically-Arrested State

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan; Reynolds, Christopher S.

    2016-01-01

    Shakura-Sunyaev thin disk theory is fundamental to black hole astrophysics. Though applications of the theory are wide-spread and powerful tools for explaining observations, such as Soltan's argument using quasar power, broadened iron line measurements, continuum fitting, and recently reverberation mapping, a significant large-scale magnetic field causes substantial deviations from standard thin disk behavior. We have used fully 3D general relativistic MHD simulations with cooling to explore the thin (H/R~0.1) magnetically arrested disk (MAD) state and quantify these deviations. This work demonstrates that accumulation of large-scale magnetic flux into the MAD state is possible, and then extends prior numerical studies of thicker disks, allowing us to measure how jet power scales with the disk state, providing a natural explanation of phenomena like jet quenching in the high-soft state of X-ray binaries. We have also simulated thin MAD disks with a misaligned black hole spin axis in order to understand further deviations from thin disk theory that may significantly affect observations.

  15. Automatic variance analysis of multistage care pathways.

    PubMed

    Li, Xiang; Liu, Haifeng; Zhang, Shilei; Mei, Jing; Xie, Guotong; Yu, Yiqin; Li, Jing; Lakshmanan, Geetika T

    2014-01-01

    A care pathway (CP) is a standardized process that consists of multiple care stages, clinical activities and their relations, aimed at ensuring and enhancing the quality of care. However, actual care may deviate from the planned CP, and analysis of these deviations can help clinicians refine the CP and reduce medical errors. In this paper, we propose a CP variance analysis method to automatically identify the deviations between actual patient traces in electronic medical records (EMR) and a multistage CP. As the care stage information is usually unavailable in EMR, we first align every trace with the CP using a hidden Markov model. From the aligned traces, we report three types of deviations for every care stage: additional activities, absent activities and violated constraints, which are identified by using the techniques of temporal logic and binomial tests. The method has been applied to a CP for the management of congestive heart failure and real world EMR, providing meaningful evidence for the further improvement of care quality.

  16. Access to enhanced differences in Marcus-Hush and Butler-Volmer electron transfer theories by systematic analysis of higher order AC harmonics.

    PubMed

    Stevenson, Gareth P; Baker, Ruth E; Kennedy, Gareth F; Bond, Alan M; Gavaghan, David J; Gillow, Kathryn

    2013-02-14

    The potential-dependences of the rate constants associated with heterogeneous electron transfer predicted by the empirically based Butler-Volmer and fundamentally based Marcus-Hush formalisms are well documented for dc cyclic voltammetry. However, differences are often subtle, so, presumably on the basis of simplicity, the Butler-Volmer method is generally employed in theoretical-experimental comparisons. In this study, the ability of Large Amplitude Fourier Transform AC Cyclic Voltammetry to distinguish the difference in behaviour predicted by the two formalisms has been investigated. The focus of this investigation is on the difference in the profiles of the first to sixth harmonics, which are readily accessible when a large amplitude of the applied ac potential is employed. In particular, it is demonstrated that systematic analysis of the higher order harmonic responses in suitable kinetic regimes provides predicted deviations of Marcus-Hush from Butler-Volmer behaviour to be established from a single experiment under conditions where the background charging current is minimal.

  17. Retention Indices for Frequently Reported Compounds of Plant Essential Oils

    NASA Astrophysics Data System (ADS)

    Babushok, V. I.; Linstrom, P. J.; Zenkevich, I. G.

    2011-12-01

    Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl silicone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals.

  18. Ionospheric reflection of the magnetic activity described by the index η

    NASA Astrophysics Data System (ADS)

    Dziak-Jankowska, Beata; Stanisławska, Iwona; Ernst, Tomasz; Tomasik, Łukasz

    2011-09-01

    Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h'E, h'F2) during 28-day long quiet day conditions (Kp = 0-2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence - ionospheric E layer data (foE characteristic) - reaches median deviations up to (+0.8 MHz and -0.8 MHz) during very low magnetic activity (Kp = 0-1). The high peaks (2-2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h'F2 (in some cases up to -90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.

  19. Testing general relativity using gravitational wave signals from the inspiral, merger and ringdown of binary black holes

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhirup; Johnson-McDaniel, Nathan K.; Ghosh, Archisman; Kant Mishra, Chandra; Ajith, Parameswaran; Del Pozzo, Walter; Berry, Christopher P. L.; Nielsen, Alex B.; London, Lionel

    2018-01-01

    Advanced LIGO’s recent observations of gravitational waves (GWs) from merging binary black holes have opened up a unique laboratory to test general relativity (GR) in the highly relativistic regime. One of the tests used to establish the consistency of the first LIGO event with a binary black hole merger predicted by GR was the inspiral-merger-ringdown consistency test. This involves inferring the mass and spin of the remnant black hole from the inspiral (low-frequency) part of the observed signal and checking for the consistency of the inferred parameters with the same estimated from the post-inspiral (high-frequency) part of the signal. Based on the observed rate of binary black hole mergers, we expect the advanced GW observatories to observe hundreds of binary black hole mergers every year when operating at their design sensitivities, most of them with modest signal to noise ratios (SNRs). Anticipating such observations, this paper shows how constraints from a large number of events with modest SNRs can be combined to produce strong constraints on deviations from GR. Using kludge modified GR waveforms, we demonstrate how this test could identify certain types of deviations from GR if such deviations are present in the signal waveforms. We also study the robustness of this test against reasonable variations of a variety of different analysis parameters.

  20. Divine proportions in attractive and nonattractive faces.

    PubMed

    Pancherz, Hans; Knapp, Verena; Erbe, Christina; Heiss, Anja Melina

    2010-01-01

    To test Ricketts' 1982 hypothesis that facial beauty is measurable by comparing attractive and nonattractive faces of females and males with respect to the presence of the divine proportions. The analysis of frontal view facial photos of 90 cover models (50 females, 40 males) from famous fashion magazines and of 34 attractive (29 females, five males) and 34 nonattractive (13 females, 21 males) persons selected from a group of former orthodontic patients was carried out in this study. Based on Ricketts' method, five transverse and seven vertical facial reference distances were measured and compared with the corresponding calculated divine distances expressed in phi-relationships (f=1.618). Furthermore, transverse and vertical facial disproportion indices were created. For both the models and patients, all the reference distances varied largely from respective divine values. The average deviations ranged from 0.3% to 7.8% in the female groups of models and attractive patients with no difference between them. In the male groups of models and attractive patients, the average deviations ranged from 0.2% to 11.2%. When comparing attractive and nonattractive female, as well as male, patients, deviations from the divine values for all variables were larger in the nonattractive sample. Attractive individuals have facial proportions closer to the divine values than nonattractive ones. In accordance with the hypothesis of Ricketts, facial beauty is measurable to some degree. COPYRIGHT © 2009 BY QUINTESSENCE PUBLISHING CO, INC.

  1. Who's biased? A meta-analysis of buyer-seller differences in the pricing of lotteries.

    PubMed

    Yechiam, Eldad; Ashby, Nathaniel J S; Pachur, Thorsten

    2017-05-01

    A large body of empirical research has examined the impact of trading perspective on pricing of consumer products, with the typical finding being that selling prices exceed buying prices (i.e., the endowment effect). Using a meta-analytic approach, we examine to what extent the endowment effect also emerges in the pricing of monetary lotteries. As monetary lotteries have a clearly defined normative value, we also assess whether one trading perspective is more biased than the other. We consider several indicators of bias: absolute deviation from expected values, rank correlation with expected values, overall variance, and per-unit variance. The meta-analysis, which includes 35 articles, indicates that selling prices considerably exceed buying prices (Cohen's d = 0.58). Importantly, we also find that selling prices deviate less from the lotteries' expected values than buying prices, both in absolute and in relative terms. Selling prices also exhibit lower variance per unit. Hierarchical Bayesian modeling with cumulative prospect theory indicates that buyers have lower probability sensitivity and a more pronounced response bias. The finding that selling prices are more in line with normative standards than buying prices challenges the prominent account whereby sellers' valuations are upward biased due to loss aversion, and supports alternative theoretical accounts. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  2. A novel multi-segment path analysis based on a heterogeneous velocity model for the localization of acoustic emission sources in complex propagation media.

    PubMed

    Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas

    2017-02-01

    In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Influence of patient position and other inherent factors on image quality in two different cone beam computed tomography (CBCT) devices.

    PubMed

    Lindfors, Ninita; Lund, Henrik; Johansson, Hans; Ekestubbe, Annika

    2017-01-01

    The aim of this in vitro study was to evaluate how a deviation from the horizontal plane, affects the image quality in two different CBCT-devices. A phantom head SK150 (RANDO, The Phantom Laboratory, Salem, NY, USA) was examined in two CBCT-units: Accuitomo 80 and Veraviewepocs 3D R100 (J. Morita Mfg. Corp. Kyoto, Japan). The phantom head was placed with the hard palate parallel to the horizontal plane and tilted 20 ° backwards. Exposures were performed with different field of views (FOVs), voxel sizes, slice thicknesses and exposure settings. Effective dose was calculated using PCXMC 2.0 (STUK, Helsinki, Finland). Image quality was assessed using contrast-to-noise-ratio (CNR). Region of interest (ROI) was set at three different levels of the mandibular bone and soft tissue, uni- and bilaterally in small and large FOVs, respectively. CNR values were calculated by CT-value and standard deviation for each ROI. Factor analysis was used to analyze the material. Tilting the phantom head backwards rendered significantly higher mean CNR values regardless of FOV. The effective dose was lower in small than in large FOVs and varied to a larger extent between CBCT-devices in large FOVs. Head position can affect the image quality. Tilting the head backward improved image quality in the mandibular region. However, if influenced by other variables e.g. motion artifacts in a clinical situation, remains to be further investigated. Image quality assessed using CNR values to investigate the influence of different patient positions and FOVs.

  4. Rare events in networks with internal and external noise

    NASA Astrophysics Data System (ADS)

    Hindes, J.; Schwartz, I. B.

    2017-12-01

    We study rare events in networks with both internal and external noise, and develop a general formalism for analyzing rare events that combines pair-quenched techniques and large-deviation theory. The probability distribution, shape, and time scale of rare events are considered in detail for extinction in the Susceptible-Infected-Susceptible model as an illustration. We find that when both types of noise are present, there is a crossover region as the network size is increased, where the probability exponent for large deviations no longer increases linearly with the network size. We demonstrate that the form of the crossover depends on whether the endemic state is localized near the epidemic threshold or not.

  5. Approaching sub-50 nanoradian measurements by reducing the saw-tooth deviation of the autocollimator in the Nano-Optic-Measuring Machine

    NASA Astrophysics Data System (ADS)

    Qian, Shinan; Geckeler, Ralf D.; Just, Andreas; Idir, Mourad; Wu, Xuehui

    2015-06-01

    Since the development of the Nano-Optic-Measuring Machine (NOM), the accuracy of measuring the profile of an optical surface has been enhanced to the 100-nrad rms level or better. However, to update the accuracy of the NOM system to sub-50 nrad rms, the large saw-tooth deviation (269 nrad rms) of an existing electronic autocollimator, the Elcomat 3000/8, must be resolved. We carried out simulations to assess the saw-tooth-like deviation. We developed a method for setting readings to reduce the deviation to sub-50 nrad rms, suitable for testing plane mirrors. With this method, we found that all the tests conducted in a slowly rising section of the saw-tooth show a small deviation of 28.8 to <40 nrad rms. We also developed a dense-measurement method and an integer-period method to lower the saw-tooth deviation during tests of sphere mirrors. Further research is necessary for formulating a precise test for a spherical mirror. We present a series of test results from our experiments that verify the value of the improvements we made.

  6. Interpreting sources of variation in clinical gait analysis: A case study.

    PubMed

    King, Stephanie L; Barton, Gabor J; Ranganath, Lakshminarayan R

    2017-02-01

    To illustrate and discuss sources of gait deviations (experimental, genuine and intentional) during a gait analysis and how these deviations inform clinical decision making. A case study of a 24-year old male diagnosed with Alkaptonuria undergoing a routine gait analysis. A 3D motion capture with the Helen-Hayes marker set was used to quantify lower-limb joint kinematics during barefoot walking along a 10m walkway at a self-selected pace. Additional 2D video data were recorded in the sagittal and frontal plane. The patient reported no aches or pains in any joint and described his lifestyle as active. Temporal-spatial parameters were within normal ranges for his age and sex. Three sources of gait deviations were identified; the posteriorly rotated pelvis was due to an experimental error and marker misplacement, the increased rotation of the pelvis in the horizontal plane was genuine and observed in both 3D gait curves and in 2D video analysis, finally the inconsistency in knee flexion/extension combined with a seemingly innocuous interest in the consequences of abnormal gait suggested an intentional gait deviation. Gait analysis is an important analytical tool in the management of a variety of conditions that negatively impact on movement. Experienced gait analysts have the ability to recognise genuine gait adaptations that forms part of the decision-making process for that patient. However, their role also necessitates the ability to identify and correct for experimental errors and critically evaluate when a deviation may not be genuine. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Diagnostic accuracy of referral criteria for head circumference to detect hydrocephalus in the first year of life.

    PubMed

    van Dommelen, Paula; Deurloo, Jacqueline A; Gooskens, Rob H; Verkerk, Paul H

    2015-04-01

    Increased head circumference is often the first and main sign leading to the diagnosis of hydrocephalus. Our aim is to investigate the diagnostic accuracy of referral criteria for head circumference to detect hydrocephalus in the first year of life. A reference group with longitudinal head circumference data (n = 1938) was obtained from the Social Medical Survey of Children Attending Child Health Clinics study. The case group comprised infants with hydrocephalus treated in a tertiary pediatric hospital who had not already been detected during pregnancy (n = 125). Head circumference data were available for 43 patients. Head circumference data were standardized according to gestational age-specific references. Sensitivity and specificity of a very large head circumference (>2.5 standard deviations on the growth chart) were, respectively, 72.1% (95% confidence interval [CI]: 56.3-84.7) and 97.1% (95% CI:96.2-97.8). These figures were, respectively, 74.4% (95% CI: 58.8-86.5) and 93.0% (95% CI:91.8-94.1) for a large head circumference (>2.0 standard deviation), and 76.7% (95% CI:61.4-88.2) and 96.5% (95% CI:95.6-97.3) for a very large head circumference and/or a very large (>2.5 standard deviation) progressive growth of head circumference. A very large head circumference and/or a very large progressive growth of head circumference shows the best diagnostic accuracy to detect hydrocephalus at an early stage. Gestational age-specific growth charts are recommended. Further improvements may be possible by taking into account parental head circumference. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Robust tunability of magnetoresistance in half-Heusler R PtBi ( R = Gd , Dy, Tm, and Lu) compounds

    DOE PAGES

    Mun, Eundeok; Bud'ko, Sergey L.; Canfield, Paul C.

    2016-03-15

    We present the magnetic field dependencies of transport properties for RPtBi ( R = Gd, Dy, Tm, and Lu) half-Heusler compounds. Temperature- and field-dependent resistivity measurements of high-quality RPtBi single crystals reveal an unusually large, nonsaturating magnetoresistance (MR) up to 300 K under a moderate magnetic field of H = 140 kOe. At 300 K, the large MR effect decreases as the rare earth is traversed from Gd to Lu and the magnetic field dependence of MR shows a deviation from the conventional H2 behavior. The Hall coefficient ( RH) for R = Gd indicates a sign change around 120more » K, whereas RH curves for R = Dy, Tm, and Lu remain positive for all measured temperatures. At 300 K, the Hall resistivity reveals a deviation from the linear field dependence for all compounds. Thermoelectric power measurements on this family show strong temperature and magnetic field dependencies which are consistent with resistivity measurements. A highly enhanced thermoelectric power under applied magnetic field is observed as high as ~100 μV/K at 140 kOe. Furthermore, analysis of the transport data in this series reveals that the rare-earth-based half-Heusler compounds provide opportunities to tune MR effect through lanthanide contraction and to elucidate the mechanism of nontrivial MR.« less

  9. From Large Deviations to Semidistances of Transport and Mixing: Coherence Analysis for Finite Lagrangian Data

    NASA Astrophysics Data System (ADS)

    Koltai, Péter; Renger, D. R. Michiel

    2018-06-01

    One way to analyze complicated non-autonomous flows is through trying to understand their transport behavior. In a quantitative, set-oriented approach to transport and mixing, finite time coherent sets play an important role. These are time-parametrized families of sets with unlikely transport to and from their surroundings under small or vanishing random perturbations of the dynamics. Here we propose, as a measure of transport and mixing for purely advective (i.e., deterministic) flows, (semi)distances that arise under vanishing perturbations in the sense of large deviations. Analogously, for given finite Lagrangian trajectory data we derive a discrete-time-and-space semidistance that comes from the "best" approximation of the randomly perturbed process conditioned on this limited information of the deterministic flow. It can be computed as shortest path in a graph with time-dependent weights. Furthermore, we argue that coherent sets are regions of maximal farness in terms of transport and mixing, and hence they occur as extremal regions on a spanning structure of the state space under this semidistance—in fact, under any distance measure arising from the physical notion of transport. Based on this notion, we develop a tool to analyze the state space (or the finite trajectory data at hand) and identify coherent regions. We validate our approach on idealized prototypical examples and well-studied standard cases.

  10. Implementing lean in Malaysian universities: Lean awareness level in an engineering faculty of a local university

    NASA Astrophysics Data System (ADS)

    Azim Khairi, M.; Rahman, Mohamed Abd

    2018-01-01

    Many academic articles were published in Malaysia promoting the goodness of lean in manufacturing and industrial sectors but less attention was apparently given to the possibility of obtaining the same universal benefits when applying lean in non-manufacturing sectors especially higher education. This study aims to determine the level of lean awareness among a local university’s community taking its Faculty of Engineering (FoE) as the case study. It also seeks to identify typical FoE’s staff perception on lean regarding its benefits and the obstacles in implementing it. A web-based survey using questionnaires was carried out for 215 respondents consisting of academic and administrative staff of the faculty. Statistical Package for the Social Science (SPSS) was used to analyze the survey data collected. A total of 13.95% of respondents returned the forms. Slightly more than half of those responded (56.7%) have encountered some of the lean terms with mean 1.43 and standard deviation 0.504. However, the large amount of standard deviation somewhat indicates that the real level of lean awareness of FoE as a group was low. In terms of lean benefits, reduction of waste was favored (93.3%) by the respondents with mean 0.93 and standard deviation 0.254. For obstacles in implementing lean, lack of knowledge was selected by most respondents (86.7%) to be the major factor with mean 0.87 and standard deviation 0.346. Through the analysis done, the study may conclude that level of lean awareness among the university‘s community was low thus may hinder implementation of lean concept.

  11. Sensitivity of species to chemicals: dose-response characteristics for various test types (LC(50), LR(50) and LD(50)) and modes of action.

    PubMed

    Hendriks, A Jan; Awkerman, Jill A; de Zwart, Dick; Huijbregts, Mark A J

    2013-11-01

    While variable sensitivity of model species to common toxicants has been addressed in previous studies, a systematic analysis of inter-species variability for different test types, modes of action and species is as of yet lacking. Hence, the aim of the present study was to identify similarities and differences in contaminant levels affecting cold-blooded and warm-blooded species administered via different routes. To that end, data on lethal water concentrations LC50, tissue residues LR50 and oral doses LD50 were collected from databases, each representing the largest of its kind. LC50 data were multiplied by a bioconcentration factor (BCF) to convert them to internal concentrations that allow for comparison among species. For each endpoint data set, we calculated the mean and standard deviation of species' lethal level per compound. Next, the means and standard deviations were averaged by mode of action. Both the means and standard deviations calculated depended on the number of species tested, which is at odds with quality standard setting procedures. Means calculated from (BCF) LC50, LR50 and LD50 were largely similar, suggesting that different administration routes roughly yield similar internal levels. Levels for compounds interfering biochemically with elementary life processes were about one order of magnitude below that of narcotics disturbing membranes, and neurotoxic pesticides and dioxins induced death in even lower amounts. Standard deviations for LD50 data were similar across modes of action, while variability of LC50 values was lower for narcotics than for substances with a specific mode of action. The study indicates several directions to go for efficient use of available data in risk assessment and reduction of species testing. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. MUSiC—An Automated Scan for Deviations between Data and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Meyer, Arnd

    2010-02-01

    A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.

  13. MUSiC - An Automated Scan for Deviations between Data and Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Arnd

    2010-02-10

    A model independent analysis approach is presented, systematically scanning the data for deviations from the standard model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of event generators. The approach is sensitive to a variety of models of new physics, including those not yet thought of.

  14. Effects of organ motion on proton prostate treatments, as determined from analysis of daily CT imaging for patient positioning.

    PubMed

    Maeda, Yoshikazu; Sato, Yoshitaka; Shibata, Satoshi; Bou, Sayuri; Yamamoto, Kazutaka; Tamamura, Hiroyasu; Fuwa, Nobukazu; Takamatsu, Shigeyuki; Sasaki, Makoto; Tameshige, Yuji; Kume, Kyo; Minami, Hiroki; Saga, Yusuke; Saito, Makoto

    2018-05-01

    We quantified interfractional movements of the prostate, seminal vesicles (SVs), and rectum during computed tomography (CT) image-guided proton therapy for prostate cancer and studied the range variation in opposed lateral proton beams. We analyzed 375 sets of daily CT images acquired throughout the proton therapy treatment of ten patients. We analyzed daily movements of the prostate, SVs, and rectum by simulating three image-matching strategies: bone matching, prostate center (PC) matching, and prostate-rectum boundary (PRB) matching. In the PC matching, translational movements of the prostate center were corrected after bone matching. In the PRB matching, we performed PC matching and correction along the anterior-posterior direction to match the boundary between the prostate and the rectum's anterior region. In each strategy, we evaluated systematic errors (Σ) and random errors (σ) by measuring the daily movements of certain points on each anatomic structure. The average positional deviations in millimeter of each point were determined by the Van Herk formula of 2.5Σ + 0.7σ. Using these positional deviations, we created planning target volumes of the prostate and SVs and analyzed the daily variation in the water equivalent length (WEL) from the skin surface to the target along the lateral beam directions using the density converted from the daily CT number. Based on this analysis, we designed prostate cancer treatment planning and evaluated the dose volume histograms (DVHs) for these strategies. The SVs' daily movements showed large variations over the superior-inferior direction, as did the rectum's anterior region. The average positional deviations of the prostate in the anterior, posterior, superior, inferior, and lateral sides (mm) in bone matching, PC matching, and PRB matching were (8.9, 9.8, 7.5, 3.6, 1.6), (5.6, 6.1, 3.5, 4.5, 1.9), and (8.6, 3.2, 3.5, 4.5, 1.9) (mm), respectively. Moreover, the ones of the SV tip were similarly (22.5, 15.5, 11.0, 7.6, 6.0), (11.8, 8.4, 7.8, 5.2, 6.3), and (9.9, 7.5, 7.8, 5.2, 6.3). PRB matching showed the smallest positional deviations at all portions except for the anterior portion of the prostate and was able to markedly reduce the positional deviations at the posterior portion. The averaged WEL variations at the distal and proximal sides of planning target volumes were estimated 7-9 mm and 4-6 mm, respectively, and showed the increasing of a few millimeters in PC and PRB matching compared to bone matching. In the treatment planning simulation, the DVH values of the rectum in PRB matching were reduced compared to those obtained with other matching strategies. The positional deviations for the prostate on the posterior side and the SVs were smaller by PRB matching than the other strategies and effectively reduced the rectal dose. 3D dose calculations indicate that PRB matching with CT image guidance may do a better job relative to other positioning methods to effectively reduce the rectal complications. The WEL variation was quite large, and the appropriate margin (approx. 10 mm) must be adapted to the proton range in an initial planning to maintain the coverage of target volumes throughout entire treatment. © 2018 American Association of Physicists in Medicine.

  15. Not a Copernican observer: biased peculiar velocity statistics in the local Universe

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Nusser, Adi; Feix, Martin; Bilicki, Maciej

    2017-05-01

    We assess the effect of the local large-scale structure on the estimation of two-point statistics of the observed radial peculiar velocities of galaxies. A large N-body simulation is used to examine these statistics from the perspective of random observers as well as 'Local Group-like' observers conditioned to reside in an environment resembling the observed Universe within 20 Mpc. The local environment systematically distorts the shape and amplitude of velocity statistics with respect to ensemble-averaged measurements made by a Copernican (random) observer. The Virgo cluster has the most significant impact, introducing large systematic deviations in all the statistics. For a simple 'top-hat' selection function, an idealized survey extending to ˜160 h-1 Mpc or deeper is needed to completely mitigate the effects of the local environment. Using shallower catalogues leads to systematic deviations of the order of 50-200 per cent depending on the scale considered. For a flat redshift distribution similar to the one of the CosmicFlows-3 survey, the deviations are even more prominent in both the shape and amplitude at all separations considered (≲100 h-1 Mpc). Conclusions based on statistics calculated without taking into account the impact of the local environment should be revisited.

  16. Large incidence angle and defocus influence cat's eye retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Yang, Ji-guang; Zheng, Yong-hui

    2014-11-01

    Cat's eye lens make the laser beam retro-reflected exactly to the opposite direction of the incidence beam, called cat's eye effect, which makes rapid acquiring, tracking and pointing of free space optical communication possible. Study the influence of cat's eye effect to cat's eye retro-reflector at large incidence angle is useful. This paper analyzed the process of how the incidence angle and focal shit affect effective receiving area, retro-reflected beam divergence angle, central deviation of cat's eye retro-reflector at large incidence angle and cat's eye effect factor using geometrical optics method, and presented the analytic expressions. Finally, numerical simulation was done to prove the correction of the study. The result shows that the efficiency receiving area of cat's eye retro-reflector is mainly affected by incidence angle when the focal shift is positive, and it decreases rapidly when the incidence angle increases; the retro-reflected beam divergence and central deviation is mainly affected by focal shift, and within the effective receiving area, the central deviation is smaller than beam divergence in most time, which means the incidence beam can be received and retro-reflected to the other terminal in most time. The cat's eye effect factor gain is affected by both incidence angle and focal shift.

  17. Standard deviation analysis of the mastoid fossa temperature differential reading: a potential model for objective chiropractic assessment.

    PubMed

    Hart, John

    2011-03-01

    This study describes a model for statistically analyzing follow-up numeric-based chiropractic spinal assessments for an individual patient based on his or her own baseline. Ten mastoid fossa temperature differential readings (MFTD) obtained from a chiropractic patient were used in the study. The first eight readings served as baseline and were compared to post-adjustment readings. One of the two post-adjustment MFTD readings fell outside two standard deviations of the baseline mean and therefore theoretically represents improvement according to pattern analysis theory. This study showed how standard deviation analysis may be used to identify future outliers for an individual patient based on his or her own baseline data. Copyright © 2011 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  18. Flyby of large-size space debris objects and their transition to the disposal orbits in LEO

    NASA Astrophysics Data System (ADS)

    Baranov, Andrey A.; Grishko, Dmitriy A.; Razoumny, Yury N.; Jun, Li

    2017-06-01

    The article focuses on the flyby issue involving large-size space debris (LSSD) objects in low Earth orbits. The data on overall sizes of the known upper-stages and last stages of launch-vehicles make it possible to emphasize five compact groups of such objects from the Satellite catalogue in 600-2000 km altitude interval. The flyby maneuvers are executed by a single space vehicle (SV) that transfers the current captured LSSD object to the specially selected circular or elliptical disposal orbit (DO) and after a period of time returns to capture a new one. The flight is always realized when a value of the Right Ascension of the Ascending Node (RAAN) is approximately the same for the current DO and for an orbit of the following LSSD object. Distinctive features of changes in mutual distribution of orbital planes of LSSD within a group are shown on the RAAN deviations' evolution portrait. In case of the first three groups (inclinations 71°, 74° and 81°), the lines describing the relative orientation of orbital planes are quasi-parallel. Such configuration allows easy identification of the flyby order within a group, and calculation of the mission duration and the required total ΔV. In case of the 4th and the 5th groups the RAAN deviations' evolution portrait represents a conjunction of lines chaotically intersecting. The article studies changes in mission duration and in the required ΔV depending on the catalogue number of the first object in the flyby order. The article also contains a comparative efficiency analysis of the two world-wide known schemes applicable to LSSD objects' de-orbiting; the analysis is carried out for all 5 distinguished LSSD groups.

  19. Analysis of events with b-jets and a pair of leptons of the same charge in pp collisions at √s = 8 TeV with the ATLAS detector

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2015-10-22

    An analysis is presented of events containing jets including at least one b -tagged jet, sizeable missing transverse momentum, and at least two leptons including a pair of the same electric charge, with the scalar sum of the jet and lepton transverse momenta being large. A data sample with an integrated luminosity of 20.3 fb –1 of pp collisions at √s = 8 TeV recorded by the ATLAS detector at the Large Hadron Collider is used. Standard Model processes rarely produce these final states, but there are several models of physics beyond the Standard Model that predict an enhanced ratemore » of production of such events; the ones considered here are production of vector-like quarks, enhanced four-top-quark production, pair production of chiral b'-quarks, and production of two positively charged top quarks. Eleven signal regions are defined; subsets of these regions are combined when searching for each class of models. In the three signal regions primarily sensitive to positively charged top quark pair production, the data yield is consistent with the background expectation. There are more data events than expected from background in the set of eight signal regions defined for searching for vector-like quarks and chiral b'-quarks, but the significance of the discrepancy is less than two standard deviations. Furthermore, the discrepancy reaches 2.5 standard deviations in the set of five signal regions defined for searching for four-top-quark production. The results are used to set 95% CL limits on various models.« less

  20. X-ray fluorescence analysis of Cr(6+) component in mixtures of Cr(2)O(3) and K(2)CrO(4).

    PubMed

    Tochio, Tatsunori; Sakakura, Shusuke; Oohashi, Hirofumi; Mizota, Hirohisa; Zou, Yanhui; Ito, Yoshiaki; Fukushima, Sei; Tanuma, Shigeo; Shoji, Takashi; Fujimura, Hajime; Yamashita, Michiru

    2010-01-01

    X-ray fluorescence analysis using Cr K(alpha) spectra was applied to the determination of the mixing ratio of Cr(6+) to (Cr(6+) + Cr(3+)) in several mixtures of K(2)CrO(4) and Cr(2)O(3). Because the powder of K(2)CrO(4) contained large particles that were more than 50 microm in diameter, it was ground between a pestle and a mortar for about 8 h. The coarse particles still remaining were removed by using a sieve with 325-mesh (44 microm) in order to reduce the difference in absorption effects between emissions from Cr(6+) and those from Cr(3+). The mixing ratio, K(2)CrO(4)/(K(2)CrO(4) + Cr(2)O(3)), of the five mixtures investigated is 0.50, 0.40, 0.20, 0.10, and 0.05 in weight, respectively. Each spectrum obtained was analyzed by decomposing it into two reference spectra, those of the two pure materials, K(2)CrO(4) and Cr(2)O(3), with a constant background. The results for the mixtures containing K(2)CrO(4) of more than 20 wt% are that the relative deviation from the true value is less than approximately 5%. On the other hand, when the content of K(2)CrO(4) decreases to less than 10 wt%, the relative deviation gets so large as 20 - 25%. The error coming from a peak separation of spectrum involved in our results were estimated by applying our method to five sets of data for each mixture computationally generated, taking into account the uncertainty in total counts of real measurements.

  1. Method of surface error visualization using laser 3D projection technology

    NASA Astrophysics Data System (ADS)

    Guo, Lili; Li, Lijuan; Lin, Xuezhu

    2017-10-01

    In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.

  2. In vivo dosimetry for external photon treatments of head and neck cancers by diodes and TLDS.

    PubMed

    Tung, C J; Wang, H C; Lo, S H; Wu, J M; Wang, C J

    2004-01-01

    In vivo dosimetry was implemented for treatments of head and neck cancers in the large fields. Diode and thermoluminescence dosemeter (TLD) measurements were carried out for the linear accelerators of 6 MV photon beams. ESTRO in vivo dosimetry protocols were followed in the determination of midline doses from measurements of entrance and exit doses. Of the fields monitored by diodes, the maximum absolute deviation of measured midline doses from planned target doses was 8%, with the mean value and the standard deviation of -1.0 and 2.7%. If planned target doses were calculated using radiological water equivalent thicknesses rather than patient geometric thicknesses, the maximum absolute deviation dropped to 4%, with the mean and the standard deviation of 0.7 and 1.8%. For in vivo dosimetry monitored by TLDs, the shift in mean dose remained small but the statistical precision became poor.

  3. Visual space under free viewing conditions.

    PubMed

    Doumen, Michelle J A; Kappers, Astrid M L; Koenderink, Jan J

    2005-10-01

    Most research on visual space has been done under restricted viewing conditions and in reduced environments. In our experiments, observers performed an exocentric pointing task, a collinearity task, and a parallelity task in a entirely visible room. We varied the relative distances between the objects and the observer and the separation angle between the two objects. We were able to compare our data directly with data from experiments in an environment with less monocular depth information present. We expected that in a richer environment and under less restrictive viewing conditions, the settings would deviate less from the veridical settings. However, large systematic deviations from veridical settings were found for all three tasks. The structure of these deviations was task dependent, and the structure and the deviations themselves were comparable to those obtained under more restricted circumstances. Thus, the additional information was not used effectively by the observers.

  4. Demonstration of the Gore Module for Passive Ground Water Sampling

    DTIC Science & Technology

    2014-06-01

    ix ACRONYMS AND ABBREVIATIONS % RSD percent relative standard deviation 12DCA 1,2-dichloroethane 112TCA 1,1,2-trichloroethane 1122TetCA...Analysis of Variance ROD Record of Decision RSD relative standard deviation SBR Southern Bush River SVOC semi-volatile organic compound...replicate samples had a relative standard deviation ( RSD ) that was 20% or less. For the remaining analytes (PCE, cDCE, and chloroform), at least 70

  5. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    NASA Astrophysics Data System (ADS)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S.

    2016-11-01

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly and rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I-Love-Q relations.

  6. Engineering and experimental analyses of the tensile loads applied during strength testing of direct bonded orthodontic brackets.

    PubMed

    Katona, T R; Chen, J

    1994-08-01

    The stress levels within the cement layer (hence, the apparent strength) of a direct bonded orthodontic bracket depends, to a large extent, on the alignment of the tensile loads that are applied to the specimen. The purpose of this analysis was to determine how the construction of a ligature wire harness affects the alignment of the applied loads. Tensile tests conducted on a modified bracket/cement system showed large variations in the force-elongation curve profiles. An engineering model was developed to explain these deviations. The results indicate that it is virtually impossible to evenly apply tensile loads to the bracket. It was also proposed that long harnesses constructed with thin ligature wire, prestressing the harness, and lubrication may reduce some of the effects of unavoidable load-bracket misalignment.

  7. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    PubMed Central

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  8. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.

    PubMed

    Felix, Janine F; Bradfield, Jonathan P; Monnereau, Claire; van der Valk, Ralf J P; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M; Cousminer, Diana L; Marsh, Julie A; Lehtimäki, Terho; Curtin, John A; Vioque, Jesus; Ahluwalia, Tarunveer S; Myhre, Ronny; Price, Thomas S; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M A; Hirschhorn, Joel N; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A; Lewin, Alexandra M; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E; McMahon, George; Mentch, Frank D; Middeldorp, Christel M; Murray, Clare S; Pahkala, Katja; Pers, Tune H; Pfäffle, Roland; Postma, Dirkje S; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M T; Torrent, Maties; Uitterlinden, André G; van Meurs, Joyce B; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S; Dedoussis, George V; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R; Custovic, Adnan; Raitakari, Olli T; Pennell, Craig E; Widén, Elisabeth; Boomsma, Dorret I; Koppelman, Gerard H; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M; Smith, George Davey; Sørensen, Thorkild I A; Timpson, Nicholas J; Grant, Struan F A; Jaddoe, Vincent W V

    2016-01-15

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. New Evidence on the Relationship Between Climate and Conflict

    NASA Astrophysics Data System (ADS)

    Burke, M.

    2015-12-01

    We synthesize a large new body of research on the relationship between climate and conflict. We consider many types of human conflict, ranging from interpersonal conflict -- domestic violence, road rage, assault, murder, and rape -- to intergroup conflict -- riots, coups, ethnic violence, land invasions, gang violence, and civil war. After harmonizing statistical specifications and standardizing estimated effect sizes within each conflict category, we implement a meta-analysis that allows us to estimate the mean effect of climate variation on conflict outcomes as well as quantify the degree of variability in this effect size across studies. Looking across more than 50 studies, we find that deviations from moderate temperatures and precipitation patterns systematically increase the risk of conflict, often substantially, with average effects that are highly statistically significant. We find that contemporaneous temperature has the largest average effect by far, with each 1 standard deviation increase toward warmer temperatures increasing the frequency of contemporaneous interpersonal conflict by 2% and of intergroup conflict by more than 10%. We also quantify substantial heterogeneity in these effect estimates across settings.

  10. Effects of temperature and precipitation variability on the risk of violence in sub-Saharan Africa, 1980–2012

    PubMed Central

    O’Loughlin, John; Linke, Andrew M.; Witmer, Frank D. W.

    2014-01-01

    Ongoing debates in the academic community and in the public policy arena continue without clear resolution about the significance of global climate change for the risk of increased conflict. Sub-Saharan Africa is generally agreed to be the region most vulnerable to such climate impacts. Using a large database of conflict events and detailed climatological data covering the period 1980–2012, we apply a multilevel modeling technique that allows for a more nuanced understanding of a climate–conflict link than has been seen heretofore. In the aggregate, high temperature extremes are associated with more conflict; however, different types of conflict and different subregions do not show consistent relationship with temperature deviations. Precipitation deviations, both high and low, are generally not significant. The location and timing of violence are influenced less by climate anomalies (temperature or precipitation variations from normal) than by key political, economic, and geographic factors. We find important distinctions in the relationship between temperature extremes and conflict by using multiple methods of analysis and by exploiting our time-series cross-sectional dataset for disaggregated analyses. PMID:25385621

  11. PARALLAX AND ORBITAL EFFECTS IN ASTROMETRIC MICROLENSING WITH BINARY SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nucita, A. A.; Paolis, F. De; Ingrosso, G.

    2016-06-01

    In gravitational microlensing, binary systems may act as lenses or sources. Identifying lens binarity is generally easy, in particular in events characterized by caustic crossing since the resulting light curve exhibits strong deviations from a smooth single-lensing light curve. In contrast, light curves with minor deviations from a Paczyński behavior do not allow one to identify the source binarity. A consequence of gravitational microlensing is the shift of the position of the multiple image centroid with respect to the source star location — the so-called astrometric microlensing signal. When the astrometric signal is considered, the presence of a binary sourcemore » manifests with a path that largely differs from that expected for single source events. Here, we investigate the astrometric signatures of binary sources taking into account their orbital motion and the parallax effect due to the Earth’s motion, which turn out not to be negligible in most cases. We also show that considering the above-mentioned effects is important in the analysis of astrometric data in order to correctly estimate the lens-event parameters.« less

  12. Analysis of the stress field and strain rate in Zagros-Makran transition zone

    NASA Astrophysics Data System (ADS)

    Ghorbani Rostam, Ghasem; Pakzad, Mehrdad; Mirzaei, Noorbakhsh; Sakhaei, Seyed Reza

    2018-01-01

    Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.

  13. Accuracy improvement in laser stripe extraction for large-scale triangulation scanning measurement system

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Wei; Li, Xiaodong; Yang, Fan; Gao, Peng; Jia, Zhenyuan

    2015-10-01

    Large-scale triangulation scanning measurement systems are widely used to measure the three-dimensional profile of large-scale components and parts. The accuracy and speed of the laser stripe center extraction are essential for guaranteeing the accuracy and efficiency of the measuring system. However, in the process of large-scale measurement, multiple factors can cause deviation of the laser stripe center, including the spatial light intensity distribution, material reflectivity characteristics, and spatial transmission characteristics. A center extraction method is proposed for improving the accuracy of the laser stripe center extraction based on image evaluation of Gaussian fitting structural similarity and analysis of the multiple source factors. First, according to the features of the gray distribution of the laser stripe, evaluation of the Gaussian fitting structural similarity is estimated to provide a threshold value for center compensation. Then using the relationships between the gray distribution of the laser stripe and the multiple source factors, a compensation method of center extraction is presented. Finally, measurement experiments for a large-scale aviation composite component are carried out. The experimental results for this specific implementation verify the feasibility of the proposed center extraction method and the improved accuracy for large-scale triangulation scanning measurements.

  14. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 7: July

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of July. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  15. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 10: October

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-07-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of October. Included are global analyses of: (1) Mean temperature/standard deviation; (2) Mean geopotential height/standard deviation; (3) Mean density/standard deviation; (4) Height and vector standard deviation (all at 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean dew point/standard deviation at levels 1000 through 30 mb; and (6) Jet stream at levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  16. Joint US Navy/US Air Force climatic study of the upper atmosphere. Volume 3: March

    NASA Astrophysics Data System (ADS)

    Changery, Michael J.; Williams, Claude N.; Dickenson, Michael L.; Wallace, Brian L.

    1989-11-01

    The upper atmosphere was studied based on 1980 to 1985 twice daily gridded analysis produced by the European Centre for Medium Range Weather Forecasts. This volume is for the month of March. Included are global analyses of: (1) Mean Temperature Standard Deviation; (2) Mean Geopotential Height Standard Deviation; (3) Mean Density Standard Deviation; (4) Height and Vector Standard Deviation (all for 13 pressure levels - 1000, 850, 700, 500, 400, 300, 250, 200, 150, 100, 70, 50, 30 mb); (5) Mean Dew Point Standard Deviation for levels 1000 through 30 mb; and (6) Jet stream for levels 500 through 30 mb. Also included are global 5 degree grid point wind roses for the 13 pressure levels.

  17. Multi-model analysis of terrestrial carbon cycles in Japan: limitations and implications of model calibration using eddy flux observations

    NASA Astrophysics Data System (ADS)

    Ichii, K.; Suzuki, T.; Kato, T.; Ito, A.; Hajima, T.; Ueyama, M.; Sasai, T.; Hirata, R.; Saigusa, N.; Ohtani, Y.; Takagi, K.

    2010-07-01

    Terrestrial biosphere models show large differences when simulating carbon and water cycles, and reducing these differences is a priority for developing more accurate estimates of the condition of terrestrial ecosystems and future climate change. To reduce uncertainties and improve the understanding of their carbon budgets, we investigated the utility of the eddy flux datasets to improve model simulations and reduce variabilities among multi-model outputs of terrestrial biosphere models in Japan. Using 9 terrestrial biosphere models (Support Vector Machine - based regressions, TOPS, CASA, VISIT, Biome-BGC, DAYCENT, SEIB, LPJ, and TRIFFID), we conducted two simulations: (1) point simulations at four eddy flux sites in Japan and (2) spatial simulations for Japan with a default model (based on original settings) and a modified model (based on model parameter tuning using eddy flux data). Generally, models using default model settings showed large deviations in model outputs from observation with large model-by-model variability. However, after we calibrated the model parameters using eddy flux data (GPP, RE and NEP), most models successfully simulated seasonal variations in the carbon cycle, with less variability among models. We also found that interannual variations in the carbon cycle are mostly consistent among models and observations. Spatial analysis also showed a large reduction in the variability among model outputs. This study demonstrated that careful validation and calibration of models with available eddy flux data reduced model-by-model differences. Yet, site history, analysis of model structure changes, and more objective procedure of model calibration should be included in the further analysis.

  18. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    PubMed

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  19. Comparative analysis of 2D and 3D distance measurements to study spatial genome organization.

    PubMed

    Finn, Elizabeth H; Pegoraro, Gianluca; Shachar, Sigal; Misteli, Tom

    2017-07-01

    The spatial organization of genomes is non-random, cell-type specific, and has been linked to cellular function. The investigation of spatial organization has traditionally relied extensively on fluorescence microscopy. The validity of the imaging methods used to probe spatial genome organization often depends on the accuracy and precision of distance measurements. Imaging-based measurements may either use 2 dimensional datasets or 3D datasets which include the z-axis information in image stacks. Here we compare the suitability of 2D vs 3D distance measurements in the analysis of various features of spatial genome organization. We find in general good agreement between 2D and 3D analysis with higher convergence of measurements as the interrogated distance increases, especially in flat cells. Overall, 3D distance measurements are more accurate than 2D distances, but are also more susceptible to noise. In particular, z-stacks are prone to error due to imaging properties such as limited resolution along the z-axis and optical aberrations, and we also find significant deviations from unimodal distance distributions caused by low sampling frequency in z. These deviations are ameliorated by significantly higher sampling frequency in the z-direction. We conclude that 2D distances are preferred for comparative analyses between cells, but 3D distances are preferred when comparing to theoretical models in large samples of cells. In general and for practical purposes, 2D distance measurements are preferable for many applications of analysis of spatial genome organization. Published by Elsevier Inc.

  20. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Andringa, S.

    2017-06-01

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80{sup o} and energies in excess of 4 EeV (4 × 10{sup 18} eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providingmore » directional information on any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured; while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p -values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10{sup −5} in the case of the angular power spectrum, and 2.5 × 10{sup −3} in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  1. Multi-resolution anisotropy studies of ultrahigh-energy cosmic rays detected at the Pierre Auger Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aab, A.; Abreu, P.; Aglietta, M.

    We report a multi-resolution search for anisotropies in the arrival directions of cosmic rays detected at the Pierre Auger Observatory with local zenith angles up to 80(o) and energies in excess of 4 EeV (4 × 10 18 eV). This search is conducted by measuring the angular power spectrum and performing a needlet wavelet analysis in two independent energy ranges. Both analyses are complementary since the angular power spectrum achieves a better performance in identifying large-scale patterns while the needlet wavelet analysis, considering the parameters used in this work, presents a higher efficiency in detecting smaller-scale anisotropies, potentially providing directional information onmore » any observed anisotropies. No deviation from isotropy is observed on any angular scale in the energy range between 4 and 8 EeV. Above 8 EeV, an indication for a dipole moment is captured, while no other deviation from isotropy is observed for moments beyond the dipole one. The corresponding p-values obtained after accounting for searches blindly performed at several angular scales, are 1.3 × 10 -5 in the case of the angular power spectrum, and 2.5 × 10 -3 in the case of the needlet analysis. While these results are consistent with previous reports making use of the same data set, they provide extensions of the previous works through the thorough scans of the angular scales.« less

  2. Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model

    NASA Astrophysics Data System (ADS)

    Nemoto, Takahiro; Jack, Robert L.; Lecomte, Vivien

    2017-03-01

    We analyze large deviations of the time-averaged activity in the one-dimensional Fredrickson-Andersen model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition numerically, by generalizing an existing cloning algorithm to include a multicanonical feedback control: this significantly improves the computational efficiency. Motivated by these numerical results, we formulate an effective theory for the model in the vicinity of the phase transition, which accounts quantitatively for the observed behavior. We discuss potential applications of the numerical method and the effective theory in a range of more general contexts.

  3. A large deviations principle for stochastic flows of viscous fluids

    NASA Astrophysics Data System (ADS)

    Cipriano, Fernanda; Costa, Tiago

    2018-04-01

    We study the well-posedness of a stochastic differential equation on the two dimensional torus T2, driven by an infinite dimensional Wiener process with drift in the Sobolev space L2 (0 , T ;H1 (T2)) . The solution corresponds to a stochastic Lagrangian flow in the sense of DiPerna Lions. By taking into account that the motion of a viscous incompressible fluid on the torus can be described through a suitable stochastic differential equation of the previous type, we study the inviscid limit. By establishing a large deviations principle, we show that, as the viscosity goes to zero, the Lagrangian stochastic Navier-Stokes flow approaches the Euler deterministic Lagrangian flow with an exponential rate function.

  4. On Deviations between Observed and Theoretically Estimated Values on Additivity-Law Failures

    NASA Astrophysics Data System (ADS)

    Nayatani, Yoshinobu; Sobagaki, Hiroaki

    The authors have reported in the previous studies that the average observed results are about a half of the corresponding predictions on the experiments with large additivity-law failures. One of the reasons of the deviations is studied and clarified by using the original observed data on additivity-law failures in the Nakano experiment. The conclusion from the observations and their analyses clarified that it was essentially difficult to have a good agreement between the average observed results and the corresponding theoretical predictions in the experiments with large additivity-law failures. This is caused by a kind of unavoidable psychological pressure existing in subjects participated in the experiments. We should be satisfied with the agreement in trend between them.

  5. Exact Large-Deviation Statistics for a Nonequilibrium Quantum Spin Chain

    NASA Astrophysics Data System (ADS)

    Žnidarič, Marko

    2014-01-01

    We consider a one-dimensional XX spin chain in a nonequilibrium setting with a Lindblad-type boundary driving. By calculating large-deviation rate function in the thermodynamic limit, a generalization of free energy to a nonequilibrium setting, we obtain a complete distribution of current, including closed expressions for lower-order cumulants. We also identify two phase-transition-like behaviors in either the thermodynamic limit, at which the current probability distribution becomes discontinuous, or at maximal driving, when the range of possible current values changes discontinuously. In the thermodynamic limit the current has a finite upper and lower bound. We also explicitly confirm nonequilibrium fluctuation relation and show that the current distribution is the same under mapping of the coupling strength Γ→1/Γ.

  6. Analysis of measurement deviations for the patient-specific quality assurance using intensity-modulated spot-scanning particle beams

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Hsi, Wen C.

    2017-04-01

    To analyze measurement deviations of patient-specific quality assurance (QA) using intensity-modulated spot-scanning particle beams, a commercial radiation dosimeter using 24 pinpoint ionization chambers was utilized. Before the clinical trial, validations of the radiation dosimeter and treatment planning system were conducted. During the clinical trial 165 measurements were performed on 36 enrolled patients. Two or three fields of particle beam were used for each patient. Measurements were typically performed with the dosimeter placed at special regions of dose distribution along depth and lateral profiles. In order to investigate the dosimeter accuracy, repeated measurements with uniform dose irradiations were also carried out. A two-step approach was proposed to analyze 24 sampling points over a 3D treatment volume. The mean value and the standard deviation of each measurement did not exceed 5% for all measurements performed on patients with various diseases. According to the defined intervention thresholds of mean deviation and the distance-to-agreement concept with a Gamma index analysis using criteria of 3.0% and 2 mm, a decision could be made regarding whether the dose distribution was acceptable for the patient. Based measurement results, deviation analysis was carried out. In this study, the dosimeter was used for dose verification and provided a safety guard to assure precise dose delivery of highly modulated particle therapy. Patient-specific QA will be investigated in future clinical operations.

  7. Results of scatterometer systems analysis for NASA/MSC Earth observation sensor evaluation program

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.

    1970-01-01

    A systems evaluation of the 13.3 GHz scatterometer system is presented. The effects of phase error between the scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, are established. Furthermore, the reduction in system errors and calibration improvement is investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.

  8. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories.

    PubMed

    McGibbon, Robert T; Beauchamp, Kyle A; Harrigan, Matthew P; Klein, Christoph; Swails, Jason M; Hernández, Carlos X; Schwantes, Christian R; Wang, Lee-Ping; Lane, Thomas J; Pande, Vijay S

    2015-10-20

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Analysis of pre-flight modulator voltage calibration data for the Voyager plasma science experiment

    NASA Technical Reports Server (NTRS)

    Nastov, Ognen

    1988-01-01

    The Voyager Plasma Science (PLS) modulator calibration (MVM) data analysis was undertaken in order to check the correctness of the fast A/D converter formulas that connect low voltage monitor signals (MV) with digital outputs (DN), to determine the proportionality constants between the actual modulator grid potential (V) and the monitor voltage (MV), and to establish an algorithm to link the digitized readouts (DN) with the actual grid potential (V). The analysis results are surprising in that the derived conversion constants deviate by fairly significant amounts from their nominal values. However, it must be kept in mind that the test results which were used for analysis may be very imprecise. Even if it is assumed that the test result errors are very large, they do no appear to be capable to account for all discrepancies between the theoretical expectations and the results of the analysis. Measurements with the flight spare instrument appear to be the only means of investigating these effects further.

  10. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories

    PubMed Central

    McGibbon, Robert T.; Beauchamp, Kyle A.; Harrigan, Matthew P.; Klein, Christoph; Swails, Jason M.; Hernández, Carlos X.; Schwantes, Christian R.; Wang, Lee-Ping; Lane, Thomas J.; Pande, Vijay S.

    2015-01-01

    As molecular dynamics (MD) simulations continue to evolve into powerful computational tools for studying complex biomolecular systems, the necessity of flexible and easy-to-use software tools for the analysis of these simulations is growing. We have developed MDTraj, a modern, lightweight, and fast software package for analyzing MD simulations. MDTraj reads and writes trajectory data in a wide variety of commonly used formats. It provides a large number of trajectory analysis capabilities including minimal root-mean-square-deviation calculations, secondary structure assignment, and the extraction of common order parameters. The package has a strong focus on interoperability with the wider scientific Python ecosystem, bridging the gap between MD data and the rapidly growing collection of industry-standard statistical analysis and visualization tools in Python. MDTraj is a powerful and user-friendly software package that simplifies the analysis of MD data and connects these datasets with the modern interactive data science software ecosystem in Python. PMID:26488642

  11. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  12. Some limit theorems for ratios of order statistics from uniform random variables.

    PubMed

    Xu, Shou-Fang; Miao, Yu

    2017-01-01

    In this paper, we study the ratios of order statistics based on samples drawn from uniform distribution and establish some limit properties such as the almost sure central limit theorem, the large deviation principle, the Marcinkiewicz-Zygmund law of large numbers and complete convergence.

  13. Gender and survival in patients with heart failure: interactions with diabetes and aetiology. Results from the MAGGIC individual patient meta-analysis.

    PubMed

    Martínez-Sellés, Manuel; Doughty, Robert N; Poppe, Katrina; Whalley, Gillian A; Earle, Nikki; Tribouilloy, Christophe; McMurray, John J V; Swedberg, Karl; Køber, Lars; Berry, Colin; Squire, Iain

    2012-05-01

    The aim of this study was to investigate the relationship between gender and survival of patients with heart failure, using data from both randomized trials and observational studies, and the relative contribution of age, left ventricular systolic function, aetiology, and diabetes to differences in prognosis between men and women. Data from 31 studies (41 949 patients; 28 052 men, 13 897 women) from the Meta-Analysis Global Group In Chronic Heart Failure (MAGGIC) individual patient meta-analysis were used. We performed survival analysis to assess the association of gender with mortality, adjusting for predictors of mortality, including age, reduced or preserved ejection fraction (EF), and ischaemic or non-ischaemic aetiology. Women were older [70.5 ( standard deviation 12.1) vs. 65.6 (standard deviation 11.6) years], more likely to have a history of hypertension (49.9% vs. 40.0%), and less likely to have a history of ischaemic heart disease (46.3% vs. 58.7%) and reduced EF (62.6% vs. 81.6%) compared with men. During 3 years follow-up, 3521 (25%) women and 7232 (26%) men died. After adjustment, male gender was an independent predictor of mortality, and the better prognosis associated with female gender was more marked in patients with heart failure of non-ischaemic, compared with ischaemic, aetiology (P-value for interaction = 0.03) and in patients without, compared with those with, diabetes (P-value for interaction <0.0001). This large, individual patient data meta-analysis has demonstrated that survival is better for women with heart failure compared with men, irrespective of EF. This survival benefit is slightly more marked in non-ischaemic heart failure but is attenuated by concomitant diabetes.

  14. An analysis of the first two years of GASP data

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Nastrom, G. D.; Falconer, P. D.

    1977-01-01

    Distributions of mean ozone levels from the first two years of data from the NASA Global Atmospheric Sampling Program (GASP) show spatial and temporal variations in agreement with previous measurements. The standard deviations of these distributions reflect the large natural variability of ozone levels in the altitude range of the GASP measurements. Monthly mean levels of ozone below the tropopause show an annual cycle with a spring maximum which is believed to result from transport from the stratosphere. Correlations of ozone with independent meteorological parameters, and meteorological parameters obtained by the GASP systems show that this transport occurs primarily through cyclogenesis at mid-latitudes.

  15. An investigation of the motion of small particles as related to the formulation of zero gravity experiments. [experimental design using laser doppler velocimetry

    NASA Technical Reports Server (NTRS)

    Sastry, V. S.

    1980-01-01

    The nature of Brownian motion and historical theoretical investigations of the phenomemon are reviewed. The feasibility of using a laser anemometer to perform small particle experiments in an orbiting space laboratory was investigated using latex particles suspended in water in a plastic container. The optical equipment and the particle Doppler analysis processor are described. The values of the standard deviation obtained for the latex particle motion experiment were significantly large compared to corresponding velocity, therefore, their accuracy was suspect and no attempt was made to draw meaningful conclusions from the results.

  16. Persistent stability of a chaotic system

    NASA Astrophysics Data System (ADS)

    Huber, Greg; Pradas, Marc; Pumir, Alain; Wilkinson, Michael

    2018-02-01

    We report that trajectories of a one-dimensional model for inertial particles in a random velocity field can remain stable for a surprisingly long time, despite the fact that the system is chaotic. We provide a detailed quantitative description of this effect by developing the large-deviation theory for fluctuations of the finite-time Lyapunov exponent of this system. Specifically, the determination of the entropy function for the distribution reduces to the analysis of a Schrödinger equation, which is tackled by semi-classical methods. The system has 'generic' instability properties, and we consider the broader implications of our observation of long-term stability in chaotic systems.

  17. Geometrically nonlinear analysis of layered composite plates and shells

    NASA Technical Reports Server (NTRS)

    Chao, W. C.; Reddy, J. N.

    1983-01-01

    A degenerated three dimensional finite element, based on the incremental total Lagrangian formulation of a three dimensional layered anisotropic medium was developed. Its use in the geometrically nonlinear, static and dynamic, analysis of layered composite plates and shells is demonstrated. A two dimenisonal finite element based on the Sanders shell theory with the von Karman (nonlinear) strains was developed. It is shown that the deflections obtained by the 2D shell element deviate from those obtained by the more accurate 3D element for deep shells. The 3D degenerated element can be used to model general shells that are not necessarily doubly curved. The 3D degenerated element is computationally more demanding than the 2D shell theory element for a given problem. It is found that the 3D element is an efficient element for the analysis of layered composite plates and shells undergoing large displacements and transient motion.

  18. Thematic Analysis of Medical Notes Offers Preliminary Insight into Precipitants for Asian Suicide Attempters: An Exploratory Study.

    PubMed

    Choo, Carol C; Ho, Roger C; Burton, André A D

    2018-04-20

    One important dynamic risk factor for suicide assessment includes suicide precipitant. This exploratory study used a qualitative paradigm to look into the themes surrounding precipitants for suicide attempts in Singapore. Medical records related to suicide attempters who were admitted to the emergency department of a large teaching hospital in Singapore over a three year period were subjected to analysis. A total of 666 cases were examined (69.2% females; 63.8% Chinese, 15% Malays, 15.8% Indians), ages ranged from 10 years old to 85 years old (Mean = 29.7, Standard Deviation = 16.1). The thematic analysis process that was applied to the textual data elicited key concepts labelled as Relationship issues, Financial strain, Socio-legal-academic—environmental stress, and Physical and mental illness and pain. Interpreted with other recent local research on suicide attempters in Singapore, the findings have implications for informing suicide interventions.

  19. Probabilistic Analysis and Density Parameter Estimation Within Nessus

    NASA Astrophysics Data System (ADS)

    Godines, Cody R.; Manteufel, Randall D.

    2002-12-01

    This NASA educational grant has the goal of promoting probabilistic analysis methods to undergraduate and graduate UTSA engineering students. Two undergraduate-level and one graduate-level course were offered at UTSA providing a large number of students exposure to and experience in probabilistic techniques. The grant provided two research engineers from Southwest Research Institute the opportunity to teach these courses at UTSA, thereby exposing a large number of students to practical applications of probabilistic methods and state-of-the-art computational methods. In classroom activities, students were introduced to the NESSUS computer program, which embodies many algorithms in probabilistic simulation and reliability analysis. Because the NESSUS program is used at UTSA in both student research projects and selected courses, a student version of a NESSUS manual has been revised and improved, with additional example problems being added to expand the scope of the example application problems. This report documents two research accomplishments in the integration of a new sampling algorithm into NESSUS and in the testing of the new algorithm. The new Latin Hypercube Sampling (LHS) subroutines use the latest NESSUS input file format and specific files for writing output. The LHS subroutines are called out early in the program so that no unnecessary calculations are performed. Proper correlation between sets of multidimensional coordinates can be obtained by using NESSUS' LHS capabilities. Finally, two types of correlation are written to the appropriate output file. The program enhancement was tested by repeatedly estimating the mean, standard deviation, and 99th percentile of four different responses using Monte Carlo (MC) and LHS. These test cases, put forth by the Society of Automotive Engineers, are used to compare probabilistic methods. For all test cases, it is shown that LHS has a lower estimation error than MC when used to estimate the mean, standard deviation, and 99th percentile of the four responses at the 50 percent confidence level and using the same number of response evaluations for each method. In addition, LHS requires fewer calculations than MC in order to be 99.7 percent confident that a single mean, standard deviation, or 99th percentile estimate will be within at most 3 percent of the true value of the each parameter. Again, this is shown for all of the test cases studied. For that reason it can be said that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ; furthermore, the newest LHS module is a valuable new enhancement of the program.

  20. Probabilistic Analysis and Density Parameter Estimation Within Nessus

    NASA Technical Reports Server (NTRS)

    Godines, Cody R.; Manteufel, Randall D.; Chamis, Christos C. (Technical Monitor)

    2002-01-01

    This NASA educational grant has the goal of promoting probabilistic analysis methods to undergraduate and graduate UTSA engineering students. Two undergraduate-level and one graduate-level course were offered at UTSA providing a large number of students exposure to and experience in probabilistic techniques. The grant provided two research engineers from Southwest Research Institute the opportunity to teach these courses at UTSA, thereby exposing a large number of students to practical applications of probabilistic methods and state-of-the-art computational methods. In classroom activities, students were introduced to the NESSUS computer program, which embodies many algorithms in probabilistic simulation and reliability analysis. Because the NESSUS program is used at UTSA in both student research projects and selected courses, a student version of a NESSUS manual has been revised and improved, with additional example problems being added to expand the scope of the example application problems. This report documents two research accomplishments in the integration of a new sampling algorithm into NESSUS and in the testing of the new algorithm. The new Latin Hypercube Sampling (LHS) subroutines use the latest NESSUS input file format and specific files for writing output. The LHS subroutines are called out early in the program so that no unnecessary calculations are performed. Proper correlation between sets of multidimensional coordinates can be obtained by using NESSUS' LHS capabilities. Finally, two types of correlation are written to the appropriate output file. The program enhancement was tested by repeatedly estimating the mean, standard deviation, and 99th percentile of four different responses using Monte Carlo (MC) and LHS. These test cases, put forth by the Society of Automotive Engineers, are used to compare probabilistic methods. For all test cases, it is shown that LHS has a lower estimation error than MC when used to estimate the mean, standard deviation, and 99th percentile of the four responses at the 50 percent confidence level and using the same number of response evaluations for each method. In addition, LHS requires fewer calculations than MC in order to be 99.7 percent confident that a single mean, standard deviation, or 99th percentile estimate will be within at most 3 percent of the true value of the each parameter. Again, this is shown for all of the test cases studied. For that reason it can be said that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ; furthermore, the newest LHS module is a valuable new enhancement of the program.

  1. Radiotherapy quality assurance report from children's oncology group AHOD0031

    PubMed Central

    Dharmarajan, Kavita V.; Friedman, Debra L.; FitzGerald, T.J.; McCarten, Kathleen M.; Constine, Louis S.; Chen, Lu; Kessel, Sandy K.; Iandoli, Matt; Laurie, Fran; Schwartz, Cindy L.; Wolden, Suzanne L.

    2016-01-01

    Purpose A phase III trial assessing response-based therapy in intermediate-risk Hodgkin lymphoma, mandated real-time central review of involved field radiotherapy and imaging records by a centralized review center to maximize protocol compliance. We report the impact of centralized radiotherapy review upon protocol compliance. Methods Review of simulation films, port films, and dosimetry records was required pre-treatment and after treatment completion. Records were reviewed by study-affiliated or review center-affiliated radiation oncologists. A 6–10% deviation from protocol-specified dose was scored as “minor”; >10% was “major”. A volume deviation was scored as “minor” if margins were less than specified, or “major” if fields transected disease-bearing areas. Interventional review and final compliance review scores were assigned to each radiotherapy case and compared. Results Of 1712 patients enrolled, 1173 underwent IFRT at 256 institutions in 7 countries. An interventional review was performed in 88% and a final review in 98%. Overall, minor and major deviations were found in 12% and 6%, respectively. Among the cases for which ≥ 1 pre-IFRT modification was requested by QARC and subsequently made by the treating institution, 100% were made compliant on final review. In contrast, among the cases for which ≥ 1 modification was requested but not made by the treating institution, 10% were deemed compliant on final review. Conclusion In a large trial with complex treatment pathways and heterogeneous radiotherapy fields, central review was performed in a large percentage of cases pre-IFRT and identified frequent potential deviations in a timely manner. When suggested modifications were performed by the institutions, deviations were almost eliminated. PMID:25670539

  2. Analysis of Androgenic Steroids in Environmental Waters by Large-volume Injection Liquid Chromatography Tandem Mass Spectrometry

    PubMed Central

    Backe, Will J.; Ort, Christoph; Brewer, Alex J.; Field, Jennifer A.

    2014-01-01

    A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrices using direct large-volume injection (LVI) high performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 88 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1-hr composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated five to seven percent of the total androstenedione mass. PMID:21391574

  3. Analysis of androgenic steroids in environmental waters by large-volume injection liquid chromatography tandem mass spectrometry.

    PubMed

    Backe, Will J; Ort, Christoph; Brewer, Alex J; Field, Jennifer A

    2011-04-01

    A new method was developed for the analysis of natural and synthetic androgenic steroids and their selected metabolites in aquatic environmental matrixes using direct large-volume injection (LVI) high-performance liquid chromatography (HPLC) tandem mass spectrometry (MS/MS). Method accuracy ranged from 87.6 to 108% for analytes with well-matched internal standards. Precision, quantified by relative standard deviation (RSD), was less than 12%. Detection limits for the method ranged from 1.2 to 360 ng/L. The method was demonstrated on a series of 1 h composite wastewater influent samples collected over a day with the purpose of assessing temporal profiles of androgen loads in wastewater. Testosterone, androstenedione, boldenone, and nandrolone were detected in the sample series at concentrations up to 290 ng/L and loads up to 535 mg/h. Boldenone, a synthetic androgen, had a temporal profile that was strongly correlated to testosterone, a natural human androgen, suggesting its source may be endogenous. An analysis of the sample particulate fraction revealed detectable amounts of sorbed testosterone and androstenedione. Androstenedione sorbed to the particulate fraction accounted for an estimated 5 to 7% of the total androstenedione mass.

  4. Hurricane track forecast cones from fluctuations

    PubMed Central

    Meuel, T.; Prado, G.; Seychelles, F.; Bessafi, M.; Kellay, H.

    2012-01-01

    Trajectories of tropical cyclones may show large deviations from predicted tracks leading to uncertainty as to their landfall location for example. Prediction schemes usually render this uncertainty by showing track forecast cones representing the most probable region for the location of a cyclone during a period of time. By using the statistical properties of these deviations, we propose a simple method to predict possible corridors for the future trajectory of a cyclone. Examples of this scheme are implemented for hurricane Ike and hurricane Jimena. The corridors include the future trajectory up to at least 50 h before landfall. The cones proposed here shed new light on known track forecast cones as they link them directly to the statistics of these deviations. PMID:22701776

  5. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis-A Cross-Sectional Study.

    PubMed

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    The Gait Deviation Index summarizes overall gait 'quality', based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait 'quality' and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the 'Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Patients with the strongest hip abductor and hip flexor muscles had the best gait 'quality'. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait 'quality'. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait 'quality' in patients with primary hip OA.

  6. The Gait Deviation Index Is Associated with Hip Muscle Strength and Patient-Reported Outcome in Patients with Severe Hip Osteoarthritis—A Cross-Sectional Study

    PubMed Central

    Rosenlund, Signe; Holsgaard-Larsen, Anders; Overgaard, Søren; Jensen, Carsten

    2016-01-01

    Background The Gait Deviation Index summarizes overall gait ‘quality’, based on kinematic data from a 3-dimensional gait analysis. However, it is unknown which clinical outcomes may affect the Gait Deviation Index in patients with primary hip osteoarthritis. The aim of this study was to investigate associations between Gait Deviation Index as a measure of gait ‘quality’ and hip muscle strength and between Gait Deviation Index and patient-reported outcomes in patients with primary hip osteoarthritis. Method Forty-seven patients (34 males), aged 61.1 ± 6.7 years, with BMI 27.3 ± 3.4 (kg/m2) and with severe primary hip osteoarthritis underwent 3-dimensional gait analysis. Mean Gait Deviation Index, pain after walking and maximal isometric hip muscle strength (flexor, extensor, and abductor) were recorded. All patients completed the ‘Physical Function Short-form of the Hip disability and Osteoarthritis Outcome Score (HOOS-Physical Function) and the Hip disability and Osteoarthritis Outcome Score subscales for pain (HOOS-Pain) and quality-of-life (HOOS-QOL). Results Mean Gait Deviation Index was positively associated with hip abduction strength (p<0.01, r = 0.40), hip flexion strength (p = 0.01, r = 0.37), HOOS-Physical Function (p<0.01, r = 0.41) HOOS-QOL (p<0.01, r = 0.41), and negatively associated with HOOS-Pain after walking (p<0.01, r = -0.45). Adjusting the analysis for walking speed did not affect the association. Conclusion Patients with the strongest hip abductor and hip flexor muscles had the best gait ‘quality’. Furthermore, patients with higher physical function, quality of life scores and lower pain levels demonstrated better gait ‘quality’. These findings indicate that interventions aimed at improving hip muscle strength and pain management may to a moderate degree improve the overall gait ‘quality’ in patients with primary hip OA. PMID:27065007

  7. Analysis of using the tongue deviation angle as a warning sign of a stroke

    PubMed Central

    2012-01-01

    Background The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. Methods In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. Results The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student’s t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians “A” and “B” examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. Conclusions In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke. PMID:22908956

  8. Analysis of using the tongue deviation angle as a warning sign of a stroke.

    PubMed

    Wei, Ching-Chuan; Huang, Shu-Wen; Hsu, Sheng-Lin; Chen, Hsing-Chung; Chen, Jong-Shin; Liang, Hsinying

    2012-08-21

    The symptom of tongue deviation is observed in a stroke or transient ischemic attack. Nevertheless, there is much room for the interpretation of the tongue deviation test. The crucial factor is the lack of an effective quantification method of tongue deviation. If we can quantify the features of the tongue deviation and scientifically verify the relationship between the deviation angle and a stroke, the information provided by the tongue will be helpful in recognizing a warning of a stroke. In this study, a quantification method of the tongue deviation angle was proposed for the first time to characterize stroke patients. We captured the tongue images of stroke patients (15 males and 10 females, ranging between 55 and 82 years of age); transient ischemic attack (TIA) patients (16 males and 9 females, ranging between 53 and 79 years of age); and normal subjects (14 males and 11 females, ranging between 52 and 80 years of age) to analyze whether the method is effective. In addition, we used the receiver operating characteristic curve (ROC) for the sensitivity analysis, and determined the threshold value of the tongue deviation angle for the warning sign of a stroke. The means and standard deviations of the tongue deviation angles of the stroke, TIA, and normal groups were: 6.9 ± 3.1, 4.9 ± 2.1 and 1.4 ± 0.8 degrees, respectively. Analyzed by the unpaired Student's t-test, the p-value between the stroke group and the TIA group was 0.015 (>0.01), indicating no significant difference in the tongue deviation angle. The p-values between the stroke group and the normal group, as well as between the TIA group and the normal group were both less than 0.01. These results show the significant differences in the tongue deviation angle between the patient groups (stroke and TIA patients) and the normal group. These results also imply that the tongue deviation angle can effectively identify the patient group (stroke and TIA patients) and the normal group. With respect to the visual examination, 40% and 32% of stroke patients, 24% and 16% of TIA patients, and 4% and 0% of normal subjects were found to have tongue deviations when physicians "A" and "B" examined them. The variation showed the essentiality of the quantification method in a clinical setting. In the receiver operating characteristic curve (ROC), the Area Under Curve (AUC, = 0.96) indicates good discrimination. The tongue deviation angle more than the optimum threshold value (= 3.2°) predicts a risk of stroke. In summary, we developed an effective quantification method to characterize the tongue deviation angle, and we confirmed the feasibility of recognizing the tongue deviation angle as an early warning sign of an impending stroke.

  9. The power grid AGC frequency bias coefficient online identification method based on wide area information

    NASA Astrophysics Data System (ADS)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  10. Skewness and kurtosis analysis for non-Gaussian distributions

    NASA Astrophysics Data System (ADS)

    Celikoglu, Ahmet; Tirnakli, Ugur

    2018-06-01

    In this paper we address a number of pitfalls regarding the use of kurtosis as a measure of deviations from the Gaussian. We treat kurtosis in both its standard definition and that which arises in q-statistics, namely q-kurtosis. We have recently shown that the relation proposed by Cristelli et al. (2012) between skewness and kurtosis can only be verified for relatively small data sets, independently of the type of statistics chosen; however it fails for sufficiently large data sets, if the fourth moment of the distribution is finite. For infinite fourth moments, kurtosis is not defined as the size of the data set tends to infinity. For distributions with finite fourth moments, the size, N, of the data set for which the standard kurtosis saturates to a fixed value, depends on the deviation of the original distribution from the Gaussian. Nevertheless, using kurtosis as a criterion for deciding which distribution deviates further from the Gaussian can be misleading for small data sets, even for finite fourth moment distributions. Going over to q-statistics, we find that although the value of q-kurtosis is finite in the range of 0 < q < 3, this quantity is not useful for comparing different non-Gaussian distributed data sets, unless the appropriate q value, which truly characterizes the data set of interest, is chosen. Finally, we propose a method to determine the correct q value and thereby to compute the q-kurtosis of q-Gaussian distributed data sets.

  11. Comparison of design and torque measurements of various manual wrenches.

    PubMed

    Neugebauer, Jörg; Petermöller, Simone; Scheer, Martin; Happe, Arndt; Faber, Franz-Josef; Zoeller, Joachim E

    2015-01-01

    Accurate torque application and determination of the applied torque during surgical and prosthetic treatment is important to reduce complications. A study was performed to determine and compare the accuracy of manual wrenches, which are available in different designs with a large range of preset torques. Thirteen different wrench systems with a variety of preset torques ranging from 10 to 75 Ncm were evaluated. Three different designs were available, with a spring-in-coil or toggle design as an active mechanism or a beam as a passive mechanism, to select the preset torque. To provide a clinically relevant analysis, a total of 1,170 torque measurements in the range of 10 to 45 Ncm were made in vitro using an electronic torque measurement device. The absolute deviations in Ncm and percent deviations across all wrenches were small, with a mean of -0.24 ± 2.15 Ncm and -0.84% ± 11.72% as a shortfall relative to the preset value. The greatest overage was 8.2 Ncm (82.5%), and the greatest shortfall was 8.47 Ncm (46%). However, extreme values were rare, with 95th-percentile values of -1.5% (lower value) and -0.16% (upper value). A comparison with respect to wrench design revealed significantly higher deviations for coil and toggle-style wrenches than for beam wrenches. Beam wrenches were associated with a lower risk of rare extreme values thanks to their passive mechanism of achieving the selected preset torque, which minimizes the risk of harming screw connections.

  12. Effect of stoichiometry on magnetic and transport properties in polycrystalline Y2Ir2O7

    NASA Astrophysics Data System (ADS)

    Dwivedi, Vinod Kumar; Mukhopadhyay, Soumik

    2018-05-01

    In this paper we discuss synthesis of polycrystalline Y2Ir2O7 by solid state reaction route. XRD analysis shows deviation from stoichiometry which is also confirmed by SEM-EDX analysis. SEM analysis indicates average particle size ranging from 100 nm to 800 µm. EDX analysis gives clear evidence for deviation of stoichiometry of the product. Magnetic analysis is indicating effect of stoichiometry and showing ferromagnetic interaction unlike antiferromagnetic feature. Electrical resistivity is showing similar behavior as reported earlier and reveals no effect of different size of grains or grain boundaries from room temperature to 125 K.

  13. Weibull Modulus Estimated by the Non-linear Least Squares Method: A Solution to Deviation Occurring in Traditional Weibull Estimation

    NASA Astrophysics Data System (ADS)

    Li, T.; Griffiths, W. D.; Chen, J.

    2017-11-01

    The Maximum Likelihood method and the Linear Least Squares (LLS) method have been widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some improvements have been achieved, especially in the case of the LLS method. However, there is a shortcoming in these methods for a specific type of data, where the lower tail deviates dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can be commonly found from the measured properties of materials, and previous applications of the LLS method on this kind of dataset present an unreliable linear regression. This deviation was previously thought to be due to physical flaws ( i.e., defects) contained in materials. However, this paper demonstrates that this deviation can also be caused by the linear transformation of the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus estimation of casting properties.

  14. A new digitized reverse correction method for hypoid gears based on a one-dimensional probe

    NASA Astrophysics Data System (ADS)

    Li, Tianxing; Li, Jubo; Deng, Xiaozhong; Yang, Jianjun; Li, Genggeng; Ma, Wensuo

    2017-12-01

    In order to improve the tooth surface geometric accuracy and transmission quality of hypoid gears, a new digitized reverse correction method is proposed based on the measurement data from a one-dimensional probe. The minimization of tooth surface geometrical deviations is realized from the perspective of mathematical analysis and reverse engineering. Combining the analysis of complex tooth surface generation principles and the measurement mechanism of one-dimensional probes, the mathematical relationship between the theoretical designed tooth surface, the actual machined tooth surface and the deviation tooth surface is established, the mapping relation between machine-tool settings and tooth surface deviations is derived, and the essential connection between the accurate calculation of tooth surface deviations and the reverse correction method of machine-tool settings is revealed. Furthermore, a reverse correction model of machine-tool settings is built, a reverse correction strategy is planned, and the minimization of tooth surface deviations is achieved by means of the method of numerical iterative reverse solution. On this basis, a digitized reverse correction system for hypoid gears is developed by the organic combination of numerical control generation, accurate measurement, computer numerical processing, and digitized correction. Finally, the correctness and practicability of the digitized reverse correction method are proved through a reverse correction experiment. The experimental results show that the tooth surface geometric deviations meet the engineering requirements after two trial cuts and one correction.

  15. Radiotherapy in pediatric medulloblastoma: Quality assessment of Pediatric Oncology Group Trial 9031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miralbell, Raymond; Fitzgerald, T.J.; Laurie, Fran

    2006-04-01

    Purpose: To evaluate the potential influence of radiotherapy quality on survival in high-risk pediatric medulloblastoma patients. Methods and Materials: Trial 9031 of the Pediatric Oncology Group (POG) aimed to study the relative benefit of cisplatin and etoposide randomization of high-risk patients with medulloblastoma to preradiotherapy vs. postradiotherapy treatment. Two-hundred and ten patients were treated according to protocol guidelines and were eligible for the present analysis. Treatment volume (whole brain, spine, posterior fossa, and primary tumor bed) and dose prescription deviations were assessed for each patient. An analysis of first site of failure was undertaken. Event-free and overall survival rates weremore » calculated. A log-rank test was used to determine the significance of potential survival differences between patients with and without major deviations in the radiotherapy procedure. Results: Of 160 patients who were fully evaluable for all treatment quality parameters, 91 (57%) had 1 or more major deviations in their treatment schedule. Major deviations by treatment site were brain (26%), spinal (7%), posterior fossa (40%), and primary tumor bed (17%). Major treatment volume or total dose deviations did not significantly influence overall and event-free survival. Conclusions: Despite major treatment deviations in more than half of fully evaluable patients, underdosage or treatment volume misses were not associated with a worse event-free or overall survival.« less

  16. Development and operation of a quality assurance system for deviations from standard operating procedures in a clinical cell therapy laboratory.

    PubMed

    McKenna, D; Kadidlo, D; Sumstad, D; McCullough, J

    2003-01-01

    Errors and accidents, or deviations from standard operating procedures, other policy, or regulations must be documented and reviewed, with corrective actions taken to assure quality performance in a cellular therapy laboratory. Though expectations and guidance for deviation management exist, a description of the framework for the development of such a program is lacking in the literature. Here we describe our deviation management program, which uses a Microsoft Access database and Microsoft Excel to analyze deviations and notable events, facilitating quality assurance (QA) functions and ongoing process improvement. Data is stored in a Microsoft Access database with an assignment to one of six deviation type categories. Deviation events are evaluated for potential impact on patient and product, and impact scores for each are determined using a 0- 4 grading scale. An immediate investigation occurs, and corrective actions are taken to prevent future similar events from taking place. Additionally, deviation data is collectively analyzed on a quarterly basis using Microsoft Excel, to identify recurring events or developing trends. Between January 1, 2001 and December 31, 2001 over 2500 products were processed at our laboratory. During this time period, 335 deviations and notable events occurred, affecting 385 products and/or patients. Deviations within the 'technical error' category were most common (37%). Thirteen percent of deviations had a patient and/or a product impact score > or = 2, a score indicating, at a minimum, potentially affected patient outcome or moderate effect upon product quality. Real-time analysis and quarterly review of deviations using our deviation management program allows for identification and correction of deviations. Monitoring of deviation trends allows for process improvement and overall successful functioning of the QA program in the cell therapy laboratory. Our deviation management program could serve as a model for other laboratories in need of such a program.

  17. Composition of inner-source heavy pickup ions at 1 AU: SOHO/CELIAS/CTOF observations. Implications for the production mechanisms

    NASA Astrophysics Data System (ADS)

    Taut, A.; Berger, L.; Drews, C.; Wimmer-Schweingruber, R. F.

    2015-04-01

    Context. Pickup ions in the inner heliosphere mainly originate in two sources, one interstellar and one in the inner solar system. In contrast to the interstellar source that is comparatively well understood, the nature of the inner source has not been clearly identified. Former results obtained with the Solar Wind Ion Composition Spectrometer on-board the Ulysses spacecraft revealed that the composition of inner-source pickup ions is similar, but not equal, to the elemental solar-wind composition. These observations suffered from very low counting statistics of roughly one C+ count per day. Aims: Because the composition of inner-source pickup ions could lead to identifying their origin, we used data from the Charge-Time-Of-Flight sensor on-board the Solar and Heliospheric Observatory. It offers a large geometry factor that results in about 100 C+ counts per day combined with an excellent mass-per-charge resolution. These features enable a precise determination of the inner-source heavy pickup ion composition at 1 AU. To address the production mechanisms of inner-source pickup ions, we set up a toy model based on the production scenario involving the passage of solar-wind ions through thin dust grains to explain the observed deviations of the inner-source PUI and the elemental solar-wind composition. Methods: An in-flight calibration of the sensor allows identification of heavy pickup ions from pulse height analysis data by their mass-per-charge. A statistical analysis was performed to derive the inner-source heavy pickup ion relative abundances of N+, O+, Ne+, Mg+, Mg2+, and Si+ compared to C+. Results: Our results for the inner-source pickup ion composition are in good agreement with previous studies and confirm the deviations from the solar-wind composition. The large geometry factor of the Charge-Time-of-Flight sensor even allowed the abundance ratios of the two most prominent pickup ions, C+ and O+, to be investigated at varying solar-wind speeds. We found that the O+/C+ ratio increases systematically with higher solar-wind speeds. This observation is an unprecedented feature characterising the production of inner-source pickup ions. Comparing our observations to the toy model results, we find that both the deviation from the solar-wind composition and the solar-wind-speed dependent O+/C+ ratio can be explained.

  18. Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.

    PubMed

    Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin

    2016-08-18

    Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.

  19. Application of Allan Deviation to Assessing Uncertainties of Continuous-measurement Instruments, and Optimizing Calibration Schemes

    NASA Astrophysics Data System (ADS)

    Jacobson, Gloria; Rella, Chris; Farinas, Alejandro

    2014-05-01

    Technological advancement of instrumentation in atmospheric and other geoscience disciplines over the past decade has lead to a shift from discrete sample analysis to continuous, in-situ monitoring. Standard error analysis used for discrete measurements is not sufficient to assess and compare the error contribution of noise and drift from continuous-measurement instruments, and a different statistical analysis approach should be applied. The Allan standard deviation analysis technique developed for atomic clock stability assessment by David W. Allan [1] can be effectively and gainfully applied to continuous measurement instruments. As an example, P. Werle et al has applied these techniques to look at signal averaging for atmospheric monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) [2]. This presentation will build on, and translate prior foundational publications to provide contextual definitions and guidelines for the practical application of this analysis technique to continuous scientific measurements. The specific example of a Picarro G2401 Cavity Ringdown Spectroscopy (CRDS) analyzer used for continuous, atmospheric monitoring of CO2, CH4 and CO will be used to define the basics features the Allan deviation, assess factors affecting the analysis, and explore the time-series to Allan deviation plot translation for different types of instrument noise (white noise, linear drift, and interpolated data). In addition, the useful application of using an Allan deviation to optimize and predict the performance of different calibration schemes will be presented. Even though this presentation will use the specific example of the Picarro G2401 CRDS Analyzer for atmospheric monitoring, the objective is to present the information such that it can be successfully applied to other instrument sets and disciplines. [1] D.W. Allan, "Statistics of Atomic Frequency Standards," Proc, IEEE, vol. 54, pp 221-230, Feb 1966 [2] P. Werle, R. Miicke, F. Slemr, "The Limits of Signal Averaging in Atmospheric Trace-Gas Monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS)," Applied Physics, B57, pp 131-139, April 1993

  20. Significant calendar period deviations in testicular germ cell tumors indicate that postnatal exposures are etiologically relevant.

    PubMed

    Speaks, Crystal; McGlynn, Katherine A; Cook, Michael B

    2012-10-01

    The current working model of type II testicular germ cell tumor (TGCT) pathogenesis states that carcinoma in situ arises during embryogenesis, is a necessary precursor, and always progresses to cancer. An implicit condition of this model is that only in utero exposures affect the development of TGCT in later life. In an age-period-cohort analysis, this working model contends an absence of calendar period deviations. We tested this contention using data from the SEER registries of the United States. We assessed age-period-cohort models of TGCTs, seminomas, and nonseminomas for the period 1973-2008. Analyses were restricted to whites diagnosed at ages 15-74 years. We tested whether calendar period deviations were significant in TGCT incidence trends adjusted for age deviations and cohort effects. This analysis included 32,250 TGCTs (18,475 seminomas and 13,775 nonseminomas). Seminoma incidence trends have increased with an average annual percentage change in log-linear rates (net drift) of 1.25 %, relative to just 0.14 % for nonseminoma. In more recent time periods, TGCT incidence trends have plateaued and then undergone a slight decrease. Calendar period deviations were highly statistically significant in models of TGCT (p = 1.24(-9)) and seminoma (p = 3.99(-14)), after adjustment for age deviations and cohort effects; results for nonseminoma (p = 0.02) indicated that the effects of calendar period were much more muted. Calendar period deviations play a significant role in incidence trends of TGCT, which indicates that postnatal exposures are etiologically relevant.

  1. Discriminative structural approaches for enzyme active-site prediction.

    PubMed

    Kato, Tsuyoshi; Nagano, Nozomi

    2011-02-15

    Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far. This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis. This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.

  2. A model of curved saccade trajectories: spike rate adaptation in the brainstem as the cause of deviation away.

    PubMed

    Kruijne, Wouter; Van der Stigchel, Stefan; Meeter, Martijn

    2014-03-01

    The trajectory of saccades to a target is often affected whenever there is a distractor in the visual field. Distractors can cause a saccade to deviate towards their location or away from it. The oculomotor mechanisms that produce deviation towards distractors have been thoroughly explored in behavioral, neurophysiological and computational studies. The mechanisms underlying deviation away, on the other hand, remain unclear. Behavioral findings suggest a mechanism of spatially focused, top-down inhibition in a saccade map, and deviation away has become a tool to investigate such inhibition. However, this inhibition hypothesis has little neuroanatomical or neurophysiological support, and recent findings go against it. Here, we propose that deviation away results from an unbalanced saccade drive from the brainstem, caused by spike rate adaptation in brainstem long-lead burst neurons. Adaptation to stimulation in the direction of the distractor results in an unbalanced drive away from it. An existing model of the saccade system was extended with this theory. The resulting model simulates a wide range of findings on saccade trajectories, including findings that have classically been interpreted to support inhibition views. Furthermore, the model replicated the effect of saccade latency on deviation away, but predicted this effect would be absent with large (400 ms) distractor-target onset asynchrony. This prediction was confirmed in an experiment, which demonstrates that the theory both explains classical findings on saccade trajectories and predicts new findings. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy Rene N4. 3: Tension-compression anisotropy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gaab, T. P.; Gayda, J.; Hemker, K. J.

    1985-01-01

    Single crystal superalloy specimens with various crystallographic directions along their axes were tested in compression at room temperature, 650, 760, 870, and 980 deg C. These results are compared with the tensile behavior studied previously. The alloy, Rene N4, was developed for gas turbine engine blades and has the nominal composition 3.7 Al, 4.2 Ti, 4 Ta, 0.5 Nb, 6 W, 1.5 Mo 9 Cr. 7.5 Co, balance Ni, in weight percent. Slip trace analysis showed that primary cube slip occurred even at room temperature for the 111 specimens. With increasing test temperature more orientations exhibited primary cube slip, until at 870 deg C only the 100 and 011 specimens exhibited normal octahedral slip. The yield strength for octahedral slip was numerically analysed using a model proposed by Lall, Chin, and Pope to explain deviations from Schmid's Law in the yielding behavior of a single phase Gamma prime alloy, Ni3(Al, Nb). The Schmid's Law deviations in Rene N4 were found to be largely due to a tension-compression anisotropy. A second effect, which increases trength for orientations away from 001, was found to be small in Rene N4. Analysis of recently published data on the single crystal superalloy PWA 1480 yielded the same result.

  4. Large eddy simulation for atmospheric boundary layer flow over flat and complex terrains

    NASA Astrophysics Data System (ADS)

    Han, Yi; Stoellinger, Michael; Naughton, Jonathan

    2016-09-01

    In this work, we present Large Eddy Simulation (LES) results of atmospheric boundary layer (ABL) flow over complex terrain with neutral stratification using the OpenFOAM-based simulator for on/offshore wind farm applications (SOWFA). The complete work flow to investigate the LES for the ABL over real complex terrain is described including meteorological-tower data analysis, mesh generation and case set-up. New boundary conditions for the lateral and top boundaries are developed and validated to allow inflow and outflow as required in complex terrain simulations. The turbulent inflow data for the terrain simulation is generated using a precursor simulation of a flat and neutral ABL. Conditionally averaged met-tower data is used to specify the conditions for the flat precursor simulation and is also used for comparison with the simulation results of the terrain LES. A qualitative analysis of the simulation results reveals boundary layer separation and recirculation downstream of a prominent ridge that runs across the simulation domain. Comparisons of mean wind speed, standard deviation and direction between the computed results and the conditionally averaged tower data show a reasonable agreement.

  5. A critical assessment of the performance criteria in confirmatory analysis for veterinary drug residue analysis using mass spectrometric detection in selected reaction monitoring mode.

    PubMed

    Berendsen, Bjorn J A; Meijer, Thijs; Wegh, Robin; Mol, Hans G J; Smyth, Wesley G; Armstrong Hewitt, S; van Ginkel, Leen; Nielen, Michel W F

    2016-05-01

    Besides the identification point system to assure adequate set-up of instrumentation, European Commission Decision 2002/657/EC includes performance criteria regarding relative ion abundances in mass spectrometry and chromatographic retention time. In confirmatory analysis, the relative abundance of two product ions, acquired in selected reaction monitoring mode, the ion ratio should be within certain ranges for confirmation of the identity of a substance. The acceptable tolerance of the ion ratio varies with the relative abundance of the two product ions and for retention time, CD 2002/657/EC allows a tolerance of 5%. Because of rapid technical advances in analytical instruments and new approaches applied in the field of contaminant testing in food products (multi-compound and multi-class methods) a critical assessment of these criteria is justified. In this study a large number of representative, though challenging sample extracts were prepared, including muscle, urine, milk and liver, spiked with 100 registered and banned veterinary drugs at levels ranging from 0.5 to 100 µg/kg. These extracts were analysed using SRM mode using different chromatographic conditions and mass spectrometers from different vendors. In the initial study, robust data was collected using four different instrumental set-ups. Based on a unique and highly relevant data set, consisting of over 39 000 data points, the ion ratio and retention time criteria for applicability in confirmatory analysis were assessed. The outcomes were verified based on a collaborative trial including laboratories from all over the world. It was concluded that the ion ratio deviation is not related to the value of the ion ratio, but rather to the intensity of the lowest product ion. Therefore a fixed ion ratio deviation tolerance of 50% (relative) is proposed, which also is applicable for compounds present at sub-ppb levels or having poor ionisation efficiency. Furthermore, it was observed that retention time shifts, when using gradient elution, as is common practice nowadays, are mainly observed for early eluting compounds. Therefore a maximum retention time deviation of 0.2 min (absolute) is proposed. These findings should serve as input for discussions on the revision of currently applied criteria and the establishment of a new, globally accepted, criterion document for confirmatory analysis. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Probability evolution method for exit location distribution

    NASA Astrophysics Data System (ADS)

    Zhu, Jinjie; Chen, Zhen; Liu, Xianbin

    2018-03-01

    The exit problem in the framework of the large deviation theory has been a hot topic in the past few decades. The most probable escape path in the weak-noise limit has been clarified by the Freidlin-Wentzell action functional. However, noise in real physical systems cannot be arbitrarily small while noise with finite strength may induce nontrivial phenomena, such as noise-induced shift and noise-induced saddle-point avoidance. Traditional Monte Carlo simulation of noise-induced escape will take exponentially large time as noise approaches zero. The majority of the time is wasted on the uninteresting wandering around the attractors. In this paper, a new method is proposed to decrease the escape simulation time by an exponentially large factor by introducing a series of interfaces and by applying the reinjection on them. This method can be used to calculate the exit location distribution. It is verified by examining two classical examples and is compared with theoretical predictions. The results show that the method performs well for weak noise while may induce certain deviations for large noise. Finally, some possible ways to improve our method are discussed.

  7. A Global View of Large-Scale Commercial Fishing

    NASA Astrophysics Data System (ADS)

    Kroodsma, D.

    2016-12-01

    Advances in big data processing and satellite technology, combined with the widespread adoption of Automatic Identification System (AIS) devices, now allow the monitoring of fishing activity at a global scale and in high resolution. We analyzed AIS data from more than 40,000 vessels from 2012-2015 to produce 0.1 degree global daily maps of apparent fishing effort. Vessels were matched to publically accessible fishing vessel registries and identified as fishing vessels through AIS Type 5 and Type 24 self-reported messages. Fishing vessels that broadcasted false locations in AIS data were excluded from the analysis. To model fishing pattern classification, a subset of fishing vessels were analyzed and specific movements were classified as "fishing" or "not fishing." A logistic regression model was fitted to these classifications using the following features: a vessel's average speed, the standard deviation of its speed, and the standard deviation of its course over a 12 hour time window. We then applied this model to the entire fishing vessel dataset and time normalized it to produce a global map of fishing hours. The resulting dataset allows for numerous new analyses. For instance, it can assist with monitoring apparent fishing activity in large pelagic marine protected areas and restricted gear use areas, or it can quantify how activity may be affected by seasonal or annual changes in biological productivity. This dataset is now published and freely available in Google's Earth Engine platform, available for researchers to answer a host of questions related to global fishing effort.

  8. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    PubMed

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand.

  9. Dark decay of the top quark

    DOE PAGES

    Kong, Kyoungchul; Lee, Hye -Sung; Park, Myeonghun

    2014-04-01

    We suggest top quark decays as a venue to search for light dark force carriers. Top quark is the heaviest particle in the standard model whose decays are relatively poorly measured, allowing sufficient room for exotic decay modes from new physics. A very light (GeV scale) dark gauge boson (Z') is a recently highlighted hypothetical particle that can address some astrophysical anomalies as well as the 3.6 σ deviation in the muon g-2 measurement. We present and study a possible scenario that top quark decays as t → b W + Z's. This is the same as the dominant topmore » quark decay (t → b W) accompanied by one or multiple dark force carriers. The Z' can be easily boosted, and it can decay into highly collimated leptons (lepton-jet) with large branching ratio. In addition, we discuss the implications for the Large Hadron Collider experiments including the analysis based on the lepton-jets.« less

  10. Baryon masses and σ terms in SU(3) BChPT × 1/Nc

    NASA Astrophysics Data System (ADS)

    Fernando, I. P.; Alarcón, J. M.; Goity, J. L.

    2018-06-01

    Baryon masses and nucleon σ terms are studied with the effective theory that combines the chiral and 1 /Nc expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the σ term associated with the scalar density u bar u + d bar d - 2 s bar s is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a σ term puzzle. It is shown that while the nucleon σ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Adding to the analysis lattice QCD baryon masses, it is found that σπN = 69 (10) MeV and σs has natural magnitude within its relatively large uncertainty.

  11. Baryon masses and σ terms in SU(3) BChPT×1/N c

    DOE PAGES

    Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis

    2018-04-27

    Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less

  12. Analysis of polycyclic aromatic hydrocarbons in water and beverages using membrane-assisted solvent extraction in combination with large volume injection-gas chromatography-mass spectrometric detection.

    PubMed

    Rodil, Rosario; Schellin, Manuela; Popp, Peter

    2007-09-07

    Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.

  13. Pressure Anisotropy Measurements on the Terrestrial Reconnection Experiment

    NASA Astrophysics Data System (ADS)

    Myers, Rachel; Egedal, Jan; Olson, Joseph; Greess, Samuel; Millet-Ayala, Alexander; Clark, Michael; Nonn, Paul; Wallace, John; Forest, Cary

    2017-10-01

    The Terrestrial Reconnection Experiment (TREX) at the Wisconsin Plasma Astrophysics Laboratory (WiPAL) studies collisionless magnetic reconnection. In this regime, electron pressure anisotropy should develop, deviating from Hall reconnection dynamics and driving large-scale current layer formation. A multi-tip version of the M-probe of Shadman, containing 32 Langmuir probe tips and two magnetic coils, measures this anisotropy. Each tip is biased to a different potential, simultaneously measuring discrete parts of the I-V characteristic. Pulsing the coil locally increases the magnetic field near the tips, inducing a magnetic mirror force to reflect electrons with large values of v⊥ / v . The change in velocity modifies the I-V characteristic and can be used to infer p∥ /p⊥ . Results and analysis from the probe are presented. This research was conducted with support from a UW-Madison University Fellowship as well as the NSF/DOE award DE-SC0013032.

  14. Pressure Anisotropy Probe for the Terrestrial Reconnection Experiment (TREX)

    NASA Astrophysics Data System (ADS)

    Myers, Rachel; Egedal, Jan; Olson, Joseph; Greess, Samuel; Clark, Michael; Nonn, Paul; Wallace, John; Forest, Cary

    2016-10-01

    The Terrestrial Reconnection Experiment (TREX) at the Wisconsin Plasma Astrophysics Laboratory (WiPAL) studies magnetic reconnection primarily in the collisionless regime. In this regime, electron pressure anisotropy is expected to develop, deviating from traditional Hall reconnection dynamics and driving formation of large-scale current layers. In order to measure the anisotropy, a multi-tip electromagnetic probe similar to the M-probe described by Shadman, consisting of 32 Langmuir probe tips and two magnetic coils, has been constructed. Each tip is biased to a different potential, simultaneously measuring discrete parts of the full I-V characteristic. Pulsing the coil then locally increases the magnetic field, creating a magnetic mirror force to reflect electrons with large values of v⊥ / v . The change in electron velocity modifies the I-V characteristics and can be used to infer p∥ /p⊥ . Analysis with the new probe will be presented. DOE Grant DE-SC0010463, University of Wisconsin-Madison University Fellowship.

  15. Baryon masses and σ terms in SU(3) BChPT×1/N c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Ishara P.; Alarcon-Soriano, Jose-Manuel; Goity, Jose Luis

    Baryon masses and nucleonmore » $$\\sigma$$ terms are studied with the effective theory that combines the chiral and $$1/N_c$$ expansions for three flavors. In particular the connection between the deviation of the Gell-Mann-Okubo relation and the $$\\sigma$$ term associated with the scalar density $$\\bar u u+\\bar d d-2\\bar s s$$ is emphasized. The latter is at lowest order related to a mass combination whose low value has given rise to a $$\\sigma$$ term puzzle. It is shown that while the nucleon $$\\sigma$$ terms have a well behaved low energy expansion, that mass combination is affected by large higher order corrections non-analytic in quark masses. Lastly, adding to the analysis lattice QCD baryon masses, it is found that $$\\sigma_{\\pi N}=69(10)$$~MeV and $$\\sigma_s$$ has natural magnitude within its relative large uncertainty.« less

  16. Radar sea reflection for low-e targets

    NASA Astrophysics Data System (ADS)

    Chow, Winston C.; Groves, Gordon W.

    1998-09-01

    Modeling radar signal reflection from a wavy sea surface uses a realistic characteristic of the large surface features and parameterizes the effect of the small roughness elements. Representation of the reflection coefficient at each point of the sea surface as a function of the Specular Deviation Angle is, to our knowledge, a novel approach. The objective is to achieve enough simplification and retain enough fidelity to obtain a practical multipath model. The 'specular deviation angle' as used in this investigation is defined and explained. Being a function of the sea elevations, which are stochastic in nature, this quantity is also random and has a probability density function. This density function depends on the relative geometry of the antenna and target positions, and together with the beam- broadening effect of the small surface ripples determined the reflectivity of the sea surface at each point. The probability density function of the specular deviation angle is derived. The distribution of the specular deviation angel as function of position on the mean sea surface is described.

  17. Rare behavior of growth processes via umbrella sampling of trajectories

    NASA Astrophysics Data System (ADS)

    Klymko, Katherine; Geissler, Phillip L.; Garrahan, Juan P.; Whitelam, Stephen

    2018-03-01

    We compute probability distributions of trajectory observables for reversible and irreversible growth processes. These results reveal a correspondence between reversible and irreversible processes, at particular points in parameter space, in terms of their typical and atypical trajectories. Thus key features of growth processes can be insensitive to the precise form of the rate constants used to generate them, recalling the insensitivity to microscopic details of certain equilibrium behavior. We obtained these results using a sampling method, inspired by the "s -ensemble" large-deviation formalism, that amounts to umbrella sampling in trajectory space. The method is a simple variant of existing approaches, and applies to ensembles of trajectories controlled by the total number of events. It can be used to determine large-deviation rate functions for trajectory observables in or out of equilibrium.

  18. Recursive utility in a Markov environment with stochastic growth

    PubMed Central

    Hansen, Lars Peter; Scheinkman, José A.

    2012-01-01

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron–Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility. PMID:22778428

  19. Shapes of strong shock fronts in an inhomogeneous solar wind

    NASA Technical Reports Server (NTRS)

    Heinemann, M. A.; Siscoe, G. L.

    1974-01-01

    The shapes expected for solar-flare-produced strong shock fronts in the solar wind have been calculated, large-scale variations in the ambient medium being taken into account. It has been shown that for reasonable ambient solar wind conditions the mean and the standard deviation of the east-west shock normal angle are in agreement with experimental observations including shocks of all strengths. The results further suggest that near a high-speed stream it is difficult to distinguish between corotating shocks and flare-associated shocks on the basis of the shock normal alone. Although the calculated shapes are outside the range of validity of the linear approximation, these results indicate that the variations in the ambient solar wind may account for large deviations of shock normals from the radial direction.

  20. Excitation laser energy dependence of surface-enhanced fluorescence showing plasmon-induced ultrafast electronic dynamics in dye molecules

    NASA Astrophysics Data System (ADS)

    Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro

    2013-06-01

    We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.

  1. Recursive utility in a Markov environment with stochastic growth.

    PubMed

    Hansen, Lars Peter; Scheinkman, José A

    2012-07-24

    Recursive utility models that feature investor concerns about the intertemporal composition of risk are used extensively in applied research in macroeconomics and asset pricing. These models represent preferences as the solution to a nonlinear forward-looking difference equation with a terminal condition. In this paper we study infinite-horizon specifications of this difference equation in the context of a Markov environment. We establish a connection between the solution to this equation and to an arguably simpler Perron-Frobenius eigenvalue equation of the type that occurs in the study of large deviations for Markov processes. By exploiting this connection, we establish existence and uniqueness results. Moreover, we explore a substantive link between large deviation bounds for tail events for stochastic consumption growth and preferences induced by recursive utility.

  2. General model for the pointing error analysis of Risley-prism system based on ray direction deviation in light refraction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing

    2016-09-01

    The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.

  3. On the influence of airfoil deviations on the aerodynamic performance of wind turbine rotors

    NASA Astrophysics Data System (ADS)

    Winstroth, J.; Seume, J. R.

    2016-09-01

    The manufacture of large wind turbine rotor blades is a difficult task that still involves a certain degree of manual labor. Due to the complexity, airfoil deviations between the design airfoils and the manufactured blade are certain to arise. Presently, the understanding of the impact of manufacturing uncertainties on the aerodynamic performance is still incomplete. The present work analyzes the influence of a series of airfoil deviations likely to occur during manufacturing by means of Computational Fluid Dynamics and the aeroelastic code FAST. The average power production of the NREL 5MW wind turbine is used to evaluate the different airfoil deviations. Analyzed deviations include: Mold tilt towards the leading and trailing edge, thick bond lines, thick bond lines with cantilever correction, backward facing steps and airfoil waviness. The most severe influences are observed for mold tilt towards the leading and thick bond lines. By applying the cantilever correction, the influence of thick bond lines is almost compensated. Airfoil waviness is very dependent on amplitude height and the location along the surface of the airfoil. Increased influence is observed for backward facing steps, once they are high enough to trigger boundary layer transition close to the leading edge.

  4. Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    2008-01-01

    Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

  5. An automated method to analyze language use in patients with schizophrenia and their first-degree relatives

    PubMed Central

    Elvevåg, Brita; Foltz, Peter W.; Rosenstein, Mark; DeLisi, Lynn E.

    2009-01-01

    Communication disturbances are prevalent in schizophrenia, and since it is a heritable illness these are likely present - albeit in a muted form - in the relatives of patients. Given the time-consuming, and often subjective nature of discourse analysis, these deviances are frequently not assayed in large scale studies. Recent work in computational linguistics and statistical-based semantic analysis has shown the potential and power of automated analysis of communication. We present an automated and objective approach to modeling discourse that detects very subtle deviations between probands, their first-degree relatives and unrelated healthy controls. Although these findings should be regarded as preliminary due to the limitations of the data at our disposal, we present a brief analysis of the models that best differentiate these groups in order to illustrate the utility of the method for future explorations of how language components are differentially affected by familial and illness related issues. PMID:20383310

  6. Efficiency of thin magnetically arrested discs around black holes

    NASA Astrophysics Data System (ADS)

    Avara, Mark J.; McKinney, Jonathan C.; Reynolds, Christopher S.

    2016-10-01

    The radiative and jet efficiencies of thin magnetized accretion discs around black holes (BHs) are affected by BH spin and the presence of a magnetic field that, when strong, could lead to large deviations from Novikov-Thorne (NT) thin disc theory. To seek the maximum deviations, we perform general relativistic magnetohydrodynamic simulations of radiatively efficient thin (half-height H to radius R of H/R ≈ 0.10) discs around moderately rotating BHs with a/M = 0.5. First, our simulations, each evolved for more than 70 000 rg/c (gravitational radius rg and speed of light c), show that large-scale magnetic field readily accretes inward even through our thin disc and builds-up to the magnetically arrested disc (MAD) state. Secondly, our simulations of thin MADs show the disc achieves a radiative efficiency of ηr ≈ 15 per cent (after estimating photon capture), which is about twice the NT value of ηr ˜ 8 per cent for a/M = 0.5 and gives the same luminosity as an NT disc with a/M ≈ 0.9. Compared to prior simulations with ≲10 per cent deviations, our result of an ≈80 per cent deviation sets a new benchmark. Building on prior work, we are now able to complete an important scaling law which suggests that observed jet quenching in the high-soft state in BH X-ray binaries is consistent with an ever-present MAD state with a weak yet sustained jet.

  7. The Uncertain Geographic Context Problem in the Analysis of the Relationships between Obesity and the Built Environment in Guangzhou

    PubMed Central

    Zhao, Pengxiang; Zhou, Suhong

    2018-01-01

    Traditionally, static units of analysis such as administrative units are used when studying obesity. However, using these fixed contextual units ignores environmental influences experienced by individuals in areas beyond their residential neighborhood and may render the results unreliable. This problem has been articulated as the uncertain geographic context problem (UGCoP). This study investigates the UGCoP through exploring the relationships between the built environment and obesity based on individuals’ activity space. First, a survey was conducted to collect individuals’ daily activity and weight information in Guangzhou in January 2016. Then, the data were used to calculate and compare the values of several built environment variables based on seven activity space delineations, including home buffers, workplace buffers (WPB), fitness place buffers (FPB), the standard deviational ellipse at two standard deviations (SDE2), the weighted standard deviational ellipse at two standard deviations (WSDE2), the minimum convex polygon (MCP), and road network buffers (RNB). Lastly, we conducted comparative analysis and regression analysis based on different activity space measures. The results indicate that significant differences exist between variables obtained with different activity space delineations. Further, regression analyses show that the activity space delineations used in the analysis have a significant influence on the results concerning the relationships between the built environment and obesity. The study sheds light on the UGCoP in analyzing the relationships between obesity and the built environment. PMID:29439392

  8. Circulation in the mesosphere and lower thermosphere during the MAP (Middle Atmosphere Program)/WINE (Winter in the Northern Europe) period

    NASA Technical Reports Server (NTRS)

    Tarasenko, D. A.

    1987-01-01

    One of the scientific programs in the MAP project, Winter in the Northern Europe (WINE) 1983 to 1984 involved an analysis of circulation processes in the middle atmosphere which characterized that winter period. Rocket soundings were conducted at many stations. In order to investigate deviations of the mean winds for the MAP/WINE period from the circulation conditions of other winters and from the climatic norm, rocket sounding data of Churchill and Barrow stations was well as the Pressure Modulated Radiometer channel 3000 data enabled the compilation of geopotential fields and the calculation of winds in the geostrophic approximation for comparison with the meteor winds. The large scale processes of the winter which determined the circulation in the period of the experiment were analyzed briefly. The analysis and results are discussed.

  9. Heterogeneity-induced large deviations in activity and (in some cases) entropy production

    NASA Astrophysics Data System (ADS)

    Gingrich, Todd R.; Vaikuntanathan, Suriyanarayanan; Geissler, Phillip L.

    2014-10-01

    We solve a simple model that supports a dynamic phase transition and show conditions for the existence of the transition. Using methods of large deviation theory we analytically compute the probability distribution for activity and entropy production rates of the trajectories on a large ring with a single heterogeneous link. The corresponding joint rate function demonstrates two dynamical phases—one localized and the other delocalized, but the marginal rate functions do not always exhibit the underlying transition. Symmetries in dynamic order parameters influence the observation of a transition, such that distributions for certain dynamic order parameters need not reveal an underlying dynamical bistability. Solution of our model system furthermore yields the form of the effective Markov transition matrices that generate dynamics in which the two dynamical phases are at coexistence. We discuss the implications of the transition for the response of bacterial cells to antibiotic treatment, arguing that even simple models of a cell cycle lacking an explicit bistability in configuration space will exhibit a bistability of dynamical phases.

  10. Large-deviation theory for diluted Wishart random matrices

    NASA Astrophysics Data System (ADS)

    Castillo, Isaac Pérez; Metz, Fernando L.

    2018-03-01

    Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.

  11. Rapidly rotating neutron stars with a massive scalar field—structure and universal relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doneva, Daniela D.; Yazadjiev, Stoytcho S., E-mail: daniela.doneva@uni-tuebingen.de, E-mail: yazad@phys.uni-sofia.bg

    We construct rapidly rotating neutron star models in scalar-tensor theories with a massive scalar field. The fact that the scalar field has nonzero mass leads to very interesting results since the allowed range of values of the coupling parameters is significantly broadened. Deviations from pure general relativity can be very large for values of the parameters that are in agreement with the observations. We found that the rapid rotation can magnify the differences several times compared to the static case. The universal relations between the normalized moment of inertia and quadrupole moment are also investigated both for the slowly andmore » rapidly rotating cases. The results show that these relations are still EOS independent up to a large extend and the deviations from pure general relativity can be large. This places the massive scalar-tensor theories amongst the few alternative theories of gravity that can be tested via the universal I -Love- Q relations.« less

  12. WKB theory of large deviations in stochastic populations

    NASA Astrophysics Data System (ADS)

    Assaf, Michael; Meerson, Baruch

    2017-06-01

    Stochasticity can play an important role in the dynamics of biologically relevant populations. These span a broad range of scales: from intra-cellular populations of molecules to population of cells and then to groups of plants, animals and people. Large deviations in stochastic population dynamics—such as those determining population extinction, fixation or switching between different states—are presently in a focus of attention of statistical physicists. We review recent progress in applying different variants of dissipative WKB approximation (after Wentzel, Kramers and Brillouin) to this class of problems. The WKB approximation allows one to evaluate the mean time and/or probability of population extinction, fixation and switches resulting from either intrinsic (demographic) noise, or a combination of the demographic noise and environmental variations, deterministic or random. We mostly cover well-mixed populations, single and multiple, but also briefly consider populations on heterogeneous networks and spatial populations. The spatial setting also allows one to study large fluctuations of the speed of biological invasions. Finally, we briefly discuss possible directions of future work.

  13. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox

    PubMed Central

    Marshall, Najja; Timme, Nicholas M.; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M.

    2016-01-01

    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of “neural avalanches” (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods—power-law fitting, avalanche shape collapse, and neural complexity—have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox. PMID:27445842

  14. Analysis of Power Laws, Shape Collapses, and Neural Complexity: New Techniques and MATLAB Support via the NCC Toolbox.

    PubMed

    Marshall, Najja; Timme, Nicholas M; Bennett, Nicholas; Ripp, Monica; Lautzenhiser, Edward; Beggs, John M

    2016-01-01

    Neural systems include interactions that occur across many scales. Two divergent methods for characterizing such interactions have drawn on the physical analysis of critical phenomena and the mathematical study of information. Inferring criticality in neural systems has traditionally rested on fitting power laws to the property distributions of "neural avalanches" (contiguous bursts of activity), but the fractal nature of avalanche shapes has recently emerged as another signature of criticality. On the other hand, neural complexity, an information theoretic measure, has been used to capture the interplay between the functional localization of brain regions and their integration for higher cognitive functions. Unfortunately, treatments of all three methods-power-law fitting, avalanche shape collapse, and neural complexity-have suffered from shortcomings. Empirical data often contain biases that introduce deviations from true power law in the tail and head of the distribution, but deviations in the tail have often been unconsidered; avalanche shape collapse has required manual parameter tuning; and the estimation of neural complexity has relied on small data sets or statistical assumptions for the sake of computational efficiency. In this paper we present technical advancements in the analysis of criticality and complexity in neural systems. We use maximum-likelihood estimation to automatically fit power laws with left and right cutoffs, present the first automated shape collapse algorithm, and describe new techniques to account for large numbers of neural variables and small data sets in the calculation of neural complexity. In order to facilitate future research in criticality and complexity, we have made the software utilized in this analysis freely available online in the MATLAB NCC (Neural Complexity and Criticality) Toolbox.

  15. Computer Programs for the Semantic Differential: Further Modifications.

    ERIC Educational Resources Information Center

    Lawson, Edwin D.; And Others

    The original nine programs for semantic differential analysis have been condensed into three programs which have been further refined and augmented. They yield: (1) means, standard deviations, and standard errors for each subscale on each concept; (2) Evaluation, Potency, and Activity (EPA) means, standard deviations, and standard errors; (3)…

  16. X-ray analysis of the galaxy group UGC 03957 beyond R200 with Suzaku

    NASA Astrophysics Data System (ADS)

    Thölken, Sophia; Lovisari, Lorenzo; Reiprich, Thomas H.; Hasenbusch, Jan

    2016-07-01

    Context. In the last few years, the outskirts of galaxy clusters have been studied in detail and the analyses have brought up interesting results such as indications of possible gas clumping and the breakdown of hydrostatic, thermal, and ionization equilibrium. These phenomena affect the entropy profiles of clusters, which often show deviations from the self-similar prediction around R200. However, significant uncertainties remain for groups of galaxies. In particular the question, of whether entropy profiles are similar to those of galaxy clusters. Aims: We investigated the gas properties of the galaxy group UGC 03957 up to 1.4 R200 ≈ 1.4 Mpc in four azimuthal directions with the Suzaku satellite. We checked for azimuthal symmetry and obtained temperature, entropy, density, and gas mass profiles. Previous studies point to deviations from equilibrium states at the outskirts of groups and clusters and so we studied the hydrodynamical status of the gas at these large radii. Methods: We performed a spectral analysis of five Suzaku observations of UGC 03957 with ~138 ks good exposure time in total and five Chandra snapshot observations for point source detection. We investigated systematic effects such as point spread function and uncertainties in the different background components, and performed a deprojection of the density and temperature profile. Results: We found a temperature drop of a factor of ~3 from the center to the outskirts that is consistent with previous results for galaxy clusters. The metal abundance profile shows a flat behavior towards large radii, which is a hint for galactic winds as the primary ICM enrichment process. The entropy profile is consistent with numerical simulations after applying a gas mass fraction correction. Feedback processes and AGN activity might be one explanation for entropy modification, imprinting out to larger radii in galaxy groups than in galaxy clusters. Previous analyses for clusters and groups often showed an entropy flattening or even a drop around ~ R200, which can be an indication of clumping or non-equilibrium states in the outskirts. Such entropy behavior is absent in UGC 03957. The gas mass fraction is well below the cosmic mean but rises above this value beyond R200, which could be a hint for deviations from hydrostatic equilibrium at these large radii. By measuring the abundance of the α-elements Si and S at intermediate radii we determined the relative number of different supernovae types and found that the abundance pattern can be described by a relative contribution of 80%-100% of core-collapse supernovae. This result is in agreement with previous measurements for galaxy groups.

  17. Evaluating the influence of spatial resolution of Landsat predictors on the accuracy of biomass models for large-area estimation across the eastern USA

    NASA Astrophysics Data System (ADS)

    Deo, Ram K.; Domke, Grant M.; Russell, Matthew B.; Woodall, Christopher W.; Andersen, Hans-Erik

    2018-05-01

    Aboveground biomass (AGB) estimates for regional-scale forest planning have become cost-effective with the free access to satellite data from sensors such as Landsat and MODIS. However, the accuracy of AGB predictions based on passive optical data depends on spatial resolution and spatial extent of target area as fine resolution (small pixels) data are associated with smaller coverage and longer repeat cycles compared to coarse resolution data. This study evaluated various spatial resolutions of Landsat-derived predictors on the accuracy of regional AGB models at three different sites in the eastern USA: Maine, Pennsylvania-New Jersey, and South Carolina. We combined national forest inventory data with Landsat-derived predictors at spatial resolutions ranging from 30–1000 m to understand the optimal spatial resolution of optical data for large-area (regional) AGB estimation. Ten generic models were developed using the data collected in 2014, 2015 and 2016, and the predictions were evaluated (i) at the county-level against the estimates of the USFS Forest Inventory and Analysis Program which relied on EVALIDator tool and national forest inventory data from the 2009–2013 cycle and (ii) within a large number of strips (~1 km wide) predicted via LiDAR metrics at 30 m spatial resolution. The county-level estimates by the EVALIDator and Landsat models were highly related (R 2 > 0.66), although the R 2 varied significantly across sites and resolution of predictors. The mean and standard deviation of county-level estimates followed increasing and decreasing trends, respectively, with models of coarser resolution. The Landsat-based total AGB estimates were larger than the LiDAR-based total estimates within the strips, however the mean of AGB predictions by LiDAR were mostly within one-standard deviations of the mean predictions obtained from the Landsat-based model at any of the resolutions. We conclude that satellite data at resolutions up to 1000 m provide acceptable accuracy for continental scale analysis of AGB.

  18. Mathematical aspects of assessing extreme events for the safety of nuclear plants

    NASA Astrophysics Data System (ADS)

    Potempski, Slawomir; Borysiewicz, Mieczyslaw

    2015-04-01

    In the paper the review of mathematical methodologies applied for assessing low frequencies of rare natural events like earthquakes, tsunamis, hurricanes or tornadoes, floods (in particular flash floods and surge storms), lightning, solar flares, etc., will be given in the perspective of the safety assessment of nuclear plants. The statistical methods are usually based on the extreme value theory, which deals with the analysis of extreme deviation from the median (or the mean). In this respect application of various mathematical tools can be useful, like: the extreme value theorem of Fisher-Tippett-Gnedenko leading to possible choices of general extreme value distributions, or the Pickands-Balkema-de Haan theorem for tail fitting, or the methods related to large deviation theory. In the paper the most important stochastic distributions relevant for performing rare events statistical analysis will be presented. This concerns, for example, the analysis of the data with the annual extreme values (maxima - "Annual Maxima Series" or minima), or the peak values, exceeding given thresholds at some periods of interest ("Peak Over Threshold"), or the estimation of the size of exceedance. Despite of the fact that there is a lack of sufficient statistical data directly containing rare events, in some cases it is still possible to extract useful information from existing larger data sets. As an example one can consider some data sets available from the web sites for floods, earthquakes or generally natural hazards. Some aspects of such data sets will be also presented taking into account their usefulness for the practical assessment of risk for nuclear power plants coming from extreme weather conditions.

  19. A Meta-Analysis of Zilpaterol and Ractopamine Effects on Feedlot Performance, Carcass Traits and Shear Strength of Meat in Cattle

    PubMed Central

    Lean, Ian J.; Thompson, John M.; Dunshea, Frank R.

    2014-01-01

    This study is a meta-analysis of the effects of the beta-agonists zilpaterol hydrochloride (ZH) and ractopamine hydrochloride (RAC) on feedlot performance, carcase characteristics of cattle and Warner Bratzler shear force (WBSF) of muscles. It was conducted to evaluate the effect of the use of these agents on beef production and meat quality and to provide data that would be useful in considerations on the effect of these agents on meat quality in Meat Standards Australia evaluations. We conducted a comprehensive literature search and study assessment using PubMed, Google Scholar, ScienceDirect, Scirus, and CAB and identification of other studies from reference lists in papers and searches. Searches were based on the key words: zilpaterol, zilmax, ractopamine, optaflexx, cattle and beef. Studies from theses obtained were included. Data were extracted from more than 50 comparisons for both agents and analysed using meta-analysis and meta-regression. Both agents markedly increased weight gain, hot carcase weight and longissimus muscle area and increased the efficiency of gain:feed. These effects were particularly large for ZH, however, fat thickness was decreased by ZH, but not RAC. Zilpaterol also markedly increased WBSF by 1.2 standard deviations and more than 0.8 kg, while RAC increased WBSF by 0.43 standard deviations and 0.2 kg. There is evidence in the ZH studies, in particular, of profound re-partitioning of nutrients from fat to protein depots. This work has provided critically needed information on the effects of ZH and RAC on production, efficiency and meat quality. PMID:25548908

  20. Using walker during walking: a pilot study for health elder.

    PubMed

    Po-Chan, Yeh; Cherng-Yee, Leung

    2012-01-01

    Walker operation completely relies on the walker handle, however most marketed walkers possess two horizontal handles. Several researchers have suggested that horizontal handles might lead to wrist injury. Therefore, the purpose of this study is to assess the relevant design aspects of walker for elderly people. 28 elders participated in this study; when the experiment was started, subject walked on the tile for 3 meter distance twice by using walker. Data for analysis were selected at the corresponding wrist deviation and vertical force. The results showed that during walker using, the mean wrist deviation was greater than zero. The largest vertical force is significantly larger than the smallest one, and different wrist deviation occurred at three phases, the largest wrist deviation while raising walker is larger than the smallest one, however, no significant different was found between the largest and smallest wrist deviation while pressing walker. No significant correlation occurred between weight and wrist deviation. The correlation between weight and vertical force was significantly positive. With wrist deviation walker use may cause injury to upper-limb, however wrists remain in a neutral position during hand movement to prevent damage. The findings of this study should improve the design of walker handles to reduce the wrist deviations of users.

  1. Differential processing of melodic, rhythmic and simple tone deviations in musicians--an MEG study.

    PubMed

    Lappe, Claudia; Lappe, Markus; Pantev, Christo

    2016-01-01

    Rhythm and melody are two basic characteristics of music. Performing musicians have to pay attention to both, and avoid errors in either aspect of their performance. To investigate the neural processes involved in detecting melodic and rhythmic errors from auditory input we tested musicians on both kinds of deviations in a mismatch negativity (MMN) design. We found that MMN responses to a rhythmic deviation occurred at shorter latencies than MMN responses to a melodic deviation. Beamformer source analysis showed that the melodic deviation activated superior temporal, inferior frontal and superior frontal areas whereas the activation pattern of the rhythmic deviation focused more strongly on inferior and superior parietal areas, in addition to superior temporal cortex. Activation in the supplementary motor area occurred for both types of deviations. We also recorded responses to similar pitch and tempo deviations in a simple, non-musical repetitive tone pattern. In this case, there was no latency difference between the MMNs and cortical activation was smaller and mostly limited to auditory cortex. The results suggest that prediction and error detection of musical stimuli in trained musicians involve a broad cortical network and that rhythmic and melodic errors are processed in partially different cortical streams. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.

    PubMed

    Dabek, Juhani; Kalogianni, Konstantina; Rotgans, Edwin; van der Helm, Frans C T; Kwakkel, Gert; van Wegen, Erwin E H; Daffertshofer, Andreas; de Munck, Jan C

    2016-02-15

    Electroencephalography (EEG) benefits from accurate head models. Dipole source modelling errors can be reduced from over 1cm to a few millimetres by replacing generic head geometry and conductivity with tailored ones. When adequate head geometry is available, electrical impedance tomography (EIT) can be used to infer the conductivities of head tissues. In this study, the boundary element method (BEM) is applied with three-compartment (scalp, skull and brain) subject-specific head models. The optimal injection of small currents to the head with a modular EIT current injector, and voltage measurement by an EEG amplifier is first sought by simulations. The measurement with a 64-electrode EEG layout is studied with respect to three noise sources affecting EIT: background EEG, deviations from the fitting assumption of equal scalp and brain conductivities, and smooth model geometry deviations from the true head geometry. The noise source effects were investigated depending on the positioning of the injection and extraction electrode and the number of their combinations used sequentially. The deviation from equal scalp and brain conductivities produces rather deterministic errors in the three conductivities irrespective of the current injection locations. With a realistic measurement of around 2 min and around 8 distant distinct current injection pairs, the error from the other noise sources is reduced to around 10% or less in the skull conductivity. The analysis of subsequent real measurements, however, suggests that there could be subject-specific local thinnings in the skull, which could amplify the conductivity fitting errors. With proper analysis of multiplexed sinusoidal EIT current injections, the measurements on average yielded conductivities of 340 mS/m (scalp and brain) and 6.6 mS/m (skull) at 2 Hz. From 11 to 127 Hz, the conductivities increased by 1.6% (scalp and brain) and 6.7% (skull) on the average. The proper analysis was ensured by using recombination of the current injections into virtual ones, avoiding problems in location-specific skull morphology variations. The observed large intersubject variations support the need for in vivo measurement of skull conductivity, resulting in calibrated subject-specific head models. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Laboratory studies of methane near 2 μ m

    NASA Astrophysics Data System (ADS)

    Robert, O.; Hilico, J. C.; Loete, M.; Brown, L. R.; Pine, A. S.

    2000-12-01

    The 2 μ m region is a ``window" region for planets and stars abundant in methane. Characterizing the methane absorptions requires that a large number of vibration-rotation states be studied. The rovibrational levels in methane are grouped in vibrational polyads. The absorption from the three first polyads of methane (ground state: <= 10 μ m, dyad: 5--10 μ m, pentad: 3--5 μ m) are well understood and can be predicted using quantum mechanical models. Two higher polyads must be modeled to describe the 2 μ m window. The polyad called the octad has eight vibrational states in the 2--3 μ m interval. The next polyad (tetradecad) observed in the range 1.6--2 μ m is composed of 14 vibrational levels. The analyses of these two polyads have been undertaken at Dijon using high--quality FTIR spectra recorded at Kitt Peak National Observatory. The analysis of the octad was helped by spectra of the Q-branch regions of the 3ν 4 and ν2+2ν4 bands recorded at 80 K at NIST. The theoretical background for modeling rovibrational energy levels and corresponding transitions has been developed at Dijon. The analysis of the COMPLETE octad was performed for J <= 16 with a Hamiltonian containing 253 adjustable parameters (for 8 bands and 24 subbands). Nearly 8000 lines in the octad were assigned and reproduced with a standard deviation of 0.044 cm-1. Intensities were also modeled to 16% for some 2500 transitions. A prediction of some 57000 methane transitions in HITRAN format is available (from Brown). The analysis of the tetradecad system led to the assignment of nearly 200 lines of 4ν 4 band around 1.9 μ m, yielding a standard deviation of 0.180 cm-1, and to nearly 300 lines of 2ν 2+ν_3 around 1.7 μ m, yielding a standard deviation of 0.270 cm-1. Intensities are being measured. The spectral simulation is in progress near 1.8 μ m where maximum complication occurs. Part of the research reported in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration

  4. A Quantitative Evaluation of the Flipped Classroom in a Large Lecture Principles of Economics Course

    ERIC Educational Resources Information Center

    Balaban, Rita A.; Gilleskie, Donna B.; Tran, Uyen

    2016-01-01

    This research provides evidence that the flipped classroom instructional format increases student final exam performance, relative to the traditional instructional format, in a large lecture principles of economics course. The authors find that the flipped classroom directly improves performance by 0.2 to 0.7 standardized deviations, depending on…

  5. One-side forward-backward asymmetry in top quark pair production at the CERN Large Hadron Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Youkai; Xiao Bo; Zhu Shouhua

    2010-11-01

    Both D0 and CDF at Tevatron reported the measurements of forward-backward asymmetry in top pair production, which showed possible deviation from the standard model QCD prediction. In this paper, we explore how to examine the same higher-order QCD effects at the more powerful Large Hadron Collider.

  6. Flexner 3.0-Democratization of Medical Knowledge for the 21st Century: Teaching Medical Science Using K-12 General Pathology as a Gateway Course.

    PubMed

    Weinstein, Ronald S; Krupinski, Elizabeth A; Weinstein, John B; Graham, Anna R; Barker, Gail P; Erps, Kristine A; Holtrust, Angelette L; Holcomb, Michael J

    2016-01-01

    A medical school general pathology course has been reformatted into a K-12 general pathology course. This new course has been implemented at a series of 7 to 12 grade levels and the student outcomes compared. Typically, topics covered mirrored those in a medical school general pathology course serving as an introduction to the mechanisms of diseases. Assessment of student performance was based on their score on a multiple-choice final examination modeled after an examination given to medical students. Two Tucson area schools, in a charter school network, participated in the study. Statistical analysis of examination performances showed that there were no significant differences as a function of school ( F = 0.258, P = .6128), with students at school A having an average test scores of 87.03 (standard deviation = 8.99) and school B 86.00 (standard deviation = 8.18; F = 0.258, P = .6128). Analysis of variance was also conducted on the test scores as a function of gender and class grade. There were no significant differences as a function of gender ( F = 0.608, P = .4382), with females having an average score of 87.18 (standard deviation = 7.24) and males 85.61 (standard deviation = 9.85). There were also no significant differences as a function of grade level ( F = 0.627, P = .6003), with 7th graders having an average of 85.10 (standard deviation = 8.90), 8th graders 86.00 (standard deviation = 9.95), 9th graders 89.67 (standard deviation = 5.52), and 12th graders 86.90 (standard deviation = 7.52). The results demonstrated that middle and upper school students performed equally well in K-12 general pathology. Student course evaluations showed that the course met the student's expectations. One class voted K-12 general pathology their "elective course-of-the-year."

  7. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.

    PubMed

    Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun

    2014-12-19

    In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different situations.

  8. Flexner 3.0—Democratization of Medical Knowledge for the 21st Century

    PubMed Central

    Krupinski, Elizabeth A.; Weinstein, John B.; Graham, Anna R.; Barker, Gail P.; Erps, Kristine A.; Holtrust, Angelette L.; Holcomb, Michael J.

    2016-01-01

    A medical school general pathology course has been reformatted into a K-12 general pathology course. This new course has been implemented at a series of 7 to 12 grade levels and the student outcomes compared. Typically, topics covered mirrored those in a medical school general pathology course serving as an introduction to the mechanisms of diseases. Assessment of student performance was based on their score on a multiple-choice final examination modeled after an examination given to medical students. Two Tucson area schools, in a charter school network, participated in the study. Statistical analysis of examination performances showed that there were no significant differences as a function of school (F = 0.258, P = .6128), with students at school A having an average test scores of 87.03 (standard deviation = 8.99) and school B 86.00 (standard deviation = 8.18; F = 0.258, P = .6128). Analysis of variance was also conducted on the test scores as a function of gender and class grade. There were no significant differences as a function of gender (F = 0.608, P = .4382), with females having an average score of 87.18 (standard deviation = 7.24) and males 85.61 (standard deviation = 9.85). There were also no significant differences as a function of grade level (F = 0.627, P = .6003), with 7th graders having an average of 85.10 (standard deviation = 8.90), 8th graders 86.00 (standard deviation = 9.95), 9th graders 89.67 (standard deviation = 5.52), and 12th graders 86.90 (standard deviation = 7.52). The results demonstrated that middle and upper school students performed equally well in K-12 general pathology. Student course evaluations showed that the course met the student’s expectations. One class voted K-12 general pathology their “elective course-of-the-year.” PMID:28725762

  9. Sentiment analysis of feature ranking methods for classification accuracy

    NASA Astrophysics Data System (ADS)

    Joseph, Shashank; Mugauri, Calvin; Sumathy, S.

    2017-11-01

    Text pre-processing and feature selection are important and critical steps in text mining. Text pre-processing of large volumes of datasets is a difficult task as unstructured raw data is converted into structured format. Traditional methods of processing and weighing took much time and were less accurate. To overcome this challenge, feature ranking techniques have been devised. A feature set from text preprocessing is fed as input for feature selection. Feature selection helps improve text classification accuracy. Of the three feature selection categories available, the filter category will be the focus. Five feature ranking methods namely: document frequency, standard deviation information gain, CHI-SQUARE, and weighted-log likelihood -ratio is analyzed.

  10. Merge measuring mesh for complex surface parts

    NASA Astrophysics Data System (ADS)

    Ye, Jianhua; Gao, Chenghui; Zeng, Shoujin; Xu, Mingsan

    2018-04-01

    Due to most parts self-occlude and limitation of scanner range, it is difficult to scan the entire part by one time. For modeling of part, multi measuring meshes need to be merged. In this paper, a new merge method is presented. At first, using the grid voxelization method to eliminate the most of non-overlap regions, and retrieval overlap triangles method by the topology of mesh is proposed due to its ability to improve the efficiency. Then, to remove the large deviation of overlap triangles, deleting by overlap distance is discussion. After that, this paper puts forward a new method of merger meshes by registration and combination mesh boundary point. Through experimental analysis, the suggested methods are effective.

  11. Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Öztürk, Hande; Noyan, I. Cevdet

    A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less

  12. Expected values and variances of Bragg peak intensities measured in a nanocrystalline powder diffraction experiment

    DOE PAGES

    Öztürk, Hande; Noyan, I. Cevdet

    2017-08-24

    A rigorous study of sampling and intensity statistics applicable for a powder diffraction experiment as a function of crystallite size is presented. Our analysis yields approximate equations for the expected value, variance and standard deviations for both the number of diffracting grains and the corresponding diffracted intensity for a given Bragg peak. The classical formalism published in 1948 by Alexander, Klug & Kummer [J. Appl. Phys.(1948),19, 742–753] appears as a special case, limited to large crystallite sizes, here. It is observed that both the Lorentz probability expression and the statistics equations used in the classical formalism are inapplicable for nanocrystallinemore » powder samples.« less

  13. Suppression of Self-Induced Flavor Conversion in the Supernova Accretion Phase

    NASA Astrophysics Data System (ADS)

    Sarikas, Srdjan; Raffelt, Georg G.; Hüdepohl, Lorenz; Janka, Hans-Thomas

    2012-02-01

    Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M⊙ spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.

  14. Suppression of self-induced flavor conversion in the supernova accretion phase.

    PubMed

    Sarikas, Srdjan; Raffelt, Georg G; Hüdepohl, Lorenz; Janka, Hans-Thomas

    2012-02-10

    Self-induced flavor conversions of supernova (SN) neutrinos can strongly modify the flavor-dependent fluxes. We perform a linearized flavor stability analysis with accretion-phase matter profiles of a 15M[symbol: see text] spherically symmetric model and corresponding neutrino fluxes. We use realistic energy and angle distributions, the latter deviating strongly from quasi-isotropic emission, thus accounting for both multiangle and multienergy effects. For our matter and neutrino density profile we always find stable conditions: flavor conversions are limited to the usual Mikheyev-Smirnov-Wolfenstein effect. In this case one may distinguish the neutrino mass hierarchy in a SN neutrino signal if the mixing angle θ13 is as large as suggested by recent experiments.

  15. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  16. Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1992-01-01

    In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1).

  17. Comparative evaluation of the impact of GRAPES and MM5 meteorology on CMAQ prediction over Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Deng, T.; Chen, Y.; Wan, Q.

    2017-12-01

    The Community Multiscale Air Quality (CMAQ) model was utilized for forecasting air quality over the Pearl River Delta (PRD) region from December 2013 to January 2014. The pollution forecasting performance of CMAQ coupled with the two different meteorological models, the Global/Regional Assimilation and Prediction System (GRAPES) and the 5th-generation Mesoscale Model (MM5), was assessed by combining observational data. The effect of meteorological factors and physical-chemical processes on forecast results was discussed through process analysis. The results showed that both models have similar good performance with better performance by GRAPES-CMAQ. GRAPES was superior in predicting the overall meteorological element variation tendencies but showed large deviations in atmospheric pressure and wind speed. It contributed to higher correlation coefficients of the pollutants with GRAPES-CMAQ, but with greater deviation. The underestimations of nitrate and ammonium salt contributed to the underestimations of Particle Matter (PM) and extinction coefficients. Surface layer SO2, CO and NO source emissions made the sole positive contribution. O3 originated mainly from horizontal and vertical transport and chemical processes were the main consumption item. On the contrary, NO2 derived mainly from chemical production.

  18. On hydrodynamic phase field models for binary fluid mixtures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaogang; Gong, Yuezheng; Li, Jun; Zhao, Jia; Wang, Qi

    2018-05-01

    Two classes of thermodynamically consistent hydrodynamic phase field models have been developed for binary fluid mixtures of incompressible viscous fluids of possibly different densities and viscosities. One is quasi-incompressible, while the other is incompressible. For the same binary fluid mixture of two incompressible viscous fluid components, which one is more appropriate? To answer this question, we conduct a comparative study in this paper. First, we visit their derivation, conservation and energy dissipation properties and show that the quasi-incompressible model conserves both mass and linear momentum, while the incompressible one does not. We then show that the quasi-incompressible model is sensitive to the density deviation of the fluid components, while the incompressible model is not in a linear stability analysis. Second, we conduct a numerical investigation on coarsening or coalescent dynamics of protuberances using the two models. We find that they can predict quite different transient dynamics depending on the initial conditions and the density difference although they predict essentially the same quasi-steady results in some cases. This study thus cast a doubt on the applicability of the incompressible model to describe dynamics of binary mixtures of two incompressible viscous fluids especially when the two fluid components have a large density deviation.

  19. Constraints on inflation with LSS surveys: features in the primordial power spectrum

    NASA Astrophysics Data System (ADS)

    Palma, Gonzalo A.; Sapone, Domenico; Sypsas, Spyros

    2018-06-01

    We analyse the efficiency of future large scale structure surveys to unveil the presence of scale dependent features in the primordial spectrum—resulting from cosmic inflation—imprinted in the distribution of galaxies. Features may appear as a consequence of non-trivial dynamics during cosmic inflation, in which one or more background quantities experienced small but rapid deviations from their characteristic slow-roll evolution. We consider two families of features: localised features and oscillatory extended features. To characterise them we employ various possible templates parametrising their scale dependence and provide forecasts on the constraints on these parametrisations for LSST like surveys. We perform a Fisher matrix analysis for three observables: cosmic microwave background (CMB), galaxy clustering and weak lensing. We find that the combined data set of these observables will be able to limit the presence of features down to levels that are more restrictive than current constraints coming from CMB observations only. In particular, we address the possibility of gaining information on currently known deviations from scale invariance inferred from CMB data, such as the feature appearing at the l ~ 20 multipole (which is the main contribution to the low-l deficit) and another one around l ~ 800.

  20. Comparing Measures of Voice Quality From Sustained Phonation and Continuous Speech.

    PubMed

    Gerratt, Bruce R; Kreiman, Jody; Garellek, Marc

    2016-10-01

    The question of what type of utterance-a sustained vowel or continuous speech-is best for voice quality analysis has been extensively studied but with equivocal results. This study examines whether previously reported differences derive from the articulatory and prosodic factors occurring in continuous speech versus sustained phonation. Speakers with voice disorders sustained vowels and read sentences. Vowel samples were excerpted from the steadiest portion of each vowel in the sentences. In addition to sustained and excerpted vowels, a 3rd set of stimuli was created by shortening sustained vowel productions to match the duration of vowels excerpted from continuous speech. Acoustic measures were made on the stimuli, and listeners judged the severity of vocal quality deviation. Sustained vowels and those extracted from continuous speech contain essentially the same acoustic and perceptual information about vocal quality deviation. Perceived and/or measured differences between continuous speech and sustained vowels derive largely from voice source variability across segmental and prosodic contexts and not from variations in vocal fold vibration in the quasisteady portion of the vowels. Approaches to voice quality assessment by using continuous speech samples average across utterances and may not adequately quantify the variability they are intended to assess.

  1. Deviation of landmarks in accordance with methods of establishing reference planes in three-dimensional facial CT evaluation.

    PubMed

    Yoon, Kaeng Won; Yoon, Suk-Ja; Kang, Byung-Cheol; Kim, Young-Hee; Kook, Min Suk; Lee, Jae-Seo; Palomo, Juan Martin

    2014-09-01

    This study aimed to investigate the deviation of landmarks from horizontal or midsagittal reference planes according to the methods of establishing reference planes. Computed tomography (CT) scans of 18 patients who received orthodontic and orthognathic surgical treatment were reviewed. Each CT scan was reconstructed by three methods for establishing three orthogonal reference planes (namely, the horizontal, midsagittal, and coronal reference planes). The horizontal (bilateral porions and bilateral orbitales) and midsagittal (crista galli, nasion, prechiasmatic point, opisthion, and anterior nasal spine) landmarks were identified on each CT scan. Vertical deviation of the horizontal landmarks and horizontal deviation of the midsagittal landmarks were measured. The porion and orbitale, which were not involved in establishing the horizontal reference plane, were found to deviate vertically from the horizontal reference plane in the three methods. The midsagittal landmarks, which were not used for the midsagittal reference plane, deviated horizontally from the midsagittal reference plane in the three methods. In a three-dimensional facial analysis, the vertical and horizontal deviations of the landmarks from the horizontal and midsagittal reference planes could vary depending on the methods of establishing reference planes.

  2. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium.

    PubMed

    Netz, Roland R

    2018-05-14

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium parameter α from experimental spectral response and fluctuation data.

  3. Fluctuation-dissipation relation and stationary distribution of an exactly solvable many-particle model for active biomatter far from equilibrium

    NASA Astrophysics Data System (ADS)

    Netz, Roland R.

    2018-05-01

    An exactly solvable, Hamiltonian-based model of many massive particles that are coupled by harmonic potentials and driven by stochastic non-equilibrium forces is introduced. The stationary distribution and the fluctuation-dissipation relation are derived in closed form for the general non-equilibrium case. Deviations from equilibrium are on one hand characterized by the difference of the obtained stationary distribution from the Boltzmann distribution; this is possible because the model derives from a particle Hamiltonian. On the other hand, the difference between the obtained non-equilibrium fluctuation-dissipation relation and the standard equilibrium fluctuation-dissipation theorem allows us to quantify non-equilibrium in an alternative fashion. Both indicators of non-equilibrium behavior, i.e., deviations from the Boltzmann distribution and deviations from the equilibrium fluctuation-dissipation theorem, can be expressed in terms of a single non-equilibrium parameter α that involves the ratio of friction coefficients and random force strengths. The concept of a non-equilibrium effective temperature, which can be defined by the relation between fluctuations and the dissipation, is by comparison with the exactly derived stationary distribution shown not to hold, even if the effective temperature is made frequency dependent. The analysis is not confined to close-to-equilibrium situations but rather is exact and thus holds for arbitrarily large deviations from equilibrium. Also, the suggested harmonic model can be obtained from non-linear mechanical network systems by an expansion in terms of suitably chosen deviatory coordinates; the obtained results should thus be quite general. This is demonstrated by comparison of the derived non-equilibrium fluctuation dissipation relation with experimental data on actin networks that are driven out of equilibrium by energy-consuming protein motors. The comparison is excellent and allows us to extract the non-equilibrium parameter α from experimental spectral response and fluctuation data.

  4. WE-H-BRC-05: Catastrophic Error Metrics for Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murphy, S; Molloy, J

    Purpose: Intuitive evaluation of complex radiotherapy treatments is impractical, while data transfer anomalies create the potential for catastrophic treatment delivery errors. Contrary to prevailing wisdom, logical scrutiny can be applied to patient-specific machine settings. Such tests can be automated, applied at the point of treatment delivery and can be dissociated from prior states of the treatment plan, potentially revealing errors introduced early in the process. Methods: Analytical metrics were formulated for conventional and intensity modulated RT (IMRT) treatments. These were designed to assess consistency between monitor unit settings, wedge values, prescription dose and leaf positioning (IMRT). Institutional metric averages formore » 218 clinical plans were stratified over multiple anatomical sites. Treatment delivery errors were simulated using a commercial treatment planning system and metric behavior assessed via receiver-operator-characteristic (ROC) analysis. A positive result was returned if the erred plan metric value exceeded a given number of standard deviations, e.g. 2. The finding was declared true positive if the dosimetric impact exceeded 25%. ROC curves were generated over a range of metric standard deviations. Results: Data for the conventional treatment metric indicated standard deviations of 3%, 12%, 11%, 8%, and 5 % for brain, pelvis, abdomen, lung and breast sites, respectively. Optimum error declaration thresholds yielded true positive rates (TPR) between 0.7 and 1, and false positive rates (FPR) between 0 and 0.2. Two proposed IMRT metrics possessed standard deviations of 23% and 37%. The superior metric returned TPR and FPR of 0.7 and 0.2, respectively, when both leaf position and MUs were modelled. Isolation to only leaf position errors yielded TPR and FPR values of 0.9 and 0.1. Conclusion: Logical tests can reveal treatment delivery errors and prevent large, catastrophic errors. Analytical metrics are able to identify errors in monitor units, wedging and leaf positions with favorable sensitivity and specificity. In part by Varian.« less

  5. Analysis of health economics assessment reports for pharmaceuticals in France – understanding the underlying philosophy of CEESP assessment

    PubMed Central

    Toumi, Mondher; Motrunich, Anastasiia; Millier, Aurélie; Rémuzat, Cécile; Chouaid, Christos; Falissard, Bruno; Aballéa, Samuel

    2017-01-01

    ABSTRACT Background: Despite the guidelines for Economic and Public Health Assessment Committee (CEESP) submission having been available for nearly six years, the dossiers submitted continue to deviate from them, potentially impacting product prices. Objective: to review the reports published by CEESP, analyse deviations from the guidelines, and discuss their implications for the pricing and reimbursement process. Study design: CEESP reports published until January 2017 were reviewed, and deviations from the guidelines were extracted. The frequency of deviations was described by type of methodological concern (minor, important or major). Results: In 19 reports, we identified 243 methodological concerns, most often concerning modelling, measurement and valuation of health states and results presentation and sensitivity analyses; nearly 63% were minor, 33% were important and 4.5% were major. All reports included minor methodological concerns, and 17 (89%) included at least one important and/or major methodological concern. Global major methodological concerns completely invalidated the analysis in seven dossiers (37%). Conclusion: The CEESP submission dossiers fail to adhere to the guidelines, potentially invalidating the health economics analysis and resulting in pricing negotiations. As these negotiations tend to be unfavourable for the manufacturer, the industry should strive to improve the quality of the analyses submitted to CEESP. PMID:28804600

  6. Beyond δ: Tailoring marked statistics to reveal modified gravity

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2018-01-01

    Models which attempt to explain the accelerated expansion of the universe through large-scale modifications to General Relativity (GR), must satisfy the stringent experimental constraints of GR in the solar system. Viable candidates invoke a “screening” mechanism, that dynamically suppresses deviations in high density environments, making their overall detection challenging even for ambitious future large-scale structure surveys. We present methods to efficiently simulate the non-linear properties of such theories, and consider how a series of statistics that reweight the density field to accentuate deviations from GR can be applied to enhance the overall signal-to-noise ratio in differentiating the models from GR. Our results demonstrate that the cosmic density field can yield additional, invaluable cosmological information, beyond the simple density power spectrum, that will enable surveys to more confidently discriminate between modified gravity models and ΛCDM.

  7. Topology Trivialization and Large Deviations for the Minimum in the Simplest Random Optimization

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.; Le Doussal, Pierre

    2014-01-01

    Finding the global minimum of a cost function given by the sum of a quadratic and a linear form in N real variables over (N-1)-dimensional sphere is one of the simplest, yet paradigmatic problems in Optimization Theory known as the "trust region subproblem" or "constraint least square problem". When both terms in the cost function are random this amounts to studying the ground state energy of the simplest spherical spin glass in a random magnetic field. We first identify and study two distinct large-N scaling regimes in which the linear term (magnetic field) leads to a gradual topology trivialization, i.e. reduction in the total number {N}_{tot} of critical (stationary) points in the cost function landscape. In the first regime {N}_{tot} remains of the order N and the cost function (energy) has generically two almost degenerate minima with the Tracy-Widom (TW) statistics. In the second regime the number of critical points is of the order of unity with a finite probability for a single minimum. In that case the mean total number of extrema (minima and maxima) of the cost function is given by the Laplace transform of the TW density, and the distribution of the global minimum energy is expected to take a universal scaling form generalizing the TW law. Though the full form of that distribution is not yet known to us, one of its far tails can be inferred from the large deviation theory for the global minimum. In the rest of the paper we show how to use the replica method to obtain the probability density of the minimum energy in the large-deviation approximation by finding both the rate function and the leading pre-exponential factor.

  8. Regionally variant collagen alignment correlates with viscoelastic properties of the disc of the human temporomandibular joint.

    PubMed

    Gutman, Shawn; Kim, Daniel; Tarafder, Solaiman; Velez, Sergio; Jeong, Julia; Lee, Chang H

    2018-02-01

    To determine the regionally variant quality of collagen alignment in human TMJ discs and its statistical correlation with viscoelastic properties. For quantitative analysis of the quality of collagen alignment, horizontal sections of human TMJ discs with Pricrosirius Red staining were imaged under circularly polarized microscopy. Mean angle and angular deviation of collagen fibers in each region were analyzed using a well-established automated image-processing for angular gradient. Instantaneous and relaxation moduli of each disc region were measured under stress-relaxation test both in tensile and compression. Then Spearman correlation analysis was performed between the angular deviation and the moduli. To understand the effect of glycosaminoglycans on the correlation, TMJ disc samples were treated by chondroitinase ABC (C-ABC). Our imaging processing analysis showed the region-variant direction of collagen alignment, consistently with previous findings. Interestingly, the quality of collagen alignment, not only the directions, was significantly different in between the regions. The angular deviation of fiber alignment in the anterior and intermediate regions were significantly smaller than the posterior region. Medial and lateral regions showed significantly bigger angular deviation than all the other regions. The regionally variant angular deviation values showed statistically significant correlation with the tensile instantaneous modulus and the relaxation modulus, partially dependent on C-ABC treatment. Our findings suggest the region-variant degree of collagen fiber alignment is likely attributed to the heterogeneous viscoelastic properties of TMJ disc that may have significant implications in development of regenerative therapy for TMJ disc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [3D-imaging and analysis for plastic surgery by smartphone and tablet: an alternative to professional systems?].

    PubMed

    Koban, K C; Leitsch, S; Holzbach, T; Volkmer, E; Metz, P M; Giunta, R E

    2014-04-01

    A new approach of using photographs from smartphones for three-dimensional (3D) imaging was introduced besides the standard high quality 3D camera systems. In this work, we investigated different capture preferences and compared the accuracy of this 3D reconstruction method with manual tape measurement and an established commercial 3D camera system. The facial region of one plastic mannequin head was labelled with 21 landmarks. A 3D reference model was captured with the Vectra 3D Imaging System®. In addition, 3D imaging was executed with the Autodesk 123d Catch® application using 16, 12, 9, 6 and 3 pictures from Apple® iPhone 4 s® and iPad® 3rd generation. The accuracy of 3D reconstruction was measured in 2 steps. First, 42 distance measurements from manual tape measurement and the 2 digital systems were compared. Second, the surface-to-surface deviation of different aesthetic units from the Vectra® reference model to Catch® generated models was analysed. For each 3D system the capturing and processing time was measured. The measurement showed no significant (p>0.05) difference between manual tape measurement and both digital distances from the Catch® application and Vectra®. Surface-to-surface deviation to the Vectra® reference model showed sufficient results for the 3D reconstruction of Catch® with 16, 12 and 9 picture sets. Use of 6 and 3 pictures resulted in large deviations. Lateral aesthetic units showed higher deviations than central units. Catch® needed 5 times longer to capture and compute 3D models (average 10 min vs. 2 min). The Autodesk 123d Catch® computed models suggests good accuracy of the 3D reconstruction for a standard mannequin model, in comparison to manual tape measurement and the surface-to-surface analysis with a 3D reference model. However, the prolonged capture time with multiple pictures is prone to errors. Further studies are needed to investigate its application and quality in capturing volunteer models. Soon mobile applications may offer an alternative for plastic surgeons to today's cost intensive, stationary 3D camera systems. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Analysis of and Feedback on Phonetic Features in Pronunciation Training with a Virtual Teacher

    ERIC Educational Resources Information Center

    Engwall, Olov

    2012-01-01

    Pronunciation errors may be caused by several different deviations from the target, such as voicing, intonation, insertions or deletions of segments, or that the articulators are placed incorrectly. Computer-animated pronunciation teachers could potentially provide important assistance on correcting all these types of deviations, but they have an…

  11. 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches

    PubMed

    Schmidt; Marx; de Graaf AA; Wiechert; Sahm; Nielsen; Villadsen

    1998-04-05

    Conventional metabolic flux analysis uses the information gained from determination of measurable fluxes and a steady-state assumption for intracellular metabolites to calculate the metabolic fluxes in a given metabolic network. The determination of intracellular fluxes depends heavily on the correctness of the assumed stoichiometry including the presence of all reactions with a noticeable impact on the model metabolite balances. Determination of fluxes in complex metabolic networks often requires the inclusion of NADH and NADPH balances, which are subject to controversial debate. Transhydrogenation reactions that transfer reduction equivalents from NADH to NADPH or vice versa can usually not be included in the stoichiometric model, because they result in singularities in the stoichiometric matrix. However, it is the NADPH balance that, to a large extent, determines the calculated flux through the pentose phosphate pathway. Hence, wrong assumptions on the presence or activity of transhydrogenation reactions will result in wrong estimations of the intracellular flux distribution. Using 13C tracer experiments and NMR analysis, flux analysis can be performed on the basis of only well established stoichiometric equations and measurements of the labeling state of intracellular metabolites. Neither NADH/NADPH balancing nor assumptions on energy yields need to be included to determine the intracellular fluxes. Because metabolite balancing methods and the use of 13C labeling measurements are two different approaches to the determination of intracellular fluxes, both methods can be used to verify each other or to discuss the origin and significance of deviations in the results. Flux analysis based entirely on metabolite balancing and flux analysis, including labeling information, have been performed independently for a wild-type strain of Aspergillus oryzae producing alpha-amylase. Two different nitrogen sources, NH4+ and NO3-, have been used to investigate the influence of the NADPH requirements on the intracellular flux distribution. The two different approaches to the calculation of fluxes are compared and deviations in the results are discussed. Copyright 1998 John Wiley & Sons, Inc.

  12. Analyzing the "CareGap": assessing gaps in adherence to clinical guidelines in adult soft tissue sarcoma.

    PubMed

    Waks, Zeev; Goldbraich, Esther; Farkash, Ariel; Torresani, Michele; Bertulli, Rossella; Restifo, Nicola; Locatelli, Paolo; Casali, Paolo; Carmeli, Boaz

    2013-01-01

    Clinical decision support systems (CDSSs) are gaining popularity as tools that assist physicians in optimizing medical care. These systems typically comply with evidence-based medicine and are designed with input from domain experts. Nonetheless, deviations from CDSS recommendations are abundant across a broad spectrum of disorders, raising the question as to why this phenomenon exists. Here, we analyze this gap in adherence to a clinical guidelines-based CDSS by examining the physician treatment decisions for 1329 adult soft tissue sarcoma patients in northern Italy using patient-specific parameters. Dubbing this analysis "CareGap", we find that deviations correlate strongly with certain disease features such as local versus metastatic clinical presentation. We also notice that deviations from the guideline-based CDSS suggestions occur more frequently for patients with shorter survival time. Such observations can direct physicians' attention to distinct patient cohorts that are prone to higher deviation levels from clinical practice guidelines. This illustrates the value of CareGap analysis in assessing quality of care for subsets of patients within a larger pathology.

  13. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups.

    PubMed

    Hasija, Narender; Bala, Madhu; Goyal, Virender

    2014-05-01

    Regards and Tribute: Late Dr Narender Hasija was a mentor and visionary in the light of knowledge and experience. We pay our regards with deepest gratitude to the departed soul to rest in peace. Bolton's ratios help in estimating overbite, overjet relationships, the effects of contemplated extractions on posterior occlusion, incisor relationships and identification of occlusal misfit produced by tooth size discrepancies. To determine any difference in tooth size discrepancy in anterior as well as overall ratio in different malocclusions and comparison with Bolton's study. After measuring the teeth on all 100 patients, Bolton's analysis was performed. Results were compared with Bolton's means and standard deviations. The results were also subjected to statistical analysis. Results show that the mean and standard deviations of ideal occlusion cases are comparable with those Bolton but, when the mean and standard deviation of malocclusion groups are compared with those of Bolton, the values of standard deviation are higher, though the mean is comparable. How to cite this article: Hasija N, Bala M, Goyal V. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups. Int J Clin Pediatr Dent 2014;7(2):82-85.

  14. Open inflation in the landscape

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Linde, Andrei; Naruko, Atsushi; Sasaki, Misao; Tanaka, Takahiro

    2011-08-01

    The open inflation scenario is attracting a renewed interest in the context of the string landscape. Since there are a large number of metastable de Sitter vacua in the string landscape, tunneling transitions to lower metastable vacua through the bubble nucleation occur quite naturally, which leads to a natural realization of open inflation. Although the deviation of Ω0 from unity is small by the observational bound, we argue that the effect of this small deviation on the large-angle CMB anisotropies can be significant for tensor-type perturbation in the open inflation scenario. We consider the situation in which there is a large hierarchy between the energy scale of the quantum tunneling and that of the slow-roll inflation in the nucleated bubble. If the potential just after tunneling is steep enough, a rapid-roll phase appears before the slow-roll inflation. In this case the power spectrum is basically determined by the Hubble rate during the slow-roll inflation. On the other hand, if such a rapid-roll phase is absent, the power spectrum keeps the memory of the high energy density there in the large angular components. Furthermore, the amplitude of large angular components can be enhanced due to the effects of the wall fluctuation mode if the bubble wall tension is small. Therefore, although even the dominant quadrupole component is suppressed by the factor (1-Ω0)2, one can construct some models in which the deviation of Ω0 from unity is large enough to produce measurable effects. We also consider a more general class of models, where the false vacuum decay may occur due to Hawking-Moss tunneling, as well as the models involving more than one scalar field. We discuss scalar perturbations in these models and point out that a large set of such models is already ruled out by observational data, unless there was a very long stage of slow-roll inflation after the tunneling. These results show that observational data allow us to test various assumptions concerning the structure of the string theory potentials and the duration of the last stage of inflation.

  15. Variability of pesticide detections and concentrations in field replicate water samples collected for the National Water-Quality Assessment Program, 1992-97

    USGS Publications Warehouse

    Martin, Jeffrey D.

    2002-01-01

    Correlation analysis indicates that for most pesticides and concentrations, pooled estimates of relative standard deviation rather than pooled estimates of standard deviation should be used to estimate variability because pooled estimates of relative standard deviation are less affected by heteroscedasticity. The 2 Variability of Pesticide Detections and Concentrations in Field Replicate Water Samples, 1992–97 median pooled relative standard deviation was calculated for all pesticides to summarize the typical variability for pesticide data collected for the NAWQA Program. The median pooled relative standard deviation was 15 percent at concentrations less than 0.01 micrograms per liter (µg/L), 13 percent at concentrations near 0.01 µg/L, 12 percent at concentrations near 0.1 µg/L, 7.9 percent at concentrations near 1 µg/L, and 2.7 percent at concentrations greater than 5 µg/L. Pooled estimates of standard deviation or relative standard deviation presented in this report are larger than estimates based on averages, medians, smooths, or regression of the individual measurements of standard deviation or relative standard deviation from field replicates. Pooled estimates, however, are the preferred method for characterizing variability because they provide unbiased estimates of the variability of the population. Assessments of variability based on standard deviation (rather than variance) underestimate the true variability of the population. Because pooled estimates of variability are larger than estimates based on other approaches, users of estimates of variability must be cognizant of the approach used to obtain the estimate and must use caution in the comparison of estimates based on different approaches.

  16. Determinants of ocular deviation in esotropic subjects under general anesthesia.

    PubMed

    Daien, Vincent; Turpin, Chloé; Lignereux, François; Belghobsi, Riadh; Le Meur, Guylene; Lebranchu, Pierre; Pechereau, Alain

    2013-01-01

    The authors attempted to identify the determinants of ocular deviation in a population of patients with esotropia under general anesthesia. Forty-one patients with esotropia were included. Horizontal ocular deviation was evaluated by the photographic Hirschberg test both in the awakened state and under general anesthesia before surgery. Changes in ocular deviation were measured and a multivariate analysis was used to assess its clinical determinants. The mean age (± standard deviation [SD]) of study subjects was 13 ± 11 years and 51% were females. The mean spherical equivalent refraction of the right eye was 2.44 ± 2.50 diopters (D), with no significant difference between eyes (P = .26). The mean ocular deviation changed significantly, from 33.5 ± 12.5 prism diopters (PD) at preoperative examination to 8.8 ± 11.4 PD under general anesthesia (P = .0001). The changes in ocular deviation positively correlated with the pre-operative ocular deviation (correlation coefficient r = 0.59, P = .0001) and negatively correlated with patient age (correlation coefficient r = -0.53, P = .0001). These two determinants remained significant after multivariate adjustment of the following variables: preoperative ocular deviation; age; gender; spherical equivalent refraction; and number of previous strabismus surgeries (model r(2) = 0.49, P = .0001). The ocular position under general anesthesia was reported as a key factor in the surgical treatment of subjects with esotropia; therefore, its clinical determinants were assessed. The authors observed that preoperative ocular deviation and patient age were the main factors that influenced the ocular position under general anesthesia. Copyright 2013, SLACK Incorporated.

  17. Analysis of Flatness Deviations for Austenitic Stainless Steel Workpieces after Efficient Surface Machining

    NASA Astrophysics Data System (ADS)

    Nadolny, K.; Kapłonek, W.

    2014-08-01

    The following work is an analysis of flatness deviations of a workpiece made of X2CrNiMo17-12-2 austenitic stainless steel. The workpiece surface was shaped using efficient machining techniques (milling, grinding, and smoothing). After the machining was completed, all surfaces underwent stylus measurements in order to obtain surface flatness and roughness parameters. For this purpose the stylus profilometer Hommel-Tester T8000 by Hommelwerke with HommelMap software was used. The research results are presented in the form of 2D surface maps, 3D surface topographies with extracted single profiles, Abbott-Firestone curves, and graphical studies of the Sk parameters. The results of these experimental tests proved the possibility of a correlation between flatness and roughness parameters, as well as enabled an analysis of changes in these parameters from shaping and rough grinding to finished machining. The main novelty of this paper is comprehensive analysis of measurement results obtained during a three-step machining process of austenitic stainless steel. Simultaneous analysis of individual machining steps (milling, grinding, and smoothing) enabled a complementary assessment of the process of shaping the workpiece surface macro- and micro-geometry, giving special consideration to minimize the flatness deviations

  18. Moderate Deviation Analysis for Classical Communication over Quantum Channels

    NASA Astrophysics Data System (ADS)

    Chubb, Christopher T.; Tan, Vincent Y. F.; Tomamichel, Marco

    2017-11-01

    We analyse families of codes for classical data transmission over quantum channels that have both a vanishing probability of error and a code rate approaching capacity as the code length increases. To characterise the fundamental tradeoff between decoding error, code rate and code length for such codes we introduce a quantum generalisation of the moderate deviation analysis proposed by Altŭg and Wagner as well as Polyanskiy and Verdú. We derive such a tradeoff for classical-quantum (as well as image-additive) channels in terms of the channel capacity and the channel dispersion, giving further evidence that the latter quantity characterises the necessary backoff from capacity when transmitting finite blocks of classical data. To derive these results we also study asymmetric binary quantum hypothesis testing in the moderate deviations regime. Due to the central importance of the latter task, we expect that our techniques will find further applications in the analysis of other quantum information processing tasks.

  19. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis

    USGS Publications Warehouse

    Coplen, T.B.; Wildman, J.D.; Chen, J.

    1991-01-01

    Improved precision in the H2-H2O equilibration method for ??D analysis has been achieved in an automated system. Reduction in 1-?? standard deviation of a single mass-spectrometer analysis to 1.3??? is achieved by (1) bonding catalyst to glass rods and assigning use to specific equilibration chambers to monitor performance of catalyst, (2) improving the apparatus design, and (3) reducing the H3+ contribution of the mass-spectrometer ion source. For replicate analysis of a water sample, the standard deviation improved to 0.8???. H2S-bearing samples and samples as small as 0.1 mL can be analyzed routinely with this method.

  20. Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O' studied by neutron total scattering

    NASA Astrophysics Data System (ADS)

    Shoemaker, Daniel P.; Seshadri, Ram; Hector, Andrew L.; Llobet, Anna; Proffen, Thomas; Fennie, Craig J.

    2010-04-01

    The oxide pyrochlore Bi2Ti2O6O' is known to be associated with large displacements of Bi and O' atoms from their ideal crystallographic positions. Neutron total scattering, analyzed in both reciprocal and real space, is employed here to understand the nature of these displacements. Rietveld analysis and maximum entropy methods are used to produce an average picture of the structural nonideality. Local structure is modeled via large-box reverse Monte Carlo simulations constrained simultaneously by the Bragg profile and real-space pair distribution function. Direct visualization and statistical analyses of these models show the precise nature of the static Bi and O' displacements. Correlations between neighboring Bi displacements are analyzed using coordinates from the large-box simulations. The framework of continuous symmetry measures has been applied to distributions of O'Bi4 tetrahedra to examine deviations from ideality. Bi displacements from ideal positions appear correlated over local length scales. The results are consistent with the idea that these nonmagnetic lone-pair containing pyrochlore compounds can be regarded as highly structurally frustrated systems.

  1. Characterizing Accuracy and Precision of Glucose Sensors and Meters

    PubMed Central

    2014-01-01

    There is need for a method to describe precision and accuracy of glucose measurement as a smooth continuous function of glucose level rather than as a step function for a few discrete ranges of glucose. We propose and illustrate a method to generate a “Glucose Precision Profile” showing absolute relative deviation (ARD) and /or %CV versus glucose level to better characterize measurement errors at any glucose level. We examine the relationship between glucose measured by test and comparator methods using linear regression. We examine bias by plotting deviation = (test – comparator method) versus glucose level. We compute the deviation, absolute deviation (AD), ARD, and standard deviation (SD) for each data pair. We utilize curve smoothing procedures to minimize the effects of random sampling variability to facilitate identification and display of the underlying relationships between ARD or %CV and glucose level. AD, ARD, SD, and %CV display smooth continuous relationships versus glucose level. Estimates of MARD and %CV are subject to relatively large errors in the hypoglycemic range due in part to a markedly nonlinear relationship with glucose level and in part to the limited number of observations in the hypoglycemic range. The curvilinear relationships of ARD and %CV versus glucose level are helpful when characterizing and comparing the precision and accuracy of glucose sensors and meters. PMID:25037194

  2. Role of the standard deviation in the estimation of benchmark doses with continuous data.

    PubMed

    Gaylor, David W; Slikker, William

    2004-12-01

    For continuous data, risk is defined here as the proportion of animals with values above a large percentile, e.g., the 99th percentile or below the 1st percentile, for the distribution of values among control animals. It is known that reducing the standard deviation of measurements through improved experimental techniques will result in less stringent (higher) doses for the lower confidence limit on the benchmark dose that is estimated to produce a specified risk of animals with abnormal levels for a biological effect. Thus, a somewhat larger (less stringent) lower confidence limit is obtained that may be used as a point of departure for low-dose risk assessment. It is shown in this article that it is important for the benchmark dose to be based primarily on the standard deviation among animals, s(a), apart from the standard deviation of measurement errors, s(m), within animals. If the benchmark dose is incorrectly based on the overall standard deviation among average values for animals, which includes measurement error variation, the benchmark dose will be overestimated and the risk will be underestimated. The bias increases as s(m) increases relative to s(a). The bias is relatively small if s(m) is less than one-third of s(a), a condition achieved in most experimental designs.

  3. Towards Behavioral Reflexion Models

    NASA Technical Reports Server (NTRS)

    Ackermann, Christopher; Lindvall, Mikael; Cleaveland, Rance

    2009-01-01

    Software architecture has become essential in the struggle to manage today s increasingly large and complex systems. Software architecture views are created to capture important system characteristics on an abstract and, thus, comprehensible level. As the system is implemented and later maintained, it often deviates from the original design specification. Such deviations can have implication for the quality of the system, such as reliability, security, and maintainability. Software architecture compliance checking approaches, such as the reflexion model technique, have been proposed to address this issue by comparing the implementation to a model of the systems architecture design. However, architecture compliance checking approaches focus solely on structural characteristics and ignore behavioral conformance. This is especially an issue in Systems-of- Systems. Systems-of-Systems (SoS) are decompositions of large systems, into smaller systems for the sake of flexibility. Deviations of the implementation to its behavioral design often reduce the reliability of the entire SoS. An approach is needed that supports the reasoning about behavioral conformance on architecture level. In order to address this issue, we have developed an approach for comparing the implementation of a SoS to an architecture model of its behavioral design. The approach follows the idea of reflexion models and adopts it to support the compliance checking of behaviors. In this paper, we focus on sequencing properties as they play an important role in many SoS. Sequencing deviations potentially have a severe impact on the SoS correctness and qualities. The desired behavioral specification is defined in UML sequence diagram notation and behaviors are extracted from the SoS implementation. The behaviors are then mapped to the model of the desired behavior and the two are compared. Finally, a reflexion model is constructed that shows the deviations between behavioral design and implementation. This paper discusses the approach and shows how it can be applied to investigate reliability issues in SoS.

  4. Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System

    PubMed Central

    Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin

    2016-01-01

    Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems. PMID:27548171

  5. Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    PubMed Central

    Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.

    2011-01-01

    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - C ata L ytic A ctive S ite P rediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. PMID:22174814

  6. An analysis of the massless planet approximation in transit light curve models

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Ruch, Gerry

    2015-08-01

    Many extrasolar planet transit light curve models use the approximation of a massless planet. They approximate the planet as orbiting elliptically with the host star at the orbit’s focus instead of depicting the planet and star as both orbiting around a common center of mass. This approximation should generally be very good because the transit is a small fraction of the full-phase curve and the planet to stellar mass ratio is typically very small. However, to fully examine the legitimacy of this approximation, it is useful to perform a robust, all-parameter space-encompassing statistical comparison between the massless planet model and the more accurate model.Towards this goal, we establish two questions: (1) In what parameter domain is the approximation invalid? (2) If characterizing an exoplanetary system in this domain, what is the error of the parameter estimates when using the simplified model? We first address question (1). Given each parameter vector in a finite space, we can generate the simplified and more complete model curves. Associated with these model curves is a measure of the deviation between them, such as the root mean square (RMS). We use Gibbs sampling to generate a sample that is distributed according to the RMS surface. The high-density regions in the sample correspond to a large deviation between the models. To determine the domains of these high-density areas, we first employ the Ordering Points to Identify the Clustering Structure (OPTICS) algorithm. We then characterize the subclusters by performing the Patient Rule Induction Method (PRIM) on the transformed Principal Component spaces of each cluster. This process yields descriptors of the parameter domains with large discrepancies between the models.To consider question (2), we start by generating synthetic transit curve observations in the domains specified by the above analysis. We then derive the best-fit parameters of these synthetic light curves according to each model and examine the quality of agreement between the estimated parameters. Taken as a whole, these steps allow for a thorough analysis of the validity of the massless planet approximation.

  7. Approximate message passing for nonconvex sparse regularization with stability and asymptotic analysis

    NASA Astrophysics Data System (ADS)

    Sakata, Ayaka; Xu, Yingying

    2018-03-01

    We analyse a linear regression problem with nonconvex regularization called smoothly clipped absolute deviation (SCAD) under an overcomplete Gaussian basis for Gaussian random data. We propose an approximate message passing (AMP) algorithm considering nonconvex regularization, namely SCAD-AMP, and analytically show that the stability condition corresponds to the de Almeida-Thouless condition in spin glass literature. Through asymptotic analysis, we show the correspondence between the density evolution of SCAD-AMP and the replica symmetric (RS) solution. Numerical experiments confirm that for a sufficiently large system size, SCAD-AMP achieves the optimal performance predicted by the replica method. Through replica analysis, a phase transition between replica symmetric and replica symmetry breaking (RSB) region is found in the parameter space of SCAD. The appearance of the RS region for a nonconvex penalty is a significant advantage that indicates the region of smooth landscape of the optimization problem. Furthermore, we analytically show that the statistical representation performance of the SCAD penalty is better than that of \

  8. Trends in computer applications in science assessment

    NASA Astrophysics Data System (ADS)

    Kumar, David D.; Helgeson, Stanley L.

    1995-03-01

    Seven computer applications to science assessment are reviewed. Conventional test administration includes record keeping, grading, and managing test banks. Multiple-choice testing involves forced selection of an answer from a menu, whereas constructed-response testing involves options for students to present their answers within a set standard deviation. Adaptive testing attempts to individualize the test to minimize the number of items and time needed to assess a student's knowledge. Figurai response testing assesses science proficiency in pictorial or graphic mode and requires the student to construct a mental image rather than selecting a response from a multiple choice menu. Simulations have been found useful for performance assessment on a large-scale basis in part because they make it possible to independently specify different aspects of a real experiment. An emerging approach to performance assessment is solution pathway analysis, which permits the analysis of the steps a student takes in solving a problem. Virtually all computer-based testing systems improve the quality and efficiency of record keeping and data analysis.

  9. Precision theoretical analysis of neutron radiative beta decay to order O (α2/π2)

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.

    2017-06-01

    In the Standard Model (SM) we calculate the decay rate of the neutron radiative β- decay to order O (α2/π2˜10-5), where α is the fine-structure constant, and radiative corrections to order O (α /π ˜10-3). The obtained results together with the recent analysis of the neutron radiative β- decay to next-to-leading order in the large proton-mass expansion, performed by Ivanov et al. [Phys. Rev. D 95, 033007 (2017), 10.1103/PhysRevD.95.033007], describe recent experimental data by the RDK II Collaboration [Bales et al., Phys. Rev. Lett. 116, 242501 (2016), 10.1103/PhysRevLett.116.242501] within 1.5 standard deviations. We argue a substantial influence of strong low-energy interactions of hadrons coupled to photons on the properties of the amplitude of the neutron radiative β- decay under gauge transformations of real and virtual photons.

  10. Trans-pent-2-ene. Electron diffraction, vibrational analysis and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Ter Brake, J. H. M.; Mijlhoff, F. C.

    1981-12-01

    The molecular structure of trans-pent-2-ene has been investigated, using electron diffraction, vibrational analysis and molecular mechanics. It is possible to Fit a model, describing trans-pent-2-ene as a semi-rigid molecule with one conformer only, to the electron diffraction data. However, molecular mechanics shows that trans-pent-2-ene is not a semi-rigid molecule. The large-amplitude motion is described, using all pseudo-conformers at 10° intervals around the circle of rotation. The resulting rα structure is: r[-C-C] = 148.4(1), r[-CC-] = 133.4(2), r[-C-C-] = 157.6(5), r[C-H] = 108.2(1)pm; ∠[-C-CC-] = 125.4(3), ∠[C-C-C-] = 115.6(6), ∠[-C-C-H] = 12.7(6), ∠[-CC-H] = 129(2)°. Standard deviations given in parentheses refer to the last significant digit.

  11. Analysis of condensation on a horizontal cylinder with unknown wall temperature and comparison with the Nusselt model of film condensation

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1996-01-01

    Theoretical analysis and numerical computations are performed to set forth a new model of film condensation on a horizontal cylinder. The model is more general than the well-known Nusselt model of film condensation and is designed to encompass all essential features of the Nusselt model. It is shown that a single parameter, constructed explicitly and without specification of the cylinder wall temperature, determines the degree of departure from the Nusselt model, which assumes a known and uniform wall temperature. It is also known that the Nusselt model is reached for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall temperature assumes a uniform distribution and the Nusselt model is approached. The maximum deviations between the two models is rather small for cases which are representative of cylinder dimensions, materials and conditions encountered in practice.

  12. Method development for the analysis of N-nitrosodimethylamine and other N-nitrosamines in drinking water at low nanogram/liter concentrations using solid-phase extraction and gas chromatography with chemical ionization tandem mass spectrometry.

    PubMed

    Munch, Jean W; Bassett, Margarita V

    2006-01-01

    N-nitrosodimethylamine (NDMA) is a probable human carcinogen of concern that has been identified as a drinking water contaminant. U.S. Environmental Protection Agency Method 521 has been developed for the analysis of NDMA and 6 additional N-nitrosamines in drinking water at low ng/L concentrations. The method uses solid-phase extraction with coconut charcoal as the sorbent and dichloromethane as the eluent to concentrate 0.50 L water samples to 1 mL. The extracts are analyzed by gas chromatography-chemical ionization tandem mass spectrometry using large-volume injection. Method performance was evaluated in 2 laboratories. Typical analyte recoveries of 87-104% were demonstrated for fortified reagent water samples, and recoveries of 77-106% were demonstrated for fortified drinking water samples. All relative standard deviations on replicate analyses were < 11%.

  13. Stock flow diagram analysis on solid waste management in Malaysia

    NASA Astrophysics Data System (ADS)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  14. Introduction to multifractal detrended fluctuation analysis in matlab.

    PubMed

    Ihlen, Espen A F

    2012-01-01

    Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra.

  15. Introduction to Multifractal Detrended Fluctuation Analysis in Matlab

    PubMed Central

    Ihlen, Espen A. F.

    2012-01-01

    Fractal structures are found in biomedical time series from a wide range of physiological phenomena. The multifractal spectrum identifies the deviations in fractal structure within time periods with large and small fluctuations. The present tutorial is an introduction to multifractal detrended fluctuation analysis (MFDFA) that estimates the multifractal spectrum of biomedical time series. The tutorial presents MFDFA step-by-step in an interactive Matlab session. All Matlab tools needed are available in Introduction to MFDFA folder at the website www.ntnu.edu/inm/geri/software. MFDFA are introduced in Matlab code boxes where the reader can employ pieces of, or the entire MFDFA to example time series. After introducing MFDFA, the tutorial discusses the best practice of MFDFA in biomedical signal processing. The main aim of the tutorial is to give the reader a simple self-sustained guide to the implementation of MFDFA and interpretation of the resulting multifractal spectra. PMID:22675302

  16. Automatic Fault Recognition of Photovoltaic Modules Based on Statistical Analysis of Uav Thermography

    NASA Astrophysics Data System (ADS)

    Kim, D.; Youn, J.; Kim, C.

    2017-08-01

    As a malfunctioning PV (Photovoltaic) cell has a higher temperature than adjacent normal cells, we can detect it easily with a thermal infrared sensor. However, it will be a time-consuming way to inspect large-scale PV power plants by a hand-held thermal infrared sensor. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule based on the mean intensity and standard deviation range was developed to detect defective PV modules from individual array automatically. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97 % or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule.

  17. Linking log files with dosimetric accuracy--A multi-institutional study on quality assurance of volumetric modulated arc therapy.

    PubMed

    Pasler, Marlies; Kaas, Jochem; Perik, Thijs; Geuze, Job; Dreindl, Ralf; Künzler, Thomas; Wittkamper, Frits; Georg, Dietmar

    2015-12-01

    To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Constructing Ozone Profile Climatologies with Self-Organizing Maps: Illustrations with CONUS Ozonesonde Data

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Stauffer, R. M.; Young, G. S.

    2015-12-01

    Ozone (O3) trends analysis is typically performed with monthly or seasonal averages. Although this approach works well for stratospheric or total O3, uncertainties in tropospheric O3 amounts may be large due to rapid meteorological changes near the tropopause and in the lower free troposphere (LFT) where pollution has a days-weeks lifetime. We use self-organizing maps (SOM), a clustering technique, as an alternative for creating tropospheric climatologies from O3 soundings. In a previous study of 900 tropical ozonesondes, clusters representing >40% of profiles deviated > 1-sigma from mean O­3. Here SOM are based on 15 years of data from four sites in the contiguous US (CONUS; Boulder, CO; Huntsville, AL; Trinidad Head, CA; Wallops Island, VA). Ozone profiles from 2 - 12 km are used to evaluate the impact of tropopause variability on climatology; 2 - 6 km O3 profile segments are used for the LFT. Near-tropopause O­3 is twice the mean O­3 mixing ratio in three clusters of 2 - 12 km O3, representing > 15% of profiles at each site. Large mid and lower-tropospheric O3 deviations from monthly means are found in clusters of both 2 - 12 and 2 - 6 km O3. Positive offsets result from pollution and stratosphere-to-troposphere exchange. In the LFT the lowest tropospheric O3 is associated with subtropical air. Some clusters include profiles with common seasonality but other factors, e.g., tropopause height or LFT column amount, characterize other SOM nodes. Thus, as for tropical profiles, CONUS O­3 averages can be a poor choice for a climatology.

  19. Operator product expansion in Liouville field theory and Seiberg-type transitions in log-correlated random energy models

    NASA Astrophysics Data System (ADS)

    Cao, Xiangyu; Le Doussal, Pierre; Rosso, Alberto; Santachiara, Raoul

    2018-04-01

    We study transitions in log-correlated random energy models (logREMs) that are related to the violation of a Seiberg bound in Liouville field theory (LFT): the binding transition and the termination point transition (a.k.a., pre-freezing). By means of LFT-logREM mapping, replica symmetry breaking and traveling-wave equation techniques, we unify both transitions in a two-parameter diagram, which describes the free-energy large deviations of logREMs with a deterministic background log potential, or equivalently, the joint moments of the free energy and Gibbs measure in logREMs without background potential. Under the LFT-logREM mapping, the transitions correspond to the competition of discrete and continuous terms in a four-point correlation function. Our results provide a statistical interpretation of a peculiar nonlocality of the operator product expansion in LFT. The results are rederived by a traveling-wave equation calculation, which shows that the features of LFT responsible for the transitions are reproduced in a simple model of diffusion with absorption. We examine also the problem by a replica symmetry breaking analysis. It complements the previous methods and reveals a rich large deviation structure of the free energy of logREMs with a deterministic background log potential. Many results are verified in the integrable circular logREM, by a replica-Coulomb gas integral approach. The related problem of common length (overlap) distribution is also considered. We provide a traveling-wave equation derivation of the LFT predictions announced in a precedent work.

  20. Stimuli eliciting sexual arousal in males who offend adult women: an experimental study.

    PubMed

    Kolárský, A; Madlafousek, J; Novotná, V

    1978-03-01

    The sexually arousing effects of short film scenes showing a naked actress's seductive behavior were phalloplethysmographically measured in 14 sexual deviates. These were males who had offended adult women, predominantly exhibitionists. Controls were 14 normal men. Deviates responded positively to the scenes and differentiated strong and weak seduction scenes similarly to normals. Consequently, the question arises of why deviates avoid their victim's erotic cooperation and why they do not offend their regular sexual partners. Post hoc analysis of five scenes which elicited a strikingly higher response in deviates than in normals suggested that these scenes contained reduced seductive behavior but unrestrained presentation of the genitals. This finding further encourages the laboratory study of stimulus conditions for abnormal sexual arousal which occurs during the sexual offense.

  1. Large short-term deviations from dipolar field during the Levantine Iron Age Geomagnetic Anomaly ca. 1050-700 BCE

    NASA Astrophysics Data System (ADS)

    Shaar, R.; Tauxe, L.; Ebert, Y.

    2017-12-01

    Continuous decadal-resolution paleomagnetic data from archaeological and sedimentary sources in the Levant revealed the existence a local high-field anomaly, which spanned the first 350 years of the first millennium BCE. This so-called "the Levantine Iron Age geomagnetic Anomaly" (LIAA) was characterized by a high averaged geomagnetic field (virtual axial dipole moments, VADM > 140 Z Am2, nearly twice of today's field), short decadal-scale geomagnetic spikes (VADM of 160-185 Z Am2), fast directional and intensity variations, and substantial deviation (20°-25°) from dipole field direction. Similar high field values in the time frame of LIAA have been observed north, and northeast to the Levant: Eastern Anatolia, Turkmenistan, and Georgia. West of the Levant, in the Balkans, field values in the same time are moderate to low. The overall data suggest that the LIAA is a manifestation of a local positive geomagnetic field anomaly similar in magnitude and scale to the presently active negative South Atlantic Anomaly. In this presentation we review the overall archaeomagnetic and sedimentary evidences supporting the local anomaly hypothesis, and compare these observations with today's IGRF field. We analyze the global data during the first two millennia BCE, which suggest some unexpected large deviations from a simple dipolar geomagnetic structure.

  2. Vocal singing by prelingually-deafened children with cochlear implants.

    PubMed

    Xu, Li; Zhou, Ning; Chen, Xiuwu; Li, Yongxin; Schultz, Heather M; Zhao, Xiaoyan; Han, Demin

    2009-09-01

    The coarse pitch information in cochlear implants might hinder the development of singing in prelingually-deafened pediatric users. In the present study, seven prelingually-deafened children with cochlear implants (5.4-12.3 years old) sang one song that was the most familiar to him or her. The control group consisted of 14 normal-hearing children (4.1-8.0 years old). The fundamental frequencies (F0) of each note in the recorded songs were extracted. The following five metrics were computed based on the reference music scores: (1) F0 contour direction of the adjacent notes, (2) F0 compression ratio of the entire song, (3) mean deviation of the normalized F0 across the notes, (4) mean deviation of the pitch intervals, and (5) standard deviation of the note duration differences. Children with cochlear implants showed significantly poorer performance in the pitch-based assessments than the normal-hearing children. No significant differences were seen between the two groups in the rhythm-based measure. Prelingually-deafened children with cochlear implants have significant deficits in singing due to their inability to manipulate pitch in the correct directions and to produce accurate pitch height. Future studies with a large sample size are warranted in order to account for the large variability in singing performance.

  3. Spectral Relative Standard Deviation: A Practical Benchmark in Metabolomics

    EPA Science Inventory

    Metabolomics datasets, by definition, comprise of measurements of large numbers of metabolites. Both technical (analytical) and biological factors will induce variation within these measurements that is not consistent across all metabolites. Consequently, criteria are required to...

  4. Large deviations in the random sieve

    NASA Astrophysics Data System (ADS)

    Grimmett, Geoffrey

    1997-05-01

    The proportion [rho]k of gaps with length k between square-free numbers is shown to satisfy log[rho]k=[minus sign](1+o(1))(6/[pi]2) klogk as k[rightward arrow][infty infinity]. Such asymptotics are consistent with Erdos's challenge to prove that the gap following the square-free number t is smaller than clogt/log logt, for all t and some constant c satisfying c>[pi]2/12. The results of this paper are achieved by studying the probabilities of large deviations in a certain ‘random sieve’, for which the proportions [rho]k have representations as probabilities. The asymptotic form of [rho]k may be obtained in situations of greater generality, when the squared primes are replaced by an arbitrary sequence (sr) of relatively prime integers satisfying [sum L: summation operator]r1/sr<[infty infinity], subject to two further conditions of regularity on this sequence.

  5. Simple programmable voltage reference for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Ivanov, V. E.; Chye, En Un

    2018-05-01

    The paper presents a circuit design of a low-noise voltage reference based on an electric double-layer capacitor, a microcontroller and a general purpose DAC. A large capacitance value (1F and more) makes it possible to create low-pass filter with a large time constant, effectively reducing low-frequency noise beyond its bandwidth. Choosing the optimum value of the resistor in the RC filter, one can achieve the best ratio between the transient time, the deviation of the output voltage from the set point and the minimum noise cut-off frequency. As experiments have shown, the spectral density of the voltage at a frequency of 1 kHz does not exceed 1.2 nV/√Hz the maximum deviation of the output voltage from the predetermined does not exceed 1.4 % and depends on the holding time of the previous value. Subsequently, this error is reduced to a constant value and can be compensated.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.; Abbott, B.; Abdallah, J.

    The results of a search for gluinos in final states with an isolated electron or muon, multiple jets and large missing transverse momentum using proton–proton collision data at a centre-of-mass energy ofmore » $$\\sqrt{s}$$ = 13 Te V are presented. The dataset used was recorded in 2015 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 3.2 fb -1 . Six signal selections are defined that best exploit the signal characteristics. The data agree with the Standard Model background expectation in all six signal selections, and the largest deviation is a 2.1 standard deviation excess. The results are interpreted in a simplified model where pair-produced gluinos decay via the lightest chargino to the lightest neutralino. In this model, gluinos are excluded up to masses of approximately 1.6 Te V depending on the mass spectrum of the simplified model, thus surpassing the limits of previous searches.« less

  7. Geometric phase for a two-level system in photonic band gab crystal

    NASA Astrophysics Data System (ADS)

    Berrada, K.

    2018-05-01

    In this work, we investigate the geometric phase (GP) for a qubit system coupled to its own anisotropic and isotropic photonic band gap (PBG) crystal environment without Born or Markovian approximation. The qubit frequency affects the GP of the qubit directly through the effect of the PBG environment. The results show the deviation of the GP depends on the detuning parameter and this deviation will be large for relatively large detuning of atom frequency inside the gap with respect to the photonic band edge. Whereas for detunings outside the gap, the GP of the qubit changes abruptly to zero, exhibiting collapse phenomenon of the GP. Moreover, we find that the GP in the isotropic PBG photonic crystal is more robust than that in the anisotropic PBG under the same condition. Finally, we explore the relationship between the variation of the GP and population in terms of the physical parameters.

  8. Investigation of compositional segregation during unidirectional solidification of solid solution semiconducting alloys

    NASA Technical Reports Server (NTRS)

    Wang, J. C.

    1982-01-01

    Compositional segregation of solid solution semiconducting alloys in the radial direction during unidirectional solidification was investigated by calculating the effect of a curved solid liquid interface on solute concentration at the interface on the solid. The formulation is similar to that given by Coriell, Boisvert, Rehm, and Sekerka except that a more realistic cylindrical coordinate system which is moving with the interface is used. Analytical results were obtained for very small and very large values of beta with beta = VR/D, where V is the velocity of solidification, R the radius of the specimen, and D the diffusivity of solute in the liquid. For both very small and very large beta, the solute concentration at the interface in the solid C(si) approaches C(o) (original solute concentration) i.e., the deviation is minimal. The maximum deviation of C(si) from C(o) occurs for some intermediate value of beta.

  9. Neoclassical canons of facial beauty: Do we see the deviations?

    PubMed

    Pavlic, Andrej; Trinajstic Zrinski, Magda; Katic, Visnja; Spalj, Stjepan

    2017-05-01

    To explore the presence of neoclassical canons of facial beauty among young people in Croatia and to question possible psychosocial repercussions occurring in those who demonstrate deviations in relation to canons. The study was cross-sectional and the sample included 249 subjects (60% female) aged 12-39 (median 20). Their en face and profile photographs were taken in Natural Head Position. Photogrammetry included analysis of nine neoclassical canons of facial beauty originating from the Renaissance. Psychosocial issues were assessed using the Self-Esteem Scale, Big Five Inventory and three domains of Orthognathic Quality of Life Questionnaire. Significant deviations from neoclassical facial beauty canons were observed in 55-65% of adolescents and young adults. Gender and age showed no relation to deviations. The deviations from canons that influenced the quality of life were mainly those related to vertical facial proportions and demonstrated increased facial aesthetics concern and social impact, and higher self-reported treatment need (p < 0.05). Deviations from canons were not related to self-esteem but a decrease in openness, agreeableness and neuroticism was observed. Neoclassical canons were not valid for the majority of adolescents and young adults in Croatia. Only deviations from some canons appear to provoke mild psychosocial repercussions. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Unexpected extreme events drive the inter-annual variabilty in carbon exchange at the Pine forest in Netherlands.

    NASA Astrophysics Data System (ADS)

    Sethi, Sanjna; Moors, Eddy; Jamir, Chubamenla

    2017-04-01

    The carbon exchange between vegetation and the atmosphere tends to vary on an annual basis. This change is a continuous process its trend emerging over a period of years can be analysed. In any such trend over a prolonged period, some years stand out more than the others on account of extreme events. Explaining deviations from the expected average emissions may help to understand the drivers behind these interannual deviations. Such noticeable deviations in trend maybe on account of extreme events and need to be analysed in overall context of the ecosystem. This research's focus is to identify the main drivers responsible for the deviations, and how extreme events impact the variability over a prolonged period of time. The hypothesis being that extreme events are driving these deviations. Carbon flux data done for multiple years (1997-2015) for a site at the Loobos Pine Forest is used and compared with an ecosystem model, LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) to understand if the deviation of measured data from the simulated data is on account of extreme events on a monthly and daily basis. A Principal Component Analysis is performed on the identified deviations between measured and simulated carbon exchange to pin point the main cause behind their occurrence.​

  11. Repeatable source, site, and path effects on the standard deviation for empirical ground-motion prediction models

    USGS Publications Warehouse

    Lin, P.-S.; Chiou, B.; Abrahamson, N.; Walling, M.; Lee, C.-T.; Cheng, C.-T.

    2011-01-01

    In this study, we quantify the reduction in the standard deviation for empirical ground-motion prediction models by removing ergodic assumption.We partition the modeling error (residual) into five components, three of which represent the repeatable source-location-specific, site-specific, and path-specific deviations from the population mean. A variance estimation procedure of these error components is developed for use with a set of recordings from earthquakes not heavily clustered in space.With most source locations and propagation paths sampled only once, we opt to exploit the spatial correlation of residuals to estimate the variances associated with the path-specific and the source-location-specific deviations. The estimation procedure is applied to ground-motion amplitudes from 64 shallow earthquakes in Taiwan recorded at 285 sites with at least 10 recordings per site. The estimated variance components are used to quantify the reduction in aleatory variability that can be used in hazard analysis for a single site and for a single path. For peak ground acceleration and spectral accelerations at periods of 0.1, 0.3, 0.5, 1.0, and 3.0 s, we find that the singlesite standard deviations are 9%-14% smaller than the total standard deviation, whereas the single-path standard deviations are 39%-47% smaller.

  12. Distractor Evoked Deviations of Saccade Trajectory Are Modulated by Fixation Activity in the Superior Colliculus: Computational and Behavioral Evidence

    PubMed Central

    Wang, Zhiguo; Theeuwes, Jan

    2014-01-01

    Previous studies have shown that saccades may deviate towards or away from task irrelevant visual distractors. This observation has been attributed to active suppression (inhibition) of the distractor location unfolding over time: early in time inhibition at the distractor location is incomplete causing deviation towards the distractor, while later in time when inhibition is complete the eyes deviate away from the distractor. In a recent computational study, Wang, Kruijne and Theeuwes proposed an alternative theory that the lateral interactions in the superior colliculus (SC), which are characterized by short-distance excitation and long-distance inhibition, are sufficient for generating both deviations towards and away from distractors. In the present study, we performed a meta-analysis of the literature, ran model simulations and conducted two behavioral experiments to further explore this unconventional theory. Confirming predictions generated by the model simulations, the behavioral experiments show that a) saccades deviate towards close distractors and away from remote distractors, and b) the amount of deviation depends on the strength of fixation activity in the SC, which can be manipulated by turning off the fixation stimulus before or after target onset (Experiment 1), or by varying the eccentricity of the target and distractor (Experiment 2). PMID:25551552

  13. The phonatory deviation diagram: a novel objective measurement of vocal function.

    PubMed

    Madazio, Glaucya; Leão, Sylvia; Behlau, Mara

    2011-01-01

    To identify the discriminative characteristics of the phonatory deviation diagram (PDD) in rough, breathy and tense voices. One hundred and ninety-six samples of normal and dysphonic voices from adults were submitted to perceptual auditory evaluation, focusing on the predominant vocal quality and the degree of deviation. Acoustic analysis was performed with the VoxMetria (CTS Informatica). Significant differences were observed between the dysphonic and normal groups (p < 0.001), and also between the breathy and rough samples (p = 0.044) and the breathy and tense samples (p < 0.001). All normal voices were positioned in the inferior left quadrant, 45% of the rough voices in the inferior right quadrant, 52.6% of the breathy voices in the superior right quadrant and 54.3% of the tense voices in the inferior left quadrant of the PDD. In the inferior left quadrant, 93.8% of voices with no deviation were located and 72.7% of voices with mild deviation; voices with moderate deviation were distributed in the inferior and superior right quadrants, the latter ones containing the most deviant voices and 80% of voices with severe deviation. The PDD was able to discriminate normal from dysphonic voices, and the distribution was related to the type and degree of voice alteration. Copyright © 2011 S. Karger AG, Basel.

  14. Social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology.

    PubMed

    Dindaroğlu, Furkan; Duran, Gökhan Serhat; Görgülü, Serkan; Yetkiner, Enver

    2016-05-01

    To assess the range of social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology. Social smile images of white adolescents (N  =  15, mean age  =  15.4 ±1.5 years; range  =  14-17 years) were obtained using 3dMDFlex (3dMD, Atlanta, Ga). Each participant was asked to produce 16 social smiles at 3-minute intervals. All images were obtained in natural head position. Alignment of images, segmentation of smile area, and 3-D deviation analysis were carried out using Geomagic Control software (3D Systems Inc, Cary, NC). A single image was taken as a reference, and the remaining 15 images were compared with the reference image to evaluate positive and negative deviations. The differences between the mean deviation limits of participants with the highest and the lowest deviations and the total mean deviations were evaluated using Bland-Altman Plots. Minimum and maximum deviations of a single image from the reference image were 0.34 and 2.69 mm, respectively. Lowest deviation between two images was within 0.5 mm and 1.54 mm among all participants (mean, 0.96 ± 0.21 mm), and the highest deviation was between 0.41 mm and 2.69 mm (mean, 1.53 ± 0.46 mm). For a single patient, when all alignments were considered together, the mean deviation was between 0.32 ± 0.10 mm and 0.59 ± 0.24 mm. Mean deviation for one image was between 0.14 and 1.21 mm. The range of reproducibility of the social smile presented individual variability, but this variation was not clinically significant or detectable under routine clinical observation.

  15. Lunar brightness temperature from Microwave Radiometers data of Chang'E-1 and Chang'E-2

    NASA Astrophysics Data System (ADS)

    Feng, J.-Q.; Su, Y.; Zheng, L.; Liu, J.-J.

    2011-10-01

    Both of the Chinese lunar orbiter, Chang'E-1 and Chang'E-2 carried Microwave Radiometers (MRM) to obtain the brightness temperature of the Moon. Based on the different characteristics of these two MRMs, modified algorithms of brightness temperature and specific ground calibration parameters were proposed, and the corresponding lunar global brightness temperature maps were made here. In order to analyze the data distributions of these maps, normalization method was applied on the data series. The second channel data with large deviations were rectified, and the reasons of deviations were analyzed in the end.

  16. Combinatorial approach toward high-throughput analysis of direct methanol fuel cells.

    PubMed

    Jiang, Rongzhong; Rong, Charles; Chu, Deryn

    2005-01-01

    A 40-member array of direct methanol fuel cells (with stationary fuel and convective air supplies) was generated by electrically connecting the fuel cells in series. High-throughput analysis of these fuel cells was realized by fast screening of voltages between the two terminals of a fuel cell at constant current discharge. A large number of voltage-current curves (200) were obtained by screening the voltages through multiple small-current steps. Gaussian distribution was used to statistically analyze the large number of experimental data. The standard deviation (sigma) of voltages of these fuel cells increased linearly with discharge current. The voltage-current curves at various fuel concentrations were simulated with an empirical equation of voltage versus current and a linear equation of sigma versus current. The simulated voltage-current curves fitted the experimental data well. With increasing methanol concentration from 0.5 to 4.0 M, the Tafel slope of the voltage-current curves (at sigma=0.0), changed from 28 to 91 mV.dec-1, the cell resistance from 2.91 to 0.18 Omega, and the power output from 3 to 18 mW.cm-2.

  17. Statistical Analyses of Scatterplots to Identify Important Factors in Large-Scale Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleijnen, J.P.C.; Helton, J.C.

    1999-04-01

    The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots under consideration and involve the identification of (1) linear relationships with correlation coefficients, (2) monotonic relationships with rank correlation coefficients, (3) trends in central tendency as defined by means, medians and the Kruskal-Wallis statistic, (4) trends in variability as defined by variances and interquartile ranges, and (5) deviations from randomness as defined by the chi-square statistic. The following two topics related to the robustness of these procedures are consideredmore » for a sequence of example analyses with a large model for two-phase fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin hypercube samples. Observations from analysis include: (1) Type I errors are unavoidable, (2) Type II errors can occur when inappropriate analysis procedures are used, (3) physical explanations should always be sought for why statistical procedures identify variables as being important, and (4) the identification of important variables tends to be stable for independent Latin hypercube samples.« less

  18. Behavior analysts and cultural analysis: Troubles and issues

    PubMed Central

    Malagodi, E. F.; Jackson, Kevin

    1989-01-01

    Three strategic suggestions are offered to behavior analysts who are concerned with extending the interests of our discipline into domains traditionally assigned to the social sciences: (1) to expand our world-view perspectives beyond the boundaries commonly accepted by psychologists in general; (2) to build a cultural analytic framework upon the foundations we have developed for the study of individuals; and (3) to study the works of those social scientists whose views are generally compatible with, and complementary to, our own. Sociologist C. Wright Mills' distinction between troubles and issues and anthropologist Marvin Harris's principles of cultural materialism are related to topics raised by these three strategies. The pervasiveness of the “psychocentric” world view within psychology and the social sciences, and throughout our culture at large, is discussed from the points of view of Skinner, Mills, and Harris. It is suggested that a thorough commitment to radical behaviorism, and continuation of interaction between radical behaviorism and cultural materialism, are necessary for maintaining and extending an issues orientation within the discipline of behavior analysis and for guarding against dilutions and subversions of that orientation by “deviation-dampening” contingencies that exist in our profession and in our culture at large. PMID:22478014

  19. Off-design Performance Analysis of Multi-Stage Transonic Axial Compressors

    NASA Astrophysics Data System (ADS)

    Du, W. H.; Wu, H.; Zhang, L.

    Because of the complex flow fields and component interaction in modern gas turbine engines, they require extensive experiment to validate performance and stability. The experiment process can become expensive and complex. Modeling and simulation of gas turbine engines are way to reduce experiment costs, provide fidelity and enhance the quality of essential experiment. The flow field of a transonic compressor contains all the flow aspects, which are difficult to present-boundary layer transition and separation, shock-boundary layer interactions, and large flow unsteadiness. Accurate transonic axial compressor off-design performance prediction is especially difficult, due in large part to three-dimensional blade design and the resulting flow field. Although recent advancements in computer capacity have brought computational fluid dynamics to forefront of turbomachinery design and analysis, the grid and turbulence model still limit Reynolds-average Navier-Stokes (RANS) approximations in the multi-stage transonic axial compressor flow field. Streamline curvature methods are still the dominant numerical approach as an important tool for turbomachinery to analyze and design, and it is generally accepted that streamline curvature solution techniques will provide satisfactory flow prediction as long as the losses, deviation and blockage are accurately predicted.

  20. Extraction of Coastlines with Fuzzy Approach Using SENTINEL-1 SAR Image

    NASA Astrophysics Data System (ADS)

    Demir, N.; Kaynarca, M.; Oy, S.

    2016-06-01

    Coastlines are important features for water resources, sea products, energy resources etc. Coastlines are changed dynamically, thus automated methods are necessary for analysing and detecting the changes along the coastlines. In this study, Sentinel-1 C band SAR image has been used to extract the coastline with fuzzy logic approach. The used SAR image has VH polarisation and 10x10m. spatial resolution, covers 57 sqkm area from the south-east of Puerto-Rico. Additionally, radiometric calibration is applied to reduce atmospheric and orbit error, and speckle filter is used to reduce the noise. Then the image is terrain-corrected using SRTM digital surface model. Classification of SAR image is a challenging task since SAR and optical sensors have very different properties. Even between different bands of the SAR sensors, the images look very different. So, the classification of SAR image is difficult with the traditional unsupervised methods. In this study, a fuzzy approach has been applied to distinguish the coastal pixels than the land surface pixels. The standard deviation and the mean, median values are calculated to use as parameters in fuzzy approach. The Mean-standard-deviation (MS) Large membership function is used because the large amounts of land and ocean pixels dominate the SAR image with large mean and standard deviation values. The pixel values are multiplied with 1000 to easify the calculations. The mean is calculated as 23 and the standard deviation is calculated as 12 for the whole image. The multiplier parameters are selected as a: 0.58, b: 0.05 to maximize the land surface membership. The result is evaluated using airborne LIDAR data, only for the areas where LIDAR dataset is available and secondly manually digitized coastline. The laser points which are below 0,5 m are classified as the ocean points. The 3D alpha-shapes algorithm is used to detect the coastline points from LIDAR data. Minimum distances are calculated between the LIDAR points of coastline with the extracted coastline. The statistics of the distances are calculated as following; the mean is 5.82m, standard deviation is 5.83m and the median value is 4.08 m. Secondly, the extracted coastline is also evaluated with manually created lines on SAR image. Both lines are converted to dense points with 1 m interval. Then the closest distances are calculated between the points from extracted coastline and manually created coastline. The mean is 5.23m, standard deviation is 4.52m. and the median value is 4.13m for the calculated distances. The evaluation values are within the accuracy of used SAR data for both quality assessment approaches.

  1. Comparison of Accuracy Between a Conventional and Two Digital Intraoral Impression Techniques.

    PubMed

    Malik, Junaid; Rodriguez, Jose; Weisbloom, Michael; Petridis, Haralampos

    To compare the accuracy (ie, precision and trueness) of full-arch impressions fabricated using either a conventional polyvinyl siloxane (PVS) material or one of two intraoral optical scanners. Full-arch impressions of a reference model were obtained using addition silicone impression material (Aquasil Ultra; Dentsply Caulk) and two optical scanners (Trios, 3Shape, and CEREC Omnicam, Sirona). Surface matching software (Geomagic Control, 3D Systems) was used to superimpose the scans within groups to determine the mean deviations in precision and trueness (μm) between the scans, which were calculated for each group and compared statistically using one-way analysis of variance with post hoc Bonferroni (trueness) and Games-Howell (precision) tests (IBM SPSS ver 24, IBM UK). Qualitative analysis was also carried out from three-dimensional maps of differences between scans. Means and standard deviations (SD) of deviations in precision for conventional, Trios, and Omnicam groups were 21.7 (± 5.4), 49.9 (± 18.3), and 36.5 (± 11.12) μm, respectively. Means and SDs for deviations in trueness were 24.3 (± 5.7), 87.1 (± 7.9), and 80.3 (± 12.1) μm, respectively. The conventional impression showed statistically significantly improved mean precision (P < .006) and mean trueness (P < .001) compared to both digital impression procedures. There were no statistically significant differences in precision (P = .153) or trueness (P = .757) between the digital impressions. The qualitative analysis revealed local deviations along the palatal surfaces of the molars and incisal edges of the anterior teeth of < 100 μm. Conventional full-arch PVS impressions exhibited improved mean accuracy compared to two direct optical scanners. No significant differences were found between the two digital impression methods.

  2. Computation of rare transitions in the barotropic quasi-geostrophic equations

    NASA Astrophysics Data System (ADS)

    Laurie, Jason; Bouchet, Freddy

    2015-01-01

    We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager-Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherwise. We adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.

  3. Sickle cell disease diagnosis based on spatio-temporal cell dynamics analysis using 3D printed shearing digital holographic microscopy.

    PubMed

    Javidi, Bahram; Markman, Adam; Rawat, Siddharth; O'Connor, Timothy; Anand, Arun; Andemariam, Biree

    2018-05-14

    We present a spatio-temporal analysis of cell membrane fluctuations to distinguish healthy patients from patients with sickle cell disease. A video hologram containing either healthy red blood cells (h-RBCs) or sickle cell disease red blood cells (SCD-RBCs) was recorded using a low-cost, compact, 3D printed shearing interferometer. Reconstructions were created for each hologram frame (time steps), forming a spatio-temporal data cube. Features were extracted by computing the standard deviations and the mean of the height fluctuations over time and for every location on the cell membrane, resulting in two-dimensional standard deviation and mean maps, followed by taking the standard deviations of these maps. The optical flow algorithm was used to estimate the apparent motion fields between subsequent frames (reconstructions). The standard deviation of the magnitude of the optical flow vectors across all frames was then computed. In addition, seven morphological cell (spatial) features based on optical path length were extracted from the cells to further improve the classification accuracy. A random forest classifier was trained to perform cell identification to distinguish between SCD-RBCs and h-RBCs. To the best of our knowledge, this is the first report of machine learning assisted cell identification and diagnosis of sickle cell disease based on cell membrane fluctuations and morphology using both spatio-temporal and spatial analysis.

  4. Impact of buildings on surface solar radiation over urban Beijing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bin; Liou, Kuo-Nan; Gu, Yu

    The rugged surface of an urban area due to varying buildings can interact with solar beams and affect both the magnitude and spatiotemporal distribution of surface solar fluxes. Here we systematically examine the impact of buildings on downward surface solar fluxes over urban Beijing by using a 3-D radiation parameterization that accounts for 3-D building structures vs. the conventional plane-parallel scheme. We find that the resulting downward surface solar flux deviations between the 3-D and the plane-parallel schemes are generally ±1–10 W m -2 at 800 m grid resolution and within ±1 W m -2 at 4 km resolution. Pairsmore » of positive–negative flux deviations on different sides of buildings are resolved at 800 m resolution, while they offset each other at 4 km resolution. Flux deviations from the unobstructed horizontal surface at 4 km resolution are positive around noon but negative in the early morning and late afternoon. The corresponding deviations at 800 m resolution, in contrast, show diurnal variations that are strongly dependent on the location of the grids relative to the buildings. Both the magnitude and spatiotemporal variations of flux deviations are largely dominated by the direct flux. Furthermore, we find that flux deviations can potentially be an order of magnitude larger by using a finer grid resolution. Atmospheric aerosols can reduce the magnitude of downward surface solar flux deviations by 10–65 %, while the surface albedo generally has a rather moderate impact on flux deviations. The results imply that the effect of buildings on downward surface solar fluxes may not be critically significant in mesoscale atmospheric models with a grid resolution of 4 km or coarser. However, the effect can play a crucial role in meso-urban atmospheric models as well as microscale urban dispersion models with resolutions of 1 m to 1 km.« less

  5. [Conservative and surgical treatment of convergence excess].

    PubMed

    Ehrt, O

    2016-07-01

    Convergence excess is a common finding especially in pediatric strabismus. A detailed diagnostic approach has to start after full correction of any hyperopia measured in cycloplegia. It includes measurements of manifest and latent deviation at near and distance fixation, near deviation after relaxation of accommodation with addition of +3 dpt, assessment of binocular function with and without +3 dpt as well as the accommodation range. This diagnostic approach is important for the classification into three types of convergence excess, which require different therapeutic approaches: 1) hypo-accommodative convergence excess is treated with permanent bifocal glasses, 2) norm-accommodative patients should be treated with bifocals which can be weaned over years, especially in patients with good stereopsis and 3) non-accommodative convergence excess and patients with large distance deviations need a surgical approach. The most effective operations include those which reduce the muscle torque, e. g. bimedial Faden operations or Y‑splitting of the medial rectus muscles.

  6. Diode‐based transmission detector for IMRT delivery monitoring: a validation study

    PubMed Central

    Li, Taoran; Wu, Q. Jackie; Matzen, Thomas; Yin, Fang‐Fang

    2016-01-01

    The purpose of this work was to evaluate the potential of a new transmission detector for real‐time quality assurance of dynamic‐MLC‐based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7–1.2 mm). The absorption of the device was minimal (∼ 1%). The increased surface dose was small (1%–9%) but, when added to existing collimator scatter effects could become significant at large field sizes (≥30×30 cm2). Overall the accuracy and speed of the device show good potential for real‐time quality assurance. PACS number(s): 87.55.Qr PMID:27685115

  7. Determination of the optimal level for combining area and yield estimates

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Hixson, M. M.; Jobusch, C. D.

    1981-01-01

    Several levels of obtaining both area and yield estimates of corn and soybeans in Iowa were considered: county, refined strata, refined/split strata, crop reporting district, and state. Using the CCEA model form and smoothed weather data, regression coefficients at each level were derived to compute yield and its variance. Variances were also computed with stratum level. The variance of the yield estimates was largest at the state and smallest at the county level for both crops. The refined strata had somewhat larger variances than those associated with the refined/split strata and CRD. For production estimates, the difference in standard deviations among levels was not large for corn, but for soybeans the standard deviation at the state level was more than 50% greater than for the other levels. The refined strata had the smallest standard deviations. The county level was not considered in evaluation of production estimates due to lack of county area variances.

  8. Effects of vegetation canopy structure on remotely sensed canopy temperatures. [inferring plant water stress and yield

    NASA Technical Reports Server (NTRS)

    Kimes, D. S.

    1979-01-01

    The effects of vegetation canopy structure on thermal infrared sensor response must be understood before vegetation surface temperatures of canopies with low percent ground cover can be accurately inferred. The response of a sensor is a function of vegetation geometric structure, the vertical surface temperature distribution of the canopy components, and sensor view angle. Large deviations between the nadir sensor effective radiant temperature (ERT) and vegetation ERT for a soybean canopy were observed throughout the growing season. The nadir sensor ERT of a soybean canopy with 35 percent ground cover deviated from the vegetation ERT by as much as 11 C during the mid-day. These deviations were quantitatively explained as a function of canopy structure and soil temperature. Remote sensing techniques which determine the vegetation canopy temperature(s) from the sensor response need to be studied.

  9. Uncertainty of large-area estimates of indicators of forest structural gamma diversity: A study based on national forest inventory data

    Treesearch

    Susanne Winter; Andreas Böck; Ronald E. McRoberts

    2012-01-01

    Tree diameter and height are commonly measured forest structural variables, and indicators based on them are candidates for assessing forest diversity. We conducted our study on the uncertainty of estimates for mostly large geographic scales for four indicators of forest structural gamma diversity: mean tree diameter, mean tree height, and standard deviations of tree...

  10. Global Behavior in Large Scale Systems

    DTIC Science & Technology

    2013-12-05

    release. AIR FORCE RESEARCH LABORATORY AF OFFICE OF SCIENTIFIC RESEARCH (AFOSR)/RSL ARLINGTON, VIRGINIA 22203 AIR FORCE MATERIEL COMMAND AFRL-OSR-VA...and Research 875 Randolph Street, Suite 325 Room 3112, Arlington, VA 22203 December 3, 2013 1 Abstract This research attained two main achievements: 1...microscopic random interactions among the agents. 2 1 Introduction In this research we considered two main problems: 1) large deviation error performance in

  11. Measuring Diameters Of Large Vessels

    NASA Technical Reports Server (NTRS)

    Currie, James R.; Kissel, Ralph R.; Oliver, Charles E.; Smith, Earnest C.; Redmon, John W., Sr.; Wallace, Charles C.; Swanson, Charles P.

    1990-01-01

    Computerized apparatus produces accurate results quickly. Apparatus measures diameter of tank or other large cylindrical vessel, without prior knowledge of exact location of cylindrical axis. Produces plot of inner circumference, estimate of true center of vessel, data on radius, diameter of best-fit circle, and negative and positive deviations of radius from circle at closely spaced points on circumference. Eliminates need for time-consuming and error-prone manual measurements.

  12. High-speed peak matching algorithm for retention time alignment of gas chromatographic data for chemometric analysis.

    PubMed

    Johnson, Kevin J; Wright, Bob W; Jarman, Kristin H; Synovec, Robert E

    2003-05-09

    A rapid retention time alignment algorithm was developed as a preprocessing utility to be used prior to chemometric analysis of large datasets of diesel fuel profiles obtained using gas chromatography (GC). Retention time variation from chromatogram-to-chromatogram has been a significant impediment against the use of chemometric techniques in the analysis of chromatographic data due to the inability of current chemometric techniques to correctly model information that shifts from variable to variable within a dataset. The alignment algorithm developed is shown to increase the efficacy of pattern recognition methods applied to diesel fuel chromatograms by retaining chemical selectivity while reducing chromatogram-to-chromatogram retention time variations and to do so on a time scale that makes analysis of large sets of chromatographic data practical. Two sets of diesel fuel gas chromatograms were studied using the novel alignment algorithm followed by principal component analysis (PCA). In the first study, retention times for corresponding chromatographic peaks in 60 chromatograms varied by as much as 300 ms between chromatograms before alignment. In the second study of 42 chromatograms, the retention time shifting exhibited was on the order of 10 s between corresponding chromatographic peaks, and required a coarse retention time correction prior to alignment with the algorithm. In both cases, an increase in retention time precision afforded by the algorithm was clearly visible in plots of overlaid chromatograms before and then after applying the retention time alignment algorithm. Using the alignment algorithm, the standard deviation for corresponding peak retention times following alignment was 17 ms throughout a given chromatogram, corresponding to a relative standard deviation of 0.003% at an average retention time of 8 min. This level of retention time precision is a 5-fold improvement over the retention time precision initially provided by a state-of-the-art GC instrument equipped with electronic pressure control and was critical to the performance of the chemometric analysis. This increase in retention time precision does not come at the expense of chemical selectivity, since the PCA results suggest that essentially all of the chemical selectivity is preserved. Cluster resolution between dissimilar groups of diesel fuel chromatograms in a two-dimensional scores space generated with PCA is shown to substantially increase after alignment. The alignment method is robust against missing or extra peaks relative to a target chromatogram used in the alignment, and operates at high speed, requiring roughly 1 s of computation time per GC chromatogram.

  13. Probability distributions of linear statistics in chaotic cavities and associated phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivo, Pierpaolo; Majumdar, Satya N.; Bohigas, Oriol

    2010-03-01

    We establish large deviation formulas for linear statistics on the N transmission eigenvalues (T{sub i}) of a chaotic cavity, in the framework of random matrix theory. Given any linear statistics of interest A=SIGMA{sub i=1}{sup N}a(T{sub i}), the probability distribution P{sub A}(A,N) of A generically satisfies the large deviation formula lim{sub N-}>{sub i}nfinity[-2 log P{sub A}(Nx,N)/betaN{sup 2}]=PSI{sub A}(x), where PSI{sub A}(x) is a rate function that we compute explicitly in many cases (conductance, shot noise, and moments) and beta corresponds to different symmetry classes. Using these large deviation expressions, it is possible to recover easily known results and to produce newmore » formulas, such as a closed form expression for v(n)=lim{sub N-}>{sub i}nfinity var(T{sub n}) (where T{sub n}=SIGMA{sub i}T{sub i}{sup n}) for arbitrary integer n. The universal limit v*=lim{sub n-}>{sub i}nfinity v(n)=1/2pibeta is also computed exactly. The distributions display a central Gaussian region flanked on both sides by non-Gaussian tails. At the junction of the two regimes, weakly nonanalytical points appear, a direct consequence of phase transitions in an associated Coulomb gas problem. Numerical checks are also provided, which are in full agreement with our asymptotic results in both real and Laplace space even for moderately small N. Part of the results have been announced by Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].« less

  14. Specification of ISS Plasma Environment Variability

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Neergaard, Linda F.; Bui, Them H.; Mikatarian, Ronald R.; Barsamian, H.; Koontz, Steven L.

    2004-01-01

    Quantifying spacecraft charging risks and associated hazards for the International Space Station (ISS) requires a plasma environment specification for the natural variability of ionospheric temperature (Te) and density (Ne). Empirical ionospheric specification and forecast models such as the International Reference Ionosphere (IRI) model typically only provide long term (seasonal) mean Te and Ne values for the low Earth orbit environment. This paper describes a statistical analysis of historical ionospheric low Earth orbit plasma measurements from the AE-C, AE-D, and DE-2 satellites used to derive a model of deviations of observed data values from IRI-2001 estimates of Ne, Te parameters for each data point to provide a statistical basis for modeling the deviations of the plasma environment from the IRI model output. Application of the deviation model with the IRI-2001 output yields a method for estimating extreme environments for the ISS spacecraft charging analysis.

  15. MUSiC - A general search for deviations from monte carlo predictions in CMS

    NASA Astrophysics Data System (ADS)

    Biallass, Philipp A.; CMS Collaboration

    2009-06-01

    A model independent analysis approach in CMS is presented, systematically scanning the data for deviations from the Monte Carlo expectation. Such an analysis can contribute to the understanding of the detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. The importance of systematic uncertainties is outlined, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving Supersymmetry and new heavy gauge bosons are used as an input to the search algorithm.

  16. MUSiC - A Generic Search for Deviations from Monte Carlo Predictions in CMS

    NASA Astrophysics Data System (ADS)

    Hof, Carsten

    2009-05-01

    We present a model independent analysis approach, systematically scanning the data for deviations from the Standard Model Monte Carlo expectation. Such an analysis can contribute to the understanding of the CMS detector and the tuning of the event generators. Furthermore, due to the minimal theoretical bias this approach is sensitive to a variety of models of new physics, including those not yet thought of. Events are classified into event classes according to their particle content (muons, electrons, photons, jets and missing transverse energy). A broad scan of various distributions is performed, identifying significant deviations from the Monte Carlo simulation. We outline the importance of systematic uncertainties, which are taken into account rigorously within the algorithm. Possible detector effects and generator issues, as well as models involving supersymmetry and new heavy gauge bosons have been used as an input to the search algorithm.

  17. MUSiC - Model-independent search for deviations from Standard Model predictions in CMS

    NASA Astrophysics Data System (ADS)

    Pieta, Holger

    2010-02-01

    We present an approach for a model independent search in CMS. Systematically scanning the data for deviations from the standard model Monte Carlo expectations, such an analysis can help to understand the detector and tune event generators. By minimizing the theoretical bias the analysis is furthermore sensitive to a wide range of models for new physics, including the uncounted number of models not-yet-thought-of. After sorting the events into classes defined by their particle content (leptons, photons, jets and missing transverse energy), a minimally prejudiced scan is performed on a number of distributions. Advanced statistical methods are used to determine the significance of the deviating regions, rigorously taking systematic uncertainties into account. A number of benchmark scenarios, including common models of new physics and possible detector effects, have been used to gauge the power of such a method. )

  18. Micro-computed tomography analysis of post space preparation in root canals filled with carrier-based thermoplasticized gutta-percha.

    PubMed

    Schroeder, A A; Ford, N L; Coil, J M

    2017-03-01

    To determine whether post space preparation deviated from the root canal preparation in canals filled with Thermafil, GuttaCore or warm vertically compacted gutta-percha. Forty-two extracted human permanent maxillary lateral incisors were decoronated, and their root canals instrumented using a standardized protocol. Samples were divided into three groups and filled with Thermafil (Dentsply Tulsa Dental Specialties, Johnson City, TN, USA), GuttaCore (Dentsply Tulsa Dental Specialties) or warm vertically compacted gutta-percha, before post space preparation was performed with a GT Post drill (Dentsply Tulsa Dental Specialties). Teeth were scanned using micro-computed tomography after root filling and again after post space preparation. Scans were examined for number of samples with post space deviation, linear deviation of post space preparation and minimum root thickness before and after post space preparation. Parametric data were analysed with one-way analysis of variance (anova) or one-tailed paired Student's t-tests, whilst nonparametric data were analysed with Fisher's exact test. Deviation occurred in eight of forty-two teeth (19%), seven of fourteen from the Thermafil group (50%), one of fourteen from the GuttaCore group (7%), and none from the gutta-percha group. Deviation occurred significantly more often in the Thermafil group than in each of the other two groups (P < 0.05). Linear deviation of post space preparation was greater in the Thermafil group than in both of the other groups and was significantly greater than that of the gutta-percha group (P < 0.05). Minimum root thickness before post space preparation was significantly greater than it was after post space preparation for all groups (P < 0.01). The differences between the Thermafil, GuttaCore and gutta-percha groups in the number of samples with post space deviation and in linear deviation of post space preparation were associated with the presence or absence of a carrier as well as the different carrier materials. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. The treatment of missing data in a large cardiovascular clinical outcomes study.

    PubMed

    Little, Roderick J; Wang, Julia; Sun, Xiang; Tian, Hong; Suh, Eun-Young; Lee, Michael; Sarich, Troy; Oppenheimer, Leonard; Plotnikov, Alexei; Wittes, Janet; Cook-Bruns, Nancy; Burton, Paul; Gibson, C Michael; Mohanty, Surya

    2016-06-01

    The potential impact of missing data on the results of clinical trials has received heightened attention recently. A National Research Council study provides recommendations for limiting missing data in clinical trial design and conduct, and principles for analysis, including the need for sensitivity analyses to assess robustness of findings to alternative assumptions about the missing data. A Food and Drug Administration advisory committee raised missing data as a serious concern in their review of results from the ATLAS ACS 2 TIMI 51 study, a large clinical trial that assessed rivaroxaban for its ability to reduce the risk of cardiovascular death, myocardial infarction or stroke in patients with acute coronary syndrome. This case study describes a variety of measures that were taken to address concerns about the missing data. A range of analyses are described to assess the potential impact of missing data on conclusions. In particular, measures of the amount of missing data are discussed, and the fraction of missing information from multiple imputation is proposed as an alternative measure. The sensitivity analysis in the National Research Council study is modified in the context of survival analysis where some individuals are lost to follow-up. The impact of deviations from ignorable censoring is assessed by differentially increasing the hazard of the primary outcome in the treatment groups and multiply imputing events between dropout and the end of the study. Tipping-point analyses are described, where the deviation from ignorable censoring that results in a reversal of significance of the treatment effect is determined. A study to determine the vital status of participants lost to follow-up was also conducted, and the results of including this additional information are assessed. Sensitivity analyses suggest that findings of the ATLAS ACS 2 TIMI 51 study are robust to missing data; this robustness is reinforced by the follow-up study, since inclusion of data from this study had little impact on the study conclusions. Missing data are a serious problem in clinical trials. The methods presented here, namely, the sensitivity analyses, the follow-up study to determine survival of missing cases, and the proposed measurement of missing data via the fraction of missing information, have potential application in other studies involving survival analysis where missing data are a concern. © The Author(s) 2016.

  20. Measurement of the polarized structure function σLT' for p(e→,e'p)π0 in the Δ(1232) resonance region

    NASA Astrophysics Data System (ADS)

    Joo, K.; Smith, L. C.; Burkert, V. D.; Minehart, R.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; Desanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Gaff, S. J.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Lawrence, D.; Li, Ji; Lima, A. C.; Lukashin, K.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Mozer, M. U.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhao, J.; Zhou, Z.

    2003-09-01

    The polarized longitudinal-transverse structure function σLT' has been measured in the Δ(1232) resonance region at Q2=0.40 and 0.65 GeV2. Data for the p(e→,e'p)π0 reaction were taken at Jefferson Lab with the CEBAF large acceptance spectrometer (CLAS) using longitudinally polarized electrons at an energy of 1.515 GeV. For the first time a complete angular distribution was measured, permitting the separation of different nonresonant amplitudes using a partial wave analysis. Comparison with previous beam asymmetry measurements at MAMI indicate a deviation from the predicted Q2 dependence of σLT' using recent phenomenological models.

  1. Peer effects in risk aversion.

    PubMed

    Balsa, Ana I; Gandelman, Néstor; González, Nicolás

    2015-01-01

    We estimate peer effects in risk attitudes in a sample of high school students. Relative risk aversion is elicited from surveys administered at school. Identification of peer effects is based on parents not being able to choose the class within the school of their choice, and on the use of instrumental variables conditional on school-grade fixed effects. We find a significant and quantitatively large impact of peers' risk attitudes on a male individual's coefficient of risk aversion. Specifically, a one standard deviation increase in the group's coefficient of risk aversion increases an individual's risk aversion by 43%. Our findings shed light on the origin and stability of risk attitudes and, more generally, on the determinants of economic preferences. © 2014 Society for Risk Analysis.

  2. Frenetic Bounds on the Entropy Production

    NASA Astrophysics Data System (ADS)

    Maes, Christian

    2017-10-01

    We give a systematic derivation of positive lower bounds for the expected entropy production (EP) rate in classical statistical mechanical systems obeying a dynamical large deviation principle. The logic is the same for the return to thermodynamic equilibrium as it is for steady nonequilibria working under the condition of local detailed balance. We recover there recently studied "uncertainty" relations for the EP, appearing in studies about the effectiveness of mesoscopic machines. In general our refinement of the positivity of the expected EP rate is obtained in terms of a positive and even function of the expected current(s) which measures the dynamical activity in the system, a time-symmetric estimate of the changes in the system's configuration. Also underdamped diffusions can be included in the analysis.

  3. Deviation from intention to treat analysis in randomised trials and treatment effect estimates: meta-epidemiological study.

    PubMed

    Abraha, Iosief; Cherubini, Antonio; Cozzolino, Francesco; De Florio, Rita; Luchetta, Maria Laura; Rimland, Joseph M; Folletti, Ilenia; Marchesi, Mauro; Germani, Antonella; Orso, Massimiliano; Eusebi, Paolo; Montedori, Alessandro

    2015-05-27

    To examine whether deviation from the standard intention to treat analysis has an influence on treatment effect estimates of randomised trials. Meta-epidemiological study. Medline, via PubMed, searched between 2006 and 2010; 43 systematic reviews of interventions and 310 randomised trials were included. From each year searched, random selection of 5% of intervention reviews with a meta-analysis that included at least one trial that deviated from the standard intention to treat approach. Basic characteristics of the systematic reviews and randomised trials were extracted. Information on the reporting of intention to treat analysis, outcome data, risk of bias items, post-randomisation exclusions, and funding were extracted from each trial. Trials were classified as: ITT (reporting the standard intention to treat approach), mITT (reporting a deviation from the standard approach), and no ITT (reporting no approach). Within each meta-analysis, treatment effects were compared between mITT and ITT trials, and between mITT and no ITT trials. The ratio of odds ratios was calculated (value <1 indicated larger treatment effects in mITT trials than in other trial categories). 50 meta-analyses and 322 comparisons of randomised trials (from 84 ITT trials, 118 mITT trials, and 108 no ITT trials; 12 trials contributed twice to the analysis) were examined. Compared with ITT trials, mITT trials showed a larger intervention effect (pooled ratio of odds ratios 0.83 (95% confidence interval 0.71 to 0.96), P=0.01; between meta-analyses variance τ(2)=0.13). Adjustments for sample size, type of centre, funding, items of risk of bias, post-randomisation exclusions, and variance of log odds ratio yielded consistent results (0.80 (0.69 to 0.94), P=0.005; τ(2)=0.08). After exclusion of five influential studies, results remained consistent (0.85 (0.75 to 0.98); τ(2)=0.08). The comparison between mITT trials and no ITT trials showed no statistical difference between the two groups (adjusted ratio of odds ratios 0.92 (0.70 to 1.23); τ(2)=0.57). Trials that deviated from the intention to treat analysis showed larger intervention effects than trials that reported the standard approach. Where an intention to treat analysis is impossible to perform, authors should clearly report who is included in the analysis and attempt to perform multiple imputations. © Abraha et al 2015.

  4. Fabrication of plasmonic cavity arrays for SERS analysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-01

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  5. Fabrication of plasmonic cavity arrays for SERS analysis.

    PubMed

    Li, Ning; Feng, Lei; Teng, Fei; Lu, Nan

    2017-05-05

    The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 10 5 and 9.97 × 10 5 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.

  6. Determination of iodopropynyl butylcarbamate in cosmetic formulations utilizing pulsed splitless injection, gas chromatography with electron capture detector.

    PubMed

    Palmer, Kevin B; LaFon, William; Burford, Mark D

    2017-09-22

    Current analytical methodology for iodopropynyl butylcarbamate (IPBC) analysis focuses on the use of liquid chromatography and mass spectrometer (LC-MS), but the high instrumentation and operator investment required has resulted in the need for a cost effective alternative methodology. Past publications investigating gas chromatography with electron capture detector (GC-ECD) for IPBC quantitation proved largely unsuccessful, likely due to the preservatives limited thermal stability. The use of pulsed injection techniques commonly used for trace analysis of thermally labile pharmaceutical compounds was successfully adapted for IPBC analysis and utilizes the selectivity of GC-ECD analysis. System optimization and sample preparation improvements resulted in substantial performance and reproducibility gains. Cosmetic formulations preserved with IPBC (50-100ppm) were solvated in toluene/isopropyl alcohol and quantified over the 0.3-1.3μg/ml calibration range. The methodology was robust (relative standard deviation 4%), accurate (98% recovery), and sensitive (limit of detection 0.25ng/ml) for use in routine testing of cosmetic formulation preservation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Robust statistical methods for hit selection in RNA interference high-throughput screening experiments.

    PubMed

    Zhang, Xiaohua Douglas; Yang, Xiting Cindy; Chung, Namjin; Gates, Adam; Stec, Erica; Kunapuli, Priya; Holder, Dan J; Ferrer, Marc; Espeseth, Amy S

    2006-04-01

    RNA interference (RNAi) high-throughput screening (HTS) experiments carried out using large (>5000 short interfering [si]RNA) libraries generate a huge amount of data. In order to use these data to identify the most effective siRNAs tested, it is critical to adopt and develop appropriate statistical methods. To address the questions in hit selection of RNAi HTS, we proposed a quartile-based method which is robust to outliers, true hits and nonsymmetrical data. We compared it with the more traditional tests, mean +/- k standard deviation (SD) and median +/- 3 median of absolute deviation (MAD). The results suggested that the quartile-based method selected more hits than mean +/- k SD under the same preset error rate. The number of hits selected by median +/- k MAD was close to that by the quartile-based method. Further analysis suggested that the quartile-based method had the greatest power in detecting true hits, especially weak or moderate true hits. Our investigation also suggested that platewise analysis (determining effective siRNAs on a plate-by-plate basis) can adjust for systematic errors in different plates, while an experimentwise analysis, in which effective siRNAs are identified in an analysis of the entire experiment, cannot. However, experimentwise analysis may detect a cluster of true positive hits placed together in one or several plates, while platewise analysis may not. To display hit selection results, we designed a specific figure called a plate-well series plot. We thus suggest the following strategy for hit selection in RNAi HTS experiments. First, choose the quartile-based method, or median +/- k MAD, for identifying effective siRNAs. Second, perform the chosen method experimentwise on transformed/normalized data, such as percentage inhibition, to check the possibility of hit clusters. If a cluster of selected hits are observed, repeat the analysis based on untransformed data to determine whether the cluster is due to an artifact in the data. If no clusters of hits are observed, select hits by performing platewise analysis on transformed data. Third, adopt the plate-well series plot to visualize both the data and the hit selection results, as well as to check for artifacts.

  8. Analysis of Power Planning Deviation Influence on the Non-fossil Energy Development Goal

    NASA Astrophysics Data System (ADS)

    Xu, Wei-ting; Li, Ting; Ye, Qiang; Mi, Zhu; Ying, Liu; Tao, Yu-xuan

    2017-05-01

    Due to the international circumstances changes and domestic economic restructuring, the policies and planning of energy development have been adjusting in recent years, especially in energy power industry. Under these influences, the Chinese energy development goal “non-fossil energy accounts for 15% of the primary energy consumption” which planned to be realized in 2020 becomes uncertain. To ensure the goal can be achieved, a new energy power planning scheme is provided. Based on this planning scheme, the sensitivity analysis method and the maximum deviation method are proposed to quantify the influence of planning deviation on the target percentage. At the same time, the energy replacement is provided to fill the deviation. Research results shows that the main influence factors of target percentage is the hydro and nuclear power develop scale and their output channel construction. If the hydro and nuclear power capacity can’t reach their target scale, wind and solar power capacity can fill the vacancy instead. But if the vacancy of hydropower exceeds 58GW, or vacancy of nuclear power exceeds 27GW, the “15% goal” would be very difficult to achieve. Accelerating the construction of the hydropower output transmission lines helps to guarantee the "15% goal".

  9. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups

    PubMed Central

    Bala, Madhu; Goyal, Virender

    2014-01-01

    ABSTRACT Regards and Tribute: Late Dr Narender Hasija was a mentor and visionary in the light of knowledge and experience. We pay our regards with deepest gratitude to the departed soul to rest in peace. Bolton’s ratios help in estimating overbite, overjet relationships, the effects of contemplated extractions on posterior occlusion, incisor relationships and identification of occlusal misfit produced by tooth size discrepancies. Aim: To determine any difference in tooth size discrepancy in anterior as well as overall ratio in different malocclusions and comparison with Bolton’s study. Materials and methods: After measuring the teeth on all 100 patients, Bolton’s analysis was performed. Results were compared with Bolton’s means and standard deviations. The results were also subjected to statistical analysis. Results show that the mean and standard deviations of ideal occlusion cases are comparable with those Bolton but, when the mean and standard deviation of malocclusion groups are compared with those of Bolton, the values of standard deviation are higher, though the mean is comparable. How to cite this article: Hasija N, Bala M, Goyal V. Estimation of Tooth Size Discrepancies among Different Malocclusion Groups. Int J Clin Pediatr Dent 2014;7(2):82-85. PMID:25356005

  10. Nasal airway and septal variation in unilateral and bilateral cleft lip and palate.

    PubMed

    Starbuck, John M; Friel, Michael T; Ghoneima, Ahmed; Flores, Roberto L; Tholpady, Sunil; Kula, Katherine

    2014-10-01

    Cleft lip and palate (CLP) affects the dentoalveolar and nasolabial facial regions. Internal and external nasal dysmorphology may persist in individuals born with CLP despite surgical interventions. 7-18 year old individuals born with unilateral and bilateral CLP (n = 50) were retrospectively assessed using cone beam computed tomography. Anterior, middle, and posterior nasal airway volumes were measured on each facial side. Septal deviation was measured at the anterior and posterior nasal spine, and the midpoint between these two locations. Data were evaluated using principal components analysis (PCA), multivariate analysis of variance (MANOVA), and post-hoc ANOVA tests. PCA results show partial separation in high dimensional space along PC1 (48.5% variance) based on age groups and partial separation along PC2 (29.8% variance) based on CLP type and septal deviation patterns. MANOVA results indicate that age (P = 0.007) and CLP type (P ≤ 0.001) significantly affect nasal airway volume and septal deviation. ANOVA results indicate that anterior nasal volume is significantly affected by age (P ≤ 0.001), whereas septal deviation patterns are significantly affected by CLP type (P ≤ 0.001). Age and CLP type affect nasal airway volume and septal deviation patterns. Nasal airway volumes tend to be reduced on the clefted sides of the face relative to non-clefted sides of the face. Nasal airway volumes tend to strongly increase with age, whereas septal deviation values tend to increase only slightly with age. These results suggest that functional nasal breathing may be impaired in individuals born with the unilateral and bilateral CLP deformity. © 2014 Wiley Periodicals, Inc.

  11. Search for new phenomena in high-mass diphoton final states using 37 fb -1 of proton–proton collisions collected at s = 13   TeV with the ATLAS detector

    DOE PAGES

    Aaboud, M.; Aad, G.; Abbott, B.; ...

    2017-10-24

    Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. Here, the analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb-1 at a centre-of-mass energymore » $$\\sqrt{s}$$=13TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model.« less

  12. Comparison of $$\

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, C.; et al.

    We measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. We evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy of 800 MeV, using an exposure corresponding to 5e19 protons-on-target. The analysis employs fully automatic eventmore » selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. We find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity, but we show an indication that the observed multiplicity fractions deviate from GENIE expectations.« less

  13. Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models

    DOE PAGES

    Andrews, Timothy; Gregory, Jonathan M.; Webb, Mark J.; ...

    2012-05-15

    We quantify forcing and feedbacks across available CMIP5 coupled atmosphere-ocean general circulation models (AOGCMs) by analysing simulations forced by an abrupt quadrupling of atmospheric carbon dioxide concentration. This is the first application of the linear forcing-feedback regression analysis of Gregory et al. (2004) to an ensemble of AOGCMs. The range of equilibrium climate sensitivity is 2.1–4.7 K. Differences in cloud feedbacks continue to be important contributors to this range. Some models show small deviations from a linear dependence of top-of-atmosphere radiative fluxes on global surface temperature change. We show that this phenomenon largely arises from shortwave cloud radiative effects overmore » the ocean and is consistent with independent estimates of forcing using fixed sea-surface temperature methods. Moreover, we suggest that future research should focus more on understanding transient climate change, including any time-scale dependence of the forcing and/or feedback, rather than on the equilibrium response to large instantaneous forcing.« less

  14. Statistical analysis of Hasegawa-Wakatani turbulence

    NASA Astrophysics Data System (ADS)

    Anderson, Johan; Hnat, Bogdan

    2017-06-01

    Resistive drift wave turbulence is a multipurpose paradigm that can be used to understand transport at the edge of fusion devices. The Hasegawa-Wakatani model captures the essential physics of drift turbulence while retaining the simplicity needed to gain a qualitative understanding of this process. We provide a theoretical interpretation of numerically generated probability density functions (PDFs) of intermittent events in Hasegawa-Wakatani turbulence with enforced equipartition of energy in large scale zonal flows, and small scale drift turbulence. We find that for a wide range of adiabatic index values, the stochastic component representing the small scale turbulent eddies of the flow, obtained from the autoregressive integrated moving average model, exhibits super-diffusive statistics, consistent with intermittent transport. The PDFs of large events (above one standard deviation) are well approximated by the Laplace distribution, while small events often exhibit a Gaussian character. Furthermore, there exists a strong influence of zonal flows, for example, via shearing and then viscous dissipation maintaining a sub-diffusive character of the fluxes.

  15. Search for new phenomena in high-mass diphoton final states using 37 fb-1 of proton-proton collisions collected at √{ s } = 13 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gupta, S.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; St. Panagiotopoulou, E.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silva, M.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2017-12-01

    Searches for new phenomena in high-mass diphoton final states with the ATLAS experiment at the LHC are presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 36.7 fb-1 at a centre-of-mass energy √{ s } = 13 TeV recorded in 2015 and 2016. Searches are performed for resonances with spin 0, as predicted by theories with an extended Higgs sector, and for resonances with spin 2, using a warped extra-dimension model as a benchmark model, as well as for non-resonant signals, assuming a large extra-dimension scenario. No significant deviation from the Standard Model is observed. Upper limits are placed on the production cross section times branching ratio to two photons as a function of the resonance mass. In addition, lower limits are set on the ultraviolet cutoff scale in the large extra-dimensions model.

  16. Tests of neutrino interaction models with the MicroBooNE detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rafique, Aleena

    2018-01-01

    I measure a large set of observables in inclusive charged current muon neutrino scattering on argon with the MicroBooNE liquid argon time projection chamber operating at Fermilab. I evaluate three neutrino interaction models based on the widely used GENIE event generator using these observables. The measurement uses a data set consisting of neutrino interactions with a final state muon candidate fully contained within the MicroBooNE detector. These data were collected in 2016 with the Fermilab Booster Neutrino Beam, which has an average neutrino energy ofmore » $800$ MeV, using an exposure corresponding to $$5.0\\times10^{19}$$ protons-on-target. The analysis employs fully automatic event selection and charged particle track reconstruction and uses a data-driven technique to separate neutrino interactions from cosmic ray background events. I find that GENIE models consistently describe the shapes of a large number of kinematic distributions for fixed observed multiplicity, but I show an indication that the observed multiplicity fractions deviate from GENIE expectations.« less

  17. Fabrication of 2-inch nano patterned sapphire substrate with high uniformity by two-beam laser interference lithography

    NASA Astrophysics Data System (ADS)

    Dai, LongGui; Yang, Fan; Yue, Gen; Jiang, Yang; Jia, Haiqiang; Wang, Wenxin; Chen, Hong

    2014-11-01

    Generally, nano-scale patterned sapphire substrate (NPSS) has better performance than micro-scale patterned sapphire substrate (MPSS) in improving the light extraction efficiency of LEDs. Laser interference lithography (LIL) is one of the powerful fabrication methods for periodic nanostructures without photo-masks for different designs. However, Lloyd's mirror LIL system has the disadvantage that fabricated patterns are inevitably distorted, especially for large-area twodimensional (2D) periodic nanostructures. Herein, we introduce two-beam LIL system to fabricate consistent large-area NPSS. Quantitative analysis and characterization indicate that the high uniformity of the photoresist arrays is achieved. Through the combination of dry etching and wet etching techniques, the well-defined NPSS with period of 460 nm were prepared on the whole sapphire substrate. The deviation is 4.34% for the bottom width of the triangle truncated pyramid arrays on the whole 2-inch sapphire substrate, which is suitable for the application in industrial production of NPSS.

  18. Analysis and modeling of photomask edge effects for 3D geometries and the effect on process window

    NASA Astrophysics Data System (ADS)

    Miller, Marshal A.; Neureuther, Andrew R.

    2009-03-01

    Simulation was used to explore boundary layer models for 1D and 2D patterns that would be appropriate for fast CAD modeling of physical effects during design. FDTD simulation was used to compare rigorous thick mask modeling to a thin mask approximation (TMA). When features are large, edges can be viewed as independent and modeled as separate from one another, but for small mask features, edges experience cross-talk. For attenuating phase-shift masks, interaction distances as large as 150nm were observed. Polarization effects are important for accurate EMF models. Due to polarization effects, the edge perturbations in line ends become different compared to a perpendicular edge. For a mask designed to be real, the 90o transmission created at edges produces an asymmetry through focus, which is also polarization dependent. Thick mask fields are calculated using TEMPEST and Panoramic Technologies software. Fields are then analyzed in the near field and on wafer CDs to examine deviations from TMA.

  19. How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations.

    PubMed

    Sargsyan, Karen; Grauffel, Cédric; Lim, Carmay

    2017-04-11

    The root-mean-square deviation (RMSD) is a similarity measure widely used in analysis of macromolecular structures and dynamics. As increasingly larger macromolecular systems are being studied, dimensionality effects such as the "curse of dimensionality" (a diminishing ability to discriminate pairwise differences between conformations with increasing system size) may exist and significantly impact RMSD-based analyses. For such large bimolecular systems, whether the RMSD or other alternative similarity measures might suffer from this "curse" and lose the ability to discriminate different macromolecular structures had not been explicitly addressed. Here, we show such dimensionality effects for both weighted and nonweighted RMSD schemes. We also provide a mechanism for the emergence of the "curse of dimensionality" for RMSD from the law of large numbers by showing that the conformational distributions from which RMSDs are calculated become increasingly similar as the system size increases. Our findings suggest the use of weighted RMSD schemes for small proteins (less than 200 residues) and nonweighted RMSD for larger proteins when analyzing molecular dynamics trajectories.

  20. Does standard deviation matter? Using "standard deviation" to quantify security of multistage testing.

    PubMed

    Wang, Chun; Zheng, Yi; Chang, Hua-Hua

    2014-01-01

    With the advent of web-based technology, online testing is becoming a mainstream mode in large-scale educational assessments. Most online tests are administered continuously in a testing window, which may post test security problems because examinees who take the test earlier may share information with those who take the test later. Researchers have proposed various statistical indices to assess the test security, and one most often used index is the average test-overlap rate, which was further generalized to the item pooling index (Chang & Zhang, 2002, 2003). These indices, however, are all defined as the means (that is, the expected proportion of common items among examinees) and they were originally proposed for computerized adaptive testing (CAT). Recently, multistage testing (MST) has become a popular alternative to CAT. The unique features of MST make it important to report not only the mean, but also the standard deviation (SD) of test overlap rate, as we advocate in this paper. The standard deviation of test overlap rate adds important information to the test security profile, because for the same mean, a large SD reflects that certain groups of examinees share more common items than other groups. In this study, we analytically derived the lower bounds of the SD under MST, with the results under CAT as a benchmark. It is shown that when the mean overlap rate is the same between MST and CAT, the SD of test overlap tends to be larger in MST. A simulation study was conducted to provide empirical evidence. We also compared the security of MST under the single-pool versus the multiple-pool designs; both analytical and simulation studies show that the non-overlapping multiple-pool design will slightly increase the security risk.

  1. Two large earthquakes in western Switzerland in the sixteenth century: 1524 in Ardon (VS) and 1584 in Aigle (VD)

    NASA Astrophysics Data System (ADS)

    Schwarz-Zanetti, Gabriela; Fäh, Donat; Gache, Sylvain; Kästli, Philipp; Loizeau, Jeanluc; Masciadri, Virgilio; Zenhäusern, Gregor

    2018-03-01

    The Valais is the most seismically active region of Switzerland. Strong damaging events occurred in 1755, 1855, and 1946. Based on historical documents, we discuss two known damaging events in the sixteenth century: the 1524 Ardon and the 1584 Aigle earthquakes. For the 1524, a document describes damage in Ardon, Plan-Conthey, and Savièse, and a stone tablet at the new bell tower of the Ardon church confirms the reconstruction of the bell tower after the earthquake. Additionally, a significant construction activity in the Upper Valais churches during the second quarter of the sixteenth century is discussed that however cannot be clearly related to this event. The assessed moment magnitude Mw of the 1524 event is 5.8, with an error of about 0.5 units corresponding to one standard deviation. The epicenter is at 46.27 N, 7.27 E with a high uncertainty of about 50 km corresponding to one standard deviation. The assessed moment magnitude Mw of the 1584 main shock is 5.9, with an error of about 0.25 units corresponding to one standard deviation. The epicenter is at 46.33 N and 6.97 E with an uncertainty of about 25 km corresponding to one standard deviation. Exceptional movements in the Lake Geneva wreaked havoc along the shore of the Rhone delta. The large dimension of the induced damage can be explained by an expanded subaquatic slide with resultant tsunami and seiche in Lake Geneva. The strongest of the aftershocks occurred on March 14 with magnitude 5.4 and triggered a destructive landslide covering the villages Corbeyrier and Yvorne, VD.

  2. Noncompliance with Public Health Service (PHS) policy on humane care and use of laboratory animals: an exploratory analysis.

    PubMed

    Gomez, Leah M; Conlee, Kathleen M; Stephens, Martin L

    2010-01-01

    The National Institutes of Health (NIH) is a major biomedical research-funding body in the United States. Approximately 40% of NIH-funded research involves experimentation on nonhuman animals (Monastersky, 2008). Institutions that conduct animal research with NIH funds must adhere to the Public Health Service (PHS) care and use standards of the Office of Laboratory Animal Welfare (OLAW, 2002a). Institutions deviating significantly from the PHS's animal care and use standards must report these incidents to the NIH's OLAW. This study is an exploratory analysis of all the significant deviations reported by animal-research facilities to OLAW during a 3-month period. The study identifies the most common issues reported and species involved. The study found that the majority of the incidents resulted in animal pain and distress and that 75% ended in animal death. This study offers preliminary recommendations to address the most common problems identified in this analysis. This study urges OLAW and other stakeholders to analyze larger, more recent samples of reported deviations to compare with these results and ultimately improve adherence to animal welfare standards.

  3. SU-F-J-29: Dosimetric Effect of Image Registration ROI Size and Focus in Automated CBCT Registration for Spine SBRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnelli, A; Smith, A; Chao, S

    2016-06-15

    Purpose: Spinal stereotactic body radiotherapy (SBRT) involves highly conformal dose distributions and steep dose gradients due to the proximity of the spinal cord to the treatment volume. To achieve the planning goals while limiting the spinal cord dose, patients are setup using kV cone-beam CT (kV-CBCT) with 6 degree corrections. The kV-CBCT registration with the reference CT is dependent on a user selected region of interest (ROI). The objective of this work is to determine the dosimetric impact of ROI selection. Methods: Twenty patients were selected for this study. For each patient, the kV-CBCT was registered to the reference CTmore » using three ROIs including: 1) the external body, 2) a large anatomic region, and 3) a small region focused in the target volume. Following each registration, the aligned CBCTs and contours were input to the treatment planning system for dose evaluation. The minimum dose, dose to 99% and 90% of the tumor volume (D99%, D90%), dose to 0.03cc and the dose to 10% of the spinal cord subvolume (V10Gy) were compared to the planned values. Results: The average deviations in the tumor minimum dose were 2.68%±1.7%, 4.6%±4.0%, 14.82%±9.9% for small, large and the external ROIs, respectively. The average deviations in tumor D99% were 1.15%±0.7%, 3.18%±1.7%, 10.0%±6.6%, respectively. The average deviations in tumor D90% were 1.00%±0.96%, 1.14%±1.05%, 3.19%±4.77% respectively. The average deviations in the maximum dose to the spinal cord were 2.80%±2.56%, 7.58%±8.28%, 13.35%±13.14%, respectively. The average deviation in V10Gy to the spinal cord were 1.69%±0.88%, 1.98%±2.79%, 2.71%±5.63%. Conclusion: When using automated registration algorithms for CBCT-Reference alignment, a small target-focused ROI results in the least dosimetric deviation from the plan. It is recommended to focus narrowly on the target volume to keep the spinal cord dose below tolerance.« less

  4. Practical Bias Correction in Aerial Surveys of Large Mammals: Validation of Hybrid Double-Observer with Sightability Method against Known Abundance of Feral Horse (Equus caballus) Populations

    PubMed Central

    2016-01-01

    Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance for improving survey designs. PMID:27139732

  5. Practical Bias Correction in Aerial Surveys of Large Mammals: Validation of Hybrid Double-Observer with Sightability Method against Known Abundance of Feral Horse (Equus caballus) Populations.

    PubMed

    Lubow, Bruce C; Ransom, Jason I

    2016-01-01

    Reliably estimating wildlife abundance is fundamental to effective management. Aerial surveys are one of the only spatially robust tools for estimating large mammal populations, but statistical sampling methods are required to address detection biases that affect accuracy and precision of the estimates. Although various methods for correcting aerial survey bias are employed on large mammal species around the world, these have rarely been rigorously validated. Several populations of feral horses (Equus caballus) in the western United States have been intensively studied, resulting in identification of all unique individuals. This provided a rare opportunity to test aerial survey bias correction on populations of known abundance. We hypothesized that a hybrid method combining simultaneous double-observer and sightability bias correction techniques would accurately estimate abundance. We validated this integrated technique on populations of known size and also on a pair of surveys before and after a known number was removed. Our analysis identified several covariates across the surveys that explained and corrected biases in the estimates. All six tests on known populations produced estimates with deviations from the known value ranging from -8.5% to +13.7% and <0.7 standard errors. Precision varied widely, from 6.1% CV to 25.0% CV. In contrast, the pair of surveys conducted around a known management removal produced an estimated change in population between the surveys that was significantly larger than the known reduction. Although the deviation between was only 9.1%, the precision estimate (CV = 1.6%) may have been artificially low. It was apparent that use of a helicopter in those surveys perturbed the horses, introducing detection error and heterogeneity in a manner that could not be corrected by our statistical models. Our results validate the hybrid method, highlight its potentially broad applicability, identify some limitations, and provide insight and guidance for improving survey designs.

  6. Gravity at the horizon: on relativistic effects, CMB-LSS correlations and ultra-large scales in Horndeski's theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renk, Janina; Zumalacárregui, Miguel; Montanari, Francesco, E-mail: renk@thphys.uni-heidelberg.de, E-mail: miguel.zumalacarregui@nordita.org, E-mail: francesco.montanari@helsinki.fi

    2016-07-01

    We address the impact of consistent modifications of gravity on the largest observable scales, focusing on relativistic effects in galaxy number counts and the cross-correlation between the matter large scale structure (LSS) distribution and the cosmic microwave background (CMB). Our analysis applies to a very broad class of general scalar-tensor theories encoded in the Horndeski Lagrangian and is fully consistent on linear scales, retaining the full dynamics of the scalar field and not assuming quasi-static evolution. As particular examples we consider self-accelerating Covariant Galileons, Brans-Dicke theory and parameterizations based on the effective field theory of dark energy, using the himore » class code to address the impact of these models on relativistic corrections to LSS observables. We find that especially effects which involve integrals along the line of sight (lensing convergence, time delay and the integrated Sachs-Wolfe effect—ISW) can be considerably modified, and even lead to O(1000%) deviations from General Relativity in the case of the ISW effect for Galileon models, for which standard probes such as the growth function only vary by O(10%). These effects become dominant when correlating galaxy number counts at different redshifts and can lead to ∼ 50% deviations in the total signal that might be observable by future LSS surveys. Because of their integrated nature, these deep-redshift cross-correlations are sensitive to modifications of gravity even when probing eras much before dark energy domination. We further isolate the ISW effect using the cross-correlation between LSS and CMB temperature anisotropies and use current data to further constrain Horndeski models. Forthcoming large-volume galaxy surveys using multiple-tracers will search for all these effects, opening a new window to probe gravity and cosmic acceleration at the largest scales available in our universe.« less

  7. Precipitation climatology over India: validation with observations and reanalysis datasets and spatial trends

    NASA Astrophysics Data System (ADS)

    Kishore, P.; Jyothi, S.; Basha, Ghouse; Rao, S. V. B.; Rajeevan, M.; Velicogna, Isabella; Sutterley, Tyler C.

    2016-01-01

    Changing rainfall patterns have significant effect on water resources, agriculture output in many countries, especially the country like India where the economy depends on rain-fed agriculture. Rainfall over India has large spatial as well as temporal variability. To understand the variability in rainfall, spatial-temporal analyses of rainfall have been studied by using 107 (1901-2007) years of daily gridded India Meteorological Department (IMD) rainfall datasets. Further, the validation of IMD precipitation data is carried out with different observational and different reanalysis datasets during the period from 1989 to 2007. The Global Precipitation Climatology Project data shows similar features as that of IMD with high degree of comparison, whereas Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation data show similar features but with large differences, especially over northwest, west coast and western Himalayas. Spatially, large deviation is observed in the interior peninsula during the monsoon season with National Aeronautics Space Administration-Modern Era Retrospective-analysis for Research and Applications (NASA-MERRA), pre-monsoon with Japanese 25 years Re Analysis (JRA-25), and post-monsoon with climate forecast system reanalysis (CFSR) reanalysis datasets. Among the reanalysis datasets, European Centre for Medium-Range Weather Forecasts Interim Re-Analysis (ERA-Interim) shows good comparison followed by CFSR, NASA-MERRA, and JRA-25. Further, for the first time, with high resolution and long-term IMD data, the spatial distribution of trends is estimated using robust regression analysis technique on the annual and seasonal rainfall data with respect to different regions of India. Significant positive and negative trends are noticed in the whole time series of data during the monsoon season. The northeast and west coast of the Indian region shows significant positive trends and negative trends over western Himalayas and north central Indian region.

  8. Safe insertion of S-2 alar iliac screws: radiological comparison between 2 insertion points using computed tomography and 3D analysis software.

    PubMed

    Yamada, Kentaro; Abe, Yuichiro; Satoh, Shigenobu

    2018-05-01

    OBJECTIVE S-2 alar iliac (S2AI) screws are commonly used as anchors for lumbosacral fixation. A serious potential complication of screw insertion is major vascular injury due to anterior or caudal screw deviation. To avoid screw deviation, the pelvic inlet view on intraoperative fluoroscopy images is recommended. However, there has been no detailed investigation of optimal fluoroscopic incline with the pelvic inlet view. The purpose of this study was to investigate the safety margins and to optimize fluoroscopic settings to avoid screw deviation with 2 reported insertion techniques using 3D analysis software and CT. METHODS The study included 50 patients (25 men and 25 women) who underwent abdominal-pelvic CT. With the use of software, the ideal S2AI screws were set from 2 entry points: A) the midpoint between the S-1 dorsal foramen and the S-2 dorsal foramen where they meet the lateral sacral crest, and B) 1 mm inferior and 1 mm lateral to the S-1 dorsal foramen. Anteriorly or caudally deviated screws were defined as deviation of a half thread of the ideal screw by rotation anteriorly or caudally from the entry point. The angular safety margins were compared between the 2 entry points, and patients with small safety margins were investigated. Subsequently, fluoroscopic images were virtualized on ray sum-rendered images. Conditions that provided proper recognition of screw deviation were investigated via lateral and anteroposterior views with the beam tilted caudally. RESULTS The safety margins of S2AI screws were smaller in the anterior direction than in the caudal direction and by entry point A than by entry point B (A: 9.1° ± 1.6° and B: 9.7° ± 1.5° in the anterior direction; A: 10.9° ± 3.8° and B: 13.9° ± 4.1° in the caudal direction). In contrast, patients with a deep-seated L-5 vertebral body tended to have smaller safety margins in the caudal direction. All anteriorly deviated screws were recognized with a 60°-70° inlet view from the S-1 slope. The caudally deviated screws were all recognized on the lateral view, but 31% of screws at entry point A and 21% of screws at entry point B were not recognized on the pelvic inlet view. CONCLUSIONS S2AI screws should be carefully placed to avoid anterior deviation compared with caudal deviation in terms of the safety margin, except in patients with a deep-seated L-5. The difference in safety margins between entry points A and B was negligible. Intraoperative fluoroscopy is recommended with a pelvic inlet view tilted 60°-70° from the S-1 slope to avoid anterior screw deviation. The lateral view is recommended to confirm that the screw is not deviated caudally.

  9. Optimization of hybrid power system composed of SMES and flywheel MG for large pulsed load

    NASA Astrophysics Data System (ADS)

    Niiyama, K.; Yagai, T.; Tsuda, M.; Hamajima, T.

    2008-09-01

    A superconducting magnetic storage system (SMES) has some advantages such as rapid large power response and high storage efficiency which are superior to other energy storage systems. A flywheel motor generator (FWMG) has large scaled capacity and high reliability, and hence is broadly utilized for a large pulsed load, while it has comparatively low storage efficiency due to high mechanical loss compared with SMES. A fusion power plant such as International Thermo-Nuclear Experimental Reactor (ITER) requires a large and long pulsed load which causes a frequency deviation in a utility power system. In order to keep the frequency within an allowable deviation, we propose a hybrid power system for the pulsed load, which equips the SMES and the FWMG with the utility power system. We evaluate installation cost and frequency control performance of three power systems combined with energy storage devices; (i) SMES with the utility power, (ii) FWMG with the utility power, (iii) both SMES and FWMG with the utility power. The first power system has excellent frequency power control performance but its installation cost is high. The second system has inferior frequency control performance but its installation cost is the lowest. The third system has good frequency control performance and its installation cost is attained lower than the first power system by adjusting the ratio between SMES and FWMG.

  10. Baryon-antibaryon dynamics in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Seifert, E.; Cassing, W.

    2018-04-01

    The dynamics of baryon-antibaryon annihilation and reproduction (B B ¯↔3 M ) is studied within the Parton-Hadron-String Dynamics (PHSD) transport approach for Pb+Pb and Au+Au collisions as a function of centrality from lower Super Proton Synchrotron (SPS) up to Large Hadron Collider (LHC) energies on the basis of the quark rearrangement model. At Relativistic Heavy-Ion Collider (RHIC) energies we find a small net reduction of baryon-antibaryon (B B ¯ ) pairs while for the LHC energy of √{sN N}=2.76 TeV a small net enhancement is found relative to calculations without annihilation (and reproduction) channels. Accordingly, the sizable difference between data and statistical calculations in Pb+Pb collisions at √{sN N}=2.76 TeV for proton and antiproton yields [ALICE Collaboration, B. Abelev et al., Phys. Rev. C 88, 044910 (2013), 10.1103/PhysRevC.88.044910], where a deviation of 2.7 σ was claimed by the ALICE Collaboration, should not be attributed to a net antiproton annihilation. This is in line with the observation that no substantial deviation between the data and statistical hadronization model (SHM) calculations is seen for antihyperons, since according to the PHSD analysis the antihyperons should be modified by the same amount as antiprotons. As the PHSD results for particle ratios are in line with the ALICE data (within error bars) this might point towards a deviation from statistical equilibrium in the hadronization (at least for protons and antiprotons). Furthermore, we find that the B B ¯↔3 M reactions are more effective at lower SPS energies where a net suppression for antiprotons and antihyperons up to a factor of 2-2.5 can be extracted from the PHSD calculations for central Au+Au collisions.

  11. The stability of steady state accommodation in human infants

    PubMed Central

    Candy, T. Rowan; Bharadwaj, Shrikant R.

    2009-01-01

    Retinal image quality in infants is largely determined by the accuracy and the stability of their accommodative responses. Although the accuracy of infants’ accommodation has been investigated previously, little is known about the stability of their responses. We performed two experiments that characterized the stability of infants’ steady state accommodation. Analyses were performed in the time domain (root mean square [RMS] deviation) and in the frequency domain (spectral analysis). In Experiment 1, accommodation responses were recorded for a period of 3 s from the left eye of four groups of infants (8–10, 11–13, 14–19, and 20–30 weeks of age) and eight prepresbyopic adults while they focused on a small toy placed at a dioptric viewing distance of 1.0 D (at 1 m). In Experiment 2, accommodation responses were recorded for a period of 14 s from the left eye of a group of 8- to 12-week-old infants and six prepresbyopic adults while they focused on a cartoon image placed at three different dioptric viewing distances (1.25, 2.0, and 3.0 D). The data, collected using a photorefractor sampling at 25 Hz, showed two important characteristics. First, the RMS deviations and the power were quantitatively similar across different infant age groups, and they were significantly larger in infants than in adults. Second, the overall and relative power also increased with the dioptric viewing distance both in infants and adults. At all three dioptric viewing distances, the measures of power were larger in infants than in adults. These data demonstrate that infants’ accommodative responses contain instabilities that are qualitatively very similar to those observed in adults. However, the larger RMS deviations suggest that infants are likely to experience larger fluctuations in retinal image quality than adults. PMID:17997659

  12. Decreased fetal hemoglobin over time among youth with sickle cell disease on hydroxyurea is associated with higher urgent hospital use.

    PubMed

    Green, Nancy S; Manwani, Deepa; Qureshi, Mahvish; Ireland, Karen; Sinha, Arpan; Smaldone, Arlene M

    2016-12-01

    Hydroxyurea (HU) induces dose-dependent increased fetal hemoglobin (HbF) for sickle cell disease (SCD). Large deviation from historical personal best (PBest) HbF, a clinic-based version of maximum dose, may identify a subset with suboptimal HU adherence over time. Retrospective clinical data from youth ages 10-18 years prescribed HU at two centers were extracted from medical records at three time points: pre-HU initiation, PBest and a recent assessment. Decrease from PBest HbF of 20% or more at recent assessment despite stable dosing was designated as high deviation from PBest. Acute hospital use was compared between 1-year periods, pre-HU and ±6 months for PBest and recent assessment. Groups were compared using descriptive and bivariate nonparametric statistics. Seventy-five youth, mean HU duration 5.9 years, met eligibility criteria. Mean ages of HU initiation, PBest and recent assessment were 8.0, 10.9 and 13.9 years, respectively. Despite stable dosing, average HbF of 19.5% at PBest overall declined by 31.8% at recent assessment. PBest HbF declined by 11.7 and 40.1% in two groups, the latter comprised 70.7% of the sample, had lower pre-HU and recent HbF and higher dosing. They experienced more urgent hospital use during the year framing recent assessment than during PBest; these findings were supported by sensitivity analysis. Decline from PBest HbF is a novel approach to assess HU effectiveness, is common among youth and may represent suboptimal adherence. Larger prospective studies using additional adherence measures are needed to confirm our approach of tracking HbF deviation over time and to define an appropriate cutoff. © 2016 Wiley Periodicals, Inc.

  13. Constraints on deviations from ΛCDM within Horndeski gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellini, Emilio; Cuesta, Antonio J.; Jimenez, Raul

    2016-02-01

    Recent anomalies found in cosmological datasets such as the low multipoles of the Cosmic Microwave Background or the low redshift amplitude and growth of clustering measured by e.g., abundance of galaxy clusters and redshift space distortions in galaxy surveys, have motivated explorations of models beyond standard ΛCDM. Of particular interest are models where general relativity (GR) is modified on large cosmological scales. Here we consider deviations from ΛCDM+GR within the context of Horndeski gravity, which is the most general theory of gravity with second derivatives in the equations of motion. We adopt a parametrization in which the four additional Horndeskimore » functions of time α{sub i}(t) are proportional to the cosmological density of dark energy Ω{sub DE}(t). Constraints on this extended parameter space using a suite of state-of-the art cosmological observations are presented for the first time. Although the theory is able to accommodate the low multipoles of the Cosmic Microwave Background and the low amplitude of fluctuations from redshift space distortions, we find no significant tension with ΛCDM+GR when performing a global fit to recent cosmological data and thus there is no evidence against ΛCDM+GR from an analysis of the value of the Bayesian evidence ratio of the modified gravity models with respect to ΛCDM, despite introducing extra parameters. The posterior distribution of these extra parameters that we derive return strong constraints on any possible deviations from ΛCDM+GR in the context of Horndeski gravity. We illustrate how our results can be applied to a more general frameworks of modified gravity models.« less

  14. Implementation of an Algorithm for Prosthetic Joint Infection: Deviations and Problems.

    PubMed

    Mühlhofer, Heinrich M L; Kanz, Karl-Georg; Pohlig, Florian; Lenze, Ulrich; Lenze, Florian; Toepfer, Andreas; von Eisenhart-Rothe, Ruediger; Schauwecker, Johannes

    The outcome of revision surgery in arthroplasty is based on a precise diagnosis. In addition, the treatment varies based on whether the prosthetic failure is caused by aseptic or septic loosening. Algorithms can help to identify periprosthetic joint infections (PJI) and standardize diagnostic steps, however, algorithms tend to oversimplify the treatment of complex cases. We conducted a process analysis during the implementation of a PJI algorithm to determine problems and deviations associated with the implementation of this algorithm. Fifty patients who were treated after implementing a standardized algorithm were monitored retrospectively. Their treatment plans and diagnostic cascades were analyzed for deviations from the implemented algorithm. Each diagnostic procedure was recorded, compared with the algorithm, and evaluated statistically. We detected 52 deviations while treating 50 patients. In 25 cases, no discrepancy was observed. Synovial fluid aspiration was not performed in 31.8% of patients (95% confidence interval [CI], 18.1%-45.6%), while white blood cell counts (WBCs) and neutrophil differentiation were assessed in 54.5% of patients (95% CI, 39.8%-69.3%). We also observed that the prolonged incubation of cultures was not requested in 13.6% of patients (95% CI, 3.5%-23.8%). In seven of 13 cases (63.6%; 95% CI, 35.2%-92.1%), arthroscopic biopsy was performed; 6 arthroscopies were performed in discordance with the algorithm (12%; 95% CI, 3%-21%). Self-critical analysis of diagnostic processes and monitoring of deviations using algorithms are important and could increase the quality of treatment by revealing recurring faults.

  15. Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe

    NASA Astrophysics Data System (ADS)

    Scheifinger, Helfried; Menzel, Annette; Koch, Elisabeth; Peter, Christian; Ahas, Rein

    2002-11-01

    A data set of 17 phenological phases from Germany, Austria, Switzerland and Slovenia spanning the time period from 1951 to 1998 has been made available for analysis together with a gridded temperature data set (1° × 1° grid) and the North Atlantic Oscillation (NAO) index time series. The disturbances of the westerlies constitute the main atmospheric source for the temporal variability of phenological events in Europe. The trend, the standard deviation and the discontinuity of the phenological time series at the end of the 1980s can, to a great extent, be explained by the NAO. A number of factors modulate the influence of the NAO in time and space. The seasonal northward shift of the westerlies overlaps with the sequence of phenological spring phases, thereby gradually reducing its influence on the temporal variability of phenological events with progression of spring (temporal loss of influence). This temporal process is reflected by a pronounced decrease in trend and standard deviation values and common variability with the NAO with increasing year-day. The reduced influence of the NAO with increasing distance from the Atlantic coast is not only apparent in studies based on the data set of the International Phenological Gardens, but also in the data set of this study with a smaller spatial extent (large-scale loss of influence). The common variance between phenological and NAO time series displays a discontinuous drop from the European Atlantic coast towards the Alps. On a local and regional scale, mountainous terrain reduces the influence of the large-scale atmospheric flow from the Atlantic via a proposed decoupling mechanism. Valleys in mountainous terrain have the inclination to harbour temperature inversions over extended periods of time during the cold season, which isolate the valley climate from the large-scale atmospheric flow at higher altitudes. Most phenological stations reside at valley bottoms and are thus largely decoupled in their temporal variability from the influence of the westerly flow regime (local-scale loss of influence). This study corroborates an increasing number of similar investigations that find that vegetation does react in a sensitive way to variations of its atmospheric environment across various temporal and spatial scales.

  16. Results of scatterometer systems analysis for NASA/MSC Earth Observation Sensor Evaluation Program.

    NASA Technical Reports Server (NTRS)

    Krishen, K.; Vlahos, N.; Brandt, O.; Graybeal, G.

    1971-01-01

    Radar scatterometers have applications in the NASA/MSC Earth Observation Aircraft Program. Over a period of several years, several missions have been flown over both land and ocean. In this paper a system evaluation of the NASA/MSC 13.3-GHz Scatterometer System is presented. The effects of phase error between the Scatterometer channels, antenna pattern deviations, aircraft attitude deviations, environmental changes, and other related factors such as processing errors, system repeatability, and propeller modulation, were established. Furthermore, the reduction in system errors and calibration improvement was investigated by taking into account these parameter deviations. Typical scatterometer data samples are presented.

  17. Allan Deviation Plot as a Tool for Quartz-Enhanced Photoacoustic Sensors Noise Analysis.

    PubMed

    Giglio, Marilena; Patimisco, Pietro; Sampaolo, Angelo; Scamarcio, Gaetano; Tittel, Frank K; Spagnolo, Vincenzo

    2016-04-01

    We report here on the use of the Allan deviation plot to analyze the long-term stability of a quartz-enhanced photoacoustic (QEPAS) gas sensor. The Allan plot provides information about the optimum averaging time for the QEPAS signal and allows the prediction of its ultimate detection limit. The Allan deviation can also be used to determine the main sources of noise coming from the individual components of the sensor. Quartz tuning fork thermal noise dominates for integration times up to 275 s, whereas at longer averaging times, the main contribution to the sensor noise originates from laser power instabilities.

  18. Modulation linearization of a frequency-modulated voltage controlled oscillator, part 3

    NASA Technical Reports Server (NTRS)

    Honnell, M. A.

    1975-01-01

    An analysis is presented for the voltage versus frequency characteristics of a varactor modulated VHF voltage controlled oscillator in which the frequency deviation is linearized by using the nonlinear characteristics of a field effect transistor as a signal amplifier. The equations developed are used to calculate the oscillator output frequency in terms of pertinent circuit parameters. It is shown that the nonlinearity exponent of the FET has a pronounced influence on frequency deviation linearity, whereas the junction exponent of the varactor controls total frequency deviation for a given input signal. A design example for a 250 MHz frequency modulated oscillator is presented.

  19. Modeling protein conformational changes by iterative fitting of distance constraints using reoriented normal modes.

    PubMed

    Zheng, Wenjun; Brooks, Bernard R

    2006-06-15

    Recently we have developed a normal-modes-based algorithm that predicts the direction of protein conformational changes given the initial state crystal structure together with a small number of pairwise distance constraints for the end state. Here we significantly extend this method to accurately model both the direction and amplitude of protein conformational changes. The new protocol implements a multisteps search in the conformational space that is driven by iteratively minimizing the error of fitting the given distance constraints and simultaneously enforcing the restraint of low elastic energy. At each step, an incremental structural displacement is computed as a linear combination of the lowest 10 normal modes derived from an elastic network model, whose eigenvectors are reorientated to correct for the distortions caused by the structural displacements in the previous steps. We test this method on a list of 16 pairs of protein structures for which relatively large conformational changes are observed (root mean square deviation >3 angstroms), using up to 10 pairwise distance constraints selected by a fluctuation analysis of the initial state structures. This method has achieved a near-optimal performance in almost all cases, and in many cases the final structural models lie within root mean square deviation of 1 approximately 2 angstroms from the native end state structures.

  20. A HELIOSEISMIC SURVEY OF NEAR-SURFACE FLOWS AROUND ACTIVE REGIONS AND THEIR ASSOCIATION WITH FLARES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D. C., E-mail: dbraun@cora.nwra.com

    We use helioseismic holography to study the association of shallow flows with solar flare activity in about 250 large sunspot groups observed between 2010 and 2014 with the Helioseismic and Magnetic Imager on the Solar Dynamics Observatory. Four basic flow parameters: horizontal speed, horizontal component of divergence, vertical component of vorticity, and a vertical kinetic helicity proxy, are mapped for each active region (AR) during its passage across the solar disk. Flow indices are derived representing the mean and standard deviation of these parameters over magnetic masks and compared with contemporary measures of flare X-ray flux. A correlation exists formore » several of the flow indices, especially those based on the speed and the standard deviation of all flow parameters. However, their correlation with X-ray flux is similar to that observed with the mean unsigned magnetic flux density over the same masks. The temporal variation of the flow indices are studied, and a superposed epoch analysis with respect to the occurrence to 70 M and X-class flares is made. While flows evolve with the passage of the ARs across the disk, no discernible precursors or other temporal changes specifically associated with flares are detected.« less

  1. Upregulation of CD94 on CD8+T Cells in Anterior Chamber-Associated Immune Deviation

    PubMed Central

    He, Hao; Yang, Peizeng; Jiang, Liqiong; Zhang, Junfeng; Zhao, Changlin; Chen, Lina; Lin, Xiaomin; Zhou, Hongyan; Kijlstra, Aize

    2008-01-01

    Background CD8+ regulatory T cells (Treg) have been considered to be involved in a model of ocular-induced tolerance, known as anterior chamber-associated immune deviation (ACAID). The phenotype and characteristics of CD8+Treg in ACAID remain only poorly understood. Recent studies have reported that the CD94-Qa-1 system is implicated in the induction of ACAID CD8+Treg, but the functions and characteristics of CD8+CD94+T cells remain unclear. Results Both mRNA and protein of CD94 and NKG2A were markedly up-regulated on splenic CD8+T cells of ACAID mice compared with controls. Flow cytometric analysis showed that very few CD8+CD94+T cells express granzyme B, perforin and Foxp3. CD8+CD94+T cells, but not CD8+CD94-T cells, magnetically isolated from the spleens of ACAID mice, produced large amounts of TGF-beta1 and exhibited suppressive activity in vitro. Neutralization of TGF-beta1 caused reversal of suppression mediated by CD8+CD94+T cells. Conclusion CD8+CD94+T cells from ACAID mice exhibited suppressive activity in association with enhanced expression of TGF-beta1, suggesting that CD8+Treg are mainly distributed in CD94+T cell subpopulations. PMID:18816417

  2. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-15

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equationmore » has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.« less

  3. Image characterization metrics for muon tomography

    NASA Astrophysics Data System (ADS)

    Luo, Weidong; Lehovich, Andre; Anashkin, Edward; Bai, Chuanyong; Kindem, Joel; Sossong, Michael; Steiger, Matt

    2014-05-01

    Muon tomography uses naturally occurring cosmic rays to detect nuclear threats in containers. Currently there are no systematic image characterization metrics for muon tomography. We propose a set of image characterization methods to quantify the imaging performance of muon tomography. These methods include tests of spatial resolution, uniformity, contrast, signal to noise ratio (SNR) and vertical smearing. Simulated phantom data and analysis methods were developed to evaluate metric applicability. Spatial resolution was determined as the FWHM of the point spread functions in X, Y and Z axis for 2.5cm tungsten cubes. Uniformity was measured by drawing a volume of interest (VOI) within a large water phantom and defined as the standard deviation of voxel values divided by the mean voxel value. Contrast was defined as the peak signals of a set of tungsten cubes divided by the mean voxel value of the water background. SNR was defined as the peak signals of cubes divided by the standard deviation (noise) of the water background. Vertical smearing, i.e. vertical thickness blurring along the zenith axis for a set of 2 cm thick tungsten plates, was defined as the FWHM of vertical spread function for the plate. These image metrics provided a useful tool to quantify the basic imaging properties for muon tomography.

  4. Histogram Analysis of Apparent Diffusion Coefficients for Occult Tonsil Cancer in Patients with Cervical Nodal Metastasis from an Unknown Primary Site at Presentation.

    PubMed

    Choi, Young Jun; Lee, Jeong Hyun; Kim, Hye Ok; Kim, Dae Yoon; Yoon, Ra Gyoung; Cho, So Hyun; Koh, Myeong Ju; Kim, Namkug; Kim, Sang Yoon; Baek, Jung Hwan

    2016-01-01

    To explore the added value of histogram analysis of apparent diffusion coefficient (ADC) values over magnetic resonance (MR) imaging and fluorine 18 ((18)F) fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) for the detection of occult palatine tonsil squamous cell carcinoma (SCC) in patients with cervical nodal metastasis from a cancer of an unknown primary site. The institutional review board approved this retrospective study, and the requirement for informed consent was waived. Differences in the bimodal histogram parameters of the ADC values were assessed among occult palatine tonsil SCC (n = 19), overt palatine tonsil SCC (n = 20), and normal palatine tonsils (n = 20). One-way analysis of variance was used to analyze differences among the three groups. Receiver operating characteristic curve analysis was used to determine the best differentiating parameters. The increased sensitivity of histogram analysis over MR imaging and (18)F-FDG PET/CT for the detection of occult palatine tonsil SCC was evaluated as added value. Histogram analysis showed statistically significant differences in the mean, standard deviation, and 50th and 90th percentile ADC values among the three groups (P < .0045). Occult palatine tonsil SCC had a significantly higher standard deviation for the overall curves, mean and standard deviation of the higher curves, and 90th percentile ADC value, compared with normal palatine tonsils (P < .0167). Receiver operating characteristic curve analysis showed that the standard deviation of the overall curve best delineated occult palatine tonsil SCC from normal palatine tonsils, with a sensitivity of 78.9% (15 of 19 patients) and a specificity of 60% (12 of 20 patients). The added value of ADC histogram analysis was 52.6% over MR imaging alone and 15.8% over combined conventional MR imaging and (18)F-FDG PET/CT. Adding ADC histogram analysis to conventional MR imaging can improve the detection sensitivity for occult palatine tonsil SCC in patients with a cervical nodal metastasis originating from a cancer of an unknown primary site. © RSNA, 2015.

  5. Effects of expected-value information and display format on recognition of aircraft subsystem abnormalities

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.

    1994-01-01

    This study identifies improved methods to present system parameter information for detecting abnormal conditions and to identify system status. Two workstation experiments were conducted. The first experiment determined if including expected-value-range information in traditional parameter display formats affected subject performance. The second experiment determined if using a nontraditional parameter display format, which presented relative deviation from expected value, was better than traditional formats with expected-value ranges included. The inclusion of expected-value-range information onto traditional parameter formats was found to have essentially no effect. However, subjective results indicated support for including this information. The nontraditional column deviation parameter display format resulted in significantly fewer errors compared with traditional formats with expected-value-ranges included. In addition, error rates for the column deviation parameter display format remained stable as the scenario complexity increased, whereas error rates for the traditional parameter display formats with expected-value ranges increased. Subjective results also indicated that the subjects preferred this new format and thought that their performance was better with it. The column deviation parameter display format is recommended for display applications that require rapid recognition of out-of-tolerance conditions, especially for a large number of parameters.

  6. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories

    NASA Astrophysics Data System (ADS)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  7. Kinematic gait deficits at the trunk and pelvis: characteristic features in children with hereditary spastic paraplegia.

    PubMed

    Adair, Brooke; Rodda, Jillian; McGinley, Jennifer L; Graham, H Kerr; Morris, Meg E

    2016-08-01

    To examine the kinematic gait deviations at the trunk and pelvis of children with hereditary spastic paraplegia (HSP). This exploratory observational study quantified gait kinematics for the trunk and pelvis from 11 children with HSP (7 males, 4 females) using the Gait Profile Score and Gait Variable Scores (GVS), and compared the kinematics to data from children with typical development using a Mann-Whitney U test. Children with HSP (median age 11y 4mo, interquartile range 4y) demonstrated large deviations in the GVS for the trunk and pelvis in the sagittal and coronal planes when compared to the gait patterns of children with typical development (p=0.010-0.020). Specific deviations included increased range of movement for the trunk in the coronal plane and increased excursion of the trunk and pelvis in the sagittal plane. In the transverse plane, children with HSP demonstrated later peaks in posterior pelvic rotation. The kinematic gait deviations identified in this study raise questions about the contribution of muscle weakness in HSP. Further research is warranted to determine contributing factors for gait dysfunction in HSP, especially the relative influence of spasticity and weakness. © 2016 Mac Keith Press.

  8. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    PubMed

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  9. A comparative study of the deviation of the menton on posteroanterior cephalograms and three-dimensional computed tomography

    PubMed Central

    Lee, Hee Jin; Lee, Sungeun; Lee, Eun Joo; Song, In Ja; Kang, Byung-Cheol; Lee, Jae-Seo; Lim, Hoi-Jeong

    2016-01-01

    Purpose Facial asymmetry has been measured by the severity of deviation of the menton (Me) on posteroanterior (PA) cephalograms and three-dimensional (3D) computed tomography (CT). This study aimed to compare PA cephalograms and 3D CT regarding the severity of Me deviation and the direction of the Me. Materials and Methods PA cephalograms and 3D CT images of 35 patients who underwent orthognathic surgery (19 males and 16 females, with an average age of 22.1±3.3 years) were retrospectively reviewed in this study. By measuring the distance and direction of the Me from the midfacial reference line and the midsagittal plane in the cephalograms and 3D CT, respectively, the x-coordinates (x1 and x2) of the Me were obtained in each image. The difference between the x-coordinates was calculated and statistical analysis was performed to compare the severity of Me deviation and the direction of the Me in the two imaging modalities. Results A statistically significant difference in the severity of Me deviation was found between the two imaging modalities (Δx=2.45±2.03 mm, p<0.05) using the one-sample t-test. Statistically significant agreement was observed in the presence of deviation (k=0.64, p<0.05) and in the severity of Me deviation (k=0.27, p<0.05). A difference in the direction of the Me was detected in three patients (8.6%). The severity of the Me deviation was found to vary according to the imaging modality in 16 patients (45.7%). Conclusion The measurement of Me deviation may be different between PA cephalograms and 3D CT in some patients. PMID:27051637

  10. Description Of Scoliotic Deformity Pattern By Harmonic Functions

    NASA Astrophysics Data System (ADS)

    Drerup, Burkhard; Hierholzer, Eberhard

    1989-04-01

    Frontal radiographs of scoliotic deformity of the spine reveal a characteristic pattern of lateral deviation, lateral tilt and axial rotation of vertebrae. In order to study interrelations between deformation parameters 478 radiographs of idiopathic scolioses, 23 of scolioses after Wilms-tumor treatment and 18 of scolioses following poliomyelitis were digitized. From these the curves of lateral deviation, tilt and rotation are calculated and fitted by Fourier series. By restriction to the first harmonic, analysis reduces to the analysis of a single phase and amplitude for each curve. Justification of this simplification will be discussed. Results provide a general geometric description of scoliotic deformity.

  11. Analysis of the electromagnetic wave resistivity tool in deviated well drilling

    NASA Astrophysics Data System (ADS)

    Zhang, Yumei; Xu, Lijun; Cao, Zhang

    2014-04-01

    Electromagnetic wave resistivity (EWR) tools are used to provide real-time measurements of resistivity in the formation around the tool in Logging While Drilling (LWD). In this paper, the acquired resistivity information in the formation is analyzed to extract more information, including dipping angle and azimuth direction of the drill. A finite element (FM) model of EWR tool working in layered earth formations is established. Numerical analysis and FM simulations are employed to analyze the amplitude ratio and phase difference between the voltages measured at the two receivers of the EWR tool in deviated well drilling.

  12. A computer aided treatment event recognition system in radiation therapy.

    PubMed

    Xia, Junyi; Mart, Christopher; Bayouth, John

    2014-01-01

    To develop an automated system to safeguard radiation therapy treatments by analyzing electronic treatment records and reporting treatment events. CATERS (Computer Aided Treatment Event Recognition System) was developed to detect treatment events by retrieving and analyzing electronic treatment records. CATERS is designed to make the treatment monitoring process more efficient by automating the search of the electronic record for possible deviations from physician's intention, such as logical inconsistencies as well as aberrant treatment parameters (e.g., beam energy, dose, table position, prescription change, treatment overrides, etc). Over a 5 month period (July 2012-November 2012), physicists were assisted by the CATERS software in conducting normal weekly chart checks with the aims of (a) determining the relative frequency of particular events in the authors' clinic and (b) incorporating these checks into the CATERS. During this study period, 491 patients were treated at the University of Iowa Hospitals and Clinics for a total of 7692 fractions. All treatment records from the 5 month analysis period were evaluated using all the checks incorporated into CATERS after the training period. About 553 events were detected as being exceptions, although none of them had significant dosimetric impact on patient treatments. These events included every known event type that was discovered during the trial period. A frequency analysis of the events showed that the top three types of detected events were couch position override (3.2%), extra cone beam imaging (1.85%), and significant couch position deviation (1.31%). The significant couch deviation is defined as the number of treatments where couch vertical exceeded two times standard deviation of all couch verticals, or couch lateral/longitudinal exceeded three times standard deviation of all couch laterals and longitudinals. On average, the application takes about 1 s per patient when executed on either a desktop computer or a mobile device. CATERS offers an effective tool to detect and report treatment events. Automation and rapid processing enables electronic record interrogation daily, alerting the medical physicist of deviations potentially days prior to performing weekly check. The output of CATERS could also be utilized as an important input to failure mode and effects analysis.

  13. Common inputs in subthreshold membrane potential: The role of quiescent states in neuronal activity

    NASA Astrophysics Data System (ADS)

    Montangie, Lisandro; Montani, Fernando

    2018-06-01

    Experiments in certain regions of the cerebral cortex suggest that the spiking activity of neuronal populations is regulated by common non-Gaussian inputs across neurons. We model these deviations from random-walk processes with q -Gaussian distributions into simple threshold neurons, and investigate the scaling properties in large neural populations. We show that deviations from the Gaussian statistics provide a natural framework to regulate population statistics such as sparsity, entropy, and specific heat. This type of description allows us to provide an adequate strategy to explain the information encoding in the case of low neuronal activity and its possible implications on information transmission.

  14. Symmetry analysis of talus bone: A Geometric morphometric approach.

    PubMed

    Islam, K; Dobbe, A; Komeili, A; Duke, K; El-Rich, M; Dhillon, S; Adeeb, S; Jomha, N M

    2014-01-01

    The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139-45.

  15. Symmetry analysis of talus bone

    PubMed Central

    Islam, K.; Dobbe, A.; Komeili, A.; Duke, K.; El-Rich, M.; Dhillon, S.; Adeeb, S.; Jomha, N. M.

    2014-01-01

    Objective The main object of this study was to use a geometric morphometric approach to quantify the left-right symmetry of talus bones. Methods Analysis was carried out using CT scan images of 11 pairs of intact tali. Two important geometric parameters, volume and surface area, were quantified for left and right talus bones. The geometric shape variations between the right and left talus bones were also measured using deviation analysis. Furthermore, location of asymmetry in the geometric shapes were identified. Results Numerical results showed that talus bones are bilaterally symmetrical in nature, and the difference between the surface area of the left and right talus bones was less than 7.5%. Similarly, the difference in the volume of both bones was less than 7.5%. Results of the three-dimensional (3D) deviation analyses demonstrated the mean deviation between left and right talus bones were in the range of -0.74 mm to 0.62 mm. It was observed that in eight of 11 subjects, the deviation in symmetry occurred in regions that are clinically less important during talus surgery. Conclusions We conclude that left and right talus bones of intact human ankle joints show a strong degree of symmetry. The results of this study may have significance with respect to talus surgery, and in investigating traumatic talus injury where the geometric shape of the contralateral talus can be used as control. Cite this article: Bone Joint Res 2014;3:139–45. PMID:24802391

  16. Geochemical fingerprinting and source discrimination in soils at the continental scale

    NASA Astrophysics Data System (ADS)

    Negrel, Philippe; Sadeghi, Martiya; Ladenberger, Anna; Birke, Manfred; Reimann, Clemens

    2014-05-01

    Agricultural soil (Ap-horizon, 0-20 cm) samples were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site per 2500 km2. The resulting 2108 soil samples were air dried, sieved to <2 mm, milled and analysed for their major and trace element concentrations by wavelength dispersive X-ray fluorescence spectrometry (WD-XRF). The main goal of this study is to provide a global view of element mobility and source rocks at the continent scale, either by reference to crustal evolution or normalized patterns of element mobility during weathering processes. The survey area includes several sedimentary basins with different geological history, developed in different climate zones and landscapes and with different land use. In order to normalize the chemical composition of soils, mean values and standard deviation of the selected elements have been checked against values for the upper continental crust (UCC). Some elements turned out to be enriched relative to the UCC (Al, P, Zr, Pb) whereas others, like Mg, Na, Sr and Pb were depleted with regards to the variation represented by the standard deviation. The concept of UCC extended normalization patterns have been further used for the selected elements. The mean value of Rb, K, Y, Ti, Al, Si, Zr, Ce and Fe are very close to the UCC model even if standard deviation suggests slight enrichment or depletion, and Zr shows the best fit with the UCC model using both mean value and standard deviation. Lead and Cr are enriched in European soils when compared to UCC but their standard deviation values show very large variations, particularly towards very low values, which can be interpreted as a lithological effect. Element variability has been explored by looking at the variations using indicator elements. Soil data have been converted into Al-normalized enrichment factors and Na was applied as normalizing element for studying provenance source taking into account the main lithologies of the UCC. This latter normalization highlighted variations related to the soluble and insoluble behavior of some elements (K, Rb versus Ti, Al, Si, V, Y, Zr, Ba, and La, respectively), their reactivity (Fe, Mn, Zn), association with carbonates (Ca and Sr) and with phosphates (P and Ce). The maps of normalized composition revealed some problems with use of classical element ratios due to genetical differences in composition of parent material reflected, for example, in large differences in titanium content in bedrock and soil throughout the Europe.

  17. Rare events in finite and infinite dimensions

    NASA Astrophysics Data System (ADS)

    Reznikoff, Maria G.

    Thermal noise introduces stochasticity into deterministic equations and makes possible events which are never seen in the zero temperature setting. The driving force behind the thesis work is a desire to bring analysis and probability to bear on a class of relevant and intriguing physical problems, and in so doing, to allow applications to drive the development of new mathematical theory. The unifying theme is the study of rare events under the influence of small, random perturbations, and the manifold mathematical problems which ensue. In the first part, we apply large deviation theory and prefactor estimates to a coherent rotation micromagnetic model in order to analyze thermally activated magnetic switching. We consider recent physical experiments and the mathematical questions "asked" by them. A stochastic resonance type phenomenon is discovered, leading to the definition of finite temperature astroids. Non-Arrhenius behavior is discussed. The analysis is extended to ramped astroids. In addition, we discover that for low damping and ultrashort pulses, deterministic effects can override thermal effects, in accord with very recent ultrashort pulse experiments. Even more interesting, perhaps, is the study of large deviations in the infinite dimensional context, i.e. in spatially extended systems. Inspired by recent numerical investigations, we study the stochastically perturbed Allen Cahn and Cahn Hilliard equations. For the Allen Cahn equation, we study the action minimization problem (a deterministic variational problem) and prove the action scaling in four parameter regimes, via upper and lower bounds. The sharp interface limit is studied. We formally derive a reduced action functional which lends insight into the connection between action minimization and curvature flow. For the Cahn Hilliard equation, we prove upper and lower bounds for the scaling of the energy barrier in the nucleation and growth regime. Finally, we consider rare events in large or infinite domains, in one spatial dimension. We introduce a natural reference measure through which to analyze the invariant measure of stochastically perturbed, nonlinear partial differential equations. Also, for noisy reaction diffusion equations with an asymmetric potential, we discover how to rescale space and time in order to map the dynamics in the zero temperature limit to the Poisson Model, a simple version of the Johnson-Mehl-Avrami-Kolmogorov model for nucleation and growth.

  18. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowak, G., E-mail: Gregor.Nowak@hzg.de; Störmer, M.; Horstmann, C.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system.more » The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.« less

  19. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    NASA Astrophysics Data System (ADS)

    Nowak, G.; Störmer, M.; Becker, H.-W.; Horstmann, C.; Kampmann, R.; Höche, D.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Lorenz, U.; Hall-Wilton, R.; Müller, M.; Schreyer, A.

    2015-01-01

    Due to the present shortage of 3He and the associated tremendous increase of its price, the supply of large neutron detection systems with 3He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid 10B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area 10B4C coatings of up to 2 μm thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The 10B4C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical 10B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black 3He-monitor. Thus, these converter coatings contribute to the development of 3He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative 3He-free converter elements available for large area neutron detection systems.

  20. Experimental measurement of the orbital paths of particles sedimenting within a rotating viscous fluid as influenced by gravity

    NASA Technical Reports Server (NTRS)

    Wolf, David A.; Schwarz, Ray P.

    1992-01-01

    Measurements were taken of the path of a simulated typical tissue segment or 'particle' within a rotating fluid as a function of gravitational strength, fluid rotation rate, particle sedimentation rate, and particle initial position. Parameters were examined within the useful range for tissue culture in the NASA rotating wall culture vessels. The particle moves along a nearly circular path through the fluid (as observed from the rotating reference frame of the fluid) at the same speed as its linear terminal sedimentation speed for the external gravitational field. This gravitationally induced motion causes an increasing deviation of the particle from its original position within the fluid for a decreased rotational rate, for a more rapidly sedimenting particle, and for an increased gravitational strength. Under low gravity conditions (less than 0.1 G), the particle's motion through the fluid and its deviation from its original position become negligible. Under unit gravity conditions, large distortions (greater than 0.25 inch) occur even for particles of slow sedimentation rate (less than 1.0 cm/sec). The particle's motion is nearly independent of the particle's initial position. Comparison with mathematically predicted particle paths show that a significant error in the mathematically predicted path occurs for large particle deviations. This results from a geometric approximation and numerically accumulating error in the mathematical technique.

  1. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  2. [Study on physical deviation factors on laser induced breakdown spectroscopy measurement].

    PubMed

    Wan, Xiong; Wang, Peng; Wang, Qi; Zhang, Qing; Zhang, Zhi-Min; Zhang, Hua-Ming

    2013-10-01

    In order to eliminate the deviation between the measured LIBS spectral line and the standard LIBS spectral line, and improve the accuracy of elements measurement, a research of physical deviation factors in laser induced breakdown spectroscopy technology was proposed. Under the same experimental conditions, the relationship of ablated hole effect and spectral wavelength was tested, the Stark broadening data of Mg plasma laser induced breakdown spectroscopy with sampling time-delay from 1.00 to 3.00 micros was also studied, thus the physical deviation influences such as ablated hole effect and Stark broadening could be obtained while collecting the spectrum. The results and the method of the research and analysis can also be applied to other laser induced breakdown spectroscopy experiment system, which is of great significance to improve the accuracy of LIBS elements measuring and is also important to the research on the optimum sampling time-delay of LIBS.

  3. Dynamics of the standard deviations of three wind velocity components from the data of acoustic sounding

    NASA Astrophysics Data System (ADS)

    Krasnenko, N. P.; Kapegesheva, O. F.; Shamanaeva, L. G.

    2017-11-01

    Spatiotemporal dynamics of the standard deviations of three wind velocity components measured with a mini-sodar in the atmospheric boundary layer is analyzed. During the day on September 16 and at night on September 12 values of the standard deviation changed for the x- and y-components from 0.5 to 4 m/s, and for the z-component from 0.2 to 1.2 m/s. An analysis of the vertical profiles of the standard deviations of three wind velocity components for a 6-day measurement period has shown that the increase of σx and σy with altitude is well described by a power law dependence with exponent changing from 0.22 to 1.3 depending on the time of day, and σz depends linearly on the altitude. The approximation constants have been found and their errors have been estimated. The established physical regularities and the approximation constants allow the spatiotemporal dynamics of the standard deviation of three wind velocity components in the atmospheric boundary layer to be described and can be recommended for application in ABL models.

  4. Specializing network analysis to detect anomalous insider actions

    PubMed Central

    Chen, You; Nyemba, Steve; Zhang, Wen; Malin, Bradley

    2012-01-01

    Collaborative information systems (CIS) enable users to coordinate efficiently over shared tasks in complex distributed environments. For flexibility, they provide users with broad access privileges, which, as a side-effect, leave such systems vulnerable to various attacks. Some of the more damaging malicious activities stem from internal misuse, where users are authorized to access system resources. A promising class of insider threat detection models for CIS focuses on mining access patterns from audit logs, however, current models are limited in that they assume organizations have significant resources to generate label cases for training classifiers or assume the user has committed a large number of actions that deviate from “normal” behavior. In lieu of the previous assumptions, we introduce an approach that detects when specific actions of an insider deviate from expectation in the context of collaborative behavior. Specifically, in this paper, we introduce a specialized network anomaly detection model, or SNAD, to detect such events. This approach assesses the extent to which a user influences the similarity of the group of users that access a particular record in the CIS. From a theoretical perspective, we show that the proposed model is appropriate for detecting insider actions in dynamic collaborative systems. From an empirical perspective, we perform an extensive evaluation of SNAD with the access logs of two distinct environments: the patient record access logs a large electronic health record system (6,015 users, 130,457 patients and 1,327,500 accesses) and the editing logs of Wikipedia (2,394,385 revisors, 55,200 articles and 6,482,780 revisions). We compare our model with several competing methods and demonstrate SNAD is significantly more effective: on average it achieves 20–30% greater area under an ROC curve. PMID:23399988

  5. Markov state models from short non-equilibrium simulations—Analysis and correction of estimation bias

    NASA Astrophysics Data System (ADS)

    Nüske, Feliks; Wu, Hao; Prinz, Jan-Hendrik; Wehmeyer, Christoph; Clementi, Cecilia; Noé, Frank

    2017-03-01

    Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, over the last 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs from short non-equilibrium simulations, and we provide an expression for the error between unbiased transition probabilities and the expected estimate from many short simulations. We show that the unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in the limit of long lag times and good discretization. Further, we exploit observable operator model (OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system without estimating an MSM transition matrix, which allows us to practically assess the discretization quality of the MSM. Applications to model systems and molecular dynamics simulation data of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in PyEMMA of version 2.3.

  6. Resolution of the COBE Earth sensor anomaly

    NASA Technical Reports Server (NTRS)

    Sedler, J.

    1993-01-01

    Since its launch on November 18, 1989, the Earth sensors on the Cosmic Background Explorer (COBE) have shown much greater noise than expected. The problem was traced to an error in Earth horizon acquisition-of-signal (AOS) times. Due to this error, the AOS timing correction was ignored, causing Earth sensor split-to-index (SI) angles to be incorrectly time-tagged to minor frame synchronization times. Resulting Earth sensor residuals, based on gyro-propagated fine attitude solutions, were as large as plus or minus 0.45 deg (much greater than plus or minus 0.10 deg from scanner specifications (Reference 1)). Also, discontinuities in single-frame coarse attitude pitch and roll angles (as large as 0.80 and 0.30 deg, respectively) were noted several times during each orbit. However, over the course of the mission, each Earth sensor was observed to independently and unexpectedly reset and then reactivate into a new configuration. Although the telemetered AOS timing corrections are still in error, a procedure has been developed to approximate and apply these corrections. This paper describes the approach, analysis, and results of approximating and applying AOS timing adjustments to correct Earth scanner data. Furthermore, due to the continuing degradation of COBE's gyroscopes, gyro-propagated fine attitude solutions may soon become unavailable, requiring an alternative method for attitude determination. By correcting Earth scanner AOS telemetry, as described in this paper, more accurate single-frame attitude solutions are obtained. All aforementioned pitch and roll discontinuities are removed. When proper AOS corrections are applied, the standard deviation of pitch residuals between coarse attitude and gyro-propagated fine attitude solutions decrease by a factor of 3. Also, the overall standard deviation of SI residuals from fine attitude solutions decrease by a factor of 4 (meeting sensor specifications) when AOS corrections are applied.

  7. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of AMBER intermolecular terms with rigorous DFT-SAPT calculations.

    PubMed

    Zgarbová, Marie; Otyepka, Michal; Sponer, Jirí; Hobza, Pavel; Jurecka, Petr

    2010-09-21

    The intermolecular interaction energy components for several molecular complexes were calculated using force fields available in the AMBER suite of programs and compared with Density Functional Theory-Symmetry Adapted Perturbation Theory (DFT-SAPT) values. The extent to which such comparison is meaningful is discussed. The comparability is shown to depend strongly on the intermolecular distance, which means that comparisons made at one distance only are of limited value. At large distances the coulombic and van der Waals 1/r(6) empirical terms correspond fairly well with the DFT-SAPT electrostatics and dispersion terms, respectively. At the onset of electronic overlap the empirical values deviate from the reference values considerably. However, the errors in the force fields tend to cancel out in a systematic manner at equilibrium distances. Thus, the overall performance of the force fields displays errors an order of magnitude smaller than those of the individual interaction energy components. The repulsive 1/r(12) component of the van der Waals expression seems to be responsible for a significant part of the deviation of the force field results from the reference values. We suggest that further improvement of the force fields for intermolecular interactions would require replacement of the nonphysical 1/r(12) term by an exponential function. Dispersion anisotropy and its effects are discussed. Our analysis is intended to show that although comparing the empirical and non-empirical interaction energy components is in general problematic, it might bring insights useful for the construction of new force fields. Our results are relevant to often performed force-field-based interaction energy decompositions.

  8. Intra-individual variation in blood flow velocities in cerebral arteries of children with sickle cell disease.

    PubMed

    Brambilla, Donald J; Miller, Scott T; Adams, Robert J

    2007-09-01

    Children with sickle cell disease (SCD) are at elevated risk of stroke. Risk increases with blood flow velocity in selected cerebral arteries, as measured by transcranial Doppler (TCD) ultrasound, and use of TCD to screen these patients is widely recommended. Interpretation of TCD results should be based on knowledge of intra-individual variation in blood flow velocity, information not currently available for sickle cell patients. Between 1995 and 2002, 4,141 subjects, 2-16 years old, with homozygous SCD or Sbeta0-thalasemmia and no history of stroke were screened with TCD, including 2,018 subjects screened in one clinical trial (STOP), 1,816 screened in another (STOP 2), and 307 screened in an interim ancillary prospective study. The 812 subjects with >or=2 examinations<6 months apart were selected for analysis, including 242 (29.8%) subjects with normal average velocities (i.e., <170 cm/sec), 350 (43.1%) subjects with conditional velocities (i.e., 170-199 cm/sec), and 220 (27.1%) subjects with abnormal velocities (i.e., >or=200 cm/sec). The intra-subject standard deviation of TCD velocity was estimated from the difference between velocities at the first two interpretable examinations on each subject. An intra-subject standard deviation of 14.9 cm/sec was obtained. Seven (0.9%) subjects had unusually large and unexplained differences between velocities at the two examinations (range of absolute differences: 69-112 cm/sec). While stroke risk is well demonstrated to increase with increasingly abnormal TCD velocity, given the relatively large intra-subject variability, one TCD examination is generally not sufficient to characterize stroke risk in this patient population. Copyright (c) 2007 Wiley-Liss, Inc.

  9. Spatiotemporal Analysis of Corn Phenoregions in the Continental United States

    NASA Astrophysics Data System (ADS)

    Konduri, V. S.; Kumar, J.; Hoffman, F. M.; Ganguly, A. R.; Hargrove, W. W.

    2017-12-01

    The delineation of regions exhibiting similar crop performance has potential benefits for agricultural planning and management, policymaking and natural resource conservation. Studies of natural ecosystems have used multivariate clustering algorithms based on environmental characteristics to identify ecoregions for species range prediction and habitat conservation. However, few studies have used clustering to delineate regions based on crop phenology. The aim of this study was to perform a spatiotemporal analysis of phenologically self-similar clusters, or phenoregions, for the major corn growing areas in the Continental United States (CONUS) for the period 2008-2016. Annual trajectories of remotely sensed normalized difference vegetation index (NDVI), a useful proxy for land surface phenology, derived from Moderate Resolution Spectroradiometer (MODIS) instruments at 8-day intervals and 250 m resolution was used as the phenological metric. Because of the large data volumes involved, the phenoregion delineation was performed using a highly scalable, unsupervised clustering technique with the help of high performance computing. These phenoregions capture the spatial variability in the timing of important crop phenological stages (like emergence and maturity dates) and thus could be used to develop more accurate parameterizations for crop models applied at regional to global scales. Moreover, historical crop performance from phenoregions, in combination with climate and soils data, could be used to improve production forecasts. The temporal variability in NDVI at each location could also be used to develop an early warning system to identify locations where the crop deviates from its expected phenological behavior. Such deviations may indicate a need for irrigation or fertilization or suggest where pest outbreaks or other disturbances have occurred.

  10. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    PubMed

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P < 0.001). Visual field loss was correlated with both reduced retinal blood flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  11. A fast, automated, polynomial-based cosmic ray spike-removal method for the high-throughput processing of Raman spectra.

    PubMed

    Schulze, H Georg; Turner, Robin F B

    2013-04-01

    Raman spectra often contain undesirable, randomly positioned, intense, narrow-bandwidth, positive, unidirectional spectral features generated when cosmic rays strike charge-coupled device cameras. These must be removed prior to analysis, but doing so manually is not feasible for large data sets. We developed a quick, simple, effective, semi-automated procedure to remove cosmic ray spikes from spectral data sets that contain large numbers of relatively homogenous spectra. Although some inhomogeneous spectral data sets can be accommodated--it requires replacing excessively modified spectra with the originals and removing their spikes with a median filter instead--caution is advised when processing such data sets. In addition, the technique is suitable for interpolating missing spectra or replacing aberrant spectra with good spectral estimates. The method is applied to baseline-flattened spectra and relies on fitting a third-order (or higher) polynomial through all the spectra at every wavenumber. Pixel intensities in excess of a threshold of 3× the noise standard deviation above the fit are reduced to the threshold level. Because only two parameters (with readily specified default values) might require further adjustment, the method is easily implemented for semi-automated processing of large spectral sets.

  12. The role of fluctuations and interactions in pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Corbetta, Alessandro; Meeusen, Jasper; Benzi, Roberto; Lee, Chung-Min; Toschi, Federico

    Understanding quantitatively the statistical behaviour of pedestrians walking in crowds is a major scientific challenge of paramount societal relevance. Walking humans exhibit a rich (stochastic) dynamics whose small and large deviations are driven, among others, by own will as well as by environmental conditions. Via 24/7 automatic pedestrian tracking from multiple overhead Microsoft Kinect depth sensors, we collected large ensembles of pedestrian trajectories (in the order of tens of millions) in different real-life scenarios. These scenarios include both narrow corridors and large urban hallways, enabling us to cover and compare a wide spectrum of typical pedestrian dynamics. We investigate the pedestrian motion measuring the PDFs, e.g. those of position, velocity and acceleration, and at unprecedentedly high statistical resolution. We consider the dependence of PDFs on flow conditions, focusing on diluted dynamics and pair-wise interactions (''collisions'') for mutual avoidance. By means of Langevin-like models we provide models for the measured data, inclusive typical fluctuations and rare events. This work is part of the JSTP research programme ``Vision driven visitor behaviour analysis and crowd management'' with Project Number 341-10-001, which is financed by the Netherlands Organisation for Scientific Research (NWO).

  13. Coupled three-layer model for turbulent flow over large-scale roughness: On the hydrodynamics of boulder-bed streams

    NASA Astrophysics Data System (ADS)

    Pan, Wen-hao; Liu, Shi-he; Huang, Li

    2018-02-01

    This study developed a three-layer velocity model for turbulent flow over large-scale roughness. Through theoretical analysis, this model coupled both surface and subsurface flow. Flume experiments with flat cobble bed were conducted to examine the theoretical model. Results show that both the turbulent flow field and the total flow characteristics are quite different from that in the low gradient flow over microscale roughness. The velocity profile in a shallow stream converges to the logarithmic law away from the bed, while inflecting over the roughness layer to the non-zero subsurface flow. The velocity fluctuations close to a cobble bed are different from that of a sand bed, and it indicates no sufficiently large peak velocity. The total flow energy loss deviates significantly from the 1/7 power law equation when the relative flow depth is shallow. Both the coupled model and experiments indicate non-negligible subsurface flow that accounts for a considerable proportion of the total flow. By including the subsurface flow, the coupled model is able to predict a wider range of velocity profiles and total flow energy loss coefficients when compared with existing equations.

  14. New, small, fast acting blood glucose meters--an analytical laboratory evaluation.

    PubMed

    Weitgasser, Raimund; Hofmann, Manuela; Gappmayer, Brigitta; Garstenauer, Christa

    2007-09-22

    Patients and medical personnel are eager to use blood glucose meters that are easy to handle and fast acting. We questioned whether accuracy and precision of these new, small and light weight devices would meet analytical laboratory standards and tested four meters with the above mentioned conditions. Approximately 300 capillary blood samples were collected and tested using two devices of each brand and two different types of glucose test strips. Blood from the same samples was used for comparison. Results were evaluated using maximum deviation of 5% and 10% from the comparative method, the error grid analysis, the overall deviation of the devices, the linear regression analysis as well as the CVs for measurement in series. Of all 1196 measurements a deviation of less than 5% resp. 10% from the reference method was found for the FreeStyle (FS) meter in 69.5% and 96%, the Glucocard X Meter (GX) in 44% and 75%, the One Touch Ultra (OT) in 29% and 60%, the Wellion True Track (WT) in 28.5% and 58%. The error grid analysis gave 99.7% for FS, 99% for GX, 98% for OT and 97% for WT in zone A. The remainder of the values lay within zone B. Linear regression analysis resembled these results. CVs for measurement in series showed higher deviations for OT and WT compared to FS and GX. The four new, small and fast acting glucose meters fulfil clinically relevant analytical laboratory requirements making them appropriate for use by medical personnel. However, with regard to the tight and restrictive limits of the ADA recommendations, the devices are still in need of improvement. This should be taken into account when the devices are used by primarily inexperienced persons and is relevant for further industrial development of such devices.

  15. Advances in snow cover distributed modelling via ensemble simulations and assimilation of satellite data

    NASA Astrophysics Data System (ADS)

    Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.

    2017-12-01

    Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good potential improving snowpack forecasting capabilities.

  16. What Are “X-shaped” Radio Sources Telling Us? II. Properties of a Sample of 87

    NASA Astrophysics Data System (ADS)

    Saripalli, Lakshmi; Roberts, David H.

    2018-01-01

    In an earlier paper, we presented Jansky Very Large Array multi-frequency, multi-array continuum imaging of a unique sample of low-axial ratio radio galaxies. In this paper, the second in the series, we examine the images to learn the phenomenology of how the off-axis emission relates to the main radio source. Inversion-symmetric offset emission appears to be bimodal and to originate from one of two strategic locations: outer ends of radio lobes (outer-deviation) or from inner ends (inner-deviation). The latter sources are almost always associated with edge-brightened sources. With S- and Z-shaped sources being a subset of outer-deviation sources, this class lends itself naturally to explanations involving black hole axis precession. Our data allow us to present a plausible model for the more enigmatic inner-deviation sources with impressive wings; as for outer-deviation sources these too require black hole axis shifts, although they also require plasma backflows into relic channels. Evolution in morphology over time relates the variety in structures in inner-deviation sources including XRGs. With features such as non-collinearities, central inner-S “spine,” corresponding lobe emission peaks, double and protruding hotspots not uncommon, black hole axis precession, drifts, or flips could be active in a significant fraction of radio sources with prominent off-axis emission. At least 4% of radio galaxies appear to undergo black hole axis rotation. Quasars offer a key signature for recognizing rotating axes. With a rich haul of sources that have likely undergone axis rotation, our work shows the usefulness of low-axial ratio sources in pursuing searches for binary supermassive black holes.

  17. MO-F-CAMPUS-T-03: Data Driven Approaches for Determination of Treatment Table Tolerance Values for Record and Verification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, N; DiCostanzo, D; Fullenkamp, M

    2015-06-15

    Purpose: To determine appropriate couch tolerance values for modern radiotherapy linac R&V systems with indexed patient setup. Methods: Treatment table tolerance values have been the most difficult to lower, due to many factors including variations in patient positioning and differences in table tops between machines. We recently installed nine linacs with similar tables and started indexing every patient in our clinic. In this study we queried our R&V database and analyzed the deviation of couch position values from the acquired values at verification simulation for all patients treated with indexed positioning. Mean and standard deviations of daily setup deviations weremore » computed in the longitudinal, lateral and vertical direction for 343 patient plans. The mean, median and standard error of the standard deviations across the whole patient population and for some disease sites were computed to determine tolerance values. Results: The plot of our couch deviation values showed a gaussian distribution, with some small deviations, corresponding to setup uncertainties on non-imaging days, and SRS/SRT/SBRT patients, as well as some large deviations which were spot checked and found to be corresponding to indexing errors that were overriden. Setting our tolerance values based on the median + 1 standard error resulted in tolerance values of 1cm lateral and longitudinal, and 0.5 cm vertical for all non- SRS/SRT/SBRT cases. Re-analizing the data, we found that about 92% of the treated fractions would be within these tolerance values (ignoring the mis-indexed patients). We also analyzed data for disease site based subpopulations and found no difference in the tolerance values that needed to be used. Conclusion: With the use of automation, auto-setup and other workflow efficiency tools being introduced into radiotherapy workflow, it is very essential to set table tolerances that allow safe treatments, but flag setup errors that need to be reassessed before treatments.« less

  18. How does an asymmetric magnetic field change the vertical structure of a hot accretion flow?

    NASA Astrophysics Data System (ADS)

    Samadi, M.; Abbassi, S.; Lovelace, R. V. E.

    2017-09-01

    This paper explores the effects of large-scale magnetic fields in hot accretion flows for asymmetric configurations with respect to the equatorial plane. The solutions that we have found show that the large-scale asymmetric magnetic field can significantly affect the dynamics of the flow and also cause notable outflows in the outer parts. Previously, we treated a viscous resistive accreting disc in the presence of an odd symmetric B-field about the equatorial plane. Now, we extend our earlier work by taking into account another configuration of large-scale magnetic field that is no longer symmetric. We provide asymmetric field structures with small deviations from even and odd symmetric B-field. Our results show that the disc's dynamics and appearance become different above and below the equatorial plane. The set of solutions also predicts that even a small deviation in a symmetric field causes the disc to compress on one side and expand on the other. In some cases, our solution represents a very strong outflow from just one side of the disc. Therefore, the solution may potentially explain the origin of one-sided jets in radio galaxies.

  19. Rogue waves and large deviations in deep sea.

    PubMed

    Dematteis, Giovanni; Grafke, Tobias; Vanden-Eijnden, Eric

    2018-01-30

    The appearance of rogue waves in deep sea is investigated by using the modified nonlinear Schrödinger (MNLS) equation in one spatial dimension with random initial conditions that are assumed to be normally distributed, with a spectrum approximating realistic conditions of a unidirectional sea state. It is shown that one can use the incomplete information contained in this spectrum as prior and supplement this information with the MNLS dynamics to reliably estimate the probability distribution of the sea surface elevation far in the tail at later times. Our results indicate that rogue waves occur when the system hits unlikely pockets of wave configurations that trigger large disturbances of the surface height. The rogue wave precursors in these pockets are wave patterns of regular height, but with a very specific shape that is identified explicitly, thereby allowing for early detection. The method proposed here combines Monte Carlo sampling with tools from large deviations theory that reduce the calculation of the most likely rogue wave precursors to an optimization problem that can be solved efficiently. This approach is transferable to other problems in which the system's governing equations contain random initial conditions and/or parameters.

  20. Calibration of the NASA GRC 16 In. Mass-Flow Plug

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Friedlander, David J.; Saunders, J. David; Frate, Franco C.; Foster, Lancert E.

    2012-01-01

    The results of an experimental calibration of the NASA Glenn Research Center 16 in. Mass-Flow Plug (MFP) are presented and compared to a previously obtained calibration of a 15 in. Mass-Flow Plug. An ASME low-beta, long-radius nozzle was used as the calibration reference. The discharge coefficient for the ASME nozzle was obtained by numerically simulating the flow through the nozzle from the WIND-US code. The results showed agreement between the 15 in. and 16 in. MFPs for area ratios (MFP to pipe area ratio) greater than 0.6 but deviate at area ratios below this value for reasons that are not fully understood. A general uncertainty analysis was also performed and indicates that large uncertainties in the calibration are present for low MFP area ratios.

Top