Sample records for large diameter thin

  1. Purification of 1.9-nm-diameter semiconducting single-wall carbon nanotubes by temperature-controlled gel-column chromatography and its application to thin-film transistor devices

    NASA Astrophysics Data System (ADS)

    Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori

    2017-06-01

    Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.

  2. Managing slash to minimize colonization of residual leave trees by Ips and other bark beetle species following thinning in southwestern ponderosa pine

    Treesearch

    T. DeGomez; C.J. Fettig; J.D. McMillin; J.A. Anhold; C.J. Hayes

    2008-01-01

    Due to high fire hazard and perceived reductions in forest health, thinning of small diameter trees has become a prevalent management activity particularly in dense stands. Creation of large amounts of logging slash, however, has created large quantities of habitat for bark beetles primarily in the Ips genus (Coleoptera: Curculionidae,...

  3. Mill demonstration of TMP production from forest thinnings : pulp quality, refining energy, and handsheet properties

    Treesearch

    J.Y. Zhu; C. Tim Scott; Roland Gleisner; Doreen Mann; D.P. Dykstra; G. Holton Quinn; Louis L. Edwards

    2007-01-01

    High-value, large-volume utilization of forest thinning materials from U.S. National Forests is a potentially important contributor to sustainable forest health. This study demonstrated the utilization of wood chips produced from thinnings for the production of thermomechanical pulp (TMP). Both whole-log chips (primarily from small-diameter logs, tops, and reject logs...

  4. Mill demonstration of TMP production from forest thinnings: pulp quality, refining energy, and handsheet properties

    Treesearch

    J.Y. Zhu; C. Tim Scott; Roland Gleisner; Doreen Mann; D.P. Dykstra; G. Holton Quinn; Louis L. Edwards

    2007-01-01

    High-value, large-volume utilization of forest thinning materials from U.S. national forests is a potentially important contributor to sustainable forest health. This study demonstrated the utilization of wood chips produced from thinnings for the production of thermomechanical pulp (TMP). Both whole-log chips (primarily from small-diameter logs, tops, and reject logs...

  5. Method for fabricating thin californium-containing radioactive source wires

    DOEpatents

    Gross, Ian G; Pierce, Larry A

    2006-08-22

    A method for reducing the cross-sectional diameter of a radioactive californium-containing cermet wire while simultaneously improving the wire diameter to a more nearly circular cross section. A collet fixture is used to reduce the wire diameter by controlled pressurization pulses while simultaneously improving the wire cross-sectional diameter. The method is especially suitable for use in hot cells for the production of optimized cermet brachytherapy sources that contain large amounts of radioactive californium-252.

  6. Thinning regimes and initial spacing for Eucalyptus plantations in Brazil.

    PubMed

    Ferraz Filho, Antonio C; Mola-Yudego, Blas; González-Olabarria, José R; Scolforo, José Roberto S

    2018-01-01

    This study focuses on the effects of different thinning regimes on clonal Eucalyptus plantations growth. Four different trials, planted in 1999 and located in Bahia and Espírito Santo States, were used. Aside from thinning, initial planting density, and post thinning fertilization application were also evaluated. Before canopy closure, and therefore before excessive competition between trees took place, it was found that stands planted under low densities (667 trees per hectare) presented a lower mortality proportion when compared to stand planted under higher densities (1111 trees per hectare). However, diameter growth prior to thinning operations was not statistically different between these two densities, presenting an overall mean of 4.9 cm/year. After canopy closure and the application of the thinning treatments, it was found that thinning regimes beginning early in the life of the stand and leaving a low number of residual trees presented the highest diameter and height growth. Unthinned treatments and thinning regimes late in the life of the stand (after 5.5 years), leaving a large number of residual trees presented the highest values of basal area production. The choice of the best thinning regime for Eucalyptus clonal material will vary according to the plantation objective.

  7. Diameter Growth 0f a Slash Pine Spacing Study Five Years After Being Thinned to a Constant Stand Density Index

    Treesearch

    Jamie C. Schexnayder; Thomas J. Dean; V. Clark Baldwin

    2002-01-01

    Abstract - In 1994, a 17-year old, slash pine (Pinus elliottii var. elliottii) spacing study was thinned to evaluate the influence of prethinning stand conditions on diameter growth after thinning. Diameter growth and crown dimensions measured just prior to thinning showed that diameter growth was positively...

  8. Growth of textured thin Au coatings on iron oxide nanoparticles with near infrared absorbance

    PubMed Central

    Ma, L L; Borwankar, A U; Willsey, B W; Yoon, K Y; Tam, J O; Sokolov, K V; Feldman, M D; Milner, T E; Johnston, K P

    2013-01-01

    A homologous series of Au-coated iron oxide nanoparticles, with hydrodynamic diameters smaller than 60 nm was synthesized with very low Auto-iron mass ratios as low as 0.15. The hydrodynamic diameter was determined by dynamic light scattering and the composition by atomic absorption spectroscopy and energy dispersive x-ray spectroscopy (EDS). Unusually low Au precursor supersaturation levels were utilized to nucleate and grow Au coatings on iron oxide relative to formation of pure Au nanoparticles. This approach produced unusually thin coatings, by lowering autocatalytic growth of Au on Au, as shown by transmission electron microscopy (TEM). Nearly all of the nanoparticles were attracted by a magnet indicating a minimal amount of pure Au particles The coatings were sufficiently thin to shift the surface plasmon resonance (SPR) to the near infrared (NIR), with large extinction coefficients., despite the small particle hydrodynamic diameters, observed from dynamic light scattering to be less than 60 nm. PMID:23238021

  9. Elastica solution for a nanotube formed by self-adhesion of a folded thin film

    NASA Astrophysics Data System (ADS)

    Glassmaker, N. J.; Hui, C. Y.

    2004-09-01

    Schmidt and Eberl demonstrated the construction of tubes with submicron diameters by the method of folding thin solid films [Nature (London) 410, 168 (2001)]. In their method, a thin film is folded 180° and brought into adhesive contact with itself. The resulting sealed loop forms a nanotube with the thickness of the tube walls equal to the thickness of the thin film. The calculation of the diameter of the tube and the shape of its cross section in equilibrium are the subjects of this study. The tube is modeled as a two-dimensional elastica when viewed in cross section, and adhesive behavior is governed by an energy release rate criterion. A numerical technique is used to find elastic equilibria for a large range of material parameters. With these solutions in hand, the problem of designing a nanotube becomes transparent. It is shown that one dimensionless parameter determines the diameter of the nanotube, while another fixes its shape. Each of these parameters is a ratio involving the material's mechanical properties and the film thickness. Before concluding, we verify our model by comparing its results with the experimental observations of Schmidt and Eberl, for their materials.

  10. Snag characteristics and dynamics following natural and artificially induced mortality in a managed loblolly pine forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarnoch, Stanley J.; Vukovich, Mark A.; Kilgo, John C.

    A 14-year study of snag characteristics was established in 41- to 44-year old loblolly pine (Pinus taeda L.) stands in southeastern USA. During the initial 5.5 years, no stand manipulation or unusually high-mortality events occurred. Afterwards, three treatments were applied consisting of trees thinned and removed, trees felled and not removed, and artificial creation of snags produced by girdling and herbicide injection. The thinned treatments were designed to maintain the same live canopy density as the snag-created treatment, disregarding snags that remained standing.We monitored snag height, diameter, density, volume, and bark percentage; the number of cavities was monitored in naturalmore » snags only. During the first 5.5 years, recruitment and loss rates were stable, resulting in a stable snag population. Large snags (≥25 cm diameter) were common, but subcanopy small snags (10 to <25 cm diameter) dominated numerically. Large natural snags survived (90% quantile) significantly longer (6.0–9.4 years) than smaller snags (4.4–6.9 years). Large artificial snags persisted the longest (11.8 years). Cavities in natural snags developed within 3 years following tree death. The mean number of cavities per snag was five times greater in large versus small snags and large snags were more likely to have multiple cavities, emphasizing the importance of mature pine stands for cavity-dependent wildlife species.« less

  11. Evaluation of the thin deformable active optics mirror concept

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1972-01-01

    The active optics concept using a thin deformable mirror has been successfully demonstrated using a 30 in. diameter, 1/2 in. thick mirror and a 61 point matrix of forces for alignment. Many of the problems associated with the design, fabrication, and launch of large aperture diffraction-limited astronomical telescopes have been resolved and experimental data created that can provide accurate predictions of performance in orbit.

  12. Board-Foot and Diameter Growth of Yellow-Poplar After Thinning

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1975-01-01

    Board-foot growth and yield of thinned yellow-poplar stands (Liriodendron tulipifera L.)is related to age, site index, residual basal area, and residual quadratic mean stand diameter after thinning. Diameter growth of individual trees is increased considerably by thinning. Equations describing growth and yield are based on data from 141 natura1 yellow-poplar stands in...

  13. Field emitter arrays and displays produced by ion tracking lithography

    NASA Astrophysics Data System (ADS)

    Felter, T. E.; Musket, R. G.; Bernhardt, A. F.

    2005-12-01

    When ions of sufficient electronic energy loss traverse a dielectric film or foil, they alter the chemical bonding along their nominally straight path within the material. A suitable etchant can quickly dissolve these so-called latent tracks leaving holes of small diameter (∼10 nm) but long length - several microns. Continuing the etching process gradually increases the diameter reproducibly and uniformly. The trackable medium can be applied as a uniform film onto large substrates. The small, monodisperse holes produced by this track etching can be used in conjunction with additional thin film processing to create functional structures attached to the substrate. For example, Lawrence Livermore National Laboratory and Candescent Technologies Corporation (CTC) co-developed a process to make arrays of gated field emitters (∼100 nm diameter electron guns) for CTC's Thin CRTTM displays, which have been fabricated to diagonal dimensions >13 in. Additional technological applications of ion tracking lithography will be briefly covered.

  14. Forest thinnings for integrated lumber and paper production

    Treesearch

    J.Y. Zhu; C.T. Scott; R. Gleisner; D. Mann; D.W. Vahey; D.P. Dykstra; G.H. Quinn; L.L. Edwards

    2007-01-01

    Integrated lumber and paper productions using forest thinning materials from U.S. national forests can significantly reduce the cost of prescriptive thinning operations. Many of the trees removed during forest thinnings are in small-diameter classes (diameter at breast height

  15. Diameter growth of upland oaks after thinning

    Treesearch

    Donald E. Hilt

    1979-01-01

    Diameter growth rates of the 40 largest trees per acre on 154 permanent plots in Kentucky, Ohio, Missouri, and Iowa were analyzed to determine the effects of thinning in upland oak stands. The plots were established over a wide range of stocking levels, stand age, and site conditions. Thinning resulted in increased diameter growth of the residual trees, regardless of...

  16. Dynamic behavior of ultra large graphene-based membranes using electrothermal transduction

    NASA Astrophysics Data System (ADS)

    Al-mashaal, A. K.; Wood, G. S.; Torin, A.; Mastropaolo, E.; Newton, M. J.; Cheung, R.

    2017-12-01

    This letter reports an experimental study of an electrothermal actuator made from an ultra-large graphene-based bilayer thin film with a diameter to thickness aspect ratio of ˜10 000. Suspended thin films consisting of multilayer graphene and 350-500 nm-thick Poly(methyl methacrylate) have been transferred over circular cavities with a diameter of 3.5 mm. The use of bilayer materials with different mechanical and thermal properties results in thin film structures that can be induced to vibrate mechanically under the electrothermal transduction mechanism. The dynamic response of the bilayer has been investigated electrothermally by driving the structures with a combination of alternating current and direct current actuation voltages ( Va c and Vd c) and characterizing their resonant frequencies. It has been found that the bilayer thin film structure behaves as a membrane. In addition, the actuation configurations affect not only the amplitude of vibration but also the tuning of the resonant frequency of the vibrating membranes. The existence of Joule heating-induced tension lowers the mechanical stiffness of the membrane and hence shifts the resonant frequency downwards by -108187 ppm. A resonant frequency of 3.26 kHz with a vibration amplitude of 4.34 nm has been achieved for 350 nm-thick membranes under actuation voltages of 1 V of Va c and 8 V of Vd c.

  17. Extrusion of small-diameter, thin-wall tungsten tubing

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Gyorgak, C. A.

    1967-01-01

    Small-diameter, thin-wall seamless tubing of tungsten has been fabricated in lengths of up to 10 feet by hot extrusion over a floating mandrel. Extrusion of 0.50-inch-diameter tubing over 0.4-inch-diameter mandrels was accomplished at temperatures ranging from 3000 degrees to 4000 degrees F.

  18. [Effects of forest gap size on the architecture of Quercus variablis seedlings on the south slope of Qinling Mountains, west China].

    PubMed

    Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang

    2014-12-01

    Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.

  19. Analyzing the management and disturbance in European forest based on self-thinning theory

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Gielen, B.; Schelhaas, M.; Mohren, F.; Luyssaert, S.; Janssens, I. A.

    2012-04-01

    There is increasing awareness that natural and anthropogenic disturbance in forests affects exchange of CO2, H2O and energy between the ecosystem and the atmosphere. Consequently quantification of land use and disturbance intensity is one of the next steps needed to improve our understanding of the carbon cycle, its interactions with the atmosphere and its main drivers at local as well as at global level. The conventional NPP-based approaches to quantify the intensity of land management are limited because they lack a sound ecological basis. Here we apply a new way of characterising the degree of management and disturbance in forests using the self- thinning theory and observations of diameter at breast height and stand density. We used plot level information on dominant tree species, diameter at breast height, stand density and soil type from the French national forest inventory from 2005 to 2010. Stand density and diameter at breast height were used to parameterize the intercept of the self-thinning relationship and combined with theoretical slope to obtain an upper boundary for stand productivity given its density. Subsequently, we tested the sensitivity of the self-thinning relationship for tree species, soil type, climate and other environmental characteristics. We could find statistical differences in the self-thinning relationship between species and soil types, mainly due to the large uncertainty of the parameter estimates. Deviation from the theoretical self-thinning line defined as DBH=αN-3/4, was used as a proxy for disturbances, allowing to make spatially explicit maps of forest disturbance over France. The same framework was used to quantify the density-DBH trajectory of even-aged stand management of beech and oak over France. These trajectories will be used as a driver of forest management in the land surface model ORCHIDEE.

  20. Hardwood regeneration twenty years after three distinct diameter-limit cuts in upland central hardwoods

    Treesearch

    Randall B. Heiligmann; Jeffery S. Ward

    1993-01-01

    The effects of diameter-limit cutting on the future species composition and development of 60-80 year-old upland oak stands were studied in southern Ohio. Four treatments, 11-inch diameter-limit cut, 14-inch diameter-limit cut with selective thinning, 14-inch diameter-limit cut with low thinning, and uncut control were evaluated on medium oak sites (black oak site...

  1. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  2. X-ray tomographic imaging of tensile deformation modes of electrospun biodegradable polyester fibres

    NASA Astrophysics Data System (ADS)

    Maksimcuka, Jekaterina; Obata, Akiko; Sampson, William W.; Blanc, Remi; Gao, Chunxia; Withers, Philip J.; Tsigkou, Olga; Kasuga, Toshihiro; Lee, Peter D.; Poologasundarampillai, Gowsihan

    2017-12-01

    Electrospinning allows the production of fibrous networks for tissue engineering, drug delivery and wound healing in healthcare. It enables the production of constructs with large surface area and a fibrous morphology that closely resembles the extracellular matrix of many tissues. A fibrous structure not only promotes cell attachment and tissue formation, but could also lead to very interesting mechanical properties. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)) is a biodegradable polyester that exhibits large (>400%) elongation before failure. In this study, synchrotron X-ray phase contrast imaging was performed during tensile deformation to failure on a non-woven fibre mat of P(3HB-co-4HB) fibres. Significant reorientation of the fibres in straining direction was observed, followed by localised necking and eventual failure. From an original average fibre diameter of 4.3 μm a bimodal distribution of fibre diameter (modal diameters of 1.9 and 3.7 μm) formed after tensile deformation. Extensive localised necking (thinning) of fibres between (thicker) fibre-fibre contacts was found to be the cause for non-uniform thinning of the fibres, a phenomenon that is expected, but has not been observed in 3D previously. The data presented here has implications not only in tissue regeneration but for fibrous materials in general.

  3. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon

    USGS Publications Warehouse

    Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.

    1997-01-01

    We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.

  4. Growth of Planted Slash Pine Under Several Thinning Regimes

    Treesearch

    W.F. Mann; Hans G. Enghardt

    1972-01-01

    Three intensities of thinning, each started at 10, 13, and 16 years, were applied to slash pine planted on a highly productive, cutover site in central Louisiana. Over a 9-year period, early and heavy thinnings increased diameter growth but reduced volume growth. The longer initial thinnings were deferred, the slower was the response in diameter growth. Growth on...

  5. The current role of vascular stents.

    PubMed

    Busquet, J

    1993-09-01

    The limitations of percutaneous balloon angioplasty have favoured the development and the use of vascular endoprostheses or stents. These thin-walled metal devices maintain after expansion, an optimal and constant diameter for the vascular lumen. Restenosis, dissection, abrupt closure, residual stenosis or re-opened total occlusion represent appropriate indications for stenting. A large experience with non-coronary application of stents is currently available in iliac, femoro-popliteal and renal arteries, aorta, large veins.

  6. Local Plasticity of Al Thin Films as Revealed by X-Ray Microdiffraction

    NASA Astrophysics Data System (ADS)

    Spolenak, R.; Brown, W. L.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Valek, B.; Bravman, J. C.; Marieb, T.; Fujimoto, H.; Batterman, B. W.; Patel, J. R.

    2003-03-01

    Grain-to-grain interactions dominate the plasticity of Al thin films and establish effective length scales smaller than the grain size. We have measured large strain distributions and their changes under plastic strain in 1.5-μm-thick Al0.5%Cu films using a 0.8-μm-diameter white x-ray probe at the Advanced Light Source. Strain distributions arise not only from the distribution of grain sizes and orientation, but also from the differences in grain shape and from stress environment. Multiple active glide plane domains have been found within single grains. Large grains behave like multiple smaller grains even before a dislocation substructure can evolve.

  7. Spirosymplokos deltaeiberi nov. gen., nov. sp.: variable-diameter composite spirochete from microbial mats

    NASA Technical Reports Server (NTRS)

    Guerrero, R.; Ashen, J.; Sole, M.; Margulis, L.

    1993-01-01

    Large (up to 100 micrometers long), loosely coiled, free-living spirochetes with variable diameters (from 0.4 to 3 micrometers in the same cell) were seen at least 40 times between August 1990 and January 1993. These spirochetes were observed in mud water and enrichment media from highly specific habitats in intertidal evaporite flats at three disjunct localities, one in Spain and two in Mexico. All three are sites of commercial saltworks. Associated with Microcoleus chthonoplastes the large spirochetes from Spain display phototaxis and a composite organization. Shorter and smaller-diameter spirochetes are seen inside both healthy and spent periplasm of larger ones. Small spirochetes attached to large ones have been observed live. From two to twelve spirochete protoplasmic cylinders were seen inside a single common outer membrane. A distinctive granulated cytoplasm in which the granules are of similar diameter (20-32 nanometers) to that of the flagella (26 nanometers) was present. Granule diameters were measured in thin section and in negatively-stained whole-mount preparations. Based on their ultrastructure, large size, variable diameter, number of flagella (3 to 6), and phototactic behavior these unique spirochetes are formally named Spirosymplokos deltaeiberi. Under anoxic (or low oxygen) conditions they formed blooms in mixed culture in media selective for spirochetes. Cellobiose was the major carbon source in 80% seawater, the antibiotic rifampicin was added, mat from the original field site was present and tubes were incubated in the light at from 18-31 degrees C. Within 1-2 weeks populations of the large spirochete developed at 25 degrees C but they could not be transferred to fresh medium.

  8. Growth and Yield of Thinned Yellow-Poplar

    Treesearch

    Donald E. Beck; Lino Della-Bianca

    1972-01-01

    Diameter distributions and yields for various combinations of site index, age, and density for unthinned and largely undisturbed stands of yellow-poplar (Liriodendron tulipifera L. ) have been presented by McGee and Della-Bianca (1967) and Beck and Della-Bianca (1970). Their results were based on the initial measurements of a network of permanent sample plots...

  9. Magnetic Property in Large Array Niobium Antidot Thin Films

    NASA Astrophysics Data System (ADS)

    Tinghui, Chen; Hsiang-Hsi, Kung; Wei-Li, Lee; Institute of Physics, Academia Sinica, Taipei, Taiwan Team

    2014-03-01

    In a superconducting ring, the total flux inside the ring is required to be an integer number of the flux quanta. Therefore, a supercurrent current can appear within the ring in order to satisfy this quantization rule, which gives rise to certain magnetic response. By using a special monolayer polymer/nanosphere hybrid we developed previously, we fabricated a series of superconducting niobium antidot thin films with different antidot diameters. The antidots form well-ordered triangular lattice with a lattice spacing about 200 nm and extend over an area larger than 1 cm2, which enables magnetic detections simply by a SQUID magnetometer. We observed magnetization oscillation with external magnetic field due to the supercurrent screening effect, where different features for large and small antidot thin films were found. Detailed size and temperature dependencies of the magnetization in niobium antidot nanostructures will be presented.

  10. Pipe support for use in a nuclear system

    DOEpatents

    Pollono, Louis P.; Mello, Raymond M.

    1977-01-01

    A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.

  11. Composite propulsion feedlines for cryogenic space vehicles, volume 1

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Laintz, D. J.; Phillips, J. M.

    1973-01-01

    Thin metallic liners that provide leak-free service in cryogenic propulsion systems are overwrapped with a glass-fiber composite that provides strength and protection from handling damage. The resultant tube is lightweight, strong and has a very low thermal flux. Several styles of tubing ranging from 5 to 38 cm in diameter and up to 305 cm long were fabricated and tested at operating temperatures from 294 to 21 K and operating pressures up to 259 N/sq cm. The primary objective for the smaller sizes was thermal performance optimization of the propulsion system while the primary objective of the larger sizes was weight optimization and to prove fabricability. All major program objectives were met resulting in a design concept that is adaptable to a wide range of aerospace vehicle requirements. Major items of development included: bonding large diameter aluminum end fittings to the thin Inconel liner; fabrication of a 38 cm diameter tube from 0.008 cm thick Inconel; and evaluation of tubing which provides essentially zero quality propellant in a very short period of time resulting in a lower mass of propellant expended in chilldown.

  12. Leaf area and structural changes after thinning in even-aged Picea rubens and Abies balsamea stands in Maine, USA

    Treesearch

    R. Justin DeRose; Robert S. Seymour

    2012-01-01

    We tested the hypothesis that changes in leaf area index (LAIm2 m-2) and mean stand diameter following thinning are due to thinning type and residual density. The ratios of pre- to postthinning diameter and LAI were used to assess structural changes between replicated crown, dominant, and low thinning treatments to 33% and 50% residual density in even-aged Picea rubens...

  13. Thinning of young Douglas-fir forests decreases density of northern flying squirrels in the Oregon Cascades

    USGS Publications Warehouse

    Manning, Tom; Hagar, Joan C.; McComb, Brenda C.

    2012-01-01

    Large-scale commercial thinning of young forests in the Pacific Northwest is currently promoted on public lands to accelerate the development of late-seral forest structure for the benefit of wildlife species such as northern spotted owls (Strix occidentalis caurina) and their prey, including the northern flying squirrel (Glaucomys sabrinus). Attempts to measure the impact of commercial thinning on northern flying squirrels have mostly addressed short-term effects (2–5 years post-thinning) and the few published studies of longer-term results have been contradictory. We measured densities of northern flying squirrels 11–13 years after thinning of young (55–65 years) Douglas-fir forest stands in the Cascade Range of Oregon, as part of the Young Stand Thinning & Diversity Study. The study includes four replicate blocks, each consisting of an unthinned control stand and one stand each of the following thinning treatments: Heavy Thin; Light Thin; and Light Thin with Gaps. Thinning decreased density of northern flying squirrels, and squirrel densities were significantly lower in heavily thinned stands than in more lightly thinned stands. Regression analysis revealed a strong positive relationship of flying squirrel density with density of large (>30 cm diameter) standing dead trees and a negative relationship with percent cover of low understory shrubs. Maintaining sufficient area and connectivity of dense, closed canopy forest is recommended as a strategy to assure that long-term goals of promoting late-seral structure do not conflict with short-term habitat requirements of this important species.

  14. Blood sinuses in the submucosa of the large airways of the sheep.

    PubMed Central

    Hill, P; Goulding, D; Webber, S E; Widdicombe, J G

    1989-01-01

    We have studied the airway vasculature in sheep using light and transmission electron microscopy, as well as arterial and venous (retrograde) injections of anatomical corrosion compound and latex. Vascular casts were viewed by scanning electron microscopy. There is a complex network of blood sinuses of large diameter (up to 500 microns) in the submucosa of the large airways. The vessels have thin walls formed by a single layer of flattened endothelium with tight junctions and without pericytes or smooth muscle cells. Characteristically the sinuses lie between the cartilage and lamina propria of the trachea or between cartilage and smooth muscle in the bronchi. Sinuses of greater than 50 microns transverse diameter are not found in airways less than 1.0 mm across. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 PMID:2808119

  15. Compound Walls For Vacuum Chambers

    NASA Technical Reports Server (NTRS)

    Frazer, Robert E.

    1988-01-01

    Proposed compound-wall configuration enables construction of large high-vacuum chambers without having to use thick layers of expensive material to obtain necessary strength. Walls enclose chambers more than 1 m in diameter and several kilometers long. Compound wall made of strong outer layer of structural-steel culvert pipe welded to thin layer of high-quality, low-outgassing stainless steel.

  16. Bark beetles responses to stand structure and prescribed fire at Black Mountain Experimental Forest, California, USA: 5-year data

    Treesearch

    C.J. Fettig; S.R. McKelvey

    2010-01-01

    Highly effective fire suppression and selective harvesting of large-diameter, fire-tolerant tree species, such as ponderosa pine (Pinus ponderosa C. Lawson) and Jeffrey pine (P. jeffreyi Balf.), have resulted in substantial changes to the structure and composition of interior ponderosa pine forests. Mechanical thinning and the...

  17. Lightweight Liquid Helium Dewar for High-Altitude Balloon Payloads

    NASA Technical Reports Server (NTRS)

    Kogut, Alan; James, Bryan; Fixsen, Dale

    2013-01-01

    Astrophysical observations at millimeter wavelengths require large (2-to-5- meter diameter) telescopes carried to altitudes above 35 km by scientific research balloons. The scientific performance is greatly enhanced if the telescope is cooled to temperatures below 10 K with no emissive windows between the telescope and the sky. Standard liquid helium bucket dewars can contain a suitable telescope for telescope diameter less than two meters. However, the mass of a dewar large enough to hold a 3-to-5-meter diameter telescope would exceed the balloon lift capacity. The solution is to separate the functions of cryogen storage and in-flight thermal isolation, utilizing the unique physical conditions at balloon altitudes. Conventional dewars are launched cold: the vacuum walls necessary for thermal isolation must also withstand the pressure gradient at sea level and are correspondingly thick and heavy. The pressure at 40 km is less than 0.3% of sea level: a dewar designed for use only at 40 km can use ultra thin walls to achieve significant reductions in mass. This innovation concerns new construction and operational techniques to produce a lightweight liquid helium bucket dewar. The dewar is intended for use on high-altitude balloon payloads. The mass is low enough to allow a large (3-to-5-meter) diameter dewar to fly at altitudes above 35 km on conventional scientific research balloons without exceeding the lift capability of the balloon. The lightweight dewar has thin (250- micron) stainless steel walls. The walls are too thin to support the pressure gradient at sea level: the dewar launches warm with the vacuum space vented continuously during ascent to eliminate any pressure gradient across the walls. A commercial 500-liter storage dewar maintains a reservoir of liquid helium within a minimal (hence low mass) volume. Once a 40-km altitude is reached, the valve venting the vacuum space of the bucket dewar is closed to seal the vacuum space. A vacuum pump then evacuates the dewar vacuum space to provide the necessary thermal isolation. Liquid helium may then be transferred from the storage dewar into the bucket dewar to cool the telescope inside the bucket dewar. By splitting the functions of helium storage and in-flight thermal isolation, the parasitic mass associated with the dewar pressure vessel is eliminated to achieve factor-of-five or better reduction in mass. The lower mass allows flight on conventional scientific research balloons, even for telescopes 3 to 5 meters in diameter.

  18. Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces

    PubMed Central

    Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik

    2017-01-01

    Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications. PMID:28429805

  19. Bio-inspired, large scale, highly-scattering films for nanoparticle-alternative white surfaces

    NASA Astrophysics Data System (ADS)

    Syurik, Julia; Siddique, Radwanul Hasan; Dollmann, Antje; Gomard, Guillaume; Schneider, Marc; Worgull, Matthias; Wiegand, Gabriele; Hölscher, Hendrik

    2017-04-01

    Inspired by the white beetle of the genus Cyphochilus, we fabricate ultra-thin, porous PMMA films by foaming with CO2 saturation. Optimising pore diameter and fraction in terms of broad-band reflectance results in very thin films with exceptional whiteness. Already films with 60 µm-thick scattering layer feature a whiteness with a reflectance of 90%. Even 9 µm thin scattering layers appear white with a reflectance above 57%. The transport mean free path in the artificial films is between 3.5 µm and 4 µm being close to the evolutionary optimised natural prototype. The bio-inspired white films do not lose their whiteness during further shaping, allowing for various applications.

  20. Twenty-year growth of thinned and unthinned ponderosa pine in the Methow Valley of northern Washington.

    Treesearch

    James W. Barrett

    1981-01-01

    Diameter, height and volume growth, and yield of thinned and unthinned plots are given for a suppressed, 47-year-old stand of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in the Methow Valley of northern Washington that averaged about 3 inches in diameter and 23 feet tall before thinning. Considerations are discussed for choosing tree spacing...

  1. Thirty-five-year growth of ponderosa pine saplings in response to thinning and understory removal.

    Treesearch

    P.H. Cochran; James W. Barrett

    1999-01-01

    Diameter increments for individual trees increased curvilinearly and stand basal area increments decreased curvilinearly as spacing increased from 6.6 to 26.4 feet. Average height growth of all trees increased linearly, and stand cubic volume growth decreased linearly as spacing increased. Large differences in tree sizes developed over the 35 years of study with...

  2. Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly.

    PubMed

    Lawrence, Katie N; Johnson, Merrell A; Dolai, Sukanta; Kumbhar, Amar; Sardar, Rajesh

    2015-07-21

    Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate-coated CdSe SNCs was studied as a function of annealing temperature, where an unprecedentedly large, ∼400 meV coupling energy was observed for 1.6 nm diameter SNCs, which were coated with a thin layer of poly(ethylene glycol) thiolates. Small-angle X-ray scattering measurements showed that CdSe SNCs maintained an order array inside the films. The strong electronic coupling of SNCs in a self-organized film could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device application.

  3. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less

  4. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; Turner, David D.; Eloranta, Edwin W.

    2017-06-01

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookup table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation (R2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21 µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.

  5. Thin ice clouds in the Arctic: cloud optical depth and particle size retrieved from ground-based thermal infrared radiometry

    DOE PAGES

    Blanchard, Yann; Royer, Alain; O'Neill, Norman T.; ...

    2017-06-09

    Multiband downwelling thermal measurements of zenith sky radiance, along with cloud boundary heights, were used in a retrieval algorithm to estimate cloud optical depth and effective particle diameter of thin ice clouds in the Canadian High Arctic. Ground-based thermal infrared (IR) radiances for 150 semitransparent ice clouds cases were acquired at the Polar Environment Atmospheric Research Laboratory (PEARL) in Eureka, Nunavut, Canada (80° N, 86° W). We analyzed and quantified the sensitivity of downwelling thermal radiance to several cloud parameters including optical depth, effective particle diameter and shape, water vapor content, cloud geometric thickness and cloud base altitude. A lookupmore » table retrieval method was used to successfully extract, through an optimal estimation method, cloud optical depth up to a maximum value of 2.6 and to separate thin ice clouds into two classes: (1) TIC1 clouds characterized by small crystals (effective particle diameter ≤ 30 µm), and (2) TIC2 clouds characterized by large ice crystals (effective particle diameter > 30 µm). The retrieval technique was validated using data from the Arctic High Spectral Resolution Lidar (AHSRL) and Millimeter Wave Cloud Radar (MMCR). Inversions were performed over three polar winters and results showed a significant correlation ( R 2 = 0.95) for cloud optical depth retrievals and an overall accuracy of 83 % for the classification of TIC1 and TIC2 clouds. A partial validation relative to an algorithm based on high spectral resolution downwelling IR radiance measurements between 8 and 21µm was also performed. It confirms the robustness of the optical depth retrieval and the fact that the broadband thermal radiometer retrieval was sensitive to small particle (TIC1) sizes.« less

  6. Interfacial stress state present in a 'thin-slice' fibre push-out test

    NASA Technical Reports Server (NTRS)

    Kallas, M. N.; Koss, D. A.; Hahn, H. T.; Hellmann, J. R.

    1992-01-01

    An analysis of the stress distributions along the fiber-matrix interface in a 'thin-slice' fiber push-out test is presented for selected test geometries. For the small specimen thicknesses often required to displace large-diameter fibers with high interfacial shear strengths, finite element analysis indicates that large bending stresses may be present. The magnitude of these stresses and their spatial distribution can be very sensitive to the test configuration. For certain test geometries, the specimen configuration itself may alter the interfacial failure process from one which initiates due to a maximum in shear stress near the top surface adjacent to the indentor, to one which involves mixed mode crack growth up from the bottom surface and/or yielding within the matrix near the interface.

  7. Twenty-year growth of ponderosa pine saplings thinned to five spacings in central Oregon.

    Treesearch

    Barrett James W.

    1982-01-01

    Diameter, height, and volume growth and yield are given for plots thinned to 1000, 500, 250, 125, and 62 trees per acre in a 40- to 70-year-old stand of suppressed ponderosa pine (Pinus ponderosa Dougl. ex Laws.) saplings in central Oregon. Trees averaged about 1-inch in diameter and 8 feet in height at the time of thinning. Considerations for...

  8. Precommercial Crop-Tree Thinning in a Mixed Northern Hardwood Stand

    Treesearch

    Nancy G. Voorhis; Nancy G. Voorhis

    1990-01-01

    Analysis of growth measurements taken 7 years after thinning an 8-year-old hardwood stand showed significant diameter and crown-diameter growth increases. Further analysis showed dissimilarities in the pattern of response of the three species observed: yellow birch, sugar maple, and paper birch.

  9. Effect of fiber diameter and matrix alloys on impact-resistant boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Signorelli, R. A.

    1976-01-01

    Efforts to improve the impact resistance of B/Al are reviewed and analyzed. Nonstandard thin-sheet charpy and Izod impact tests and standard full-size Charpy impact tests were conducted on composites containing unidirectional 0.10mm, 0.14mm, and 0.20mm diameter boron fibers in 1100, 2024, 5052, and 6061 Al matrices. Impact failure modes of B/Al are proposed in an attempt to describe the mechanisms involved and to provide insight for maximizing impact resistance. The impact strength of B/Al was significantly increased by proper selection of materials and processing. The use of a ductile matrix and large diameter boron fibers gave the highest impact strengths. This combination resulted in improved energy absorption through matrix shear deformation and multiple fiber breakage.

  10. A display module implemented by the fast high-temperatue response of carbon nanotube thin yarns.

    PubMed

    Wei, Yang; Liu, Peng; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    Suspending superaligned multiwalled carbon nanotube (MWCNT) films were processed into CNT thin yarns, about 1 μm in diameter, by laser cutting and an ethanol atomization bath treatment. The fast high-temperature response under a vacuum was revealed by monitoring the incandescent light with a photo diode. The thin yarns can be electrically heated up to 2170 K in 0.79 mS, and the succeeding cool-down time is 0.36 mS. The fast response is attributed to the ultrasmall mass of the independent single yarn, large radiation coefficient, and improved thermal conductance through the two cool ends. The millisecond response time makes it possible to use the visible hot thin yarns as light-emitting elements of an incandescent display. A fully sealed display with 16 × 16 matrix was successfully fabricated using screen-printed thick electrodes and CNT thin yarns. It can display rolling characters with a low power consumption. More applications can be further developed based on the addressable CNT thermal arrays.

  11. Wave attenuation and mode dispersion in a waveguide coated with lossy dielectric material

    NASA Technical Reports Server (NTRS)

    Lee, C. S.; Chuang, S. L.; Lee, S. W.; Lo, Y. T.

    1984-01-01

    The modal attenuation constants in a cylindrical waveguide coated with a lossy dielectric material are studied as functions of frequency, dielectric constant, and thickness of the dielectric layer. A dielectric material best suited for a large attenuation is suggested. Using Kirchhoff's approximation, the field attenuation in a coated waveguide which is illuminated by a normally incident plane wave is also studied. For a circular guide which has a diameter of two wavelengths and is coated with a thin lossy dielectric layer (omega sub r = 9.1 - j2.3, thickness = 3% of the radius), a 3 dB attenuation is achieved within 16 diameters.

  12. Ponderosa pine growth response to soil strength in the volcanic ash soils of central Oregon.

    Treesearch

    R.T. Parker; D.A. Maguire; D.D. Marshall; P. Cochran

    2007-01-01

    Mechanical harvesting and associated logging activities have the capacity to compact soil across large portions of harvest units. Two thinning treatments (felled only versus felled and skidded) in 70- to 80-year-old ponderosa pine stands were replicated at three sites with volcanic soils in central Oregon. Growth in diameter, height, and volume of residual trees were...

  13. Levels-of-growing-stock cooperative study in Douglas-fir: report no. 10—The Hoskins Study, 1963-83.

    Treesearch

    David D. Marshall; John F. Bell; John C. Tappeiner

    1992-01-01

    Results of the Hoskins LOGS study in western Oregon are summarized and management implications discussed through the fifth and final planned treatment period. To age 40 thinnings in this low site I Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stand resulted in large increases in diameter growth with reductions in basal area and volume growth...

  14. Antifungal activity of Ag:hydroxyapatite thin films synthesized by pulsed laser deposition on Ti and Ti modified by TiO2 nanotubes substrates

    NASA Astrophysics Data System (ADS)

    Eraković, S.; Janković, A.; Ristoscu, C.; Duta, L.; Serban, N.; Visan, A.; Mihailescu, I. N.; Stan, G. E.; Socol, M.; Iordache, O.; Dumitrescu, I.; Luculescu, C. R.; Janaćković, Dj.; Miškovic-Stanković, V.

    2014-02-01

    Hydroxyapatite (HA) is a widely used biomaterial for implant thin films, largely recognized for its excellent capability to chemically bond to hard tissue inducing the osteogenesis without immune response from human tissues. Nowadays, intense research efforts are focused on development of antimicrobial HA doped thin films. In particular, HA doped with Ag (Ag:HA) is expected to inhibit the attachment of microbes and contamination of metallic implant surface. We herewith report on nano-sized HA and Ag:HA thin films synthesized by pulsed laser deposition on pure Ti and Ti modified with 100 nm diameter TiO2 nanotubes (fabricated by anodization of Ti plates) substrates. The HA-based thin films were characterized by SEM, AFM, EDS, FTIR, and XRD. The cytotoxic activity was tested with HEp2 cells against controls. The antifungal efficiency of the deposited layers was tested against the Candida albicans and Aspergillus niger strains. The Ti substrates modified with TiO2 nanotubes covered with Ag:HA thin films showed the highest antifungal activity.

  15. Structural deformation at the Flynn Creek impact crater, Tennessee - A preliminary report on deep drilling

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.

    1979-01-01

    The geologic and core drilling studies described in the present paper show that the Flynn Creek crater has such distinctive morphological features as a broad flat hummocky floor; large central peak; locally terraced crater walls; uplifted, as well as flat-lying rim segments; and a surrounding ejecta blanket. The major structural features include a shallow depth of total brecciation and excavation as compared with apparent crater diameter; a thin breccia lens underlain by a thin zone of disrupted strata; concentric ring fault zones in inner rim, beneath crater wall, and outer crater floor regions; a large central uplift underlain by a narrow dipping zone of deeply disrupted strata; faulted, folded, brecciated, and fractured rim strata; and uplifted rim strata, which dip away from the crater, and flat-lying rim strata, which terminate as inward dipping rocks.

  16. Spacing, Thinning, and Pruning Practices for Young Cottonwood Plantations

    Treesearch

    Leon S. Minckler

    1970-01-01

    The 5-year growth of cottonwood trees planted at five spacing levels is summarized. Wide spacing resulted in better diameter and height growth, but less total wood production per acre than close spacing. Early thinning of closely spaced trees did not maintain diameter growth equal to that of trees with initial wide spacing.

  17. Small-diameter success stories

    Treesearch

    Jean Livingston

    2004-01-01

    Public and private forests are in critical need of restoration by thinning small-diameter timber. If economical and value-added uses for this thinned material can be found, forest restoration costs could be offset and catastrophic wildfires would be minimized. At the same time, forestry- dependent rural communities?faced with diminishing timber supplies, loss of jobs,...

  18. CVD growth of large-grain graphene on Cu(111) thin films

    NASA Astrophysics Data System (ADS)

    Miller, David L.; Diederichsen, Kyle M.; Keller, Mark W.

    2013-03-01

    Chemical vapor deposition of graphene on polycrystalline Cu foils has produced high quality films with carrier mobility approaching that of exfoliated graphene. Growth on single-crystal films of Cu has received less attention, despite its potential advantages for graphene quality and its importance for eventual applications. This is likely due to the difficulty of obtaining large (>= 1 mm) grains in Cu thin films, as well as dewetting and roughening of Cu films at temperatures near the Cu melting point (1084 C). We found that 450 nm of Cu(111), epitaxially grown by sputtering onto Al2O3(0001), formed > 1 mm grains when annealed at 1065 C for 40 minutes in 40 Torr of Ar and 2.5 mTorr of H2. After this annealing, adding 3 mTorr of CH4 for 8 minutes produced a monolayer graphene film covering > 99 % of the Cu surface. Stopping growth after 4 minutes produced dendritic graphene islands with 6-fold symmetry and diameter of 20 μm to 100 μm . After growth, the Cu film remained smooth except for thermal grooving at grain boundaries and a few holes of diameter ~ 10 μm where Cu dewetted completely (~ 10 holes on each 5 mm x 6 mm chip).

  19. Morphology, microstructure, and magnetic properties of ordered large-pore mesoporous cadmium ferrite thin film spin glasses.

    PubMed

    Reitz, Christian; Suchomski, Christian; Chakravadhanula, Venkata Sai Kiran; Djerdj, Igor; Jagličić, Zvonko; Brezesinski, Torsten

    2013-04-01

    Herein, we report the synthesis, microstructure, and magnetic properties of cadmium ferrite (CdFe2O4) thin films with both an ordered cubic network of 18 nm diameter pores and single-phase spinel grains averaging 13 nm in diameter. These mesoporous materials were produced through facile polymer templating of hydrated nitrate salt precursors. Both the morphology and the microstructure, including cation site occupancy and electronic bonding configuration, were analyzed in detail by electron microscopy, grazing incidence small-angle X-ray scattering, Raman and X-ray photoelectron spectroscopy, and N2-physisorption. The obtained data demonstrate that the network of pores is retained up to annealing temperatures as high as 650 °C--the onset of crystallization is at ϑ = (590 ± 10) °C. Furthermore, they show that the polymer-templated samples exhibit a "partially" inverted spinel structure with inversion parameter λ = 0.40 ± 0.02. This differs from microcrystalline CdFe2O4 which shows virtually no inversion. Magnetic susceptibility studies reveal ferrimagnetic spin coupling below 147 K and further point to the likelihood of glassy behavior at low temperature (T(f) ≈ 60 K). In addition, analysis of room temperature magnetization data indicates the presence of sub-10 nm diameter superparamagnetic clusters in an otherwise paramagnetic environment.

  20. Structural Modeling of a Five-Meter Thin Film Inflatable Antenna/Concentrator With Rigidized Support Struts

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Tinker, Michael L.

    2001-01-01

    Dynamic characterization of a non-rigidized thin film inflatable antenna/solar concentrator structure with rigidized composite support struts is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of: (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large 5-m lightweight inflatable are identified, including considerable difficulty in obtaining convergence in the nonlinear pressurization solution. It was found that the extremely thin polyimide film material (.001 in or I mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. It was concluded that the ratios of film thickness to other geometric dimensions such as torus cross-sectional and ring diameter and lenticular diameter are the critical parameters for convergence of the pressurization procedure. Comparison of finite element predictions for frequency and mode shapes with experimental results indicated reasonable agreement considering the complexity of the structure, the film-to-air interaction, and the nonlinear material properties of the film. It was also concluded that analysis should be done using different finite element to codes to determine if a more robust and stable solution can be obtained.

  1. Ecological Technologies for Small-Diameter Tree Harvesting

    Treesearch

    Bryce J. Stokes; John F. Klepac

    1997-01-01

    Production, costs, and merchantable chip recovery values were developed for a tree-length, flail/chip, and cut-to-length system. The systems were evaluated for three representative stands: early thinning, late thinning, and a clearcut. A sensitivity analysis was completed for the three systems over a range of tree diameters. Recovery was affected by stand type and...

  2. Thinning and burning in dry coniferous forests of the Western United States: effectiveness in altering diameter distributions

    Treesearch

    Andrew Youngblood

    2010-01-01

    Western United States land managers are conducting fuel reduction and forest restoration treatments in forests with altered structural conditions. As part of the National Fire and Fire Surrogate (FFS) study, thinning and burning treatments were evaluated for changing forest structure. Shifts between pretreatment and posttreatment diameter distributions at seven western...

  3. The central Appalachian hardwoods experience provides silvicultural tools for Ontario

    Treesearch

    Gary W. Miller; Ken A Elliott; Eric P. Boysen

    1998-01-01

    Cultural practices can be applied in even-age stands to reallocate site resources to selected crop trees. Precommercial thinning in sapling stands can increase diameter growth and improve species composition of trees in the main canopy. Commercial thinning in sawtimber stands also increases diameter growth of crop trees, improves residual stand quality, and removes...

  4. Ferroelectric thin-film active sensors for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Giurgiutiu, Victor; Yuan, Zheng; Liu, Jian; Chen, Chonglin; Jiang, Jiechao; Bhalla, Amar S.; Guo, Ruyan

    2007-04-01

    Piezoelectric wafer active sensors (PWAS) have been proven a valuable tool in structural health monitoring. Piezoelectric wafer active sensors are able to send and receive guided Lamb/Rayleigh waves that scan the structure and detect the presence of incipient cracks and structural damage. In-situ thin-film active sensor deposition can eliminate the bonding layer to improve the durability issue and reduce the acoustic impedance mismatch. Ferroelectric thin films have been shown to have piezoelectric properties that are close to those of single-crystal ferroelectrics but the fabrication of ferroelectric thin films on structural materials (steel, aluminum, titanium, etc.) has not been yet attempted. In this work, in-situ fabrication method of piezoelectric thin-film active sensors arrays was developed using the nano technology approach. Specification for the piezoelectric thin-film active sensors arrays was based on electro-mechanical-acoustical model. Ferroelectric BaTiO3 (BTO) thin films were successfully deposited on Ni tapes by pulsed laser deposition under the optimal synthesis conditions. Microstructural studies by X-ray diffractometer and transmission electron microscopy reveal that the as-grown BTO thin films have the nanopillar structures with an average size of approximately 80 nm in diameter and the good interface structures with no inter-diffusion or reaction. The dielectric and ferroelectric property measurements exhibit that the BTO films have a relatively large dielectric constant, a small dielectric loss, and an extremely large piezoelectric response with a symmetric hysteresis loop. The research objective is to develop the fabrication and optimum design of thin-film active sensor arrays for structural health monitoring applications. The short wavelengths of the micro phased arrays will permit the phased-array imaging of smaller parts and smaller damage than is currently not possible with existing technology.

  5. X-ray optics made from thin plastic foils

    NASA Astrophysics Data System (ADS)

    Schnopper, Herbert W.; Silver, Eric H.; Ingram, Russell H.; Christensen, Finn E.; Hussain, Ahsen M.; Barbera, Marco; Romaine, Suzanne E.; Collura, Alfonso; Kenter, Almus T.; Bandler, Simon; Murray, Stephen S.

    1999-09-01

    New design concepts and materials can be used to produce very lightweight, thin foil approximations, to Wolter I and other x-ray optics. Structures are designed around a central hub and spacers that connect one spoked wheels. Figure defining, thin pins span the distance between the wheels. Thin, metal coated or multilayered, plastic foils can be formed into cones, cylinders or spirals for x-ray telescopes or lenses. Imaging and spectroscopic data obtained with x- ray lenses are presented and they indicate that a 60 cm diameter, 4.65 m focal length x-ray telescope can have a half power diameter of < 2 arcmin.

  6. A novel cosmetic approach to treat thinning hair.

    PubMed

    Davis, M G; Thomas, J H; van de Velde, S; Boissy, Y; Dawson, T L; Iveson, R; Sutton, K

    2011-12-01

    Many of today's treatments associated with 'thinning hair', such as female pattern hair loss and telogen effluvium, are focused on two of the key aspects of the condition. Over-the-counter or prescription medications are often focused on improving scalp hair density while high-quality cosmetic products work to prevent further hair damage and minimize mid-fibre breakage. Fibre diameter is another key contributor to thinning hair, but it is less often the focus of medical or cosmetic treatments. To examine the ability of a novel leave-on technology combination [caffeine, niacinamide, panthenol, dimethicone and an acrylate polymer (CNPDA)] to affect the diameter and behaviour of individual terminal scalp hair fibres as a new approach to counteract decreasing fibre diameters. Testing methodology included fibre diameter measures via laser scan micrometer, assessment of fibre mechanical and behavioural properties via tensile break stress and torsion pendulum testing, and mechanistic studies including cryoscanning electron microscopy and autoradiographic analysis. CNPDA significantly increased the diameter of individual, existing terminal scalp hair fibres by 2-5 μm, which yields an increase in the cross-sectional area of approximately 10%. Beyond the diameter increase, the CNPDA-thickened fibres demonstrated the altered mechanical properties characteristic of thicker fibres: increased suppleness/pliability (decreased shear modulus) and better ability to withstand force without breaking (increased break stress). Although cosmetic treatments will not reverse the condition, this new approach may help to mitigate the effects of thinning hair. © 2011 Procter & Gamble. BJD © 2011 British Association of Dermatologists.

  7. Thin Shell Manufacturing for large Wavefront correctors

    NASA Astrophysics Data System (ADS)

    Ruch, Eric; Poutriquet, Florence

    2011-09-01

    One of the major key elements in large adaptive optical systems is the thin shell, used as a deformable mirror. Although the optical prescriptions are relaxed with respect to a passive mirror, especially in the low spatial frequency domain, other requirements, such as the cosmetic defects (scratch & dig), the tight control of the thickness uniformity and of course the fragility of the piece having an aspect ratio up to 1000:1, generate new problems during the manufacturing, testing and handling of such optics. Moreover, the optical surface has to be tested in two different ways: a classical optical test bench allows us to create a surface map of the mirror. This map is then computed to determine the force required by the actuators to flatten the mirror and this becomes also a specification for polishing and implies a good interaction with the voice coil manufacturer. More than twenty years ago Sagem - Reosc developed the first meter class thin shell for early adaptive optics experiments. Since then, large thin shell have been used as the optical part in composite mirrors and more recently the aspheric shell for the VLT Deformable Secondary Mirror has been polished and prototypes, up to scale 1, of the E-ELT M4 Adaptive Mirror have been delivered to ESO in 2010. This paper will present some recent results in the manufacturing and testing technologies of large this shell, especially focusing on the development of the 1,1 meter convex aspherical shell for the VLT M2 mirror and on the results obtained on the largest thin shell produced so far (2,5 meter in diameter) developed as a demonstrator for the future E-ELT M4.

  8. Near Net Manufacturing Using Thin Gage Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Jennifer; Potter, David; Holquin, Michael

    2006-01-01

    Friction Stir Welding (FSW) and near net spin forming of FSW aluminumn blanks were investigated for large-scale pressure vessel applications. With a specific focus on very thin gage 2xxx and 7xxx aluminum alloys, the program concentrated on the following: the criteria used for material selection, a potential manufacturing flow, and the effectiveness and associated risks of near net spin forming. Discussion will include the mechanical properties of the friction stir welds and the parent material from before and after the spin forming process. This effort was performed under a NASA Space Exploration initiative focused on increasing the affordability, reliability and performance of pressure vessels larger than 10 ft. diameter.

  9. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes

    PubMed Central

    Fröhlich, Eleonore; Meindl, Claudia; Höfler, Anita; Leitinger, Gerd; Roblegg, Eva

    2012-01-01

    The use of carbon nanotubes (CNTs) could improve medical diagnosis and treatment provided they show no adverse effects in the organism. In this study, short CNTs with different diameters with and without carboxyl surface functionalisation were assessed. After physicochemical characterisation, cytotoxicity in phagocytic and non-phagocytic cells was determined. The role of oxidative stress was evaluated according to the intracellular glutathione levels and protection by N-acetyl cysteine (NAC). In addition to this, the mode of cell death was also investigated. CNTs <8 nm acted more cytotoxic than CNTs ≥20 nm and carboxylated CNTs more than pristine CNTs. Protection by NAC was maximal for large diameter pristine CNTs and minimal for small diameter carboxylated CNTs. Thin (<8 nm) CNTs acted mainly by disruption of membrane integrity and CNTs with larger diameter induced mainly apoptotic changes. It is concluded that cytotoxicity of small carboxylated CNTs occurs by necrosis and cannot be prevented by antioxidants. PMID:22963691

  10. Effect of crown growing space and age on the growth of northern red oak

    Treesearch

    Gary W. Miller

    1997-01-01

    Cultural practices can be applied in even-age stands to reallocate site resources to selected crop trees. Precornrnercial thinning in sapling stands can increase diameter growth and improve species composition of trees in the main canopy. Commercial thinning in sawtimber stands also increases diameter growth of crop trees, improves residual stand quality, and removes...

  11. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    NASA Astrophysics Data System (ADS)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; Sweat, Daniel P.; Wang, Xudong; Gopalan, Padma

    2016-06-01

    In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.In this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order-disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns and registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. We conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01409g

  12. Development of a liquid lithium thin film for use as a heavy ion beam stripper.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momozaki, Y.; Nolen, J.; Reed, C.

    2009-04-01

    A series of experiments was performed to investigate the feasibility of a liquid lithium thin film for a charge stripper in a high-power heavy ion linac. Various preliminary experiments using simulants were first conducted to determine the film formation scheme, to investigate the film stability, and to obtain the design parameters for a liquid lithium thin film system. Based on the results from these preliminary studies, a prototypical, high pressure liquid lithium system was constructed to demonstrate liquid lithium thin film formation. This system was capable of driving liquid lithium at {approx}< 300 C and up to 13.9 MPa (2000more » psig) through a nozzle opening as large as 1 mm (40 mil) in diameter. This drive pressure corresponds to a Li velocity of >200 m/s. A thin lithium film of 9 mm in width at velocity of {approx}58 m/s was produced. Its thickness was estimated to be roughly {approx}< 13 {micro}m. High vacuum was maintained in the area of the film. This type of liquid metal thin film may also be used in other high power beam applications such as for intense X-ray or neutron sources.« less

  13. Fabrication of seamless calandria tubes by cold pilgering route using 3-pass and 2-pass schedules

    NASA Astrophysics Data System (ADS)

    Saibaba, N.

    2008-12-01

    Calandria tube is a large diameter, extremely thin walled zirconium alloy tube which has diameter to wall thickness ratio as high as 90-95. Such tubes are conventionally produced by the 'welded route', which involves extrusion of slabs followed by a series of hot and cold rolling passes, intermediate anneals, press forming of sheets into circular shape and closing the gap by TIG welding. Though pilgering is a well established process for the fabrication of seamless tubes, production of extremely thin walled tubes offers several challenges during pilgering. Nuclear fuel complex (NFC), Hyderabad, has successfully developed a process for the production of Zircaloy-4 calandria tubes by adopting the 'seamless route' which involves hot extrusion of mother blanks followed by three-pass pilgering or two-pass pilgering schedules. This paper deals with standardization of the seamless route processes for fabrication of calandria tubes, comparison between the tubes produced by 2-pass and 3-pass pilgering schedules, role of ultrasonic test charts for control of process parameters, development of new testing methods for burst testing and other properties.

  14. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.

    PubMed

    Dunand, David C; Müllner, Peter

    2011-01-11

    The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.

  15. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    PubMed

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  16. On 'large-scale' stable fiber displacement during interfacial failure in metal matrix composites

    NASA Technical Reports Server (NTRS)

    Petrich, R. R.; Koss, D. A.; Hellmann, J. R.; Kallas, M. N.

    1993-01-01

    Experimental results are presented to show that interfacial failure in sapphire-reinforced niobium is characterized by 'large-scale' (5-15 microns) plasticity-controlled fiber displacements occurring under increasing loads. The results are based on the responses during thin-slice fiber pushout tests wherein the fiber is supported over a hole twice the fiber diameter. The results describe an interfacial failure process that should also occur near fiber ends during pullout when a fiber is well-bonded to a soft, ductile matrix, such that eventual failure occurs by shear within the matrix near the interface.

  17. The carbon consequences of thinning techniques: stand structure makes a difference

    Treesearch

    Coeli Hoover; Susan Stout

    2007-01-01

    Using results from a 25-year study of thinning in a northwestern Pennsylvania Allegheny hardwood stand, we assess whether and how thinning method affected carbon sequestration and merchantable volume production. Plots were thinned to similar residual relative density by removing trees from different portions of the diameter distribution. Plots that were thinned from...

  18. Diameter growth and phenology of trees on sites with high water tables

    Treesearch

    D.C. McClurkin

    1965-01-01

    On a site where the water table always was within the root zone, thinning had little effect on diameter growth of white ash or sweetgum but increased the growth of baldcypress. Thinning did not extend durating of growth into the fall, nor was growth related to seasonal fluctuations in the water table. In ash and sweetgum, growth initiation seemed related to soil...

  19. Development of top heights and corresponding diameters in high-elevation noble fir plantations

    Treesearch

    Robert O. Curtis

    2015-01-01

    Height and diameter growth of noble fir (Abies procera Rehd.) trees included in the largest 40 stems per acre were compared in a study that included five precommercial thinning spacings plus no thinning, in each of eight replications, at elevations from 2,200 to 4,100 feet in the western Cascade Mountains of Washington and Oregon. Height growth rates were not affected...

  20. Long-term basal area and diameter growth responses of western hemlock-sitka spruce stands in southeast Alaska to a range of thinning intensities.

    Treesearch

    Nathan J. Poage

    2008-01-01

    To better understand the long-term basal area and diameter growth response of young, well-stocked, even-aged, mixed-species stands of western hemlock (Tsuga heterophylla (Raf.) Sarg.) and Sitka spruce (Picea sitchensis (Bong.) Carr.) to a range of thinning intensities (heavy, moderate, light, and unthinned), 20 years of...

  1. Leakproof Swaged Joints in Thin-Wall Tubing

    NASA Technical Reports Server (NTRS)

    Stuckenberg, F. H.; Crockett, L. K.; Snyder, W. E.

    1986-01-01

    Tubular inserts reinforce joints, reducing incidence of leaks. In new swaging technique, tubular inserts placed inside ends of both tubes to be joined. Made from thicker-wall tubing with outside diameter that matches inside diameter of thin tubing swaged, inserts support tube ends at joint. They ensure more uniform contact between swage fitting and tubing. New swaging technique developed for Al/Ti/V-alloy hydraulic supply lines.

  2. Management, morphological, and environmental factors influencing Douglas-fir bark furrows in the Oregon Coast Range

    USGS Publications Warehouse

    Sheridan, Christopher D.; Puettmann, Klaus J.; Huso, Manuela M.P.; Hagar, Joan C.; Falk, Kristen R.

    2013-01-01

    Many land managers in the Pacific Northwest have the goal of increasing late-successional forest structures. Despite the documented importance of Douglas-fir tree bark structure in forested ecosystems, little is known about factors influencing bark development and how foresters can manage development. This study investigated the relative importance of tree size, growth, environmental factors, and thinning on Douglas-fir bark furrow characteristics in the Oregon Coast Range. Bark furrow depth, area, and bark roughness were measured for Douglas-fir trees in young heavily thinned and unthinned sites and compared to older reference sites. We tested models for relationships between bark furrow response and thinning, tree diameter, diameter growth, and environmental factors. Separately, we compared bark responses measured on trees used by bark-foraging birds with trees with no observed usage. Tree diameter and diameter growth were the most important variables in predicting bark characteristics in young trees. Measured environmental variables were not strongly related to bark characteristics. Bark furrow characteristics in old trees were influenced by tree diameter and surrounding tree densities. Young trees used by bark foragers did not have different bark characteristics than unused trees. Efforts to enhance Douglas-fir bark characteristics should emphasize retention of larger diameter trees' growth enhancement.

  3. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  4. Thermoelastic response of metal matrix composites with large-diameter fibers subjected to thermal gradients

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    1993-01-01

    A new micromechanical theory is presented for the response of heterogeneous metal matrix composites subjected to thermal gradients. In contrast to existing micromechanical theories that utilize classical homogenization schemes in the course of calculating microscopic and macroscopic field quantities, in the present approach the actual microstructural details are explicitly coupled with the macrostructure of the composite. Examples are offered that illustrate limitations of the classical homogenization approach in predicting the response of thin-walled metal matrix composites with large-diameter fibers when subjected to thermal gradients. These examples include composites with a finite number of fibers in the thickness direction that may be uniformly or nonuniformly spaced, thus admitting so-called functionally gradient composites. The results illustrate that the classical approach of decoupling micromechanical and macromechanical analyses in the presence of a finite number of large-diameter fibers, finite dimensions of the composite, and temperature gradient may produce excessively conservative estimates for macroscopic field quantities, while both underestimating and overestimating the local fluctuations of the microscopic quantities in different regions of the composite. Also demonstrated is the usefulness of the present approach in generating favorable stress distributions in the presence of thermal gradients by appropriately tailoring the internal microstructure details of the composite.

  5. Sparse reconstruction localization of multiple acoustic emissions in large diameter pipelines

    NASA Astrophysics Data System (ADS)

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-04-01

    A sparse reconstruction localization method is proposed, which is capable of localizing multiple acoustic emission events occurring closely in time. The events may be due to a number of sources, such as the growth of corrosion patches or cracks. Such acoustic emissions may yield localization failure if a triangulation method is used. The proposed method is implemented both theoretically and experimentally on large diameter thin-walled pipes. Experimental examples are presented, which demonstrate the failure of a triangulation method when multiple sources are present in this structure, while highlighting the capabilities of the proposed method. The examples are generated from experimental data of simulated acoustic emission events. The data corresponds to helical guided ultrasonic waves generated in a 3 m long large diameter pipe by pencil lead breaks on its outer surface. Acoustic emission waveforms are recorded by six sparsely distributed low-profile piezoelectric transducers instrumented on the outer surface of the pipe. The same array of transducers is used for both the proposed and the triangulation method. It is demonstrated that the proposed method is able to localize multiple events occurring closely in time. Furthermore, the matching pursuit algorithm and the basis pursuit densoising approach are each evaluated as potential numerical tools in the proposed sparse reconstruction method.

  6. Improving the Inventory of Large Lunar Basins: Using LOLA Data to Test Previous Candidates and Search for New Ones

    NASA Technical Reports Server (NTRS)

    Frey, H. V.; Meyer, H. M.; Romine, G. C.

    2012-01-01

    Topography and crustal thickness data from LOLA altimetry were used to test the validity of 98 candidate large lunar basins derived from photogeologic and earlier topographic and crustal thickness data, and to search for possible new candidates. We eliminate 23 previous candidates but find good evidence for 20 new candidates. The number of basins greater than 300 km diameter on the Moon is almost certainly a factor 2 (maybe 3?) larger than the number of named features having basin-like topography. Unified Lunar Control Net 2005 data [1] and model crustal thickness data [2] were previously used to search for possible previously unrecognized large lunar impact basins [3,4]. An inventory of 98 candidate topographic basins greater than 300 km in diameter was found [5]. This includes 33 named features (only those having basin-like topography) out of the 45 listed by Wilhelms [6], 38 additional Quasi-Circular Depressions (QCDs) found in the ULCN2005 topography, and 27 Circular Thin Areas (CTAs) found in model crustal thickness data [2]. Most named features and additional QCDs have strong CTA signatures, but there may be a class of CTAs that are not easily recognized in the old and low resolution ULCN2005 topography. Lunar Orbiter Laser Altimeter (LOLA) data have recently become publically available. We used these data to (a) refine the center and ring diameters of known basins, (b) test the viability of the candidate basins previously found (as described above), and (c) search for additional candidate basins not revealed by the earlier lower resolution data. We used the LOLA topography directly but also a recent new model crustal thickness data that includes Kaguya gravity data [7]. We repeated a Topographic Expression (TE) and a Crustal Thickness Expression (CTE) scoring exercise originally done with the basins found in ULCN and earlier model crustal thickness data [5]. Each candidate was scored on a scale from 0 (no topographic basin or circular thin area signature) to 5 (strong circular low or strong circular thin area signature). These were combined into a total score used to rank the probability for each candidate basin. We used the same GRIDVIEW software to stretch, contour and profile the LOLA and new crustal thickness data as was done with the ULCN2005 and older model crustal thickness data.

  7. Magnetic properties of permalloy-coated organic tubules

    NASA Astrophysics Data System (ADS)

    Krebs, J. J.; Rubinstein, M.; Lubitz, P.; Harford, M. Z.; Baral, S.; Shashidar, R.; Ho, Y. S.; Chow, G. M.; Qadri, S.

    1991-11-01

    An initial investigation is presented of the ferromagnetic properties of a novel type of magnetic composite, viz., permalloy-coated submicron diameter hollow cylinders or tubules. The tubules form spontaneously from an organic material, a diacetylenic phosopholipid, and were used as templates on which the ferromagnetic material was deposited by electroless deposition. The permalloy-coated tubules were dispersed in an epoxy matrix to measure the magnetization and ferromagnetic resonance (FMR) properties of individual tubules. The nature of the magnetic anisotropy and the FMR spectra observed confirmed that the tubules are well aligned by a magnetic field during the epoxy curing. The FMR spectra are interpreted in terms of a powder pattern distribution of thin-film spectra consistent with the large diameter-to-thickness ratio.

  8. Three-dimensional scanning near field optical microscopy (3D-SNOM) imaging of random arrays of copper nanoparticles: implications for plasmonic solar cell enhancement.

    PubMed

    Ezugwu, Sabastine; Ye, Hanyang; Fanchini, Giovanni

    2015-01-07

    In order to investigate the suitability of random arrays of nanoparticles for plasmonic enhancement in the visible-near infrared range, we introduced three-dimensional scanning near-field optical microscopy (3D-SNOM) imaging as a useful technique to probe the intensity of near-field radiation scattered by random systems of nanoparticles at heights up to several hundred nm from their surface. We demonstrated our technique using random arrays of copper nanoparticles (Cu-NPs) at different particle diameter and concentration. Bright regions in the 3D-SNOM images, corresponding to constructive interference of forward-scattered plasmonic waves, were obtained at heights Δz ≥ 220 nm from the surface for random arrays of Cu-NPs of ∼ 60-100 nm in diameter. These heights are too large to use Cu-NPs in contact of the active layer for light harvesting in thin organic solar cells, which are typically no thicker than 200 nm. Using a 200 nm transparent spacer between the system of Cu-NPs and the solar cell active layer, we demonstrate that forward-scattered light can be conveyed in 200 nm thin film solar cells. This architecture increases the solar cell photoconversion efficiency by a factor of 3. Our 3D-SNOM technique is general enough to be suitable for a large number of other applications in nanoplasmonics.

  9. Characterization of nanostructured VO2 thin films grown by magnetron controlled sputtering deposition and post annealing method.

    PubMed

    Chen, Sihai; Lai, Jianjun; Dai, Jun; Ma, Hong; Wang, Hongchen; Yi, Xinjian

    2009-12-21

    By magnetron controlled sputtering system, a new nanostructured metastable monoclinic phase VO2 (B) thin film has been fabricated. The testing result shows that this nanostructured VO2 (B) thin film has high temperature coefficient of resistance (TCR) of -7%/K. Scanning electron microscopy measurement shows that the average grain diameter of the VO2 (B) crystallite is between 100 and 250 nm. After post annealed, VO2 (B) crystallite is changed into monoclinic (M) phase VO2 (M) crystallite with the average grain diameter between 20 and 50 nm. A set up of testing the thin film switching time is established. The test result shows the switching time is about 50 ms. With the nanostructured VO2 (B) and VO2 (M) thin films, optical switches and high sensitivity detectors will be presented.

  10. Seasonal and cumulative loblolly pine development under two stand density and fertility levels through four growing seasons

    Treesearch

    James D. Haywood

    1994-01-01

    A loblolly pine stand was subjected to two cultural treatments to determine treatment effects in the 9th through 12th growing seasons. Thining resulted in less spring height growth in the 9th and 10th growing seasons than no thinning, but thinning resulted in more diameter growth each year. Fertilization increased height and diameter growth beginning in the 10th...

  11. Light-fuelled transport of large dendrimers and proteins.

    PubMed

    Koskela, Jenni E; Liljeström, Ville; Lim, Jongdoo; Simanek, Eric E; Ras, Robin H A; Priimagi, Arri; Kostiainen, Mauri A

    2014-05-14

    This work presents a facile water-based supramolecular approach for light-induced surface patterning. The method is based upon azobenzene-functionalized high-molecular weight triazine dendrimers up to generation 9, demonstrating that even very large globular supramolecular complexes can be made to move in response to light. We also demonstrate light-fuelled macroscopic movements in native biomolecules, showing that complexes of apoferritin protein and azobenzene can effectively form light-induced surface patterns. Fundamentally, the results establish that thin films comprising both flexible and rigid globular particles of large diameter can be moved with light, whereas the presented material concepts offer new possibilities for the yet marginally explored biological applications of azobenzene surface patterning.

  12. Acoustic Emission Signals in Thin Plates Produced by Impact Damage

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Humes, Donald H.

    1999-01-01

    Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.

  13. Feller/bunchers in plantations thinnings: factors affecting productivity.

    Treesearch

    Sharon A. Winsauer; James A. Mattson; Michael A. Thompson

    1984-01-01

    Computer simulation was used to identify possible areas for improving the design and operation of feller/bunchers for thinning closely spaced plantations. Some of the variables considered were average stand diameter, tree spacing, thinning pattern, operational machine speeds, and shear head accumulating capacity.

  14. Optical properties of ordered ZnO/Ag thin films on polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Li, Xiu; Chen, Xiuyan; Xin, Zhiqing; Li, Luhai; Xu, Yanfang

    2017-08-01

    A thorough research of the optical properties of ZnO/Ag structures sputtered by RF on PS colloidal crystal molds with different diameters is reported. The influences of the period of the substrates on the performance of ZnO thin films were studied. The results of scanning electron microscopic, X-ray diffraction patterns and UV-vis absorption spectroscopy indicated that the ZnO/Ag thin films were well-covering on PS colloidal crystal molds. The diameter of the polystyrene particles significantly influenced the PL spectrum intensity of ZnO/Ag by affecting the interferences of light. After adding PS colloidal crystal molds with different diameters, all the samples show two luminescent regions, namely a strong, narrow UV emission peak and a wide, weak visible emission band. However, the signal of UV emission increases more significantly. In particular, the maximum enhancement occurs when the diameter is 300 nm. This work proposes an effective way to improve ZnO light emission based on a simple, rapid and cost effective method to fabricate ordered periodic substrates by preparing single layer polystyrene microspheres masks.

  15. The Effect of Density on the Height-Diameter Relationship

    Treesearch

    Boris Zeide; Curtis Vanderschaaf

    2002-01-01

    Using stand density along with mean diameter to predict average height increases the proportion of explained variance. This result, obtained from permanent plots established in a loblolly pine plantation thinned to different levels, makes sense. We know that due to competition, trees with the same diameter are taller in denser stands. Diameter and density are not only...

  16. Growth of suppressed grand fir and Shasta red fir in central Oregon after release and thinning—10-year results.

    Treesearch

    Kenneth W. Seidel

    1983-01-01

    A 43-year-old, even-aged stand of advance reproduction of grand fir and Shasta red fir in central Oregon responded to release and thinning with diameter and height growth two to three times the prerelease rate. The response began immediately after the overstory was killed with 2,4-D. Diameter growth during the second 5 years after release increased significantly over...

  17. Growth and mortality of thinned knobcone x Monterey pine saplings affected by engraver beetles and a hard freeze

    Treesearch

    William W. Oliver

    1979-01-01

    Mortality and diameter growth loss were severe on study plots in a thinned plantation of 9-year-old trees. California five-spined engravers killed 15 percent of the trees and a hard freeze killed 20 percent of the survivors. Mortality was higher and subsequent diameter growth was lower in trees with most of their needles freeze-killed than in trees less severely...

  18. Investigation of low-latitude hydrogen emission in terms of a two-component interstellar gas model

    NASA Technical Reports Server (NTRS)

    Baker, P. L.; Burton, W. B.

    1975-01-01

    High-resolution 21-cm hydrogen line observations at low galactic latitude are analyzed to determine the large-scale distribution of galactic hydrogen. Distribution parameters are found by model fitting, optical depth effects are computed using a two-component gas model suggested by the observations, and calculations are made for a one-component uniform spin-temperature gas model to show the systematic departures between this model and data obtained by incorrect treatment of the optical depth effects. Synthetic 21-cm line profiles are computed from the two-component model, and the large-scale trends of the observed emission profiles are reproduced together with the magnitude of the small-scale emission irregularities. Values are determined for the thickness of the galactic hydrogen disk between half density points, the total observed neutral hydrogen mass of the galaxy, and the central number density of the intercloud hydrogen atoms. It is shown that typical hydrogen clouds must be between 1 and 13 pc in diameter and that optical thinness exists on large-scale despite the presence of optically thin gas.

  19. Effect of thinning on height and diameter growth of oak & yellow-poplar saplings

    Treesearch

    Rufus H., Jr. Allen; David A. Marquis; David A. Marquis

    1970-01-01

    Studying the response to thinning of a 7- to 9-year-old upland hardwood sapling stand, we found that height growth of yellow-poplar and oak trees was markedly reduced by heavy thinning. This suggests that stand density should be carefully controlled to achieve maximum benefit from thinnings in very young stands.

  20. Effect of Nanotube Film Thickness on the Performance of Nanotube-Silicon Hybrid Solar Cells

    PubMed Central

    Tune, Daniel D.; Shapter, Joseph G.

    2013-01-01

    The results of measurements on solar cells made from randomly aligned thin films of single walled carbon nanotubes (SWCNTs) on n-type monocrystalline silicon are presented. The films are made by vacuum filtration from aqueous TritonX-100 suspensions of large diameter arc-discharge SWCNTs. The dependence of the solar cell performance on the thickness of the SWCNT film is shown in detail, as is the variation in performance due to doping of the SWCNT film with SOCl2. PMID:28348358

  1. Echo's Legacy

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The Echo 1 Satellite is simply a very large balloon, the diameter of a 10 story building. Metallized Products, Inc. developed a special material for NASA used for the balloons's skin. For "bouncing signals," material had to be reflective, lightweight, and thin enough to be folded into a beach ball size canister for delivery into orbit, where it would automatically inflate. Material selected was mylar polyester, with a reflective layer of tiny aluminum particles so fine that Echo's skin had a thickness half that of cellophane on a cigarette package.

  2. Sample Desorption/Onization From Mesoporous Silica

    DOEpatents

    Iyer, Srinivas; Dattelbaum, Andrew M.

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  3. Delayed conifer mortality after fuel reduction treatments: Interactive effects of fuel, fire intensity, and bark beetles

    USGS Publications Warehouse

    Youngblood, A.; Grace, J.B.; Mciver, J.D.

    2009-01-01

    Many low-elevation dry forests of the western United States contain more small trees and fewer large trees, more down woody debris, and less diverse and vigorous understory plant communities compared to conditions under historical fire regimes. These altered structural conditions may contribute to increased probability of unnaturally severe wildfires, susceptibility to uncharacteristic insect outbreaks, and drought-related mortality. Broad-scale fuel reduction and restoration treatments are proposed to promote stand development on trajectories toward more sustainable structures. Little research to date, however, has quantified the effects of these treatments on the ecosystem, especially delayed and latent tree mortality resulting directly or indirectly from treatments. In this paper, we explore complex hypotheses relating to the cascade of effects that influence ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) mortality using structural equation modeling (SEM). We used annual census and plot data through six growing seasons after thinning and four growing seasons after burning from a replicated, operational-scale, completely randomized experiment conducted in northeastern Oregon, USA, as part of the national Fire and Fire Surrogate study. Treatments included thin, burn, thin followed by burn (thin+burn), and control. Burn and thin+burn treatments increased the proportion of dead trees while the proportion of dead trees declined or remained constant in thin and control units, although the density of dead trees was essentially unchanged with treatment. Most of the new mortality (96%) occurred within two years of treatment and was attributed to bark beetles. Bark beetle-caused tree mortality, while low overall, was greatest in thin + burn treatments. SEM results indicate that the probability of mortality of large-diameter ponderosa pine from bark beetles and wood borers was directly related to surface fire severity and bole charring, which in turn depended on fire intensity, which was greater in units where thinning increased large woody fuels. These results have implications when deciding among management options for restoring ecosystem health in similar ponderosa pine and Douglas-fir forests. ?? 2009 by the Ecological Society of America.

  4. Fertilizing and thinning northern hardwoods in the Lake States.

    Treesearch

    Douglas M. Stone

    1977-01-01

    Reports results of fertilizing and thinning pole-size sugar maple and yellow birch crop trees on six different sites. Thinning significantly increased diameter growth, but fertilization did not. Crop trees on moist (moderately well-drained) soils have tended to respond to fertilization. Discusses silvicultural implications.

  5. Monte Carlo modelling of large scale NORM sources using MCNP.

    PubMed

    Wallace, J D

    2013-12-01

    The representative Monte Carlo modelling of large scale planar sources (for comparison to external environmental radiation fields) is undertaken using substantial diameter and thin profile planar cylindrical sources. The relative impact of source extent, soil thickness and sky-shine are investigated to guide decisions relating to representative geometries. In addition, the impact of source to detector distance on the nature of the detector response, for a range of source sizes, has been investigated. These investigations, using an MCNP based model, indicate a soil cylinder of greater than 20 m diameter and of no less than 50 cm depth/height, combined with a 20 m deep sky section above the soil cylinder, are needed to representatively model the semi-infinite plane of uniformly distributed NORM sources. Initial investigation of the effect of detector placement indicate that smaller source sizes may be used to achieve a representative response at shorter source to detector distances. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Large mirror surface control by corrective coating

    NASA Astrophysics Data System (ADS)

    Bonnand, Romain; Degallaix, Jerome; Flaminio, Raffaele; Giacobone, Laurent; Lagrange, Bernard; Marion, Fréderique; Michel, Christophe; Mours, Benoit; Mugnier, Pierre; Pacaud, Emmanuel; Pinard, Laurent

    2013-08-01

    The Advanced Virgo gravitational wave detector aims at a sensitivity ten times better than the initial LIGO and Virgo detectors. This implies very stringent requirement on the optical losses in the interferometer arm cavities. In this paper we focus on the mirrors which form the interferometer arm cavities and that require a surface figure error to be well below one nanometre on a diameter of 150 mm. This ‘sub-nanometric flatness’ is not achievable by classical polishing on such a large diameter. Therefore we present the corrective coating technique which has been developed to reach this requirement. Its principle is to add a non-uniform thin film on top of the substrate in order to flatten its surface. In this paper we will introduce the Advanced Virgo requirements and present the basic principle of the corrective coating technique. Then we show the results obtained experimentally on an initial Virgo substrate. Finally we provide an evaluation of the round-trip losses in the Fabry-Perot arm cavities once the corrected surface is used.

  7. Solar-Pumped TEM₀₀ Mode Nd:YAG laser.

    PubMed

    Liang, Dawei; Almeida, Joana

    2013-10-21

    Here we show a significant advance in solar-pumped laser beam brightness by utilizing a 1.0 m diameter Fresnel lens and a 3 mm diameter Nd:YAG single-crystal rod. The incoming solar radiation is firstly focused by the Fresnel lens on a solar tracker. A large aspheric lens and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation along the thin laser rod within a V-shaped pumping cavity. 2.3 W cw TEM₀₀ (M² ≤ 1.1) solar laser power is finally produced, attaining 1.9 W laser beam brightness figure of merit, which is 6.6 times higher than the previous record. For multimode operation, 8.1 W cw laser power is produced, corresponding to 143% enhancement in collection efficiency.

  8. Metallic positive expulsion diaphragms

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    High-cycle life ring-reinforced hemispherical type positive expulsion diaphragm performance was demonstrated by room temperature fluid expulsion tests of 13" diameter, 8 mil thick stainless steel configurations. A maximum of eleven (11) leak-free, fluid expulsions were achieved by a 25 deg cone angle diaphragm hoop-reinforced with .110-inch cross-sectional diameter wires. This represents a 70% improvement in diaphragm reversal cycle life compared to results previously obtained. The reversal tests confirmed analytic predictions for diaphragm cycle life increases due to increasing values of diaphragm cone angle, radius to thickness ratio and material strain to necking capacity. Practical fabrication techniques were demonstrated for forming close-tolerance, thin corrugated shells and for obtaining closely controlled reinforcing ring stiffness required to maximize diaphragm cycle life. A non-destructive inspection technique for monitoring large local shell bending strains was developed.

  9. Mars: Stratigraphy of Western Highlands and Polar Regions

    NASA Technical Reports Server (NTRS)

    Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.

    1985-01-01

    Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.

  10. Status of stretched-membrane heliostats

    NASA Astrophysics Data System (ADS)

    Alpert, D. J.; Houser, R. M.; Heckes, A. A.

    1990-01-01

    Since the early 1980s, Sandia National Laboratories has been developing stretched-membrane heliostats for solar central receiver power plants. They differ from conventional glass-mirror heliostats in that the optical surface is a stretched membrane -- a thin metal foil stretched over both sides of a large diameter ring. The reflective surface is provided by either a silvered-acrylic film or thin glass mirrors attached to the front membrane. Heliostats with single 14 m diameter (150 sq meter) stretched-membrane reflectors have been designed. Because of their simplicity and light weight, stretched-membrane heliostats are expected to cost up to one-third less than conventional glass-mirror designs. Two generations of 50 sq meter prototype stretched-membrane mirror modules have been built and evaluated at Sandia's Central Receiver Test Facility in Albuquerque, NM. They demonstrated that the optical performance of membrane heliostats rivals that of glass-mirror heliostats. The durability of the silvered-acrylic reflective film has improved so that a lifetime of at least 5 years is likely; methods of replacing the film in the field are being investigated. Sandia recently initiated the final phase of development: the design of fully integrated, market-ready heliostats. Field tests of these heliostats are planned to begin in FY90.

  11. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE PAGES

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.; ...

    2016-05-04

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  12. Patterning at the 10 nanometer length scale using a strongly segregating block copolymer thin film and vapor phase infiltration of inorganic precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jonathan W.; Li, Zhaodong; Black, Charles T.

    Here in this work, we demonstrate the use of self-assembled thin films of the cylinder-forming block copolymer poly(4-tert-butylstyrene-block-2-vinylpyridine) to pattern high density features at the 10 nm length scale. This material's large interaction parameter facilitates pattern formation in single-digit nanometer dimensions. This block copolymer's accessible order–disorder transition temperature allows thermal annealing to drive the assembly of ordered 2-vinylpyridine cylinders that can be selectively complexed with the organometallic precursor trimethylaluminum. This unique chemistry converts organic 2-vinylpyridine cylinders into alumina nanowires with diameters ranging from 8 to 11 nm, depending on the copolymer molecular weight. Graphoepitaxy of this block copolymer aligns andmore » registers sub-12 nm diameter nanowires to larger-scale rectangular, curved, and circular features patterned by optical lithography. The alumina nanowires function as a robust hard mask to withstand the conditions required for patterning the underlying silicon by plasma etching. Lastly, we conclude with a discussion of some of the challenges that arise with using block copolymers for patterning at sub-10 nm feature sizes.« less

  13. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement.

    PubMed

    Liu, Ye; Wang, D N; Chen, W P

    2016-12-02

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  14. Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement

    NASA Astrophysics Data System (ADS)

    Liu, Ye; Wang, D. N.; Chen, W. P.

    2016-12-01

    Optical Fabry-Perot interferometer sensors based on inner air-cavity is featured with compact size, good robustness and high strain sensitivity, especially when an ultra-thin air-cavity is adopted. The typical shape of Fabry-Perot inner air-cavity with reflection mode of operation is elliptic, with minor axis along with and major axis perpendicular to the fiber length. The first reflection surface is diverging whereas the second one is converging. To increase the visibility of the output interference pattern, the length of major axis should be large for a given cavity length. However, the largest value of the major axis is limited by the optical fiber diameter. If the major axis length reaches the fiber diameter, the robustness of the Fabry-Perot cavity device would be decreased. Here we demonstrate an ultra-thin crescent shaped Fabry-Perot cavity for strain sensing with ultra-high sensitivity and low temperature cross-sensitivity. The crescent-shape cavity consists of two converging reflection surfaces, which provide the advantages of enhanced strain sensitivity when compared with elliptic or D-shaped FP cavity. The device is fabricated by fusion splicing an etched multimode fiber with a single mode fiber, and hence is simple in structure and economic in cost.

  15. Tree Sizes Harvested in Different Thinnings -- Another Look

    Treesearch

    W.F. Mann; D.P. Feduccia

    1976-01-01

    In loblolly planted at 10 by 10 feet, light- and medium- thinned plots had slightly more sawtimber-sized trees and board-foot volume than unthinned checks and heavily thinned plots at all ages. Average diameters of all trees were largest on checks, followed by light-thinned plots. Trends were similar for 32-year-old slash pine planted at 6 by 7 feet.

  16. Dominant-tree thinning in New England northern hardwoods—a second look

    Treesearch

    William B. Leak

    2015-01-01

    A dominant-tree thinning was conducted in 2003 in a 69-year-old even-aged northern hardwood stand, clearcut in about 1935, where a precommercial thinning study had been conducted in 1959. The 2003 commercial thinning concentrated on the removal of the early maturing, short-lived paper birch and aspen, the largest-diameter trees in the stand (hence the term "...

  17. Origin of Granular Capillarity Revealed by Particle-Based Simulations

    NASA Astrophysics Data System (ADS)

    Fan, Fengxian; Parteli, Eric J. R.; Pöschel, Thorsten

    2017-05-01

    When a thin tube is dipped into water, the water will ascend to a certain height, against the action of gravity. While this effect, termed capillarity, is well known, recent experiments have shown that agitated granular matter reveals a similar behavior. Namely, when a vertical tube is inserted into a container filled with granular material and is then set into vertical vibration, the particles rise up along the tube. In the present Letter, we investigate the effect of granular capillarity by means of numerical simulations and show that the effect is caused by convection of the granular material in the container. Moreover, we identify two regimes of behavior for the capillary height Hc∞ depending on the tube-to-particle-diameter ratio, D /d . For large D /d , a scaling of Hc∞ with the inverse of the tube diameter, which is reminiscent of liquids, is observed. However, when D /d decreases down to values smaller than a few particle sizes, a uniquely granular behavior is observed where Hc∞ increases linearly with the tube diameter.

  18. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    NASA Astrophysics Data System (ADS)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the influence of the network density on the piezoresistivity of mechanically drawn SWCNT thin films. Mechanically drawn SWCNT thin films with different layer (or thickness) e.g. 1-layer, 3-layer, 10-layer and 20-layer SWCNT thin films were prepared to understand the variation of SWCNT network density as well as the alignment of SWCNTs on the strain sensitivity. The less entangled SWCNT bundles observed in the sparse network density (1- layer and 3-layer SWCNT thin films) allows for easy alignment and the best gauge factors. As compared to the randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~8x increase on the GF for the 1-layer SWCNT thin films while the 20-layer SWCNT thin films exhibited ~3x increase in the GF. My third accomplishment examines the effect of SWCNT bundles with different diameters on the piezoresistive behavior of mechanically drawn SWCNT thin films. SWCNT thin film network of sparse morphology (1-layer) with different bundle sizes were prepared by varying the sonication duration e.g. S0.5hr, S4hr, S10hr and S20hr and using spraying coating. The GF increased by a factor of ~10 when the randomly oriented SWCNT thin film was stretched to a draw ratio of 3.2 for the S0.5hr SWCNT thin films and by a factor of ~2 for the S20hr SWCNT thin films. Three main mechanisms were attributed to this behavior e.g. effect of concentration of exfoliated nanotubes, bundle reduction due to mechanical stretching, and influence of bundle length on the alignment of SWCNTs. Furthermore, information about the average length and length distribution is very essential when investigating the influence of individual nanotube length on the strain sensitivity. With that in mind, we would use our previously developed preparative ultracentrifuge method (PUM), and our newly developed gel electrophoresis and simultaneous Raman and photoluminescence spectroscopy (GEP-SRSPL) to characterize the average length and length distribution of individual SWCNTs respectively.

  19. Method of fabricating a scalable nanoporous membrane filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

    A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less

  20. Is fracture a bigger problem for smaller animals? Force and fracture scaling for a simple model of cutting, puncture and crushing

    PubMed Central

    Choi, Seunghee; Coon, Joshua J.; Goggans, Matthew Scott; Kreisman, Thomas F.; Silver, Daniel M.; Nesson, Michael H.

    2016-01-01

    Many of the materials that are challenging for large animals to cut or puncture are also cut and punctured by much smaller organisms that are limited to much smaller forces. Small organisms can overcome their force limitations by using sharper tools, but one drawback may be an increased susceptibility to fracture. We use simple contact mechanics models to estimate how much smaller the diameter of the tips or edges of tools such as teeth, claws and cutting blades must be in smaller organisms in order for them to puncture or cut the same materials as larger organisms. In order to produce the same maximum stress when maximum force scales as the square of body length, the diameter of the tool region that is in contact with the target material must scale isometrically for punch-like tools (e.g. scorpion stings) on thick targets, and for crushing tools (e.g. molars). For punch-like tools on thin targets, and for cutting blades on thick targets, the tip or edge diameters must be even smaller than expected from isometry in smaller animals. The diameters of a small sample of unworn punch-like tools from a large range of animal sizes are consistent with the model, scaling isometrically or more steeply (positively allometric). In addition, we find that the force required to puncture a thin target using real biological tools scales linearly with tip diameter, as predicted by the model. We argue that, for smaller tools, the minimum energy to fracture the tool will be a greater fraction of the minimum energy required to puncture the target, making fracture more likely. Finally, energy stored in tool bending, relative to the energy to fracture the tool, increases rapidly with the aspect ratio (length/width), and we expect that smaller organisms often have to employ higher aspect ratio tools in order to puncture or cut to the required depth with available force. The extra stored energy in higher aspect ratio tools is likely to increase the probability of fracture. We discuss some of the implications of the suggested scaling rules and possible adaptations to compensate for fracture sensitivity in smaller organisms. PMID:27274804

  1. Composite Cryotank Technologies and Development 2.4 and 5.5M out of Autoclave Tank Test Results

    NASA Technical Reports Server (NTRS)

    Jackson, Justin R.; Vickers, John; Fikes, John

    2015-01-01

    The Composite Cryotank Technologies and Demonstration (CCTD) project substantially matured composite, cryogenic propellant tank technology. The project involved the design, analysis, fabrication, and testing of large-scale (2.4-m-diameter precursor and 5.5-m-diameter) composite cryotanks. Design features included a one-piece wall design that minimized tank weight, a Y-joint that incorporated an engineered material to alleviate stress concentration under combined loading, and a fluted core cylindrical section that inherently allows for venting and purging. The tanks used out-of-autoclave (OoA) cured graphite/epoxy material and processes to enable large (up to 10-m-diameter) cryotank fabrication, and thin-ply prepreg to minimize hydrogen permeation through tank walls. Both tanks were fabricated at Boeing using automated fiber placement on breakdown tooling. A fluted core skirt that efficiently carried axial loads and enabled hydrogen purging was included on the 5.5-m-diameter tank. Ultrasonic inspection was performed, and a structural health monitoring system was installed to identify any impact damage during ground processing. The precursor and 5.5-m-diameter tanks were tested in custom test fixtures at the National Aeronautics and Space Administration Marshall Space Flight Center. The testing, which consisted of a sequence of pressure and thermal cycles using liquid hydrogen, was successfully concluded and obtained valuable structural, thermal, and permeation performance data. This technology can be applied to a variety of aircraft and spacecraft applications that would benefit from 30 to 40% weight savings and substantial cost savings compared to aluminum lithium tanks.

  2. Growth and Development of Thinned Versus Unthinned Yellow-Poplar Sprout Clumps

    Treesearch

    Donald E. Beck

    1977-01-01

    Yellow-poplar stump sprouts are capable of very rapid growth and often dominate stands on good sites following harvest cutting. Thinning to one stem per stump at 6 years of age did not affect either height or diameter growth over the succeeding 18 years. The untreated clumps thinned themselves to an average of two stems per clump during the same time period. Thinning...

  3. Ten-year effects from row thinnings in loblolly pine plantations of eastern Maryland

    Treesearch

    Silas Little; John J. Mohr; Paul V. Mook

    1967-01-01

    Four degrees of row thinning were tested in 17-year-old loblolly pine plantations of eastern Maryland. In the following 10 years diameter and basal-area growth of tagged trees increased in relation to intensity of thinning. The heavier thinnings also had the most effect in increasing live-crown lengths and ratios and in favoring crown-class position. Volume growth was...

  4. Thirty-five-year growth of thinned and unthinned ponderosa pine in the Methow Valley of northern Washington.

    Treesearch

    P.H. Cochran; James W. Barrett

    1998-01-01

    It is commonly expected that self-thinning will maintain small-diameter stands at near-normal densities and allow dominant trees to grow reasonably well. Such self-thinning did not occur in the unthinned plots in a thinning study in the Methow Valley of northern Washington, even though there was some suppression-caused mortality. A shift from suppression-caused...

  5. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    PubMed Central

    Hooper, Scott L.; Hobbs, Kevin H.; Thuma, Jeffrey B.

    2008-01-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved. PMID:18616971

  6. Fabrication of Meso-Porous Sintered Metal Thin Films by Selective Etching of Silica Based Sacrificial Template

    PubMed Central

    Dumée, Ludovic F.; She, Fenghua; Duke, Mikel; Gray, Stephen; Hodgson, Peter; Kong, Lingxue

    2014-01-01

    Meso-porous metal materials have enhanced surface energies offering unique surface properties with potential applications in chemical catalysis, molecular sensing and selective separation. In this paper, commercial 20 nm diameter metal nano-particles, including silver and copper were blended with 7 nm silica nano-particles by shear mixing. The resulted powders were cold-sintered to form dense, hybrid thin films. The sacrificial silica template was then removed by selective etching in 12 wt% hydrofluoric acid solutions for 15 min to reveal a purely metallic meso-porous thin film material. The impact of the initial silica nano-particle diameter (7–20 nm) as well as the sintering pressure (5–20 ton·m−2) and etching conditions on the morphology and properties of the final nano-porous thin films were investigated by porometry, pyknometery, gas and liquid permeation and electron microscopy. Furthermore, the morphology of the pores and particle aggregation during shear mixing were assessed through cross-sectioning by focus ion beam milling. It is demonstrated that meso-pores ranging between 50 and 320 nm in average diameter and porosities up to 47% can be successfully formed for the range of materials tested. PMID:28344241

  7. Modeling light scattering in the shadow region behind thin cylinders for diameter analysis

    NASA Astrophysics Data System (ADS)

    Blohm, Werner

    2018-03-01

    In this paper, the scattered light intensities resulting in the shadow region at an observation plane behind monochromatically illuminated circular cylinders are modeled by sinusoidal sequences having a squared dependence on spatial position in the observation plane. Whereas two sinusoidal components appear to be sufficient for modeling the light distribution behind intransparent cylinders, at least three sinusoidal components are necessary for transparent cylinders. Based on this model, a novel evaluation algorithm for a very fast retrieval of the diameter of thin cylindrical products like metallic wires and transparent fibers is presented. This algorithm was tested in a cylinder diameter range typical for these products (d ≈ 70 … 150 μm; n ≈ 1.5). Numerical examples are given to illustrate its application by using both synthetic and experimental scattering data. Diameter accuracies below 0.05 μm could be achieved for intransparent cylinders in the tested diameter range. However, scattering effects due to morphological-dependent resonances (MDRs) are problematical in the diameter analysis of transparent products. In order to incorporate these effects into the model, further investigations are needed.

  8. Volume versus value maximization illustrated for Douglas-fir with thinning

    Treesearch

    Kurt H. Riitters; J. Douglas Brodie; Chiang Kao

    1982-01-01

    Economic and physical criteria for selecting even-aged rotation lengths are reviewed with examples of their optimizations. To demonstrate the trade-off between physical volume, economic return, and stand diameter, examples of thinning regimes for maximizing volume, forest rent, and soil expectation are compared with an example of maximizing volume without thinning. The...

  9. Lamb waves increase sensitivity in nondestructive testing

    NASA Technical Reports Server (NTRS)

    Di Novi, R.

    1967-01-01

    Lamb waves improve sensitivity and resolution in the detection of small defects in thin plates and small diameter, thin-walled tubing. This improvement over shear waves applies to both longitudinal and transverse flaws in the specimens.

  10. Bright crater outflows: Possible emplacement mechanisms

    NASA Technical Reports Server (NTRS)

    Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.

    1992-01-01

    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.

  11. Growth after thinning ponderosa and Jeffrey pine pole stands in northeastern California

    Treesearch

    William W. Oliver

    1972-01-01

    Thinning ponderosa and Jeffrey pine pole stands (6 to 8 inches d.b.h.) on Meyer Site Classes IV and V land (site index 65 to 80) stimulates growth in diameter and height. This was concluded from data on 12 thinned plots scattered over northeastern California, in natural stands and in a plantation. Basal areas immediately after thinning ranged from 13 to 149 square feet...

  12. Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers

    PubMed Central

    2013-01-01

    In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702

  13. Ballistic Deposition of Nanoclusters.

    NASA Astrophysics Data System (ADS)

    Ulbrandt, Jeffrey; Li, Yang; Headrick, Randall

    Nanoporous thin-films are an important class of materials, possessing a large surface area to volume ratio, with applications ranging from thermoelectric and photovoltaic materials to supercapacitors. In-Situ X-ray Reflectivity and Grazing Incidence Small Angle X-Ray Scattering (GISAXS) were used to monitor thin-films grown from Tungsten Silicide (WSi2) and Copper (Cu) nanoclusters. The nanoclusters ranged in size from 2 nm to 6 nm diameter and were made by high-pressure magnetron sputtering via plasma gas condensation (PGC). X-Ray Reflectivity (XRR) measurements of the films at various stages of growth reveal that the resulting films exhibit very low density, approaching 15% of bulk density. This is consistent with a simple off-lattice ballistic deposition model where particles stick at the point of first contact without further restructuring. DOE Office of Basic Energy Sciences under contract DE-FG02-07ER46380.

  14. Production and cost of harvesting, processing, and transporting small-diameter (< 5 inches) trees for energy

    Treesearch

    Fei Pan; Han-Sup Han; Leonard R. Johnson; William J. Elliot

    2008-01-01

    Dense, small-diameter stands generally require thinning from below to improve fire-tolerance. The resulting forest biomass can be used for energy production. The cost of harvesting, processing, and transporting small-diameter trees often exceeds revenues due to high costs associated with harvesting and transportation and low market values for forest biomass....

  15. Options for small-diameter hardwood utilization: past and present

    Treesearch

    Matthew S. Bumgardner; Bruce G. Hansen; Albert T. Schuler; Philip A. Araman

    2000-01-01

    Effective and maximum value use of small-diameter hardwood timber has long been of interest to forest managers and researchers. In addition to being a significant component of the standing forest base, small-diameter hardwoods often are available after thinning or other tending operations. Although the use of this material is important to achieving healthy and...

  16. Options for Small-Diameter Hardwood Utilization: Past and Present

    Treesearch

    Matthew S. Bumgardner; Bruce G. Hansen; Albert T. Schuler; Philip A. Araman; Philip A. Araman

    2001-01-01

    Effective and maximum value use of small-diameter hardwood timber has long been of interest to forest managers and researchers. In addition to being a significant component of the standing forest base, small-diameter hardwoods often are available after thinning or other tending operations. Although the use of this material is important to achieving healthy and...

  17. Piezoelectric micromachined ultrasonic transducers based on PZT thin films.

    PubMed

    Muralt, Paul; Ledermann, Nicolas; Baborowski, Jacek; Barzegar, Abdolghaffar; Gentil, Sandrine; Belgacem, Brahim; Petitgrand, Sylvain; Bosseboeuf, Alain; Setter, Nava

    2005-12-01

    This paper describes fabrication and characterization results of piezoelectric micromachined ultrasonic transducers (pMUTs) based on 2-microm-thick Pb(Zr0.53Ti0.47O3) (PZT) thin films. The applied structures are circular plates held at four bridges, thus partially unclamped. A simple analytical model for the fully clamped structure is used as a reference to optimize design parameters such as thickness relations and electrodes, and to provide approximate predictions for coupling coefficients related to previously determined thin film properties. The best coupling coefficient was achieved with a 270-microm plate and amounted to kappa2 = 5.3%. This value compares well with the calculated value based on measured small signal dielectric (epsilon = 1050) and piezoelectric (e3l,f = 15 Cm(-2)) properties of the PZT thin film at 100 kV/cm dc bias. The resonances show relatively large Q-factors, which can be partially explained by the small diameters as compared to the sound wavelength in air and in the test liquid (Fluorinert 77). A transmit-receive experiment with two quasi-identical pMUTs was performed showing significant signal transmission up to a distance of 20 cm in air and 2 cm in the test liquid.

  18. Impact of product mix and markets on the economic feasibility of hardwood thinning

    Treesearch

    John E. Baumgras; Chris B. LeDoux

    1989-01-01

    Results demonstrate how the economic feasibility of commercial hardwood thinning is impacted by tree diameter, product mix, and primary product markets. These results indicate that multiproduct harvesting can increase revenues by $0.01/ft³ to $0.32/ft³; and that small shifts in price levels or haul distance can postpone commercial thinning...

  19. Thinning stagnated ponderosa and Jeffrey pine stands in northeastern California: 30-year effects

    Treesearch

    Robert J. Lilieholm; Dennis E. Teeguarden; Donald T. Gordon

    1989-01-01

    Response to precommercial thinning in stagnated 55-year-old ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey pine (P. jeffreyi Grev. and Balf.) stands in northeastern alifornia was rapid and long-lasting. During the first 5 years after thinning, average annual diameter at breast height (d.b.h.) and height growth of trees on...

  20. Managing succession in conifer plantations: converting young red pine (Pinus resinosa Ait.) plantations to native forest types by thinning and underplantiing

    Treesearch

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen; Steven G. Newmaster

    2001-01-01

    The effects of thinning on growth and survival of white pine (Pinus strobus L.), white ash (Fraxinus americana L.), and red oak (Quercus rubra L.), and understory plant diversity were examined in a young red pine (Pinus resinosa Ait.) plantation. Five years after thinning, seedling diameter,...

  1. Impacts on soils and residual trees from cut-to-length thinning operations in California's redwood forests

    Treesearch

    Kyungrok Hwang; Han-sup Han; Susan E. Marshall; Deborah S. Page-Dumroese

    2017-01-01

    Cut-to-length (CTL) harvest systems have recently been introduced for thinning third-growth, young (<25 years old) redwood forests (Sequoia sempervirens (Lamb. ex D. Don) Endl.) in northern California. This type of harvesting can effective for thinning overstocked stands consisting of small-diameter trees. However, forestland managers and government agencies...

  2. Three-dimensional workstation is useful for measuring the correct size of abdominal aortic aneurysm diameters.

    PubMed

    Ihara, Tsutomu; Komori, Kimihiro; Yamamoto, Kiyohito; Kobayashi, Masayoshi; Banno, Hiroshi; Kodama, Akio

    2013-02-01

    Abdominal aortic aneurysm diameter is usually measured by the maximum minor-axis diameter on axial computed tomography (CT). However, this "traditional" diameter may underestimate the real size, as the aorta is not always straight and the aneurysm shape is sometimes in the form of an ellipse along the cross section. Therefore, we measured maximum major-axis diameters using a three-dimensional (3D) workstation and compared them with the traditional maximum minor-axis diameters measured using thin-slice axial CT. CT data of 141 AAA patients (with fusiform aneurysms) were stored in a 3D workstation. These thin-slice CT images were reviewed on the 3D workstation to obtain curved multiplanar reconstruction images (CPR images). Using the CPR images, we measured the maximum major-axis and minor-axis diameters on CPR and the angle of the aneurysms to the body axis. The mean traditional maximum minor-axis diameter was 51.2 ± 8.2 mm, whereas the mean maximum major-axis diameter on CPR was 54.7 ± 10.1 mm. Sixty eight patients had a mean aneurysm size of <50 mm when measured by the traditional minor-axis diameter. Among these patients, five (7.4%) had a major-axis diameter >55 mm on CPR. The measurement of the traditional maximum minor-axis diameter of aneurysms is useful in the case of most patients. However, the traditional maximum minor-axis diameter may underestimate the real aneurysmal diameter, particularly in patients with an ellipse-shaped aneurysm. The maximum major-axis diameter as measured using CPR images is effective for representing the real aneurysmal size. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Tying Extinction Events to Comet Impacts Large Enough to Cause an Extinction in Themselves.

    NASA Astrophysics Data System (ADS)

    Burgener, J. A.

    2017-12-01

    Comets over 35 km in size impacting Earth will create vast fireballs, and will boil large parts of the oceans, causing extinction events in themselves. They will likely provide enough energy to shatter the crust and eject large masses of molten rock from the mantle, forming traps. Traps are clearly associated with extinction events, but are not expected to cause extinctions. While Chicxulub is recognized to have occurred at the time of the K/Pg boundary layer, it is recognized as being too small in itself to cause an extinction. Are large comet impacts likely? The Kuiper belt has more than 100,000 objects over 100 km in diameter and millions over 10 km. Typically their orbits are less stable than asteroid orbits due to large bodies such as Pluto moving through the belt. The asteroid belt has only 10,000 objects over 10 km diameter. Comet impacts should be more common than asteroid impacts, yet none of the recognized craters are expected to be due to comets. There are many features on Earth that are poorly explained by Plate Tectonics that would be well explained if they were considered to be comet impact craters. A consideration of the Black Sea and the Tarim Basin will show that impact interpretations are a better fit than the present Plate Tectonics' explanations. Both basins are in the midst of mountain building from plate collisions, but are themselves not being disturbed by the plate collisions. Both are ellipses angled at 23.4 degrees to the equator, matching the angle expected for a low angle impact from a comet traveling in the ecliptic. Both are too deep at 15 km depths to be standard oceans (typically 5 km deep). Both are filled with horizontal layers of sediments, undisturbed by the mountain building occurring at the edges. Both have thin crusts and high Moho boundaries. Both have thin lithosphere. Yet both show GPS movement of the land around them moving away from them, as though they were much thicker and stronger than the surrounding land. The Tarim Basin is 1000 km X 380 km, and the Black Sea is in two sections each 600 km X 350 km. They would require impactors in the range of 35 - 40 km diameter, hitting at impact angles of 20 - 30 degrees. The fireballs from such impacts would cover nearly half the planet, which would be large enough in themselves to cause extinctions.

  4. Distribution of Large Visible and Buried Impact Basins on Mars: Comparison with Free-Air Gravity, Crustal Thickness and Magnetization Models

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2004-01-01

    A comparison of the distribution of visible and buried impact basins (Quasi-Circular Depressions or QCDs) on Mars > 200 km in diameter with free air gravity, crustal thickness and magnetization models shows some QCDs have coincident gravity anomalies but most do not. Very few QCDs have closely coincident magnetization anomalies, and only the oldest of the very large impact basins have strong magnetic anomalies within their main rings. Crustal thickness data show a large number of Circular Thinned Areas (CTAs). Some of these correspond to known impact basins, while others may represent buried impact basins not always recognized as QCDs in topography data alone. If true, the buried lowlands may be even older than we have previously estimated.

  5. Mapping the universe.

    PubMed

    Geller, M J; Huchra, J P

    1989-11-17

    Maps of the galaxy distribution in the nearby universe reveal large coherent structures. The extent of the largest features is limited only by the size of the survey. Voids with a density typically 20 percent of the mean and with diameters of 5000 km s(-1) are present in every survey large enough to contain them. Many galaxies lie in thin sheet-like structures. The largest sheet detected so far is the "Great Wall" with a minimum extent of 60 h(-1) Mpc x 170 h(-1) Mpc, where h is the Hubble constant in units of 100 km s(-1) Mpc(-1). The frequent occurrence of these structures is one of several serious challenges to our current understanding of the origin and evolution of the large-scale distribution of matter in the universe.

  6. Inflatable antennas for microwave pwoer transmission

    NASA Technical Reports Server (NTRS)

    Williams, Geoff

    1989-01-01

    Operational phase of the inflatable radiator; inflatable space structures; advantages; inflated thin-film satellites; antenna configuration; 3 meter diameter test paraboloid (HAIR program); and weight breakdown for the 100 meter diameter reflector are outlined. This presentation is represented by viewgraphs only.

  7. Diameter-Growth and Epicormic Branching Response of an East Texas Bottomland Red Oak Stand 3 Years After Thinning and Fertilization

    Treesearch

    Alexander J. Michalek; Brian Roy Lockhart; Matthew W. Lowe; Richard A. Williams

    2004-01-01

    To determine the effects of intermediate silvicultural treatments on bottomland hardwoods, two types of thinning (crown thinning and low thinning) and one level of fertilizer (200 pounds per acre N + 50 pounds per acre P) were applied to a predominantly red oak stand in southeastern Texas. Treatments were applied in a 3 by 2 factorial arrangement as a random-ized...

  8. New alloys for electroformed replicated x-ray optics

    NASA Astrophysics Data System (ADS)

    Engelhaupt, Darell E.; Ramsey, Brian D.; O'Dell, Stephen L.; Jones, William D.; Russell, J. Kevin

    2000-11-01

    The process of electroforming nickel x-ray mirror shells from superpolished mandrels has been widely used. The recently launched XMM mission by the European Space Agency (ESA) is an excellent example, containing 174 such mirror shells of diameters ranging from 0.3 - 0.7 meters and with a thickness range of 0.47 - 1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication, handling and launch processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics for the proposed Constellation-X project. Requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have very low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the processing must be done reasonably near room temperature, as large temperature changes will modify the figure of the mandrel. Also the environment must not be corrosive or otherwise damaging to the mandrel during the processing. The results of the development program are presented, showing the evolution of our plating processes and materials through to the present 'glassy' nickel alloy that satisfies the above requirements.

  9. Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films

    DOE PAGES

    MacLeod, Bradley A.; Stanton, Noah J.; Gould, Isaac E.; ...

    2017-09-08

    Lightweight, robust, and flexible single-walled carbon nanotube (SWCNT) materials can be processed inexpensively using solution-based techniques, similar to other organic semiconductors. In contrast to many semiconducting polymers, semiconducting SWCNTs (s-SWCNTs) represent unique one-dimensional organic semiconductors with chemical and physical properties that facilitate equivalent transport of electrons and holes. These factors have driven increasing attention to employing s-SWCNTs for electronic and energy harvesting applications, including thermoelectric (TE) generators. Here we demonstrate a combination of ink chemistry, solid-state polymer removal, and charge-transfer doping strategies that enable unprecedented n-type and p-type TE power factors, in the range of 700 μW m –1 Kmore » –2 at 298 K for the same solution-processed highly enriched thin films containing 100% s-SWCNTs. We also demonstrate that the thermal conductivity appears to decrease with decreasing s-SWCNT diameter, leading to a peak material zT ≈ 0.12 for s-SWCNTs with diameters in the range of 1.0 nm. Here, our results indicate that the TE performance of s-SWCNT-only material systems is approaching that of traditional inorganic semiconductors, paving the way for these materials to be used as the primary components for efficient, all-organic TE generators.« less

  10. Shaped Apertures in Photoresist Films Enhance the Lifetime and Mechanical Stability of Suspended Lipid Bilayers

    PubMed Central

    Kalsi, Sumit; Powl, Andrew M.; Wallace, B.A.; Morgan, Hywel; de Planque, Maurits R.R.

    2014-01-01

    Planar lipid bilayers suspended in apertures provide a controlled environment for ion channel studies. However, short lifetimes and poor mechanical stability of suspended bilayers limit the experimental throughput of bilayer electrophysiology experiments. Although bilayers are more stable in smaller apertures, ion channel incorporation through vesicle fusion with the suspended bilayer becomes increasingly difficult. In an alternative bilayer stabilization approach, we have developed shaped apertures in SU8 photoresist that have tapered sidewalls and a minimum diameter between 60 and 100 μm. Bilayers formed at the thin tip of these shaped apertures, either with the painting or the folding method, display drastically increased lifetimes, typically >20 h, and mechanical stability, being able to withstand extensive perturbation of the buffer solution. Single-channel electrical recordings of the peptide alamethicin and of the proteoliposome-delivered potassium channel KcsA demonstrate channel conductance with low noise, made possible by the small capacitance of the 50 μm thick SU8 septum, which is only thinned around the aperture, and unimpeded proteoliposome fusion, enabled by the large aperture diameter. We anticipate that these shaped apertures with micrometer edge thickness can substantially enhance the throughput of channel characterization by bilayer lipid membrane electrophysiology, especially in combination with automated parallel bilayer platforms. PMID:24739164

  11. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    PubMed

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  12. Girdling eastern black walnut to increase heartwood width

    Treesearch

    Larry D. Godsey; W.D. " Dusty" Walter; H.E. " Gene" Garrett

    2004-01-01

    Eastern black walnut (Juglans nigra L.) has often been planted at spacings that require pre-commercial thinning. These thinnings are deemed pre-commercial due to the small diameter of the trees and the low ratio of dark wood to light wood. As a consequence of size and wood quality, these thinnings are often an expense rather than a source of revenue...

  13. Analysis of harvesting opportunities for thinning eastern hardwoods on steep terrain

    Treesearch

    Chris B. LeDoux; John E. Baumgras

    1988-01-01

    Harvesting cost and revenue models were used to evaluate yarding costs by yarder type and to compare stump-to-mill harvesting costs to revenues available from multiproduct thinnings in eastern hardwoods. This analysis includes six types of cable yarders and thinnings in stands where the average diameter at breast height of trees harvested ranged from 7 to 12 inches. To...

  14. Coast Live Oak Thinning Study in the Central Coast of California

    Treesearch

    Norman H. Pillsbury; Michael J. DeLasaux; Timothy R. Plumb

    1987-01-01

    Abstract: Along-term thinning study was established in ten stands of coast live oak (Quercus agrifolia N in the Central Coast of California. Information about diameter, basal area, and volume growth and yield is being obtained from unthinned control plots and from plots thinned to 50 and 100 square feet of basal area per acre. Descriptive information was also collected...

  15. First-year growth and quality response of residual ahrdwood poletimber trees following thinning in an even-aged sawtimber stand

    Treesearch

    Daniel A. Jr. Skojac; Andrew W. Ezell; James S. Meadows; John D. Hodges

    2007-01-01

    First-year diameter growth and epicormic branching responses of hardwood poletimber trees retained following thinning- in a sawtimber stand are reported. Poletimber trees were classified as either superior or inferior poletimber, and then retained on separate plots receiving identical thinning treatments. Comparison of responses by the two classes of poletimber was...

  16. Profitability of precommercially thinning oak stump sprouts

    Treesearch

    John P. Dwyer; Daniel C. Dey; William B. Kurtz

    1993-01-01

    Thinning oak stump sprouts to a single stem at an early age will increase diameter growth of the released stem. However, precommercial thinning represents a substantial investment which must be carried for many years before any returns are realized. We estimated the incremental gains in yield and the present net worth for five crop-tree release treatments of 5-year-old...

  17. Profitability of Precommericially Thinning Oak Stump Sprouts

    Treesearch

    John P. Dwyer; Daniel C. Dey; William B. Kurtz

    1993-01-01

    Thinning oak stump sprouts to a single stem at an early age will increase diameter growth of the released stem. However, percommercial thinning represents a substantial investment which must be carried for many years before any returns are realized. We estimated the incremental gains in yield and the present net worth for five crop-tree release treatments of 5-yr-old...

  18. Using a Density-Management Diagram to Develop Thinning Schedules for Loblolly Pine Plantations

    Treesearch

    Thomas J. Dean; V. Clark Baldwin

    1993-01-01

    A method for developing thinning schedules using a density-management diagram is presented. A density-management diagram is a form of stocking chart based on patterns of natural stand development. The diagram allows rotation diameter and the upper and lower limits of growing stock to be easily transformed into before and after thinning densities. Site height lines on...

  19. Woody debris as a component of ecological diversity in thinned and unthinned northern hardwood forests

    Treesearch

    Christine E. Hura; Thomas R. Crow

    2004-01-01

    We examined the effects of management on coarse woody debris, both standing and downed, in thinned and unthinned northern hardwood forests in upper Michigan. The unthinned conditions included old growth and second growth, while the thinned conditions included both even- and uneven-aged management. The structural features analyzed were stem diameter, density, basal area...

  20. Thinning cherry-maple stands in West Virginia: 5-year results

    Treesearch

    Neil I. Lamson; H. Clay. Smith; H. Clay. Smith

    1988-01-01

    In northern West Virginia, 60-year-old cherry-maple stands were thinned to 75,60, and 45 percent relative stand density. Analysis of 5-year growth data showed that basal-area growth was not reduced by thinning. Cubic-foot and board-foot volume growth decreased slightly. Individual-tree growth of all trees, dominant/codominant trees, and the 50 largest diameter trees...

  1. Spiral crack patterns observed for melt-grown spherulites of poly(L-lactic acid) upon quenching.

    PubMed

    Matsuda, Futoshi; Sobajima, Takamasa; Irie, Satoshi; Sasaki, Takashi

    2016-04-01

    In this paper, we demonstrate the characteristic spiral cracking that appears on the surface of melt-grown poly(L-lactic acid) (PLLA) spherulites with relatively large sizes (greater than 0.4mm in diameter). The crack occurs via thermal shrinkage upon quenching after crystallization. Although concentric cracks on polymer spherulites have been found to occur in quite a few studies, spiral crack patterns have never been reported so far. The present spiral crack was observed for thick spherulites (> 10 μm), whereas the concentric crack pattern was frequently observed for thin spherulites (typically 5 μm). The present PLLA spherulites exhibited a non-banded structure with no apparent structural periodicity at least on the scale of the spiral pitch, and thus no direct correlation between the crack pattern and the spherulitic structure was suggested. The spiral was revealed to be largely Archimedean of which the spiral pitch increases with an increase in the thickness of the spherulite. This may be interpreted in terms of a classical mechanical model for a thin layer with no delamination from the substrate.

  2. Novel fabrication method for 3D microstructures using surface-activated bonding and its application to micro-mechanical parts

    NASA Astrophysics Data System (ADS)

    Yamada, Takayuki; Takahashi, Mutsuya; Ozawa, Takashi; Tawara, Satoshi; Goto, Takayuki

    2002-11-01

    The purpose of this work is to demonstrate that a novel fabrication method for 3-D microstructures (FORMULA) is applicable to fabrication of micro mechanical parts with a large flexibility. This method is a kind of layer manufacturing method of thin films for metallic or dielectric microstructures using surface-activated bonding (SAB). The bonding interfaces of thin films are investigated by transmission electron microscope (TEM). Voids were observed at the interfaces of both pure aluminum films and Al-Cu alloy films. The ratio of void on the Al-Cu/Al-Cu interface is much larger than that of Al/Al interface, although the films have the same surface roughness of 3nm in Ra (average roughness). And approximately 10nm-thick amorphous intermediate layers were found at the interfaces. Furthermore, we have fabricated a micro gear of 900μm in diameter and 200μm in height, which is about ten times as large as our previous test pieces. Overhung structures such as a bridge structure and a cantilever were also fabricated without supporting layers beneath them.

  3. Composition and diameter modulation of magnetic nanowire arrays fabricated by a novel approach

    NASA Astrophysics Data System (ADS)

    Shaker Salem, Mohamed; Tejo, Felipe; Zierold, Robert; Sergelius, Philip; Montero Moreno, Josep M.; Goerlitz, Detlef; Nielsch, Kornelius; Escrig, Juan

    2018-02-01

    Straight magnetic nanowires composed of nickel and permalloy segments having different diameters are synthesized using a promising approach. This approach involves the controlled electrodeposition of each magnetic material into specially designed diameter-modulated porous alumina templates. Standard alumina templates are exposed to pore widening followed by a protective coating of the pore wall with ultrathin silica and further anodization. Micromagnetic simulations are employed to investigate the process of magnetization reversal in the fabricated nanowires when the magnetic materials exchange their places in the thick and thin segments. It is found that the magnetization reversal occurs by the propagation of transverse domain wall (DW) when the thick segment is composed of permalloy. However, the reversal process proceeds by the propagation of vortex DW when permalloy is located at the thin segment.

  4. Multi-photon vertical cross-sectional imaging with a dynamically-balanced thin-film PZT z-axis microactuator.

    PubMed

    Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R

    2017-10-01

    Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.

  5. Transient Temperature Analysis in a System of Thin Shells Combined with Convective and Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Prasad, Ravindra; Samria, N. K.

    1989-01-01

    The problem considered has applications in the transient thermal analysis and time for attaining the steady state of the cylinder wall and cylinder head of an air-cooled internal-combustion engine. Numerical calculations based on finite difference approximations are carried out to assess the thermal response in a system of thin cylindrical and spherical shells having hot gases inside with convective boundary conditions. The outside surface is exposed to cooling medium where it looses heat by natural convection and radiation. As a special case, when radius is large, the surface may be considered to be a plane wall. The cylinder cover and cylinder wall of an internal-combustion engine are considered to be a plane wall for a comparatively higher ratio of cylinder diameter to the thickness of the wall, i.e., whend/δ varies from 80 to 100. A plot of temperature-time history and heat flow rates have been obtained.

  6. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands

    NASA Astrophysics Data System (ADS)

    Park, J.; Kim, T.; Cho, S.; Ryu, D.; Moon, M.; Kim, H. S.

    2015-12-01

    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for three years. Forest thinning, which remove some fraction of trees from stand, alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related tree growth. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning, and Heavy-thinning). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites.The climatic conditions showed remarkable differences among three years. In 2012, total precipitation was highest but spring was dry. 2013 was normal year with frequent rain events. In contrast, 2014 was hot and extremely dry. Stand transpiration was initially decreased ca. 20% and 42% on light-thinning and heavy-thinning stand, respectively. In second year, it gradually recovered in both thinning intensities, and was 19% and 37% lower on light-thinning and heavy-thinning stand, respectively. However, the recovery trends were different between two thinning intensities. Transpiration of heavy-thinning stand was recovered slowly than that of light thinning stand. In 2014, heavy-thinning stand transpired ca. 5% more than control plot in early growing season, but severe drought had negative effects that caused reduction of stand transpiration in thinned stand on late growing season. The tree-level productivity was increased initially ca. 24% and 28% on light-thinning and heavy-thinning stand, respectively. During the following growing seasons, this thinning-induced enhancement of productivity was diminished in light-thinning stand (21% in 2013 and 20% in 2014), but was increased in heavy-thinning stand (49% in 2013 and 56% in 2014). In addition, the relationship between tree diameter and relative growth rate showed opposite trends between heavy thinning and light thinning stands. These results indicate that there are differences in biological reactions with thinning intensities.

  7. Thinning from below in a 60-year-old western white pine stand

    Treesearch

    Marvin W. Foiles

    1955-01-01

    Thirty-year results from a test of thinning a 60-year-old western white pine stand indicate that thinning does not appreciably change total volume growth, but it does improve the quality of the final product by increasing diameter growth and improving stand composition. This test was established in 1919 on the Priest River Experimental Forest, Idaho, to test three...

  8. Growth and yield of western larch in response to several density levels and two thinning methods: 15-year results.

    Treesearch

    K.W. Seidel

    1986-01-01

    The 15-year growth response from a levels-of-growing-stock study in an even-aged western larch (Larix occidentalis Nutt.) stand, first thinned from above and below at age 55, was measured in northeastern Oregon. Basal area and volume growth increased with stand density for both thinning methods, whereas diameter growth decreased. Attacks of the...

  9. Cost of thinning 50-year-old Douglas-fir for pulpwood at Voight Creek Experimental Forest.

    Treesearch

    Norman P. Worthington

    1961-01-01

    Analyses of time and cost data gathered on the Voight Creek Experimental Forest from six thinnings in a 50-year-old stand of Douglas-fir showed that average skidding distance and diameter of average tree cut were the chief factors affecting the production time in thinning these pulpwood stands. Cut per acre had negligible influence. Contractors' production...

  10. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  11. The root economics spectrum: divergence of absorptive root strategies with root diameter

    NASA Astrophysics Data System (ADS)

    Kong, D.; Wang, J.; Kardol, P.; Wu, H.; Zeng, H.; Deng, X.; Deng, Y.

    2015-08-01

    Plant roots usually vary along a dominant ecological axis, the root economics spectrum (RES), depicting a tradeoff between resource acquisition and conservation. For absorptive roots, which are mainly responsible for resource acquisition, we hypothesized that root strategies as predicted from the RES shift with increasing root diameter. To test this hypothesis, we used seven contrasting plant species for which we separated absorptive roots into two categories: thin roots (< 247 μm diameter) and thick roots. For each category, we analyzed a~range of root traits closely related to resource acquisition and conservation, including root tissue density, carbon (C) and nitrogen (N) fractions as well as root anatomical traits. The results showed that trait relationships for thin absorptive roots followed the expectations from the RES while no clear trait relationships were found in support of the RES for thick absorptive roots. Our results suggest divergence of absorptive root strategies in relation to root diameter, which runs against a single economics spectrum for absorptive roots.

  12. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products.

    PubMed

    Wang, Yifei; Ma, Jing; Zhu, Jiaxin; Ye, Ning; Zhang, Xiaolei; Huang, Haiou

    2016-04-01

    In this study, multi-walled carbon nanotubes (MWCNT) with selected properties, including pristine MWCNT, hydroxylated MWCNT (H-MWCNT), thin-walled MWCNT with large inner diameter (L-MWCNT), aminated MWCNT, and high-purity MWCNT were investigated for dynamic removal of eight pharmaceuticals and personal care products (PPCP). The removal ratios of different PPCP by the pristine MWCNT followed a decreasing order of triclosan (0.93) > prometryn (0.71) > 4-acetylamino-antipyrine (0.67) > carbendazim (0.65) > caffeine (0.42) > ibuprofen (0.34) > acetaminophen (0.29) at 100 min of filtration. Similar or even higher PPCP removals were obtained for all PPCP as the influent concentration decreased, suggesting potential consistent PPCP removals at environmental PPCP concentrations. The removal ratio of acetaminophen was increased to 0.74 by using H-MWCNT. SRFA (Suwannee River fulvic acid) suppressed PPCP adsorption to MWCNT, to greater extents with increasing SRFA concentrations. The L-MWCNT, despite a large inner diameter of 52 ± 3 nm, did not provide better resistance to the competitive adsorption of SRFA than MWCNT with a small inner diameter of 10 ± 2 nm. Future research will be conducted to minimize the effect of SRFA and facilitate application of MWCNT to the treatment of PPCP-contaminated water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Numerical analyses of planer plasmonic focusing lens

    NASA Astrophysics Data System (ADS)

    Chou, Yen-Yu; Lee, Yeeu-Chang

    2018-03-01

    The use of polystyrene (PS) sphere lithography has been widely applied in the fabrication of micron and nano structures, due to their low cost and ease of fabrication in large scale applications. This study evaluated the feasibility of plasmonic lens base on metal thin films with nanohole structures fabricated by using PS sphere lithography through three-dimensional (3D) finite difference time domain (FDTD) method. We calculated the intensity profile of lens with various wavelength of incident light, lens size, cutting positions, diameters of nanohole, and periods of nanohole to investigate the geometric parameters influence on the focusing properties of the plasmonic lens.

  14. Conductivity based on selective etch for GaN devices and applications thereof

    DOEpatents

    Zhang, Yu; Sun, Qian; Han, Jung

    2015-12-08

    This invention relates to methods of generating NP gallium nitride (GaN) across large areas (>1 cm.sup.2) with controlled pore diameters, pore density, and porosity. Also disclosed are methods of generating novel optoelectronic devices based on porous GaN. Additionally a layer transfer scheme to separate and create free-standing crystalline GaN thin layers is disclosed that enables a new device manufacturing paradigm involving substrate recycling. Other disclosed embodiments of this invention relate to fabrication of GaN based nanocrystals and the use of NP GaN electrodes for electrolysis, water splitting, or photosynthetic process applications.

  15. Ten-year growth of planted slash pine after thinnings

    Treesearch

    Hans G. Enghardt; W.F. Mann

    1972-01-01

    volume growth of slash pine between ages 17 and 27 years was directly related to residual basal area per acre after thinning. Diameter growth was inversely related to stand density, and very heavy cutting was required to attain a rate of 3 inches in 10 years.

  16. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties

    NASA Astrophysics Data System (ADS)

    Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol

    2014-07-01

    Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.

  17. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    NASA Astrophysics Data System (ADS)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over anions with selectivity ratios of 100 or higher for pores as large as 20 nm in diameter, suggesting that porous graphene membranes can be used to create highly effective cation exchange membranes for electrodialysis filtration. These surprisingly high selectivities cannot be explained by current models of ionic conduction in graphene nanopores, motivating the development of a new model in which elevated concentrations of mobile cations near the graphene surface generate additional ion selectivity.

  18. Influence of thinning style on stand structure and growth in upland oaks: a 58-year case study

    Treesearch

    Jeffery S. Ward

    2003-01-01

    In 1937, a study comparing low and high thinning (partial crop tree release) was established in northwestern Connecticut. Oaks accounted for 65 percent of the crop trees that were partially released at stand ages 17, 26, and 42 years. Sawtimber trees had greater diameters, higher volumes, and higher tree grades on thinned than unmanaged plots. The higher oak density on...

  19. Commercial thinning in small-diameter aspen stands in northern Minnesota: study establishment report

    Treesearch

    Daniel W. Gilmore; Jennifer D. Glenn; Michael E. Ostry; John C. Zasada; Michael A. Benedict

    2006-01-01

    In the spring of 1999, a long-term study was established to examine the physical and biological aspects of thinning young aspen stands in Minnesota. Three aspen stands ranging in age from 25 to 35 years were selected on lands owned by the State of Minnesota and UPM Kymmene. Two thinning treatments (low and high density) and an unthinned control were installed at each...

  20. Method of sealing

    DOEpatents

    Groh, Edward F.; Cassidy, Dale A.

    1978-01-01

    A thermocouple lead or other small diameter wire, cable or tube is passed through a thin material such as sheet metal and sealed thereinto by drawing complementary longitudinally angled, laterally rounded grooves terminating at their base ends in a common plane in both sides of the thin material with shearing occuring at the deep end faces thereof to form a rounded opening in the thin material substantially perpendicular to the plane of the thin material, passing a thermocouple lead or similar object through the opening so formed and sealing the opening with a sealant which simultaneously bonds the lead to the thin material.

  1. Restoring southern Ontario forests by managing succession in conifer plantations

    Treesearch

    William C. Parker; Ken A. Elliott; Daniel C. Dey; Eric Boysen

    2008-01-01

    Thinning and underplanting of conifer plantations to promote natural succession in southern Ontario's forests for restoration purposes was examined in a young red pine (Pinus resinosa Ait.) plantation. Eleven years after application of five thinning treatments, seedling diameter, height, and stem volume of planted white ash (Fraxinus...

  2. The Effect of Sunlight in Parenchyma Pith Cells Diameter of Manihot esculenta

    NASA Astrophysics Data System (ADS)

    Susanti, D.; Aziz, D. N.; Astuti, W.; Nuraeni, E.

    2017-03-01

    Sunlight is one of the factors that effect on the grow of a plant. Manihot esculenta is one of the plants that easily found in Indonesia because its role as staple food. The aim of this research is to know the correlation between sunlight the grow of parenchyma pith cells diameter of Manihot esculenta. Independent variable in this research is sunlight, and dependent variable is the parenchyma pith cells diameter of Manihot esculenta. Data was collected is in qualitative and quantitative form. Qualitative data gotten gained by morphology observation. The parenchyma pith cells of Manihot esculenta that is affected by sunlight in 1310 x 10 Lux, morphologically has hexagon, cell walls thick, solid state, and regular composition. Meanwhile, the parenchyma pith cells that has less sunlight (363 x 10 Lux) has a hexagon shape, thin cell walls thin, soft state, and irregular composition. Qualitative data suported by quantitative data. The size of parenchyma pith cells diameter that is affected by sunlight in 1310 x 10 Lux 96,4 µm. While, the stem parenchyma pith cells diameter empulur that has less sunlight (363 x 10 Lux) is 129,8 µm.

  3. The Formation and Erosion History of Mt. Sharp

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Dapremont, Angela M.

    2014-01-01

    The Curiosity rover is exploring 155 km diameter Gale crater and Mt. Sharp, Gale's 5 km high central mound (Fig. 1). This study addresses the formation and erosion history of Mt. Sharp. Gale lies on the topographic dichotomy between the southern highlands and the northern plains - a drop of over 2 km [1,2]. Altitude differences between the north and south rim reflect this regional slope, as do altitude differences between the deep annulus north of Mt. Sharp and the southern crater floor. Orbiter and rover images demonstrate that most exposed areas on Mt. Sharp consist of thin, sub-parallel units interpreted as sedimentary layers [3]. Gale is typical of the 50 large martian craters that have been totally or partially filled with such layers [4,5]. In many craters these sediments have been deeply eroded. Central Peak and Peak Ring: The highest point on Mt. Sharp, near the crater's center, is interpreted as a central peak [6]. The peak has a massive lower portion and a thin, smooth capping deposit (Fig. 2). Gale's size is transitional between martian craters with single central peaks and craters with peak rings approximately half the crater's diameter [2,6]. The boundaries of Mt. Sharp, as well as an arc of hills to the southeast of the mountain, closely match a circle approximately 80 km in diameter (Fig. 3). This morphology suggests that the Gale impact may have formed both a central peak and a partial peak ring, which is covered by the sediments of Mt. Sharp in the north and possibly exposed in the arc of eroded hills in the southeast quadrant (Figs. 3,4).

  4. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength.

    PubMed

    Nandigam, R N K; Viswanathan, A; Delgado, P; Skehan, M E; Smith, E E; Rosand, J; Greenberg, S M; Dickerson, B C

    2009-02-01

    The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2-1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71-1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB.

  5. MR Imaging Detection of Cerebral Microbleeds: Effect of Susceptibility-Weighted Imaging, Section Thickness, and Field Strength

    PubMed Central

    Nandigam, R.N.K.; Viswanathan, A.; Delgado, P.; Skehan, M.E.; Smith, E.E.; Rosand, J.; Greenberg, S.M.; Dickerson, B.C.

    2009-01-01

    BACKGROUND AND PURPOSE: The emergence of cerebral microbleeds (CMB) as common MR imaging findings raises the question of how MR imaging parameters influence CMB detection. To evaluate the effects of modified gradient recalled-echo (GRE) MR imaging methods, we performed an analysis of sequence, section thickness, and field strength on CMB imaging properties and detection in subjects with cerebral amyloid angiopathy (CAA), a condition associated with microhemorrhage. MATERIALS AND METHODS: Multiple MR images were obtained from subjects with probable CAA, with varying sequences (GRE versus susceptibility-weighted imaging [SWI]), section thicknesses (1.2–1.5 versus 5 mm), and magnetic field strengths (1.5T versus 3T). Individual CMB were manually identified and analyzed for contrast index (lesion intensity normalized to normal-appearing white matter signal intensity) and diameter. CMB counts were compared between 1.5T thick-section GRE and thin-section SWI for 3 subjects who underwent both protocols in the same scanning session. RESULTS: With other parameters constant, use of SWI, thinner sections, and a higher field strength yielded medium-to-large gains in CMB contrast index (CI; Cohen d 0.71–1.87). SWI was also associated with small increases in CMB diameter (Cohen d <0.3). Conventional thick-section GRE identified only 33% of CMB (103 of 310) seen on thin-section SWI. Lesions prospectively identified on GRE had significantly greater CI and diameter measured on the GRE image than those not prospectively identified. CONCLUSIONS: The examined alternatives to conventional GRE MR imaging yield substantially improved CMB contrast and sensitivity for detection. Future studies based on these techniques will most likely yield even higher prevalence estimates for CMB. PMID:19001544

  6. Influence of Y doping concentration on the properties of nanostructured MxZn1-xO (M=Y) thin film deposited by nebulizer spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Mariappan, R.; Ponnuswamy, V.; Chandra Bose, A.; Suresh, R.; Ragavendar, M.

    2014-09-01

    Yttrium doped Zinc Oxide (YxZn1-xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1-xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C.

  7. Method and apparatus for adjustably induced biaxial strain

    DOEpatents

    Vestel, Michael J.; Oshatz, Daryl Patrick

    2006-05-16

    An apparatus comprising a shape memory alloy is configured as a ring shaped sample holder for a transmission electron microscope and imparts uniform biaxial strain on a thin film mounted within. The sample holder responds to a change in temperature by changing the inner diameter, which imparts biaxial strain. In other embodiments, the sample holder is configured to change the inner diameter and change the strain on a thin film reversibly and repeatedly. In further embodiments, the sample holder is non circular. In still further embodiments, the apparatus is configured as a prime mover of a reversible radial actuator. Methods for making and using the apparatus are included in other embodiments.

  8. Micromirror with large-tilting angle using Fe-based metallic glass.

    PubMed

    Lee, Jae-Wung; Lin, Yu-Ching; Kaushik, Neelam; Sharma, Parmanand; Makino, Akihiro; Inoue, Akihisa; Esashi, Masayoshi; Gessner, Thomas

    2011-09-01

    For enhancing the micromirror properties like tilting angle and stability during actuation, Fe-based metallic glass (MG) was applied for torsion bar material. A micromirror with mirror-plate diameter of 900 μm and torsion bar dimensions length 250 μm, width 30 μm and thickness 2.5 μm was chosen for the tilting angle tests, which were performed by permanent magnets and electromagnet setup. An extremely large tilting angle of over -270° was obtained from an activation test by permanent magnet that has approximately 0.2 T of magnetic strength. A large mechanical tilting angle of over -70° was obtained by applying approximately 1.1 mT to the mirror when 93 mAwas applied to solenoid setup. The large-tilting angle of the micromirror is due to the torsion bar, which was fabricated with Fe-based MG thin film that has large elastic strain limit, fracture toughness, and excellent magnetic property.

  9. Transgressive reef sequences of the Devonian Devils Gate Limestone, Red Hill, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, R.; Dehler, C.; Flynn, J.

    The Devils Gate Limestone at Red Hill, Simpson Park Range, Eureka Co., Nevada is composed of several conformable transgressive sequences cropping out in a series of step-like cliffs 1--5 m high. The general sequence is as follows: (1) a 1--4 m thick in situ boundstone dominated by large, period rugosans, domical and stratiform stromatoporids and rare, 1--3 cm diameter oncolites. Most of the boundstone is composed of small, cylindrical fossils. Petrographic observation revealed them to be mostly Amphipora and Cladopora. The upper portions of these units are packstones composed of Amphipora/Cladopora and, to a lesser degree, small favositids, round stromatoporoidsmore » (3--4 cm diameter), and rip-up clasts. (2) These beds grade upward into a thinly laminated and/or cross-bedded unfossiliferous mudstone. (3) Stratigraphically above the mudstone or in contact with the packstone, is a cross-bedded and/or bioturbated wackestone containing fossils no greater than 2 mm. In thin section, the mottled reddish-grey wackestone is pelletal, with rare lenses of small crinoid columnals. Disarticulated brachiopod shells of low diversity are found near the tops of some of these layers. Community dominance in the reefal units alternates between Amphipora/Cladopora, colonial rugose, and stromatoporoids. Oncolite mounds are common in the uppermost unit. The typical reef succession consists of domical and digitate stromatoporoids growing on the upper surfaces of in place or disturbed, large rugosans, though the reverse has been noted. Tabulate corals encrusted by stromatoporoids are often found in the packstone. It is important to note that often these successions' can be attributed to juxtaposition along styolites.« less

  10. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED)

    NASA Astrophysics Data System (ADS)

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10-3 A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 104 and output current up to 3.5 × 10-4 A at Vscan = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04870e

  11. Containerless crystallization of silicon

    NASA Astrophysics Data System (ADS)

    Kuribayashi, K.; Aoyama, T.

    2002-04-01

    Crystallization from undercooled melt of silicon was carried out by means of electro-magnetic levitation method under controlled undercooling. The measured growth rate vs. undercooling was categorized into three regions, I, II and III, respectively, from the point of the interface morphology. Thin plate crystals whose interface consisted of both faceted (1 1 1) plane and wavy edge plane like saw-tooth were observed in the region I where the undercooling is less than 100 K. The growth rate of the wavy edge plane was well described by the dendrite growth model. The morphology of growing crystals was abruptly changed to faceted dendrite in the region II, though there was no abrupt change in the growth rate. Seeding at temperatures in the region I changes the drop to a mono-crystalline sphere, if the growth rate along the normal direction of the thin plate crystal is controlled by step-wise growth on the faceted plane. Actually, the sample of 5 mm in diameter seeded at undercooling of 26 K was a quasi-single crystal with large grain, except for a small area where twinning and cracking are observed. The result suggests that the single crystal could be grown, if a smaller sample, 1 or 2 mm in diameter, that is difficult to be levitated by electro-magnetic force were processed with other methods such as free fall in a drop tube.

  12. Heat flow study of the Emeishan large igneous province region: Implications for the geodynamics of the Emeishan mantle plume

    NASA Astrophysics Data System (ADS)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2018-01-01

    The Emeishan large igneous province (ELIP) is widely considered to be a consequence of a mantle plume. The supporting evidence includes rapid emplacement, voluminous flood basalt eruptions, and high mantle potential temperature estimates. Several studies have suggested that there was surface uplift prior to the eruption of the Emeishan flood basalts. Additionally, the plume's lateral extent is hard to constrain and has been variously estimated to be 800-1400 km in diameter. In this study, we analyzed present-day heat flow data and reconstructed the Permian paleo-heat flow using vitrinite reflectance and zircon (U-Th)/He thermochronology data in the ELIP region and discussed implications for the geodynamics of the Emeishan mantle plume. The present-day heat flow is higher in the inner and intermediate zones than in the outer zone, with a decrease of average heat flow from 76 mW/m2 to 51 mW/m2. Thermal history modeling results show that an abnormal high paleo-heat flow of 90-110 mW/m2 was caused by the Emeishan mantle plume activity. Based on the present-day heat flow data, we can calculate that there is lithospheric thinning in the central ELIP region, which may be due to the destruction of the lithosphere by mantle plume upwelling and magmatic underplating. The Permian paleo-heat flow anomaly implies that there was a temperature anomaly in the mantle. The ascending high-temperature mantle plume and the thinned lithosphere may have induced the large-scale uplift in the ELIP region. According to the range of the surface heat flow anomaly, it can be estimated that the diameter of the flattened head of the Emeishan mantle plume could have reached 1600-1800 km. Our research provides new insights into the geodynamics of the Emeishan mantle plume through study of heat flow.

  13. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, F.; Hoard, R.W.

    1994-05-10

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

  14. High-field magnets using high-critical-temperature superconducting thin films

    DOEpatents

    Mitlitsky, Fred; Hoard, Ronald W.

    1994-01-01

    High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

  15. Definition of the Spatial Resolution of X-Ray Microanalysis in Thin Foils

    NASA Technical Reports Server (NTRS)

    Williams, D. B.; Michael, J. R.; Goldstein, J. I.; Romig, A. D., Jr.

    1992-01-01

    The spatial resolution of X-ray microanalysis in thin foils is defined in terms of the incident electron beam diameter and the average beam broadening. The beam diameter is defined as the full width tenth maximum of a Gaussian intensity distribution. The spatial resolution is calculated by a convolution of the beam diameter and the average beam broadening. This definition of the spatial resolution can be related simply to experimental measurements of composition profiles across interphase interfaces. Monte Carlo calculations using a high-speed parallel supercomputer show good agreement with this definition of the spatial resolution and calculations based on this definition. The agreement is good over a range of specimen thicknesses and atomic number, but is poor when excessive beam tailing distorts the assumed Gaussian electron intensity distributions. Beam tailing occurs in low-Z materials because of fast secondary electrons and in high-Z materials because of plural scattering.

  16. Self-assembled Co-BaZrO 3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars

    DOE PAGES

    Huang, Jijie; Li, Leigang; Lu, Ping; ...

    2017-05-11

    A simple one-step pulsed laser deposition (PLD) method has been applied to grow self-assembled metal-oxide nanocomposite thin films. The as-deposited Co-BaZrO 3 films show high epitaxial quality with ultra-fine vertically aligned Co nanopillars (diameter <5 nm) embeded in BZO matrix. The diameter of the nanopillars can be further tuned by varying the deposition frequency. The metal and oxide phases grow separately without inter-diffusion or mixing. Taking advantage of this unique structure, a high saturation magnetization of ~1375 emu/cm 3 in the Co- BaZrO 3 nanocomposites has been achieved and further confirmed by Lorentz microscopy imaging in TEM. Furthermore, the coercivitymore » values of this nanocomposite thin films range from 600 Oe (20 Hz) to 1020 Oe (2 Hz), which makes the nanocomposite an ideal candidate for high-density perpendicular recording media.« less

  17. Sound absorption enhancement of nonwoven felt by using coupled membrane - sonic crystal inclusion

    NASA Astrophysics Data System (ADS)

    Fitriani, M. C.; Yahya, I.; Harjana; Ubaidillah; Aditya, F.; Siregar, Y.; Moeliono, M.; Sulaksono, S.

    2016-11-01

    The experimental results from laboratory test on the sound absorption performance of nonwoven felt with an array thin tubes and sonic crystal inclusions reported in this paper. The nonwoven felt sample was produced by a local company with 15 mm in its thickness and 900 gsm. The 6.4 mm diameter plastic straw was used to construct the thin tubes array while the sonic crystal is arranged in a 4 × 4 lattice crystal formation. It made from a PVC cylinder with 17 mm and 50 mm in diameter and length respectively. All cylinders have two holes positioned on 10 mm and 25 mm from the base. The results show that both treatments, array of thin tube and sonic crystal inclusions are effectively increased the sound absorption coefficient of the nonwoven felt significantly especially in the low frequency range starting from 200Hz.

  18. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties

    PubMed Central

    2014-01-01

    Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 105 S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value. PMID:25024690

  19. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: electrical and optical properties.

    PubMed

    Chang, Min-Hwa; Cho, Hyun-Ah; Kim, Youn-Soo; Lee, Eun-Jong; Kim, Jin-Yeol

    2014-01-01

    Thin and long silver nanowires were successfully synthesized using the polyvinylpyrrolidone (PVP)-assisted polyol method in the presence of ionic liquids, tetrapropylammonium chloride and tetrapropylammonium bromide, which served as soft template salts. The first step involved the formation of Ag nanoparticles with a diameter of 40 to 50 nm through the reduction of silver nitrate. At the growing stage, the Ag nanoparticles were converted into thin and long one-dimensional wires, with uniform diameters of 30 ± 3 nm and lengths of up to 50 μm. These Ag nanowires showed an electrical conductivity of 0.3 × 10(5) S/cm, while the sheet resistance of a two-dimensional percolating Ag nanowire network exhibited a value of 20 Ω/sq with an optical transmittance of 93% and a low haze value.

  20. Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications.

    PubMed

    Lin, Chenxi; Povinelli, Michelle L

    2009-10-26

    In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.

  1. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  2. Sorting of large-diameter semiconducting carbon nanotube and printed flexible driving circuit for organic light emitting diode (OLED).

    PubMed

    Xu, Wenya; Zhao, Jianwen; Qian, Long; Han, Xianying; Wu, Liangzhuan; Wu, Weichen; Song, Minshun; Zhou, Lu; Su, Wenming; Wang, Chao; Nie, Shuhong; Cui, Zheng

    2014-01-01

    A novel approach was developed to sort a large-diameter semiconducting single-walled carbon nanotube (sc-SWCNT) based on copolyfluorene derivative with high yield. High purity sc-SWCNTs inks were obtained by wrapping arc-discharge SWCNTs with poly[2,7-(9,9-dioctylfluorene)-alt-4,7-bis(thiophen-2-yl)benzo-2,1,3-thiadiazole] (PFO-DBT) aided by sonication and centrifugation in tetrahydrofuran (THF). The sorted sc-SWCNT inks and nanosilver inks were used to print top-gated thin-film transistors (TFTs) on flexible substrates with an aerosol jet printer. The printed TFTs demonstrated low operating voltage, small hysteresis, high on-state current (up to 10(-3) A), high mobility and on-off ratio. An organic light emitting diode (OLED) driving circuit was constructed based on the printed TFTs, which exhibited high on-off ratio up to 10(4) and output current up to 3.5 × 10(-4) A at V(scan) = -4.5 V and Vdd = 0.8 V. A single OLED was switched on with the driving circuit, showing the potential as backplanes for active matrix OLED applications.

  3. Diameter-density relationships provide tentative spacing guidelines for Eucalyptus saligna in Hawaii

    Treesearch

    Dean S. DeBell; Craig D. Whitesell

    1988-01-01

    Trials have been established in Hawaii to develop spacing guidelines for Eucalyptus saligna plantations. Substantial competition-related mortality occurred in densely planted plots of three spacing trials. Data on stand diameter and surviving number of trees on these plots were plotted in logarithmic form to estimate a "self-thinning" or...

  4. Optimal stocking of species by diameter class for even-aged mid-to-late rotation Appalachian hardwoods

    Treesearch

    Joseph B. Roise; Joosang Chung; Chris B. LeDoux

    1988-01-01

    Nonlinear programming (NP) is applied to the problem of finding optimal thinning and harvest regimes simultaneously with species mix and diameter class distribution. Optimal results for given cases are reported. Results of the NP optimization are compared with prescriptions developed by Appalachian hardwood silviculturists.

  5. Oak Growth and Response to Thinning

    Treesearch

    Stephen R. Shifley

    2004-01-01

    Oak growth and yield is simultaneously influenced by tree-, stand-, and landscape-scale factors. At the tree scale oak diameter growth varies by tree species (typically n. red oak >= scarlet oak > black oak > white oak > chestnut oak > chinkapin oak > post oak), but oak diameter growth is even more strongly influenced by crown class. Oak stands go...

  6. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO 3 thin films with T c enhanced to >300 °C

    DOE PAGES

    Sangle, Abhijeet L.; Lee, Oon Jew; Kursumovic, Ahmed; ...

    2018-02-05

    We report on nanoengineered SrTiO 3–Sm2O 3 nanocomposite thin films with the highest reported values of commutation quality factor (CQF or K-factor) of >2800 in SrTiO 3 at room temperature. The films also had a large tunability of dielectric constant (49%), low tangent loss (tan δ = 0.01) and a Curie temperature for SrTiO 3 > 300 °C, making them very attractive for tunable RF applications. The enhanced properties originate from the unique nanostructure in the films, with <20 nm diameter strain-controlling Sm 2O 3 nanocolumns embedded in a SrTiO 3 matrix. Very large out-of-plane strains (up to 2.6%) andmore » high tetragonality (c/a) (up to 1.013) were induced in the SrTiO 3. Finally, the K-factor was further enhanced by adding 1 at% Sc 3+ (acceptor) dopant in SrTiO 3 to a value of 3300 with the tangent loss being ≤0.01 up to 1000 kV cm -1.« less

  7. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO 3 thin films with T c enhanced to >300 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sangle, Abhijeet L.; Lee, Oon Jew; Kursumovic, Ahmed

    We report on nanoengineered SrTiO 3–Sm2O 3 nanocomposite thin films with the highest reported values of commutation quality factor (CQF or K-factor) of >2800 in SrTiO 3 at room temperature. The films also had a large tunability of dielectric constant (49%), low tangent loss (tan δ = 0.01) and a Curie temperature for SrTiO 3 > 300 °C, making them very attractive for tunable RF applications. The enhanced properties originate from the unique nanostructure in the films, with <20 nm diameter strain-controlling Sm 2O 3 nanocolumns embedded in a SrTiO 3 matrix. Very large out-of-plane strains (up to 2.6%) andmore » high tetragonality (c/a) (up to 1.013) were induced in the SrTiO 3. Finally, the K-factor was further enhanced by adding 1 at% Sc 3+ (acceptor) dopant in SrTiO 3 to a value of 3300 with the tangent loss being ≤0.01 up to 1000 kV cm -1.« less

  8. Structure and optical properties of Bi2S3 nanorods and their thin film polymers: a combination study of photocatalysis for Rhodamine B removal from water

    NASA Astrophysics Data System (ADS)

    Qiu, W.; Sun, J.; Zheng, C.

    2017-12-01

    The dye wastewater draw an increasing attention as its high environmental risks. This research were fabricated novel catalysts including Bi2S3 nanorods, Bi2O3/Bi2S3 thin films, and ZnO/Bi2S3 thin films in order to solve the problem of dye wastewater, and the morphology and structure of as-synthesized catalysts were characterized. The hollow nanostructure of the Bi2O3/Bi2S3 samples have a large specific surface area and their direct band gap energy is 2.3 eV. The ZnO/Bi2S3 thin films form a homogeneously layered heterostructure and their average diameter is ranging from 70 to 80 nm. As a typical type of dye pollutant, rhodamine B (RhB) was degraded by these synthesized catalysts with UV irradiation to evaluate their application properties. As a result, ZnO/Bi2S3 thin films have the best performance, which degrade 95% of the RhB within 120 min with a rate constant (k) of 0.0113 min-1. Bi2O3/Bi2S3 thin films have a similar degradation efficacy with k of 0.0092 min-1. The Bi2S3 nanorods have a k of 0.0092 min-1 which is worse than the Bi2O3/Bi2S3 and ZnO/Bi2S3 thin films, however, still better than the common photocatalysts such as TiO2 and Bi2WO6 materials. Therefore, these novel catalysts synthesized in this research are worth to treat with the dye wastewater in the future application.

  9. NAA thinning of ‘W. Murcott’

    USDA-ARS?s Scientific Manuscript database

    This study was conducted to determine if NAA thinning may be useful for managing cropload in Florida ‘W Murcott’. Trials were conducted in two groves of ages 4 and 6 years. NAA was applied on 13 May, 2010, when fruitlets averaged 10-12 mm in diameter. A randomized complete block design was used, ...

  10. Cratering Studies in Thin Plastic Films

    NASA Astrophysics Data System (ADS)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T. L.; Srama, R.

    2014-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can then be fed into electrostatic relaxation models to enhance the fidelity of interpretation of charge signals from a PVDF detector. An electrostatic relaxation code was also used to determine the theoretical charge produced by the PVDF detector given a crater of specific depth and diameter. Experimental results and preliminary simulation results and conclusions will be presented.

  11. Anatomical Consideration and Potential Complications of Coronary Sinus Catheterisation.

    PubMed

    Mehra, Lalit; Raheja, Shashi; Agarwal, Sneh; Rani, Yashoda; Kaur, Kulwinder; Tuli, Anita

    2016-02-01

    Coronary venous catheterisation has been used for performing various cardiologic interventions. The procedure might become complicated due to obstruction offered by the valve of coronary sinus (Thebesian valve) the acute bend of the Great Cardiac Vein (GCV). The present study sought to expound the anatomical considerations of coronary venous catheterization and to elucidate the potential causes of obstruction and the complications of this procedure. In this cross-sectional observational study, coronary sinus and GCV were dissected in 40, formalin fixed, adult cadaveric human hearts. Course, length, diameter and angle of bend of GCV, length of coronary sinus and its diameter at its ostium in right atrium were recorded. Thebesian valve morphology and percentage coverage of coronary sinus ostium was recorded. Relation of the coronary sinus and GCV with their neighbouring arteries was described. Coronary sinus: near its termination was directly related to the left atrium. Length: 35.35±4.43 mm (1 SD). Diameter: 11.75 ± 2.66mm. Diameter of CS ostium was more in hearts where Thebesian valve was absent. GCV travelled superficial or deep to the left diagonal artery and crossed circumflex artery superficially. Length: 96.23 ±22.52mm. Diameter: 5.99 ±1.02mm. Angle of bend: 107 ±6.74 degrees. Thebesian valve: Absent in 3 hearts. Various morphologies were observed: thin band, thin band with fenestrations, broad band with fenestrations, well developed semilunar valve (Thin/thick). In five hearts, valve covered more than 50% of coronary sinus ostium. Coronary sinus and GCV diameter will help cardiologists and cardiothoracic surgeons to choose an appropriate sized catheter and their length will decide the length of catheter advancement. Thebesian valve may cause obstruction to the catheter due to an extensive coverage of coronary sinus ostium, which is seen in 12.5% cases. The obtuse angle of GCV has to be negotiated in order to enter this vessel. Arteries lying deep to coronary sinus and GCV might be compressed leading to myocardial ischemia.

  12. Oligosaccharide/silicon-containing block copolymers with 5 nm features for lithographic applications.

    PubMed

    Cushen, Julia D; Otsuka, Issei; Bates, Christopher M; Halila, Sami; Fort, Sébastien; Rochas, Cyrille; Easley, Jeffrey A; Rausch, Erica L; Thio, Anthony; Borsali, Redouane; Willson, C Grant; Ellison, Christopher J

    2012-04-24

    Block copolymers demonstrate potential for use in next-generation lithography due to their ability to self-assemble into well-ordered periodic arrays on the 3-100 nm length scale. The successful lithographic application of block copolymers relies on three critical conditions being met: high Flory-Huggins interaction parameters (χ), which enable formation of <10 nm features, etch selectivity between blocks for facile pattern transfer, and thin film self-assembly control. The present paper describes the synthesis and self-assembly of block copolymers composed of naturally derived oligosaccharides coupled to a silicon-containing polystyrene derivative synthesized by activators regenerated by electron transfer atom transfer radical polymerization. The block copolymers have a large χ and a low degree of polymerization (N) enabling formation of 5 nm feature diameters, incorporate silicon in one block for oxygen reactive ion etch contrast, and exhibit bulk and thin film self-assembly of hexagonally packed cylinders facilitated by a combination of spin coating and solvent annealing techniques. As observed by small angle X-ray scattering and atomic force microscopy, these materials exhibit some of the smallest block copolymer features in the bulk and in thin films reported to date.

  13. Species composition, diameter distribution, and crown class at initiation of a thinning study of pole-size hardwood stands in the Hoosier National Forest

    Treesearch

    Ryan L. Woods; Douglass F. Jacobs

    2008-01-01

    During the spring of 2007, a low thinning was implemented in stands on the Hoosier National Forest that had been clearcut harvested between 1975 and 1979; treatments consisted of 60- and 75-percent residual stocking, as well as control plots with no thinning. The 60-percent treatment increased the relative oak density per acre in all stands with the exception of one...

  14. Large inflated-antenna system

    NASA Technical Reports Server (NTRS)

    Hinson, W. F.; Keafer, L. S.

    1984-01-01

    It is proposed that for inflatable antenna systems, technology feasibility can be demonstrated and parametric design and scalability (scale factor 10 to 20) can be validated with an experiment using a 16-m-diameter antenna attached to the Shuttle. The antenna configuration consists of a thin film cone and paraboloid held to proper shape by internal pressure and a self-rigidizing torus. The cone and paraboloid would be made using pie-shaped gores with the paraboloid being coated with aluminum to provide reflectivity. The torus would be constructed using an aluminum polyester composite that when inflated would erect to a smooth shell that can withstand loads without internal pressure.

  15. Species diversity of polyporoid and corticioid fungi in northern hardwood forests with differing management histories.

    PubMed

    Lindner, Daniel L; Burdsall, Harold H; Stanosz, Glen R

    2006-01-01

    Effects of forest management on fungal diversity were investigated by sampling fruit bodies of polyporoid and corticioid fungi in forest stands that have different management histories. Fruit bodies were sampled in 15 northern hardwood stands in northern Wisconsin and the upper peninsula of Michigan. Sampling was conducted in five old-growth stands, five uneven-age stands, three even-age unthinned stands and two even-age thinned stands. Plots 100 m x 60 m were established and 3000 m2 within each plot was sampled during the summers of 1996 and 1997. A total of 255 polyporoid and corticioid morphological species were identified, 46 (18%) of which could not be assigned to a described species. Species accumulation curves for sites and management classes differed from straight lines, although variability from year to year suggests that more than 2 y of sampling are needed to characterize annual variation. Mean species richness and diversity index values did not vary significantly by management class, although mean richness on large diameter wood (> or = 15 cm diam) varied with moderate significance. Richness values on small diameter debris varied significantly by year, indicating that a large part of year-to-year variability in total species richness is due to small diameter debris. Ten species had abundance levels that varied by management class. Two of these species. Changes in the diversity and species composition of the wood-inhabiting fungal community could have significant implications for the diversity, health and productivity of forest ecosystems.

  16. High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant amounts of mass or stiffness to the reflector. They can be rolled up or folded to accommodate the packaging needed for launch. An analytical model of the system, which includes the membrane reflector, actuator, and controller has been developed to investigate the functionality of this control system on a 35-meter-diameter membrane reflector. The performance of this system under external disturbances such as in space thermal loads and W-error due to inflation has been investigated. A subscale breadboard has been developed, and the functionality of this control concept has been demonstrated by this breadboard.

  17. Deposition of functional nanoparticle thin films by resonant infrared laser ablation.

    NASA Astrophysics Data System (ADS)

    Haglund, Richard; Johnson, Stephen; Park, Hee K.; Appavoo, Kannatessen

    2008-03-01

    We have deposited thin films containing functional nanoparticles, using tunable infrared light from a picosecond free-electron laser (FEL). Thin films of the green light-emitting molecule Alq3 were first deposited by resonant infrared laser ablation at 6.68 μm, targeting the C=C ring mode of the Alq3. TiO2 nanoparticles 50-100 nm diameter were then suspended in a water matrix, frozen, and transferred by resonant infrared laser ablation at 2.94 μm through a shadow mask onto the Alq3 film. Photoluminescence was substantially enhanced in the regions of the film covered by the TiO2 nanoparticles. In a second experiment, gold nanoparticles with diameters in the range of 50-100 nm were suspended in the conducting polymer and anti-static coating material PEDOT:PSS, which was diluted by mixing with N-methyl pyrrolidinone (NMP). The gold nanoparticle concentration was 8-10% by weight. The mixture was frozen and then ablated by tuning the FEL to 3.47 μm, the C-H stretch mode of NMP. Optical spectroscopy of the thin film deposited by resonant infrared laser ablation exhibited the surface-plasmon resonance characteristic of the Au nanoparticles. These experiments illustrate the versatility of matrix-assisted resonant infrared laser ablation as a technique for depositing thin films containing functionalized nanoparticles.

  18. Small-diameter roundwood, strong-post W-beam guardrail systems

    Treesearch

    David Kretschmann; Ronald Faller; John Reid; Jason Hascall; Dean Sicking; John Rohde

    2006-01-01

    Round guardrail posts may provide an important value-added option for small-diameter thinnings. Such posts require minimum processing and are believed to have higher strength for the equivalent rectangular volume. The resulting value-added product may bring a higher return compared to lumber. The obstacles to immediate utilization of ponderosa pine and Douglas-fir...

  19. Development of thin semi-rigid coaxial cables as low-pass filter using bilayer structure in center conductors

    NASA Astrophysics Data System (ADS)

    Kushino, Akihiro; Yamamoto, Yusei; Okuyama, Tetsuya; Kasai, Soichi

    We have developed and evaluated thin semi-rigid coaxial cables as the noise filter for readout in low temperature experiments. The cables reported have 0.86 mm outer diameters consisting of seamless outer conductor, polytetrafluoroethylene (PTFE) dielectric, and center conductor made of superconducting niobium-titanium (NbTi). Each center conductor has surficial cladding made of normal conductor in different thickness. We had reported that we can adjust attenuation magnitude and cut-off frequency of the semi-rigid cable in the range about 100 500 MHz by controlling cable length and/or thickness of cladding. We newly manufactured this type of low-pass filter cables using stainless-steel (SUS304) as the material for cladding which has higher electrical resistivity than that of cupro-nickel (CuNi). It enables high filtering efficiency, i.e. large attenuation at the same frequency, compared to those made of conventional CuNi-based low-pass-filter cables.

  20. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays.

    PubMed

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K

    2017-03-10

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ∼100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  1. Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays

    NASA Astrophysics Data System (ADS)

    Hao, Qi; Huang, Hao; Fan, Xingce; Hou, Xiangyu; Yin, Yin; Li, Wan; Si, Lifang; Nan, Haiyan; Wang, Huaiyu; Mei, Yongfeng; Qiu, Teng; Chu, Paul K.

    2017-03-01

    Ultra-thin anodic aluminum oxide (AAO) membranes are efficient templates for the fabrication of patterned nanostructures. Herein, a three-step etching method to control the morphology of AAO is described. The morphological evolution of the AAO during phosphoric acid etching is systematically investigated and a nonlinear growth mechanism during unsteady-state anodization is revealed. The thickness of the AAO can be quantitatively controlled from ˜100 nm to several micrometers while maintaining the tunablity of the pore diameter. The AAO membranes are robust and readily transferable to different types of substrates to prepare patterned plasmonic nanoarrays such as nanoislands, nanoclusters, ultra-small nanodots, and core-satellite superstructures. The localized surface plasmon resonance from these nanostructures can be easily tuned by adjusting the morphology of the AAO template. The custom AAO template provides a platform for the fabrication of low-cost and large-scale functional nanoarrays suitable for fundamental studies as well as applications including biochemical sensing, imaging, photocatalysis, and photovoltaics.

  2. Transabdominal ultrasonographic appearance of the gastrointestinal viscera of healthy camels (Camelus dromedaries).

    PubMed

    Tharwat, Mohamed; Al-Sobayil, Fahd; Ali, Ahmed; Buczinski, Sébastien

    2012-10-01

    The purpose of this study was to describe the ultrasonographic picture of the gastrointestinal tract in healthy camels (Camelus dromedarius). For this purpose, 22 camels were examined. The rumen and its glandular sacs were filling most of the left side of the abdomen. The rumen wall was smooth and echogenic. The ventral part of the reticulum could be best imaged in 17 (77%) camels from the left and right paramedian region just behind to the sternal pad. The reticulum in these animals had a thick wall (1.17±0.27 cm) that appeared as a half-moon-shaped structure with a biphasic contraction. The omasum was best viewed through the right 8th to 6th intercostal spaces in 18 (82%) camels. In the remaining 4 (18%), it was visualized through four consecutive intercostal spaces (right 9th to 6th). It had a wall thickness of 1.1±0.7 cm and a transverse diameter of 8.74±3.4 cm. The abomasum could be best visualized from the right 9th and 8th intercostal spaces in 14 (64%) camels, while it was observed in the 9th intercostal space in 3 (14%) animals and in the 8th and 7th intercostal space in 5 (22%) camels. Small intestinal structures were best seen low in the right paralumbar fossa. It was thin-walled (0.43±0.14 cm) and had a diameter of 2.62±0.47 cm. The cecum was imaged chiefly in the caudal right flank. It was thin-walled (0.37±0.05 cm), had a diameter of 13.8±1.6 cm. The proximal loop of the large colon appeared as thick, echogenic, continuous and slightly curved lines. It was thin-walled (0.51±0.08 cm) and had a diameter of 3.5±0.8 cm. The spiral colon was confined in all camels to the caudal ventral half of the abdomen. It appeared as structures with thick echoic lateral walls with a number of echogenic arched lines next to each other. Free peritoneal fluid pockets were imaged in two locations in 19 (86%) camels. Ultrasound-guided abdominocentesis was successful in 15 (68%) of the examined camels. This study provides the ultrasonographic appearance of the normal gastrointestinal tract in healthy camels that could be used as a reference for the interpretation of suspected digestive abnormalities. Copyright © 2012. Published by Elsevier India Pvt Ltd.

  3. [Effect of thinning intensities on fruiting regularities of Quercus liaotungensis forests in Huang-long and Qiaoshan mountains.

    PubMed

    Huang, Cai Zhi; Zhang, Wen Hui; Li, Gang; Yu, Shi Chuan; You, Jian Jian

    2016-11-18

    In order to clarify the impact of thinning intensities on fruiting regularity of Quercus liaotungensis forests, we took the Q. liaotungensis half-mature forests in Huanglong and Qiaoshan mountains on south of the Loess Plateau as the object of study, which were under close-to-natural management of different thinning intensities (CK, 10%, 20% and 30%). An analysis was made on stand density and percent of seed trees, seed number of sample tree and unit area, seed spatial distributions, seed characteristics of the Q. liaotungensis forests after 5 years of thinning. The results showed that, percent of seed trees, seed number per sample tree and percent of developed seeds of Q. liaotungensis forests increased with the increasing intensity, and showed a pattern of 30%>20%>10%>CK. Seed number per area reached the maximum number under 20% thinning, and showed a pattern of 20%>30%>CK>10%. From the seed spatial distribution in the canopy, the upper accounted for 73.6%, while the lower had 26.4%. The sunny side of canopy layer set relatively the most fruits of 65.8%, shady side only had 34.2%. Under thinning, further improving was geater under lower canopy than under upper canopy and so was on shady side than on sunny side. The seed long diameter, seed short diameter and 1000-seed mass of Q. liaotungensis forests increased with the increasing intensity, which reached the maximum under 30% thinning. 10% thinning did not significantly impact Q. liaotungensis fruiting, the thinning intensity of 20% was most conducive to the seed quantity and quality improvement of Q. liaotungensis, while the thinning intensity of 30% did not improve the fruiting, and lowered the total number of seeds. It was proposed that 20% thinning should be chosen (canopy density of 0.7) to effectively improve fruiting and quality of Q. liaotungensis.

  4. Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA

    USGS Publications Warehouse

    Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F.

    2009-01-01

    Studies of forest change in western North America often focus on increased densities of small-diameter trees rather than on changes in the large tree component. Large trees generally have lower rates of mortality than small trees and are more resilient to climate change, but these assumptions have rarely been examined in long-term studies. We combined data from 655 historical (1932-1936) and 210 modern (1988-1999) vegetation plots to examine changes in density of large-diameter trees in Yosemite National Park (3027 km2). We tested the assumption of stability for large-diameter trees, as both individual species and communities of large-diameter trees. Between the 1930s and 1990s, large-diameter tree density in Yosemite declined 24%. Although the decrease was apparent in all forest types, declines were greatest in subalpine and upper montane forests (57.0% of park area), and least in lower montane forests (15.3% of park area). Large-diameter tree densities of 11 species declined while only 3 species increased. Four general patterns emerged: (1) Pinus albicaulis, Quercus chrysolepis, and Quercus kelloggii had increases in density of large-diameter trees occur throughout their ranges; (2) Pinus jeffreyi, Pinus lambertiana, and Pinus ponderosa, had disproportionately larger decreases in large-diameter tree densities in lower-elevation portions of their ranges; (3) Abies concolor and Pinus contorta, had approximately uniform decreases in large-diameter trees throughout their elevational ranges; and (4) Abies magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus monticola, Pseudotsuga menziesii, and Tsuga mertensiana displayed little or no change in large-diameter tree densities. In Pinus ponderosa-Calocedrus decurrens forests, modern large-diameter tree densities were equivalent whether or not plots had burned since 1936. However, in unburned plots, the large-diameter trees were predominantly A. concolor, C. decurrens, and Q. chrysolepis, whereas P. ponderosa dominated the large-diameter component of burned plots. Densities of large-diameter P. ponderosa were 8.1 trees ha-1 in plots that had experienced fire, but only 0.5 trees ha-1 in plots that remained unburned. ?? 2009 Elsevier B.V. All rights reserved.

  5. Space Spider - A concept for fabrication of large structures

    NASA Technical Reports Server (NTRS)

    Britton, W. R.; Johnston, J. D.

    1978-01-01

    The Space Spider concept for the automated fabrication of large space structures involves a specialized machine which roll-forms thin gauge material such as aluminum and develops continuous spiral structures with radial struts to sizes of 600-1,000 feet in diameter by 15 feet deep. This concept allows the machine and raw material to be integrated using the Orbiter capabilities, then boosting the rigid system to geosynchronous equatorial orbit (GEO) without high sensitivity to acceleration forces. As a teleoperator controlled device having repetitive operations, the fabrication process can be monitored and verified from a ground-based station without astronaut involvement in GEO. The resultant structure will be useful as an intermediate size platform or as a structural element to be used with other elements such as the space-fabricated beams or composite nested tubes.

  6. Three-dimensional nanostructure determination from a large diffraction data set recorded using scanning electron nanodiffraction.

    PubMed

    Meng, Yifei; Zuo, Jian-Min

    2016-09-01

    A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can be extended to multiphase nanocrystalline materials as well. Thus, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.

  7. A Marine Protein-based Dietary Supplement for Subclinical Hair Thinning/Loss: Results of a Multisite, Double-blind, Placebo-controlled Clinical Trial

    PubMed Central

    Rizer, Ronald L; Stephens, Thomas J; Herndon, James H; Sperber, Brian R; Murphy, James; Ablon, Glynis R

    2015-01-01

    Introduction: Since skin and hair quality are potent vitality signals, and hair growth deficiency can cause significant psychological morbidity. In addition to clearly-defined hair loss disorders, milder forms of hair thinning or hair loss appear to be increasingly common, with a suggestion that sub-optimal diets and stressful lifestyles may be involved. Methods: Here we assess the value of a dietary marine-extract based dietary supplement in premenopausal women with subclinical hair thinning or hair loss conditions. This multi-site, randomized double-blind, placebo-controlled clinical trial was conducted with impact on hair shedding rate and hair fiber diameter (assessed by phototrichogram) as primary end points upon consumption of the oral supplement compared to a placebo. A total of 96 eligible female subjects were enrolled aged 21–55 years of age from Asian, Caucasian, and Hispanic ethnic backgrounds. Results: This study showed that hair shedding was significantly reduced in the first 3–6 months of daily consumption of the oral supplement. Moreover, phototrichogram image analysis revealed a statistically significant increase in the mean vellus-like hair diameter after 6 months of supplement consumption, when compared to the mean vellus-like hair diameters measured at baseline. Discussion: These results support the view that a nutritional supplement approach may be useful for women in this age group to deal with subclinical hair thinning or hair loss conditions, and those components of this marine extract-based oral supplement may be a useful adjunct. PMID:26903744

  8. Investigating the use of small-diameter softwood as guardrail posts: static test results

    Treesearch

    David E. Kretschmann; Ron Faller; Jason Hascall; John Reid; Dean Sicking; John Rohde; Dick Shilts; Tim Nelson

    2007-01-01

    Round guardrail posts may provide an important value added option for small-diameter thinnings. Such posts require minimum processing and have been shown to have higher strength compared to the equivalent rectangular volume. The resulting value-added product may bring a higher return compared to lumber. The obstacles to immediate utilization of ponderosa pine and...

  9. Structural lumber from dense stands of small-diameter Douglas-fir trees.

    Treesearch

    David W. Green; Eini C. Lowell; Roland Hernandez

    2005-01-01

    Small-diameter trees growing in overstocked dense stands are often targeted for thinning to reduce fire hazard and improve forest health and ecosystem diversity. In the Pacific Northwest and Intermountain regions, Douglas-fir can be a predominant species in such stands. In this study, mechanical properties and grade yield of structural products were estimated for 2 by...

  10. Impact of stand diameter and product markets on revenue gains from multiproduct harvesting

    Treesearch

    John E. Baumgras; Chris B. LeDoux

    1988-01-01

    Data from 113 sample thinning plots and a microcomputer program called APTHIN were used to demonstrate the impact of mean stand diameter and product markets on revenue gains from multiproduct versus single-product pulpwood harvests in poletimber and small sawtimber stands of Appalachian hardwoods. The analysis of revenue gains included product mix as a function of the...

  11. Polarized Optical Scattering Measurements of Metallic Nanoparticles on a Thin Film Silicon Wafer

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Liu, Tze-An; Fu, Wei-En

    2009-09-01

    Light scattering has shown its powerful diagnostic capability to characterize optical quality surfaces. In this study, the theory of bidirectional reflectance distribution function (BRDF) was used to analyze the metallic nanoparticles' sizes on wafer surfaces. The BRDF of a surface is defined as the angular distribution of radiance scattered by the surface normalized by the irradiance incident on the surface. A goniometric optical scatter instrument has been developed to perform the BRDF measurements on polarized light scattering on wafer surfaces for the diameter and distribution measurements of metallic nanoparticles. The designed optical scatter instrument is capable of distinguishing various types of optical scattering characteristics, which are corresponding to the diameters of the metallic nanoparticles, near surfaces by using the Mueller matrix calculation. The metallic nanoparticle diameter of measurement is 60 nm on 2 inch thin film wafers. These measurement results demonstrate that the polarization of light scattered by metallic particles can be used to determine the size of metallic nanoparticles on silicon wafers.

  12. Helical Turing patterns in the Lengyel-Epstein model in thin cylindrical layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bánsági, T.; Taylor, A. F., E-mail: A.F.Taylor@sheffield.ac.uk

    2015-06-15

    The formation of Turing patterns was investigated in thin cylindrical layers using the Lengyel-Epstein model of the chlorine dioxide-iodine-malonic acid reaction. The influence of the width of the layer W and the diameter D of the inner cylinder on the pattern with intrinsic wavelength l were determined in simulations with initial random noise perturbations to the uniform state for W < l/2 and D ∼ l or lower. We show that the geometric constraints of the reaction domain may result in the formation of helical Turing patterns with parameters that give stripes (b = 0.2) or spots (b = 0.37) in two dimensions. For b = 0.2, the helices weremore » composed of lamellae and defects were likely as the diameter of the cylinder increased. With b = 0.37, the helices consisted of semi-cylinders and the orientation of stripes on the outer surface (and hence winding number) increased with increasing diameter until a new stripe appeared.« less

  13. A High-Resolution Endoscope of Small Diameter Using Electromagnetically Vibration of Single Fiber

    NASA Astrophysics Data System (ADS)

    Matsunaga, Tadao; Hino, Ryunosuke; Makishi, Wataru; Esashi, Masayoshi; Haga, Yoichi

    For high resolution visual inspection in the narrow space of the human body, small diameter endoscope has been developed which utilize electromagnetically vibration of single fiber. Thin endoscopes are effective for inspection in the narrow space of the human body, for example, in the blood vessel, lactiferous duct for detection infiltration of breast cancer, and periodontal gap between gingiva and tooth. This endoscope consists of single optical fiber and photofabricated driving coils. A collimator lens and a cylindrical permanent magnet are fixed on the optical fiber, and the tilted driving coils have been patterned on a 1.08 mm outer diameter thin tube. The fiber is positioned at the center of the tube which is patterned the coils. When an electrical alternating current at the resonance frequency is supplied to the coils, the permanent magnet which is fixed to the fiber is vibrated electromagnetically and scanned one or two dimensionally. This paper reports small diameter endoscope by using electromagnetically vibration of single fiber. Optical coherence tomography imaging has also been carried out with the fabricated endoscope and cross-section image of sub-surface skin of thumb was observed.

  14. Development of polyvinyl acetate thin films by electrospinning for sensor applications

    NASA Astrophysics Data System (ADS)

    Veerabhadraiah, Amith; Ramakrishna, Sridhar; Angadi, Gangadhar; Venkatram, Mamtha; Kanivebagilu Ananthapadmanabha, Vishnumurthy; Hebbale NarayanaRao, Narasimha Murthy; Munishamaiah, Krishna

    2017-10-01

    Electrospinning is an effective process for synthesis of polymer fibers with diameters ranging between nanometers and micrometers by employing electrostatic force developed due to application of high voltage. The present work aims to develop an electrospinning system and optimize the process parameters for synthesis of Polyvinyl Acetate thin films used for gas and humidity sensors. Taguchi's Design of Experiment was adopted considering three main factors at three different levels for optimization of process parameters. The factors considered were flow rate (0.5, 0.6 and 0.7 ml/h), voltage (18, 19 and 20 kV) and spinneret to collector distance (8, 9, 10 cm) with fiber diameter as the response factor. The main effect plots and interaction plots of the parameters were studied to determine the most influencing parameter. Flow rate was the most significant factor followed by spinneret to collector distance. Least fiber diameter of 24.83 nm was observed at 19 kV, 0.5 ml/h flow rate and 8 cm spinneret to collector distance. SEM images revealed uniform fiber diameter at lower flow rate while bead formation increased monotonically with rise in flow rate.

  15. Achieving sub-50 nm controlled diameter of aperiodic Si nanowire arrays by ultrasonic catalyst removal for photonic applications

    NASA Astrophysics Data System (ADS)

    Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit

    2018-05-01

    We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.

  16. Urea fertilizer increases growth of 20-year-old, thinned Douglas-fir on poor quality site

    Treesearch

    Richard E. Miller; Donald L. Reukema

    1977-01-01

    In 20-year-old, site V Douglas-fir in southwest Washington, fertilizing with nitrogen increased average 5-year diameter and height growth of concurrently released dominant trees by about 85 percent. There was no additional response when phosphorus, potassium, and sulfur were added with the nitrogen fertilizer. Thinning with no other treatment in this moderately stocked...

  17. Growth Reponse of Loblolly Pine to Intermediate Treatment of Fire, Herbicide, and Fertilizer: Preliminary Results

    Treesearch

    L.M. Marino; B.P. Oswald; K.W. Farrish; H.M. Williams; Daniel R. Unger

    2002-01-01

    Crown area is an important factor in determining stem development. This study examined the changes in stem diameter per unit area of crown due to treatment with fire, herbicide, fertilizer, and tree-thinning practice. The experimental sites were mid-rotation loblolly pine (Pinus taeda) plantations that were thinned one year before treatment. Site 1...

  18. Distribution-of-cut guides for thinning in Allegheny hardwoods: a review

    Treesearch

    Christopher A. Nowak; David A. Marquis

    1997-01-01

    Distribution-of-cut guidelines describe the amount of stand density to be removed from broad size classes of trees to attain a target residual stand density and stand structure. Current guides for thinning Allegheny hardwoods recommend that 75 percent of the cut relative stand density be taken from below the average stand diameter and 25 percent from above. These...

  19. Comparison of lumber values for Grade-3 hardwood logs from thinnings and mature stands

    Treesearch

    David M. Emanuel

    1983-01-01

    The value per M bf (thousand board feet) of the lumber sawed from Grade-3 logs, 8 to 11 inches in diameter, from thinnings was compared with that from a harvest of mature-stand cut. The species tested were red oak (Quercus rubra L.), yellow-poplar (Liriodendron tulipifera L.), and hard maple (Acer saccharum Marsh...

  20. Thin co-radial bipolar leads: technology and clinical performance.

    PubMed

    Fahraeus, T; Israel, C W; Wöllenstein, M

    2001-09-01

    While bipolar leads offer advantages such as better sensing performance than unipolar leads, their use has been limited by a larger lead diameter and reports about a high failure rate of several bipolar lead models. This has led to the development of thin bipolar leads using a special technology which aims at improving lead safety. Leads with monofilar thin conductors (drawn filled tube) which are individually coated with a very resistant material (ETFE) have been developed. Using a co-radial instead of co-axial bipolar conductor design, the lead diameter could be reduced to 4.5 F compared to 6-7 F of conventional bipolar leads. Bench testing demonstrated a significant improvement of this lead technology with respect to degradation of insulation material by biochemically reactive solutions. Also mechanical characteristics such as resistance to tearing forces and compression showed a high lead durability. From our own experience, co-radial bipolar leads show a favorable electrical performance with the exception of a relatively low pacing impedance. Also during long-term follow-up, the rate of lead failure was very low. These findings are corroborated by other clinical studies which also demonstrated good handling characteristics of thin bipolar leads during implantation.

  1. Cratering and penetration experiments in teflon targets at velocities from 1 to 7 km/s

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Cintala, Mark; Bernhard, Ronald P.; Cardenas, Frank; Davidson, William; Haynes, Gerald; See, Thomas H.; Winkler, Jerry; Knight, Jeffrey

    1994-01-01

    Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility after the spacecraft spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments to reproduce such features and to understand the relationships between projectile size and the resulting crater or penetration hole diameter over a wide range of impact velocities. Such relationships are needed to derive the size and mass frequency distribution and flux of natural and man-made particles in low-earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres into pure Teflon targets at velocities ranging from 1 to 7 km/s. Target thickness varied over more than three orders of magnitude from finite halfspace targets to very thin films. Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration hole diameter can become larger than that of a standard crater. The crater diameter in infinite halfspace Teflon targets increases, at otherwise constant impact conditions, with encounter velocity by a factor of V (exp 0.44). In contrast, the penetration hole size in very thin foils is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations apply to all impacts in which the shock-pulse duration of the projectile is shorter than that assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.

  2. Transmissive Diffractive Optical Element Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Baron, Richard; Moynihan, Philip; Price, Douglas

    2008-01-01

    Solar-thermal-radiation concentrators in the form of transmissive diffractive optical elements (DOEs) have been proposed as alternatives to mirror-type solar concentrators now in use. In comparison with functionally equivalent mirror-type solar concentrators, the transmissive, diffractive solar concentrators would weigh and cost less, and would be subject to relaxed mechanical tolerances. A DOE concentrator would be made from a thin, flat disk or membrane of a transmissive material having a suitable index of refraction. By virtue of its thinness, the DOE concentrator would have an areal mass density significantly less than that of a functionally equivalent conventional mirror. The DOE concentrator would have a relatively wide aperture--characterized by a focal-length/aperture-diameter ratio ('f number') on the order of 1. A kinoform (a surface-relief phase hologram) of high diffractive order would be microfabricated onto one face of the disk. The kinoform (see figure) would be designed to both diffract and refract incident solar radiation onto a desired focal region, without concern for forming an image of the Sun. The high diffractive order of this kinoform (in contradistinction to the low diffractive orders of some other kinoforms) would be necessary to obtain the desired f number of 1, which, in turn, would be necessary for obtaining a desired concentration ratio of 2,500 or greater. The design process of optimizing the concentration ratio of a proposed DOE solar concentrator includes computing convolutions of the optical bandwidth of the Sun with the optical transmission of the diffractive medium. Because, as in the cases of other non-imaging, light-concentrating optics, image quality is not a design requirement, the process also includes trading image quality against concentration ratio. A baseline design for one example calls for an aperture diameter of 1 m. This baseline design would be scalable to a diameter as large as 10 m, or to a smaller diameter for a laboratory test article. Initial calculations have indicated that the characteristics of the test article would be readily scalable to a full-size unit.

  3. Thin, porous metal sheets and methods for making the same

    DOEpatents

    Liu, Wei; Li, Xiaohong Shari; Canfield, Nathan L.

    2015-07-14

    Thin, porous metal sheets and methods for forming them are presented to enable a variety of applications and devices. The thin, porous metal sheets are less than or equal to approximately 200 .mu.m thick, have a porosity between 25% and 75% by volume, and have pores with an average diameter less than or equal to approximately 2 .mu.m. The thin, porous metal sheets can be fabricated by preparing a slurry having between 10 and 50 wt % solvent and between 20 and 80 wt % powder of a metal precursor. The average particle size in the metal precursor powder should be between 100 nm and 5 .mu.m.

  4. Interaction of Vortex Rings and Steady Jets with Permeable Screens of Varied Porosity

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2013-11-01

    Vortex ring and steady jet interaction with a porous matrix formed from several parallel, transparent permeable screens with the same grid geometry for open area ratios (φ) 49.5% - 83.8% was studied previously using digital particle image velocimetry (DPIV) at jet Reynolds number (Re) of 1000-3000. Vortex ring results showed that unlike the experiments with thin screens, a transmitted vortex ring, which has a similar diameter to the primary one, wasn't formed. Instead a centerline vortex ring like structure formed and its diameter, circulation, and dissipation time decreased as φ decreased. However, for the case of screens φ = 55.7% with large screen spacing, reformation of large scale weak vortex rings was observed downstream of the first screen. The present work experimentally investigates the interaction of vortex rings and steady jets with screens of decreasing φ (83.8%-49.5%) in the flow direction. A piston type vortex ring generator was used and measurements were made using DPIV. The vortex ring results show that the size and circulation of the vortex ring like flow structure was changed based on the screen φ within the permeable screen matrix. Similarly, steady jet flow structure and the local turbulent kinetic energy was changed based on the local screen φ.

  5. Ceramic Spheres—A Novel Solution to Deep Sea Buoyancy Modules

    PubMed Central

    Jiang, Bo; Blugan, Gurdial; Sturzenegger, Philip N.; Gonzenbach, Urs T.; Misson, Michael; Thornberry, John; Stenerud, Runar; Cartlidge, David; Kuebler, Jakob

    2016-01-01

    Ceramic-based hollow spheres are considered a great driving force for many applications such as offshore buoyancy modules due to their large diameter to wall thickness ratio and uniform wall thickness geometric features. We have developed such thin-walled hollow spheres made of alumina using slip casting and sintering processes. A diameter as large as 50 mm with a wall thickness of 0.5–1.0 mm has been successfully achieved in these spheres. Their material and structural properties were examined by a series of characterization tools. Particularly, the feasibility of these spheres was investigated with respect to its application for deep sea (>3000 m) buoyancy modules. These spheres, sintered at 1600 °C and with 1.0 mm of wall thickness, have achieved buoyancy of more than 54%. As the sphere’s wall thickness was reduced (e.g., 0.5 mm), their buoyancy reached 72%. The mechanical performance of such spheres has shown a hydrostatic failure pressure above 150 MPa, corresponding to a rating depth below sea level of 5000 m considering a safety factor of 3. The developed alumina-based ceramic spheres are feasible for low cost and scaled-up production and show great potential at depths greater than those achievable by the current deep-sea buoyancy module technologies. PMID:28773651

  6. Design and fabrication of a variable optical attenuator based on polymer-dispersed liquid crystal

    NASA Astrophysics Data System (ADS)

    She, Jun; Xu, Su; Tao, Tao; Wang, Qian

    2005-02-01

    In order to obtain a low polarization dependent loss (PDL) and a large attenuation range simultaneously, an optimal design and fabrication of a polymer-dispersed liquid crystal (PDLC) based variable optical attenuator (VOA) is presented. First, an optimal diameter of the liquid crystal droplets is determined by the anomalous diffraction approach (ADA). This optimal diameter gives maximal scattering and thus a large attenuation range is achieved with a relatively thin liquid crystal cell. Secondly, the fabrication of PDLC cell is carried out. The influence of the ultraviolet (UV) curing condition on the morphology of the LC droplets is investigated. For a given liquid crystal concentration, the optimal UV curing power is obtained after a series of statistically designed experiments. Finally, an optical configuration of the PDLC based VOA is presented. Measurements of the attenuation and the PDL are carried out with this configuration. The measured results show that the device has a typical attenuation range of 25dB. The corresponding PDL is nearly 1dB and the insertion loss is 1.8dB. The threshold voltage is 8Vrms and the saturation voltage is 40Vrms. From these measured results, one can see that the fabricated VOA based on PDLC is much more practical for optical communications as compared to the existing ones.

  7. Effect of Temperature and Growth Time on Vertically Aligned ZnO Nanorods by Simplified Hydrothermal Technique for Photoelectrochemical Cells.

    PubMed

    Mohd Fudzi, Laimy; Zainal, Zulkarnain; Lim, Hong Ngee; Chang, Sook-Keng; Holi, Araa Mebdir; Sarif Mohd Ali, Mahanim

    2018-04-29

    Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².

  8. Distribution of Cryptococcus neoformans in a natural site.

    PubMed Central

    Ruiz, A; Fromtling, R A; Bulmer, G S

    1981-01-01

    Pigeon droppings in a vacant tower were assayed for the number and size of viable cells of Cryptococcus neoformans. The dry, thinly scattered floor debris contained 2.6 x 10(6) viable cells per g--300 times more cells than were cultured from a large, compact pile of pigeon droppings (7.4 x 10(3) cells per g). Aerosols generated from floor debris containing pigeon droppings had an average of 360 viable cells in 31 liters of air; 27 of these cells (7.5%) were 1.1 to 3.3 micrometers in diameter and, therefore, capable of human lung deposition. Environmental factors which may influence the distribution, survival, and proliferation of C. neoformans in nature are discussed. PMID:7012011

  9. Advanced solar concentrator: Preliminary and detailed design

    NASA Technical Reports Server (NTRS)

    Bell, D. M.; Maraschin, R. A.; Matsushita, M. T.; Erskine, D.; Carlton, R.; Jakovcevic, A.; Yasuda, A. K.

    1981-01-01

    A single reflection point focusing two-axis tracking paraboloidal dish with a reflector aperture diameter of approximately 11 m has a reflective surface made up of 64 independent, optical quality gores. Each gore is a composite of a thin backsilvered mirror glass face sheet continuously bonded to a contoured substrate of lightweight, rigid cellular glass. The use of largely self-supporting gores allows a significant reduction in the weight of the steel support structure as compared to alternate design concepts. Primary emphasis in the preliminary design package for the low-cost, low-weight, mass producible concentrator was placed on the design of the higher cost subsystems. The outer gore element was sufficiently designed to allow fabrication of prototype gores.

  10. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.

    1989-01-01

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  11. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1989-05-09

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  12. Substrate solder barriers for semiconductor epilayer growth

    DOEpatents

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1987-10-23

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.

  13. Slicing of silicon into sheet material: Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Holden, S. C.

    1976-01-01

    Multiblade slurry sawing is used to slice 10 cm diameter silicon ingots into wafers 0.024 cm thick using 0.050 cm of silicon per slice (0.026 cm kerf loss). Total slicing time is less than twenty hours, and 143 slices are produced simultaneously. Productivity (slice area per hour per blade) is shown as a function or blade load and thickness, and abrasive size. Finer abrasive slurries cause a reduction in slice productivity, and thin blades cause a reduction of wafer accuracy. Sawing induced surface damage is found to extend 18 microns into the wafer.

  14. The NASA Lewis Strain Gauge Laboratory: An update

    NASA Technical Reports Server (NTRS)

    Hobart, H. F.

    1986-01-01

    Efforts continue in the development and evaluation of electrical resistance strain gauges of the thin film and small diameter wire type. Results obtained early in 1986 on some Chinese gauges and Kanthal A-1 gauges mounted on a Hastelloy-X substrate are presented. More recent efforts include: (1) the determination of the uncertainty in the ability to establish gauge factor, (2) the evaluation of sputtered gauges that were fabricated at Lewis, (3) an investigation of the efficacy of dual element temperature compensated gauges when using strain gauge alloys having large thermal coefficients of resistance, and (4) an evaluation of the practical methods of stabilizing gauges whose apparent strain is dependent on cooling rate (e.g., FeCrAl gauges).

  15. Welding with the thin disc laser: new processing and application potentials

    NASA Astrophysics Data System (ADS)

    Hügel, H.; Ruβ, A.; Weberpals, J.; Dausinger, F.

    2005-09-01

    Thin disc lasers represent a new class of welding lasers in that they combine the beneficial characteristics of CO2- and Nd:YAG-lasers. Their good focusability--values of M2 around 20 are typical for devices in the multi kW power range--can be utilized in several ways to improve the welding performance: compared to lamp-pumped Nd:YAG-lasers, the laser power required at the threshold to the deep penetration regime can be reduced, the welding depth can be increased and far higher values of traverse speed are applicable at prescribed welding depths. Alternatively, the high beam quality allows the use of focusing optics with large focal lengths, hence enabling the realization of "remote welding" concepts. At the same time, a wavelength of 1.03 μm (Yb:YAG) provides, in comparison to CO2-lasers, a high absorptivity at metallic workpieces and a low sensitivity against plasma production; both effects contribute to the efficiency, stability and achievable quality of the welding process. Further, beam delivery via flexible glass fibers with core diameters of 100 μm to 150 μm is possible. With these features and an overall (plug) efficiency of more than 20 %, this laser offers a large potential for many applications.

  16. Ultra-high cooling rate utilizing thin film evaporation

    NASA Astrophysics Data System (ADS)

    Su, Fengmin; Ma, Hongbin; Han, Xu; Chen, Hsiu-hung; Tian, Bohan

    2012-09-01

    This research introduces a cell cryopreservation method, which utilizes thin film evaporation and provides an ultra-high cooling rate. The microstructured surface forming the thin film evaporation was fabricated from copper microparticles with an average diameter of 50 μm. Experimental results showed that a cooling rate of approximately 5×104 °C/min was achieved in a temperature range from 10 °C to -187 °C. The current investigation will give birth to a cell cryopreservation method through vitrification with relatively low concentrations of cryoprotectants.

  17. Lam I-joists : a new structural building product from small-diameter, fire-prone timber

    Treesearch

    John F. Hunt; Jerrold E. Winandy

    2003-01-01

    The goal of our research is to promote healthy and sustainable forests by developing value-added uses for curved and small-diameter trees. In typical North American logging or thinning operations, much of this low- value timber is felled and left on the ground, chipped, or burned because most mills are not equipped to handle it. By understanding the fundamental...

  18. Mechanical properties for a wet-processed fiberboard made from small-diameter lodgepole pine treetop material

    Treesearch

    John F. Hunt; Karen Supan

    2005-01-01

    Many federal, state, and private forests, especially in thewestern part of the United States, have an overabundance of fire-prone small-diameter trees, forest thinnings, and residual material. These materials are not being fully utilized as a fiber resource because there are few economical options for their use. This report looks at using treetop material to produce a...

  19. Diameter Growth of Loblolly Pine Trees as Affected by Soil-Moisture Availibility

    Treesearch

    John R. Bassett

    1964-01-01

    In a 30-year-old even-aged stand of loblolly pine on a site 90 loessial soil in southeast Arkansas during foul growing seasons, most trees on plots thinned to 125 square feet of basal area per acre increased in basal area continuously when, under the crown canopy, available water in the surface foot remained above 65 percent. Measurable diameter growth ceased when...

  20. The influence of bar diameter on neuromuscular strength and activation: inferences from an isometric unilateral bench press.

    PubMed

    Fioranelli, Douglas; Lee, C Matthew

    2008-05-01

    The purpose of this study was to examine the influence of two different bar diameters on neuromuscular activation and strength. The bar diameters used reflected a standard Olympic bar (28 mm (1.1 inch); THIN) and a larger fat bar (51 mm [2 inch]; THICK). Eighteen healthy men (age 25.0 +/- 1 years) were assessed for their maximal voluntary contraction (MVC) during a unilateral isometric bench press exercise with the 2 bar types at 2 different joint angles (angle 1 and angle 2; elbow joint at approximately 45 and 90 degrees , respectively). Additionally, on a separate day, subjects performed three 10-second isometric repetitions at an intensity of 80% MVC using the 2 different bars at angle 1 and angle 2. Electromyographic recordings were collected in the pectoralis major and the muscles of the forearm flexor region at a sampling rate of 1000 Hz during the second day of testing. Analysis of variance was used to examine differences in MVC between bars and also examine between bar differences in electromyographic activity for each muscle group at each joint angle. A significance level of 0.05 was used for all tests. MVC was not different between bar types, although there was a main effect of joint angle on MVC such that it was greater at angle 2. There was a main effect of bar at both angles for the forearm muscles and at angle 1 for the pectoralis such that electromyographic activity was greater with THIN. Our data do not support the hypothesis that bar diameter influences performance during an isometric bench press exercise. However, higher electromyographic activity with THIN suggests greater neuromuscular activation with a standard Olympic bar as opposed to a larger diameter "fat" bar. Although our data do not support the use of a fat bar for increasing neuromuscular activation, these findings should be confirmed in other resistance training exercises.

  1. Double high refractive-index contrast grating VCSEL

    NASA Astrophysics Data System (ADS)

    Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Sarzała, Robert P.; Lott, J. A.; Czyszanowski, Tomasz

    2015-03-01

    Distributed Bragg reflectors (DBRs) are typically used as the highly reflecting mirrors of vertical-cavity surface-emitting lasers (VCSELs). In order to provide optical field confinement, oxide apertures are often incorporated in the process of the selective wet oxidation of high aluminum-content DBR layers. This technology has some potential drawbacks such as difficulty in controlling the uniformity of the oxide aperture diameters across a large-diameter (≥ 6 inch) production wafers, high DBR series resistance especially for small diameters below about 5 μm despite elaborate grading and doping schemes, free carrier absorption at longer emission wavelengths in the p-doped DBRs, reduced reliability for oxide apertures placed close to the quantum wells, and low thermal conductivity for transporting heat away from the active region. A prospective alternative mirror is a high refractive index contrast grating (HCG) monolithically integrated with the VCSEL cavity. Two HCG mirrors potentially offer a very compact and simplified VCSEL design although the problems of resistance, heat dissipation, and reliability are not completely solved. We present an analysis of a double HCG 980 nm GaAs-based ultra-thin VCSEL. We analyze the optical confinement of such a structure with a total optical thickness is ~1.0λ including the optical cavity and the two opposing and parallel HCG mirrors.

  2. Thinning decreases mortality and increases growth of Ponderosa pine in northeastern California

    Treesearch

    Gary O. Fiddler; Troy A. Fiddler; Dennis R. Hart; Philip M. McDonald

    1989-01-01

    Overstocked 70- to 90-year-old stands of ponderosa pine on medium- to low-quality sites were thinned in 1980 to 40, 55, and 70 percent of normal basal area and compared to an unthinned control. Mortality, diameter, and height in these northern California stands were measured annually from 1980 to 1987. After 8 years, mortality, primarily from mountain pine beetle (

  3. Mechanical thinning impacts on runoff, infiltration, and sediment yield following fuel reduction treatments in southwestern dry mixed conifer forest

    Treesearch

    D.S. Cram; T.T. Baker; A.G. Fernald; A. Madrid; B. Rummer

    2007-01-01

    Increasing densities of small diameter trees have changed ecological processes and negatively impacted conservation of soil and water resources in western forests. Thinning treatments are commonplace to reduce stem density and potential fire hazard. We evaluated the impacts of using a specialized heavy piece of equipment to reduce he1 loads on intermediate and steep...

  4. Old-Field Thinned Loblolly Pine Plantation Fertilization With Diammonium Phosphate Plus Urea and Poultry Litter -- 4 Year Growth and Product Class Distribution Results

    Treesearch

    E. David Dickens; Beth W. Richardson; Bryan C. McElvany

    2004-01-01

    A study area was installed in the Coastal Plain of South Carolina to determine the effects of diammonium phosphate (DAP) plus urea and poultry litter fertilization on growth, yield, diameter distributions, and product class distribu-tions in an old-field (Norfolk soil) thinned loblolly pine (Pinus taeda L.) plantation. Treatments included: (1)...

  5. Impact of Early Pruning and Thinning on Lumber Grade Yield From Loblolly Pine

    Treesearch

    Alexander Clark; Mike Strub; Larry R. Anderson; H. Gwynne Lloyd; Richard F. Daniels; James H. Scarborough

    2004-01-01

    The Sudden Sawlog Study was established in 1954 near Crossett, AR, in a 9-year-old loblolly pine plantation to test the hypothesis that loblolly plantations can produce sawtimber in 30 years. To stimulate diameter and height growth and clear wood production, study plots were heavily thinned, trees pruned to 33 feet by age 24 years, under-story mowed, and growth of...

  6. Lumber recovery from Douglas-fir thinnings at a bandmill and two chipping canters.

    Treesearch

    Thomas D. Fahey; Douglas L. Hunt

    1972-01-01

    Trees cut in thinning of Douglas-fir stands were processed into lumber at a profiled cant chipper, a square cant chipper with resaw, and a bandmill. Results are reported in terms of both cubic feet and Scribner long log scale. Included are tables by log input by diameter class for three studies, recovery by lumber grade and dimension item for three...

  7. 76 FR 9608 - Certain Welded Large Diameter Line Pipe From Mexico

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-18

    ... Large Diameter Line Pipe From Mexico AGENCY: United States International Trade Commission. ACTION... duty order on certain welded large diameter line pipe from Mexico. For further information concerning... welded large diameter line pipe from Mexico would not be likely to lead to continuation or recurrence of...

  8. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    PubMed Central

    Schröter, Tobias J.; Johnson, Shane B.; John, Kerstin; Santi, Peter A.

    2011-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. PMID:22254177

  9. Micro pulling down growth of very thin shape memory alloys single crystals

    NASA Astrophysics Data System (ADS)

    López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.

    Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.

  10. Dependent lung opacity at thin-section CT: evaluation by spirometrically-gated CT of the influence of lung volume.

    PubMed

    Lee, Ki Nam; Yoon, Seong Kuk; Sohn, Choon Hee; Choi, Pil Jo; Webb, W Richard

    2002-01-01

    To evaluate the influence of lung volume on dependent lung opacity seen at thin-section CT. In thirteen healthy volunteers, thin-section CT scans were performed at three levels (upper, mid, and lower portion of the lung) and at different lung volumes (10, 30, 50, and 100% vital capacity), using spirometric gated CT. Using a three-point scale, two radiologists determined whether dependent opacity was present, and estimated its degree. Regional lung attenuation at a level 2 cm above the diaphragm was determined using semiautomatic segmentation, and the diameter of a branch of the right lower posterior basal segmental artery was measured at each different vital capacity. At all three anatomic levels, dependent opacity occurred significantly more often at lower vital capacities (10, 30%) than at 100% vital capacity (p = 0.001). Visually estimated dependent opacity was significantly related to regional lung attenuation (p < 0.0001), which in dependent areas progressively increased as vital capacity decreased (p < 0.0001). The presence of dependent opacity and regional lung attenuation of a dependent area correlated significantly with increased diameter of a segmental arterial branch (r = 0.493 and p = 0.0002; r = 0.486 and p = 0.0003, respectively). Visual estimation and CT measurements of dependent opacity obtained by semiautomatic segmentation are significantly influenced by lung volume and are related to vascular diameter.

  11. Dimensional analysis of human saphenous vein grafts: Implications for external mesh support.

    PubMed

    Human, Paul; Franz, Thomas; Scherman, Jacques; Moodley, Lovendran; Zilla, Peter

    2009-05-01

    Constrictive external mesh support of vein grafts was shown to mitigate intimal hyperplasia in animal experiments. To determine the degree of constriction required for the elimination of dimensional irregularities in clinically used vein grafts, a detailed anatomic study of human saphenous veins was conducted. In 200 consecutive patients having coronary artery bypass grafting, harvested saphenous veins (length 34.4 +/- 10.8 cm) were analyzed regarding diameter irregularities, side branch distribution, and microstructure. The mean outer diameter of surgically distended saphenous veins was 4.2 +/- 0.6 mm (men, 4.3 +/- 0.6 mm vs women, 3.9 +/- 0.5 mm; P < .0001). Although the outer diameter significantly decreased over the initial 18 cm (-7.6%; P < .0001), the overall increase between malleolus and thigh was not significant (+11.2%). Smaller-diameter veins (<3.5 mm) had more pronounced diameter fluctuations than larger veins (31.8% +/- 11.0% vs 21.2% +/- 8.8%; P < .0001), with more than 71% of all veins showing caliber changes of more than 20%. There was 1 side branch every 5.4 +/- 4.3 cm, with a significantly higher incidence between 20 and 32 cm from the malleolus (P < .0001 to distal, P < .0004 to proximal). Generally, women had more side branches than men (0.30 +/- 0.15 cm(-1) vs 0.25 +/- 0.12 cm(-1); P = .0190). Thick-walled veins (565.7 +/- 138.4 mum) had a significantly higher number of large side branches (P < .0001), and thin-walled veins (398.7 +/- 123.2 mum) had significantly more small side branches (P < .0001). Pronounced intimal thickening ("cushions") was found in 28% of vessels (119.8 +/- 28.0 mum vs 40.1 +/- 18.2 mum; P < .0001). Although the preferential location of side branches may be addressed by the deliberate discarding of infragenicular vein segments, a diameter constriction of 27% on average would eliminate diameter irregularities in 98% of vein grafts.

  12. Three-dimensional nanostructure determination from a large diffraction data set recorded using scanning electron nanodiffraction

    DOE PAGES

    Meng, Yifei; Zuo, Jian -Min

    2016-07-04

    A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less

  13. System design and integration of the large-scale advanced prop-fan

    NASA Technical Reports Server (NTRS)

    Huth, B. P.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that blades with thin airfoils and aerodynamic sweep extend the inherent efficiency advantage that turboprop propulsion systems have demonstrated to the higher speed to today's aircraft. Hamilton Standard has designed a 9-foot diameter single-rotation Prop-Fan. It will test the hardware on a static test stand, in low speed and high speed wind tunnels and on a research aircraft. The major objective of this testing is to establish the structural integrity of large scale Prop-Fans of advanced construction, in addition to the evaluation of aerodynamic performance and the aeroacoustic design. The coordination efforts performed to ensure smooth operation and assembly of the Prop-Fan are summarized. A summary of the loads used to size the system components, the methodology used to establish material allowables and a review of the key analytical results are given.

  14. Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings.

    PubMed

    Teng, Lei; Zhang, Hongying; Dong, Yongkang; Zhou, Dengwang; Jiang, Taofei; Gao, Wei; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2016-09-15

    A temperature-compensated distributed hydrostatic pressure sensor based on Brillouin dynamic gratings (BDGs) is proposed and demonstrated experimentally for the first time, to the best of our knowledge. The principle is to measure the hydrostatic pressure induced birefringence changes through exciting and probing the BDGs in a thin-diameter pure silica polarization-maintaining photonic crystal fiber. The temperature cross-talk to the hydrostatic pressure sensing can be compensated through measuring the temperature-induced Brillouin frequency shift (BFS) changes using Brillouin optical time-domain analysis. A distributed measurement of hydrostatic pressure is demonstrated experimentally using a 4-m sensing fiber, which has a high sensitivity, with a maximum measurement error less than 0.03 MPa at a 20-cm spatial resolution.

  15. Research Update: Synthesis of sub-15-nm diameter silver nanowires through a water-based hydrothermal method: Fabrication of low-haze 2D conductive films

    NASA Astrophysics Data System (ADS)

    Jang, Hae-Won; Kim, Yong-Hoe; Lee, Ki-Wook; Kim, Yoon-Mi; Kim, Jin-Yeol

    2017-08-01

    We synthesized ultra-thin Ag nanowire (Ag NWs) with sub-15 nm diameters and aspect ratios of 1000 through a water-based high-pressure hydrothermal method in the presence of a tetrabutylammonium dichlorobromide organic salt and glucose reducing agent. In the crystal growth stage, the diameter of the NWs could be controlled by adjusting the pressure, and 15-nm diameter wires were obtained at a pressure of 190 psi. These 2D conductive Ag NW network films showed an excellent optical performance with low haze value of ≤1.0% and 94.5% transmittance at a low sheet resistance of 20 Ω/sq.

  16. Ovum pick-up in sheep: a comparison between different aspiration devices for optimal oocyte retrieval.

    PubMed

    Rodríguez, C; Anel, L; Alvarez, M; Anel, E; Boixo, J C; Chamorro, C A; de Paz, P

    2006-04-01

    In vivo ovum pick-up (OPU) in sheep may be improved with a proper choice of aspiration elements (needle and tubing) and aspiration vacuum pressure. In the present study, two experiments were carried out. In Expt 1, visible follicles in ovaries of slaughtered ewes (treated separately according to their diameters: small<3 mm, medium 3-5 mm and large>5 mm) were aspirated using different combinations of the three studied factors such as aspiration flow rate (10, 20, 30, 40 and 50 ml water/min), needle gauge (18 and 20 G) and tubing inner diameter (1, 2 or 3 mm internal diameter). In Expt 2, a study with two 18 G needles of different lengths (18 G: 82 mm; 18 GL: 600 mm) was carried out, using ovaries obtained post-mortem, and performing in vivo laparoscopic follicular aspiration on ewes. We considered good quality oocytes as those with both complete compact cumulus and a homogeneous cytoplasm. Recovery rate, proportion of good quality oocytes (good quality oocytes/100 oocytes recovered) and overall efficiency (good quality oocytes/100 follicles aspirated) were noted. In Expt 1, aspiration flow rate affect remarkable proportion of good quality oocytes (69.5%, 50.5%, 44.8%, 36.5% and 28.3% for flows from 10 to 50 ml/min respectively, p<0.05). Needle gauge did not affect aspiration device efficiency. Thin and intermediate tubings were more effective (overall efficiency rates: 34.9%, 32.3% and 28.1% for 1, 2 and 3 mm respectively, p<0.05). Follicle size did not affect recovery rate, but proportion of good quality oocytes was higher for large (77.9%) and medium (64.4%) follicles (p<0.05). Finally, some combinations of the aspiration device showed greater effectiveness. In Expt 2, needle length did not influence recovery rate, but good quality oocytes rate was significantly modified both post-mortem and in vivo (good quality rate for 18 G vs 18 GL needles: 69.5% vs 47.7% and 58.1% vs 25.4%, post-mortem and in vivo respectively, p<0.05). We conclude that low-aspiration flow rates (10 and 20 ml/min) with thin or intermediate tubings (1 and 2 mm), and any short needle (18 G or 20 G) are the most adequate aspiration factors for OPU in sheep.

  17. New Alloys for Electroformed Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Engelhaupt, D.; Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Russell, J. K.

    2000-01-01

    The process of electroforming x-ray mirror shells off a superpolished mandrel has been widely used. The recently launched XMM mission is a good example of this, containing 174 such mirror shells of diameters ranging from 0.3-0.7 m and thicknesses of 0.47-1.07 mm. To continue to utilize this technique for the next generation of x-ray observatories, where ever-larger collecting areas will be required within the constraints of tight weight budgets, demands that new alloys be developed that can withstand the large stresses imposed on very thin shells by the replication and handling processes. Towards this end, we began a development program in late 1997 to produce a high-strength alloy suitable for electroforming very thin high-resolution x-ray optics. The requirements for this task are quite severe; not only must the electroformed deposit be very strong, it must also have extremely low residual stresses to prevent serious figure distortions in large thin-walled shells. Further, the electroforming must be performed at near room temperature, as large temperature changes will modify the figure of the mandrel, in an environment that is not corrosive for the mandrel. The figure of merit for the strength of the electroformed deposit is its Precision Elastic Limit (PEL). This is a measure of permanent strain, at the few parts per million level, under applied stress. Pure nickel is very ductile and will permanently deform, at the parts-per-million level under loads of a few x 10(exp 7) Pa. These stresses are easily exceeded when thin-walled shells (150 micron thick) are replicated. Our goal was to develop an alloy an order of magnitude stronger than this. We will present the results of our development program, showing the evolution of our plating baths through to our present 'glassy' nickel alloy that satisfies the goals above. For each we will show the electroforming characteristics of the bath and the PEL measurements for the resulting alloys. We estimate the ultimate limit on shell thickness and mass for x-ray mirrors produced in these baths.

  18. Fifteen-year results from a Grand fir-Shasta red fir spacing study.

    Treesearch

    K.W. Seidel

    1987-01-01

    A 43-year-old, even-aged stand of advance reproduction of grand fir and Shasta red fir in central Oregon responded to release and thinning with diameter and height growth two to three times the prerelease rate. The response began the first growing season after the overstory was killed with 2,4-D. Diameter growth during the second and third 5-year periods after release...

  19. Effect of logging wounds on diameter growth of sawlog-size Appalachian hardwood crop trees

    Treesearch

    Neil I. Lamson; H. Clay Smith; H. Clay Smith

    1988-01-01

    In previously thinned, even-aged Appalachian hardwood stands, 5-year diameter growth of 102 wounded and 102 unwounded codominant crop trees were compared. A wounded crop tre was defined as one with at least one exposed sapwood logging wound at least 100 inch2 in size. An unwounded crop tree of the same species and size was selected near each of the 102 wounded trees....

  20. Partial cutting of western hemlock and sitka spruce in southeast Alaska.

    Treesearch

    Wilbur A. Farr; A.S. Harris

    1971-01-01

    This study of response to partial cutting over a 17-year period in a 96-year-old stand of western hemlock-Sitka spruce at Karta Bay, Alaska, showed that crop trees left after partial cutting were able to increase or maintain &out the same rate of diameter growth as before thinning, but growth in diameter of trees in an unthinned stand followed the norma2 pattern of...

  1. Thinning and Regeneration in Puerto Rico’s Colorado Forest, With Comments About Their Effect on the Puerto Rican Parrot.

    Treesearch

    Peter L. Weaver

    2001-01-01

    A 50 % basal area reduction in Puerto Rico’s colorado forest had little immediate impact on diameter at breast height growth for most residual stems. A slight positive response was evident for several species after 5 to 30 yrs. Instead, thinning served as a major stimulus for a massive ingrowth of two common colorado forest tree species important to the...

  2. Growth and Yield Predictions for Thinned and Unthinned Slash Pine Plantations on Cutover Sites in the West Gulf Region

    Treesearch

    Stanley J. Zarnoch; Donald P. Feduccia; V. Clark Baldwin; Tommy R. Dell

    1991-01-01

    A-growth and yield model has been developed for slash pine plantations on problem-free cutover sites in the west gulf region. The model was based on the moment-percentile method using the Weibull distribution for tree diameters. This technique was applied to untbinned and thinned stand projections and, subsequently, to the prediction of residual stands immediately...

  3. Fifteen-year growth patterns after thinning a ponderosa-Jeffrey pine plantation in northeastern California

    Treesearch

    William W. Oliver

    1979-01-01

    Growth was analyzed after one thinning in a plantation of pole-size ponderosa and Jeffrey pines on land having a site index of 50 feet at 50 years. Periodic annual increment was determined for each of three 5-year periods. On this basis, increment in diameter and cubic volume were found to he related closely to stand basal area only. Basal area and height increment,...

  4. Developing equations for estimating tree component biomass for naturally regenerated shorteaf pine in southeast Oklahoma with application to biomass partitioning in thinned and unthinned stands

    Treesearch

    Nabin Gyawali; Thomas B. Lynch; Rodney E. Will

    2013-01-01

    Traditionally, the main focus of forest production has usually been to maximize allocation of biomass to merchantable stem wood. But the assessment of biomass partitioning in stands is needed to address management concerns such as stem production and allocation, carbon sequestration, wildland fire, whole tree harvesting, etc. Thinning mainly increases the bole diameter...

  5. Femtosecond laser texturing of glass substrates for improved light in-coupling in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Imgrunt, J.; Chakanga, K.; von Maydell, K.; Teubner, U.

    2017-12-01

    Due to their low thickness, thin-film solar cells usually suffer from poor light absorption. To improve this situation, light-management is necessary. Within the present work, in order to enhance light coupling, an ultra-short-pulse laser is used for texturing substrates. Here commercially available multi component soda lime glass substrates are patterned with a dot grid at ambient air pressure with 150 fs pulses, centered at a wavelength of 775 nm. The structures consist of small depressions with approximately 3 μ m diameter. Varying depths of around 300 nm could be well reproduced. Reducing the pitch (distance between structure-to-structure centers), from ten to approximately one times the crater diameter, influences the structure quality and increases the deformation of the surface in the vicinity of the depressions. Consequently, the diffuse light scattering is improved from 0 to 30% haze. Overall, the presented approach is quite simple. This single-step texturing technique which can be easily used on different substrates is applicable in a wide range of thin-film solar cells. It has the advantage that ultra-thin electrodes can be used as the front contact as well as the potential to be integrated into a PV production line. Thus, complicated layer stacks for absorption enhancement can be avoided.

  6. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species

    PubMed Central

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides. PMID:28257454

  7. Trait-based characterisation of soil exploitation strategies of banana, weeds and cover plant species.

    PubMed

    Tardy, Florence; Damour, Gaëlle; Dorel, Marc; Moreau, Delphine

    2017-01-01

    Cover plants can be introduced in cropping systems to provide agroecosystem services, including weed control via competition for resources. There is currently no consensus on how to identify the best cover plant species, while trait-based approaches are promising for screening plant species due to their agroecosystem service provision potential. This study was carried out to characterize soil exploitation strategies of cover plant species in banana agroecosystems using a trait-based approach, and in turn identify cover plant species with a high weed control potential via competition for soil resources in banana cropping systems. A field experiment was conducted on 17 cover plant species, two weed species and two banana cultivars grown individually. Four functional traits were measured. Two of them (i.e., the size of the zone explored by roots and the root impact density) were used to characterize root system soil exploration patterns. Two other traits (i.e., specific root length and root diameter) were used to characterize resource acquisition within the soil zone explored by the roots. All studied traits exhibited marked variations among species. The findings suggested a trade-off between the abilities of species to develop a limited number of large diameter roots exploring a large soil zone versus many thin roots exploring a smaller soil zone. Three soil-resource exploitation strategies were identified among species: (i) with large diameter roots that explore a large soil zone; (ii) with small diameter roots and a high specific length that explore a smaller soil zone; and (iii) with a high total root-impact density and an intermediate specific root length that explore the uppermost soil layers. Interestingly, in our panel of species, no correlations with regard to belowground and aboveground strategies were noted: species with an acquisitive belowground strategy could display an acquisitive or a conservative aboveground strategy. The findings of this study illustrated that a trait-based approach could be used to identify plant species with potential for competing with weeds, while minimising competition with banana. Six of the 17 studied cover crop species were identified as having this potential. The next step will be to assess them for their weed control performances in banana cropping systems with low reliance on herbicides.

  8. A sensitivity-enhanced refractive index sensor using a single-mode thin-core fiber incorporating an abrupt taper.

    PubMed

    Shi, Jie; Xiao, Shilin; Yi, Lilin; Bi, Meihua

    2012-01-01

    A sensitivity-enhanced fiber-optic refractive index (RI) sensor based on a tapered single-mode thin-core diameter fiber is proposed and experimentally demonstrated. The sensor head is formed by splicing a section of tapered thin-core diameter fiber (TCF) between two sections of single-mode fibers (SMFs). The cladding modes are excited at the first SMF-TCF interface, and then interfere with the core mode at the second interface, thus forming an inter-modal interferometer (IMI). An abrupt taper (tens of micrometers long) made by the electric-arc-heating method is utilized, and plays an important role in improving sensing sensitivity. The whole manufacture process only involves fiber splicing and tapering, and all the fabrication process can be achieved by a commercial fiber fusion splicer. Using glycerol and water mixture solution as an example, the experimental results show that the refractive index sensitivity is measured to be 0.591 nm for 1% change of surrounding RI. The proposed sensor structure features simple structure, low cost, easy fabrication, and high sensitivity.

  9. Aqueous chemical growth of alpha-Fe2O3-alpha-Cr203 nanocompositethin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vayssieres, Lionel; Guo, Jinghua; Nordgren, Joseph

    2001-06-30

    We are reporting here on the inexpensive fabrication and optical properties of an iron(III) oxide chromium(III) oxide nanocomposite thin film of corundum crystal structure. Its novel and unique-designed architecture consists of uniformed, well-defined and oriented nanorods of Hematite (alpha-Fe2O3) of 50 nm in diameter and 500nm in length and homogeneously distributed nonaggregated monodisperse spherical nanoparticles of Eskolaite (alpha-Cr2O3) of 250 nm in diameter. This alpha-Fe2O3 alpha-Cr2O3 nanocomposite thin film is obtained by growing, directly onto transparent polycrystalline conducting substrate, an oriented layer of hematite nanorods and growing subsequently, the eskolaite layer. The synthesis is carried out by a template-free, low-temperature,more » multilayer thin film coating process using aqueous solution of metal salts as precursors. Almost 100 percent of the light is absorbed by the composite film between 300 and 525 nm and 40 percent at 800 nm which yields great expectations as photoanode materials for photovoltaic cells and photocatalytic devices.« less

  10. Visual Recovery after Macular Hole Surgery and Related Prognostic Factors.

    PubMed

    Kim, Soo Han; Kim, Hong Kyu; Yang, Jong Yun; Lee, Sung Chul; Kim, Sung Soo

    2018-04-01

    To describe the visual recovery and prognostic factors after macular hole surgery. A retrospective chart review was conducted. Charts of patients with idiopathic macular holes who underwent surgery by a single surgeon at Severance Hospital between January 1, 2013 and July 31, 2015 were reviewed. The best-corrected visual acuity (BCVA) score was recorded preoperatively and at 1 day and 1, 3, 6, 9, and 12 months after surgery. The variables of age, sex, macular hole size, basal hole diameter, choroidal thickness, and axial length were also noted. Twenty-six eyes of 26 patients were evaluated. Twenty-five patients (96.2%) showed successful macular hole closure after the primary operation. The BCVA stabilized 6 months postoperatively. A large basal hole diameter (p = 0.006) and thin choroid (p = 0.005) were related to poor visual outcomes. Poor preoperative BCVA (p < 0.001) and a thick choroid (p = 0.020) were associated with greater improvement in BCVA after surgery. Visual acuity stabilized by 6 months after macular hole surgery. Choroidal thickness was a protective factor for final BCVA and visual improvement after the operation. © 2018 The Korean Ophthalmological Society.

  11. Detailed examination of LDEF's frame and the A0178 thermal blankets by the meteoroid and debris special investigations group

    NASA Astrophysics Data System (ADS)

    See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.

    1992-06-01

    A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.

  12. Detailed examination of LDEF's frame and the A0178 thermal blankets by the meteoroid and debris special investigations group

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Mack, Kimberly S.; Zolensky, Michael E.

    1992-01-01

    A responsibility of the group is to define the hypervelocity particle environment encountered by LDEF during its stay in low Earth orbit. LDEF's 6061-T6 aluminum frame and the 'Teflon silver-inconel paint' thermal blankets represent large surface areas that were widely distributed around the spacecraft. The results are reported of high resolution scans of approx. 0.36 and approx. 0.31 sq m for the intercostals and thermal blankets, respectively. The findings are in qualitative agreement with existing model predictions that suggest high differential bombardment histories for surfaces pointing into specific directions relative to the velocity vector of a non-spinning platform in LEO. The production rate for craters greater than or = 50 microns in diameter in aluminum and penetration holes greater than or = 100 microns in diameter in thin foil materials differ by more than a factor of 10 between forward and rearward facing surfaces. These are substantial differences that must be considered during the design of future long duration space platforms in LEO.

  13. Nests, eggs, and nestlings of the Restinga Antwren Formicivora littoralis (Aves: Thamnophilidae).

    PubMed

    Chaves, Flávia G; Vecchi, Maurício B; Laurindo, Thiago F S; Alves, Maria Alice S

    2013-01-01

    We describe the nest, eggs, and nestlings of the Restinga Antwren (Formicivora littoralis), an endangered bird of Restinga ecosystem (sandy coastal plain vegetation) that is endemic to Rio de Janeiro state. Twelve nests were found at the edges of trails or natural gaps at Massambaba Restinga region, in different supporting plants and heights from the ground (X ± SD 1.27 ± 0.97 m, range 0.27 to 3.45 m). Nests were cup-shaped and were in horizontal forks attached to branches at three to five points with whitish, soft, and thin cotton-like vegetable fiber. The nests' cup shape and measurements were similar to congeneric species, but nest material was different. Eggs were white with brown spots concentrated on the large end or around the middle, giving the appearance of a rough brown ring. Their mean (± SD) minimum diameter was 13.1 ± 0.34 mm, with maximum diameter of 18.0 ± 0.38 mm, and mass of 1.7 ± 0.18 g (n = 8). We found two nestlings completely naked on their first day after hatching.

  14. Comparison of thin-film resistance heat-transfer gages with thin-skin transient calorimeter gages in conventional hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1981-01-01

    Thin film gages deposited at the stagnation region of small (8.1-mm-diameter) hemispheres and gages mounted flush with the surface of a sharp-leading-edge flat plate were tested in the Langley continuous-flow hypersonic tunnel and in the Langley hypersonic CF4 tunnel. Two substrate materials were tested, quartz and a machinable glass-ceramic. Small hemispheres were also tested utilizing the thin-skin transient calorimeter technique usually employed in conventional tunnels. One transient calorimeter model was a thin shell of stainless steel, and the other was a thin-skin insert of stainless steel mounted into a hemisphere fabricated from a machinable-glass-ceramic. Measured heat-transfer rates from the various hemispheres were compared with one another and with predicted rates. The results demonstrate the feasibility and advantages of using-film resistance heat-transfer gages in conventional hypersonic wind tunnels over a wide range of conditions.

  15. [Study on anti-coagulant property of radio frequency sputtering nano-sized TiO2 thin films].

    PubMed

    Tang, Xiaoshan; Li, Da

    2010-12-01

    Nano-TiO2 thin films were prepared by Radio frequency (RF) sputtering on pyrolytic carbon substrates. The influences of sputtering power on the structure and the surface morphology of TiO2 thin films were investigated by X-ray diffraction (XRD), and by scanning electron microscopy (SEM). The results show that the TiO2 films change to anatase through the optimum of sputtering power. The mean diameter of nano-particle is about 30 nm. The anti-coagulant property of TiO2 thin films was observed through platelet adhesion in vitro. The result of experiment reveals the amount of thrombus on the TiO2 thin films being much less than that on the pyrolytic carbon. It also indicates that the RF sputtering Nano-sized TiO2 thin films will be a new kind of promising materials applied to artificial heart valve and endovascular stent.

  16. Thickness Constraints on the Icy Shells of the Galilean Satellites from a Comparison of Crater Shapes

    NASA Technical Reports Server (NTRS)

    Schenk, Paul M.

    2002-01-01

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometers of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7-8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25-0.5 times the thickness of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  17. Self-organized antireflection CuIn(S,Se)2 nano-protrusions on flexible substrates by ion erosion based on CuInS2 nanocrystal precursor inks

    NASA Astrophysics Data System (ADS)

    Yen, Yu-Ting; Wang, Yi-Chung; Chen, Chia-Wei; Tsai, Hung-Wei; Chen, Yu-Ze; Hu, Fan; Chueh, Yu-Lun

    2015-11-01

    In this work, an approach to achieve surface nano-protrusions on a chalcopyrite CuIn(S,Se)2 thin film was demonstrated. Home-made CuInS2 nanocrystals with average diameter of 20 nm were prepared and characterized. By applying ion erosion process on the CuIn(S,Se)2 film, large-area self-aligned nano-protrusions can be formed. Interestingly, the process can be applied on flexible substrate where the CuIn(S,Se)2 film remains intact with no visible cracking after several bending tests. In addition, reflectance spectra reveal the extraordinary anti-reflectance characteristics of nano-protrusions on the CuIn(S,Se)2 film with the incident light from 350 to 2000 nm. A 36-cm2 CuIn(S,Se)2 film with nano-protrusions on flexible molybdenum foil substrate has been demonstrated, which demonstrated the feasibility of developing low cost with a high optical absorption CuIn(S,Se)2 flexible thin film.

  18. Synthesis of colloidal Zn(Te,Se) alloy quantum dots

    NASA Astrophysics Data System (ADS)

    Asano, H.; Arai, K.; Kita, M.; Omata, T.

    2017-10-01

    Colloidal Zn(Te1-x Se x ) quantum dots (QDs), which are highly mismatched semiconductor alloys, were synthesized by the hot injection of an organometallic solution, and the composition and size dependence of their optical gap were studied together with the theoretical calculation using the finite-depth-well effective mass approximation. The optical gaps exhibited considerable negative deviation from the mole fraction weighted mean optical gaps of ZnTe and ZnSe, i.e. a large optical gap bowing was observed, similar to the bulk and thin-film alloys. The composition and size dependence of optical gaps agreed well with theoretically calculated ones employing a bowing parameter similar to that of the bulk alloys; therefore, the extent of the optical gap bowing in these alloy QDs is concluded to be the same as that in bulk and thin-film alloys. The optical gaps of Zn(Te1-x Se x ) QDs with diameters of 3.5-5 nm, where x ~ 0.35, were close to the energy corresponding to green light, indicating that those QDs are very promising as green QD-phosphors.

  19. Integrated waveguide and nanostructured sensor platform for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearce, Stuart J.; Pollard, Michael E.; Oo, SweZin; Chen, Ruiqi; Kalsi, Sumit; Charlton, Martin D. B.

    2014-01-01

    Limitations of current sensors include large dimensions, sometimes limited sensitivity and inherent single-parameter measurement capability. Surface-enhanced Raman spectroscopy can be utilized for environment and pharmaceutical applications with the intensity of the Raman scattering enhanced by a factor of 10. By fabricating and characterizing an integrated optical waveguide beneath a nanostructured precious metal coated surface a new surface-enhanced Raman spectroscopy sensing arrangement can be achieved. Nanostructured sensors can provide both multiparameter and high-resolution sensing. Using the slab waveguide core to interrogate the nanostructures at the base allows for the emission to reach discrete sensing areas effectively and should provide ideal parameters for maximum Raman interactions. Thin slab waveguide films of silicon oxynitride were etched and gold coated to create localized nanostructured sensing areas of various pitch, diameter, and shape. These were interrogated using a Ti:Sapphire laser tuned to 785-nm end coupled into the slab waveguide. The nanostructured sensors vertically projected a Raman signal, which was used to actively detect a thin layer of benzyl mercaptan attached to the sensors.

  20. Nanomechanics of biocompatible hollow thin-shell polymer microspheres.

    PubMed

    Glynos, Emmanouil; Koutsos, Vasileios; McDicken, W Norman; Moran, Carmel M; Pye, Stephen D; Ross, James A; Sboros, Vassilis

    2009-07-07

    The nanomechanical properties of biocompatible thin-shell hollow polymer microspheres with approximately constant ratio of shell thickness to microsphere diameter were measured by nanocompression tests in aqueous conditions. These microspheres encapsulate an inert gas and are used as ultrasound contrast agents by releasing free microbubbles in the presence of an ultrasound field as a result of free gas leakage from the shell. The tests were performed using an atomic force microscope (AFM) employing the force-distance curve technique. An optical microscope, on which the AFM was mounted, was used to guide the positioning of tipless cantilevers on top of individual microspheres. We performed a systematic study using several cantilevers with spring constants varying from 0.08 to 2.3 N/m on a population of microspheres with diameters from about 2 to 6 microm. The use of several cantilevers with various spring constants allowed a systematic study of the mechanical properties of the microsphere thin shell at different regimes of force and deformation. Using thin-shell mechanics theory for small deformations, the Young's modulus of the thin wall material was estimated and was shown to exhibit a strong size effect: it increased as the shell became thinner. The Young's modulus of thicker microsphere shells converged to the expected value for the macroscopic bulk material. For high applied forces, the force-deformation profiles showed a reversible and/or irreversible nonlinear behavior including "steps" and "jumps" which were attributed to mechanical instabilities such as buckling events.

  1. Finite element modelling of AA6063T52 thin-walled tubes under quasi-static axial loading

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ismail, AE

    2018-04-01

    The behavior of aluminum alloy 6063T52 thin walled tubes have been present in this paper to determine absorbed energy under quasi-static axial loading. The correlation and comparison have been implemented for each experimental and finite element analysis results, respectively. Wall-thickness of 1.6 and 1.9 mm were selected and all specimen tested under room temperature standard. The length of each specimen were fixed at 125 mm as well as diameter as well as a width and diameter of the tube at 50.8 mm. The two types of tubular cross-section were examined whereas a round and square thin-walled profiles. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyzed for each specimen and model to see the behavior induced to failure under progressive collapse. Result showed that a correlation less than 5% different between both of comparison experimental and finite element model. It has been found that the thin walled round tube absorbed more energy rather than square profile in term of specific energy with both of either 1.6 or 1.9 of 23.93% and 35.36%, respectively. Overall for crush force efficiency (CFE) of each tube profile around 0.42 to 0.58 value. Indicated that the all specimen profile fail under progressive damage. The calibration between deformed model and experimental specimen were examined and discussed. It was found that the similarity failure mechanism observed for each thin walled profiles.

  2. On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power.

    PubMed

    Dietze, Holger H; Cox, Michael J

    2003-02-01

    Soft contact lenses produce a significant level of spherical aberration affecting their power on-eye. A simple model assuming that a thin soft contact lens aligns to the cornea predicts that these effects are similar on-eye and off-eye. The wavefront aberration for 17 eyes and 33 soft contact lenses on-eye was measured with a Shack-Hartmann wavefront sensor. The Zernike coefficients describing the on-eye spherical aberration of the soft contact lens were compared with off-eye ray-tracing results. Paraxial and effective lens power changes were determined. The model predicts the on-eye spherical aberration of soft contact lenses closely. The resulting power change for a +/- 7.00 D spherical soft contact lens is +/- 0.5 D for a 6-mm pupil diameter and +/- 0.1 D for a 3-mm pupil diameter. Power change is negligible for soft contact lenses corrected for off-eye spherical aberration. For thin soft contact lenses, the level of spherical aberration and the consequent power change is similar on-eye and off-eye. Soft contact lenses corrected for spherical aberration in air will be expected to be aberration-free on-eye and produce only negligibly small power changes. For soft contact lenses without aberration correction, for higher levels of ametropia and large pupils, the soft contact lens power should be determined with trial lenses with their power and p value similar to the prescribed lens. The benefit of soft contact lenses corrected for spherical aberration depends on the level of ocular spherical aberration.

  3. Polishing aspheric mirrors of zero-thermal expansion cordierite ceramics (NEXCERA) for space telescope

    NASA Astrophysics Data System (ADS)

    Sugawara, Jun; Kamiya, Tomohiro; Mikashima, Bumpei

    2017-09-01

    Ultra-low thermal expansion ceramics NEXCERATM is regarded as one of potential candidate materials crucial for ultralightweight and thermally-stable optical mirrors for space telescopes which are used in future optical missions satisfying extremely high observation specifications. To realize the high precision NEXCERA mirrors for space telescopes, it is important to develop a deterministic aspheric shape polishing and a precise figure correction polishing method for the NEXCERA. Magnetorheological finishing (MRF) was tested to the NEXCERA aspheric mirror from best fit sphere shape, because the MRF technology is regarded as the best suited process for a precise figure correction of the ultralightweight mirror with thin sheet due to its advantage of low normal force polishing. As using the best combination of material and MR fluid, the MRF was performed high precision figure correction and to induce a hyperbolic shape from a conventionally polished 100mm diameter sphere, and achieved the sufficient high figure accuracy and the high quality surface roughness. In order to apply the NEXCERA to a large scale space mirror, for the next step, a middle size solid mirror, 250 mm diameter concave parabola, was machined. It was roughly ground in the parabolic shape, and was lapped and polished by a computer-controlled polishing machine using sub-aperture polishing tools. It resulted in the smooth surface of 0.6 nm RMS and the figure accuracy of λ/4, being enough as pre-MRF surface. A further study of the NEXCERA space mirrors should be proceeded as a figure correction using the MRF to lightweight mirror with thin mirror sheet.

  4. Responses of forest carbon and water coupling to thinning treatments at both the leaf and individual tree levels in a 16-year-old natural Pinus Contorta stand

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wei, A.; del Campo, A.; Li, Q.; Giles-Hansen, K.

    2017-12-01

    Large-scale disturbances in Canadian forests, including mountain pine beetle infestation in western Canada, forest fires, timber harvesting and climate change impacts, have significantly affected both forest carbon and water cycles. Thinning, which selectively removes trees at a given forest stand, may be an effective tool to mitigate the effect of these disturbances. Various studies have been conducted to assess the thinning effect on growth, transpiration, and nutrient availability; however, relatively few studies have been conducted to examine its effect on the coupling of forest carbon and water. Thus, the objective of this research is to evaluate the effect of thinning on forest carbon and water coupling at both the leaf and tree levels in a 16-year-old natural Pinus Contorta forest in the interior of British Columbia in Canada. We used water-use efficiency (WUE), the ratio of basal area increment (BA) to tree transpiration (E), as the indicator of the carbon and water coupling at individual tree level, and use intrinsic water-use efficiency (iWUE), the ratio of photosynthesis (A) to stomatal conductance (G), to represent the coupling at the leaf level. Field experiments were conducted in the Upper Penticton Watershed where the mean annual precipitation is 750 mm with seasonal drought during summer. A randomized block design was used, with three blocks each containing two thinning intensities and one unthinned plot (T1: 4,500, T2: 1,100, C: 26,400 trees per ha.). From May to October 2016, basal diameter, sap flow, and environmental conditions were monitored continuously at every 20 minutes, while A and G were measured weekly. Preliminary results showed that thinning significantly increased solar radiation, wind speed, and soil moisture in the treatment plots, where the changes observed were proportional to the intensity of the thinning; but thinning did not change stand level temperature and relative humidity. Thinning also significantly enhanced tree E and BA, but no significant differences in WUE at both spatial scales were observed and no scaling relationship was detected. Overall, our data indicated that in the short term, thinning enhanced water consumption and carbon assimilation, but did not alter their coupling. However, the impact of thinning needs further investigation over a longer research period.

  5. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films

    NASA Astrophysics Data System (ADS)

    Bergin, Stephen M.; Chen, Yu-Hui; Rathmell, Aaron R.; Charbonneau, Patrick; Li, Zhi-Yuan; Wiley, Benjamin J.

    2012-03-01

    This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells.This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of different lengths but the same diameter enabled the quantification of the effect of length on the conductance and transmittance of silver nanowire films. Finite-difference time-domain calculations were used to determine the effect of nanowire diameter, overlap, and hole size on the transmittance of a nanowire network. For individual nanowires with diameters greater than 50 nm, increasing diameter increases the electrical conductance to optical extinction ratio, but the opposite is true for nanowires with diameters less than this size. Calculations and experimental data show that for a random network of nanowires, decreasing nanowire diameter increases the number density of nanowires at a given transmittance, leading to improved connectivity and conductivity at high transmittance (>90%). This information will facilitate the design of transparent, conducting nanowire films for flexible displays, organic light emitting diodes and thin-film solar cells. Electronic supplementary information (ESI) available: Includes methods and transmission spectra of nanowire films. See DOI: 10.1039/c2nr30126a

  6. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip

    NASA Astrophysics Data System (ADS)

    Cardoso, F. A.; Ferreira, H. A.; Conde, J. P.; Chu, V.; Freitas, P. P.; Vidal, D.; Germano, J.; Sousa, L.; Piedade, M. S.; Costa, B. A.; Lemos, J. M.

    2006-04-01

    Magnetoresistive biochips have been recently introduced for the detection of biomolecular recognition. In this work, the detection site incorporates a thin-film diode in series with a magnetic tunnel junction (MTJ), leading to a matrix-based biochip that can be easily scaled up to screen large numbers of different target analytes. The fabricated 16×16 cell matrix integrates hydrogenated amorphous silicon (a-Si:H) diodes with aluminum oxide barrier MTJ. Each detection site also includes a U-shaped current line for magnetically assisted target concentration at probe sites. The biochip is being integrated in a portable, credit card size electronics control platform. Detection of 250 nm diameter magnetic nanoparticles by one of the matrix cells is demonstrated.

  7. Improved strength of silk fibers in Bombyx mori trimolters induced by an anti-juvenile hormone compound.

    PubMed

    Guo, Kaiyu; Dong, Zhaoming; Zhang, Yan; Wang, Dandan; Tang, Muya; Zhang, Xiaolu; Xia, Qingyou; Zhao, Ping

    2018-05-01

    Bombyx mori silk fibers with thin diameters have advantages of lightness and crease-resistance. Many studies have used anti-juvenile hormones to induce trimolters in order to generate thin silk; however, there has been comparatively little analysis of the morphology, structure and mechanical properties of trimolter silk. This study induced two kinds of trimolters by appling topically anti-juvenile hormones and obtained thin diameter silk. Scanning electron microscope (SEM), FTIR analysis, tensile mechanical testing, chitin staining were used to reveal that the morphology, conformation and mechanical property of the trimolter silk. Cocoon of trimolters were highly densely packed by thinner fibers and thus had small apertures. We found that the conformation of trimolter silk fibroin changed and formed more β-sheet structures. In addition, analysis of mechanical parameters yielded a higher Young's modulus and strength in trimolter silk than in the control. By chitin staining of silk gland, we postulated that the mechanical properties of trimolters' silk was enhanced greatly during to the structural changes of silk gland. We induced trimolters by anti-juvenile hormones and the resulting cocoons were more closely packed and had smaller silk fiber diameters. We found that the conformation of trimolters silk fibroin had a higher content of β-sheet structures and better mechanical properties. Our study revealed the structures and mechanical properties of trimolter silk, and provided a valuable reference to improve silk quality by influencing molting in silkworms. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.

    2012-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a few large trees as opposed to many smaller trees. PMID:22567132

  9. Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.

    1995-01-01

    Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.

  10. Cratering and penetration experiments in Teflon targets at velocities from 1 to 7 km/s

    NASA Astrophysics Data System (ADS)

    Hoerz, Friedrich; Bernhard, Ronald P.; Cintala, Mark J.; See, Thomas H.

    1995-02-01

    Approximately 20 sq m of protective thermal blankets, largely composed of Teflon, were retrieved from the Long Duration Exposure Facility (LDEF) after the spacecraft had spent approximately 5.7 years in space. Examination of these blankets revealed that they contained thousands of hypervelocity impact features ranging from micron-sized craters to penetration holes several millimeters in diameter. We conducted impact experiments in an effort to reproduce such features and to -- hopefully -- understand the relationships between projectile size and the resulting crater or penetration-hole diameter over a wide range of impact velocity. Such relationships are needed to derive the size- and mass-frequency distribution and flux of natural and man-made particles in low-Earth orbit. Powder propellant and light-gas guns were used to launch soda-lime glass spheres of 3.175 mm (1/8 inch) nominal diameter (Dp) into pure Teflon FEP targets at velocities ranging from 1 to 7 km/s. Target thickness (T) was varied over more than three orders of magnitude from infinite halfspace targets (Dp/T less than 0.1) to very thin films (Dp/T greater than 100). Cratering and penetration of massive Teflon targets is dominated by brittle failure and the development of extensive spall zones at the target's front and, if penetrated, the target's rear side. Mass removal by spallation at the back side of Teflon targets may be so severe that the absolute penetration-hole diameter (Dh) can become larger than that of a standard crater (Dc) at relative target thicknesses of Dp/T = 0.6-0.9. The crater diameter is infinite halfspace Teflon targets increases -- at otherwise constant impact conditions -- with encounter velocity by a factor of V0.44. In contrast, the penetration-hole size is very thin foils (Dp/T greater than 50) is essentially unaffected by impact velocity. Penetrations at target thicknesses intermediate to these extremes will scale with variable exponents of V. Our experimental matrix is sufficiently systematic and complete, up to 7 km/s, to make reasonable recommendations for the velocity-scaling of Teflon craters and penetrations. We specifically suggest that cratering behavior and associated equations dominate all impacts in which the shock-pulse duration of the projectile (tp) is shorter than that of the target (tt). We also demonstrate that each penetration hole from space-retrieved surfaces may be assigned a unique projectile size, provided an impact velocity is known or assumed. This calibration seems superior to the traditional ballistic-limit approach.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Pye, Steven; Hardin, Ernest

    This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.

  12. Cratering Studies in Thin Plastic Films

    NASA Astrophysics Data System (ADS)

    Shu, Anthony; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T.; Srama, R.; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. Two Smoothed Particle Hydrodynamics (SPH) codes are being evaluated for use as a simulator for hypervelocity impacts: Ansys Autodyn and LS-Dyna from the Livermore Software Technology Corp. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Experimental results and preliminary simulation results and conclusions will be presented.

  13. 20 years of KVH fiber optic gyro technology: the evolution from large, low performance FOGs to compact, precise FOGs and FOG-based inertial systems

    NASA Astrophysics Data System (ADS)

    Napoli, Jay

    2016-05-01

    Precision fiber optic gyroscopes (FOGs) are critical components for an array of platforms and applications ranging from stabilization and pointing orientation of payloads and platforms to navigation and control for unmanned and autonomous systems. In addition, FOG-based inertial systems provide extremely accurate data for geo-referencing systems. Significant improvements in the performance of FOGs and FOG-based inertial systems at KVH are due, in large part, to advancements in the design and manufacture of optical fiber, as well as in manufacturing operations and signal processing. Open loop FOGs, such as those developed and manufactured by KVH Industries, offer tactical-grade performance in a robust, small package. The success of KVH FOGs and FOG-based inertial systems is due to innovations in key fields, including the development of proprietary D-shaped fiber with an elliptical core, and KVH's unique ThinFiber. KVH continually improves its FOG manufacturing processes and signal processing, which result in improved accuracies across its entire FOG product line. KVH acquired its FOG capabilities, including its patented E•Core fiber, when the company purchased Andrew Corporation's Fiber Optic Group in 1997. E•Core fiber is unique in that the light-guiding core - critical to the FOG's performance - is elliptically shaped. The elliptical core produces a fiber that has low loss and high polarization-maintaining ability. In 2010, KVH developed its ThinFiber, a 170-micron diameter fiber that retains the full performance characteristics of E•Core fiber. ThinFiber has enabled the development of very compact, high-performance open-loop FOGs, which are also used in a line of FOG-based inertial measurement units and inertial navigation systems.

  14. Modeling and experimental analysis of electrospinning bending region physics in determining fiber diameter for hydrophilic polymer solvent systems

    NASA Astrophysics Data System (ADS)

    Cai, Yunshen

    Electrospinning produces submicron fibers from a wide range of polymer/solvent systems that enable a variety of different applications. In electrospinning process, a straight polymer/solvent charged jet is initially formed, followed by a circular moving jet in the shape of a cone, called the bending region. The process physics in the bending region are difficult to study since the jet diameter cannot be measured directly due to its rapid motion and small size ( microns and smaller), and due to complex coupling of multiple forces, mass transport, and changing jet geometry. Since the solutions studied are hydrophilic, they readily absorb ambient moisture. This thesis explores the role of the bending region in determining the resulting electrospun fiber diameter through a combined experimental and modeling analysis for a variety of hydrophilic polymer/solvent solutions. Electrospinning experiments were conducted over a broad range of operating conditions for 4 different polymer/solvent systems. Comparison of the final straight jet diameters to fiber diameters reveals that between 30% to 60% jet thinning occurs in the bending region. These experiments also reveal that relative humidity significantly affects the electrospinning process and final fiber diameter, even for non-aqueous solutions. A model is developed to obtain insight into the bending region process physics. Important ones include understanding the mass transport for non-aqueous hydrophilic jets (including solvent evaporation and water absorption on the jet surface, radial diffusion, and axial advection), and the coupling between the mass and force balances that determines the final fiber diameter. The absorption and evaporation physics is validated by evaporation experiments. The developed model predicts fiber diameter to within of 8%, even though the solution properties and operating conditions that determines net stretching forces and net evaporation rates vary over a large range. Model analysis reveals how the net evaporation rate affects the jet length and net stretching force, both of which ultimately determine the fiber diameter. It is also shown that the primary impact of RH on the process is through occupation of the surface states that limits solvent evaporation rate, rather than the amount of water absorbed. Correlation functions between process conditions, solution properties and the resulting fiber diameters are discussed.

  15. Generation-X: An X-ray observatory designed to observe first light objects

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Cameron, R. A.; Brissenden, R. J.; Elvis, M. S.; Fabbiano, G.; Gorenstein, P.; Reid, P. B.; Schwartz, D. A.; Bautz, M. W.; Figueroa-Feliciano, E.; Petre, R.; White, N. E.; Zhang, W. W.

    2006-03-01

    The new cosmological frontier will be the study of the very first stars, galaxies and black holes in the early Universe. These objects are invisible to the current generation of X-ray telescopes, such as Chandra. In response, the Generation-X ("Gen-X") Vision Mission has been proposed as a future X-ray observatory which will be capable of detecting the earliest objects. X-ray imaging and spectroscopy of such faint objects demands a large collecting area and high angular resolution. The Gen-X mission plans 100 m 2 collecting area at 1 keV (1000× that of Chandra), and with an angular resolution of 0.1″. The Gen-X mission will operate at Sun-Earth L2, and might involve four 8 m diameter telescopes or even a single 20 m diameter telescope. To achieve the required effective area with reasonable mass, very lightweight grazing incidence X-ray optics must be developed, having an areal density 100× lower than in Chandra, with mirrors as thin as 0.1 mm requiring active on-orbit figure control. The suite of available detectors for Gen-X should include a large-area high resolution imager, a cryogenic imaging spectrometer, and a grating spectrometer. We discuss use of Gen-X to observe the birth of the first black holes, stars and galaxies, and trace their cosmic evolution.

  16. Surface physics of semiconducting nanowires

    NASA Astrophysics Data System (ADS)

    Amato, Michele; Rurali, Riccardo

    2016-02-01

    Semiconducting nanowires (NWs) are firm candidates for novel nanoelectronic devices and a fruitful playground for fundamental physics. Ultra-thin nanowires, with diameters below 10 nm, present exotic quantum effects due to the confinement of the wave functions, e.g. widening of the electronic band-gap, deepening of the dopant states. However, although several reports of sub-10 nm wires exist to date, the most common NWs have diameters that range from 20 to 200 nm, where these quantum effects are absent or play a very minor role. Yet, the research activity on this field is very intense and these materials still promise to provide an important paradigm shift for the design of emerging electronic devices and different kinds of applications. A legitimate question is then: what makes a nanowire different from bulk systems? The answer is certainly the large surface-to-volume ratio. In this article we discuss the most salient features of surface physics and chemistry in group-IV semiconducting nanowires, focusing mostly on Si NWs. First we review the state-of-the-art of NW growth to achieve a smooth and controlled surface morphology. Next we discuss the importance of a proper surface passivation and its role on the NW electronic properties. Finally, stressing the importance of a large surface-to-volume ratio and emphasizing the fact that in a NW the surface is where most of the action takes place, we discuss molecular sensing and molecular doping.

  17. Laser-processing of VO2 thin films synthesized by polymer-assisted-deposition

    NASA Astrophysics Data System (ADS)

    Breckenfeld, Eric; Kim, Heungsoo; Gorzkowski, Edward P.; Sutto, Thomas E.; Piqué, Alberto

    2017-03-01

    We investigate a novel route for synthesis and laser-sintering of VO2 thin films via solution-based polymer-assisted-deposition (PAD). By replacing the traditional solvent for PAD (water) with propylene glycol, we are able to control the viscosity and improve the environmental stability of the precursor. The solution stability and ability to control the viscosity makes for an ideal solution to pattern simple or complex shapes via direct-write methods. We demonstrate the potential of our precursor for printing applications by combining PAD with laser induced forward transfer (LIFT). We also demonstrate large-area film synthesis on 4 in. diameter glass wafers. By varying the annealing temperature, we identify the optimal synthesis conditions, obtaining optical transmittance changes of 60% at a 2500 nm wavelength and a two-order-of-magnitude semiconductor-to-metal transition. We go on to demonstrate two routes for improved semiconductor-to-metal characteristics. The first method uses a multi-coating process to produce denser films with large particles. The second method uses a pulsed-UV-laser sintering step in films annealed at low temperatures (<450° C) to promote particle growth and improve the semiconductor-to-metal transition. By comparing the hysteresis width and semiconductor-to-metal transition magnitude in these samples, we demonstrate that both methods yield high quality VO2 with a three-order-of-magnitude transition.

  18. Protection of individual ash trees from emerald ash borer (Coleoptera: Buprestidae) with basal soil applications of imidacloprid.

    PubMed

    Smitley, D R; Rebek, E J; Royalty, R N; Davis, T W; Newhouse, K F

    2010-02-01

    We conducted field trials at five different locations over a period of 6 yr to investigate the efficacy of imidacloprid applied each spring as a basal soil drench for protection against emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae). Canopy thinning and emerald ash borer larval density were used to evaluate efficacy for 3-4 yr at each location while treatments continued. Test sites included small urban trees (5-15 cm diameter at breast height [dbh]), medium to large (15-65 cm dbh) trees at golf courses, and medium to large street trees. Annual basal drenches with imidacloprid gave complete protection of small ash trees for three years. At three sites where the size of trees ranged from 23 to 37 cm dbh, we successfully protected all ash trees beginning the test with <60% canopy thinning. Regression analysis of data from two sites reveals that tree size explains 46% of the variation in efficacy of imidacloprid drenches. The smallest trees (<30 cm dbh) remained in excellent condition for 3 yr, whereas most of the largest trees (>38 cm dbh) declined to a weakened state and undesirable appearance. The five-fold increase in trunk and branch surface area of ash trees as the tree dbh doubles may account for reduced efficacy on larger trees, and suggests a need to increase treatment rates for larger trees.

  19. A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film

    NASA Astrophysics Data System (ADS)

    Naono, Takayuki; Fujii, Takamichi; Esashi, Masayoshi; Tanaka, Shuji

    2014-01-01

    Resonant 1D microelectromechanical systems (MEMS) optical scanners actuated by piezoelectric unimorph actuators with a Nb-doped lead zirconate titanate (PNZT) thin film were developed for endoscopic optical coherence tomography (OCT) application. The MEMS scanners were designed as the resonance frequency was less than 125 Hz to obtain enough pixels per frame in OCT images. The device size was within 3.4 mm × 2.5 mm, which is compact enough to be installed in a side-imaging probe with 4 mm inner diameter. The fabrication process started with a silicon-on-insulator wafer, followed by PNZT deposition by the Rf sputtering and Si bulk micromachining process. The fabricated MEMS scanners showed maximum optical scan angles of 146° at 90 Hz, 148° at 124 Hz, 162° at 180 Hz, and 152° at 394 Hz at resonance in atmospheric pressure. Such wide scan angles were obtained by a drive voltage below 1.3 Vpp, ensuring intrinsic safety in in vivo uses. The scanner with the unpoled PNZT film showed three times as large a scan angle as that with a poled PZT films. A swept-source OCT system was constructed using the fabricated MEMS scanner, and cross-sectional images of a fingertip with image widths of 4.6 and 2.3 mm were acquired. In addition, a PNZT-based angle sensor was studied for feedback operation.

  20. 77 FR 30260 - Welded Large Diameter Line Pipe From Japan: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... Administration [A-588-857] Welded Large Diameter Line Pipe From Japan: Notice of Rescission of Antidumping Duty... Japan. The review covers five producers/exporters of welded large diameter line pipe from Japan, which... diameter line pipe from Japan for the period December 1, 2010, through November 30, 2011. See Antidumping...

  1. A systematic examination of the bone destruction pattern of the two-shot technique

    PubMed Central

    Stoetzer, Marcus; Stoetzer, Carsten; Rana, Majeed; Zeller, Alexander; Hanke, Alexander; Gellrich, Nils-Claudius; von See, Constantin

    2014-01-01

    Introduction: The two-shot technique is an effective stopping power method. The precise mechanisms of action on the bone and soft-tissue structures of the skull; however, remain largely unclear. The aim of this study is to compare the terminal ballistics of the two-shot and single-shot techniques. Materials and Methods: 40 fresh pigs’ heads were randomly divided into 4 groups (n = 10). Either a single shot or two shots were fired at each head with a full metal jacket or a semi-jacketed bullet. Using thin-layer computed tomography and photography, the diameter of the destruction pattern and the fractures along the bullet path were then imaged and assessed. Results: A single shot fired with a full metal jacket bullet causes minor lateral destruction along the bullet path. With two shots fired with a full metal jacket bullet, however, the maximum diameter of the bullet path is significantly greater (P < 0.05) than it is with a single shot fired with a full metal jacket bullet. In contrast, the maximum diameter with a semi-jacketed bullet is similar with the single-shot and two-shot techniques. Conclusion: With the two-shot technique, a full metal jacket bullet causes a destruction pattern that is comparable to that of a single shot fired with a semi-jacketed bullet. PMID:24812454

  2. Scanning thin-sheet laser imaging microscopy (sTSLIM) with structured illumination and HiLo background rejection.

    PubMed

    Schröter, Tobias J; Johnson, Shane B; John, Kerstin; Santi, Peter A

    2012-01-01

    We report replacement of one side of a static illumination, dual sided, thin-sheet laser imaging microscope (TSLIM) with an intensity modulated laser scanner in order to implement structured illumination (SI) and HiLo image demodulation techniques for background rejection. The new system is equipped with one static and one scanned light-sheet and is called a scanning thin-sheet laser imaging microscope (sTSLIM). It is an optimized version of a light-sheet fluorescent microscope that is designed to image large specimens (<15 mm in diameter). In this paper we describe the hardware and software modifications to TSLIM that allow for static and uniform light-sheet illumination with SI and HiLo image demodulation. The static light-sheet has a thickness of 3.2 µm; whereas, the scanned side has a light-sheet thickness of 4.2 µm. The scanned side images specimens with subcellular resolution (<1 µm lateral and <4 µm axial resolution) with a size up to 15 mm. SI and HiLo produce superior contrast compared to both the uniform static and scanned light-sheets. HiLo contrast was greater than SI and is faster and more robust than SI because as it produces images in two-thirds of the time and exhibits fewer intensity streaking artifacts. 2011 Optical Society of America

  3. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    NASA Astrophysics Data System (ADS)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  4. Microscopic Structure of Metal Whiskers

    NASA Astrophysics Data System (ADS)

    Borra, Vamsi; Georgiev, Daniel G.; Karpov, V. G.; Shvydka, Diana

    2018-05-01

    We present TEM images of the interior of metal whiskers (MWs) grown on electroplated Sn films. Along with earlier published information, our observations focus on a number of questions, such as, why MWs' diameters are in the micron range (significantly exceeding the typical nanosizes of nuclei in solids), why the diameters remain practically unchanged in the course of MW growth, what the nature of MW diameter stochasticity is, and what the origin of the well-known striation structure of MW side surfaces is. In an attempt to address such questions, we perform an in-depth study of MW structure at the nanoscale by detaching a MW from its original film, reducing its size to a thin slice by cutting its sides by a focused ion beam, and performing TEM on that structure. Also, we examine the root of the MW and Cu-Sn interface for the intermetallic compounds. Our TEM observations reveal a rich nontrivial morphology suggesting that MWs may consist of many side-by-side grown filaments. This structure appears to extend to the outside whisker surface and be the reason for the striation. In addition, we put forward a theory where nucleation of multiple thin metal needles results in micron-scale and larger MW diameters. This theory is developed in the average field approximation similar to the roughening transitions of metal surfaces. The theory also predicts MW nucleation barriers and other observed features.

  5. One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors

    PubMed Central

    Neiva, Eduardo G. C.; Oliveira, Marcela M.; Bergamini, Márcio F.; Marcolino, Luiz H.; Zarbin, Aldo J. G.

    2016-01-01

    Different nanocomposites between reduced graphene oxide (rGO) and Ni(OH)2 nanoparticles were synthesized through modifications in the polyol method (starting from graphene oxide (GO) dispersion in ethylene glycol and nickel acetate), processed as thin films through the liquid-liquid interfacial route, homogeneously deposited over transparent electrodes and spectroscopically, microscopically and electrochemically characterized. The thin and transparent nanocomposite films (112 to 513 nm thickness, 62.6 to 19.9% transmittance at 550 nm) consist of α-Ni(OH)2 nanoparticles (mean diameter of 4.9 nm) homogeneously decorating the rGO sheets. As a control sample, neat Ni(OH)2 was prepared in the same way, consisting of porous nanoparticles with diameter ranging from 30 to 80 nm. The nanocomposite thin films present multifunctionality and they were applied as electrodes to alkaline batteries, as electrochromic material and as active component to electrochemical sensor to glycerol. In all the cases the nanocomposite films presented better performances when compared to the neat Ni(OH)2 nanoparticles, showing energy and power of 43.7 W h kg−1 and 4.8 kW kg−1 (8.24 A g−1) respectively, electrochromic efficiency reaching 70 cm2 C−1 and limit of detection as low as 15.4 ± 1.2 μmol L−1. PMID:27654065

  6. SQUID position sensor development

    NASA Astrophysics Data System (ADS)

    Torii, Rodney

    1996-11-01

    I describe the development of an inductance position sensor for the STEP (satellite test of the equivalence principle) accelerometer. I have measured the inductance (with an experimental error of 0.5%) of a single-turn thin-film niobium pick-up coil as a function of the distance from a thin-film niobium disc (both at 4.2 K and superconducting). The circular pick-up coil had a diameter of 4 cm with a track width of 0264-9381/13/11A/022/img1. The disc (mock test mass) had a diameter of 4 cm. The distance range between the coil and disc was set by the range of a low-temperature differential capacitance sensor: 0 - 2 mm with a resolution of 0264-9381/13/11A/022/img2. The full range of the low-temperature translation stage was 0 - 4 mm. The inductance was measured using an LCR meter in a four-wire configuration. The measured inductance was compared to the inductance of a circular loop above a superconducting plane. Due to the fact that the thin-film disc is of finite size, the calculation differed from experiment by as much as 12%. I have also calculated the inductance by segmenting the thin-film niobium disc into 500 concentric rings (each with a width of 0264-9381/13/11A/022/img3). A discrepancy between calculation and experiment of approximately 3% was found.

  7. X-ray optics made from thin plastic foils

    NASA Astrophysics Data System (ADS)

    Schnopper, H. W.; Barbera, M.; Ingram, R.; Silver, E.; Romaine, S.; Bandler, S.; Murray, S.; Christensen, F. E.; Hussain, A.; Collura, A.

    2000-10-01

    New design concepts and materials can be used to produce lightweight, thin foil approximations, to Wolter I and other X-ray optics. Structures are designed around a central hub and spacers that connect two (or three) spoked wheels. Figure defining, thin pins span the distance between the wheels. Thin, metal coated or multilayered, plastic foils can be formed into full cones, cylinders or spirals for X-ray telescopes or lenses. High resolution X-ray scattering data were obtained for single foils at Cu K (8 KeV). Multi-energy (0.28 - 8 KeV) data were obtained with a multichannel plate imager in a 17 m beam line with a point-to-point focusing, cylindrical X-ray lens with 14 shells. The largest shell has a diameter of 175 mm and a length of 100 mm. Typical images have a FWHM of 20 arcsec. The results indicate that a 60 cm diameter, 4.65 m focal length X-ray telescope can have an HPD of considerably less than 2 arcmin. This research is supported, in part by NASA Grant NAG5-5268, ONR Grant N00014-95-1-1248, and by institutional funding from the Smithsonian Astrophysical Observatory. The SAO multilayer facility receives support from NASA Grant NAG5-5095. This work made use of the MRSEC Shared Experimental Facilities at MIT supported by NSF Grant DMR94-00334.

  8. 78 FR 12784 - Welded Large Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Welded Large Diameter Line Pipe From Japan AGENCY: United States International Trade Commission... revocation of the antidumping duty order on welded large diameter line pipe from Japan would be likely to...

  9. Development of welded metal bellows having minimum effective diameter change

    NASA Technical Reports Server (NTRS)

    Henschel, J. K.; Stevens, J. B.; Harvey, A. C.; Howland, J. S.; Rhee, S. S.

    1972-01-01

    A program of analysis, design, and fabrication was conducted to develop welded metal bellows having a minimum change in effective diameter for cryogenic turbomachinery face seal applications. Linear analysis of the principle types of bellows provided identification of concepts capable of meeting basic operation requirements. For the 6-inch (.152 m) mean diameter, 1.5-inch free length bellows studied, nonlinear analysis showed that opposed and nested toroidal bellows plates stiffened by means of alternating stiffener rings were capable of maintaining constant effective diameter within 0.3% and 0.1% respectively under the operating conditions of interest. Changes in effective diameter were due principally to bellows axial deflection with pressure differential having a lesser influence. Fabrication problems associated with joining the thin bellows plates to the relatively heavy stiffener rings were encountered and precluded assembly and testing of a bellows core. Fabrication problems are summarized and recommended fabrication methods for future effort are presented.

  10. Durability Evaluation of a Thin Film Sensor System With Enhanced Lead Wire Attachments on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Kiser, J. Douglas; Singh, Mrityunjay; Cuy, Mike; Blaha, Charles A.; Androjna, Drago

    2000-01-01

    An advanced thin film sensor system instrumented on silicon carbide (SiC) fiber reinforced SiC matrix ceramic matrix composites (SiC/SiC CMCs), was evaluated in a Mach 0.3 burner rig in order to determine its durability to monitor material/component surface temperature in harsh environments. The sensor system included thermocouples in a thin film form (5 microns thick), fine lead wires (75 microns diameter), and the bonds between these wires and the thin films. Other critical components of the overall system were the heavy, swaged lead wire cable (500 microns diameter) that contained the fine lead wires and was connected to the temperature readout, and ceramic attachments which were bonded onto the CMCs for the purpose of securing the lead wire cables, The newly developed ceramic attachment features a combination of hoops made of monolithic SiC or SiC/SiC CMC (which are joined to the test article) and high temperature ceramic cement. Two instrumented CMC panels were tested in a burner rig for a total of 40 cycles to 1150 C (2100 F). A cycle consisted of rapid heating to 1150 C (2100 F), a 5 minute hold at 1150 C (2100 F), and then cooling down to room temperature in 2 minutes. The thin film sensor systems provided repeatable temperature measurements for a maximum of 25 thermal cycles. Two of the monolithic SiC hoops debonded during the sensor fabrication process and two of the SiC/SiC CMC hoops failed during testing. The hoops filled with ceramic cement, however, showed no sign of detachment after 40 thermal cycle test. The primary failure mechanism of this sensor system was the loss of the fine lead wire-to-thin film connection, which either due to detachment of the fine lead wires from the thin film thermocouples or breakage of the fine wire.

  11. Is Matang Mangrove Forest in Malaysia Sustainably Rejuvenating after More than a Century of Conservation and Harvesting Management?

    PubMed Central

    Van der Stocken, Tom; Quispe Zuniga, Melissa; Mohd-Lokman, Husain; Sulong, Ibrahim

    2014-01-01

    Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia is under systematic management since 1902 and still considered as the best managed mangrove forest in the world. The present study on silvimetrics assessed the ongoing MMFR forest management, which includes a first thinning after 15 years, a second thinning after 20 years and clear-felling of 30-year old forest blocks, for its efficiency and productivity in comparison to natural mangroves. The estimated tree structural parameters (e.g. density, frequency) from three different-aged mangrove blocks of fifteen (MF15), twenty (MF20), and thirty (MF30) years old indicated that Bruguiera and Excoecaria spp. did not constitute a significant proportion of the vegetation (<5%), and hence the results focused majorly on Rhizophora apiculata. The density of R. apiculata at MF15, MF20 and MF30 was 4,331, 2,753 and 1,767 stems ha−1, respectively. In relation to ongoing practices of the artificial thinnings at MMFR, the present study suggests that the first thinning could be made earlier to limit the loss of exploitable wood due to natural thinning. In fact, the initial density at MF15 was expected to drop down from 6,726 to 1,858 trees ha−1 before the first thinning. Therefore the trees likely to qualify for natural thinning, though having a smaller stem diameter, should be exploited for domestic/commercial purposes at an earlier stage. The clear-felling block (MF30) with a maximum stem diameter of 30 cm was estimated to yield 372 t ha−1 of the above-ground biomass and suggests that the mangrove management based on a 30-year rotation is appropriate for the MMFR. Since Matang is the only iconic site that practicing sustainable wood production, it could be an exemplary to other mangrove locations for their improved management. PMID:25144689

  12. Enhanced luminous transmittance of thermochromic VO2 thin film patterned by SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Zhou, Liwei; Liang, Jiran; Hu, Ming; Li, Peng; Song, Xiaolong; Zhao, Yirui; Qiang, Xiaoyong

    2017-05-01

    In this study, an ordered SiO2 nanosphere array coated with vanadium dioxide (VO2) has been fabricated to enhance transmittance with the potential application as an energy-efficient coating in the field of smart windows. SiO2 arrays were formed using the methods of self-assembly, and VO2 thin films were prepared by rapid thermal annealing (RTA) of sputtered vanadium films. VO2@SiO2 arrays were characterized by scanning electron microscopy, X-ray diffraction, a four-point probe, and UV-vis-NIR spectrophotometry. Compared with the planar films, the films deposited on 300 nm diameter SiO2 nanospheres can offer approximately 18% enhancement of luminous transmission (Tlum) because the diameter is smaller than the given wavelength and the protuberance of the surface array behaves as a gradation of refractive index producing antireflection. The solar regulation efficiency was not much deteriorated.

  13. Effect of the nozzle tip’s geometrical shape on electrospray deposition of organic thin films

    NASA Astrophysics Data System (ADS)

    Ueda, Hiroyuki; Takeuchi, Keita; Kikuchi, Akihiko

    2017-04-01

    Electrospray deposition (ESD) is a favorable wet fabrication technique for organic thin films. We investigated the effects of the nozzle tip’s geometrical shape on the spraying properties of an organic solution used for ESD. Five types of cylindrical metal nozzles with zero (flat end) to four protrusions at the tips were prepared for depositing a solution of a small-molecule compound, tris(8-hydroxyquinolinato)aluminum (Alq3) solution. We confirmed that the diameter of the deposited droplets and their size dispersion decreased with an increase in the number of protrusions. The area occupation ratio of small droplets with a diameter smaller than 2 µm increased from 21 to 83% as the number of protrusions was increased from zero to four. The surface roughness root mean square of 60-nm-thick Alq3 films substantially improved from 32.5 to 6.8 nm with increasing number of protrusions.

  14. Functionality in Electrospun Nanofibrous Membranes Based on Fiber's Size, Surface Area, and Molecular Orientation

    PubMed Central

    Matsumoto, Hidetoshi; Tanioka, Akihiko

    2011-01-01

    Electrospinning is a versatile method for forming continuous thin fibers based on an electrohydrodynamic process. This method has the following advantages: (i) the ability to produce thin fibers with diameters in the micrometer and nanometer ranges; (ii) one-step forming of the two- or three-dimensional nanofiber network assemblies (nanofibrous membranes); and (iii) applicability for a broad spectrum of molecules, such as synthetic and biological polymers and polymerless sol-gel systems. Electrospun nanofibrous membranes have received significant attention in terms of their practical applications. The major advantages of nanofibers or nanofibrous membranes are the functionalities based on their nanoscaled-size, highly specific surface area, and highly molecular orientation. These functionalities of the nanofibrous membranes can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This report focuses on our studies and describes fundamental aspects and applications of electrospun nanofibrous membranes. PMID:24957735

  15. Large Area Lunar Dust Flux Measurement Instrument

    NASA Technical Reports Server (NTRS)

    Corsaro, R.; Giovane, F.; Liou, Jer-Chyi; Burchell, M.; Stansbery, Eugene; Lagakos, N.

    2009-01-01

    The instrument under development is designed to characterize the flux and size distribution of the lunar micrometeoroid and secondary ejecta environment. When deployed on the lunar surface, the data collected will benefit fundamental lunar science as well as enabling more reliable impact risk assessments for human lunar exploration activities. To perform this task, the instrument requirements are demanding. It must have as large a surface area as possible to sample the very sparse population of the larger potentially damage-inducing micrometeorites. It must also have very high sensitivity to enable it to measure the flux of small (<10 micron) micrometeorite and secondary ejecta dust particles. To be delivered to the lunar surface, it must also be very low mass, rugged and stow compactly. The instrument designed to meet these requirements is called FOMIS. It is a large-area thin film under tension (i.e. a drum) with multiple fiber optic displacement (FOD) sensors to monitor displacements of the film. This sensor was chosen since it can measure displacements over a wide dynamic range: 1 cm to sub-Angstrom. A prototype system was successfully demonstrated using the hypervelocity impact test facility at the University of Kent (Canterbury, UK). Based on these results, the prototype system can detect hypervelocity (approx.5 km/s) impacts by particles as small as 2 microns diameter. Additional tests using slow speeds find that it can detect secondary ejecta particles (which do not penetrate the film) with momentums as small as 15 pico-gram 100m/s, or nominally 5 microns diameter at 100 m/s.

  16. Rheological and micro-Raman time-series characterization of enzyme sol–gel solution toward morphological control of electrospun fibers

    PubMed Central

    Oriero, Dennis A; Weakley, Andrew T; Aston, D Eric

    2012-01-01

    Rheological and micro-Raman time-series characterizations were used to investigate the chemical evolutionary changes of silica sol–gel mixtures for electrospinning fibers to immobilize an enzyme (tyrosinase). Results of dynamic rheological measurements agreed with the expected structural transitions associated with reacting sol–gel systems. The electrospinning sols exhibited shear-thinning behavior typical of a power law model. Ultrafine (200–300 nm diameter) fibers were produced at early and late times within the reaction window of approximately one hour from initial mixing of sol solutions with and without enzyme; diameter distributions of these fibers showed much smaller deviations than expected. The enzyme markedly increased magnitudes of both elastic and viscous moduli but had no significant impact on final fiber diameters, suggesting that the shear-thinning behavior of both sol–gel mixtures is dominant in the fiber elongation process. The time course and scale for the electrospinning batch fabrication show strong correlations between the magnitudes in rheological property changes over time and the chemical functional group evolution obtained from micro-Raman time-series analysis of the reacting sol–gel systems. PMID:27877486

  17. Absolute backscatter coefficient estimates of tissue-mimicking phantoms in the 5–50 MHz frequency range

    PubMed Central

    McCormick, Matthew M.; Madsen, Ernest L.; Deaner, Meagan E.; Varghese, Tomy

    2011-01-01

    Absolute backscatter coefficients in tissue-mimicking phantoms were experimentally determined in the 5–50 MHz frequency range using a broadband technique. A focused broadband transducer from a commercial research system, the VisualSonics Vevo 770, was used with two tissue-mimicking phantoms. The phantoms differed regarding the thin layers covering their surfaces to prevent desiccation and regarding glass bead concentrations and diameter distributions. Ultrasound scanning of these phantoms was performed through the thin layer. To avoid signal saturation, the power spectra obtained from the backscattered radio frequency signals were calibrated by using the signal from a liquid planar reflector, a water-brominated hydrocarbon interface with acoustic impedance close to that of water. Experimental values of absolute backscatter coefficients were compared with those predicted by the Faran scattering model over the frequency range 5–50 MHz. The mean percent difference and standard deviation was 54% ± 45% for the phantom with a mean glass bead diameter of 5.40 μm and was 47% ± 28% for the phantom with 5.16 μm mean diameter beads. PMID:21877789

  18. Tunable plasmons in atomically thin gold nanodisks

    NASA Astrophysics Data System (ADS)

    Manjavacas, Alejandro; Garcia de Abajo, Javier

    2015-03-01

    The ability to modulate light at high speeds is of paramount importance for telecommunications, information processing, and medical imaging technologies. This has stimulated intense efforts to master optoelectronic switching at visible and near-infrared (vis-NIR) frequencies, although coping with current computer speeds in integrated architectures still remains a major challenge. Here we show that atomically thin noble metal nanoislands can extend optical modulation to the vis-NIR spectral range. We find plasmons in thin metal nanodisks to produce similar absorption cross-sections as spherical particles of the same diameter. Using realistic levels of electrical doping, plasmons are shifted by about half their width, thus leading to a factor-of-two change in light absorption. These results are supported by a microscopic quantum-mechanical calculations based on the random-phase approximation (RPA), which we compare with classical simulations obtained solving Maxwell's equations using tabulated dielectric functions. Both approaches result in an excellent agreement for nanodisks with diameters above 13 nm, although quantum confinement and nonlocal effects play an important role for smaller sizes. A.M. acknowledges financial support from the Welch foundation through the J. Evans Attwell-Welch Postdoctoral Fellowship Program of the Smalley Institute of Rice University (Grant L-C-004).

  19. Three-Dimensional, Fibrous Lithium Iron Phosphate Structures Deposited by Magnetron Sputtering.

    PubMed

    Bünting, Aiko; Uhlenbruck, Sven; Sebold, Doris; Buchkremer, H P; Vaßen, R

    2015-10-14

    Crystalline, three-dimensional (3D) structured lithium iron phosphate (LiFePO4) thin films with additional carbon are fabricated by a radio frequency (RF) magnetron-sputtering process in a single step. The 3D structured thin films are obtained at deposition temperatures of 600 °C and deposition times longer than 60 min by using a conventional sputtering setup. In contrast to glancing angle deposition (GLAD) techniques, no tilting of the substrate is required. Thin films are characterized by X-ray diffraction (XRD), Raman spectrospcopy, scanning electron microscopy (SEM), cyclic voltammetry (CV), and galvanostatic charging and discharging. The structured LiFePO4+C thin films consist of fibers that grow perpendicular to the substrate surface. The fibers have diameters up to 500 nm and crystallize in the desired olivine structure. The 3D structured thin films have superior electrochemical properties compared with dense two-dimensional (2D) LiFePO4 thin films and are, hence, very promising for application in 3D microbatteries.

  20. Creep Behavior of Oxide/Oxide Composites with Monazite Fiber Coating at 1100 deg C in Air and in Steam Environments

    DTIC Science & Technology

    2008-09-01

    monolithic ceramics initiates at small defects formed during processing. Minimization of such defects may improve performance, but thermal shock and cyclic...fiber tows are used in CMCs, where the use of small -diameter fibers causes a reduction in scale of microstructural defects associated with the fibers [7... Small Diameter · Improves matrix strength and facilitates fab- rication of thin and complex-shaped CMCs. · Low Density · Improves CMC specific properties

  1. Novel Crystal Structure C60 Nanowire

    NASA Astrophysics Data System (ADS)

    Mickelson, William; Aloni, Shaul; Han, Weiqiang; Cumings, John; Zettl, Alex

    2003-03-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride (BN) nanotubes. For small-diameter BN tubes, the wire consists of a linear chain of C60's. With increasing BN tube inner diameter, novel C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) which are unknown for bulk or thin film forms of C60. C60 in BN nanotubes presents a model system for studying the properties of new dimensionally-constrained "silo" crystal structures.

  2. Thermal Management Investigations in Ceramic Thin Disk Lasers

    DTIC Science & Technology

    2011-01-14

    techniques. 10-14mm diameter 0.2mm thick disks are mounted on silicon carbide ( SiC ), sapphire, and diamond submounts. From a larger platform, more than 6kW...along with various cooling techniques. 10-14mm diameter O.2mm thick disks are mounted on silicon carbide ( SiC ), sapphire, and diamond submounts. From a...assemblies are either attached to heat sinks or directly to the Cu W cooling mount, see Fig. I (c) & (d). The heat sinks tested are SiC , sapphire, and

  3. 23RD International Conference on Phenomena in Ionized Gases, Volume 5

    DTIC Science & Technology

    1998-12-01

    eNm.f, generated within the plasma is given by section with a 5-cm diameter. The magnetic field was Vof = wh Bt p i vn provided by an iron- core ...cylindrical tungsten probes, of 0.038cm. as impurities can be centrifuged as reported by diameter, insulated by thin glass tube except their tips Bonnevier...Norfolk, VA 213529 1. Discharge modes discharge begins, at several hundred Torr, to change from a hollow cathode discharge into what we Experimental

  4. A Dynamic Analysis of Piezoelectric Strained Elements.

    DTIC Science & Technology

    1992-12-01

    Type Quartz Crystal Plates ", IEEE SU- 29 (3), pp. 1 2 1 - 1 2 7 (1982). [107] L.K.Chau,High -frequency Long-wave Vibrations of Piezoelectric Ceramic ... Plate Excited with Voltage", Acta Acustica, 8 (5), pp. 300-310 (1983). [265] M.Ting-rong, "Forced Vibrations of Metal-Piezo- ceramic Thin Composite... ceramic and Metal Composite Thin Circular Plate with Different Diameter for Each Layer", Acta Acustica, 9 (5), pp. 298-310 (1984); Chinese J. Acoust., 2(3

  5. Elastic torsional buckling of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.

    1974-01-01

    The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.

  6. Responses of buried corrugated metal pipes to earthquakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, C.A.; Bardet, J.P.

    2000-01-01

    This study describes the results of field investigations and analyses carried out on 61 corrugated metal pipes (CMP) that were shaken by the 1994 Northridge earthquake. These CMPs, which include 29 small-diameter (below 107 cm) CMPs and 32 large-diameter (above 107 cm) CMPs, are located within a 10 km{sup 2} area encompassing the Van Normal Complex in the Northern San Fernando Valley, in Los Angeles, California. During the Northridge earthquake, ground movements were extensively recorded within the study area. Twenty-eight of the small-diameter CMPs performed well while the 32 large-diameter CMPs underwent performances ranging from no damage to complete collapse.more » The main cause of damage to the large-diameter CMPs was found to be the large ground strains. Based on this unprecedented data set, the factors controlling the seismic performance of the 32 large-diameter CMPs were identified and framed into a pseudostatic analysis method for evaluating the response of large diameter flexible underground pipes subjected to ground strain. The proposed analysis, which is applicable to transient and permanent strains, is capable of describing the observed performance of large-diameter CMPs during the 1994 Northridge earthquake. It indicates that peak ground velocity is a more reliable parameter for analyzing pipe damage than is peak ground acceleration. Results of this field investigation and analysis are useful for the seismic design and strengthening of flexible buried conduits.« less

  7. Resonant Transmission of Air-Coupled Ultrasound Through Metallic Inserts in Honeycomb Sandwich Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, J.J.; Barnard, D.J.; Hsu, D.K.

    2005-04-09

    Metallic inserts are embedded into composite honeycomb sandwiches as hard points for mechanical connections. Air-coupled ultrasound can be used for detecting disbonds between the insert and the facesheet. It was discovered in such inspections that a surprisingly large amplitude could be transmitted through thick metallic inserts (e.g. 0.75'' thick and 1.5'' diameter), whereas a thin plate of the same material will transmit a much weaker signal. This paper reports an experimental and analytic study of the geometrical effect of inserts on transmitted UT signals. Modal analyses of cylindrical inserts were made using the finite element code ANSYS. The transmission efficiencymore » or air-coupled ultrasound correlated well with the longitudinal vibration mode of the cylinder.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Yifei; Zuo, Jian -Min

    A diffraction-based technique is developed for the determination of three-dimensional nanostructures. The technique employs high-resolution and low-dose scanning electron nanodiffraction (SEND) to acquire three-dimensional diffraction patterns, with the help of a special sample holder for large-angle rotation. Grains are identified in three-dimensional space based on crystal orientation and on reconstructed dark-field images from the recorded diffraction patterns. Application to a nanocrystalline TiN thin film shows that the three-dimensional morphology of columnar TiN grains of tens of nanometres in diameter can be reconstructed using an algebraic iterative algorithm under specified prior conditions, together with their crystallographic orientations. The principles can bemore » extended to multiphase nanocrystalline materials as well. Furthermore, the tomographic SEND technique provides an effective and adaptive way of determining three-dimensional nanostructures.« less

  9. Large-area super-resolution optical imaging by using core-shell microfibers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Lo, Wei-Chieh

    2017-09-01

    We first numerically and experimentally report large-area super-resolution optical imaging achieved by using core-shell microfibers. The particular spatial electromagnetic waves for different core-shell microfibers are studied by using finite-difference time-domain and ray tracing calculations. The focusing properties of photonic nanojets are evaluated in terms of intensity profile and full width at half-maximum along propagation and transversal directions. In experiment, the general optical fiber is chemically etched down to 6 μm diameter and coated with different metallic thin films by using glancing angle deposition. The direct imaging of photonic nanojets for different core-shell microfibers is performed with a scanning optical microscope system. We show that the intensity distribution of a photonic nanojet is highly related to the metallic shell due to the surface plasmon polaritons. Furthermore, large-area super-resolution optical imaging is performed by using different core-shell microfibers placed over the nano-scale grating with 150 nm line width. The core-shell microfiber-assisted imaging is achieved with super-resolution and hundreds of times the field-of-view in contrast to microspheres. The possible applications of these core-shell optical microfibers include real-time large-area micro-fluidics and nano-structure inspections.

  10. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes

    NASA Astrophysics Data System (ADS)

    Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; de Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael

    2017-05-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.

  11. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes

    PubMed Central

    Jayant, Krishna; Hirtz, Jan J.; Plante, Ilan Jen-La; Tsai, David M.; De Boer, Wieteke D. A. M.; Semonche, Alexa; Peterka, Darcy S.; Owen, Jonathan S.; Sahin, Ozgur; Shepard, Kenneth L.; Yuste, Rafael

    2017-01-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ~15–30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5–1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures. PMID:27941898

  12. Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes.

    PubMed

    Jayant, Krishna; Hirtz, Jan J; Plante, Ilan Jen-La; Tsai, David M; De Boer, Wieteke D A M; Semonche, Alexa; Peterka, Darcy S; Owen, Jonathan S; Sahin, Ozgur; Shepard, Kenneth L; Yuste, Rafael

    2017-05-01

    Dendritic spines are the primary site of excitatory synaptic input onto neurons, and are biochemically isolated from the parent dendritic shaft by their thin neck. However, due to the lack of direct electrical recordings from spines, the influence that the neck resistance has on synaptic transmission, and the extent to which spines compartmentalize voltage, specifically excitatory postsynaptic potentials, albeit critical, remains controversial. Here, we use quantum-dot-coated nanopipette electrodes (tip diameters ∼15-30 nm) to establish the first intracellular recordings from targeted spine heads under two-photon visualization. Using simultaneous somato-spine electrical recordings, we find that back propagating action potentials fully invade spines, that excitatory postsynaptic potentials are large in the spine head (mean 26 mV) but are strongly attenuated at the soma (0.5-1 mV) and that the estimated neck resistance (mean 420 MΩ) is large enough to generate significant voltage compartmentalization. Nanopipettes can thus be used to electrically probe biological nanostructures.

  13. Design of optical mirror structures

    NASA Technical Reports Server (NTRS)

    Soosaar, K.

    1971-01-01

    The structural requirements for large optical telescope mirrors was studied with a particular emphasis placed on the three-meter Large Space Telescope primary mirror. Analysis approaches through finite element methods were evaluated with the testing and verification of a number of element types suitable for particular mirror loadings and configurations. The environmental conditions that a mirror will experience were defined and a candidate list of suitable mirror materials with their properties compiled. The relation of the mirror mechanical behavior to the optical performance is discussed and a number of suitable design criteria are proposed and implemented. A general outline of a systematic method to obtain the best structure for the three-meter diffraction-limited system is outlined. Finite element programs, using the STRUDL 2 analysis system, were written for specific mirror structures encompassing all types of active and passive mirror designs. Parametric studies on support locations, effects of shear deformation, diameter to thickness ratios, lightweight and sandwich mirror configurations, and thin shell active mirror needs were performed.

  14. Lunar Regolith Particle Shape Analysis

    NASA Technical Reports Server (NTRS)

    Kiekhaefer, Rebecca; Hardy, Sandra; Rickman, Douglas; Edmunson, Jennifer

    2013-01-01

    Future engineering of structures and equipment on the lunar surface requires significant understanding of particle characteristics of the lunar regolith. Nearly all sediment characteristics are influenced by particle shape; therefore a method of quantifying particle shape is useful both in lunar and terrestrial applications. We have created a method to quantify particle shape, specifically for lunar regolith, using image processing. Photomicrographs of thin sections of lunar core material were obtained under reflected light. Three photomicrographs were analyzed using ImageJ and MATLAB. From the image analysis measurements for area, perimeter, Feret diameter, orthogonal Feret diameter, Heywood factor, aspect ratio, sieve diameter, and sieve number were recorded. Probability distribution functions were created from the measurements of Heywood factor and aspect ratio.

  15. Parametric Studies Of Lightweight Reflectors Supported On Linear Actuator Arrays

    NASA Astrophysics Data System (ADS)

    Seibert, George E.

    1987-10-01

    This paper presents the results of numerous design studies carried out at Perkin-Elmer in support of the design of large diameter controllable mirrors for use in laser beam control, surveillance, and astronomy programs. The results include relationships between actuator location and spacing and the associated degree of correctability attainable for a variety of faceplate configurations subjected to typical disturbance environments. Normalizations and design curves obtained from closed-form equations based on thin shallow shell theory and computer based finite-element analyses are presented for use in preliminary design estimates of actuator count, faceplate structural properties, system performance prediction and weight assessments. The results of the analyses were obtained from a very wide range of mirror configurations, including both continuous and segmented mirror geometries. Typically, the designs consisted of a thin facesheet controlled by point force actuators which in turn were mounted on a structurally efficient base panel, or "reaction structure". The faceplate materials considered were fused silica, ULE fused silica, Zerodur, aluminum and beryllium. Thin solid faceplates as well as rib-reinforced cross-sections were treated, with a wide variation in thickness and/or rib patterns. The magnitude and spatial frequency distribution of the residual or uncorrected errors were related to the input error functions for mirrors of many different diameters and focal ratios. The error functions include simple sphere-to-sphere corrections, "parabolization" of spheres, and higher spatial frequency input error maps ranging from 0.5 to 7.5 cycles per diameter. The parameter which dominates all of the results obtained to date, is a structural descriptor of thin shell behavior called the characteristic length. This parameter is a function of the shell's radius of curvature, thickness, and Poisson's ratio of the material used. The value of this constant, in itself, describes the extent to which the deflection under a point force is localized by the shell's curvature. The deflection shape is typically a near-gaussian "bump" with a zero-crossing at a local radius of approximately 3.5 characteristic lengths. The amplitude is a function of the shells elastic modulus, radius, and thickness, and is linearly proportional to the applied force. This basic shell behavior is well-treated in an excellent set of papers by Eric Reissner entitled "Stresses and Small Displacements of Shallow Spherical Shells".1'2 Building on the insight offered by these papers, we developed our design tools around two derived parameters, the ratio of the mirror's diameter to its characteristic length (D/l), and the ratio of the actuator spacing to the characteristic length (b/l). The D/1 ratio determines the "finiteness" of the shell, or its dependence on edge boundary conditions. For D/1 values greater than 10, the influence of edges is almost totally absent on interior behavior. The b/1 ratio, the basis of all our normalizations is the most universal term in the description of correctability or ratio of residual/input errors. The data presented in the paper, shows that the rms residual error divided by the peak amplitude of the input error function is related to the actuator spacing to characteristic length ratio by the following expression RMS Residual Error b 3.5 k (I) (1) Initial Error Ampl. The value of k ranges from approximately 0.001 for low spatial frequency initial errors up to 0.05 for higher error frequencies (e.g. 5 cycles/diameter). The studies also yielded insight to the forces required to produce typical corrections at both the center and edges of the mirror panels. Additionally, the data lends itself to rapid evaluation of the effects of trading faceplate weight for increased actuator count,

  16. Simulations of the impact of localized defects on ICF implosions

    NASA Astrophysics Data System (ADS)

    Milovich, Jose; Robey, Harry; Weber, Christopher; Sepke, Scott; Clark, Daniel; Koning, Joe; Smalyuk, Vladimir; Martinez, David

    2016-10-01

    Recent experiments have identified the tent membranes that support the capsule as a source of a large azimuthal perturbation at the point of departure from the surface. Highly-resolved 2D simulations have shown that vorticity generated by the interaction of the ablated capsule material and the tent allows for the penetration of cold ablator material into the burning hot-spot likely cooling the central burning plasma. These observations have motivated the search for alternative supporting methods. One of the techniques being considered uses the existing fill-tube (needed to deliver the cryogenic fuel) supported against gravity by a thin rod (cantilever) spanning the hohlraum diameter. Recent experiments have assessed the perturbation induced on the target as the rod is positioned along the fill-tube at different distances from the capsule surface and found optical-depth modulations oriented along the cantilever direction, possibly caused by laser spot shadowing or hydro-coupling. To fully understand the data we have undertaken an extensive study of highly-resolved 2D integrated simulations abled to resolve the 12 um diameter cantilever. Results of our computations and comparison with the experiments will be presented. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Line fiducial material and thickness considerations for ultrasound calibration

    NASA Astrophysics Data System (ADS)

    Ameri, Golafsoun; McLeod, A. J.; Baxter, John S. H.; Chen, Elvis C. S.; Peters, Terry M.

    2015-03-01

    Ultrasound calibration is a necessary procedure in many image-guided interventions, relating the position of tools and anatomical structures in the ultrasound image to a common coordinate system. This is a necessary component of augmented reality environments in image-guided interventions as it allows for a 3D visualization where other surgical tools outside the imaging plane can be found. Accuracy of ultrasound calibration fundamentally affects the total accuracy of this interventional guidance system. Many ultrasound calibration procedures have been proposed based on a variety of phantom materials and geometries. These differences lead to differences in representation of the phantom on the ultrasound image which subsequently affect the ability to accurately and automatically segment the phantom. For example, taut wires are commonly used as line fiducials in ultrasound calibration. However, at large depths or oblique angles, the fiducials appear blurred and smeared in ultrasound images making it hard to localize their cross-section with the ultrasound image plane. Intuitively, larger diameter phantoms with lower echogenicity are more accurately segmented in ultrasound images in comparison to highly reflective thin phantoms. In this work, an evaluation of a variety of calibration phantoms with different geometrical and material properties for the phantomless calibration procedure was performed. The phantoms used in this study include braided wire, plastic straws, and polyvinyl alcohol cryogel tubes with different diameters. Conventional B-mode and synthetic aperture images of the phantoms at different positions were obtained. The phantoms were automatically segmented from the ultrasound images using an ellipse fitting algorithm, the centroid of which is subsequently used as a fiducial for calibration. Calibration accuracy was evaluated for these procedures based on the leave-one-out target registration error. It was shown that larger diameter phantoms with lower echogenicity are more accurately segmented in comparison to highly reflective thin phantoms. This improvement in segmentation accuracy leads to a lower fiducial localization error, which ultimately results in low target registration error. This would have a profound effect on calibration procedures and the feasibility of different calibration procedures in the context of image-guided procedures.

  18. Dewetting of thin polymer films: an X-ray scattering study

    NASA Astrophysics Data System (ADS)

    Müller-Buschbaum, P.; Stamm, M.

    1998-06-01

    The surface morphology of different dewetting states of thin polymer films (polystyrene) on top of silicon substrates was investigated. With diffuse X-ray scattering in the region of total external reflection a high in-plane resolution was achieved. We observe a new nano-dewetting structure which coexists with the well known mesoscopic dewetting structures of holes, cellular pattern and drops. This nano-dewetting structure consists of small dimples with a diameter in the nanometer range. It results from the dewetting of a remaining ultra-thin polymer layer and can be explained with theoretical predictions of spinodal decomposition. The experimental results of the scattering study are confirmed with scanning-force microscopy measurements.

  19. Generation of localized strain in a thin film piezoelectric to control individual magnetoelectric heterostructures

    NASA Astrophysics Data System (ADS)

    Cui, Jizhai; Liang, Cheng-Yen; Paisley, Elizabeth A.; Sepulveda, Abdon; Ihlefeld, Jon F.; Carman, Gregory P.; Lynch, Christopher S.

    2015-08-01

    Experimental results demonstrate the ability of a surface electrode pattern to produce sufficient in-plane strain in a PbZr0.52Ti0.48O3 (PZT) thin film clamped by a Si substrate to control magnetism in a 1000 nm diameter Ni ring. The electrode pattern and the Ni ring/PZT thin film heterostructure were designed using a finite element based micromagnetics code. The magnetoelectric heterostructures were fabricated on the PZT film using e-beam lithography and characterized using magnetic force microscopy. Application of voltage to the electrodes moved one of the "onion" state domain walls. This method enables the development of complex architectures incorporating strain-mediated multiferroic devices.

  20. The thinning of viscous liquid threads.

    NASA Astrophysics Data System (ADS)

    Castrejon-Pita, J. Rafael; Castrejon-Pita, Alfonso A.; Hutchings, Ian M.

    2012-11-01

    The thinning neck of dripping droplets is studied experimentally for viscous Newtonian fluids. High speed imaging is used to measure the minimum neck diameter in terms of the time τ to breakup. Mixtures of water and glycerol with viscosities ranging from 20 to 363 mPa s are used to model the Newtonian behavior. The results show the transition from potential to inertial-viscous regimes occurs at the predicted values of ~Oh2. Before this transition the neck contraction rate follows the inviscid scaling law ~τ 2 / 3 . After the transition, the neck thinning tends towards the linear viscous scaling law ~ τ . Project supported by the EPSRC-UK (EP/G029458/1) and Cambridge-KACST.

  1. Thickness constraints on the icy shells of the galilean satellites from a comparison of crater shapes.

    PubMed

    Schenk, Paul M

    2002-05-23

    A thin outer ice shell on Jupiter's large moon Europa would imply easy exchange between the surface and any organic or biotic material in its putative subsurface ocean. The thickness of the outer ice shell is poorly constrained, however, with model-dependent estimates ranging from a few kilometres to ten or more kilometres. Here I present measurements of depths of impact craters on Europa, Ganymede and Callisto that reveal two anomalous transitions in crater shape with diameter. The first transition is probably related to temperature-dependent ductility of the crust at shallow depths (7 8 km on Europa). The second transition is attributed to the influence of subsurface oceans on all three satellites, which constrains Europa's icy shell to be at least 19 km thick. The icy lithospheres of Ganymede and Callisto are equally ice-rich, but Europa's icy shell has a thermal structure about 0.25 0.5 times the thicknesses of Ganymede's or Callisto's shells, depending on epoch. The appearances of the craters on Europa are inconsistent with thin-ice-shell models and indicate that exchange of oceanic and surface material could be difficult.

  2. Rollable Thin-Shell Nanolaminate Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Barbee, Troy, Jr.

    2003-01-01

    A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror.

  3. Ultrasonic guided wave sensing characteristics of large area thin piezo coating

    NASA Astrophysics Data System (ADS)

    Rathod, V. T.; Jeyaseelan, A. Antony; Dutta, Soma; Mahapatra, D. Roy

    2017-10-01

    This paper reports on the characterization method and performance enhancement of thin piezo coating for ultrasonic guided wave sensing applications. We deposited the coatings by an in situ slurry coating method and studied their guided wave sensing properties on a one-dimensional metallic beam as a substrate waveguide. The developed piezo coatings show good sensitivity to the longitudinal and flexural modes of guided waves. Sensing voltage due to the guided waves at various different ultrasonic frequencies shows a linear dependence on the thickness of the coating. The coatings also exhibit linear sensor output voltage with respect to the induced dynamic strain magnitude. Diameter/size of the piezo coatings strongly influences the voltage response in relation to the wavelength. The proposed method used a characterization set-up involving coated sensors, reference transducers and an analytical model to estimate the piezoelectric coefficient of the piezo coating. The method eliminates the size dependent effect on the piezo property accurately and gives further insight to design better sensors/filters with respect to frequency/wavelength of interest. The developed coatings will have interesting applications in structural health monitoring (SHM) and internet of things (IOT).

  4. Modeling to study the role of catalyst in the formation of graphitic shells during carbon nanofiber growth subjected to reactive plasma

    NASA Astrophysics Data System (ADS)

    Gupta, Ravi; Gupta, Neha; Sharma, Suresh C.

    2018-04-01

    An analytical model to study the role of a metal catalyst nanofilm in the nucleation, growth, and resulting structure of carbon nanofibers (CNFs) in low-temperature hydrogen diluted acetylene plasma has been developed. The model incorporates the nanostructuring of thin catalyst films, growth of CNF, restructuring of catalyst nanoparticles during growth, and its repercussion on the resulting structure (alignment of rolled graphene sheets around catalyst nanoparticles) by taking into account the plasma sheath formalization, kinetics of neutrals and positively charged species in the reactive plasma, flux of plasma species onto the catalyst front surface, and numerous surface reactions for carbon generation. In order to examine the influence of the catalyst film on the growth of CNFs, the numerical solutions of the model equations have been obtained for experimentally determined initial conditions and glow discharge plasma parameters. From the solutions obtained, we found that nanostructuring of thin films leads to the formation of small nanoparticles with high surface number density. The CNF nucleates over these small-sized nanoparticles grow faster and attain early saturation because of the quick poisoning of small-sized catalyst particles, and contain only a few graphitic shells. However, thick nanofilms result in shorter CNFs with large diameters composed of many graphitic shells. Moreover, we found that the inclination of graphitic shells also depends on the extent up to which the catalyst can reconstruct itself during the growth. The small nanoparticles show much greater elongation along the growth axis and also show a very small difference between their tip and base diameter during the growth due to which graphitic shells align at very small angles as compared to the larger nanoparticles. The present study is useful to synthesize the thin and more extended CNFs/CNTs having a smaller opening angle (inclination angle of graphene layers) as the opening angle has a significant influence on their field emission properties. The comparisons of these theoretical findings to the experimental observations confirm the adequacy of the proposed model.

  5. High pressure fiber optic sensor system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guida, Renato; Xia, Hua; Lee, Boon K

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  6. Inventory-based sensitivity analysis of the Large Tree Diameter Growth Submodel of the Southern Variant of the FVS

    Treesearch

    Giorgio Vacchiano; John D. Shaw; R. Justin DeRose; James N. Long

    2008-01-01

    Diameter increment is an important variable in modeling tree growth. Most facets of predicted tree development are dependent in part on diameter or diameter increment, the most commonly measured stand variable. The behavior of the Forest Vegetation Simulator (FVS) largely relies on the performance of the diameter increment model and the subsequent use of predicted dbh...

  7. Expander for Thin-Wall Tubing

    NASA Technical Reports Server (NTRS)

    Pessin, R.

    1983-01-01

    Tool locally expands small-diameter tubes. Tube expander locally expands and deforms tube: Compressive lateral stress induced in elastomeric sleeve by squeezing axially between two metal tool parts. Adaptable to situations in which tube must have small bulge for mechanical support or flow control.

  8. The controlled growth of GaN nanowires.

    PubMed

    Hersee, Stephen D; Sun, Xinyu; Wang, Xin

    2006-08-01

    This paper reports a scalable process for the growth of high-quality GaN nanowires and uniform nanowire arrays in which the position and diameter of each nanowire is precisely controlled. The approach is based on conventional metalorganic chemical vapor deposition using regular precursors and requires no additional metal catalyst. The location, orientation, and diameter of each GaN nanowire are controlled using a thin, selective growth mask that is patterned by interferometric lithography. It was found that use of a pulsed MOCVD process allowed the nanowire diameter to remain constant after the nanowires had emerged from the selective growth mask. Vertical GaN nanowire growth rates in excess of 2 mum/h were measured, while remarkably the diameter of each nanowire remained constant over the entire (micrometer) length of the nanowires. The paper reports transmission electron microscopy and photoluminescence data.

  9. Managing for Climate Change Adaptation in Forests: a Case Study from the U.S. Southwest

    NASA Astrophysics Data System (ADS)

    Kerhoulas, L. P.; Kolb, T.; Koch, G. W.; Hurteau, M. D.

    2016-12-01

    Forest mortality related to climate change is an increasingly common global phenomenon. We provide a case study of the U.S. Southwest to investigate the interactions among forest restoration treatments that alter stand density, tree growth, and drought resistance in trees of different size classes. Using cores taken from five positions in large trees (coarse roots, breast height, base of live crown, mid-crown branch, and treetop) and breast height in small trees, we investigated how radial growth response to thinning and precipitation availability varied in 72 ponderosa pines Pinus ponderosa Dougl. in northern Arizona. Ten years after thinning, growth of small trees did not respond significantly to thinning whereas growth of large trees increased following moderate and heaving thinning, and this response was similar across within-tree core sample positions. The intensity of thinning treatment did not significantly affect dry-year growth in small trees. In large trees, dry-year growth after thinning was maintained at pre-thinning levels in moderate and heavy thinning treatments but decreased in the light thinning and control treatments. Our findings indicate that more aggressive thinning treatments used for forest restoration stimulate growth throughout large residual trees from coarse roots to branches and also improve drought resistance, providing a greater resilience to future climate-related stress. These responses to treatment are more pronounced in large trees than small trees. Forest thinning is therefore recommended in systems that are likely to experience increased temperature and decreased precipitation as a result of climate change.

  10. An Ultra-Precise Method for the Nano Thin-Film Removal

    NASA Astrophysics Data System (ADS)

    Pa, P. S.

    In this research an electrode-set is used to investigate via an ultra-precise method for the removal of Indium Tin Oxide (ITO) thin-film microstructure from defective display panels to conquer the low yield rate in display panel production as to from imperfect Indium Tin Oxide layer deposition is well known. This process, which involves the removal of ITO layer substructure by means of an electrochemical removal (ECMR), is of major interest to the optoelectronics semiconductor industry. In this electro machining process a high current flow and high feed rate of the display (color filter) achieves complete and efficient removal of the ITO layer. The ITO thin-film can be removed completely by a proper combination of feed rate and electric power. A small gap between the diameter cathode virtual rotation circle and the diameter virtual rotation circle also corresponds to a higher removal rate. A small anode edge radius with a small cathode edge radius effectively improves dregs discharge and is an advantage when associated with a high workpiece feed rate. This precision method for the recycling of defective display screen color filters is presented as an effective tool for use in the screen manufacturing process. The defective Indium Tin Oxide thin-film can be removed easily and cleanly in a short time. The complete removal of the ITO layer makes it possible to put these panels back into the production line for reuse with a considerable reduction of both waste and production cost.

  11. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors

    DOE PAGES

    Liang, Jiajie; Tong, Kwing; Pei, Qibing

    2016-05-09

    Silver nanowire is a very promising material for fabricating compliant conductors which are essential for stretchable/wearable electronic devices. Screen printing is a cost-effective and scalable technology to fabricate large-area thin film coatings with modest pattern resolution. The biggest challenge to prepare a screen printable silver nanowire ink stems from the low viscosity of silver nanowire dispersions and that the addition of a thickening agent could dramatically increase the inter-nanowire contact resistance in the resulting coating. Herein, we report the synthesis of a water-based silver nanowire ink, which was formulated with low solid contents, high viscosity at 0.1 s -1 shearmore » rate, and appropriate rheological behavior suitable for screen printing. Silver nanowire coating patterns were screen printed with uniform sharp edges, ~50 μm resolution, and electrical conductivity as high as 4.67 × 10 4 S cm -1. The screen printed silver nanowires were then used to fabricate a composite conductor that retained a conductivity greater than 10,000 S cm -1 under 70% tensile strain. Fully printed and stretchable/wearable thin-film transistor arrays were also fabricated by employing the screen printed composite conductor as the source, drain, and gate, drop cast semiconducting carbon nanotubes as the channel, and a dielectric elastomer. The 10 × 6 thin-film transistor arrays had a fabrication yield of 91.7%, average mobility of 33.8 ± 3.7 cm 2V -1s -1, ON/OFF ratio ~1000, and remained stable during 1,000 cycles of wearing on and peeling off a glass tube with 5 mm diameter.« less

  12. Rating experiments in forestry: How much agreement is there in tree marking?

    PubMed Central

    Pallarés Ramos, Carlos; Kędziora, Wojciech; Haufe, Jens; Stoyan, Dietrich

    2018-01-01

    The process of selecting individual trees by humans for forest management purposes is the result of a plethora of factors and processes that are hard to disentangle. And yet in the past many textbooks and other publications have maintained that this selection leads to somewhat unanimous results. In this study, we analysed the data of 36 so-called marteloscope experiments from all over Britain, which are managed by the Ae Training Centre (Scotland, UK). Our objective was (1) to establish how much agreement there actually was when asking test persons (raters) to apply two different thinning methods, low and crown thinning. In addition we (2) were interested in understanding some of the processes leading to certain levels of agreement and in relationships between the agreement measures and characteristics of forest structure. Our analysis was based on multivariate statistics, particularly using Fleiss’ kappa. This was the first time that an analysis of rater behaviour was performed at such a large scale and it revealed that the general agreement in tree selection in Britain was only slight to fair, i.e. much lower than in medical experiments. The variability of selecting individual trees was considerable. We also found that agreement in tree selection was much stronger in low-thinning as opposed to crown-thinning experiments. As the latter is an important method of Continuous Cover Forestry and British forestry is increasingly adopting this forest management type, our results suggested that there is a need to provide more training. Interestingly the different levels of agreement as identified by Fleiss’ kappa could not be explained by measures of forest structure, however, the mean conformity number, a surrogate of Fleiss’ kappa, showed correlations and indicated that conformity increased with increasing complexity of tree stem diameter structure. PMID:29566076

  13. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Jiajie; Tong, Kwing; Pei, Qibing

    Silver nanowire is a very promising material for fabricating compliant conductors which are essential for stretchable/wearable electronic devices. Screen printing is a cost-effective and scalable technology to fabricate large-area thin film coatings with modest pattern resolution. The biggest challenge to prepare a screen printable silver nanowire ink stems from the low viscosity of silver nanowire dispersions and that the addition of a thickening agent could dramatically increase the inter-nanowire contact resistance in the resulting coating. Herein, we report the synthesis of a water-based silver nanowire ink, which was formulated with low solid contents, high viscosity at 0.1 s -1 shearmore » rate, and appropriate rheological behavior suitable for screen printing. Silver nanowire coating patterns were screen printed with uniform sharp edges, ~50 μm resolution, and electrical conductivity as high as 4.67 × 10 4 S cm -1. The screen printed silver nanowires were then used to fabricate a composite conductor that retained a conductivity greater than 10,000 S cm -1 under 70% tensile strain. Fully printed and stretchable/wearable thin-film transistor arrays were also fabricated by employing the screen printed composite conductor as the source, drain, and gate, drop cast semiconducting carbon nanotubes as the channel, and a dielectric elastomer. The 10 × 6 thin-film transistor arrays had a fabrication yield of 91.7%, average mobility of 33.8 ± 3.7 cm 2V -1s -1, ON/OFF ratio ~1000, and remained stable during 1,000 cycles of wearing on and peeling off a glass tube with 5 mm diameter.« less

  14. 75 FR 38989 - Welded Large Diameter Line Pipe From Japan: Notice of Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-07

    ... Pipe From Japan: Notice of Rescission of Antidumping Duty Administrative Review AGENCY: Import... antidumping duty order on welded large diameter line pipe from Japan. The review covers 4 producers/exporters of welded large diameter line pipe from Japan, which are, JFE Steel Corporation, Nippon Steel...

  15. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  16. All fiber passively Q-switched laser

    DOEpatents

    Soh, Daniel B. S.; Bisson, Scott E

    2015-05-12

    Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.

  17. Selective control of small versus large diameter axons using infrared laser light (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.

    2016-03-01

    Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.

  18. AAFE large deployable antenna development program: Executive summary

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The large deployable antenna development program sponsored by the Advanced Applications Flight Experiments of the Langley Research Center is summarized. Projected user requirements for large diameter deployable reflector antennas were reviewed. Trade-off studies for the selection of a design concept for 10-meter diameter reflectors were made. A hoop/column concept was selected as the baseline concept. Parametric data are presented for 15-meter, 30-meter, and 100-meter diameters. A 1.82-meter diameter engineering model which demonstrated the feasiblity of the concept is described.

  19. High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure.

    PubMed

    Zhou, Guorui; Wu, Qiang; Kumar, Rahul; Ng, Wai Pang; Liu, Hao; Niu, Longfei; Lalam, Nageswara; Yuan, Xiaodong; Semenova, Yuliya; Farrell, Gerald; Yuan, Jinhui; Yu, Chongxiu; Zeng, Jie; Tian, Gui Yun; Fu, Yong Qing

    2017-06-16

    A high sensitivity refractive index sensor based on a single mode-small diameter no core fiber structure is proposed. In this structure, a small diameter no core fiber (SDNCF) used as a sensor probe, was fusion spliced to the end face of a traditional single mode fiber (SMF) and the end face of the SDNCF was coated with a thin film of gold to provide reflective light. The influence of SDNCF diameter and length on the refractive index sensitivity of the sensor has been investigated by both simulations and experiments, where results show that the diameter of SDNCF has significant influence. However, SDNCF length has limited influence on the sensitivity. Experimental results show that a sensitivity of 327 nm/RIU (refractive index unit) has been achieved for refractive indices ranging from 1.33 to 1.38, which agrees well with the simulated results with a sensitivity of 349.5 nm/RIU at refractive indices ranging from 1.33 to 1.38.

  20. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  1. 76 FR 7815 - Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 41/2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-850] Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4\\1/2\\ Inches) From Japan: Extension of... administrative review of the antidumping duty order on certain large diameter carbon and alloy seamless standard...

  2. Misfit-guided self-organization of anticorrelated Ge quantum dot arrays on Si nanowires.

    PubMed

    Kwon, Soonshin; Chen, Zack C Y; Kim, Ji-Hun; Xiang, Jie

    2012-09-12

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one-dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anticorrelated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a postgrowth annealing process.

  3. Coupled, Simultaneous Displacement and Dealloying Reactions into Fe-Ni-Co Nanowires for Thinning Nanowire Segments.

    PubMed

    Geng, Xiaohua; Podlaha, Elizabeth J

    2016-12-14

    A new methodology is reported to shape template-assisted electrodeposition of Fe-rich, Fe-Ni-Co nanowires to have a thin nanowire segment using a coupled displacement reaction with a more noble elemental ion, Cu(II), and at the same time dealloying predominantly Fe from Fe-Ni-Co by the reduction of protons (H + ), followed by a subsequent etching step. The displacement/dealloyed layer was sandwiched between two trilayers of Fe-Ni-Co to facilitate the characterization of the reaction front, or penetration length. The penetration length region was found to be a function of the ratio of proton and Cu(II) concentration, and a ratio of 0.5 was found to provide the largest penetration rate, and hence the larger thinned length of the nanowire. Altering the etching time affected the diameter of the thinned region. This methodology presents a new way to thin nanowire segments connected to larger nanowire sections and also introduces a way to study the propagation of a reaction front into a nanowire.

  4. Piezoelectric ultrasonic micromotor with 1.5 mm diameter.

    PubMed

    Dong, Shuxiang; Lim, Siak P; Lee, Kwork H; Zhang, Jingdong; Lim, Leong C; Uchino, Kenji

    2003-04-01

    A piezoelectric ultrasonic micromotor has been developed using a lead zirconate titanate (PZT) ceramic/metal composite tube stator that was 1.5 mm in diameter and 7 mm in length. The micromotor was operated in its first bending vibration mode (approximately 70 kHz), producing speeds from hundreds to over 2000 rpm in both rotational directions. The maximum torque-output was 45 microN-m, which is far superior to previous PZT thin film-based micromotors. This micromotor showed good reliability and stability for more than 300 hours of continued operation.

  5. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.

    PubMed

    Eissenstat, David M; Kucharski, Joshua M; Zadworny, Marcin; Adams, Thomas S; Koide, Roger T

    2015-10-01

    The identification of plant functional traits that can be linked to ecosystem processes is of wide interest, especially for predicting vegetational responses to climate change. Root diameter of the finest absorptive roots may be one plant trait that has wide significance. Do species with relatively thick absorptive roots forage in nutrient-rich patches differently from species with relatively fine absorptive roots? We measured traits related to nutrient foraging (root morphology and architecture, root proliferation, and mycorrhizal colonization) across six coexisting arbuscular mycorrhizal (AM) temperate tree species with and without nutrient addition. Root traits such as root diameter and specific root length were highly correlated with root branching intensity, with thin-root species having higher branching intensity than thick-root species. In both fertilized and unfertilized soil, species with thin absorptive roots and high branching intensity showed much greater root length and mass proliferation but lower mycorrhizal colonization than species with thick absorptive roots. Across all species, fertilization led to increased root proliferation and reduced mycorrhizal colonization. These results suggest that thin-root species forage more by root proliferation, whereas thick-root species forage more by mycorrhizal fungi. In mineral nutrient-rich patches, AM trees seem to forage more by proliferating roots than by mycorrhizal fungi. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. Bi2O3 nanoparticles encapsulated in surface mounted metal-organic framework thin films

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Chen, Zhi; Yang, Chengwu; Neumann, Tobias; Kübel, Christian; Wenzel, Wolfgang; Welle, Alexander; Pfleging, Wilhelm; Shekhah, Osama; Wöll, Christof; Redel, Engelbert

    2016-03-01

    We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye.We describe a novel procedure to fabricate a recyclable hybrid-photocatalyst based on Bi2O3@HKUST-1 MOF porous thin films. Bi2O3 nanoparticles (NPs) were synthesized within HKUST-1 (or Cu3(BTC)2) surface-mounted metal-organic frame-works (SURMOFs) and characterized using X-ray diffraction (XRD), a quartz crystal microbalance (QCM) and transmission electron microscopy (TEM). The Bi2O3 semiconductor NPs (diameter 1-3 nm)/SURMOF heterostructures exhibit superior photo-efficiencies compared to NPs synthesized using conventional routes, as demonstrated via the photodegradation of the nuclear fast red (NFR) dye. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00532b

  7. Mechanisms involved in the hydrothermal growth of ultra-thin and high aspect ratio ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Demes, Thomas; Ternon, Céline; Morisot, Fanny; Riassetto, David; Legallais, Maxime; Roussel, Hervé; Langlet, Michel

    2017-07-01

    Hydrothermal synthesis of ZnO nanowires (NWs) with tailored dimensions, notably high aspect ratios (AR) and small diameters, is a major concern for a wide range of applications and still represents a challenging and recurring issue. In this work, an additive-free and reproducible hydrothermal procedure has been developed to grow ultra-thin and high AR ZnO NWs on sol-gel deposited ZnO seed layers. Controlling the substrate temperature and using a low reagent concentration (1 mM) has been found to be essential for obtaining such NWs. We show that the NW diameter remains constant at about 20-25 nm with growth time contrary to the NW length that can be selectively increased leading to NWs with ARs up to 400. On the basis of investigated experimental conditions along with thermodynamic and kinetic considerations, a ZnO NW growth mechanism has been developed which involves the formation and growth of nuclei followed by NW growth when the nuclei reach a critical size of about 20-25 nm. The low reagent concentration inhibits NW lateral growth leading to ultra-thin and high AR NWs. These NWs have been assembled into electrically conductive ZnO nanowire networks, which opens attractive perspectives toward the development of highly sensitive low-cost gas- or bio-sensors.

  8. Thin chitosan films containing super-paramagnetic nanoparticles with contrasting capability in magnetic resonance imaging.

    PubMed

    Farjadian, Fatemeh; Moradi, Sahar; Hosseini, Majid

    2017-03-01

    Magnetic nanoparticles have found application as MRI contrasting agents. Herein, chitosan thin films containing super-paramagnetic iron oxide nanoparticles (SPIONs) are evaluated in magnetic resonance imaging (MRI). To determine their contrasting capability, super-paramagnetic nanoparticles coated with citrate (SPIONs-cit) were synthesized. Then, chitosan thin films with different concentrations of SPIONs-cit were prepared and their MRI data (i.e., r 2 and r 2 *) was evaluated in an aqueous medium. The synthesized SPIONs-cit and chitosan/SPIONs-cit films were characterized by FTIR, EDX, XRD as well as VSM with the morphology evaluated by SEM and AFM. The nanoparticle sizes and distribution confirmed well-defined nanoparticles and thin films formation along with high contrasting capability in MRI. Images revealed well-dispersed uniform nanoparticles, averaging 10 nm in size. SPIONs-cit's hydrodynamic size averaged 23 nm in diameter. The crystallinity obeyed a chitosan and SPIONs pattern. The in vitro cellular assay of thin films with a novel route was performed within Hek293 cell lines showing that thin films can be biocompatible.

  9. Microwave Characterization of Ba-Substituted PZT and ZnO Thin Films.

    PubMed

    Tierno, Davide; Dekkers, Matthijn; Wittendorp, Paul; Sun, Xiao; Bayer, Samuel C; King, Seth T; Van Elshocht, Sven; Heyns, Marc; Radu, Iuliana P; Adelmann, Christoph

    2018-05-01

    The microwave dielectric properties of (Ba 0.1 Pb 0.9 )(Zr 0.52 Ti 0.48 )O 3 (BPZT) and ZnO thin films with thicknesses below were investigated. No significant dielectric relaxation was observed for both BPZT and ZnO up to 30 GHz. The intrinsic dielectric constant of BPZT was as high as 980 at 30 GHz. The absence of strong dielectric dispersion and loss peaks in the studied frequency range can be linked to the small grain diameters in these ultrathin films.

  10. Laser-Induced Damage to Thin Film Dielectric Coatings.

    DTIC Science & Technology

    1980-10-01

    magnify and reimage the laser spot in the diagnostic Path B. Location [5] (see Figure (9)) is the equi- valent focal plane in Path B to that in Path A at...the thin film sample, (3] . The object distance is between the focal plane and the lens at [6) and the image distance is betv en the lens [6] and the...the equivalent focal plane in the diagnostic path and positioned so that the peak of the beam spatial profile falls on the pinhole. The diameter of the

  11. Controlled growth of well-aligned carbon nanotubes with large diameters

    NASA Astrophysics Data System (ADS)

    Wang, Xianbao; Liu, Yunqi; Zhu, Daoben

    2001-06-01

    Well-aligned carbon nanotubes (CNTs) with large diameters (25-200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays.

  12. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  13. Eucrite Impact Melt NWA 5218 - Evidence for a Large Crater on Vesta

    NASA Technical Reports Server (NTRS)

    Wittmann, Axel; Hiroi, Takahiro; Ross, Daniel K.; Herrin, Jason S.; Rumble, Douglas, III; Kring, David A.

    2011-01-01

    Northwest Africa (NWA) 5218 is a 76 g achondrite that is classified as a eucrite [1]. However, an initial classification [2] describes it as a "eucrite shock-melt breccia...(in which) large, partially melted cumulate basalt clasts are set in a shock melt flow...". We explore the petrology of this clast-bearing impact melt rock (Fig. 1), which could be a characteristic lithology at large impact craters on asteroid Vesta [3]. Methods: Optical microscopy, scanning electronmicroscopy, and Raman spectroscopy were used on a thin section (Fig. 1) for petrographic characterization. The impact melt composition was determined by 20 m diameter defocused-beam analyses with a Cameca SX-100 electron microprobe. The data from 97 spots were corrected for mineral density effects [4]. Constituent mineral phases were analyzed with a focusedbeam. Bidirectonal visible and near-infrared (VNIR) and biconical FT-IR reflectance spectra were measured on the surface of a sample slab on its central melt area and on an eucrite clast, and from 125-500 m and <125 m powders of melt. Results: General petrography: The sample specimen is a coherent, medium dark-grey (N4), melt rock. The thin section captures a central, subophitic-textured melt that contains 1 cm to tens of m-size subangular to rounded, variably-shocked eucrite clasts. Clasts >100 m are coarse-grained with equigranular 1 mm size plagioclase, quartz, and clinopyroxene (Fig. 1). Single crystals of chromite, ilmenite, zircon, Ca-Mg phosphate, Fe-metal, and troilite are embedded in the melt. Polymineralic clasts are mostly compositionally similar to the above mentioned larger clasts but scarce granulitic fragments are observed as well.

  14. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    NASA Astrophysics Data System (ADS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  15. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailoredmore » diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.« less

  16. Sensitivity Enhancement in Low Cutoff Wavelength Long-Period Fiber Gratings by Cladding Diameter Reduction.

    PubMed

    Del Villar, Ignacio; Partridge, Matthew; Rodriguez, Wenceslao Eduardo; Fuentes, Omar; Socorro, Abian Bentor; Diaz, Silvia; Corres, Jesus Maria; James, Stephen Wayne; Tatam, Ralph Peter

    2017-09-13

    The diameter of long-period fiber gratings (LPFGs) fabricated in optical fibers with a low cutoff wavelength was be reduced by hydrofluoric acid etching, enhancing the sensitivity to refractive index by more than a factor of 3, to 2611 nm/refractive index unit in the range from 1.333 to 1.4278. The grating period selected for the LPFGs allowed access to the dispersion turning point at wavelengths close to the visible range of the optical spectrum, where optical equipment is less expensive. As an example of an application, a pH sensor based on the deposition of a polymeric coating was analyzed in two situations: with an LPFG without diameter reduction and with an LPFG with diameter reduction. Again, a sensitivity increase of a factor of near 3 was obtained, demonstrating the ability of this method to enhance the sensitivity of thin-film-coated LPFG chemical sensors.

  17. Study of the De-Icing Properties of the ASDE-3 Rotodome

    DOT National Transportation Integrated Search

    1982-04-01

    A study was conducted of the thermal characteristics of the ASDE-3 system's rotating radome (rotodome), a spheri-toroidal thin wall structure, approximately 18 feet in diameter and 6 feet in height. The purpose of the study was to determine the therm...

  18. Poly(cyclohexylethylene)- block -Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Li; Oquendo, Luis E.; Schulze, Morgan W.

    2016-03-08

    Poly(cyclohexylethylene)-block-poly(lactide) (PCHE–PLA) block polymers were synthesized through a combination of anionic polymerization, heterogeneous catalytic hydrogenation and controlled ring-opening polymerization. Ordered thin films of PCHE–PLA with ultrasmall hexagonally packed cylinders oriented perpendicularly to the substrate surface were prepared by spin-coating and subsequent solvent vapor annealing for use in two distinct templating strategies. In one approach, selective hydrolytic degradation of the PLA domains generated nanoporous PCHE templates with an average pore diameter of 5 ± 1 nm corroborated by atomic force microscopy and grazing incidence small-angle X-ray scattering. Alternatively, sequential infiltration synthesis (SIS) was employed to deposit Al2O3 selectively into the PLAmore » domains of PCHE–PLA thin films. A combination of argon ion milling and O2 reactive ion etching (RIE) enabled the replication of the Al2O3 nanoarray from the PCHE–PLA template on diverse substrates including silicon and gold with feature diameters less than 10 nm.« less

  19. Semiconductor cylinder fiber laser

    NASA Astrophysics Data System (ADS)

    Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp

    2015-12-01

    We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.

  20. Fabrication and characteristics of thin disc piezoelectric transformers based on piezoelectric buzzers with gap circles.

    PubMed

    Chang, Kuo-Tsai; Lee, Chun-Wei

    2008-04-01

    This paper investigates design, fabrication and test of thin disc piezoelectric transformers (PTs) based on piezoelectric buzzers with gap circles at different diameters of the gap circles. The performance test is focused on characteristics of voltage gains, including maximum voltage gains and maximum-gain frequencies, for each piezoelectric transformer under different load conditions. Both a piezoelectric buzzer and a gap circle on a silver electrode of the buzzer are needed to build any type of the PTs. Here, the gap circle is used to form a ring-shaped input electrode and a circle-shaped output electrode for each piezoelectric transformer. To do so, both structure and connection of a PT are first expressed. Then, operating principle of a PT and its related vibration mode observed by a carbon-power imaging technique are described. Moreover, an experimental setup for characterizing each piezoelectric transformer is constructed. Finally, effects of diameters of the gap circles on characteristics of voltage gains at different load resistances are discussed.

  1. Size Control of Porous Silicon-Based Nanoparticles via Pore-Wall Thinning.

    PubMed

    Secret, Emilie; Leonard, Camille; Kelly, Stefan J; Uhl, Amanda; Cozzan, Clayton; Andrew, Jennifer S

    2016-02-02

    Photoluminescent silicon nanocrystals are very attractive for biomedical and electronic applications. Here a new process is presented to synthesize photoluminescent silicon nanocrystals with diameters smaller than 6 nm from a porous silicon template. These nanoparticles are formed using a pore-wall thinning approach, where the as-etched porous silicon layer is partially oxidized to silica, which is dissolved by a hydrofluoric acid solution, decreasing the pore-wall thickness. This decrease in pore-wall thickness leads to a corresponding decrease in the size of the nanocrystals that make up the pore walls, resulting in the formation of smaller nanoparticles during sonication of the porous silicon. Particle diameters were measured using dynamic light scattering, and these values were compared with the nanocrystallite size within the pore wall as determined from X-ray diffraction. Additionally, an increase in the quantum confinement effect is observed for these particles through an increase in the photoluminescence intensity of the nanoparticles compared with the as-etched nanoparticles, without the need for a further activation step by oxidation after synthesis.

  2. Reaching the Ionic Current Detection Limit in Silicon-Based Nanopores

    NASA Astrophysics Data System (ADS)

    Puster, Matthew; Rodriguez-Manzo, Julio Alejandro; Nicolai, Adrien; Meunier, Vincent; Drndic, Marija

    2015-03-01

    Solid-state nanopores act as single-molecule sensors whereby passage of an individual molecule in aqueous electrolyte through a nanopore is registered as a change in ionic conductance (ΔG). Future nanopore applications such as DNA sequencing at high bandwidth require high ΔG for optimal signal-to-noise ratio. Reducing the nanopore diameter and thickness increase ΔG. Molecule size limits the diameter, thus efforts concentrate on minimizing the thickness by thinning oxide/nitride films or using 2D materials. Weighted by electrolyte conductivity the highest ΔG reported to date for DNA translocations were obtained with nanopores made in oxide/nitride films. We present a controlled electron irradiation technique to thin such films to the limit of their stability, producing nanopores tailored to molecule size in amorphous Si with thicknesses less than 2 nm. We compare ΔG values with results found in the literature for DNA translocation through these nanopores, where access resistance becomes comparable to the resistance through the nanopore itself.

  3. Necessary conditions for superior thermoelectric power of Si/Au artificial superlattice thin-film

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoichi; Watanabe, Shin; Miyazaki, Hisashi; Morimoto, Jun

    2018-03-01

    The Si-Ge-Au ternary artificial superlattice thin-films showed superior thermoelectric power with low reproducibility. Superior thermoelectric power was only generated, when nanocrystals existed. Therefore, the origin of superior thermoelectric power was considered to be the quantum size effect of nanocrystals. However, even with the presence of nanocrystals, superior thermoelectric power was often not generated. In order to investigate the generation conditions of superior thermoelectric power in more detail, the samples were simplified to Si-Au binary artificial superlattice samples. Furthermore, annealings were carried out under conditions where nanocrystals were likely to be formed. From the results of Raman scattering spectroscopy and X-ray diffraction (XRD) analysis, the diameter of nanocrystals and the spacing between nanocrystals were calculated with an isotropic three-dimensional mosaic model. It was found that superior thermoelectric power was generated only when the diameter of nanocrystals was 11 nm or less and the spacing between nanocrystals was 3 nm or less.

  4. Preparation and characterization of nanostructured Pt/TiO2 thin films treated using electron beam.

    PubMed

    Shin, Joong-Hyeok; Woo, Hee-Gweon; Kim, Bo-Hye; Lee, Byung Cheol; Jun, Jin

    2010-05-01

    Pt nanoparticle-doped titanium dioxide (Pt/TiO2) thin films were prepared on a silicon wafer substrate by sol-gel spin coating process. The prepared thin films were treated with electron beam (EB at 1.1 MeV, 100, 200, 300 kGy) at air atmosphere. The effect of EB-irradiation on the composition of the treated thin films, optical properties and morphology of thin films were investigated by various analytical techniques such as X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The crystal structure of the TiO2 layer was found to be an anatase phase and the size of TiO2 particles was determined to be about 13 nm. Pt nanoparticles with diameter of 5 nm were observed on surface of the films. A new layer (presumed to be Pt-Ti complex and/or PtO2 compound) was created in the Pt/TiO2 thin film treated with EB (300 kGy). The transmittance of thin film decreased with EB treatment whereas the refractive index increased.

  5. Generation of localized strain in a thin film piezoelectric to control individual magnetoelectric heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jizhai; Liang, Cheng-Yen; Sepulveda, Abdon

    Experimental results demonstrate the ability of a surface electrode pattern to produce sufficient in-plane strain in a PbZr{sub 0.52}Ti{sub 0.48}O{sub 3} (PZT) thin film clamped by a Si substrate to control magnetism in a 1000 nm diameter Ni ring. The electrode pattern and the Ni ring/PZT thin film heterostructure were designed using a finite element based micromagnetics code. The magnetoelectric heterostructures were fabricated on the PZT film using e-beam lithography and characterized using magnetic force microscopy. Application of voltage to the electrodes moved one of the “onion” state domain walls. This method enables the development of complex architectures incorporating strain-mediated multiferroicmore » devices.« less

  6. Morphological impact of zinc oxide layers on the device performance in thin-film transistors.

    PubMed

    Faber, Hendrik; Klaumünzer, Martin; Voigt, Michael; Galli, Diana; Vieweg, Benito F; Peukert, Wolfgang; Spiecker, Erdmann; Halik, Marcus

    2011-03-01

    Zinc oxide thin-films are prepared either by spin coating of an ethanolic dispersion of nanoparticles (NP, diameter 5 nm) or by spray pyrolysis of a zinc acetate dihydrate precursor. High-resolution electron microscopy studies reveal a monolayer of particles for the low temperature spin coating approach and larger crystalline domains of more than 30 nm for the spray pyrolysis technique. Thin-film transistor devices (TFTs) based on spray pyrolysis films exhibit higher electron mobilities of up to 24 cm2 V(-1) s(-1) compared to 0.6 cm2 V(-1) s(-1) for NP based TFTs. These observations were dedicated to a reduced number of grain boundaries within the transistor channel.

  7. Self-Organized Formation of Short TiO2 Nanotube Arrays By Complete Anodization of Ti Thin Films

    NASA Astrophysics Data System (ADS)

    Okada, Masahisa; Tajima, Kazuki; Yamada, Yasusei; Yoshimura, Kazuki

    We investigate the self-organized growth of short TiO2 nanotubes by complete anodization of Ti thin films deposited on Si substrates in ethylene glycol electrolytes with small addition of NH4F. During the anodization process, real-time inspection of the current transient is performed to anodize the Ti films completely. X-ray photoelectron spectroscopy and scanning electron microscopy are employed to characterize the resulting samples. We find that the length of the formed TiO2 nanotubes is governed by the thickness of Ti thin films independently of the tube diameter. Short TiO2 nanotubes are also found to be stable up to 550 °C in air atmosphere even after crystallization to rutile.

  8. Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films

    NASA Astrophysics Data System (ADS)

    Tolley, R.; Montoya, S. A.; Fullerton, E. E.

    2018-04-01

    We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface, resulting in reduced saturation magnetization, magnetic anisotropy, and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3 μ m and transport measurements demonstrate these features can be displaced by means of spin-orbit torques with current densities as low as J =2 ×108A / m2 and display a skyrmion Hall effect.

  9. Fabrication and Characterization of Miniaturized Thermocouples

    NASA Astrophysics Data System (ADS)

    Munzel, Marco; Peinke, Joachim; Kittel, Achim

    2002-11-01

    The measurement of thermal fluctuations is important for discovering transport features of a passive scalar in fluids. We present a thermal sensor based on a miniaturized thermocouple. Its coaxial setup results from the fabrication as a micropipette normally used in neurobiology. The glass micropipettes contain a core of gold, antimony, or resistance wire and are coated with platinum. The core material is inserted as molten metal or wire and thinned during the fabrication process. The achieved tip diameters are 1μm and less which enhance the spatial and temporal resolution significantly. Because of its chemically inert coating, these sensors are applicative for detecting temperature fluctuations in large variety of liquids and gases. In addition, such thermocouples are intrinsically suitable for applications in scanning probe microscopy. The characterization of these sensors and first results from turbulent free-jet measurements are presented.

  10. Nonevaporable getter coating chambers for extreme high vacuum

    DOE PAGES

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al; ...

    2018-03-01

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  11. Ion selectivity of graphene nanopores

    DOE PAGES

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K + cations over Cl - anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly thanmore » divalent cations. Furthermore, the observed K +/Cl - selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less

  12. Enhanced linear photonic nanojet generated by core-shell optical microfibers

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Yang; Yen, Tzu-Ping; Chen, Chien-Wen

    2017-05-01

    The generation of linear photonic nanojet using core-shell optical microfiber is demonstrated numerically and experimentally in the visible light region. The power flow patterns for the core-shell optical microfiber are calculated by using the finite-difference time-domain method. The focusing properties of linear photonic nanojet are evaluated in terms of length and width along propagation and transversal directions. In experiment, the silica optical fiber is etched chemically down to 6 μm diameter and coated with metallic thin film by using glancing angle deposition. We show that the linear photonic nanojet is enhanced clearly by metallic shell due to surface plasmon polaritons. The large-area superresolution imaging can be performed by using a core-shell optical microfiber in the far-field system. The potential applications of this core-shell optical microfiber include micro-fluidics and nano-structure measurements.

  13. Nonevaporable getter coating chambers for extreme high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, Marcy L.; Adderley, Philip A.; Mamun, Md Abdullah Al

    Techniques for NEG coating a large diameter chamber are presented along with vacuum measurements in the chamber using several pumping configurations, with base pressure as low as 1.56x10^-12 Torr (N2 equivalent) with only a NEG coating and small ion pump. We then describe modifications to the NEG coating process to coat complex geometry chambers for ultra-cold atom trap experiments. Surface analysis of NEG coated samples are used to measure composition and morphology of the thin films. Finally, pressure measurements are compared for two NEG coated polarized electron source chambers: the 130 kV polarized electron source at Jefferson Lab and themore » upgraded 350 kV polarized 2 electron source, both of which are approaching or within the extreme high vacuum (XHV) range, defined as P<7.5x10^-13 Torr.« less

  14. Prosthetic occlusive device for an internal passageway

    NASA Technical Reports Server (NTRS)

    Tenney, J. B., Jr. (Inventor)

    1983-01-01

    An occlusive device is disclosed for surgical implant to occlude the lumen of an internal organ. The device includes a cuff having a backing collar and two isolated cuff chambers. The fluid pressure of one chamber is regulated by a pump/valve reservoir unit. The other chamber is unregulated in pressure but its fluid volume is adjusted by removing or adding fluid to a septum/reservoir by means of a hypodermic needle. Pressure changes are transmitted between the two cuff chambers via faying surfaces which are sufficiently large in contact area and thin as to transmit pressure generally without attenuation. By adjusting the fluid volume of the septum, the operating pressure of the device may be adjusted to accommodate tubular organs of different diameter sizes as well as to compensate for changes in the organ following implant without reoperation.

  15. Apparatus for measuring surface particulate contamination

    DOEpatents

    Woodmansee, Donald E.

    2002-01-01

    An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.

  16. Cratering Studies in Thin Plastic Films

    NASA Astrophysics Data System (ADS)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.

    2013-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can then be fed into electrostatic relaxation models to enhance the fidelity of interpretation of charge signals from a PVDF detector. Experimental results and preliminary simulation results and conclusions will be presented. Scanning Electron Microscope image of a microcrater caused by a dust impact into Polyvinylidene Fluoride (PVDF)

  17. Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines

    DOE PAGES

    Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; ...

    2007-01-01

    A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.

  18. Large tree diameter distribution modelling using sparse airborne laser scanning data in a subtropical forest in Nepal

    NASA Astrophysics Data System (ADS)

    Rana, Parvez; Vauhkonen, Jari; Junttila, Virpi; Hou, Zhengyang; Gautam, Basanta; Cawkwell, Fiona; Tokola, Timo

    2017-12-01

    Large-diameter trees (taking DBH > 30 cm to define large trees) dominate the dynamics, function and structure of a forest ecosystem. The aim here was to employ sparse airborne laser scanning (ALS) data with a mean point density of 0.8 m-2 and the non-parametric k-most similar neighbour (k-MSN) to predict tree diameter at breast height (DBH) distributions in a subtropical forest in southern Nepal. The specific objectives were: (1) to evaluate the accuracy of the large-tree fraction of the diameter distribution; and (2) to assess the effect of the number of training areas (sample size, n) on the accuracy of the predicted tree diameter distribution. Comparison of the predicted distributions with empirical ones indicated that the large tree diameter distribution can be derived in a mixed species forest with a RMSE% of 66% and a bias% of -1.33%. It was also feasible to downsize the sample size without losing the interpretability capacity of the model. For large-diameter trees, even a reduction of half of the training plots (n = 250), giving a marginal increase in the RMSE% (1.12-1.97%) was reported compared with the original training plots (n = 500). To be consistent with these outcomes, the sample areas should capture the entire range of spatial and feature variability in order to reduce the occurrence of error.

  19. Preliminary Crater Retention Ages for an Expanded Inventory of Large Lunar Basins

    NASA Technical Reports Server (NTRS)

    Frey, H. V.

    2012-01-01

    Based on LOLA topography and a new crustal thickness model, the number of candidate lunar basins greater than 300 km in diameter is at least a factor 2 larger than the traditional number based on photogeology alone, and may be as high as 95. Preliminary N(50) crater retention ages for this population of candidate basins shows two distinct peaks. Frey [1] suggested, based on Clementine-era topography (ULCN2005) and a crustal thickness model based on Lunar Prospector data [2], that there could be as many as 98 lunar basins greater than 300 km diameter. Many of the weaker cases have not stood up to recent testing [3,4,5] using LOLA data and a newer crustal thickness model based on Kaguya gravity data and LOLA topography data [6]. As described in companion abstracts [4,5], we have deleted from the earlier inventory 1 more named feature (Sikorsky- Rittenhouse; LOLA data show that its diameter is actually less than 300 km), 11 Quasi-Circular Depressions (QCDs) identified in the ULCN topography, and 11 Circular Thin Areas (CTAs) found in the earlier crustal thickness model [2]. We did this by repeating the scoring exercise originally done in [1] but with the new data [4,5]. Topographic Expression (TE) and Crustal Thickness Expression (CTE) scores were determined for each candidate on a scale of 0 to 5 (5 being a strong, circular signature, 0 for those with no discernible circular topographic or crustal thickness signature). These scores are added together to produce a Summary Score which has a range of 0 to 10. We eliminated all candidates with a Summary Score less than 3, as well as other cases where, for example, the TE went to zero because what looked like a single large circular QCD in the lower resolution ULCN data was in fact a cluster of smaller deep impacts readily apparent in the newer higher resolution LOLA data. This process reduced the original inventory from 98 to 75 candidates.

  20. Log sort yard economics, planning, and feasibility

    Treesearch

    John Rusty Dramm; Robert Govett; Ted Bilek; Gerry L. Jackson

    2004-01-01

    This publication discusses basic marketing and economic concepts, planning approach, and feasibility methodology for assessing log sort yard operations. Special attention is given to sorting small diameter and underutilized logs from forest restoration, fuels reduction, and thinning operations. A planned programming approach of objectively determining the feasibility...

  1. Ultrastructure Features and Three-Dimensional Transmission Electron Tomography of Dhub Lizard (Uromastyx Aegyptia) Cornea and Its Adaptation to a Desert Environment.

    PubMed

    Akhtar, Saeed; Alkhalaf, Mousa; Khan, Adnan A; Almubrad, Turki M

    2016-08-01

    We report ultrastructural features and transmission electron tomography of the dhub lizard (Uromastyx aegyptia) cornea and its adaptation to hot and dry environments. Six corneas of dhub lizards were fixed in 2.5% glutaraldehyde and processed for electron microscopy and tomography. The ultrathin sections were observed with a JEOL 1400 transmission electron microscope. The cornea of the dhub lizard is very thin (~28-30 µm). The epithelium constitutes ~14% of the cornea, whereas the stroma constitutes 80% of the cornea. The middle stromal lamellae are significantly thicker than anterior and posterior stromal lamellae. Collagen fibril (CF) diameters in the anterior stroma are variable in size (25-75 nm). Proteoglycans (PGs) are very large in the middle and posterior stroma, whereas they are small in the anterior stroma. Three-dimensional electron tomography was carried out to understand the structure and arrangement of the PG and CFs. The presence of large PGs in the posterior and middle stroma might help the animal retain a large amount of water to protect it from dryness. The dhub corneal structure is equipped to adapt to the dry and hot desert environment.

  2. MALL liposuction: the natural evolution of subdermal superficial liposuction.

    PubMed

    Gasperoni, C; Salgarello, M

    1994-01-01

    Subdermal superficial liposuction, first presented by the authors at the ISAPS Congress at Zurich in 1989, is performed with thin three-hole Mercedes cannulas (diameter ranges from 1.8 to 2 mm) to treat small and secondary adiposities and to allow better skin retraction. Suction of the subdermal layer of fat reduces the thickness and consistency of the superficial fat and enhances the possibility of skin retraction. In cases where there is a large adiposity of the abdomen, arms, or inner thighs, there is a conspicuous volume of fat whose weight tends to overstretch and to carry the overlying skin downward. In these cases we need to reduce the large fat volume to permit effective skin retraction. Therefore, we apply the principles of traditional liposuction with those of subdermal superficial liposuction to aspirate large amounts of fat from all the adipose layers. We call this technique Massive All Layer Liposuction (MALL). The amount of skin shrinkage after this "defatting" procedure is remarkable and the clinical results are very good. The MALL technique can be applied to other areas as well. In our experience this new liposuction technique has dramatically reduced the indications of abdominoplasties and dermolipectomies of inner thighs and arms.

  3. Large-Scale Advanced Prop-Fan (LAP) pitch change actuator and control design report

    NASA Technical Reports Server (NTRS)

    Schwartz, R. A.; Carvalho, P.; Cutler, M. J.

    1986-01-01

    In recent years, considerable attention has been directed toward improving aircraft fuel consumption. Studies have shown that the high inherent efficiency previously demonstrated by low speed turboprop propulsion systems may now be extended to today's higher speed aircraft if advanced high-speed propeller blades having thin airfoils and aerodynamic sweep are utilized. Hamilton Standard has designed a 9-foot diameter single-rotation Large-Scale Advanced Prop-Fan (LAP) which will be tested on a static test stand, in a high speed wind tunnel and on a research aircraft. The major objective of this testing is to establish the structural integrity of large-scale Prop-Fans of advanced construction in addition to the evaluation of aerodynamic performance and aeroacoustic design. This report describes the operation, design features and actual hardware of the (LAP) Prop-Fan pitch control system. The pitch control system which controls blade angle and propeller speed consists of two separate assemblies. The first is the control unit which provides the hydraulic supply, speed governing and feather function for the system. The second unit is the hydro-mechanical pitch change actuator which directly changes blade angle (pitch) as scheduled by the control.

  4. The Importance of Large-Diameter Trees to Forest Structural Heterogeneity

    PubMed Central

    Lutz, James A.; Larson, Andrew J.; Freund, James A.; Swanson, Mark E.; Bible, Kenneth J.

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579

  5. The importance of large-diameter trees to forest structural heterogeneity.

    PubMed

    Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J

    2013-01-01

    Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.

  6. Isotachophoresis system having larger-diameter channels flowing into channels with reduced diameter and with selectable counter-flow

    DOEpatents

    Mariella, Jr., Raymond P.

    2018-03-06

    An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.

  7. An analytical method for prediction of stability lobes diagram of milling of large-size thin-walled workpiece

    NASA Astrophysics Data System (ADS)

    Yao, Jiming; Lin, Bin; Guo, Yu

    2017-01-01

    Different from common thin-walled workpiece, in the process of milling of large-size thin-walled workpiece chatter in the axial direction along the spindle is also likely to happen because of the low stiffness of the workpiece in this direction. An analytical method for prediction of stability lobes of milling of large-size thin-walled workpiece is presented in this paper. In the method, not only frequency response function of the tool point but also frequency response function of the workpiece is considered.

  8. Remotely Operated Vehicle ROV/AUV Reliability Study. Phase 2.

    DTIC Science & Technology

    1989-09-01

    produce workable configurations for large diameter cyl nders strong enough to survive high compression forces. 11 1.4.5.1.1 Composites Although FWE...Since the main cylinder in manned submersibles is typically large diameter , and the interior is only partially filled with equipment, these systems...ceramics involve control of tolerances when manufacturing large diameter cylinders, although ongoing R&D may provide solutions to this. The major

  9. Applications of harvesting system simulation to timber management and utilization analyses

    Treesearch

    John E. Baumgras; Chris B. LeDoux

    1990-01-01

    Applications of timber harvesting system simulation to the economic analysis of forest management and wood utilization practices are presented. These applications include estimating thinning revenue by stand age, estimating impacts of minimum merchantable tree diameter on harvesting revenue, and evaluating wood utilization alternatives relative to pulpwood quotas and...

  10. Pasteurization of grapefruit juice using a centrifugal ultraviolet light irradiator

    USDA-ARS?s Scientific Manuscript database

    The pharmaceutical industry uses UV irradiators to inactivate viruses in liquids without heat. The penetration depth of UV in some liquids, such as serum plasma, can be short. To overcome this, very thin films may be produced by centrifugal force, small diameter tubing, or other means. Many liquid f...

  11. Consolidation and fabrication techniques for vanadium-20 w/o titanium /TV-20/

    NASA Technical Reports Server (NTRS)

    Burt, W. R.; Karasek, F. J.; Kramer, W. C.; Mayfield, R. M.; Mc Gowan, R. D.

    1968-01-01

    Tests of the mechanical properties, fuel compatibility, sodium corrosion and irradiation behavior were made for vanadium and vanadium alloy. Improved methods for consolidation and fabrication of bar, rod, sheet, and high-quality, small diameter, thin-wall tubing of vanadium-20 without titanium are reported.

  12. Interaction of vortex rings with multiple permeable screens

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa N.; Krueger, Paul S.

    2014-11-01

    Interaction of a vortex ring impinging on multiple permeable screens orthogonal to the ring axis was studied to experimentally investigate the persistence and decay of vortical structures inside the screen array using digital particle image velocimetry in a refractive index matched environment. The permeable screens had porosities (open area ratios) of 83.8%, 69.0%, and 55.7% and were held by a transparent frame that allowed the screen spacing to be changed. Vortex rings were generated using a piston-cylinder mechanism at nominal jet Reynolds numbers of 1000, 2000, and 3000 with piston stroke length-to-diameter ratios of 2 and 3. The interaction of vortex rings with the porous medium showed a strong dependence of the overall flow evolution on the screen porosity, with a central flow being preserved and vortex ring-like structures (with smaller diameter than the primary vortex ring) being generated near the centerline. Due to the large rod size used in the screens, immediate reformation of the transmitted vortex ring with size comparable to the primary ring (as has been observed with thin screens) was not observed in most cases. Since the screens have lower complexity and high open area ratios, centerline vortex ring-like flow structures formed with comparable size to the screen pore size and penetrated through the screens. In the case of low porosity screens (55.7%) with large screen spacing, re-emergence of large scale (large separation), weak vortical structures/pairs (analogous to a transmitted vortex ring) was observed downstream of the first screen. Additional smaller scale vortical structures were generated by the interaction of the vortex ring with subsequent screens. The size distribution of the generated vortical structures were shown to be strongly affected by porosity, with smaller vortical structures playing a stronger role as porosity decreased. Finally, porosity significantly affected the decay of total energy, but the effect of screen spacing decreased as porosity decreased.

  13. Occurrence and mechanisms of impact melt emplacement at small lunar craters

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Hawke, B. Ray; Robinson, Mark S.; Denevi, Brett W.; Giguere, Thomas A.; Koeber, Steven D.

    2014-11-01

    Using observations from the Lunar Reconnaissance Orbiter Camera (LROC), we assess the frequency and occurrence of impact melt at simple craters less than 5 km in diameter. Nine-hundred-and-fifty fresh, randomly distributed impact craters were identified for study based on their maturity, albedo, and preservation state. The occurrence, frequency, and distribution of impact melt deposits associated with these craters, particularly ponded melt and lobate flows, are diagnostic of melt emplacement mechanisms. Like larger craters, those smaller than a few kilometers in diameter often exhibit ponded melt on the crater floor as well as lobate flows near the crater rim crest. The morphologies of these deposits suggest gravity-driven flow while the melt was molten. Impact melt deposits emplaced as veneers and ;sprays;, thin layers of ejecta that drape other crater materials, indicate deposition late in the cratering process; the deposits of fine sprays are particularly sensitive to degradation. Exterior melt deposits found near the rims of a few dozen craters are distributed asymmetrically around the crater and are rare at craters less than 2 km in diameter. Pre-existing topography plays a role in the occurrence and distribution of these melt deposits, particularly for craters smaller than 1 km in diameter, but does not account for all observed asymmetries in impact melt distribution. The observed relative abundance and frequency of ponded melt and flows in and around simple lunar craters increases with crater diameter, as was previously predicted from models. However, impact melt deposits are found more commonly at simple lunar craters (i.e., those less than a few kilometers in diameter) than previously expected. Ponded melt deposits are observed in roughly 15% of fresh craters smaller than 300 m in diameter and 80% of fresh craters between 600 m and 5 km in diameter. Furthermore, melt deposits are observed at roughly twice as many non-mare craters than at mare craters. We infer that the distributions and occurrences of impact melt are strongly influenced by impact velocity and angle, target porosity, pre-existing topography, and degradation. Additionally, areally small and volumetrically thin melt deposits are sensitive to mixing with solid debris and/or burial during the modification stage of impact cratering as well as post-cratering degradation. Thus, the production of melt at craters less than ∼800 m in diameter is likely greater than inferred from the present occurrence of melt deposits, which is rapidly affected by ongoing degradation processes.

  14. Controlled Bending of a Thin Mirror to Regain Figure after Warping due to Edge-Cutting

    NASA Astrophysics Data System (ADS)

    Humphries, C. M.

    1990-03-01

    A thin circular Cer-Vit mirror, diameter 1.3 m, that had been polished flat was cut along 10 edges to form a 12-sided pseudo-elliptical plate. As a result of the edge-cutting, the mirror distorted and an experiment that investigated the effect of reverse stressing to counteract the distortion is described and analysed. The configuration adopted for stressing the mirror when installed as a driven coudé flat in the UK Infrared Telescope is also described. The reverse stressing results can be understood in terms of thin plate theory for pure bending and, in general, if the distortion is toroidal (including the case of a sphere) an orthogonal pair of bending moments can be chosen that will remove the undesired curvatures.

  15. Reliability Analysis and Reliability-Based Design Optimization of Circular Composite Cylinders Under Axial Compression

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    2001-01-01

    This report describes the preliminary results of an investigation on component reliability analysis and reliability-based design optimization of thin-walled circular composite cylinders with average diameter and average length of 15 inches. Structural reliability is based on axial buckling strength of the cylinder. Both Monte Carlo simulation and First Order Reliability Method are considered for reliability analysis with the latter incorporated into the reliability-based structural optimization problem. To improve the efficiency of reliability sensitivity analysis and design optimization solution, the buckling strength of the cylinder is estimated using a second-order response surface model. The sensitivity of the reliability index with respect to the mean and standard deviation of each random variable is calculated and compared. The reliability index is found to be extremely sensitive to the applied load and elastic modulus of the material in the fiber direction. The cylinder diameter was found to have the third highest impact on the reliability index. Also the uncertainty in the applied load, captured by examining different values for its coefficient of variation, is found to have a large influence on cylinder reliability. The optimization problem for minimum weight is solved subject to a design constraint on element reliability index. The methodology, solution procedure and optimization results are included in this report.

  16. Hormonal changes in menopause: do they contribute to a 'midlife hair crisis' in women?

    PubMed

    Mirmirani, P

    2011-12-01

    Female pattern hair loss is a common problem affecting a large number of women worldwide but beset by a paucity of research. The study of androgens has hitherto dominated the field of hair biology but there is increasing scientific and clinical data to suggest that nonandrogen signals can also affect the folliculosebaceous unit, especially in women. The discovery of oestrogen receptor beta has renewed and redefined prior concepts of oestrogen activity and signalling in hair biology. It is postulated that oestrogens modulate hair growth by their influence on a number of other hormones, growth factors, transcription factors and cytokines. The menopause is a period in which significant changes in oestrogen levels are recorded, and this review discusses studies that help to clarify the link between menopause and the perception of thinning hair. In a study of pre- and postmenopausal women without alopecia, menopausal status significantly influenced hair parameters, specifically hair growth rate, percentage anagen and hair diameter distributions, most notably in the frontal scalp. Hair density decreased with age, but was not correlated with menopausal status. Analyses of hair amount using a model of hair density and hair diameters suggest that the impact of changing hair parameters is most notable in the mid-forties for women. © 2011 The Author. BJD © 2011 British Association of Dermatologists.

  17. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  18. Different growth regimes in InP nanowire growth mediated by Ag nanoparticles.

    PubMed

    Oliveira, D S; Zavarize, M; Tizei, L H G; Walls, M; Ospina, C A; Iikawa, F; Ugarte, D; Cotta, M A

    2017-12-15

    We report on the existence of two different regimes in one-step Ag-seeded InP nanowire growth. The vapor-liquid-solid-mechanism is present at larger In precursor flows and temperatures, ∼500 °C, yielding high aspect ratio and pure wurtzite InP nanowires with a semi-spherical metal particle at the thin apex. Periodic diameter oscillations can be achieved under extreme In supersaturations at this temperature range, showing the presence of a liquid catalyst. However, under lower temperatures and In precursor flows, large diameter InP nanowires with mixed wurtzite/zincblende segments are obtained, similarly to In-assisted growth. Chemical composition analysis suggest that In-rich droplet formation is catalyzed at the substrate surface via Ag nanoparticles; this process might be facilitated by the sulfur contamination detected in these nanoparticles. Furthermore, part of the original Ag nanoparticle remains solid and is embedded inside the actual catalyst, providing an in situ method to switch growth mechanisms upon changing In precursor flow. Nevertheless, our Ag-seeded InP nanowires exhibit overall optical emission spectra consistent with the observed structural properties and similar to Au-catalyzed InP nanowires. We thus show that Ag nanoparticles may be a suitable replacement for Au in InP nanowire growth.

  19. Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity

    NASA Technical Reports Server (NTRS)

    Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

    1988-01-01

    In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

  20. Molecular Simulation Evaluation of Macromolecular Transport through Nanofiltration Membranes

    NASA Astrophysics Data System (ADS)

    Almodovar Arbelo, Noelia; Boudouris, Bryan; Corti, David

    A hybrid Monte Carlo and Molecular Dynamics simulation technique was implemented to elucidate the equilibrium behavior and transport properties of a model macromolecule as it navigated across a nanoporous polymer thin film (i.e., a nanofiltration membrane). The model linear homopolymer chosen was one that had interactions that were representative of poly(ethylene oxide) (PEO) due to the known interactions of PEO with solution molecules when a PEO chain is dissolved in an aqueous environment. The structural rearrangements of the PEO chain as it passes through the nanopore under an imposed chemical potential gradient was quantified as a function of solvent quality, polymer chain length, nanopore diameter and shape, and PEO-nanopore wall interactions. Thus, these computational studies provide a more detailed picture of the underlying physical mechanisms that drive macromolecular transport through nanopores, and, in particular, how dimensionally-large macromolecules (i.e., with large radii of gyration) enter and move through dimensionally-small pores (i.e., small radii nanopores). The insights gained from these studies will aid in the development of more cost-effective water purification systems in separation technologies for myriad industrial applications.

  1. Smart integration of silicon nanowire arrays in all-silicon thermoelectric micro-nanogenerators

    NASA Astrophysics Data System (ADS)

    Fonseca, Luis; Santos, Jose-Domingo; Roncaglia, Alberto; Narducci, Dario; Calaza, Carlos; Salleras, Marc; Donmez, Inci; Tarancon, Albert; Morata, Alex; Gadea, Gerard; Belsito, Luca; Zulian, Laura

    2016-08-01

    Micro and nanotechnologies are called to play a key role in the fabrication of small and low cost sensors with excellent performance enabling new continuous monitoring scenarios and distributed intelligence paradigms (Internet of Things, Trillion Sensors). Harvesting devices providing energy autonomy to those large numbers of microsensors will be essential. In those scenarios where waste heat sources are present, thermoelectricity will be the obvious choice. However, miniaturization of state of the art thermoelectric modules is not easy with the current technologies used for their fabrication. Micro and nanotechnologies offer an interesting alternative considering that silicon in nanowire form is a material with a promising thermoelectric figure of merit. This paper presents two approaches for the integration of large numbers of silicon nanowires in a cost-effective and practical way using only micromachining and thin-film processes compatible with silicon technologies. Both approaches lead to automated physical and electrical integration of medium-high density stacked arrays of crystalline or polycrystalline silicon nanowires with arbitrary length (tens to hundreds microns) and diameters below 100 nm.

  2. Fabrication of ultra thin anodic aluminium oxide membranes by low anodization voltages

    NASA Astrophysics Data System (ADS)

    Pastore, I.; Poplausks, R.; Apsite, I.; Pastare, I.; Lombardi, F.; Erts, D.

    2011-06-01

    Formation of ultrathin anodised aluminium oxide (AAO) membranes with high aspect ratio by Al anodization in sulphuric and oxalic acids at low potentials was investigated. Low anodization potentials ensure slow electrochemical reaction speeds and formation of AAO membranes with pore diameter and thickness below 20 nm and 70 nm respectively. Minimum time necessary for formation of continuous AAO membranes was determined. AAO membrane pore surface was covered with polymer Paraloid B72TM to transport it to the selected substrate. The fabricated ultra thin AAO membranes could be used to fabricate nanodot arrays on different surfaces.

  3. Characterization of lap joints laser beam welding of thin AA 2024 sheets with Yb:YAG disk-laser

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Sergi, Vincenzo

    2012-06-01

    Lap joints obtained by overlapping two plates are widely diffused in aerospace industry. Nevertheless, because of natural aging, adhesively bonded and riveted aircraft lap joints may be affected by cracks from rivets, voids or corrosion. Friction stir welding has been proposed as a valid alternative, although large heat affected zones are produced both in the top and the bottom plate due to the pin diameter. Interest has therefore been shown in studying laser lap welding as the laser beam has been proved to be competitive since it allows to concentrate the thermal input and increases productivity and quality. Some challenges arise as a consequence of aluminum low absorptance and high thermal conductivity; furthermore, issues are due to metallurgical challenges such as both micro and macro porosity formation and softening in the fused zone. Welding of AA 2024 thin sheets in a lap joint configuration is discussed in this paper: tests are carried out using a recently developed Trumpf TruDisk 2002 Yb:YAG disk-laser with high beam quality which allows to produce beads with low plates distortion and better penetration. The influence of the processing parameters is discussed considering the fused zone extent and the bead shape. The porosity content as well as the morphological features of the beads have been examined.

  4. Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes.

    PubMed

    Lin, Xiaoyang; Zhao, Wei; Zhou, Wenbin; Liu, Peng; Luo, Shu; Wei, Haoming; Yang, Guangzhi; Yang, Junhe; Cui, Jie; Yu, Richeng; Zhang, Lina; Wang, Jiaping; Li, Qunqing; Zhou, Weiya; Zhao, Weisheng; Fan, Shoushan; Jiang, Kaili

    2017-02-28

    Exploiting the superior properties of nanomaterials at macroscopic scale is a key issue of nanoscience. Different from the integration strategy, "additive synthesis" of macroscopic structures from nanomaterial templates may be a promising choice. In this paper, we report the epitaxial growth of aligned, continuous, and catalyst-free carbon nanofiber thin films from carbon nanotube films. The fabrication process includes thickening of continuous carbon nanotube films by gas-phase pyrolytic carbon deposition and further graphitization of the carbon layer by high-temperature treatment. As-fabricated nanofibers in the film have an "annual ring" cross-section, with a carbon nanotube core and a graphitic periphery, indicating the templated growth mechanism. The absence of a distinct interface between the carbon nanotube template and the graphitic periphery further implies the epitaxial growth mechanism of the fiber. The mechanically robust thin film with tunable fiber diameters from tens of nanometers to several micrometers possesses low density, high electrical conductivity, and high thermal conductivity. Further extension of this fabrication method to enhance carbon nanotube yarns is also demonstrated, resulting in yarns with ∼4-fold increased tensile strength and ∼10-fold increased Young's modulus. The aligned and continuous features of the films together with their outstanding physical and chemical properties would certainly promote the large-scale applications of carbon nanofibers.

  5. Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness

    NASA Astrophysics Data System (ADS)

    Wang, Mengyu; Elze, Tobias; Li, Dian; Baniasadi, Neda; Wirkner, Kerstin; Kirsten, Toralf; Thiery, Joachim; Loeffler, Markus; Engel, Christoph; Rauscher, Franziska G.

    2017-12-01

    Optical coherence tomography (OCT) manufacturers graphically present circumpapillary retinal nerve fiber layer thickness (cpRNFLT) together with normative limits to support clinicians in diagnosing ophthalmic diseases. The impact of age on cpRNFLT is typically implemented by linear models. cpRNFLT is strongly location-specific, whereas previously published norms are typically restricted to coarse sectors and based on small populations. Furthermore, OCT devices neglect impacts of lens or eye size on the diameter of the cpRNFLT scan circle so that the diameter substantially varies over different eyes. We investigate the impact of age and scan diameter reported by Spectralis spectral-domain OCT on cpRNFLT in 5646 subjects with healthy eyes. We provide cpRNFLT by age and diameter at 768 angular locations. Age/diameter were significantly related to cpRNFLT on 89%/92% of the circle, respectively (pointwise linear regression), and to shifts in cpRNFLT peak locations. For subjects from age 42.1 onward but not below, increasing age significantly decreased scan diameter (r=-0.28, p<0.001), which suggests that pathological cpRNFLT thinning over time may be underestimated in elderly compared to younger subjects, as scan diameter decrease correlated with cpRNFLT increase. Our detailed numerical results may help to generate various correction models to improve diagnosing and monitoring optic neuropathies.

  6. Fatigue performance of joints executed in pure titanium structures with several diameters.

    PubMed

    Nuñez-Pantoja, Juliana Maria Costa; Vaz, Luis Geraldo; Nóbilo, Mauro Antônio de Arruda; Mesquita, Marcelo Ferraz

    2011-01-01

    This study evaluated fatigue strength of CP-Ti laser-welded joints. Sixty (20/diameter) CP-Ti casted dumbbell rods with diameters of 1.5, 2.0, and 3.5 mm were sectioned and welded using two joint openings (0.0 (00) and 0.6 mm (06)). Six groups were formed, amounting to a total of 9 (n=10) with inclusion of intact groups. Welding was executed using 360 V/8 ms (1.5 and 2.0 mm) and 380 V/9 ms (3.5 mm). Joints were finished, polished, and submitted to radiographic examination to visually analyze presence of porosity (PP). Specimens were submitted to cyclic tests, and the number of cycles until failure (NC) was recorded. Fractured surfaces were examined by SEM. Kruskal-Wallis and Dunn (α=0.05) tests demonstrated that NC was lower for all diameters with 06, and for 3.5 mm/00. NC and PP were found to have a negative correlation (Spearman Coefficient). For CP-Ti frameworks with thin diameters, laser welding is better when structures are juxtaposed.

  7. ARC-1980-A80-7034

    NASA Image and Video Library

    1980-11-12

    Range : 660,000 kilometers (400,000 miles) Time : 5:05 am PST This Voyager 1 picture of Mimas shows a large impact structure at 110 degrees W Long., located on that face of the moon which leads Mimas in its orbit. The feature, about 130 kilometers in diameter (80 miles), is more than 1/4 the diameter of the entire moon. This is a particularly interesting feature in view of its large diameter compared with the size of the satellite, and may have the largest crater diameter/satillite diameter ratio in the solar system. The crater has a raised rim and central peak, typical of large impact structures on terrestrial planets. Additional smaller craters, 15-45 kilometers in diameter, can be seen scattered across the surface, particularly alon the terminator. Mimas is one of the smaller Saturnian satellites with a low density implying its chief component is ice.

  8. Misfit-guided self-organization of anti-correlated Ge quantum dot arrays on Si nanowires

    PubMed Central

    Kwon, Soonshin; Chen, Zack C.Y.; Kim, Ji-Hun; Xiang, Jie

    2012-01-01

    Misfit-strain guided growth of periodic quantum dot (QD) arrays in planar thin film epitaxy has been a popular nanostructure fabrication method. Engineering misfit-guided QD growth on a nanoscale substrate such as the small curvature surface of a nanowire represents a new approach to self-organized nanostructure preparation. Perhaps more profoundly, the periodic stress underlying each QD and the resulting modulation of electro-optical properties inside the nanowire backbone promise to provide a new platform for novel mechano-electronic, thermoelectronic, and optoelectronic devices. Herein, we report a first experimental demonstration of self-organized and self-limited growth of coherent, periodic Ge QDs on a one dimensional Si nanowire substrate. Systematic characterizations reveal several distinctively different modes of Ge QD ordering on the Si nanowire substrate depending on the core diameter. In particular, Ge QD arrays on Si nanowires of around 20 nm diameter predominantly exhibit an anti-correlated pattern whose wavelength agrees with theoretical predictions. The correlated pattern can be attributed to propagation and correlation of misfit strain across the diameter of the thin nanowire substrate. The QD array growth is self-limited as the wavelength of the QDs remains unchanged even after prolonged Ge deposition. Furthermore, we demonstrate a direct kinetic transformation from a uniform Ge shell layer to discrete QD arrays by a post-growth annealing process. PMID:22889063

  9. Flexural models of trench/outer rise topography of coronae on Venus with axisymmetric spherical shell elastic plates

    NASA Technical Reports Server (NTRS)

    Moore, W.; Schubert, Gerald; Sandwell, David T.

    1992-01-01

    Magellan altimetry has revealed that many coronae on Venus have trenches or moats around their peripheries and rises outboard of the trenches. This trench/outer rise topographic signature is generally associated with the tectonic annulus of the corona. Sandwell and Schubert have interpreted the trench/outer rise topography and the associated tectonic annulus around coronae to be the result of elastic bending of the Venus lithosphere (though the tectonic structures are consequences of inelastic deformation of the lithosphere). They used two-dimensional elastic plate flexure theory to fit topographic profiles across a number of large coronae and inferred elastic lithosphere thicknesses between about 15 and 40 km, similar to inferred values of elastic thickness for the Earth's lithosphere at subduction zones around the Pacific Ocean. Here, we report the results of using axisymmetric elastic flexure theory for the deformation of thin spherical shell plates to interpret the trench/outer rise topography of the large coronae modeled by Sandwell and Schubert and of coronae as small as 250 km in diameter. In the case of a corona only a few hundred kilometers in diameter, the model accounts for the small planform radius of the moat and the nonradial orientation of altimetric traces across the corona. By fitting the flexural topography of coronae we determine the elastic thickness and loading necessary to account for the observed flexure. We calculate the associated bending moment and determine whether the corona interior topographic load can provide the required moment. We also calculate surface stresses and compare the stress distribution with the location of annular tectonic features.

  10. PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Daren; Xie Zongxia; Hu Qinghua

    The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less

  11. High reliability bond program using small diameter aluminum wire

    NASA Technical Reports Server (NTRS)

    Macha, M.; Thiel, R. A.

    1975-01-01

    The program was undertaken to characterize the performance of small diameter aluminum wire ultrasonically bonded to conductors commonly encountered in hybrid assemblies, and to recommend guidelines for improving this performance. Wire, 25.4, 38.1 and 50.8 um (1, 1.5 and 2 mil), was used with bonding metallization consisting of thick film gold, thin film gold and aluminum as well as conventional aluminum pads on semiconductor chips. The chief tool for evaluating the performance was the double bond pull test in conjunction with a 72 hour - 150 C heat soak and -65 C to +150 C thermal cycling. In practice the thermal cycling was found to have relatively little effect compared to the heat soak. Pull strength will decrease after heat soak as a result of annealing of the aluminum wire; when bonded to thick film gold, the pull strength decreased by about 50% (weakening of the bond interface was the major cause of the reduction). Bonds to thin film gold lost about 30 - 40% of their initial pull strenth; weakening of the wire itself at the bond heel was the predominant cause. Bonds to aluminum substrate metallization lost only about 22%. Bonds between thick and thin film gold substrate metallization and semiconductor chips substantiated the previous conclusions but also showed that in about 20 to 25% of the cases, bond interface failure occurred at the semiconductor chip.

  12. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.

    2016-01-01

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  13. Transnasal endoscopy: Technical considerations, advantages and limitations.

    PubMed

    Atar, Mustafa; Kadayifci, Abdurrahman

    2014-02-16

    Transnasal endoscopy (TNE) is an upper endoscopy method which is performed by the nasal route using a thin endoscope less than 6 mm in diameter. The primary goal of this method is to improve patient tolerance and convenience of the procedure. TNE can be performed without sedation and thus eliminates the risks associated with general anesthesia. In this way, TNE decreases the cost and total duration of endoscopic procedures, while maintaining the image quality of standard caliber endoscopes, providing good results for diagnostic purposes. However, the small working channel of the ultra-thin endoscope used for TNE makes it difficult to use for therapeutic procedures except in certain conditions which require a thinner endoscope. Biopsy is possible with special forceps less than 2 mm in diameter. Recently, TNE has been used for screening endoscopy in Far East Asia, including Japan. In most controlled studies, TNE was found to have better patient tolerance when compared to unsedated endoscopy. Nasal pain is the most significant symptom associated with endoscopic procedures but can be reduced with nasal pretreatment. Despite the potential advantage of TNE, it is not common in Western countries, usually due to a lack of training in the technique and a lack of awareness of its potential advantages. This paper briefly reviews the technical considerations as well as the potential advantages and limitations of TNE with ultra-thin scopes.

  14. Transnasal endoscopy: Technical considerations, advantages and limitations

    PubMed Central

    Atar, Mustafa; Kadayifci, Abdurrahman

    2014-01-01

    Transnasal endoscopy (TNE) is an upper endoscopy method which is performed by the nasal route using a thin endoscope less than 6 mm in diameter. The primary goal of this method is to improve patient tolerance and convenience of the procedure. TNE can be performed without sedation and thus eliminates the risks associated with general anesthesia. In this way, TNE decreases the cost and total duration of endoscopic procedures, while maintaining the image quality of standard caliber endoscopes, providing good results for diagnostic purposes. However, the small working channel of the ultra-thin endoscope used for TNE makes it difficult to use for therapeutic procedures except in certain conditions which require a thinner endoscope. Biopsy is possible with special forceps less than 2 mm in diameter. Recently, TNE has been used for screening endoscopy in Far East Asia, including Japan. In most controlled studies, TNE was found to have better patient tolerance when compared to unsedated endoscopy. Nasal pain is the most significant symptom associated with endoscopic procedures but can be reduced with nasal pretreatment. Despite the potential advantage of TNE, it is not common in Western countries, usually due to a lack of training in the technique and a lack of awareness of its potential advantages. This paper briefly reviews the technical considerations as well as the potential advantages and limitations of TNE with ultra-thin scopes. PMID:24567791

  15. A novel pillar indentation splitting test for measuring fracture toughness of thin ceramic coatings

    DOE PAGES

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; ...

    2014-05-16

    Fracture toughness is an important material property that plays a role in determining the in-service mechanical performance and adhesion of thin ceramic films. Unfortunately, measuring thin film fracture toughness is affected by influences from the substrate and the large residual stresses that can exist in the films. In this paper, we explore a promising new technique that potentially overcomes these problems based on nanoindentation testing of micro-pillars produced by focused ion beam milling of the films. By making the pillar diameter approximately equal to its length, the residual stress in the pillar’s upper portion is almost fully relaxed, and whenmore » indented with a sharp Berkovich indenter, the pillars fracture by splitting at reproducible loads that are readily quantified by a sudden displacement excursion in the load displacement behavior. Cohesive finite element simulations are used to analyze and develop, for a given material, a simple relation between the critical load at failure, pillar radius, and fracture toughness. The main novel aspect of this work is that neither crack geometries nor crack sizes need to be measured post test. Furthermore, the residual stress can be measured at the same time with toughness, by comparing the indentation results from the stress-free pillars and the as-deposited film. The method is tested on three different hard coatings formed by physical vapor deposition: titanium nitride, chromium nitride, and a CrAlN/Si 3N 4 nanocomposite. Results compare well to independently measured values of fracture toughness for the three brittle films. The technique offers several benefits over existing methods.« less

  16. Probing the Relationship Between Detected Ion Intensity, Laser Fluence, and Beam Profile in Thin Film and Tissue in MALDI MSI

    NASA Astrophysics Data System (ADS)

    Steven, Rory T.; Race, Alan M.; Bunch, Josephine

    2016-08-01

    Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI MSI) is increasingly widely used to provide information regarding molecular location within tissue samples. The nature of the photon distribution within the irradiated region, the laser beam profile, and fluence, will significantly affect the form and abundance of the detected ions. Previous studies into these phenomena have focused on circular-core optic fibers or Gaussian beam profiles irradiating dried droplet preparations, where peptides were employed as the analyte of interest. Within this work, we use both round and novel square core optic fibers of 100 and 50 μm diameter to deliver the laser photons to the sample. The laser beam profiles were recorded and analyzed to quantify aspects of the photon distributions and their relation to the spectral data obtained with each optic fiber. Beam profiles with a relatively small number of large beam profile features were found to give rise to the lowest threshold fluence. The detected ion intensity versus fluence relationship was investigated, for the first time, in both thin films of α-cyano-4-hydroxycinnamic acid (CHCA) with phosphatidylcholine (PC) 34:1 lipid standard and in CHCA coated murine tissue sections for both the square and round optic fibers in continuous raster imaging mode. The fluence threshold of ion detection was found to occur at between ~14 and ~64 J/m2 higher in tissue compared with thin film for the same lipid, depending upon the optic fiber employed. The image quality is also observed to depend upon the fluence employed during image acquisition.

  17. Magnetostriction measurement of a giant magnetoresistance film on a practical substrate covered by a shield layer

    NASA Astrophysics Data System (ADS)

    Okita, Kazuhiko; Ishiyama, Kazushi; Miura, Hideo

    2012-04-01

    Magnetostriction constant of a magnetic thin film is conventionally measured by detecting the deformation of a coupon sample that consists of the magnetic film deposited on a thin glass substrate (e.g., cover glass of size 10 mm × 25 mm) under an applied field using a laser beam [A. C. Tam and H. Schroeder, J. Appl. Phys. 64, 5422 (1988)]. This method, however, cannot be applied to films deposited on actual large-size substrates (wafers) with diameter from 3 to 6 in. or more. In a previous paper [Okita et al., J. Phys.: Conf. Ser. 200, 112008 (2010)], the authors presented a method for measuring magnetostriction of a magnetic thin film deposited on an actual substrate by detecting the change of magnetic anisotropy field, Hk, under mechanical bending of the substrate. It was validated that the method is very effective for measuring the magnetostriction constant of a free layer on the actual substrate. However, since a Ni-Fe shield layer usually covers a magnetic head used for a hard disk drive, this shield layer disturbs the effective measurement of R-H curve under minor loop. Therefore, a high magnetic field that can saturate the magnetic material in the shield layer should be applied to the head in order to measure the magnetostriction constant of a pinned layer under the shield layer. In this paper, this method was applied to the measurement of the magnetostriction constant of a pinned layer under the shield layer by using a high magnetic field up to 320 kA/m (4 kOe).

  18. Comparative analysis of Beggiatoa from hypersaline and marine environments.

    PubMed

    de Albuquerque, Julia Peixoto; Keim, Carolina Neumann; Lins, Ulysses

    2010-07-01

    The main criterion to classify a microorganism as belonging to the genus Beggiatoa is its morphology. All multicellular, colorless, gliding bacterial filaments containing sulfur globules described so far belong to this genus. At the ultrastructural level, they show also a very complex cell envelope structure. Here we describe uncultured vacuolated and non-vacuolated bacteria from two different environments showing all characteristics necessary to assign a bacterium to the genus Beggiatoa. We also intended to investigate whether narrow and vacuolate Beggiatoa do differ morphologically as much as they do phylogenetically. Both large, vacuolated trichomes and narrow filaments devoid of vacuoles were observed. We confirmed the identity of the narrow filaments by 16S rRNA phylogenetic analysis. The diameters of the trichomes ranged from 2.4 to 34 microm, and their lengths ranged from 10 microm to over 30 mm. Narrow trichomes moved by gliding at 3.0 microm/s; large filaments moved at 1.5 microm/s. Periplasmic sulfur inclusions were observed in both types of filaments, whereas phosphorus-rich bodies were found only in narrow trichomes. On the other hand, nitrate vacuoles were observed only in large trichomes. Ultra-thin section transmission electron microscopy showed differences between the cell ultrastructure of narrow (non-vacuolated) and large (vacuolated) Beggiatoa. We observed that cell envelopes from narrow Beggiatoa consist of five layers, whereas cell envelopes from large trichomes contain four layers. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. 78 FR 60897 - Certain Welded Large Diameter Line Pipe From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-02

    ... Diameter Line Pipe From Japan Determination On the basis of the record \\1\\ developed in the subject five... order on certain welded large diameter line pipe from Japan would likely to lead to continuation or... Line Pipe from Japan: Investigation No. 731-TA-919 (Second Review). By order of the Commission. Issued...

  20. Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability

    NASA Astrophysics Data System (ADS)

    Tamano, Shinji; Ohashi, Yota; Morinishi, Yohei

    2017-05-01

    The dynamics of the falling droplet through a nozzle for dilute nonionic surfactant (oleyl-dimethylamine oxide, ODMAO) aqueous solutions with viscoelastic and drag-reducing properties were investigated at different concentrations of ODMAO solutions Cs = 500, 1000, and 1500 ppm by weight. The effects of the flow rate and tube outer diameter on the length of the filament, which was the distance between the tube exit and the lower end of a droplet at the instant when the droplet almost detached from the tube, were clarified by flow visualization measurements by a high-speed video camera. Two types of breaking-off processes near the base of the droplet and within the filament were classified by the Ohnesorge number Oh and the Weber number We. In the regime of the higher Oh and We, the length of the filament became drastically larger at Cs = 1000 and 1500 ppm, whose high spinnability represented the strong viscoelasticity of ODMAO solutions. In the case where the filament was broken up near the lower end of the neck and thinning in time, the thinning of the diameter of the filament was measured by a light-emitting diode micrometer. As for the elasto-capillary thinning of dilute nonionic surfactant solutions, the initial necking process was similar to that of Newtonian fluids and then followed the exponential thinning like polymer solutions. The apparent elongational viscosity of the dilute nonionic surfactant solution was evaluated in the elasto-capillary thinning regime, in which the elongation rate was almost constant. At Cs = 1000 and 1500 ppm, the Trouton ratio, which was the ratio of the apparent elongational viscosity to the shear viscosity, was found to be several orders of magnitude larger than that of Newtonian fluids, while the shear viscosity measured by the capillary viscometer was almost the same order of the Newtonian fluids. The higher elongational property would be closely related to the higher drag-reducing ability of dilute nonionic surfactant solutions.

  1. Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron-molybdenum alloy thin layer catalysts

    NASA Astrophysics Data System (ADS)

    Yahyazadeh, Arash; Khoshandam, Behnam

    In this study, we documented the catalytic chemical vapor deposition synthesis of carbon nanotubes (CNTs) using ferrocene and molybdenum hexacarbonyl as catalyst nanoparticle precursors and methane as a nontoxic and economical carbon source for the first time. Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectrometry and transmission electron microscopy of the thin layer catalyst as a simple and cost effective catalyst preparation after methane decomposition reaction, along with Fourier transform infrared spectroscopy and Raman spectroscopy confirmed the growth of CNTs, from bimetallic nanoparticles, which are converted into iron-molybdenum alloy nanoparticles at 700 °C for pretreatment by hydrogen after chemical vapor deposition of thin layers. An investigation of the weight percentages of the chemical elements present in the CNTs synthesized from iron-molybdenum catalyst using quartz sheet substrate at 750 °C, confirmed a significant carbon yield of 75.4% which represents high catalyst activity. Additionally, multi-walled carbon nanotubes (∼16-55 nm in diameter and 1.2 μm in length) were observed in the iron-molybdenum alloy sample after methane decomposition reaction at 750 °C for 35 min. To show the role of iron and molybdenum coated on silicon substrate as two thin layer catalysts, samples were considered for CNTs growth (diameter ∼47-69 nm) at 800 °C and 830 °C, respectively. Moreover, the effect of hydrogen pretreatment was evaluated in terms of active metal coating properly. The best graphitic structure due to Raman spectroscopy outcomes (ID/IG ratio) was obtained for iron coated on a quartz sheet, which was estimated at 0.8505. Thermogravimetric analysis proved the thermal stability of the synthesized CNTs using iron thin-layer catalyst up to 350 °C.

  2. Good imaging with very fast paraboloidal primaries - An optical solution and some applications. [performance improvement of astronomical telescopes

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Woolf, N. J.; Epps, N. W.

    1982-01-01

    Attention is given to the imaging performance improvement obtainable in telescopes with fast parabolic primaries by means of two-mirror correctors of the Paul-Baker type. Images with 80 percent of the energy concentrated within 0.2 arcsec are projected for an f/1 primary relaying to an f/2 final focus, over a 1 deg-diameter field. It is noted that the mechanical structure and enclosure of a large telescope built with these fast optics should be significantly smaller and less expensive than those for conventional optics. The application of the Paul-Baker corrector system is explored for such diverse telescope types as those employing six off-axis primary mirrors, UV astronomy telescopes with no chromatic aberration, a low emissivity IR astronomy instrument with an off-axis f/1 parent primary mirror part, and thin rectangular aperture telescopes which are useful for spectroscopy and photometry.

  3. Dynamic Analysis of Large In-Space Deployable Membrane Antennas

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Yang, Bingen; Ding, Hongli; Hah, John; Quijano, Ubaldo; Huang, John

    2006-01-01

    This paper presents a vibration analysis of an eight-meter diameter membrane reflectarray antenna, which is composed of a thin membrane and a deployable frame. This analysis process has two main steps. In the first step, a two-variable-parameter (2-VP) membrane model is developed to determine the in-plane stress distribution of the membrane due to pre-tensioning, which eventually yields the differential stiffness of the membrane. In the second step, the obtained differential stiffness is incorporated in a dynamic equation governing the transverse vibration of the membrane-frame assembly. This dynamic equation is then solved by a semi-analytical method, called the Distributed Transfer Function Method (DTFM), which produces the natural frequencies and mode shapes of the antenna. The combination of the 2-VP model and the DTFM provides an accurate prediction of the in-plane stress distribution and modes of vibration for the antenna.

  4. Mobilifilum chasei: morphology and ecology of a spirochete from an intertidal stratified microbial mat community

    NASA Technical Reports Server (NTRS)

    Margulis, L.; Hinkle, G.; Stolz, J.; Craft, F.; Esteve, I.; Guerrero, R.

    1990-01-01

    Spirochetes were found in the lower anoxiphototrophic layer of a stratified microbial mat (North Pond, Laguna Figueroa, Baja California, Mexico). Ultra-structural analysis of thin sections of field samples revealed spirochetes approximately 0.25 micrometer in diameter with 10 or more periplasmic flagella, leading to the interpretation that these spirochetes bear 10 flagellar insertions on each end. Morphometric study showed these free-living spirochetes greatly resemble certain symbiotic ones, i.e., Borrelia and certain termite spirochetes, the transverse sections of which are presented here. The ultrastructure of this spirochete also resembles Hollandina and Diplocalyx (spirochetes symbiotic in arthropods) more than it does Spirochaeta, the well known genus of mud-dwelling spirochetes. The new spirochete was detected in mat material collected both in 1985 and in 1987. Unique morphology (i.e., conspicuous outer coat of inner membrane, large number of periplasmic flagella) and ecology prompt us to name a new free-living spirochete.

  5. Monolithic solid electrolyte oxygen pump

    DOEpatents

    Fee, Darrell C.; Poeppel, Roger B.; Easler, Timothy E.; Dees, Dennis W.

    1989-01-01

    A multi-layer oxygen pump having a one-piece, monolithic ceramic structure affords high oxygen production per unit weight and volume and is thus particularly adapted for use as a portable oxygen supply. The oxygen pump is comprised of a large number of small cells on the order of 1-2 millimeters in diameter which form the walls of the pump and which are comprised of thin, i.e., 25-50 micrometers, ceramic layers of cell components. The cell components include an air electrode, an oxygen electrode, an electrolyte and interconnection materials. The cell walls form the passages for input air and for exhausting the oxygen which is transferred from a relatively dilute gaseous mixture to a higher concentration by applying a DC voltage across the electrodes so as to ionize the oxygen at the air electrode, whereupon the ionized oxygen travels through the electrolyte and is converted to oxygen gas at the oxygen electrode.

  6. The effect of surfactant on stratified and stratifying gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Heiles, Baptiste; Zadrazil, Ivan; Matar, Omar

    2013-11-01

    We consider the dynamics of a stratified/stratifying gas-liquid flow in horizontal tubes. This flow regime is characterised by the thin liquid films that drain under gravity along the pipe interior, forming a pool at the bottom of the tube, and the formation of large-amplitude waves at the gas-liquid interface. This regime is also accompanied by the detachment of droplets from the interface and their entrainment into the gas phase. We carry out an experimental study involving axial- and radial-view photography of the flow, in the presence and absence of surfactant. We show that the effect of surfactant is to reduce significantly the average diameter of the entrained droplets, through a tip-streaming mechanism. We also highlight the influence of surfactant on the characteristics of the interfacial waves, and the pressure gradient that drives the flow. EPSRC Programme Grant EP/K003976/1.

  7. Tritium target manufacturing for use in accelerators

    NASA Astrophysics Data System (ADS)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  8. Fractures of a single design of highly cross-linked polyethylene acetabular liners: an analysis of voluntary reports to the United States Food and Drug Administration.

    PubMed

    Ast, Michael P; John, Thomas K; Labbisiere, Anthony; Robador, Nicolas; Valle, Alejandro Gonzalez Della

    2014-06-01

    Polyethylene liner fracture is a risk associated with the use of highly cross-linked UHMWPE. We performed a review of the voluntary reports of fractured liners to the US Food and Drug Administration to determine if any risk factors could be identified. There have been 74 reports of fractured Trilogy, Longevity liners to the US Food and Drug Administration since 1999. Most cases utilized small acetabular shells (≤54 mm) combined with large diameter heads (≥36 mm). Liners less than 7 mm thick at the weight bearing or 4.8 mm thick at the rim should be used with caution. At revision surgery, malpositioned shells should be revised and the use of a thin liner should be avoided. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Carbon nanotube macroelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to fabricate air-stable n-type semiconducting nanotube thin-film transistor is developed and complementary metal--oxide--semiconductor (CMOS) logic circuits are demonstrated. Chapter 5 discusses the application of carbon nanotubes in transparent and flexible electronics. After that, in chapter 6, a simple and low cost nanotube separation method is introduced and the electrical performance of separated nanotubes with different diameter is studied. Finally, in chapter 7 a brief summary is drawn and some future research directions are proposed with preliminary results.

  10. Verification of the FBR fuel bundle-duct interaction analysis code BAMBOO by the out-of-pile bundle compression test with large diameter pins

    NASA Astrophysics Data System (ADS)

    Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo

    2014-09-01

    The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.

  11. Internal Carotid Artery Hypoplasia: Role of Color-Coded Carotid Duplex Sonography.

    PubMed

    Chen, Pei-Ya; Liu, Hung-Yu; Lim, Kun-Eng; Lin, Shinn-Kuang

    2015-10-01

    The purpose of this study was to determine the role of color-coded carotid duplex sonography for diagnosis of internal carotid artery hypoplasia. We retrospectively reviewed 25,000 color-coded carotid duplex sonograms in our neurosonographic database to establish more diagnostic criteria for internal carotid artery hypoplasia. A definitive diagnosis of internal carotid artery hypoplasia was made in 9 patients. Diagnostic findings on color-coded carotid duplex imaging include a long segmental small-caliber lumen (52% diameter) with markedly decreased flow (13% flow volume) in the affected internal carotid artery relative to the contralateral side but without intraluminal lesions. Indirect findings included markedly increased total flow volume (an increase of 133%) in both vertebral arteries, antegrade ipsilateral ophthalmic arterial flow, and a reduced vessel diameter with increased flow resistance in the ipsilateral common carotid artery. Ten patients with distal internal carotid artery dissection showed a similar color-coded duplex pattern, but the reductions in the internal and common carotid artery diameters and increase in collateral flow from the vertebral artery were less prominent than those in hypoplasia. The ipsilateral ophthalmic arterial flow was retrograde in 40% of patients with distal internal carotid artery dissection. In addition, thin-section axial and sagittal computed tomograms of the skull base could show the small diameter of the carotid canal in internal carotid artery hypoplasia and help distinguish hypoplasia from distal internal carotid artery dissection. Color-coded carotid duplex sonography provides important clues for establishing a diagnosis of internal carotid artery hypoplasia. A hypoplastic carotid canal can be shown by thin-section axial and sagittal skull base computed tomography to confirm the final diagnosis. © 2015 by the American Institute of Ultrasound in Medicine.

  12. The Three-Dimensional Distribution of αA-Crystalline in Rat Lenses and Its Possible Relation to Transparency

    PubMed Central

    Zampighi, Guido A.; Zampighi, Lorenzo; Lanzavecchia, Salvatore

    2011-01-01

    Lens transparency depends on the accumulation of massive quantities (600–800 mg/ml) of twelve primary crystallines and two truncated crystallines in highly elongated “fiber” cells. Despite numerous studies, major unanswered questions are how this heterogeneous group of proteins becomes organized to bestow the lens with its unique optical properties and how it changes during cataract formation. Using novel methods based on conical tomography and labeling with antibody/gold conjugates, we have profiled the 3D-distribution of the αA-crystalline in rat lenses at ∼2 nm resolutions and three-dimensions. Analysis of tomograms calculated from lenses labeled with anti-αA-crystalline and gold particles (∼3 nm and ∼7 nm diameter) revealed geometric patterns shaped as lines, isosceles triangles and polyhedrons. A Gaussian distribution centered at ∼7.5 nm fitted the distances between the ∼3 nm diameter gold conjugates. A Gaussian distribution centered at ∼14 nm fitted the Euclidian distances between the smaller and the larger gold particles and another Gaussian at 21–24 nm the distances between the larger particles. Independent of their diameters, tethers of 14–17 nm in length connected files of gold particles to thin filaments or clusters to ∼15 nm diameter “beads.” We used the information gathered from tomograms of labeled lenses to determine the distribution of the αA-crystalline in unlabeled lenses. We found that αA-crystalline monomers spaced ∼7 nm or αA-crystalline dimers spaced ∼15 nm center-to-center apart decorated thin filaments of the lens cytoskeleton. It thus seems likely that lost or gain of long-range order determines the 3D-structure of the fiber cell and possible also cataract formation. PMID:21909355

  13. [The sural medial perforator flap: Anatomical bases, surgical technique and indications in head and neck reconstruction].

    PubMed

    Struk, S; Schaff, J-B; Qassemyar, Q

    2018-04-01

    The medial sural artery perforator (MSAP) flap is defined as a thin cutaneo-adipose perforator flap harvested on the medial aspect of the leg. The aims of this study were to describe the anatomical basis as well as the surgical technique and discuss the indications in head and neck reconstructive surgery. We harvested 10 MSAP flap on 5 fresh cadavers. For each case, the number and the location of the perforators were recorded. For each flap, the length of pedicle, the diameter of source vessels and the thickness of the flap were studied. Finally, we performed a clinical application of a MSAP flap. A total of 23 perforators with a diameter superior than 1mm were dissected on 10 legs. The medial sural artery provided between 1 and 4 musculocutaneous perforators. Perforators were located in average at 10.3cm±2cm from the popliteal fossa and at 3.6cm±1cm from the median line of the calf. The mean pedicle length was 12.1cm±2.5cm. At its origin, the source artery diameter was 1.8mm±0.25mm and source veins diameters were 2.45mm±0.9mm in average. There was no complication in our clinical application. This study confirms the reliability of previous anatomical descriptions of the medial sural artery perforator flap. This flap was reported as thin and particularly adapted for oral cavity reconstruction and for facial or limb resurfacing. Sequelae might be reduced as compared to those of the radial forearm flap with comparable results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. The opto-thermal effect on encapsulated cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Sung; Lin, Hui-Chi; Yang, Kin-Min

    2017-12-01

    In this study, we implemented a micro-encapsulated CLC electronic paper that is optically addressed and electrically erasable. The mechanism that forms spot diameters on the CLC films is discussed and verified through various experimental parameters, including the thickness of CLCs and Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS), pump intensity, and pumping time. The opto-thermal effect, brought on by the PEDOT:PSS absorbing layer, causes the spot diameters on the cholesteric liquid crystal thin films to vary. According to our results, the spot diameter is larger for a sample with a thinner cholesteric liquid crystal layer with the same excitation conditions and same thickness of the PEDOT layer. The spot diameter is also larger for a sample with a thicker PEDOT under the same excitation conditions and same thickness of the cholesteric liquid crystal layer. We proposed a simple heat-conducting model to explain the experimental results, which qualitatively agree with this theoretical model.

  15. Breakdown of Shape Memory Effect in Bent Cu-Al-Ni Nanopillars: When Twin Boundaries Become Stacking Faults.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Sun, Jun; Li, Suzhi; Salje, Ekhard K H

    2016-01-13

    Bent Cu-Al-Ni nanopillars (diameters 90-750 nm) show a shape memory effect, SME, for diameters D > 300 nm. The SME and the associated twinning are located in a small deformed section of the nanopillar. Thick nanopillars (D > 300 nm) transform to austenite under heating, including the deformed region. Thin nanopillars (D < 130 nm) do not twin but generate highly disordered sequences of stacking faults in the deformed region. No SME occurs and heating converts only the undeformed regions into austenite. The defect-rich, deformed region remains in the martensite phase even after prolonged heating in the stability field of austenite. A complex mixture of twins and stacking faults was found for diameters 130 nm < D < 300 nm. The size effect of the SME in Cu-Al-Ni nanopillars consists of an approximately linear reduction of the SME between 300 and 130 nm when the SME completely vanishes for smaller diameters.

  16. Niobium oxide nanocolumns formed via anodic alumina with modulated pore diameters

    NASA Astrophysics Data System (ADS)

    Pligovka, A.; Zakhlebayeva, A.; Lazavenka, A.

    2018-03-01

    Niobium oxide nanocolumns with modulated diameters were formed for the first time. An Al/Nb bilayer specimen was prepared by successive sputter-deposition of 300 nm niobium layer and 1200 nm aluminum layer onto silicon wafer. Regular anodic alumina matrix with modulated pore diameters was formed by sequential anodization of initial specimen in tartaric acid at 180 V, and in oxalic acid at 37 V. Further potentiodynamic reanodization of the specimen up to 400 V causes the simultaneous growth of 440 nm continuous niobium oxide layer beneath the alumina film and two types of an array of oxide nanocolumns (thick – with 100 nm width and 630 nm high and thin – with 25 nm width and 170 nm high), which are the filling of the alumina pores. The morphology of the formed anodic niobium oxide nanocolumns with modulated diameters was determined by field emission scanning electron microscopy. The formed nanostructures can be used for perspective devices of nano- and optoelectronics such as photonic crystals.

  17. Evacuated displacement compression molding

    NASA Technical Reports Server (NTRS)

    Heier, W. C. (Inventor)

    1973-01-01

    A process for molding long, thin-wall tubular bodies from thermosetting plastic molding compounds is described. The tubular bodies produced may have body lengths several times the diameters. The application of the process for manufacturing rocket engine cases and nozzles is discussed. The advantages of the system over other methods of circular tube manufacture are analyzed.

  18. Predicting small-diameter loblolly pine aboveground biomass in naturally regenerated stands

    Treesearch

    Kristin M. McElligott; Don C. Bragg; Jamie L. Schuler

    2015-01-01

    There is growing interest in managing southern pine forests for both carbon sequestration and bioenergy. For instance, thinning otherwise unmerchantable trees in naturally regenerated pine-dominated forests should generate biomass without conflicting with more traditional forest products. However, we lack the tools to accurately quantify the biomass in these...

  19. The Thin Border between Light and Shadow

    ERIC Educational Resources Information Center

    Guglielmino, M.; Gratton, L. M.; Oss, S.

    2010-01-01

    We propose a simple, direct estimate of the Sun's diameter based on penumbra observation and measurement in a two-level approach, the first for middle-school pupils and making use of simple geometrical arguments, the second more appropriate to high-school students and based on a slightly more sophisticated approach. (Contains 5 figures.)

  20. Impacts created on various materials by micro-discharges in heptane: Influence of the dissipated charge

    NASA Astrophysics Data System (ADS)

    Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T.

    2013-01-01

    Modes of energy dissipation in impacts made on various materials (Al, Cu, Fe, and Si) by discharges in heptane are investigated for micro-gap conditions. Bulk metals and thin films of 300 nm in thickness deposited on silicon wafers are used as samples. Positive high voltage pulses with nanosecond rise times make it possible to isolate a single discharge and to study the way the charge delivered by the power supply is transferred to the larger electrode (the sample) in a pin-to-plate configuration. The diameter of the impacts created by the plasma varies linearly versus the charge raised at a power close to 0.5. However, the exact value of the power depends on the material. We also show how the impact morphologies change with the applied charge. At high charges, the diameters of impacts on thin films behave as those made on silicon. At low charges, they behave as the bulk material. Finally, we show that the energy dissipated in impacts is below a few percent.

  1. Synthesis of Au microwires by selective oxidation of Au–W thin-film composition spreads

    PubMed Central

    Hamann, Sven; Brunken, Hayo; Salomon, Steffen; Meyer, Robert; Savan, Alan; Ludwig, Alfred

    2013-01-01

    We report on the stress-induced growth of Au microwires out of a surrounding Au–W matrix by selective oxidation, in view of a possible application as ‘micro-Velcro’. The Au wires are extruded due to the high compressive stress in the tungsten oxide formed by oxidation of elemental W. The samples were fabricated as a thin-film materials library using combinatorial sputter deposition followed by thermal oxidation. Sizes and shapes of the Au microwires were investigated as a function of the W to Au ratio. The coherence length and stress state of the Au microwires were related to their shape and plastic deformation. Depending on the composition of the Au–W precursor, the oxidized samples showed regions with differently shaped Au microwires. The Au48W52 composition yielded wires with the maximum length to diameter ratio due to the high compressive stress in the tungsten oxide matrix. The values of wire length (35 μm) and diameter (2 μm) achieved at the Au48W52 composition are suitable for micro-Velcro applications. PMID:27877561

  2. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    NASA Astrophysics Data System (ADS)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer; Nojeh, Alireza; Takahata, Kenichi

    2016-08-01

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ˜30% and ˜300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.

  3. Micro glow plasma for localized nanostructural modification of carbon nanotube forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarwar, Mirza Saquib us; Xiao, Zhiming; Saleh, Tanveer

    2016-08-22

    This paper reports the localized selective treatment of vertically aligned carbon nanotubes, or CNT forests, for radial size modification of the nanotubes through a micro-scale glow plasma established on the material. An atmospheric-pressure DC glow plasma is shown to be stably sustained on the surface of the CNT forest in argon using micromachined tungsten electrodes with diameters down to 100 μm. Experiments reveal thinning or thickening of the nanotubes under the micro glow depending on the process conditions including discharge current and process time. These thinning and thickening effects in the treated nanotubes are measured to be up to ∼30% andmore » ∼300% in their diameter, respectively, under the tested conditions. The elemental and Raman analyses suggest that the treated region of the CNT forest is pure carbon and maintains a degree of crystallinity. The local plasma treatment process investigated may allow modification of material characteristics in different domains for targeted regions or patterns, potentially aiding custom design of micro-electro-mechanical systems and other emerging devices enabled by the CNT forest.« less

  4. Experimental Verification of Steel Pipe Collapse under Vacuum Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Autrique, R.; Rodal, E.

    2016-11-01

    Steel pipes are used widely in hydroelectric systems and in pumping systems. Both systems are subject to hydraulic transient effects caused by changes in boundary conditions, such as sudden valve closures, pump failures, or accidents. Water column separation, and its associated vaporization pressure inside the pipe, can cause the collapse of thin walled steel pipes subject to atmospheric pressure, as happened during the well known Oigawa Power Plant accident in Japan, in 1950. The conditions under which thin walled pipes subject to external pressure can collapse have been studied mathematically since the second half of the XIX century, with classical authors Southwell and Von Mises obtaining definitive equations for long and short pipes in the second decade of the XX century, in which the fundamental variables are the diameter to thickness ratio D/t and the length to diameter ratio L/D. In this paper, the predicted critical D/t ratio for steel pipe collapse is verified experimentally, in a physical model able to reproduce hydraulic transients, generating vacuum pressures through rapid upstream valve closures.

  5. A tension-torsional fatigue testing apparatus for micro-scale components.

    PubMed

    Fu, Sichao; Wang, Lei; Chen, Gang; Yu, Dunji; Chen, Xu

    2016-01-01

    Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 μm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 μm and 200 μm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results.

  6. A tension-torsional fatigue testing apparatus for micro-scale components

    NASA Astrophysics Data System (ADS)

    Fu, Sichao; Wang, Lei; Chen, Gang; Yu, Dunji; Chen, Xu

    2016-01-01

    Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 μm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 μm and 200 μm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results.

  7. Numerical analysis of a red blood cell flowing through a thin micropore.

    PubMed

    Omori, Toshihiro; Hosaka, Haruki; Imai, Yohsuke; Yamaguchi, Takami; Ishikawa, Takuji

    2014-01-01

    Red blood cell (RBC) deformability plays a key role in microcirculation, especially in vessels that have diameters even smaller than the nominal cell size. In this study, we numerically investigate the dynamics of an RBC in a thin micropore. The RBC is modeled as a capsule with a thin hyperelastic membrane. In a numerical simulation, we employ a boundary element method for fluid mechanics and a finite element method for membrane mechanics. The resulting RBC deformation towards the flow direction is suppressed considerably by increased cytoplasm viscosity, whereas the gap between the cell membrane and solid wall becomes smaller with higher cytoplasm viscosity. We also measure the transit time of the RBC and find that nondimensional transit time increases nonlinearly with respect to the viscosity ratio, whereas it is invariant to the capillary number. In conclusion, cytoplasmic viscosity plays a key role in the dynamics of an RBC in a thin pore. The results of this study will be useful for designing a microfluidic device to measure cytoplasmic viscosity.

  8. Toward self-assembled ferroelectric random access memories: hard-wired switching capacitor arrays with almost Tb/in.(2) densities.

    PubMed

    Evans, Paul R; Zhu, Xinhau; Baxter, Paul; McMillen, Mark; McPhillips, John; Morrison, Finlay D; Scott, James F; Pollard, Robert J; Bowman, Robert M; Gregg, J Marty

    2007-05-01

    We report on the successful fabrication of arrays of switchable nanocapacitors made by harnessing the self-assembly of materials. The structures are composed of arrays of 20-40 nm diameter Pt nanowires, spaced 50-100 nm apart, electrodeposited through nanoporous alumina onto a thin film lower electrode on a silicon wafer. A thin film ferroelectric (both barium titanate (BTO) and lead zirconium titanate (PZT)) has been deposited on top of the nanowire array, followed by the deposition of thin film upper electrodes. The PZT nanocapacitors exhibit hysteresis loops with substantial remnant polarizations, while although the switching performance was inferior, the low-field characteristics of the BTO nanocapacitors show dielectric behavior comparable to conventional thin film heterostructures. While registration is not sufficient for commercial RAM production, this is nevertheless an embryonic form of the highest density hard-wired FRAM capacitor array reported to date and compares favorably with atomic force microscopy read-write densities.

  9. Mechanics of fragmentation of crocodile skin and other thin films.

    PubMed

    Qin, Zhao; Pugno, Nicola M; Buehler, Markus J

    2014-05-27

    Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.

  10. Mechanics of fragmentation of crocodile skin and other thin films

    PubMed Central

    Qin, Zhao; Pugno, Nicola M.; Buehler, Markus J.

    2014-01-01

    Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin. PMID:24862190

  11. Mechanics of fragmentation of crocodile skin and other thin films

    NASA Astrophysics Data System (ADS)

    Qin, Zhao; Pugno, Nicola M.; Buehler, Markus J.

    2014-05-01

    Fragmentation of thin layers of materials is mediated by a network of cracks on its surface. It is commonly seen in dehydrated paintings or asphalt pavements and even in graphene or other two-dimensional materials, but is also observed in the characteristic polygonal pattern on a crocodile's head. Here, we build a simple mechanical model of a thin film and investigate the generation and development of fragmentation patterns as the material is exposed to various modes of deformation. We find that the characteristic size of fragmentation, defined by the mean diameter of polygons, is strictly governed by mechanical properties of the film material. Our result demonstrates that skin fragmentation on the head of crocodiles is dominated by that it features a small ratio between the fracture energy and Young's modulus, and the patterns agree well with experimental observations. Understanding this mechanics-driven process could be applied to improve the lifetime and reliability of thin film coatings by mimicking crocodile skin.

  12. Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei

    PubMed Central

    Genet, Marie; Li, Mingcai; Luo, Tianxiang; Fourcaud, Thierry; Clément-Vidal, Anne; Stokes, Alexia

    2011-01-01

    Background and Aims The mobile carbon supply to different compartments of a tree is affected by climate, but its impact on cell-wall chemistry and mechanics remains unknown. To understand better the variability in root growth and biomechanics in mountain forests subjected to substrate mass movement, we investigated root chemical and mechanical properties of mature Abies georgei var. smithii (Smith fir) growing at different elevations on the Tibet–Qinghai Plateau. Methods Thin and fine roots (0·1–4·0 mm in diameter) were sampled at three different elevations (3480, 3900 and 4330 m, the last corresponding to the treeline). Tensile resistance of roots of different diameter classes was measured along with holocellulose and non-structural carbon (NSC) content. Key Results The mean force necessary to break roots in tension decreased significantly with increasing altitude and was attributed to a decrease in holocellulose content. Holocellulose was significantly lower in roots at the treeline (29·5 ± 1·3 %) compared with those at 3480 m (39·1 ± 1·0 %). Roots also differed significantly in NSC, with 35·6 ± 4·1 mg g−1 dry mass of mean total soluble sugars in roots at 3480 m and 18·8 ± 2·1 mg g−1 dry mass in roots at the treeline. Conclusions Root mechanical resistance, holocellulose and NSC content all decreased with increasing altitude. Holocellulose is made up principally of cellulose, the biosynthesis of which depends largely on NSC supply. Plants synthesize cellulose when conditions are optimal and NSC is not limiting. Thus, cellulose synthesis in the thin and fine roots measured in our study is probably not a priority in mature trees growing at very high altitudes, where climatic factors will be limiting for growth. Root NSC stocks at the treeline may be depleted through over-demand for carbon supply due to increased fine root production or winter root growth. PMID:21186240

  13. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly.

    PubMed

    Shastry, Tejas A; Seo, Jung-Woo T; Lopez, Josue J; Arnold, Heather N; Kelter, Jacob Z; Sangwan, Vinod K; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2013-01-14

    By varying the evaporation conditions and the nanotube and surfactant concentrations, large-area, aligned single-walled carbon nanotube (SWCNT) thin films are fabricated from electronically monodisperse SWCNT solutions by evaporation-driven self-assembly with precise control over the thin film growth geometry. Tunability is possible from 0.5 μm stripes to continuous thin films. The resulting SWCNT thin films possess highly anisotropic electrical and optical properties that are well suited for transparent conductor applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Thin-film cadmium telluride photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Compaan, A. D.; Bohn, R. G.

    1994-09-01

    This report describes work to develop and optimize radio-frequency (RF) sputtering for the deposition of thin films of cadmium telluride (CdTe) and related semiconductors for thin-film solar cells. Pulsed laser physical vapor deposition was also used for exploratory work on these materials, especially where alloying or doping are involved, and for the deposition of cadmium chloride layers. The sputtering work utilized a 2-in diameter planar magnetron sputter gun. The film growth rate by RF sputtering was studied as a function of substrate temperature, gas pressure, and RF power. Complete solar cells were fabricated on tin-oxide-coated soda-lime glass substrates. Currently, work is being done to improve the open-circuit voltage by varying the CdTe-based absorber layer, and to improve the short-circuit current by modifying the CdS window layer.

  15. Dry etching of copper phthalocyanine thin films: effects on morphology and surface stoichiometry.

    PubMed

    Van Dijken, Jaron G; Brett, Michael J

    2012-08-24

    We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  16. Formation of ultra Si/Ti nano thin film for enhancing silicon solar cell efficiency

    NASA Astrophysics Data System (ADS)

    Adam, T.; Dhahi, T. S.; Mohammed, M.; Al-Hajj, A. M.; Hashim, U.

    2017-10-01

    An alternative electrical source has l has become the major quest of every researchers due to it numerous advantages and applications of power supply and as electronic devices are becoming more and more portable. A highly efficient power supply is become inevitable. Thus. in this study, present ultrasonic based assisted fabrication of electrochemical silicon-Titanium nano thin film by in-house simple technique, uniformly silicon Nano film was fabricated and etched with HF (40%): C2H5OH (99%):1:1, < 20 nm pore diameter of silicon was fabricated. The surface and morphology reveal that the method produce uniform nano silicon porous layer with smaller silicon pores with high etching efficiency. The silicon-Titanium integrated nano porous exhibited excellent observation properties with low reflection index ~ 1.1 compared to silicon alone thin film.

  17. Structural studies of ZnO nanostructures by varying the deposition parameters

    NASA Astrophysics Data System (ADS)

    Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.

    2017-01-01

    The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.

  18. A Piezoelectric Unimorph Deformable Mirror Concept by Wafer Transfer for Ultra Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Shcheglov, Kirill

    2002-01-01

    Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.

  19. 50 CFR 229.32 - Atlantic large whale take reduction plan regulations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... marked with thin colored whipping line, thin colored plastic, or heat-shrink tubing, or other material... be dyed, painted, or marked with thin colored whipping line, thin colored plastic, or heat-shrink...

  20. 50 CFR 229.32 - Atlantic large whale take reduction plan regulations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... marked with thin colored whipping line, thin colored plastic, or heat-shrink tubing, or other material... be dyed, painted, or marked with thin colored whipping line, thin colored plastic, or heat-shrink...

Top