Cryogenic vertical test facility for the SRF cavities at BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Than, R.; Liaw, CJ; Porqueddu, R.
2011-03-28
A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars.more » The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.« less
1994-03-01
Epitaxial structure of vertical cavity surface - emitting laser ( VCSEL ...diameter (75 tum < d< 150 prm) vertical - cavity surface - emitting lasers fabricated from an epitaxial structure containing a single In0 .2Ga 8.,As quantum...development of vertical - cavity surface - emitting lasers ( VCSELs ) [1] has enabled III-V semiconductor technology to be applied to cer- tain optical
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less
NASA Astrophysics Data System (ADS)
Miyagawa, Chihiro; Kobayashi, Takumi; Taishi, Toshinori; Hoshikawa, Keigo
2014-09-01
Based on the growth of 3-inch diameter c-axis sapphire using the vertical Bridgman (VB) technique, numerical simulations were made and used to guide the growth of a 6-inch diameter sapphire. A 2D model of the VB hot-zone was constructed, the seeding interface shape of the 3-inch diameter sapphire as revealed by green laser scattering was estimated numerically, and the temperature distributions of two VB hot-zone models designed for 6-inch diameter sapphire growth were numerically simulated to achieve the optimal growth of large crystals. The hot-zone model with one heater was selected and prepared, and 6-inch diameter c-axis sapphire boules were actually grown, as predicted by the numerical results.
Liquid oxygen dicting cleaned by falling film method
NASA Technical Reports Server (NTRS)
Paul, H. I.
1967-01-01
Principle of a vertical falling film is used to clean contaminated large diameter and length liquid oxygen /LOX/ cylindrical ducting. The cleaning cycle is performed by flowing trichloroethylene in a falling film down a vertically mounted duct for approximately one hour.
Bridgman growth of large-aperture yttrium calcium oxyborate crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing
2012-09-15
Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asako, Y.; Nakamura, H.; Faghri, M.
1990-08-01
Natural convection is often a convenient and inexpensive mode of heat transfer. It is commonly employed in the cooling of electronic equipment and many other applications. Since the initial work by Bodoia and Osterle (1962) on finite difference solutions of natural convection between vertical isothermal plates, many other researchers have studied natural convection in vertical channels. Specifically Davis and Perona (1971) studied natural convection in vertical heated tubes. A thermally insulated chimney attached to a vertical heated channel induces an increase in the natural convection in the channel and leads to a higher heat transfer rate. This is the well-knownmore » chimney effect discussed in the paper by Haaland and Sparrow (1983). If the chimney diameter is larger than the heated tube diameter, the friction loss in the chimney region decreases with increasing chimney diameter. This induces an increase in the mass flow rate and leads to a higher heat transfer rate than the case for a chimney of the same diameter. However, from a geometric consideration it is evident that the chimney effect diminishes in the limiting case of an extremely large chimney diameter compared with its height. Therefore, there exists an optimum diameter where the heat transfer is maximum. To investigate the chimney effect computations are carried out for a Rayleigh number of 12.5, based on the heated tube radius, and for a Prandtl number of 0.7. The numerical results are based on a control volume finite difference method. The average Nusselt number results are compared with the numerical results obtained for a chimney attached to a tube of the same diameter.« less
Fluid-solid contact vessel having fluid distributors therein
Jones, Jr., John B.
1980-09-09
Rectangularly-shaped fluid distributors for large diameter, vertical vessels include reinforcers for high heat operation, vertical sides with gas distributing orifices and overhanging, sloped roofs. Devices are provided for cleaning the orifices from a buildup of solid deposits resulting from the reactions in the vessel.
Uniform, dense arrays of vertically aligned, large-diameter single-walled carbon nanotubes.
Han, Zhao Jun; Ostrikov, Kostya
2012-04-04
Precisely controlled reactive chemical vapor synthesis of highly uniform, dense arrays of vertically aligned single-walled carbon nanotubes (SWCNTs) using tailored trilayered Fe/Al(2)O(3)/SiO(2) catalyst is demonstrated. More than 90% population of thick nanotubes (>3 nm in diameter) can be produced by tailoring the thickness and microstructure of the secondary catalyst supporting SiO(2) layer, which is commonly overlooked. The proposed model based on the atomic force microanalysis suggests that this tailoring leads to uniform and dense arrays of relatively large Fe catalyst nanoparticles on which the thick SWCNTs nucleate, while small nanotubes and amorphous carbon are effectively etched away. Our results resolve a persistent issue of selective (while avoiding multiwalled nanotubes and other carbon nanostructures) synthesis of thick vertically aligned SWCNTs whose easily switchable thickness-dependent electronic properties enable advanced applications in nanoelectronic, energy, drug delivery, and membrane technologies.
NASA Astrophysics Data System (ADS)
Almabrok, Almabrok A.; Aliyu, Aliyu M.; Baba, Yahaya D.; Lao, Liyun; Yeung, Hoi
2018-01-01
We investigate the effect of a return U-bend on flow behaviour in the vertical upward section of a large-diameter pipe. A wire mesh sensor was employed to study the void fraction distributions at axial distances of 5, 28 and 47 pipe diameters after the upstream bottom bend. The study found that, the bottom bend has considerable impacts on up-flow behaviour. In all conditions, centrifugal action causes appreciable misdistribution in the adjacent straight section. Plots from WMS measurements show that flow asymmetry significantly reduces along the axis at L/D = 47. Regime maps generated from three axial locations showed that, in addition to bubbly, intermittent and annular flows, oscillatory flow occurred particularly when gas and liquid flow rates were relatively low. At this position, mean void fractions were in agreement with those from other large-pipe studies, and comparisons were made with existing void fraction correlations. Among the correlations surveyed, drift flux-type correlations were found to give the best predictive results.
Nuclear reactor heat transport system component low friction support system
Wade, Elman E.
1980-01-01
A support column for a heavy component of a liquid metal fast breeder reactor heat transport system which will deflect when the pipes leading coolant to and from the heavy component expand or contract due to temperature changes includes a vertically disposed pipe, the pipe being connected to the heavy component by two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles and the pipe being supported through two longitudinally spaced cycloidal dovetail joints wherein the distal end of each of the dovetails constitutes a part of the surface of a large diameter cylinder and the centerlines of these large diameter cylinders intersect at right angles, each of the cylindrical surfaces bearing on a flat and horizontal surface.
Technology Assessment for Large Vertical-Lift Transport Tiltrotors
NASA Technical Reports Server (NTRS)
Germanowski, Peter J.; Stille, Brandon L.; Strauss, Michael P.
2010-01-01
The technical community has identified rotor efficiency as a critical enabling technology for large vertical-lift transport (LVLT) rotorcraft. The size and performance of LVLT aircraft will be far beyond current aircraft capabilities, enabling a transformational change in cargo transport effectiveness. Two candidate approaches for achieving high efficiency were considered for LVLT applications: a variable-diameter tiltrotor (VDTR) and a variable-speed tiltrotor (VSTR); the former utilizes variable-rotor geometry and the latter utilizes variable-rotor speed. Conceptual aircraft designs were synthesized for the VDTR and VSTR and compared to a conventional tiltrotor (CTR). The aircraft were optimized to a common objective function and bounded by a set of physical- and requirements-driven constraints. The resulting aircraft were compared for weight, size, performance, handling qualities, and other attributes. These comparisons established a measure of the relative merits of the variable-diameter and -speed rotor systems as enabling technologies for LVLT capability.
Earth Noise in the 20- to 100-Second Period Range
1975-09-09
instruments were incapable of following fluctuations of shorter periods.) Gretener (1967) obtained similar results. Both of these workers...found indica- tions that the convection eddies believed to exist were comparable to the hole diameter in vertical extent. Both Gretener (1967...Heat flow in Western Canada: geoph. J., v. 6, p. 245-261. Gretener , P. E., 1967, On the thermal instability of large diameter wells: geophysics, J32
Sanio's laws revisited. Size-dependent changes in the xylem architecture of trees.
Mencuccini, Maurizio; Hölttä, Teemu; Petit, Giai; Magnani, Federico
2007-11-01
Early observations led Sanio [Wissen. Bot., 8, (1872) 401] to state that xylem conduit diameters and lengths in a coniferous tree increase from the apex down to a height below which they begin to decrease towards the tree base. Sanio's law of vertical tapering has been repeatedly tested with contradictory results and the debate over the scaling of conduit diameters with distance from the apex has not been settled. The debate has recently acquired new vigour, as an accurate knowledge of the vertical changes in wood anatomy has been shown to be crucial to scaling metabolic properties to plant and ecosystem levels. Contrary to Sanio's hypothesis, a well known model (MST, metabolic scaling theory) assumes that xylem conduits monotonically increase in diameter with distance from the apex following a power law. This has been proposed to explain the three-fourth power scaling between size and metabolism seen across plants. Here, we (i) summarized available data on conduit tapering in trees and (ii) propose a new numerical model that could explain the observed patterns. Data from 101 datasets grouped into 48 independent profiles supported the notions that phylogenetic group (angiosperms versus gymnosperms) and tree size strongly affected the vertical tapering of conduit diameter. For both angiosperms and gymnosperms, within-tree tapering also varied with distance from the apex. The model (based on the concept that optimal conduit tapering occurs when the difference between photosynthetic gains and wall construction costs is maximal) successfully predicted all three major empirical patterns. Our results are consistent with Sanio's law only for large trees and reject the MST assumptions that vertical tapering in conduit diameter is universal and independent of rank number.
Sharpening of carbon nanocone tips during plasma-enhanced chemical vapor growth
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Melechko, Anatoli V.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.
2001-12-01
In situ tip sharpening of vertically aligned carbon nanocones (VACNCs) was demonstrated. VACNCs were synthesized on patterned catalyst dots of 100 nm in diameter using dc plasma-enhanced chemical vapor deposition. The VACNC tip diameter was found to decrease with growth time. This enables synthesis of ultra-sharp VACNCs even for relatively large catalyst dot sizes, which is quite important for practical applications. We also find that for a given set of growth parameters the diameter of the initially formed catalyst nanoparticle determines the maximum length of the growing VACNC. The mechanism of VACNC growth and sharpening is discussed.
NASA Astrophysics Data System (ADS)
Chatelain, Philippe; Duponcheel, Matthieu; Caprace, Denis-Gabriel; Marichal, Yves; Winckelmans, Gregoire
2017-11-01
A vortex particle-mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES) of vertical axis wind turbine (VAWT) flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied with respect to the VAWT geometry and its operating point. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.
Yu, Bi-yun; Zhang, Wen-hui; He, Ting; You, Jian-jian; Li, Gang
2014-12-01
Typical sampling method was conducted to survey the effects of forest gap size on branch architecture, leaf characteristics and their vertical distribution of Quercus variablis seedlings from different size gaps in natural secondary Q. variablis thinning forest, on the south slope of Qinling Mountains. The results showed that gap size significantly affected the diameter, crown area of Q. variablis seedlings. The gap size positively correlated with diameter and negatively correlated with crown area, while it had no significant impact on seedling height, crown length and crown rates. The overall bifurcation ratio, stepwise bifurcation ratio, and ratio of branch diameter followed as large gap > middle gap > small gap > understory. The vertical distribution of first-order branches under different size gaps mainly concentrated at the middle and upper part of trunk, larger diameter first-order branches were mainly distributed at the lower part of trunk, and the angle of first-order branch increased at first and then declined with the increasing seedling height. With the increasing forest gap size, the leaf length, leaf width and average leaf area of seedlings all gradually declined, while the average leaf number per plant and relative total leaf number increased, the leaf length-width ratio kept stable, the relative leaf number was mainly distributed at the middle and upper parts of trunk, the changes of leaf area index was consistent with the change of the relative total number of leaves. There was no significant difference between the diameters of middle gap and large gap seedlings, but the diameter of middle gap seedlings was higher than that of large gap, suggesting the middle gap would benefit the seedlings regeneration and high-quality timber cultivation. To promote the regeneration of Q. variabilis seedlings, and to cultivate high-quality timber, appropriate thinning should be taken to increase the number of middle gaps in the management of Q. variabilis forest.
Origin of Granular Capillarity Revealed by Particle-Based Simulations
NASA Astrophysics Data System (ADS)
Fan, Fengxian; Parteli, Eric J. R.; Pöschel, Thorsten
2017-05-01
When a thin tube is dipped into water, the water will ascend to a certain height, against the action of gravity. While this effect, termed capillarity, is well known, recent experiments have shown that agitated granular matter reveals a similar behavior. Namely, when a vertical tube is inserted into a container filled with granular material and is then set into vertical vibration, the particles rise up along the tube. In the present Letter, we investigate the effect of granular capillarity by means of numerical simulations and show that the effect is caused by convection of the granular material in the container. Moreover, we identify two regimes of behavior for the capillary height Hc∞ depending on the tube-to-particle-diameter ratio, D /d . For large D /d , a scaling of Hc∞ with the inverse of the tube diameter, which is reminiscent of liquids, is observed. However, when D /d decreases down to values smaller than a few particle sizes, a uniquely granular behavior is observed where Hc∞ increases linearly with the tube diameter.
Development of a 5.5 m diameter vertical axis wind turbine, phase 3
NASA Astrophysics Data System (ADS)
Dekitsch, A.; Etzler, C. C.; Fritzsche, A.; Lorch, G.; Mueller, W.; Rogalla, K.; Schmelzle, J.; Schuhwerk, W.; Vollan, A.; Welte, D.
1982-06-01
In continuation of development of a 5.5 m diameter vertical axis windmill that consists in conception, building, and wind tunnel testing, a Darrieus rotor windpowered generator feeding an isolated network under different wind velocity conditions and with optimal energy conversion efficiency was designed built, and field tested. The three-bladed Darrieus rotor tested in the wind tunnel was equiped with two variable pitch Savonius rotors 2 m in diameter. By means of separate measures of the aerodynamic factors and the energy consumption, effect of revisions and optimizations on different elements was assessed. Pitch adjustement of the Savonius blades, lubrication of speed reducer, rotor speed at cut-in of generator field excitation, time constant of field excitation, stability conditions, switch points of ohmic resistors which combined with a small electric battery simulated a larger isolated network connected with a large storage battery, were investigated. Fundamentals for the economic series production of windpowered generators with Darrieus rotors for the control and the electric conversion system are presented.
Vertical interferometer workstation for testing large spherical optics
NASA Astrophysics Data System (ADS)
Truax, B.
2013-09-01
The design of an interferometer workstation for the testing of large concave and convex spherical optics is presented. The workstation handles optical components and mounts up to 425 mm in diameter with mass of up to 40 kg with 6 axes of adjustment. A unique method for the implementation of focus, roll and pitch was used allowing for extremely precise adjustment. The completed system includes transmission spheres with f-numbers from f/1.6 to f/0.82 incorporating reference surface diameters of up to 306 mm and surface accuracies of better than 63 nm PVr. The design challenges and resulting solutions are discussed. System performance results are presented.
2013-01-01
In this work, nanoimprint lithography combined with standard anodization etching is used to make perfectly organised triangular arrays of vertical cylindrical alumina nanopores onto standard <100>−oriented silicon wafers. Both the pore diameter and the period of alumina porous array are well controlled and can be tuned: the periods vary from 80 to 460 nm, and the diameters vary from 15 nm to any required diameter. These porous thin layers are then successfully used as templates for the guided epitaxial growth of organised mono-crystalline silicon nanowire arrays in a chemical vapour deposition chamber. We report the densities of silicon nanowires up to 9 × 109 cm−2 organised in highly regular arrays with excellent diameter distribution. All process steps are demonstrated on surfaces up to 2 × 2 cm2. Specific emphasis was made to select techniques compatible with microelectronic fabrication standards, adaptable to large surface samples and with a reasonable cost. Achievements made in the quality of the porous alumina array, therefore on the silicon nanowire array, widen the number of potential applications for this technology, such as optical detectors or biological sensors. PMID:23773702
High power 808 nm vertical cavity surface emitting laser with multi-ring-shaped-aperture structure
NASA Astrophysics Data System (ADS)
Hao, Y. Q.; Shang, C. Y.; Feng, Y.; Yan, C. L.; Zhao, Y. J.; Wang, Y. X.; Wang, X. H.; Liu, G. J.
2011-02-01
The carrier conglomeration effect has been one of the main problems in developing electrically pumped high power vertical cavity surface emitting laser (VCSEL) with large aperture. We demonstrate a high power 808 nm VCSEL with multi-ring-shaped-aperture (MRSA) to weaken the carrier conglomeration effect. Compared with typical VCSEL with single large aperture (SLA), the 300-μm-diameter VCSEL with MRSA has more uniform near field and far field patterns. Moreover, MRSA laser exhibits maximal CW light output power 0.3 W which is about 3 times that of SLA laser. And the maximal wall-plug efficiency of 17.4% is achieved, higher than that of SLA laser by 10%.
Large-scale synthesis of arrays of high-aspect-ratio rigid vertically aligned carbon nanofibres
NASA Astrophysics Data System (ADS)
Melechko, A. V.; McKnight, T. E.; Hensley, D. K.; Guillorn, M. A.; Borisevich, A. Y.; Merkulov, V. I.; Lowndes, D. H.; Simpson, M. L.
2003-09-01
We report on techniques for catalytic synthesis of rigid, high-aspect-ratio, vertically aligned carbon nanofibres by dc plasma enhanced chemical vapour deposition that are tailored for applications that require arrays of individual fibres that feature long fibre lengths (up to 20 µm) such as scanning probe microscopy, penetrant cell and tissue probing arrays and mechanical insertion approaches for gene delivery to cell cultures. We demonstrate that the definition of catalyst nanoparticles is the critical step that enables growth of individual, long-length fibres and discuss methods for catalyst particle preparation that allow the growth of individual isolated nanofibres from catalyst dots with diameters as large as 500 nm. This development enables photolithographic definition of catalyst and therefore the inexpensive, large-scale production of such arrays.
NASA Astrophysics Data System (ADS)
Yang, Che-Wei; Chen, Wei-Chieh; Chou, Chieh; Lin, Hao-Hsiung
2018-02-01
We report on the selective area growth of InAs nanowires on patterned SiO2/Si (1 1 1) nano-holes, prepared by focused helium ion beam technology. We used a single spot mode, in which the focused helium ion beam was fixed on a single point with a He+-ion dosage, ranging from 1.5 pC to 8 pC, to drill the nano-holes. The smallest hole diameter achieved is ∼8 nm. We found that low He+-ion dosage is able to facilitate the nucleation of (1 1 1)B InAs on the highly mismatched Si, leading to the vertical growth of InAs nanowires (NWs). High He-ion dosage, on the contrary, severely damaged Si surface, resulting in tilted and stripe-like NWs. In addition to titled NW grown from (1 1 1)A InAs domain, a new titled growth direction due to defect induced twinning was observed. Cross-sectional TEM images of vertical NWs show mixed wurtizite (WZ) and zincblende (ZB) phases, while WZ phase dominants. The stacking faults resulting from the phase change is proportional to NW diameter, suggesting that the critical diameter of phase turning is larger than 110 nm, the maximum diameter of our NWs. Period of misfit dislocation at the InAs/Si interface of vertical NW is also found larger than the theoretical value when the diameter of heterointerface is smaller than 50 nm, indicating that the small contact area is able to accommodate the large lattice and thermal mismatch between InAs and Si.
The nature of the gravity anomalies associated with large young lunar craters
NASA Technical Reports Server (NTRS)
Dvorak, J.; Phillips, R. J.
1977-01-01
The negative Bouguer anomalies (i.e., mass deficiencies) associated with four young lunar craters are analyzed. Model calculations based on generalizations made from studies of terrestrial impact structures suggest that the major contribution to the Bouguer anomaly for these lunar craters is due to a lens of brecciated material confined within the present crater rim crest and extending vertically to at least a depth of one-third the crater rim diameter. Calculations also reveal a systematic variation in the magnitude of the mass deficiencies with the cube of the crater diameter.
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles
2012-11-01
For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).
Automatic Fastening Large Structures: a New Approach
NASA Technical Reports Server (NTRS)
Lumley, D. F.
1985-01-01
The external tank (ET) intertank structure for the space shuttle, a 27.5 ft diameter 22.5 ft long externally stiffened mechanically fastened skin-stringer-frame structure, was a labor intensitive manual structure built on a modified Saturn tooling position. A new approach was developed based on half-section subassemblies. The heart of this manufacturing approach will be 33 ft high vertical automatic riveting system with a 28 ft rotary positioner coming on-line in mid 1985. The Automatic Riveting System incorporates many of the latest automatic riveting technologies. Key features include: vertical columns with two sets of independently operating CNC drill-riveting heads; capability of drill, insert and upset any one piece fastener up to 3/8 inch diameter including slugs without displacing the workpiece offset bucking ram with programmable rotation and deep retraction; vision system for automatic parts program re-synchronization and part edge margin control; and an automatic rivet selection/handling system.
Mass transport through vertically aligned large diameter MWCNT embedded in parylene
Krishnakumar, P; Tiwari, P B; Staples, S; Luo, T; Darici, Y; He, J; Lindsay, SM
2013-01-01
We have fabricated porous membranes using a parylene encapsulated vertically aligned forest of multi-walled carbon nanotube (MWCNT, about 7nm inner diameter). The transport of charged particles in electrolyte through these membranes was studied by applying electric field and pressure. Under an electric field in the range of 4.4×104 V/m, electrophoresis instead of electroomosis is found to be the main mechanism for ion transport. Small molecules and 5 nm gold nanoparticles can be driven through the membranes by an electric field. However, small biomolecules, like DNA oligomers, cannot. Due to the weak electric driving force, the interactions between charged particles and the hydrophobic CNT inner surface play important roles in the transport, leading to enhanced selectivity for small molecules. Simple chemical modification on the CNT ends also induces an obvious effect on the translocation of single strand DNA oligomer and gold nanoparticle under a modest pressure (<294 Pa). PMID:23064678
Morphological alterations of T24 cells on flat and nanotubular TiO2 surfaces.
Imani, Roghayeh; Kabaso, Doron; Erdani Kreft, Mateja; Gongadze, Ekaterina; Penic, Samo; Elersic, Kristina; Kos, Andrej; Veranic, Peter; Zorec, Robert; Iglic, Ales
2012-12-01
To investigate morphological alterations of malignant cancer cells (T24) of urothelial origin seeded on flat titanium (Ti) and nanotubular TiO(2) (titanium dioxide) nanostructures. Using anodization method, TiO(2) surfaces composed of vertically aligned nanotubes of 50-100 nm diameters were produced. The flat Ti surface was used as a reference. The alteration in the morphology of cancer cells was evaluated using scanning electron microscopy (SEM). A computational model, based on the theory of membrane elasticity, was constructed to shed light on the biophysical mechanisms responsible for the observed changes in the contact area of adhesion. Large diameter TiO(2) nanotubes exhibited a significantly smaller contact area of adhesion (P<0.0001) and had more membrane protrusions (eg, microvilli and intercellular membrane nanotubes) than on flat Ti surface. Numerical membrane dynamics simulations revealed that the low adhesion energy per unit area would hinder the cell spreading on the large diameter TiO(2) nanotubular surface, thus explaining the small contact area. The reduction in the cell contact area in the case of large diameter TiO(2) nanotube surface, which does not enable formation of the large enough number of the focal adhesion points, prevents spreading of urothelial cells.
NASA Astrophysics Data System (ADS)
Lee, Seyeong; Kim, Dongyoon; Kim, Seong-Min; Kim, Jeong-Ah; Kim, Taesoo; Kim, Dong-Yu; Yoon, Myung-Han
2015-08-01
Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc.Recent advances in nanostructure-based biotechnology have resulted in a growing demand for vertical nanostructure substrates with elaborate control over the nanoscale geometry and a high-throughput preparation. In this work, we report the fabrication of non-periodic vertical silicon nanocolumn substrates via polyelectrolyte multilayer-enabled randomized nanosphere lithography. Owing to layer-by-layer deposited polyelectrolyte adhesives, uniformly-separated polystyrene nanospheres were securely attached on large silicon substrates and utilized as masks for the subsequent metal-assisted silicon etching in solution. Consequently, non-periodic vertical silicon nanocolumn arrays were successfully fabricated on a wafer scale, while each nanocolumn geometric factor, such as the diameter, height, density, and spatial patterning, could be fully controlled in an independent manner. Finally, we demonstrate that our vertical silicon nanocolumn substrates support viable cell culture with minimal cell penetration and unhindered cell motility due to the blunt nanocolumn morphology. These results suggest that vertical silicon nanocolumn substrates may serve as a useful cellular interface platform for performing a statistically meaningful number of cellular experiments in the fields of biomolecular delivery, stem cell research, etc. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02384j
Diameter modulation of vertically aligned single-walled carbon nanotubes.
Xiang, Rong; Einarsson, Erik; Murakami, Yoichi; Shiomi, Junichiro; Chiashi, Shohei; Tang, Zikang; Maruyama, Shigeo
2012-08-28
We demonstrate wide-range diameter modulation of vertically aligned single-walled carbon nanotubes (SWNTs) using a wet chemistry prepared catalyst. In order to ensure compatibility to electronic applications, the current minimum mean diameter of 2 nm for vertically aligned SWNTs is challenged. The mean diameter is decreased to about 1.4 nm by reducing Co catalyst concentrations to 1/100 or by increasing Mo catalyst concentrations by five times. We also propose a novel spectral analysis method that allows one to distinguish absorbance contributions from the upper, middle, and lower parts of a nanotube array. We use this method to quantitatively characterize the slight diameter change observed along the array height. On the basis of further investigation of the array and catalyst particles, we conclude that catalyst aggregation-rather than Ostwald ripening-dominates the growth of metal particles.
Rotor instrumentation circuits for the Sandia 34-meter vertical axis wind turbine
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.; Stephenson, William A.
1988-07-01
Sandia National Laboratories has erected a research oriented, 34-meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas, which has been designated the Sandia 34-m VAWT Test Bed. To meet present and future research needs, the machine was equipped with a large array of sensors. This manuscript details the sensors initially placed on the rotor, their respective instrumentation circuits, and the provisions incorporated into the design of the rotor instrumentation circuits for future research. This manuscript was written as a reference manual for the rotor instrumentation of the Test Bed.
NASA Astrophysics Data System (ADS)
Schultz, P. H.; Stickle, A. M.
2009-12-01
The absence of a clearly identified crater (or craters) for the proposed YDB impact has raised questions concerning the reality of such an event. Geologic studies have identified impact deposits well before recognizing a causative crater (e.g., Chicxulub and Chesapeake Bay); some have yet to be discovered (e.g., Australasian tektite strewnfields). The absence of a crater, therefore, cannot be used as an argument against the reality of the YDB impact (and its possible consequences). The study here addresses how a large on-land impact during the late Pleistocene or early Holocene could avoid easy detection today. It does not argue the case for a YDB impact, since such evidence must come from the rock record. During the late Pleistocene, the receding Laurentide ice sheet still covered a significant portion of Canada. While a large (1km) body impacting vertically (90°) would penetrate such a low-impedance ice layer and excavate the substrate, an oblique impact couples more of its energy into the surface layer, thereby partially shielding the substrate. Three approaches address the effectiveness of this flak-jacket effect. First, hypervelocity impact experiments at the NASA Ames Vertical Gun Range investigated the effectiveness of low-impedance layers of different thicknesses for mitigating substrate damage. Second, selected experiments were compared with hydrocode models (see Stickle and Schultz, this volume) and extended to large scales. Third, comparisons were made with relict craters found in eroding sediment and ice covers on Mars. Oblique impacts (30 degrees) into soft particulates (no. 24 sand) covering a solid substrate (aluminum) have no effect on the final crater diameter for layer thicknesses exceeding a projectile diameter and result in only plastic deformation in the substrate. In contrast, a vertical impact requires a surface layer at least 3 times the projectile diameter to achieve the same diameter (with significant substrate damage). Oblique impacts into ice and plasticene layers over clear acrylic blocks allow assessing internal damage. These experiments reveal that low-impedance surface layers approaching 1 to 2 projectile diameters effectively shield the substrate from shock damage for impact angles less than 30 degrees. Missing craters (and relict crater roots) within ice-rich deposits on Mars illustrate the rapid erasure the impact record. Numerous small pedestal craters (crater diameter < 5km) occur at high latitudes and reflect the cyclic expansion and disappearance of polar ice/dust deposits up to 0.5 km thick. Much larger examples (> 50km), however, occur at low latitudes but are localized in certain regions where even thicker deposits (locally >2km) have been removed, uncovering a preserved Noachian landscape. Crater statistics further document this missing cratering record. Thick Pleistocene ice sheets on Earth would have played a similar role for the removal of terrestrial cratering record. We calculate that a crater as large as 15km in diameter formed by an oblique impact could have been effectively erased, except for dispersed ejecta containing shocked impactor relicts and a disturbed substrate. While plausible, evidence for specific missing events (e.g., the proposed YB impact) must be found in still-preserved ice layers and sediments.
Large Eddy Simulation of Vertical Axis Wind Turbine wakes; Part II: effects of inflow turbulence
NASA Astrophysics Data System (ADS)
Duponcheel, Matthieu; Chatelain, Philippe; Caprace, Denis-Gabriel; Winckelmans, Gregoire
2017-11-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. Large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines have been performed using a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation from a precomputed synthetic turbulence field obtained using the Mann algorithm. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI level is assessed.
Measuring mixing efficiency in experiments of strongly stratified turbulence
NASA Astrophysics Data System (ADS)
Augier, P.; Campagne, A.; Valran, T.; Calpe Linares, M.; Mohanan, A. V.; Micard, D.; Viboud, S.; Segalini, A.; Mordant, N.; Sommeria, J.; Lindborg, E.
2017-12-01
Oceanic and atmospheric models need better parameterization of the mixing efficiency. Therefore, we need to measure this quantity for flows representative of geophysical flows, both in terms of types of flows (with vortices and/or waves) and of dynamical regimes. In order to reach sufficiently large Reynolds number for strongly stratified flows, experiments for which salt is used to produce the stratification have to be carried out in a large rotating platform of at least 10-meter diameter.We present new experiments done in summer 2017 to study experimentally strongly stratified turbulence and mixing efficiency in the Coriolis platform. The flow is forced by a slow periodic movement of an array of large vertical or horizontal cylinders. The velocity field is measured by 3D-2C scanned horizontal particles image velocimetry (PIV) and 2D vertical PIV. Six density-temperature probes are used to measure vertical and horizontal profiles and signals at fixed positions.We will show how we rely heavily on open-science methods for this study. Our new results on the mixing efficiency will be presented and discussed in terms of mixing parameterization.
Vertical boring mill capacity is increased
NASA Technical Reports Server (NTRS)
Young, R. J.
1968-01-01
Commercially available vertical boring mill with a nominal capacity to 27 feet in diameter of workpiece has been modified in-shop to handle work up to 36 feet in diameter. Capacity was increased by adding extension saddles to the mill support columns on each side.
Choi, Jongsoo; Duan, Xiyu; Li, Haijun; Wang, Thomas D; Oldham, Kenn R
2017-10-01
Use of a thin-film piezoelectric microactuator for axial scanning during multi-photon vertical cross-sectional imaging is described. The actuator uses thin-film lead-zirconate-titanate (PZT) to generate upward displacement of a central mirror platform, micro-machined from a silicon-on-insulator (SOI) wafer to dimensions compatible with endoscopic imaging instruments. Device modeling in this paper focuses on existence of frequencies near device resonance producing vertical motion with minimal off-axis tilt even in the presence of multiple vibration modes and non-uniformity in fabrication outcomes. Operation near rear resonance permits large stroke lengths at low voltages relative to other vertical microactuators. Highly uniform vertical motion of the mirror platform is a key requirement for vertical cross-sectional imaging in the remote scan architecture being used for multi-photon instrument prototyping. The stage is installed in a benchtop testbed in combination with an electrostatic mirror that performs in-plane scanning. Vertical sectional images are acquired from 15 μm diameter beads and excised mouse colon tissue.
View north of inside machine shop 36; shop floor accommodates ...
View north of inside machine shop 36; shop floor accommodates lathes capable of machining a cylinder 60 inches in diameter and 75 feet long; other equipment includes horizontal and vertical jig borders, hydraulic tube straighteners and other equipment for precision machining of large ship components. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Structure Shop, League Island, Philadelphia, Philadelphia County, PA
Study of Strain-Stress Behavior of Non-Pressure Reinforced Concrete Pipes Used in Road Building
NASA Astrophysics Data System (ADS)
Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.
2017-11-01
The article contains the results of the full-scale tests performed for special road products - large-diameter non-pressure concrete pipes reinforced with a single space cylindrical frame manufactured with the technology of high-frequency vertical vibration molding with an immediate demolding. The authors studied the change in the strain-stress behavior of reinforced concrete pipes for underground pipeline laying depending on their laying depth in the trench and the transport load considering the properties of the surrounding ground mass. The strain-stress behavior of the reinforced concrete pipes was evaluated using the strain-gauge method based on the application of active resistance strain gauges. Based on the completed research, the authors made a conclusion on the applicability of a single space frame for reinforcement of large-diameter non-pressure concrete pipes instead of a double frame which allows one to significantly reduce the metal consumption for the production of one item. As a result of the full-scale tests of reinforced concrete pipes manufactured by vertical vibration molding, the authors obtained new data on the deformation of a pipeline cross-section depending on the placement of the transport load with regard to the axis.
Apollo 8 Mission image,Moon, farside
2009-02-19
AS08-14-2432 (21-27 Dec. 1968) --- This is a near vertical photograph of the lunar surface taken with a telephoto lens during the Apollo 8 lunar orbit mission. The photographed area is approximately 20 miles on a side and is located within a large, unmanned 100-miles-in-diameter crater on the farside of the moon. This large crater is located at 10 degrees south latitude and 160 degrees east longitude. The lunar surface probably has less pronounced color then indicated by this print.
Apollo 8 Mission image,Moon, farside
2009-02-19
AS08-14-2431 (21-27 Dec. 1968) --- This is a near vertical photograph of the lunar surface taken with a telephoto lens during the Apollo 8 lunar orbit mission. The photographed area is approximately 20 miles on a side, and is located within a large, unmanned 100-statute-miles-in-diameter crater on the farside of the moon. This large crater is located at 10 degrees south latitude and 160 degrees east longitude. The lunar surface probably has less pronounced color than indicated by this print.
Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang
2013-02-21
Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.
Oji, Tatsuo; Dornbos, Stephen Q; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the 'agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum . These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-01-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the ‘agronomic revolution’. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered. PMID:29515908
NASA Astrophysics Data System (ADS)
Oji, Tatsuo; Dornbos, Stephen Q.; Yada, Keigo; Hasegawa, Hitoshi; Gonchigdorj, Sersmaa; Mochizuki, Takafumi; Takayanagi, Hideko; Iryu, Yasufumi
2018-02-01
The Cambrian radiation of complex animals includes a dramatic increase in the depth and intensity of bioturbation in seafloor sediment known as the `agronomic revolution'. This bioturbation transition was coupled with a shift in dominant trace fossil style from horizontal surficial traces in the late Precambrian to vertically penetrative trace fossils in the Cambrian. Here we show the existence of the first vertically penetrative trace fossils from the latest Ediacaran: dense occurrences of the U-shaped trace fossil Arenicolites from late Precambrian marine carbonates of Western Mongolia. Their Ediacaran age is established through stable carbon isotope chemostratigraphy and their occurrence stratigraphically below the first appearance of the trace fossil Treptichnus pedum. These Arenicolites are large in diameter, penetrate down to at least 4 cm into the sediment, and were presumably formed by the activity of bilaterian animals. They are preserved commonly as paired circular openings on bedding planes with maximum diameters ranging up to almost 1 cm, and as U- and J-shaped tubes in vertical sections of beds. Discovery of these complex penetrative trace fossils demonstrates that the agronomic revolution started earlier than previously considered.
NASA Astrophysics Data System (ADS)
Saitou, Yutaka; Kikuchi, Yoshiaki; Kusakabe, Osamu; Kiyomiya, Osamu; Yoneyama, Haruo; Kawakami, Taiji
Steel sheet pipe pile foundations with large diameter steel pipe sheet pile were used for the foundation of the main pier of the Tokyo Gateway bridge. However, as for the large diameter steel pipe pile, the bearing mechanism including a pile tip plugging effect is still unclear due to lack of the practical examinations even though loading tests are performed on Trans-Tokyo Bay Highway. In the light of the foregoing problems, static pile loading tests both vertical and horizontal directions, a dynamic loading test, and cone penetration tests we re conducted for determining proper design parameters of the ground for the foundations. Design parameters were determined rationally based on the tests results. Rational design verification was obtained from this research.
Microlens frames for laser diode arrays
Skidmore, J.A.; Freitas, B.L.
1999-07-13
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter. 12 figs.
Microlens frames for laser diode arrays
Skidmore, Jay A.; Freitas, Barry L.
1999-01-01
Monolithic microlens frames enable the fabrication of monolithic laser diode arrays and are manufactured inexpensively with high registration, and with inherent focal length compensation for any lens diameter variation. A monolithic substrate is used to fabricate a low-cost microlens array. The substrate is wet-etched or sawed with a series of v-grooves. The v-grooves can be created by wet-etching, by exploiting the large etch-rate selectivity of different crystal planes. The v-grooves provide a support frame for either cylindrical or custom-shaped microlenses. Because the microlens frames are formed by photolithographic semiconductor batch-processing techniques, they can be formed inexpensively over large areas with precise lateral and vertical registration. The v-groove has an important advantage for preserving the correct focus for lenses of varying diameter.
Diameter and location control of ZnO nanowires using electrodeposition and sodium citrate
NASA Astrophysics Data System (ADS)
Lifson, Max L.; Levey, Christopher G.; Gibson, Ursula J.
2013-10-01
We report single-step growth of spatially localized ZnO nanowires of controlled diameter to enable improved performance of piezoelectric devices such as nanogenerators. This study is the first to demonstrate the combination of electrodeposition with zinc nitrate and sodium citrate in the growth solution. Electrodeposition through a thermally-grown silicon oxide mask results in localization, while the growth voltage and solution chemistry are tuned to control the nanowire geometry. We observe a competition between lateral (relative to the (0001) axis) citrate-related morphology and voltage-driven vertical growth which enables this control. High aspect ratios result with either pure nitrate or nitrate-citrate mixtures if large voltages are used, but low growth voltages permit the growth of large diameter nanowires in solution with citrate. Measurements of the current density suggest a two-step growth process. An oxide mask blocks the electrodeposition, and suppresses nucleation of thermally driven growth, permitting single-step lithography on low cost p-type silicon substrates.
Slug Flow Analysis in Vertical Large Diameter Pipes
NASA Astrophysics Data System (ADS)
Roullier, David
The existence of slug flow in vertical co-current two-phase flow is studied experimentally and theoretically. The existence of slug flow in vertical direction implies the presence of Taylor bubbles separated by hydraulically sealed liquid slugs. Previous experimental studies such as Ombere-Ayari and Azzopardi (2007) showed the evidence of the non-existence of Taylor bubbles for extensive experimental conditions. Models developed to predict experimental behavior [Kocamustafaogullari et al. (1984), Jayanti and Hewitt. (1990) and Kjoolas et al. (2017)] suggest that Taylor bubbles may disappear at large diameters and high velocities. A 73-ft tall and 101.6-mm internal diameter test facility was used to conduct the experiments allowing holdup and pressure drop measurements at large L/D. Superficial liquid and gas velocities varied from 0.05-m/s to 0.2 m/s and 0.07 m/s to 7.5 m/s, respectively. Test section pressure varied from 38 psia to 84 psia. Gas compressibility effect was greatly reduced at 84 psia. The experimental program allowed to observe the flow patterns for flowing conditions near critical conditions predicted by previous models (air-water, 1016 mm ID, low mixture velocities). Flow patterns were observed in detail using wire-mesh sensor measurements. Slug-flow was observed for a narrow range of experimental conditions at low velocities. Churn-slug and churn-annular flows were observed for most of the experimental data-points. Cap-bubble flow was observed instead of bubbly flow at low vSg. Wire-mesh measurements showed that the liquid has a tendency to remain near to the walls. The standard deviation of radial holdup profile correlates to the flow pattern observed. For churn-slug flow, the profile is convex with a single maximum near the pipe center while it exhibits a concave shape with two symmetric maxima close to the wall for churn-annular flow. The translational velocity was measured by two consecutive wire-mesh sensor crosscorrelation. The results show linear trends at low mixture velocities and non-linear behaviors at high mixture velocities. The translational velocity trends seem to be related to the flow-pattern observed, namely to the ability of the gas to flow through the liquid structures. A simplified Taylor bubble stability model is proposed. The model allows to estimate under which conditions Taylor bubbles disappear, properly accounting for the diameter effect and velocity effect observed experimentally. In addition, annular flow distribution coefficient relating true holdup to centerline holdup in vertical flow is proposed. The proposed coefficient defines the tendency of the liquid to remain near the walls. This coefficient increases linearly with the void fraction.
Kang, Jeongmin; Moon, Taeho; Jeon, Youngin; Kim, Hoyoung; Kim, Sangsig
2013-05-01
ZnO-nanowire-based logic circuits were constructed by the vertical integration of multilayered field-effect transistors (FETs) on plastic substrates. ZnO nanowires with an average diameter of -100 nm were synthesized by thermal chemical vapor deposition for use as the channel material in FETs. The ZnO-based FETs exhibited a high I(ON)/I(OFF) of > 10(6), with the characteristic of n-type depletion modes. For vertically integrated logic circuits, three multilayer FETs were sequentially prepared. The stacked FETs were connected in series via electrodes, and C-PVPs were used for the layer-isolation material. The NOT and NAND gates exhibited large logic-swing values of -93%. These results demonstrate the feasibility of three dimensional flexible logic circuits.
Lee, Ji-Hye; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2016-01-01
To evaluate the effect of implant coronal wall thickness on load-bearing capacity and screw joint stability. Experimental implants were customized after investigation of the thinnest coronal wall thickness of commercially available implant systems with a regular platform diameter. Implants with four coronal wall thicknesses (0.2, 0.3, 0.4, and 0.5 mm) were fabricated. Three sets of tests were performed. The first set was a failure test to evaluate load-bearing capacity and elastic limit. The second and third sets were cyclic and static loading tests. After abutment screw tightening of each implant, vertical cyclic loading of 250 N or static loading from 250 to 800 N was applied. Coronal diameter expansion, axial displacement, and removal torque values of the implants were compared. Repeated measures analysis of variance (ANOVA) was used for statistical analysis (α = .05). Implants with 0.2-mm coronal wall thickness demonstrated significantly low load-bearing capacity and elastic limit (both P < .05). These implants also showed significantly large coronal diameter expansion and axial displacement after screw tightening (both P < .05). Greater vertical load and thinner coronal wall thickness significantly increased coronal diameter expansion of the implant, axial displacement of the abutment, and removal torque loss of the abutment screw (all P < .05). Implant coronal wall thickness of 0.2 mm produces significantly inferior load-bearing capacity and screw joint stability.
Dianat, Iman; Rahimi, Soleyman; Nedaei, Moein; Asghari Jafarabadi, Mohammad; Oskouei, Ali E
2017-03-01
The effects of tool handle dimension (three modified designs of wrenches with 30-50 mm diameter cylindrical handles and traditional design with rectangular cross-sectional (5 mm × 25 mm) handle), workpiece orientation (vertical/horizontal) and workpiece size (small/large) as well as user's hand size on wrist ulnar/radial (U/R) torque strength, usability and discomfort, and also the relationship between these variables were evaluated in a maximum torque task using wrenches. The highest and lowest levels of maximal wrist U/R torque strength were recorded for the 30 mm diameter handle and traditional wrench design, respectively. The prototype handle with 30 mm diameter, together with 40 mm diameter handle, was also better than other designs as they received higher usability ratings and caused less discomfort. The mean wrist torque strength exerted on a vertically oriented workpiece (in the sagittal plane) was 23.8% higher than that exerted on a horizontally oriented one (in the transverse plane). The user's hand size had no effect on torque exertions. The wrist torque strength and usability were negatively correlated with hand and finger discomfort ratings. The results are also discussed in terms of their implications for hand tool and workstation configuration in torque tasks involving wrenches. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Patrick Doty, F.; Derby, Jeffrey J.
1999-05-01
Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of steady crucible rotation on axial and radial segregation in the grown crystal. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and pseudo-binary zinc segregation. Imposing a moderate rotation rate of 10 rpm on the system slightly improves axial segregation but makes radial segregation much worse. Moreover, values of dimensionless thermal Rossby and Taylor numbers calculated for this system indicate that the baroclinic instability may occur at the rotation rates studied.
Direct Cast U-6Nb – 2017 Progress on Cylindrical Castings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aikin, Jr., Robert M.
2017-10-04
This report describes work to further develop a sound technical basis and best practices for mold design and process parameters for the Direct Casting of U-6wt%Nb components. One major challenge to the production of U-6Nb components is the propensity for niobium segregation during casting and solidification. This is especially true for cylindrical castings where the vertical side walls allow flotation of Nb resulting in severe inverse macrosegregation. In this work, a small (120 mm diameter by 180 mm tall) and large cylinder (250 mm diameter by 310 mm tall) are examined with a focus on reducing, or eliminating, niobium segregation.more » It is demonstrated that counter gravity casting (top-to-bottom solidification) can be used to minimize segregation in the small cylinder. Attempts to counter gravity cast the large cylinder were unsuccessful, in large part due to size limitations of the current furnace. A path forward for casting of the large cylinders is discussed.« less
Pipe support for use in a nuclear system
Pollono, Louis P.; Mello, Raymond M.
1977-01-01
A pipe support for high temperature, thin-walled vertical piping runs used in a nuclear system. A cylindrical pipe transition member, having the same inside diameter as the thin-walled piping, replaces a portion of the piping where support is desired. The outside diameter of the pipe transition member varies axially along its vertical dimension. For a section of the axial length adjacent the upper and lower terminations of the pipe transition member, the outside diameter is the same as the outside diameter of the thin-walled piping to which it is affixed. Intermediate of the termination sections, the outside diameter increases from the top of the member to the bottom. Adjacent the lower termination section, the diameter abruptly becomes the same as the piping. Thus, the cylindrical transition member is formed to have a generally triangular shaped cross-section along the axial dimension. Load-bearing insulation is installed next to the periphery of the member and is kept in place by an outer ring clamp. The outer ring clamp is connected to pipe hangers, which provide the desired support for the vertical thin-walled piping runs.
Production of vertical arrays of small diameter single-walled carbon nanotubes
Hauge, Robert H; Xu, Ya-Qiong
2013-08-13
A hot filament chemical vapor deposition method has been developed to grow at least one vertical single-walled carbon nanotube (SWNT). In general, various embodiments of the present invention disclose novel processes for growing and/or producing enhanced nanotube carpets with decreased diameters as compared to the prior art.
Kamal, Saurabh; Ali, Mohammad Javed; Ali, Mohammad Hasnat; Naik, Milind N
2016-01-01
To report the features of Fourier domain optical coherence tomography imaging of the normal punctum and vertical canaliculus. Prospective, interventional series of consecutive healthy and asymptomatic adults, who volunteered for optical coherence tomography imaging, were included in the study. Fourier domain optical coherence tomography images of the punctum and vertical canaliculus along with 3D and En face images were captured using the RTVue scanner with a corneal adaptor module and a wide-angled lens. Maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were calculated. Statistical analysis was performed using Pearson correlation test, and scatter plot matrices were analyzed. A total of 103 puncta of 52 healthy subjects were studied. Although all the images could depict the punctum and vertical canaliculus and all the desired measurements could be obtained, occasional tear debris within the canaliculus was found to be interfering with the imaging. The mean maximum punctal diameter, mid-canalicular diameter, and vertical canalicular height were recorded as 214.71 ± 73 μm, 125.04 ± 60.69 μm, and 890.41 ± 154.76 μm, respectively, with an insignificant correlation between them. The maximum recorded vertical canalicular height in all the cases was far less than the widely reported depth of 2 mm. High-resolution 3D and En face images provided a detailed topography of punctal surface and overview of vertical canaliculus. Fourier domain optical coherence tomography with 3D and En face imaging is a useful noninvasive modality to image the proximal lacrimal system with consistently reproducible high-resolution images. This is likely to help clinicians in the management of proximal lacrimal disorders.
Córdoba, Rosa; Ibarra, Alfonso; Mailly, Dominique; De Teresa, José Ma
2018-02-14
Novel physical properties appear when the size of a superconductor is reduced to the nanoscale, in the range of its superconducting coherence length (ξ 0 ). Such nanosuperconductors are being investigated for potential applications in nanoelectronics and quantum computing. The design of three-dimensional nanosuperconductors allows one to conceive novel schemes for such applications. Here, we report for the first time the use of a He + focused-ion-beam-microscope in combination with the W(CO) 6 precursor to grow three-dimensional superconducting hollow nanowires as small as 32 nm in diameter and with an aspect ratio (length/diameter) of as much as 200. Such extreme resolution is achieved by using a small He + beam spot of 1 nm for the growth of the nanowires. As shown by transmission electron microscopy, they display grains of large size fitting with face-centered cubic WC 1-x phase. The nanowires, which are grown vertically to the substrate, are felled on the substrate by means of a nanomanipulator for their electrical characterization. They become superconducting at 6.4 K and show large critical magnetic field and critical current density resulting from their quasi-one-dimensional superconducting character. These results pave the way for future nanoelectronic devices based on three-dimensional nanosuperconductors.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Peters, C. A.; Dobson, P. F.; Doughty, C.
2010-12-01
Understanding the processes involved in large-scale upward flow of CO2 related to Geologic Carbon Sequestration (GCS) is critical to evaluating trapping mechanisms and potential impacts of CO2 leakage over long distances. The Laboratory for Underground CO2 Investigations (LUCI) is being planned to be built at DUSEL to host large-scale vertical CO2 and brine flow experiments. As conceived, LUCI would consist of a 500 m-long vertical raisebore approximately 3 m in diameter which will contain three suspended long-column pressure vessels. The long-column pressure vessels are planned to be 1 m in diameter with thermal control on the outer walls with a centralized inner fiberglass well for accommodating monitoring tools for determining phase saturation, porosity, temperature, and other properties of the flow region. The outer wall of the inner fiberglass well and the inner wall of the main vessel comprise the lateral boundaries of the long vertical annular regions that will be filled with porous media in which experiments investigating flow and transport, geochemical alterations of well cement, and biological processes involving injected CO2 will be performed. The large vertical extent of the column is needed to span the full range of CO2 conditions from supercritical (scCO2, P > 7.4 MPa, T > 31 °C) to gaseous CO2 that is believed to be significant as CO2 flows upwards. Here we consider the CO2-brine flow experiments in which the annular region will be pressurized at the top and bottom and contain brine-filled porous media through which scCO2 introduced at the bottom will flow upward. We are carrying out two-phase flow simulations of the buoyancy- and pressure-driven flow of CO2 and brine upward in the annular porous media region to further design the flow columns, e.g., to determine critical length and diameter requirements, as well as to plan the experiments to be performed. The simulations are carried out using TOUGH2/ECO2N, which models two-phase non-isothermal flow and transport of water, CO2, and NaCl in porous media. To treat important issues of drainage and imbibition at the leading and trailing edges of the CO2 slug, we employ hysteretic relative permeability functions. Simulation results will be presented showing flow rate, saturation, and temperature dependence on permeability, relative permeability parameters, size of initial CO2 slug, imposed upward flow rate, and different side boundary conditions (e.g., fully insulated and temperature equal to a constant geothermal gradient).
A top-down approach to fabrication of high quality vertical heterostructure nanowire arrays.
Wang, Hua; Sun, Minghua; Ding, Kang; Hill, Martin T; Ning, Cun-Zheng
2011-04-13
We demonstrate a novel top-down approach for fabricating nanowires with unprecedented complexity and optical quality by taking advantage of a nanoscale self-masking effect. We realized vertical arrays of nanowires of 20-40 nm in diameter with 16 segments of complex longitudinal InGaAsP/InP structures. The unprecedented high quality of etched wires is evidenced by the narrowest photoluminescence linewidth ever produced in similar wavelengths, indistinguishable from that of the corresponding wafer. This top-down, mask-free, large scale approach is compatible with the established device fabrication processes and could serve as an important alternative to the bottom-up approach, significantly expanding ranges and varieties of applications of nanowire technology.
Friction Stir Welding of Large Scale Cryogenic Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Russell, Carolyn; Ding, R. Jeffrey
1998-01-01
The Marshall Space Flight Center (MSFC) has established a facility for the joining of large-scale aluminum cryogenic propellant tanks using the friction stir welding process. Longitudinal welds, approximately five meters in length, have been made by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and travel system will be described in this presentation along with process controls and real-time data acquisition developed for this application. The approach to retrofitting other large welding tools at MSFC with the friction stir welding process will also be discussed.
Canabrava, Sérgio; Rezende, Pedro Henriques; Eliazar, Glauber Coutinho; Figueiredo, Sophia Barbosa de; Resende, Arthur Fernandes; Batista, Wagner Duarte; Diniz-Filho, Alberto
2018-06-01
To evaluate the outcomes of the first 30 cataract surgeries performed with a new disposable, injector-free, small-pupil expansion device. This consecutive case series included 30 eyes from 29 patients who underwent cataract surgery using a new disposable small-pupil expansion device called the Canabrava Ring (AJL Ophthalmic S.A, Spain). It is the first iris expansion ring produced with indents that do not align with each other in the superior and inferior regions, resulting in a small vertical length (0.4 mm) that minimizes the risk of endothelial contact. All eyes had poorly dilated pupils of less than 5 mm preoperatively. Fifteen eyes had significant infective or traumatic pathologies preoperatively. Vertical and horizontal pupil diameters were evaluated preoperatively, intraoperatively, and 1 month postoperatively. The mean patient age was 64 ± 11.8 (standard deviation) years. The Canabrava Ring remained engaged throughout all surgeries, except one. All pupils were intraoperatively expanded to a diameter of 6.3 mm. Although preexisting pathology on the innervation of the pupils, the mean pupil diameter returns to a close preoperative size after 1 month surgery. The mean pupil diameters postoperatively and preoperatively were 4.41 and 3.77 mm, respectively (p<0.05). Postoperative complications occurred in eight eyes (one toxoplasmosis reactivation, one retinal detachment, one posterior capsule rupture, one posterior capsule opacification, and four posterior synechiae). These complications occurred in eyes with preexisting traumatic or infective pathologies or synechiae. The Canabrava Ring is effective for expanding and maintaining expansion of small pupils in cataract surgery. The increase in postoperative pupil diameter is clinically diminutive and can most likely be attributed to preexisting pathologies affecting pupil innervation. Further large-scale studies are required to support the present findings.
New Large Diameter RF Complex Plasma Device
NASA Astrophysics Data System (ADS)
Meyer, John; Nosenko, Volodymyr; Thomas, Hubertus
2016-10-01
The Complex Plasma Research Group at the German Aerospace Center (DLR) in Oberpfaffenhofen has built a new large diameter rf plasma setup for dusty plasma experiments. The vacuum chamber is a stainless steel cylinder 0.90 m in diameter and 0.34 m in height with ports for viewing and measurement. A 0.85 m diameter plate in about the center serves as a powered electrode (13.56 MHz) with the chamber walls as the ground. It is pumped on by one of two Oerlikon turbo pumps with a pumping rate of 1100 l/s or 270 l/s. Argon gas is admitted into the chamber by an MKS mass flow meter and pumping is regulated by a butterfly valve to set pressure for experiments. A manual dropper is used to insert dust into the plasma. The dust is illuminated horizontally by a 660 nm 100 mW laser sheet and viewed from above by a Photron FASTCAM 1024 PCI camera. A vertical laser sheet of 635 nm will be used for side imaging. So far, single-layer plasma crystals of up to 15000 particles have been suspended. The particle velocity fluctuation spectra were measured and from these, the particle charge and screening length were calculated. Future experiments will explore the system-size dependence of the plasma crystal properties.
Friction-Stir Welding of Large Scale Cryogenic Fuel Tanks for Aerospace Applications
NASA Technical Reports Server (NTRS)
Jones, Clyde S., III; Venable, Richard A.
1998-01-01
The Marshall Space Flight Center has established a facility for the joining of large-scale aluminum-lithium alloy 2195 cryogenic fuel tanks using the friction-stir welding process. Longitudinal welds, approximately five meters in length, were made possible by retrofitting an existing vertical fusion weld system, designed to fabricate tank barrel sections ranging from two to ten meters in diameter. The structural design requirements of the tooling, clamping and the spindle travel system will be described in this paper. Process controls and real-time data acquisition will also be described, and were critical elements contributing to successful weld operation.
Ruffed grouse (Bonasa umbellus) drumming log and habitat use in Grand Teton National Park, Wyoming
Buhler, M.L.; Anderson, S.H.
2001-01-01
We described 15 Ruffed Grouse (Bonasa umbellus) drumming logs and adjacent habitat within Grand Teton National Park, Wyoming. Drumming logs and adjacent habitat differed from 30 random non-drumming sites. Drumming logs had fewer limbs (8; P = 0.003) and a smaller percentage of bark remaining (12%; P = 0.0001). These logs were in advanced stages of decay but were still firm to the touch. Additionally, drumming logs were found close to clearings but in areas with increased amounts of undergrowth and mature trees. Adjacent habitat analysis (0.04-ha circular plot centered on logs) indicated drumming locations had significantly greater average canopy height, more vegetative cover consisting of conifer and total canopy cover, and more vertical foliage between 0.3 m and 3.0 m in height. Adjacent habitat was in advanced stages of maturity as indicated by significant numbers of both large-diameter logs and large-diameter lodgepole pine (Pinus contorta) and quaking aspen (Populus tremuloides) snags. Tree species dominating the canopy and subcanopy were large-diameter Engelmann spruce (Picea engelmannii), lodgepole pine, and quaking aspen. Subalpine fir (Abies lasiocarpa) and quaking aspen saplings were more numerous at used sites. Ruffed Grouse drummed in coniferous areas within close proximity of quaking aspen.
Danner, Simon M.; Hofstoetter, Ursula S.; Ladenbauer, Josef; Rattay, Frank; Minassian, Karen
2014-01-01
Stimulation of different spinal cord segments in humans is a widely developed clinical practice for modification of pain, altered sensation and movement. The human lumbar cord has become a target for modification of motor control by epidural and more recently by transcutaneous spinal cord stimulation. Posterior columns of the lumbar spinal cord represent a vertical system of axons and when activated can add other inputs to the motor control of the spinal cord than stimulated posterior roots. We used a detailed three-dimensional volume conductor model of the torso and the McIntyre-Richard-Grill axon model to calculate the thresholds of axons within the posterior columns in response to transcutaneous lumbar spinal cord stimulation. Superficially located large diameter posterior column fibers with multiple collaterals have a threshold of 45.4 V, three times higher than posterior root fibers (14.1 V). With the stimulation strength needed to activate posterior column axons, posterior root fibers of large and small diameters as well as anterior root fibers are co-activated. The reported results inform on these threshold differences, when stimulation is applied to the posterior structures of the lumbar cord at intensities above the threshold of large-diameter posterior root fibers. PMID:21401670
Water-Vapor Raman Lidar System Reaches Higher Altitude
NASA Technical Reports Server (NTRS)
Leblanc, Thierry; McDermid, I. Stewart
2010-01-01
A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.
Stress changes ahead of an advancing tunnel
Abel, J.F.; Lee, F.T.
1973-01-01
Instrumentation placed ahead of three model tunnels in the laboratory and ahead of a crosscut driven in a metamorphic rock mass detected stress changes several tunnel diameters ahead of the tunnel face. Stress changes were detected 4 diameters ahead of a model tunnel drilled into nearly elastic acrylic, 2??50 diameters ahead of a model tunnel drilled into concrete, and 2 diameters ahead of a model tunnel drilled into Silver Plume Granite. Stress changes were detected 7??50 diameters ahead of a crosscut driven in jointed, closely foliated gneisses and gneissic granites in an experimental mine at Idaho Springs, Colorado. These results contrast markedly with a theoretical elastic estimate of the onset of detectable stress changes at 1 tunnel diameter ahead of the tunnel face. A small compressive stress concentration was detected 2 diameters ahead of the model tunnel in acrylic, 1.25 diameters ahead of the model tunnel in concrete, and 1 diameter ahead of the model tunnel in granite. A similar stress peak was detected about 6 diameters ahead of the crosscut. No such stress peak is predicted from elastic theory. The 3-dimensional in situ stress determined in the field demonstrate that geologic structure controls stress orientations in the metamorphic rock mass. Two of the computed principal stresses are parallel to the foliation and the other principal stress is normal to it. The principal stress orientations vary approximately as the foliation attitude varies. The average horizontal stress components and the average vertical stress component are three times and twice as large, respectively, as those predicted from the overburden load. An understanding of the measured stress field appears to require the application of either tectonic or residual stress components, or both. Laboratory studies indicate the presence of proportionately large residual stresses. Mining may have triggered the release of strain energy, which is controlled by geologic structure. ?? 1973.
PHOS Experiment: Thermal Response of a Large Diameter Pulsating Heat Pipe on Board REXUS-18 Rocket
NASA Astrophysics Data System (ADS)
Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Marengo, M.; Manzoni, M.
2015-09-01
In the present work, the results of two Closed Loop Pulsating Heat Pipes (CLPHPs) tested on board REXUS-1 8 sounding rocket in order to get experimental data over a relatively broad reduced gravity period (about 90 s) are thoroughly discussed. The CLPHPs are partially filled with refrigerant FC-72 and have, respectively, an inner tube diameter larger (3 .0 mm) and slightly smaller (1 .6 mm) than a critical diameter defined on Earth gravity conditions. On ground, the small diameter CLPHP works as a real Pulsating Heat Pipe (PHP): the typical capillary slug flow pattern forms inside the device and the heat exchange is triggered by self-sustained thermally driven oscillations of the working fluid. Conversely, the large diameter CLPHP behaves like a two-phase thermosyphon in vertical position while does not operate in horizontal position as the working fluid stratifies within the tube and surface tension is not able to balance buoyancy. Then, the idea to test the CLPHPs under reduced gravity conditions: as soon as gravity reduces, buoyancy becomes less intense and the typical capillary slug flow pattern can also forms within a tube with a larger diameter. Moreover, this allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience the expected reduced gravity conditions due to a failure of the yo-yo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.
Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes
NASA Astrophysics Data System (ADS)
Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.
2017-05-01
The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.
NASA Astrophysics Data System (ADS)
Itano, Tomoaki; Inagaki, Taishi; Nakamura, Choji; Sugihara-Seki, Masako; Hyodo, Jinsuke
2017-11-01
We have conducted measurements of the water stream produced by a mechanical stirrer (diameter 2.4[m], electric power 50[W]) located in shallow rectangular reservoirs (small 0.7[ha], large 3.7[ha]), which may be employed as a cost-efficient aerator for the aqua-cultural purpose, with the aid of both particle tracking velocimetry by passive tracers floating on the surface and direct measurement by electro-magnetic velocimeter under the surface. The present measurements indicate that the stirrer drives primarily the horizontally rotating water stream and secondarily the vertical convection between the surface and the bottom of the reservoir, which results in the three-dimensionally spiral-shaped water streams scaled vertically by just a meter but horizontally by more than ten meters. It is suggested that the spiral structure driven by the stirrer may activate the underwater vertical mixing and enhance dissolved oxygen at the bottom of aqua-cultural pond more effectively than the paddle-wheel aerators commonly used in aqua-cultural ponds. This research was financially supported in part by the Kansai University Fund for Supporting Young Scholars, 2016-2017.
NASA Astrophysics Data System (ADS)
Launiainen, Samuli; Vesala, Timo; Mölder, Meelis; Mammarella, Ivan; Smolander, Sampo; Rannik, Üllar; Kolari, Pasi; Hari, Pertti; Lindroth, Anders; Katul, Gabriel G.
2007-11-01
Among the fundamental problems in canopy turbulence, particularly near the forest floor, remain the local diabatic effects and linkages between turbulent length scales and the canopy morphology. To progress on these problems, mean and higher order turbulence statistics are collected in a uniform pine forest across a wide range of atmospheric stability conditions using five 3-D anemometers in the subcanopy. The main novelties from this experiment are: (1) the agreement between second-order closure model results and measurements suggest that diabatic states in the layer above the canopy explain much of the modulations of the key velocity statistics inside the canopy except in the immediate vicinity of the trunk space and for very stable conditions. (2) The dimensionless turbulent kinetic energy in the trunk space is large due to a large longitudinal velocity variance but it is inactive and contributes little to momentum fluxes. (3) Near the floor layer, a logarithmic mean velocity profile is formed and vertical eddies are strongly suppressed modifying all power spectra. (4) A spectral peak in the vertical velocity near the ground commensurate with the trunk diameter emerged at a moderate element Reynolds number consistent with Strouhal instabilities describing wake production.
NASA Astrophysics Data System (ADS)
Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.
2013-09-01
Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.
Yun, Jongju; Lee, Cheesung; Zheng, Qing; Baik, Seunghyun
2012-08-01
We synthesized vertically-aligned multi-walled carbon nanotubes with an inner diameter of 1.6-7.5 nm and stack height of 80-28600 microm by chemical vapor deposition. The effects of synthesis conditions such as substrate position in the tube furnace, maximum temperature, temperature increasing rate and synthesis duration on the structure of nanotubes were investigated. It was found that slightly faster temperature increase rate resulted in significantly longer length, larger diameter and more defects of nanotubes. Structural parameters such as inner, outer diameters, wall thickness and defects were investigated using transmission electron microscopy and Raman spectroscopy.
A preliminary characterization of parachute wake recontact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, J.H.; Macha, J.M.
1989-01-01
A series of tests was conducted on a 10-ft.-diameter ringslot parachute with a geometric porosity of 20% to establish the conditions under which ''wake recontact'' occurs. The vertical helicopter drop tests covered a range of mass ratios from 0.5 to 3.0 and a range of Froude numbers from 70 to 400. Data consisted of velocity time histories obtained using a laser tracker and diameter time histories obtained from photometric data. A collapse parameter based on the ratio of the maximum parachute diameter to the subsequent minimum diameter was correlated with the mass ratio M/sub R/ and the Froude number Frmore » or equivalently with the initial to final velocity ratio V/sub o//V/sub t/. For large values of V/sub o//V/sub t/ the collapse parameter R/sub c/ appears to be a function of M/sub R/ alone. Non-dimensional opening time and ''collapse time'' data were also correlated with M/sub R/ and V/sub o//V/sub t/. 11 refs., 10 figs., 1 tab.« less
Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo
2016-01-21
We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.
Diametric Quadrilaterals with Two Equal Sides
ERIC Educational Resources Information Center
Beauregard, Raymond A.
2009-01-01
If you take a circle with a horizontal diameter and mark off any two points on the circumference above the diameter, then these two points together with the end points of the diameter form the vertices of a cyclic quadrilateral with the diameter as one of the sides. We refer to the quadrilaterals in question as diametric. In this note we consider…
Chen, Hao; Zhang, Qi; Chou, Stephen Y
2015-02-27
Sapphire nanopatterning is the key solution to GaN light emitting diode (LED) light extraction. One challenge is to etch deep nanostructures with a vertical sidewall in sapphire. Here, we report a study of the effects of two masking materials (SiO2 and Cr) and different etching recipes (the reaction gas ratio, the reaction pressure and the inductive power) in a chlorine-based (BCl3 and Cl2) inductively coupled plasma (ICP) etching of deep nanopillars in sapphire, and the etching process optimization. The masking materials were patterned by nanoimprinting. We have achieved high aspect ratio sapphire nanopillar arrays with a much steeper sidewall than the previous etching methods. We discover that the SiO2 mask has much slower erosion rate than the Cr mask under the same etching condition, leading to the deep cylinder-shaped nanopillars (122 nm diameter, 200 nm pitch, 170 nm high, flat top, and a vertical sidewall of 80° angle), rather than the pyramid-shaped shallow pillars (200 nm based diameter, 52 nm height, and 42° sidewall) resulted by using Cr mask. The processes developed are scalable to large volume LED manufacturing.
Birth weight and optic nerve head parameters.
Samarawickrama, Chameen; Huynh, Son C; Liew, Gerald; Burlutsky, George; Mitchell, Paul
2009-06-01
To assess the relationship of birth weight, birth length, and head circumference as proxy markers of intrauterine growth, cup/disc ratio, and other optic disc parameters measured using optical coherence tomography (OCT). Population-based cross sectional analysis. The Sydney Childhood Eye Study examined 2353 primarily 12-year-old children from 21 randomly selected secondary schools during 2003 to 2005. Of 2353 children examined, 2134 (90.7%) had OCT scans (Zeiss Stratus OCT, Carl Zeiss Meditec, Dublin, CA) and are included in this study. The "fast" optic disc scan protocol was used. Birth weight, birth length, and head circumference were ascertained from health records. Height and weight were measured using standardized protocols, body mass index (BMI) was defined as weight (kilograms)/ height squared (meters), and sociodemographic information was collected in a questionnaire completed by parents. Low birth weight was defined as birth weight
NASA Astrophysics Data System (ADS)
Drahotský, Jakub; Hanzelka, Pavel; Musilová, Věra; Macek, Michal; du Puits, Ronald; Urban, Pavel
2018-06-01
Modelling of large-scale natural (thermally-generated) turbulent flows (such as the turbulent convection in Earth's atmosphere, oceans, or Sun) is approached in laboratory experiments in the simplified model system called the Rayleigh-Bénard convection (RBC). We present preliminary measurements of vertical temperature profiles in the cell with the height of 4:7 m, 7:15m in diameter, obtained at the Barrel of Ilmenau (BOI), the worldwide largest experimental setup to study highly turbulent RBC, newly equipped with the Luna ODiSI-B optical fibre system. In our configuration, the system permits to measure the temperature with a high spatial resolution of 5mm along a very thin glass optical fibre with the length of 5m and seems to be perfectly suited for measurement of time series of instantaneous vertical temperature profiles. The system was supplemented with the two Pt100 vertically movable probes specially designed by us for reference temperature profiles measurements.
Savini, G; Zanini, M; Carelli, V; Sadun, A A; Ross-Cisneros, F N; Barboni, P
2005-04-01
To investigate the correlation between retinal nerve fibre layer (RNFL) thickness and optic nerve head (ONH) size in normal white subjects by means of optical coherence tomography (OCT). 54 eyes of 54 healthy subjects aged between 15 and 54 underwent peripapillary RNFL thickness measurement by a series of three circular scans with a 3.4 mm diameter (Stratus OCT, RNFL Thickness 3.4 acquisition protocol). ONH analysis was performed by means of six radial scans centred on the optic disc (Stratus OCT, Fast Optic Disc acquisition protocol). The mean RNFL values were correlated with the data obtained by ONH analysis. The superior, nasal, and inferior quadrant RNFL thickness showed a significant correlation with the optic disc area (R = 0.3822, p = 0.0043), (R = 0.3024, p = 0.026), (R = 0.4048, p = 0.0024) and the horizontal disc diameter (R = 0.2971, p = 0.0291), (R = 0.2752, p = 0.044), (R = 0.3970, p = 0.003). The superior and inferior quadrant RNFL thickness was also positively correlated with the vertical disc diameter (R = 0.3774, p = 0.0049), (R = 0.2793, p = 0.0408). A significant correlation was observed between the 360 degrees average RNFL thickness and the optic disc area and the vertical and horizontal disc diameters of the ONH (R = 0.4985, p = 0.0001), (R = 0.4454, p = 0.0007), (R = 0.4301, p = 0.0012). RNFL thickness measurements obtained by Stratus OCT increased significantly with an increase in optic disc size. It is not clear if eyes with large ONHs show a thicker RNFL as a result of an increased amount of nerve fibres or to the shorter distance between the circular scan and the optic disc edge.
Geometric analysis of the V-Y advancement flap and its clinical applications.
Andrades, Patricio R; Calderon, Wilfredo; Leniz, Patricio; Bartel, German; Danilla, Stefan; Benitez, Susana
2005-05-01
Geometry is fundamental in the comprehension of local flap design. The purpose of this study was to discuss the differences between the V-Y advancement flap and other local flaps, understand its geometry, and analyze its clinical applications. The analysis was based on qualitative measurements of an injury, taking into consideration the following dimensions: largest diameter, shortest diameter, and depth. Standardization of the flap design consisted of directing its advancement over the shortest diameter and making the V base match the size of the largest diameter. The flap was analyzed in two planes: the horizontal plane includes the V-Y design and the vertical plane includes the flap pedicle. The height of the flap can be obtained by simple trigonometry, taking into consideration the largest diameter and alpha angle in the horizontal plane. In the vertical plane, where the pedicle and pivot plane are positioned, for known shortest diameter and depth, the final depth of the pivot plane can be calculated using Pythagoras' principles. This analysis was applied to 25 patients with adequate skin coverage at follow-up. A correction factor was added to reduce the overdeepening of the vertical plane calculations. The final concepts for clinical application in the classic deep pedicle V-Y flap design are to calculate the length of the V by modifying the alpha angle and to move the pivot plane deeper to accomplish optimal flap movement. Using these principles, tension-free closure of the Y and appropriate advancement of the flap are obtained.
Vertically aligned carbon nanofibers as sacrificial templates for nanofluidic structures
NASA Astrophysics Data System (ADS)
Melechko, A. V.; McKnight, T. E.; Guillorn, M. A.; Merkulov, V. I.; Ilic, B.; Doktycz, M. J.; Lowndes, D. H.; Simpson, M. L.
2003-02-01
We report a method to fabricate nanoscale pipes ("nanopipes") suitable for fluidic transport. Vertically aligned carbon nanofibers grown by plasma-enhanced chemical vapor deposition are used as sacrificial templates for nanopipes with internal diameters as small as 30 nm and lengths up to several micrometers that are oriented perpendicular to the substrate. This method provides a high level of control over the nanopipe location, number, length, and diameter, permitting them to be deterministically positioned on a substrate and arranged into arrays.
NASA Technical Reports Server (NTRS)
Smiley, Robert F; Horne, Walter B
1957-01-01
The vertical force-deflection characteristics were experimentally determined for a pair of 56-inch-diameter tires under static and drop-test conditions with and without prerotation. For increasing force, the tires were found to be least stiff for static tests, almost the same as for the static case for prerotation drop tests as long as the tires remain rotating, and appreciably stiffer for drop tests without prerotation.
NASA Astrophysics Data System (ADS)
Korycansky, D. G.; Zahnle, Kevin J.
2011-01-01
We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn's moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion. We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s -1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan's surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results. Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/ Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/ Mi ˜ 1-2 were found in the simulations.
NASA Astrophysics Data System (ADS)
Tamiya, Shuhei; Sato, Taiga; Kushida, Masahito
2018-03-01
Vertically aligned carbon nanotubes (VA-CNTs) are suggested for utilization as a new catalyst support of polymer electrolyte fuel cells (PEFCs). The independent control of the diameter and number density of VA-CNTs is essential for application in PEFCs. As the catalyst for VA-CNT growth, we fabricated CoFe2O4 nanoparticle (NP) films using the Langmuir-Blodgett (LB) technique. Using the LB technique, we were able to separately control the diameter and number density of VA-CNTs. The number density of VA-CNTs was changed by mixing with the filler moleculer, palmitic acid (C16). The VA-CNT diameter was changed by the adjusting the CoFe2O4 NP diameter. However, the heat-induced aggregation of CoFe2O4 NPs occurred in thermal chemical vapor deposition to synthesize VA-CNTs. Therefore, we examined how to minimize the effect of heat-induced aggregation of CoFe2O4 NPs. As a result, selection of the appropriate number density and diameter of CoFe2O4 NPs was found to be important for the control of VA-CNT diameter.
[Aboveground architecture and biomass distribution of Quercus variabilis].
Yu, Bi-yun; Zhang, Wen-hui; Hu, Xiao-jing; Shen, Jia-peng; Zhen, Xue-yuan; Yang, Xiao-zhou
2015-08-01
The aboveground architecture, biomass and its allocation, and the relationship between architecture and biomass of Quercus variabilis of different diameter classes in Shangluo, south slope of Qinling Mountains were researched. The results showed that differences existed in the aboveground architecture and biomass allocation of Q. variabilis of different diameter classes. With the increase of diameter class, tree height, DBH, and crown width increased gradually. The average decline rate of each diameter class increased firstly then decreased. Q. variabilis overall bifurcation ratio and stepwise bifurcation ratio increased then declined. The specific leaf areas of Q. variabilis of all different diameter classes at vertical direction were 0.02-0.03, and the larger values of leaf mass ratio, LAI and leaf area ratio at vertical direction in diameter level I , II, III appeared in the middle and upper trunk, while in diameter level IV, V, VI, they appeared in the central trunk, with the increase of diameter class, there appeared two peaks in vertical direction, which located in the lower and upper trunk. The trunk biomass accounted for 71.8%-88.4% of Q. variabilis aboveground biomass, while the branch biomass accounted for 5.8%-19.6%, and the leaf biomass accounted for 4.2%-8.6%. With the increase of diameter class, stem biomass proportion of Q. variabilis decreased firstly then increased, while the branch and leaf biomass proportion showed a trend that increased at first then decreased, and then increased again. The aboveground biomass of Q. variabilis was significantly positively correlated to tree height, DBH, crown width and stepwise bifurcation ratio (R2:1), and positively related to the overall bifurcation ratio and stepwise bifurcation ratio (R3:2), but there was no significant correlation. Trunk biomass and total biomass aboveground were negatively related to the trunk decline rate, while branch biomass and leaf biomass were positively related to trunk decline rate, but their correlations were all not significant.
Gallium nitride vertical power devices on foreign substrates: a review and outlook
NASA Astrophysics Data System (ADS)
Zhang, Yuhao; Dadgar, Armin; Palacios, Tomás
2018-07-01
Vertical gallium nitride (GaN) power devices have attracted increased attention due to their superior high-voltage and high-current capacity as well as easier thermal management than lateral GaN high electron mobility transistors. Vertical GaN devices are promising candidates for next-generation power electronics in electric vehicles, data centers, smart grids and renewable energy process. The use of low-cost foreign substrates such as silicon (Si) substrates, instead of the expensive free-standing GaN substrates, could greatly trim material cost and enable large-diameter wafer processing while maintaining high device performance. This review illustrates recent progress in material epitaxy, device design, device physics and processing technologies for the development of vertical GaN power devices on low-cost foreign substrates. Although the device technologies are still at the early stage of development, state-of-the-art vertical GaN-on-Si power diodes have already shown superior Baliga’s figure of merit than commercial SiC and Si power devices at the voltage classes beyond 600 V. Furthermore, we unveil the design space of vertical GaN power devices on native and different foreign substrates, from the analysis of the impact of dislocation and defects on device performance. We conclude by identifying the application space, current challenges and exciting research opportunities in this very dynamic research field.
Facility target insert shielding assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mocko, Michal
2015-10-06
Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In themore » present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.« less
New vertical cryostat for the high field superconducting magnet test station at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vande Craen, A.; Atieh, S.; Bajko, M.
2014-01-29
In the framework of the R and D program for new superconducting magnets for the Large Hadron Collider accelerator upgrades, CERN is building a new vertical test station to test high field superconducting magnets of unprecedented large size. This facility will allow testing of magnets by vertical insertion in a pressurized liquid helium bath, cooled to a controlled temperature between 4.2 K and 1.9 K. The dimensions of the cryostat will allow testing magnets of up to 2.5 m in length with a maximum diameter of 1.5 m and a mass of 15 tons. To allow for a faster insertionmore » and removal of the magnets and reducing the risk of helium leaks, all cryogenics supply lines are foreseen to remain permanently connected to the cryostat. A specifically designed 100 W heat exchanger is integrated in the cryostat helium vessel for a controlled cooling of the magnet from 4.2 K down to 1.9 K in a 3 m{sup 3} helium bath. This paper describes the cryostat and its main functions, focusing on features specifically developed for this project. The status of the construction and the plans for assembly and installation at CERN are also presented.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2010 CFR
2010-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2011 CFR
2011-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2014 CFR
2014-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Code of Federal Regulations, 2012 CFR
2012-07-01
... diameter of not less than 0.6 meter and a height equal to its diameter; (3) A diamond shape shall consist of two cones (as defined in paragraph (a)(2) of this section) having a common base. (b) The vertical...
Habitat Demonstration Unit (HDU) Vertical Cylinder Habitat
NASA Technical Reports Server (NTRS)
Howe, Alan; Kennedy, Kriss J.; Gill, Tracy R.; Tri, Terry O.; Toups, Larry; Howard, Robert I.; Spexarth, Gary R.; Cavanaugh, Stephen; Langford, William M.; Dorsey, John T.
2014-01-01
NASA's Constellation Architecture Team defined an outpost scenario optimized for intensive mobility that uses small, highly mobile pressurized rovers supported by portable habitat modules that can be carried between locations of interest on the lunar surface. A compact vertical cylinder characterizes the habitat concept, where the large diameter maximizes usable flat floor area optimized for a gravity environment and allows for efficient internal layout. The module was sized to fit into payload fairings for the Constellation Ares V launch vehicle, and optimized for surface transport carried by the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) mobility system. Launch and other loads are carried through the barrel to a top and bottom truss that interfaces with a structural support unit (SSU). The SSU contains self-leveling feet and docking interfaces for Tri-ATHLETE grasping and heavy lift. A pressurized module needed to be created that was appropriate for the lunar environment, could be easily relocated to new locations, and could be docked together in multiples for expanding pressurized volume in a lunar outpost. It was determined that horizontally oriented pressure vessels did not optimize floor area, which takes advantage of the gravity vector for full use. Hybrid hard-inflatable habitats added an unproven degree of complexity that may eventually be worked out. Other versions of vertically oriented pressure vessels were either too big, bulky, or did not optimize floor area. The purpose of the HDU vertical habitat module is to provide pressurized units that can be docked together in a modular way for lunar outpost pressurized volume expansion, and allow for other vehicles, rovers, and modules to be attached to the outpost to allow for IVA (intra-vehicular activity) transfer between them. The module is a vertically oriented cylinder with a large radius to allow for maximal floor area and use of volume. The modular, 5- m-diameter HDU vertical habitat module consists of a 2-m-high barrel with 0.6-mhigh end domes forming the 56-cubicmeter pressure vessel, and a 19-squaremeter floor area. The module has up to four docking ports located orthogonally from each other around the perimeter, and up to one docking port each on the top or bottom end domes. In addition, the module has mounting trusses top and bottom for equipment, and to allow docking with the ATHLETE mobility system. Novel or unique features of the HDU vertical habitat module include the nodelike function with multiple pressure hatches for docking with other versions of itself and other modules and vehicles; the capacity to be carried by an ATHLETE mobility system; and the ability to attach inflatable 'attic' domes to the top for additional pressurized volume.
Copper Nanowire Production for Interconnect Applications
NASA Technical Reports Server (NTRS)
Han, Jin-Woo (Inventor); Meyyappan, Meyya (Inventor)
2014-01-01
A method of fabricating metallic Cu nanowires with lengths up to about 25 micrometers and diameters in a range 20-100 nanometers, or greater if desired. Vertically oriented or laterally oriented copper oxide structures (CuO and/or Cu2O) are grown on a Cu substrate. The copper oxide structures are reduced with 99+ percent H or H2, and in this reduction process the lengths decrease (to no more than about 25 micrometers), the density of surviving nanostructures on a substrate decreases, and the diameters of the surviving nanostructures have a range, of about 20-100 nanometers. The resulting nanowires are substantially pure Cu and can be oriented laterally (for local or global interconnects) or can be oriented vertically (for standard vertical interconnects).
NASA Astrophysics Data System (ADS)
Wang, W. C.; Lin, D. G.
2015-12-01
This study investigates the bearing capacities and mechanical behaviors of pile foundation installed on the seabed of wind farm near Chang-Hua coast of western Taiwan for the supporting structure of offshore wind turbine. A series of three-dimensional (3-D) numerical modeling of pile foundation subjected to various types of combined loading were carried out using Plaix-3D finite element program to investigate the interactive behaviors between soil and pile. In the numerical modeling, pile diameter, pile length and pile spacing were selected as design parameters to inspect their effects on the bearing capacities and deformation behaviors of the pile foundation. For a specific design parameter combination, one can obtain the corresponding loading-displacement curve, various ultimate bearing capacities, V-H (Vertical-Horizontal combined loading) ultimate bearing capacity envelope, and p-ycurve of pile foundation. Numerical results indicate that: (1) Large displacement and plastic points at ultimate state mostly distribute and concentrate in the topsoil of seabed and around pile head. (2) The soil resistance on the soil-pile interface is ascending with the increases of depth, pile diameter and pile length. (3) The vertical and horizontal bearing capacities of pile group increase significantly with the increase of pile diameter. (4) The vertical and bending moment capacities of pile group increase greatly with the increase of pile length whereas the horizontal capacity is almost insensitive to pile length. (5) The bending moment of pile is highly influenced by the pile spacing. (6) For different design parameters, the shape of ultimate bearing capacity envelopes of pile group on V-H plane is similar while the envelopes will expand as the design parameters increase. For different loading levels of bending moment, the envelopes on V-H plane will contract gradually as the bending moment loading increasing.
Scanned-probe field-emission studies of vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.
2001-02-01
Field emission properties of dense and sparse "forests" of randomly placed, vertically aligned carbon nanofibers (VACNFs) were studied using a scanned probe with a small tip diameter of ˜1 μm. The probe was scanned in directions perpendicular and parallel to the sample plane, which allowed for measuring not only the emission turn-on field at fixed locations but also the emission site density over large surface areas. The results show that dense forests of VACNFs are not good field emitters as they require high extracting (turn-on) fields. This is attributed to the screening of the local electric field by the neighboring VACNFs. In contrast, sparse forests of VACNFs exhibit moderate-to-low turn-on fields as well as high emission site and current densities, and long emission lifetime, which makes them very promising for various field emission applications.
NASA Astrophysics Data System (ADS)
Sutherland, Herbert J.
1988-08-01
Sandia National Laboratories has erected a research oriented, 34- meter diameter, Darrieus vertical axis wind turbine near Bushland, Texas. This machine, designated the Sandia 34-m VAWT Test Bed, is equipped with a large array of strain gauges that have been placed at critical positions about the blades. This manuscript details a series of four-point bend experiments that were conducted to validate the output of the blade strain gauge circuits. The output of a particular gauge circuit is validated by comparing its output to equivalent gauge circuits (in this stress state) and to theoretical predictions. With only a few exceptions, the difference between measured and predicted strain values for a gauge circuit was found to be of the order of the estimated repeatability for the measurement system.
Pattern formation in a monolayer of magnetic spheres
NASA Astrophysics Data System (ADS)
Stambaugh, Justin; Lathrop, Daniel P.; Ott, Edward; Losert, Wolfgang
2003-08-01
Pattern formation is investigated for a vertically vibrated monolayer of magnetic spheres. The spheres of diameter D encase cylindrical magnetic cores of length l. For large D/l, we find that the particles form a hexagonal-close-packed pattern in which the particles’ dipole vectors assume a macroscopic circulating vortical pattern. For smaller D/l, the particles form concentric rings. The static configurational magnetic energy (which depends on D/l) appears to be a determining factor in pattern selection even though the experimental system is driven and dissipative.
Surface measuring technique. [using a laser to scan the surface of a reflector
NASA Technical Reports Server (NTRS)
Spiers, R. B., Jr.
1980-01-01
Measurement of the surface contour of a large electrostatically formed concave reflector using a modified Foucault or knife edge test is described. The curve of the actual electrostatically formed reflector surface is compared to a curve representing a reference sphere. Measurements of surface slope and deviation are calculated every 15 cm along the reflector's horizontal and vertical diameters. Characterization of surface roughness on a small scale compared to the laser spot size at the reflector are obtained from the increased laser spot size at a distant projection screen.
Wind turbine wake measurement in complex terrain
NASA Astrophysics Data System (ADS)
Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ
2016-09-01
SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.
Dielectrophoretic immobilisation of nanoparticles as isolated singles in regular arrays
NASA Astrophysics Data System (ADS)
Knigge, Xenia; Wenger, Christian; Bier, Frank F.; Hölzel, Ralph
2018-02-01
We demonstrate the immobilisation of polystyrene nanoparticles on vertical nano-electrodes by means of dielectrophoresis. The electrodes have diameters of 500 nm or 50 nm, respectively, and are arranged in arrays of several thousand electrodes, allowing many thousands of experiments in parallel. At a frequency of 15 kHz, which is found favourable for polystyrene, several occupation patterns are observed, and both temporary and permanent immobilisation is achieved. In addition, a histogram method is applied, which allows to determine the number of particles occupying the electrodes. These results are validated with scanning electron microscopy images. Immobilising exactly one particle at each electrode tip is achieved for electrode tip diameters with half the particle size. Extension of this system down to the level of single molecules is envisaged, which will avoid ensemble averaging at still statistically large sample sizes.
Machine imparting complex rotary motion for lapping a spherical inner diameter
Carroll, Thomas A.; Yetter, Harold H.
1986-01-01
An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.
Machine imparting complex rotary motion for lapping a spherical inner diameter
Carroll, T.A.; Yetter, H.H.
1985-01-30
An apparatus for imparting complex rotary motion is used to lap an inner spherical diameter surface of a workpiece. A lapping tool consists of a dome and rod mounted along the dome's vertical axis. The workpiece containing the lapping tool is held in a gimbal which uses power derived from a secondary takeoff means to impart rotary motion about a horizontal axis. The gimbal is rotated about a vertical axis by a take means while mounted at a radially outward position on a rotating arm.
EMISSIONS REDUCTION OF COMMERCIAL GLASSMAKING USING SELECTIVE BATCHING
The vertical bubble populations of selectively batched melts were compared to the vertical bubble populations of conventionally batched melts. “Conventional” refers to the use of a powdered batch. Bubble position and diameter measurements were taken on 24 crucibles...
A Summary of Large Raindrop Observations from GPM GV Field Campaigns
NASA Technical Reports Server (NTRS)
Gatlin, Patrick N.; Petersen, Walter; Tokay, Ali; Thurai, Merhala; Bringi, V. N.; Carey, Lawrence; Wingo, Matthew
2013-01-01
NASA's Global Precipitation Measurement Mission (GPM) has conducted as series of Ground Validation (GV) studies to assist algorithm development for the GPM core satellite. Characterizing the drop size distribution (DSD) for different types of precipitation systems is critical in order to accurately estimate precipitation across the majority of the planet. Thus far, GV efforts have sampled DSDs in a variety of precipitation systems from Finland to Oklahoma. This dataset consists of over 33 million raindrops sampled by GPM GV's two-dimensional video disdrometers (2DVD) and includes RSD observations from the LPVEx, MC3E, GCPEx, HyMEx and IFloodS campaigns as well as from GV sites in Huntsville, AL and Wallops Island, VA. This study focuses on the larger end of the raindrop size spectrum, which greatly influences radar reflectivity and has implications for moment estimation. Thus knowledge of the maximum diameter is critical to GPM algorithm development. There are over 24,000 raindrops exceeding 5 mm in diameter contained within this disdrometer dataset. The largest raindrops in the 2DVD dataset (>7-8 mm in diameter) are found within intense convective thunderstorms, and their origins are believed to be hailstones. In stratiform rainfall, large raindrops have also been found to fall from lower and thicker melting layers. The 2DVD dataset will be combined with that collected by dual-polarimetric radar and aircraft particle imaging probes to "follow" the vertical evolution of the DSD tail (i.e., retrace the large drops from the surface to their origins aloft).
NASA Astrophysics Data System (ADS)
Suriani, A. B.; Dalila, A. R.; Mohamed, A.; Rosmi, M. S.; Mamat, M. H.; Malek, M. F.; Ahmad, M. K.; Hashim, N.; Isa, I. M.; Soga, T.; Tanemura, M.
2016-12-01
High-quality vertically aligned carbon nanotubes (VACNTs) were synthesised using ferrocene-chicken oil mixture utilising a thermal chemical vapour deposition (TCVD) method. Reaction parameters including vaporisation temperature, catalyst concentration and synthesis time were examined for the first time to investigate their influence on the growth of VACNTs. Analysis via field emission scanning electron microscopy and micro-Raman spectroscopy revealed that the growth rate, diameter and crystallinity of VACNTs depend on the varied synthesis parameters. Vaporisation temperature of 570°C, catalyst concentration of 5.33 wt% and synthesis time of 60 min were considered as optimum parameters for the production of VACNTs from waste chicken fat. These parameters are able to produce VACNTs with small diameters in the range of 15-30 nm and good quality (ID/IG 0.39 and purity 76%) which were comparable to those synthesised using conventional carbon precursor. The low turn on and threshold fields of VACNTs synthesised using optimum parameters indicated that the VACNTs synthesised using waste chicken fat are good candidate for field electron emitter. The result of this study therefore can be used to optimise the growth and production of VACNTs from waste chicken fat in a large scale for field emission application.
NASA Technical Reports Server (NTRS)
Molthan, Andrew L.; Colle, Brian A.; Yuter, Sandra E.; Stark, David
2016-01-01
Derived radar reflectivity and fall speed for four Weather Research and Forecasting model bulk microphysical parameterizations (BMPs) run at 1.33 km grid spacing are compared with ground-based, vertically-pointing Ku-band radar, scanning S- band radar, and in situ measurements at Stony Brook, NY. Simulations were partitioned into periods of observed riming degree as determined manually using a stereo microscope and camera during nine winter storms. Simulations were examined to determine whether the selected BMPs captured the effects of varying riming intensities, provided a reasonable match to the vertical structure of radar reflectivity or fall speed, and whether they produced reasonable surface fall speed distributions. Schemes assuming non spherical mass-diameter relationships yielded reflectivity distributions closer to observed values. All four schemes examined in this study provided a better match to the observed, vertical structure of reflectivity during moderate riming than light riming periods. The comparison of observed and simulated snow fall speeds had mixed results. One BMP produced episodes of excessive cloud water at times, resulting in fall speeds that were too large. However, most schemes had frequent periods of little or no cloud water during moderate riming periods and thus underpredicted the snow fall speeds at lower levels. Short, 1-4 hour periods with relatively steady snow conditions were used to compare BMP and observed size and fall speed distributions. These limited data suggest the examined BMPs underpredict fall speeds of cold-type snow habits and underrepresent aggregates larger than 4 mm diameter.
Low voltage operation of GaN vertical nanowire MOSFET
NASA Astrophysics Data System (ADS)
Son, Dong-Hyeok; Jo, Young-Woo; Seo, Jae Hwa; Won, Chul-Ho; Im, Ki-Sik; Lee, Yong Soo; Jang, Hwan Soo; Kim, Dae-Hyun; Kang, In Man; Lee, Jung-Hee
2018-07-01
GaN gate-all-around (GAA) vertical nanowire MOSFET (VNWMOSFET) with channel length of 300 nm and diameter of 120 nm, the narrowest GaN-based vertical nanowire transistor ever achieved from the top-down approach, was fabricated by utilizing anisotropic side-wall wet etching in TMAH solution and photoresist etch-back process. The VNWMOSFET exhibited output characteristics with very low saturation drain voltage of less than 0.5 V, which is hardly observed from the wide bandgap-based devices. Simulation results indicated that the narrow diameter of the VNWMOSFET with relatively short channel length is responsible for the low voltage operation. The VNWMOSFET also demonstrated normally-off mode with threshold voltage (VTH) of 0.7 V, extremely low leakage current of ∼10-14 A, low drain-induced barrier lowering (DIBL) of 125 mV/V, and subthreshold swing (SS) of 66-122 mV/decade. The GaN GAA VNWMOSFET with narrow channel diameter investigated in this work would be promising for new low voltage logic application. He has been a Professor with the School of Electrical Engineering and Computer Science, Kyungpook National University, Daegu, Korea, since 1993
Experimental study of geysers through a vent pipe connected to flowing sewers.
Huang, Biao; Wu, Shiqiang; Zhu, David Z; Schulz, Harry E
2017-04-01
Geysers of air-water mixtures in urban drainage systems is receiving considerable attention due to public safety concerns. However, the geyser formation process and its relation with air release from pressurized pipes are still relatively little known. A large-scale physical model, that consisted of a main tunnel with a diameter of 270 mm and a length of 25 m connecting two reservoirs and a vertical vent pipe, was established to investigate geyser evolution and pressure transients. Experimental results including dynamic pressure data and high speed videos were analysed in order to characterize geysering flow through the vent pipe. Pressure transients were observed during geysering events. Their amplitudes were found to be about three times the driving pressure head and their periods were close to the classic surge tank predictions. The influence of flow rate and vent pipe size were examined: geyser heights and pressure peaks decreased for small flow rate and large diameter vent pipe. It is suggested that geyser heights are related with the pressure head and the density of the air-water mixture.
Swami, Vimarsha Gopal; Mabee, Myles; Hui, Catherine; Jaremko, Jacob Lester
2014-07-01
To aid in performing anatomic physeal-sparing anterior cruciate ligament (ACL) reconstruction, it is important for surgeons to have reference data for the native ACL attachment positions and epiphyseal anatomy in skeletally immature knees. To characterize anatomic parameters of the ACL tibial insertion and proximal tibial epiphysis at magnetic resonance imaging (MRI) in a large population of skeletally immature knees. Cross-sectional study; Level of evidence, 3. The ACL tibial attachment site and proximal epiphysis were examined in 570 skeletally immature knees with an intact ACL (age, 6-15 years) using 1.5-T proton density-weighted sagittal MRI; also measured were the tibial anteroposterior diameter; anterior, central, and posterior ACL attachment positions; vertical height of the epiphysis; and maximum oblique epiphyseal depth extending from the ACL tibial attachment center to the tibial tuberosity. In adolescents (11-15 years of age), the center of the ACL's tibial attachment was 51.5% ± 5.7% of the anteroposterior diameter of the tibia, with no significant differences between sexes or age groups (P > .05 in all cases). Mean vertical epiphyseal height was 15.9 ± 1.7 mm in the adolescent group, with significant differences between 11-year-olds (15.2 ± 1.5 mm) and 15-year-olds (16.6 ± 1.6 mm), P < .001, and between males (16.6 ± 1.5 mm) and females (14.8 ± 1.4), P < .001. Mean maximum oblique depth was 30.0 ± 5.3 mm, with a significant difference between 11-year-olds (26.7 ± 4.9 mm) and 15-year-olds (32.7 ± 5.1 mm), P < .001, and between males (29.7 ± 6.4 mm) and females (27.8 ± 5.2 mm), P < .001. The maximum oblique depth occurred at a mean angle of ~50°, and this angle did not change with age or sex. There was a significant moderate correlation (r = 0.39, P < .001) between epiphyseal vertical height and maximum oblique depth. The center of the ACL tibial attachment was consistently near 51% of the anteroposterior diameter, regardless of age or sex. The vertical depth of the tibial epiphysis was ~16 mm in adolescents. Maximum oblique depth from ACL attachment was ~30 mm, occurring at a mean angle ~50° regardless of age or sex. The normative values for tibial ACL attachment and epiphyseal anatomy presented here may be helpful in selecting candidates for surgery and in planning surgical approaches for pediatric ACL reconstruction. © 2014 The Author(s).
Hyperbolic umbilic caustics from oblate water drops with tilted illumination: Observations
NASA Astrophysics Data System (ADS)
Jobe, Oli; Thiessen, David B.; Marston, Philip L.
2017-11-01
Various groups have reported observations of hyperbolic umbilic diffraction catastrophe patterns in the far-field scattering by oblate acoustically levitated drops with symmetric illumination. In observations of that type the drop's symmetry axis is vertical and the illuminating light beam (typically an expanded laser beam) travels horizontally. In the research summarized here, scattering patterns in the primary rainbow region and drop measurements were recorded with vertically tilted laser beam illumination having a grazing angle as large as 4 degrees. The findings from these observations may be summarized as follows: (a) It remains possible to adjust the drop aspect ratio (diameter/height) = D/H so as to produce a V-shaped hyperbolic umbilic focal section (HUFS) in the far-field scattering. (b) The shift in the required D/H was typically an increase of less than 1% and was quadratic in the tilt. (c) The apex of the V-shaped HUFS was shifted vertically by an amount proportional to the tilt with a coefficient close to unity. The levitated drops had negligible up-down asymmetry. Our method of investigation should be useful for other generalized rainbows with tilted illumination.
NASA Astrophysics Data System (ADS)
Cui, Kehang; Kumamoto, Akihito; Xiang, Rong; An, Hua; Wang, Benjamin; Inoue, Taiki; Chiashi, Shohei; Ikuhara, Yuichi; Maruyama, Shigeo
2016-01-01
We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices.We synthesize vertically aligned single-walled carbon nanotubes (VA-SWNTs) with subnanometer diameters on quartz (and SiO2/Si) substrates by alcohol CVD using Cu-anchored Co catalysts. The uniform VA-SWNTs with a nanotube diameter of 1 nm are synthesized at a CVD temperature of 800 °C and have a thickness of several tens of μm. The diameter of SWNTs was reduced to 0.75 nm at 650 °C with the G/D ratio maintained above 24. Scanning transmission electron microscopy energy-dispersive X-ray spectroscopy (EDS-STEM) and high angle annular dark field (HAADF-STEM) imaging of the Co/Cu bimetallic catalyst system showed that Co catalysts were captured and anchored by adjacent Cu nanoparticles, and thus were prevented from coalescing into a larger size, which contributed to the small diameter of SWNTs. The correlation between the catalyst size and the SWNT diameter was experimentally clarified. The subnanometer-diameter and high-quality SWNTs are expected to pave the way to replace silicon for next-generation optoelectronic and photovoltaic devices. Electronic supplementary information (ESI) available: Comparison between the Co monometallic catalyst system and the Co/Mo bimetallic catalyst system, the effect of CVD temperature on the G/D ratio, the effect of ethanol partial pressure on the morphology, diameter and quality of SWNT films, and Raman spectra of the Si/SiO2 substrate. See DOI: 10.1039/c5nr06007a
Subsonic Dynamics of Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Fremaux, Charles M.
1997-01-01
Subsonic dynamic stability tests performed in the NASA Langley 20-Foot Vertical Spin-Tunnel on a 0.238 scale model of the Stardust Sample Return Capsule are discussed. The tests reveal that the blunted 60 degree half-angle cone capsule is dynamically unstable at low subsonic conditions due to the aft location of the center-of-gravity (0.351 body diameters back from the nose). The divergent behavior of the capsule continued when the center-of-gravity was moved to 0.337 and 0.313 body diameters back from the nose. When the center-of-gravity was moved further forward to 0.290 body diameters back from the nose, the vehicle established itself in a limit cycle with amplitude around 10 degrees. Two afterbody modifications were examined which proved unsuccessful in alleviating the instability of the original design. Finally, the addition of different sized parachutes was examined as a means to stabilize the vehicle. The parachute tests indicate that a parachute with equivalent full scale drag area of at least 2.24 ft. is necessary to assure large perturbations are damped.
NASA Astrophysics Data System (ADS)
Subudhi, Sudhakar; Sreenivas, K. R.; Arakeri, Jaywant H.
2013-01-01
This work is concerned with the removal of unwanted fluid through the source-sink pair. The source consists of fluid issuing out of a nozzle in the form of a jet and the sink is a pipe that is kept some distance from the source pipe. Of concern is the percentage of source fluid sucked through the sink. The experiments have been carried in a large glass water tank. The source nozzle diameter is 6 mm and the sink pipe diameter is either 10 or 20 mm. The horizontal and vertical separations and angles between these source and sink pipes are adjustable. The flow was visualized using KMnO4 dye, planer laser induced fluorescence and particle streak photographs. To obtain the effectiveness (that is percentage of source fluid entering the sink pipe), titration method is used. The velocity profiles with and without the sink were obtained using particle image velocimetry. The sink flow rate to obtain a certain effectiveness increase dramatically with lateral separation. The sink diameter and the angle between source and the sink axes don't influence effectiveness as much as the lateral separation.
NASA Astrophysics Data System (ADS)
Yeckel, Andrew; Derby, Jeffrey J.
2000-02-01
Three-dimensional axisymmetric, time-dependent simulations of the high-pressure vertical Bridgman growth of large-diameter cadmium zinc telluride are performed to study the effect of accelerated crucible rotation (ACRT) on crystal growth dynamics. The model includes details of heat transfer, melt convection, solid-liquid interface shape, and dilute zinc segregation. Application of ACRT greatly improves mixing in the melt, but causes an overall increased deflection of the solid-liquid interface. The flow exhibits a Taylor-Görtler instability at the crucible sidewall, which further enhances melt mixing. The rate of mixing depends strongly on the length of the ACRT cycle, with an optimum half-cycle length between 2 and 4 Ekman time units. Significant melting of the crystal occurs during a portion of the rotation cycle, caused by periodic reversal of the secondary flow at the solid-liquid interface, indicating the possibility of compositional striations.
A system for routing arbitrary directed graphs on SIMD architectures
NASA Technical Reports Server (NTRS)
Tomboulian, Sherryl
1987-01-01
There are many problems which can be described in terms of directed graphs that contain a large number of vertices where simple computations occur using data from connecting vertices. A method is given for parallelizing such problems on an SIMD machine model that is bit-serial and uses only nearest neighbor connections for communication. Each vertex of the graph will be assigned to a processor in the machine. Algorithms are given that will be used to implement movement of data along the arcs of the graph. This architecture and algorithms define a system that is relatively simple to build and can do graph processing. All arcs can be transversed in parallel in time O(T), where T is empirically proportional to the diameter of the interconnection network times the average degree of the graph. Modifying or adding a new arc takes the same time as parallel traversal.
Comparison of optical coherence tomography and fundus photography for measuring the optic disc size.
Neubauer, Aljoscha S; Krieglstein, Tina R; Chryssafis, Christos; Thiel, Martin; Kampik, Anselm
2006-01-01
To assess the agreement and repeatability of optic nerve head (ONH) size measurements by optical coherence tomography (OCT) as compared to conventional planimetry of fundus photographs in normal eyes. For comparison with planimetry the absolute size of the ONH of 25 eyes from 25 normal subjects were measured by both OCT and digital fundus photography (Zeiss FF camera 450). Repeatability of automated Stratus OCT measurements were investigated by repeatedly measuring the optic disc in five normal subjects. Mean disc size was 1763 +/- 186 vertically and 1632 +/- 160 microm horizontally on planimetry. On OCT, values of 1772 +/- 317 microm vertically (p = 0.82) and a significantly smaller horizontal diameter of 1492 +/- 302 microm (p = 0.04) were obtained. The 95% limits of agreement were (-546 microm; +527 microm) for vertical and (-502 microm; +782 microm) for horizontal planimetric compared to OCT measurements. In some cases large discrepancies existed. Repeatability of automatic measurements of the optic disc by OCT was moderately good with intra-class correlation coefficients (ICC) of 0.78 horizontally and 0.83 vertically. The coefficient of repeatability indicating instrument precision was 80 microm for horizontal and 168 microm for vertical measurements. OCT can be used to determine optic disc margins in moderate agreement with planimetry in normal subjects. However, in some cases significant disagreement with photographic assessment may occur making manual inspection advisable. Automatic disc detection by OCT is moderately repeatable.
Carbon nanotube diameter selection by pretreatment of metal catalysts on surfaces
Hauge, Robert H [Houston, TX; Xu, Ya-Qiong [Houston, TX; Shan, Hongwei [Houston, TX; Nicholas, Nolan Walker [South Charleston, WV; Kim, Myung Jong [Houston, TX; Schmidt, Howard K [Cypress, TX; Kittrell, W Carter [Houston, TX
2012-02-28
A new and useful nanotube growth substrate conditioning processes is herein disclosed that allows the growth of vertical arrays of carbon nanotubes where the average diameter of the nanotubes can be selected and/or controlled as compared to the prior art.
Vertical velocity in oceanic convection off tropical Australia
NASA Technical Reports Server (NTRS)
Lucas, Christopher; Zipser, Edward J.; Lemone, Margaret A.
1994-01-01
Time series of 1-Hz vertical velocity data collected during aircraft penetrations of oceanic cumulonimbus clouds over the western Pacific warm pool as part of the Equatorial Mesoscale Experiment (EMEX) are analyzed for updraft and downdraft events called cores. An updraft core is defined as occurring whenever the vertical velocity exceeds 1 m/sec for at least 500 m. A downdraft core is defined analogously. Over 19,000 km of straight and level flight legs are used in the analysis. Five hundred eleven updraft cores and 253 downdraft cores are included in the dataset. Core properties are summarized as distributions of average and maximum vertical velocity, diameter, and mass flux in four altitude intervals between 0.2 and 5.8 km. Distributions are approximately lognormal at all levels. Examination of the variation of the statistics with height suggests a maximum in vertical velocity between 2 and 3 km; slightly lower or equal vertical velocity is indicated at 5 km. Near the freezing level, virtual temperature deviations are found to be slightly positive for both updraft and downdraft cores. The excess in updraft cores is much smaller than that predicted by parcel theory. Comparisons with other studies that use the same analysis technique reveal that EMEX cores have approximately the same strength as cores of other oceanic areas, despite warmer sea surface temperatures. Diameter and mass flux are greater than those in the Global Atmospheric Research Program (GATE) but smaller than those in hurricane rainbands. Oceanic cores are much weaker and appear to be slightly smaller than those observed over land during the Thunderstorm Project. The markedly weaker oceanic vertical velocities below 5.8 km (compared to the continental cores) cannot be attributed to smaller total convective available potential energy or to very high water loading. Rather, it is suggested that water loading, although less than adiabatic, is more effective in reducing buoyancy of oceanic cores because of the smaller potential buoyancy below 5.8 km. Entrainment appears to be more effective in reducing buoyancy to well below adiabatic values in oceanic cores, a result consistent with the smaller oceanic core diameters in the lower cloud layer. It is speculated further that core diameters are related to boundary layer depth, which is clearly smaller over the oceans.
Unprecedented Zipangu Underworld of the Moon Exploration (UZUME)
NASA Astrophysics Data System (ADS)
Haruyama, J.; Kawano, I.; Kubota, T.; Otsuki, M.; Kato, H.; Nishibori, T.; Iwata, T.; Yamamoto, Y.; Nagamatsu, A.; Shimada, K.; Ishihara, Y.; Hasenaka, T.; Morota, T.; Nishino, M. N.; Hashizume, K.; Saiki, K.; Shirao, M.; Komatsu, G.; Hasebe, N.; Shimizu, H.; Miyamoto, H.; Kobayashi, K.; Yokobori, S.; Michikami, T.; Yamamoto, S.; Yokota, Y.; Arisumi, H.; Ishigami, G.; Furutani, K.; Michikawa, Y.
2014-04-01
On the Moon, three huge vertical holes (several tens to a hundred meters in diameter and depth) were discovered in SELENE (nicknamed Kaguya) Terrain Camera data of 10 m pixel resolution. These holes are probably skylights of underground large caverns such as lava tubes, or magma chambers. The huge holes and their associated subsurface caverns are among the most important future exploration targets from the viewpoint of constructing lunar bases and many scientific aspects. We are now planning to explore the caverns through the skylight holes. We name the project as UZUME (Unprecedented Zipangu (Japan) Underworld of the Moon Exploration).
NASA Technical Reports Server (NTRS)
Falarski, M. D.
1972-01-01
A wind tunnel investigation was made of the noise characteristics of a 4.42 m(14.5 foot) semispan, externally-blown jet flap model. The model was equipped with a single 76.2 cm(30 inch) diameter, ducted fan with a 1.03 pressure ratio. The effects of flap size, fan vertical location, and forward speed on the noise characteristics were studied. The data from the investigation is presented in the form of tabulated one-third octave band frequency spectrums and perceived noise levels for each test condition.
Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei
2016-12-06
We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 10 7 ). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules.
Zhang, Huanhuan; Xu, Lin; Xu, Yabo; Huang, Gang; Zhao, Xueyu; Lai, Yuqing; Shi, Tongfei
2016-01-01
We study the enhanced dewetting of ultrathin Polystyrene (PS)/Poly (methyl methacrylate) (PMMA) blend films in a mixed solution, and reveal the dewetting can act as a simple and effective method to fabricate large-area surface-enhanced Raman scattering (SERS) substrate. A bilayer structure consisting of under PMMA layer and upper PS layer forms due to vertical phase separation of immiscible PS/PMMA during the spin-coating process. The thicker layer of the bilayer structure dominates the dewetting structures of PS/PMMA blend films. The diameter and diameter distribution of droplets, and the average separation spacing between the droplets can be precisely controlled via the change of blend ratio and film thickness. The dewetting structure of 8 nm PS/PMMA (1:1 wt%) blend film is proved to successfully fabricate large-area (3.5 cm × 3.5 cm) universal SERS substrate via deposited a silver layer on the dewetting structure. The SERS substrate shows good SERS-signal reproducibility (RSD < 7.2%) and high enhancement factor (2.5 × 107). The enhanced dewetting of polymer blend films broadens the application of dewetting of polymer films, especially in the nanotechnology, and may open a new approach for the fabrication of large-area SERS substrate to promote the application of SERS substrate in the rapid sensitive detection of trace molecules. PMID:27922062
A Forest of Sub-1.5-nm-wide Single-Walled Carbon Nanotubes over an Engineered Alumina Support
NASA Astrophysics Data System (ADS)
Yang, Ning; Li, Meng; Patscheider, Jörg; Youn, Seul Ki; Park, Hyung Gyu
2017-04-01
A precise control of the dimension of carbon nanotubes (CNTs) in their vertical array could enable many promising applications in various fields. Here, we demonstrate the growth of vertically aligned, single-walled CNTs (VA-SWCNTs) with diameters in the sub-1.5-nm range (0.98 ± 0.24 nm), by engineering a catalyst support layer of alumina via thermal annealing followed by ion beam treatment. We find out that the ion beam bombardment on the alumina allows the growth of ultra-narrow nanotubes, whereas the thermal annealing promotes the vertical alignment at the expense of enlarged diameters; in an optimal combination, these two effects can cooperate to produce the ultra-narrow VA-SWCNTs. According to micro- and spectroscopic characterizations, ion beam bombardment amorphizes the alumina surface to increase the porosity, defects, and oxygen-laden functional groups on it to inhibit Ostwald ripening of catalytic Fe nanoparticles effectively, while thermal annealing can densify bulk alumina to prevent subsurface diffusion of the catalyst particles. Our findings contribute to the current efforts of precise diameter control of VA-SWCNTs, essential for applications such as membranes and energy storage devices.
Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells
NASA Astrophysics Data System (ADS)
Herrick, C. G.; Haimson, B. C.; Lee, M.
2015-12-01
Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A
Rewetting of hot vertical rod during jet impingement surface cooling
NASA Astrophysics Data System (ADS)
Agrawal, Chitranjan; Kumar, Ravi; Gupta, Akhilesh; Chatterjee, Barun
2016-06-01
A stainless steel (SS-316) vertical rod of 12 mm diameter at 800 ± 10 °C initial temperature was cooled by normal impinging round water jet. The surface rewetting phenomenon was investigated for a range of jet diameter 2.5-4.8 mm and jet Reynolds number 5000-24,000 using a straight tube type nozzle. The investigation were made from the stagnation point to maximum 40 mm downstream locations, simultaneously for both upside and downside directions. The cooling performance of the vertical rod was evaluated on the basis of rewetting parameters i.e. rewetting temperature, wetting delay, rewetting velocity and the maximum surface heat flux. Two separate Correlations have been proposed for the dimensionless rewetting velocity in terms of rewetting number and the maximum surface heat flux that predicts the experimental data within an error band of ±20 and ±15 % respectively.
Analysis of Ballast Water Sampling Port Designs Using Computational Fluid Dynamics
2008-02-01
straight, vertical, upward-flowing pipe having a sample port diameter between 1.5 and 2.0 times the basic isokinetic diameter as defined in this report...water, flow modeling, sample port, sample pipe, particle trajectory, isokinetic sampling 18. Distribution Statement This document is available to...2.0 times the basic isokinetic diameter as defined in this report. Sample ports should use ball valves for isolation purposes and diaphragm or
Thermal convection of liquid metal in a long inclined cylinder
NASA Astrophysics Data System (ADS)
Teimurazov, Andrei; Frick, Peter
2017-11-01
The turbulent convection of low-Prandtl-number fluids (Pr=0.0083 ) in a long cylindrical cell, heated at one end face and cooled at the other, inclined to the vertical at angle β , 0 ≤β ≤π /2 with step π /20 , is studied numerically by solving the Oberbeck-Boussinesq equations with the large-eddy-simulation approach for small-scale turbulence. The cylinder length is L =5 D , where D is the diameter. The Rayleigh number, determined by the cylinder diameter, is of the order of 5 ×106 . We show that the structure of the flow strongly depends on the inclination angle. A stable large-scale circulation (LSC) slightly disturbed by small-scale turbulence exists in the horizontal cylinder. The deviation from a horizontal position provides strong amplification of both LSC and small-scale turbulence. The energy of turbulent pulsations increases monotonically with decreasing inclination angle β , matching the energy of the LSC at β ≈π /5 . The intensity of the LSC has a wide, almost flat, maximum for an inclined cylinder and slumps approaching the vertical position, in which the LSC vanishes. The dependence of the Nusselt number on the inclination angle has a maximum at β ≈7 π /20 and generally follows the dependence of the intensity of LSC on the inclination. This indicates that the total heat transport is highly determined by LSC. We examine the applicability of idealized thermal boundary conditions (BCs) for modeling a real experiment with liquid sodium flows. Therefore, the simulations are done with two types of temperature BCs: fixed face temperature and fixed heat flux. The intensity of the LSC is slightly higher in the latter case and leads to a corresponding increase of the Nusselt number and enhancement of temperature pulsations.
Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision
NASA Astrophysics Data System (ADS)
Mosberg, A. B.; Myklebost, S.; Ren, D.; Weman, H.; Fimland, B. O.; van Helvoort, A. T. J.
2017-09-01
To efficiently evaluate the novel approach of focused ion beam (FIB) direct patterning of substrates for nanowire growth, a reference matrix of hole arrays has been used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer vision to automatically identify nanowires and characterize each array. It is shown that FIB milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller diameter holes result in a higher yield (up to 83%) of single vertical nanowires, while higher fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution and placement uniformity of vertical nanowires is best for low-value parameter combinations, indicating how to improve the FIB parameters for positioned-controlled nanowire growth.
Roeloffs, Evelyn
2010-01-01
A multicomponent borehole strainmeter directly measures changes in the diameter of its cylindrical housing at several azimuths. To transform these measurements to formation strains requires a calibration matrix, which must be estimated by analyzing the installed strainmeter's response to known strains. Typically, theoretical calculations of Earth tidal strains serve as the known strains. This paper carries out such an analysis for 12 Plate Boundary Observatory (PBO) borehole strainmeters, postulating that each of the strainmeters' four gauges responds ("couples") to all three horizontal components of the formation strain tensor, as well as to vertical strain. Orientation corrections are also estimated. The fourth extensometer in each PBO strainmeter provides redundant information used to reduce the chance that coupling coefficients could be misleadingly fit to inappropriate theoretical tides. Satisfactory fits between observed and theoretically calculated tides were obtained for three PBO strainmeters in California, where the calculated tides are corroborated by other instrumentation, as well as for six strainmeters in Oregon and Washington, where no other instruments have ever recorded Earth tidal strain. Several strainmeters have unexpectedly large coupling coefficients for vertical strain, which increases the strainmeter's response to atmospheric pressure. Vertical coupling diminishes, or even changes the sign of, the apparent response to areal strain caused by Earth tides or deep Earth processes because near the free surface, vertical strains are opposite in sign to areal strain. Vertical coupling does not impair the shear strain response, however. PBO borehole strainmeters can provide calibrated shear strain time series of transient strain associated with tectonic or magmatic processes.
Aradya, Anupama; Kumar, U Krishna; Chowdhary, Ramesh
2016-01-01
The study was designed to evaluate and compare stress distribution in transcortical section of bone with normal abutment and platform switched abutment under vertical and oblique forces in posterior mandible region. A three-dimensional finite element model was designed using ANSYS 13.0 software. The type of bone selection for the model was made of type II mandibular bone, having cortical bone thickness ranging from 0.595 mm to 1.515 mm with the crestal region measuring 1.5 mm surrounding dense trabecular bone. The implant will be modulated at 5 mm restorative platform and tapering down to 4.5 mm wide at the threads, 13 mm long with an abutment 3 mm in height. The models will be designed for two situations: (1) An implant with a 5 mm diameter abutment representing a standard platform in the posterior mandible region. (2) An implant with a 4.5 mm diameter abutment representing platform switching in the posterior mandible region. Force application was performed in both oblique and vertical conditions using 100 N as a representative masticatory force. For oblique loading, a force of 100 N was applied at 15° from the vertical axis. von Mises stress analysis was evaluated. The results of the study showed cortical stress in the conventional and platform switching model under oblique forces were 59.329 MPa and 39.952 MPa, respectively. Cortical stress in the conventional and platform switching model under vertical forces was 13.914 MPa and 12.793 MPa, respectively. Results from this study showed the platform switched abutment led to relative decrease in von Mises stress in transcortical section of bone compared to normal abutment under vertical and oblique forces in posterior mandible region.
Lin, Chenxi; Povinelli, Michelle L
2009-10-26
In this paper, we use the transfer matrix method to calculate the optical absorptance of vertically-aligned silicon nanowire (SiNW) arrays. For fixed filling ratio, significant optical absorption enhancement occurs when the lattice constant is increased from 100 nm to 600 nm. The enhancement arises from an increase in field concentration within the nanowire as well as excitation of guided resonance modes. We quantify the absorption enhancement in terms of ultimate efficiency. Results show that an optimized SiNW array with lattice constant of 600 nm and wire diameter of 540 nm has a 72.4% higher ultimate efficiency than a Si thin film of equal thickness. The enhancement effect can be maintained over a large range of incidence angles.
Changing the Diameter of a Viewing Tube
ERIC Educational Resources Information Center
Obara, Samuel
2009-01-01
This article is about the students' investigation about the relationship between the diameter of the view tubes (x) of constant lengths and the viewable vertical distance (y) on the wall while keeping the perpendicular distance from the eyeball to the wall constant. The students collected data and used and represented it in tabular and graphical…
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Shamsoddin, Sina; Porté-Agel, Fernando
2017-04-01
In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge compared to the ones at the lower edge), only slight lateral asymmetries were observed at the optimum tip-speed ratio for which the simulations were performed.
Luan, Chuhao; Shao, Yang; Lu, Qi; Gao, Shenghan; Huang, Kai; Wu, Hui; Yao, Kefu
2018-05-30
An efficient and selective catalyst is in urgent need for carbon dioxide electroreduction and silver is one of the promising candidates with affordable costs. Here we fabricated large-scale vertically standing Ag nanowire arrays with high crystallinity and electrical conductivity as carbon dioxide electroreduction catalysts by a simple nanomolding method that was usually considered not feasible for metallic crystalline materials. A great enhancement of current densities and selectivity for CO at moderate potentials was achieved. The current density for CO ( j co ) of Ag nanowire array with 200 nm in diameter was more than 2500 times larger than that of Ag foil at an overpotential of 0.49 V with an efficiency over 90%. The origin of enhanced performances are attributed to greatly increased electrochemically active surface area (ECSA) and higher intrinsic activity compared to those of polycrystalline Ag foil. More low-coordinated sites on the nanowires which can stabilize the CO 2 intermediate better are responsible for the high intrinsic activity. In addition, the impact of surface morphology that induces limited mass transportation on reaction selectivity and efficiency of nanowire arrays with different diameters was also discussed.
NASA Astrophysics Data System (ADS)
Saffari, H.; Moosavi, R.
2014-11-01
In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.
Experimental hypervelocity impact into quartz sand - Distribution and shock metamorphism of ejecta
NASA Technical Reports Server (NTRS)
Stoeffler, D.; Gault, D. E.; Wedekind, J.; Polkowski, G.
1975-01-01
Results are presented for vertical impacts of 0.3-g cylindrical plastic projectiles into noncohesive quartz sand in which vertical and horizontal reference strate were employed by using layers of colored sand. The impacts were performed at velocities of 5.9-6.9 km/sec with a vertical gun ballistic range. The craters, 30-33 cm in diameter, reveal a radial decay of the ejecta mass per unit area with a power of -2.8 to -3.5. Material displaced from the upper 15% of the crater depth d is represented within the whole ejecta blanked, material from deeper than 28% of d is deposited inside 2 crater radii, and no material from deeper than 33% of d was ejected beyond the crater rim. Shock-metamorphosed particles (glassy agglutinates, cataclastic breccias, and comminuted quartz) amount to some 4% of the total displaced mass and indicate progressive zones of decay of shock intensity from a peak pressure of 300 kbar. The shock-metamorphosed particles and the shock-induced change in the grain size distribution of ejected samples have close analogies to the basic characteristics of the lunar regolith. Possible applications to regolith formation and to ejecta formations of large-scale impact craters are discussed.
Sujirakul, Tharikarn; Lin, Michael K.; Duong, Jimmy; Wei, Ying; Lopez-Pintado, Sara; Tsang, Stephen H.
2015-01-01
Purpose To determine the rate of progression and optimal follow up time in patients with advanced stage retinitis pigmentosa (RP) comparing the use of fundus autofluorescence imaging and spectral domain optical coherence tomography. Design Retrospective analysis of progression rate. Methods Longitudinal imaging follow up in 71 patients with retinitis pigmentosa was studied using the main outcome measurements of hyperautofluoresent ring horizontal diameter and vertical diameter along with ellipsoid zone line width from spectral domain optical coherence tomography. Test-retest reliability and the rate of progression were calculated. The interaction between the progression rates was tested for sex, age, mode of inheritance, and baseline measurement size. Symmetry of left and right eye progression rate was also tested. Results Significant progression was observed in >75% of patients during the 2 year mean follow up. The mean annual progression rates of ellipsoid zone line, and hyperautofluorescent ring horizontal diameter and vertical diameter were 0.45° (4.9%), 0.51° (4.1%), and 0.42° (4.0%), respectively. The e llipsoid zone line width, and hyperautofluorescent ring horizontal diameter and vertical diameter had low test-retest variabilities of 8.9%, 9.5% and 9.6%, respectively. This study is the first to demonstrate asymmetrical structural progression rate between right and left eye, which was found in 19% of patients. The rate of progression was significantly slower as the disease approached the fovea, supporting the theory that RP progresses in an exponential fashion. No significant interaction between progression rate and patient age, sex, or mode of inheritance was observed. Conclusions Fundus autofluorescence and optical coherence tomography detect progression in patients with RP reliably and with strong correlation. These parameters may be useful alongside functional assessments as the outcome measurements for future therapeutic trials. Follow-up at 1 year intervals should be adequate to efficiently detect progression. PMID:26164827
Pulsating Heat pipe Only for Space (PHOS): results of the REXUS 18 sounding rocket campaign
NASA Astrophysics Data System (ADS)
Creatini, F.; Guidi, G. M.; Belfi, F.; Cicero, G.; Fioriti, D.; Di Prizio, D.; Piacquadio, S.; Becatti, G.; Orlandini, G.; Frigerio, A.; Fontanesi, S.; Nannipieri, P.; Rognini, M.; Morganti, N.; Filippeschi, S.; Di Marco, P.; Fanucci, L.; Baronti, F.; Mameli, M.; Manzoni, M.; Marengo, M.
2015-11-01
Two Closed Loop Pulsating Heat Pipes (CLPHPs) are tested on board REXUS 18 sounding rocket in order to obtain data over a relatively long microgravity period (approximately 90 s). The CLPHPs are partially filled with FC-72 and have, respectively, an inner tube diameter larger (3 mm) and slightly smaller (1.6 mm) than the critical diameter evaluated in static Earth gravity conditions. On ground, the small diameter CLPHP effectively works as a Pulsating Heat Pipe (PHP): the characteristic slug and plug flow pattern forms inside the tube and the heat exchange is triggered by thermally driven self-sustained oscillations of the working fluid. On the other hand, the large diameter CLPHP works as a two- phase thermosyphon in vertical position and doesn't work in horizontal position: in this particular condition, the working fluid stratifies within the device as the surface tension force is no longer able to balance buoyancy. Then, the idea to test the CLPHPs in reduced gravity conditions: as the gravity reduces the buoyancy forces becomes less intense and it is possible to recreate the typical PHP flow pattern also for larger inner tube diameters. This allows to increase the heat transfer rate and, consequently, to decrease the overall thermal resistance. Even though it was not possible to experience low gravity conditions due to a failure in the yoyo de-spin system, the thermal response to the peculiar acceleration field (hyper-gravity) experienced on board are thoroughly described.
NASA Technical Reports Server (NTRS)
1980-01-01
Measurements in an Auger spectrometer of surface impurity concentrations on liquid gallium showed that the principle impurities were oxygen and carbon. The impurities showed a tendency to collect into plates or clumps. In Pb rich Pb-Sn off eutectic alloys, macrosegration caused by solutal convection was not reduced by vertical or horizontal fields of 0.1 T, but downward solidification virtually eliminated macrosegration in small diameter samples. Phase assemblages of selected compositions on the joints K(Fe0.5 Si-0.5) O2 -SiO2 and KFeO2 - SiO2 were determined over a large range of oxygen partial pressures and the temperature range 800 C to 1400 C.
NASA Astrophysics Data System (ADS)
Ting, F. C. K.; LeClaire, P.
2016-02-01
Understanding the mechanisms of sediment pickup and distribution in breaking waves is important for modeling sediment transport in the surf zone. Previous studies were mostly concerned with bulk sediment transport under specific wave conditions. The distribution of suspended sediments in breaking waves had not been measured together with coherent flow structures. In this study, two-phase flow measurements were obtained under a train of plunging regular waves on a plane slope using the volumetric three-component velocimetry (V3V) technique. The measurements captured the motions of sediment particles simultaneously with the three-component, three-dimensional (3C3D) velocity fields of turbulent coherent structures (large eddies) induced by breaking waves. Sediment particles (solid glass spheres diameter 0.125 to 0.15 mm, specific gravity 2.5) were separated from fluid tracers (mean diameter 13 µm, specific gravity 1.3) based on a combination of particle spot size and brightness in the two-phase images. The interactions between the large eddies and glass spheres were investigated for plunger vortices generated at incipient breaking and for splash-up vortices generated at the second plunge point. The measured data show that large eddies impinging on the bottom was the primary mechanism which lift sediment particles into suspension and momentarily increased near-bed suspended sediment concentration. Although eddy impingement events were sporadic in space and time, the distributions of suspended sediments in the large eddies were not uniform. High suspended sediment concentration and vertical sediment flux were found in the wall-jet region where the impinging flow was deflected outward and upward. Sediment particles were also trapped and carried around by counter-rotating vortices (Figure 1). Suspended sediment concentration was significantly lower in the impingement region where the fluid velocity was downward, even though turbulent kinetic energy in the down flow was very high. These results suggest that vertical velocity or turbulent shear stress may be a better parameter for predicting sediment pick-up rate than turbulent kinetic energy. It was also found that splash-up vortices enhanced onshore transport relative to the condition when no vortex impinged on the bottom.
Reduction, analysis, and properties of electric current systems in solar active regions
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Demoulin, Pascal
1995-01-01
The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.
Reduction, Analysis, and Properties of Electric Current Systems in Solar Active Regions
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Demoulin, Pascal
1995-01-01
The specific attraction and, in large part, the significance of solar vector magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 degree ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 degree ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local "preferred" direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar beta gamma delta-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA per square meter and have a linear decreasing distribution to a diameter of 30 Mm.
Orthopedic stretcher with average-sized person can pass through 18-inch opening
NASA Technical Reports Server (NTRS)
Lothschuetz, F. X.
1966-01-01
Modified Robinson stretcher for vertical lifting and carrying, will pass through an opening 18 inches in diameter, while containing a person of average height and weight. A subject 6 feet tall and weighing 200 pounds was lowered and raised out of an 18 inch diameter opening in a tank to test the stretcher.
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Concent Particle Diameter Particle Number Concentration Precipitation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Content Particle Diameter Particle Number Concentration Precipitation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
Atmospheric Science Data Center
2015-11-25
... Dew/Frost Point Temperature Diffusional Growth Rate Ice Water Content Particle Diameter Particle Number Concentration Preciptiation Rate Radar Reflectivity Relative Humidity Static Pressure Vertical ...
2017-01-01
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications. PMID:28966933
NASA Technical Reports Server (NTRS)
Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.
2016-01-01
The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.
Frederiksen, Rune; Tutuncuoglu, Gozde; Matteini, Federico; Martinez, Karen L; Fontcuberta I Morral, Anna; Alarcon-Llado, Esther
2017-09-20
Semiconductor nanowires are promising building blocks for next-generation photonics. Indirect proofs of large absorption cross sections have been reported in nanostructures with subwavelength diameters, an effect that is even more prominent in vertically standing nanowires. In this work we provide a three-dimensional map of the light around vertical GaAs nanowires standing on a substrate by using fluorescence confocal microscopy, where the strong long-range disruption of the light path along the nanowire is illustrated. We find that the actual long-distance perturbation is much larger in size than calculated extinction cross sections. While the size of the perturbation remains similar, the intensity of the interaction changes dramatically over the visible spectrum. Numerical simulations allow us to distinguish the effects of scattering and absorption in the nanowire leading to these phenomena. This work provides a visual understanding of light absorption in semiconductor nanowire structures, which is of high interest for solar energy conversion applications.
NASA Astrophysics Data System (ADS)
Blaszczuk, Artur; Nowak, Wojciech
2016-10-01
In the present work, the heat transfer study focuses on assessment of the impact of bed temperature on the local heat transfer characteristic between a fluidized bed and vertical rifled tubes (38mm-O.D.) in a commercial circulating fluidized bed (CFB) boiler. Heat transfer behavior in a 1296t/h supercritical CFB furnace has been analyzed for Geldart B particle with Sauter mean diameter of 0.219 and 0.246mm. The heat transfer experiments were conducted for the active heat transfer surface in the form of membrane tube with a longitudinal fin at the tube crest under the normal operating conditions of CFB boiler. A heat transfer analysis of CFB boiler with detailed consideration of the bed-to-wall heat transfer coefficient and the contribution of heat transfer mechanisms inside furnace chamber were investigated using mechanistic heat transfer model based on cluster renewal approach. The predicted values of heat transfer coefficient are compared with empirical correlation for CFB units in large-scale.
Sarkar, Saumya; Mondal, Kanchan Kumar; Roy, Sukalyan Saha; Gayen, Sharmistha; Ghosh, Abhishek; De, Radha Raman
2015-01-01
This study compared the effectiveness of prophylactic administration of topical flurbiprofen 0.03% and nepafenac 0.1% in maintaining mydriasis during small incision cataract surgery (SICS). This study was a prospective, randomized, double-blind comparative study in adult cataract patients given topical flurbiprofen or nepafenac prior to SICS and capsular bag intraocular lens (IOL) implantation at a tertiary care hospital. Horizontal and vertical diameters of pupil were measured at the beginning and end of surgery, and the mean values were compared across the two groups. Unpaired t-test and Fisher's exact test were used to analyse the results. A total of 70 eyes of cataract surgery patients, 33 males and 37 females, with a mean age of 58.5 ± 11.24 years, were included in the study. The mean horizontal and vertical diameters of the two groups were similar at the start of surgery. Significant differences were seen after IOL implantation, with the nepafenac group having the larger mean diameters in both horizontal (P = 0.03) and vertical (P = 0.04) pupillary measurements. Topical nepafenac has been shown to be a more effective inhibitor of meiosis during SICS and provides a more stable mydriatic effect compared to topical flurbiprofen.
Wake recontact: An experimental investigation using a ringslot parachute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, J.H.; Macha, J.M.
1989-01-01
A series of tests was conducted on a 10-ft.-diameter ringslot parachute with a geometric porosity of 20% to establish the conditions under which ''wake recontact'' occurs. The vertical helicopter drop tests covered a range of mass ratios from 0.5 to 3.0 and a range of Froude numbers from 70 to 400. Data consisted of velocity time histories obtained using a laser tracker and diameter time histories obtained from photometric data. A collapse parameter based on the ratio of the maximum parachute diameter to the subsequent minimum diameter was correlated with the mass ratio M/sub R/ and the Froude number Fr.more » This pair of similarity parameters was subsequently replaced by the equivalent pair M/sub R/ and V/sub o//V/sub t/ in order to provide more intuitive results (V/sub o//V/sub t/ is the initial to final velocity ratio). For large values of V/sub o//V/sub t/ the collapse parameter R/sub C/ appears to be a function of M/sub R/ alone. Non-dimensional opening time and ''collapse time'' data were also correlated with M/sub R/ and V/sub o//V/sub t/. In addition, opening load factors C/sub X/ were calculated from the data and plotted as a function of V/sub o//V/sub t/. 10 refs., 11 figs.« less
Tan, Kok Hong; Lim, Fang Sheng; Toh, Alfred Zhen Yang; Zheng, Xia-Xi; Dee, Chang Fu; Majlis, Burhanuddin Yeop; Chai, Siang-Piao; Chang, Wei Sea
2018-04-17
Observation of visible light trapping in zinc oxide (ZnO) nanorods (NRs) correlated to the optical and photoelectrochemical properties is reported. In this study, ZnO NR diameter and c-axis length respond primarily at two different regions, UV and visible light, respectively. ZnO NR diameter exhibits UV absorption where large ZnO NR diameter area increases light absorption ability leading to high efficient electron-hole pair separation. On the other hand, ZnO NR c-axis length has a dominant effect in visible light resulting from a multiphoton absorption mechanism due to light reflection and trapping behavior in the free space between adjacent ZnO NRs. Furthermore, oxygen vacancies and defects in ZnO NRs are associated with the broad visible emission band of different energy levels also highlighting the possibility of the multiphoton absorption mechanism. It is demonstrated that the minimum average of ZnO NR c-axis length must satisfy the linear regression model of Z p,min = 6.31d to initiate the multiphoton absorption mechanism under visible light. This work indicates the broadening of absorption spectrum from UV to visible light region by incorporating a controllable diameter and c-axis length on vertically aligned ZnO NRs, which is important in optimizing the design and functionality of electronic devices based on light absorption mechanism. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Majumder, Saikat; Jha, Amit Kr.; Biswas, Aishik; Banerjee, Debasmita; Ganguly, Dipankar; Chakraborty, Rajib
2017-08-01
Horizontal spot size converter required for horizontal light coupling and vertical bridge structure required for vertical integration are designed on high index contrast SOI platform in order to form more compact integrated photonic circuits. Both the structures are based on the concept of multimode interference. The spot size converter can be realized by successive integration of multimode interference structures with reducing dimension on horizontal plane, whereas the optical bridge structure consists of a number of vertical multimode interference structure connected by single mode sections. The spot size converter can be modified to a spot profile converter when the final single mode waveguide is replaced by a slot waveguide. Analysis have shown that by using three multimode sections in a spot size converter, an Gaussian input having spot diameter of 2.51 μm can be converted to a spot diameter of 0.25 μm. If the output single mode section is replaced by a slot waveguide, this input profile can be converted to a flat top profile of width 50 nm. Similarly, vertical displacement of 8μm is possible by using a combination of two multimode sections and three single mode sections in the vertical bridge structure. The analyses of these two structures are carried out for both TE and TM modes at 1550 nm wavelength using the semi analytical matrix method which is simple and fast in computation time and memory. This work shows that the matrix method is equally applicable for analysis of horizontally as well as vertically integrated photonic circuit.
Vertical-cavity surface-emitting lasers - Design, growth, fabrication, characterization
NASA Astrophysics Data System (ADS)
Jewell, Jack L.; Lee, Y. H.; Harbison, J. P.; Scherer, A.; Florez, L. T.
1991-06-01
The authors have designed, fabricated, and tested vertical-cavity surface-emitting lasers (VCSEL) with diameters ranging from 0.5 microns to above 50 microns. Design issues, molecular beam epitaxial growth, fabrication, and lasing characteristics are discussed. The topics considered in fabrication of VCSELs are microlaser geometries; ion implementation and masks; ion beam etching; packaging and arrays; and ultrasmall devices.
Case study of landfill leachate recirculation using small-diameter vertical wells.
Jain, Pradeep; Ko, Jae Hac; Kumar, Dinesh; Powell, Jon; Kim, Hwidong; Maldonado, Lizmarie; Townsend, Timothy; Reinhart, Debra R
2014-11-01
A case study of landfill liquids addition using small diameter (5 cm) vertical wells is reported. More than 25,000 m(3) of leachate was added via 134 vertical wells installed 3 m, 12 m, and 18 m deep over five years in a landfill in Florida, US. Liquids addition performance (flow rate per unit screen length per unit liquid head) ranged from 5.6×10(-8) to 3.6×10(-6) m(3) s(-1) per m screen length per m liquid head. The estimated radial hydraulic conductivity ranged from 3.5×10(-6) to 4.2×10(-4) m s(-1). The extent of lateral moisture movement ranged from 8 to 10 m based on the responses of moisture sensors installed around vertical well clusters, and surface seeps were found to limit the achievable liquids addition rates, despite the use of concrete collars under a pressurized liquids addition scenario. The average moisture content before (51 samples) and after (272 samples) the recirculation experiments were 23% (wet weight basis) and 45% (wet weight basis), respectively, and biochemical methane potential measurements of excavated waste indicated significant (p<0.025) decomposition. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cylindrical surface profile and diameter measuring tool and method
NASA Technical Reports Server (NTRS)
Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Smith, Earnest C. (Inventor); Oliver, Charles E. (Inventor); Redmon, John W., Sr. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)
1987-01-01
A tool is shown having a cross beam assembly made of beams joined by a center box structure. The assembly is adapted to be mounted by brackets to the outer end of a cylindrical case. The center box structure has a vertical shaft rotatably mounted therein and extending beneath the assembly. Secured to the vertical shaft is a radius arm which is adapted to rotate with the shaft. On the longer end of the radius arm is a measuring tip which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm. An electric servomotor rotates the vertical shaft and an electronic resolver provides an electric signal representing the angle of rotation of the shaft. The electric signals are provided to a computer station which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.
Design of Mini Latissimus Dorsi Flap Based on Thoracodorsal Vascular Patterns.
Elzawawy, Ehab Mostafa; Kelada, Melad Naim; Al Karmouty, Ahmed Farouk
2018-06-01
Latissimus dorsi (LD) flap has been used for reconstructive purposes in oncoplastic breast surgery. Using large part of the muscle as a flap leads to a residual functional loss. Muscle sparing and mini LD flaps can be used with no functional sequelae. However, the design of such flap presents a challenge. Twenty cadavers were dissected on both sides to identify the different vascular patterns of the thoracodorsal (TD) pedicle. The vessels were counted, and the following measurements were taken: diameter, length, distance from inferior angel of scapula, and vertebral level. Data were collected and entered into the personal computer. Statistical analysis was done using (SPSS/version 20) software. Five vascular patterns of TD pedicle were found. Type 1: a long vertically descending pedicle giving 3 to 4 transverse medial branches to LD in 40%. Type 2: a short pedicle terminating into 1 to 2 serratus anterior collaterals and 1 to 2 transverse lateral branches to LD in 10%. Type 3: a long vertically descending pedicle giving 2 to 3 small lateral branches to upper part of LD and terminating into medial and lateral branches in the lower part of LD in 10%. Type 4: a short pedicle that gives 4 to 5 terminal branches to LD, one of them is a long vertically descending branch to lower part of LD in 20%. Type 5: a short pedicle that terminates into a transverse medial and a long vertical branch to LD in 20%. The classically described pattern of TD pedicle (type 5) was found in 20% of cases, whereas the most commonly found pattern was type 1. This means that the pattern of TD branching is unpredictable, and a preoperative ultrasound is essential to define the existing pattern and plan the best LD flap design for each patient. In types 1 and 5, the flap can be designed using the transverse medial branch or branches. In type 2, one of the lateral transverse branches can be used. In types 3, 4, and 5, the long descending vertical branch can be used. It has a sizeable diameter (1.80.23 mm), length (12.31.64 cm), and can be located 6.50.96 cm below the inferior angle of scapula.
Ingot slicing machine and method
NASA Technical Reports Server (NTRS)
Kuo, Y. S. (Inventor)
1984-01-01
An improved method for simultaneously slicing one or a multiplicity of boules of silicon into silicon wafers is described. A plurality of vertical stacks of horizontal saw blades of circular configuration are arranged in juxtaposed coaxial alignment. Each blade is characterized by having a cutting diameter slightly greater than the cutting diameter of the blade arranged immediately above, imparting a simultaneous rotation to the blades.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
... California; and (14) appurtenant facilities. The project would be a closed-loop system using groundwater and... application for a successive preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA... power tunnel; (6) a 30-foot-diameter, 1,200-foot-long vertical shaft; (7) a 30-foot-diameter, 1,000-foot...
NASA Astrophysics Data System (ADS)
Chaliyawala, Harsh A.; Purohit, Zeel; Khanna, Sakshum; Ray, Abhijit; Pati, Ranjan K.; Mukhopadhyay, Indrajit
2018-05-01
We report an alternative approach to fabricate the vertically aligned aperiodic Si nanowire arrays by controlling the diameter of the Ag nanoparticles and tuneable ultrasonic removal. The process begins by sputtering the Ag thin film (t=5 nm) on the Si/SiO2 substrates. Followed by Ag thin film, annealed for various temperature (T=300°C, 400°C, 500°C and 600°C) to selectively achieve a high density, well-spaced and diameter controlled Ag nanoparticles (AgNPs) on the Si/SiO2 substrates. The sacrificial layer of AgNPs size indicates the controlled diameter of the Si nanowire arrays. Image J analysis for various annealed samples gives an indication of the high density, uniformity and equal distribution of closely packed AgNPs. Furthermore, the AgNPs covered with Au/Pd mesh (5 nm) as a template, was removed by ultrasonication in the etchant solution for several times in different intervals of preparation. The conventional and facile metal assisted electroless etching approach was finally employed to fabricate the vertically aperiodic sub-50 nm SiNWAs, can be applicable to various nanoscale opto-electronic applications.
Raut, Akshay S; Parker, Charles B; Stoner, Brian R; Glass, Jeffrey T
2012-06-01
Electrochemical charge storage characteristics of vertically aligned multi-walled carbon nanotubes (MWCNTs) as a function of varying diameter and spacing are reported. It was observed that the specific capacitance of the MWCNTs increased as both diameter and inter-tube spacing decreased. The MWCNT films with 229 nm inter-MWCNT spacing exhibited specific capacitance of 228 F/g versus 70 F/g for 506 nm spacing, when tested in a non-aqueous electrolyte. Further, a trend in specific capacitance versus pore size is proposed. Coupled with previously reported trends observed in the sub-10 nm pore size regime, this is expected to offer better understanding of electrochemical behavior of porous carbon materials over a wide range of pore sizes.
NASA Astrophysics Data System (ADS)
Loan Nguyen, Thu; Dieu Thuy Ung, Thi; Liem Nguyen, Quang
2014-06-01
This paper reports on the fabrication of non-chapped, vertically well aligned titanium dioxide nanotubes (TONTs) by using electrochemical etching method and further heat treatment. Very highly ordered metallic titanium nanotubes (TNTs) were formed by directly anodizing titanium foil at room temperature in an electrolyte composed of ammonium fluoride (NH4F), ethylene glycol (EG), and water. The morphology of as-formed TNTs is greatly dependent on the applied voltage, NH4F content and etching time. Particularly, we have found two interesting points related to the formation of TNTs: (i) the smooth surface without chaps of the largely etched area was dependent on the crystalline orientation of the titanium foil; and (ii) by increasing the anodizing potential from 15 V to 20 V, the internal diameter of TNT was increased from about 50 nm to 60 nm and the tube density decreased from 403 tubes μm-2 down to 339 tubes μm-2, respectively. For the anodizing duration from 1 h to 5 h, the internal diameter of each TNT was increased from ˜30 nm to 60 nm and the tube density decreased from 496 tubes μm-2 down to 403 tubes μm-2. After annealing at 400 °C in open air for 1 h, the TNTs were transformed into TONTs in anatase structure; further annealing at 600 °C showed the structural transformation from anatase to rutile as determined by Raman scattering spectroscopy.
Wall-Friction Support of Vertical Loads in Submerged Sand and Gravel Columns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walton, O. R.; Vollmer, H. J.; Hepa, V. S.
Laboratory studies of the ‘floor-loads’ under submerged vertical columns of sand and/or gravel indicate that such loads can be approximated by a buoyancy-corrected Janssen-silo-theory-like relationship. Similar to conditions in storage silos filled with dry granular solids, most of the weight of the sand or gravel is supported by wall friction forces. Laboratory measurements of the loads on the floor at the base of the water-filled columns (up to 25-diameters tall) indicate that the extra floor-load from the addition of the granular solid never exceeded the load that would exist under an unsupported (wide) bed of submerged sand or gravel thatmore » has a total depth corresponding to only two column-diameters. The measured floorloads reached an asymptotic maximum value when the depth of granular material in the columns was only three or four pipe-diameters, and never increased further as the columns were filled to the top (e.g. up to heights of 10 to 25 diameters). The floor-loads were stable and remained the same for days after filling. Aggressive tapping (e.g. hitting the containing pipe on the outside, manually with a wrench up and down the height and around the circumference) could increase (and occasionally decrease) the floor load substantially, but there was no sudden collapse or slumping to a state without significant wall friction effects. Considerable effort was required, repeatedly tapping over almost the entire column wall periphery, in order to produce floor-loads that corresponded to the total buoyancy-corrected weight of granular material added to the columns. Projecting the observed laboratory behavior to field conditions would imply that a stable floor-load condition, with only a slightly higher total floor pressure than the preexisting hydrostatic-head, would exist after a water-filled bore-hole is filled with sand or gravel. Significant seismic vibration (either a large nearby event or many micro-seismic events over an extended period) would likely be necessary before the full (buoyancy-corrected) weight of the sand and/or gravel would be ‘delivered’ to the bottom of the submerged column.« less
Twentieth-century decline of large-diameter trees in Yosemite National Park, California, USA
Lutz, J.A.; van Wagtendonk, J.W.; Franklin, J.F.
2009-01-01
Studies of forest change in western North America often focus on increased densities of small-diameter trees rather than on changes in the large tree component. Large trees generally have lower rates of mortality than small trees and are more resilient to climate change, but these assumptions have rarely been examined in long-term studies. We combined data from 655 historical (1932-1936) and 210 modern (1988-1999) vegetation plots to examine changes in density of large-diameter trees in Yosemite National Park (3027 km2). We tested the assumption of stability for large-diameter trees, as both individual species and communities of large-diameter trees. Between the 1930s and 1990s, large-diameter tree density in Yosemite declined 24%. Although the decrease was apparent in all forest types, declines were greatest in subalpine and upper montane forests (57.0% of park area), and least in lower montane forests (15.3% of park area). Large-diameter tree densities of 11 species declined while only 3 species increased. Four general patterns emerged: (1) Pinus albicaulis, Quercus chrysolepis, and Quercus kelloggii had increases in density of large-diameter trees occur throughout their ranges; (2) Pinus jeffreyi, Pinus lambertiana, and Pinus ponderosa, had disproportionately larger decreases in large-diameter tree densities in lower-elevation portions of their ranges; (3) Abies concolor and Pinus contorta, had approximately uniform decreases in large-diameter trees throughout their elevational ranges; and (4) Abies magnifica, Calocedrus decurrens, Juniperus occidentalis, Pinus monticola, Pseudotsuga menziesii, and Tsuga mertensiana displayed little or no change in large-diameter tree densities. In Pinus ponderosa-Calocedrus decurrens forests, modern large-diameter tree densities were equivalent whether or not plots had burned since 1936. However, in unburned plots, the large-diameter trees were predominantly A. concolor, C. decurrens, and Q. chrysolepis, whereas P. ponderosa dominated the large-diameter component of burned plots. Densities of large-diameter P. ponderosa were 8.1 trees ha-1 in plots that had experienced fire, but only 0.5 trees ha-1 in plots that remained unburned. ?? 2009 Elsevier B.V. All rights reserved.
Sex estimation by femur in modern Thai population.
Monum, T; Prasitwattanseree, S; Das, S; Siriphimolwat, P; Mahakkanukrauh, P
2017-01-01
Sex estimation is an important step of postmortem investigation and the femur is a useful bone for sex estimation by using metric analysis method. Even though there have been a reported sex estimation method by using femur in Thais, the temporal change related to time and anthropological data need to be renewed. Thus the aim of this study is to re-evaluate sex estimation by femur in Thais. 97 adult male and 103 female femora were random chosen from Forensic osteology research center and 6 measurements were applied tend to. To compare with previous Thai data, mid shaft diameter to increase but femoral head and epicondylar breadth to stabilize and when tested previous discriminant function by vertical head diameter and epicondalar breadth, the accuracy of prediction was lower than previous report. From the new data, epicondalar breadth is the best variable for distinguishing male and female at 88.7 percent of accuracy, following by transverse and vertical head diameter at 86.7 percent and femoral neck diameter at 81.7 percent of accuracy. Multivariate discriminant analysis indicated transverse head diameter and epicondylar breadth performed highest rate of accuracy at 89.7 percent. The percent of accuracy of femur was close to previous reported sex estimation by talus and calcaneus in Thai population. Thus, for especially in case of lower limb remain, which absence of pelvis.
Method of fabricating vertically aligned group III-V nanowires
Wang, George T; Li, Qiming
2014-11-25
A top-down method of fabricating vertically aligned Group III-V micro- and nanowires uses a two-step etch process that adds a selective anisotropic wet etch after an initial plasma etch to remove the dry etch damage while enabling micro/nanowires with straight and smooth faceted sidewalls and controllable diameters independent of pitch. The method enables the fabrication of nanowire lasers, LEDs, and solar cells.
Self-Assembled Epitaxial Au–Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials
Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; ...
2016-05-17
Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal–oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned goldmore » (Au) nanopillars (~20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. In conclusion, our studies suggest that these self-assembled metal–oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.« less
On-chip synthesis of circularly polarized emission of light with integrated photonic circuits.
He, Li; Li, Mo
2014-05-01
The helicity of circularly polarized (CP) light plays an important role in the light-matter interaction in magnetic and quantum material systems. Exploiting CP light in integrated photonic circuits could lead to on-chip integration of novel optical helicity-dependent devices for applications ranging from spintronics to quantum optics. In this Letter, we demonstrate a silicon photonic circuit coupled with a 2D grating emitter operating at a telecom wavelength to synthesize vertically emitting, CP light from a quasi-TE waveguide mode. Handedness of the emitted circular polarized light can be thermally controlled with an integrated microheater. The compact device footprint enables a small beam diameter, which is desirable for large-scale integration.
Direct numerical simulation of annular flows
NASA Astrophysics Data System (ADS)
Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.
2017-11-01
Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Study on load-bearing characteristics of a new pile group foundation for an offshore wind turbine.
Lang, Ruiqing; Liu, Run; Lian, Jijian; Ding, Hongyan
2014-01-01
Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect.
Study on Load-Bearing Characteristics of a New Pile Group Foundation for an Offshore Wind Turbine
Liu, Run; Lian, Jijian; Ding, Hongyan
2014-01-01
Because offshore wind turbines are high-rise structures, they transfer large horizontal loads and moments to their foundations. One of the keys to designing a foundation is determining the sensitivities and laws affecting its load-bearing capacity. In this study, this procedure was carried out for a new high-rise cap pile group foundation adapted to the loading characteristics of offshore wind turbines. The sensitivities of influential factors affecting the bearing properties were determined using an orthogonal test. Through a combination of numerical simulations and model tests, the effects of the inclination angle, length, diameter, and number of side piles on the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity were determined. The results indicate that an increase in the inclination angle of the side piles will increase the vertical bearing capacity, horizontal bearing capacity, and bending bearing capacity. An increase in the length of the side piles will increase the vertical bearing capacity and bending bearing capacity. When the length of the side piles is close to the central pile, the increase is more apparent. Finally, increasing the number of piles will increase the horizontal bearing capacity; however, the growth rate is small because of the pile group effect. PMID:25250375
Passive imaging based multi-cue hazard detection spacecraft safe landing
NASA Technical Reports Server (NTRS)
Huertas, Andres; Cheng, Yang; Madison, Richard
2006-01-01
Accurate assessment of potentially damaging ground hazards during the spacecraft EDL (Entry, Descent and Landing) phase is crucial to insure a high probability of safe landing. A lander that encounters a large rock, falls off a cliff, or tips over on a steep slope can sustain mission ending damage. Guided entry is expected to shrink landing ellipses from 100-300 km to -10 km radius for the second generation landers as early as 2009. Regardless of size and location, however, landing ellipses will almost always contain hazards such as craters, discontinuities, steep slopes, and large rocks. It is estimated that an MSL (Mars Science Laboratory)-sized lander should detect and avoid 16- 150m diameter craters, vertical drops similar to the edges of 16m or 3.75m diameter crater, for high and low altitude HAD (Hazard Detection and Avoidance) respectively. It should also be able to detect slopes 20' or steeper, and rocks 0.75m or taller. In this paper we will present a passive imaging based, multi-cue hazard detection and avoidance (HDA) system suitable for Martian and other lander missions. This is the first passively imaged HDA system that seamlessly integrates multiple algorithm-crater detection, slope estimation, rock detection and texture analysis, and multicues- crater morphology, rock distribution, to detect these hazards in real time.
Mohd Fudzi, Laimy; Zainal, Zulkarnain; Lim, Hong Ngee; Chang, Sook-Keng; Holi, Araa Mebdir; Sarif Mohd Ali, Mahanim
2018-04-29
Despite its large band gap, ZnO has wide applicability in many fields ranging from gas sensors to solar cells. ZnO was chosen over other materials because of its large exciton binding energy (60 meV) and its stability to high-energy radiation. In this study, ZnO nanorods were deposited on ITO glass via a simple dip coating followed by a hydrothermal growth. The morphological, structural and compositional characteristics of the prepared films were analyzed using X-ray diffractometry (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible spectroscopy (UV-Vis). Photoelectrochemical conversion efficiencies were evaluated via photocurrent measurements under calibrated halogen lamp illumination. Thin film prepared at 120 °C for 4 h of hydrothermal treatment possessed a hexagonal wurtzite structure with the crystallite size of 19.2 nm. The average diameter of the ZnO nanorods was 37.7 nm and the thickness was found to be 2680.2 nm. According to FESEM images, as the hydrothermal growth temperature increases, the nanorod diameter become smaller. Moreover, the thickness of the nanorods increase with the growth time. Therefore, the sample prepared at 120 °C for 4 h displayed an impressive photoresponse by achieving high current density of 0.1944 mA/cm².
Lee, Ji-Hye; Lee, Won; Huh, Yoon-Hyuk; Park, Chan-Jin; Cho, Lee-Ra
2017-09-05
To evaluate the axial displacement of the implant-abutment assembly of different implant diameter after static and cyclic loading of overload condition. An internal conical connection system with three diameters (Ø 4.0, 4.5, and 5.0) applying identical abutment dimension and the same abutment screw was evaluated. Axial displacement of abutment and reverse torque loss of abutment screw were evaluated under static and cyclic loading conditions. Static loading test groups were subjected to vertical static loading of 250, 400, 500, 600, 700, and 800 N consecutively. Cyclic loading test groups were subjected to 500 N cyclic loading to evaluate the effect of excessive masticatory loading. After abutment screw tightening for 30 Ncm, axial displacement was measured upon 1, 3, 10, and 1,000,000 cyclic loadings of 500 N. Repeated-measure ANOVA and 2-way ANOVA were used for statistical analysis (α = 0.05). The increasing magnitude of vertical load and thinner wall thickness of implant increased axial displacement of abutment and reverse torque loss of abutment screw (p < 0.05). Implants in the Ø 5.0 diameter group demonstrated significantly low axial displacement, and reverse torque loss after static loading than Ø 4.0 and Ø 4.5 diameter groups (p < 0.05). In the cyclic loading test, all diameter groups of implant showed significant axial displacement after 1 cycle of loading of 500 N (p < 0.05). There was no significant axial displacement after 3, 10, or 1,000,000 cycles of loading (p = 0.603). Implants with Ø 5.0 diameter demonstrated significantly low axial displacement and reverse torque loss after the cyclic and static loading of overload condition. © 2017 by the American College of Prosthodontists.
Double high refractive-index contrast grating VCSEL
NASA Astrophysics Data System (ADS)
Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Sarzała, Robert P.; Lott, J. A.; Czyszanowski, Tomasz
2015-03-01
Distributed Bragg reflectors (DBRs) are typically used as the highly reflecting mirrors of vertical-cavity surface-emitting lasers (VCSELs). In order to provide optical field confinement, oxide apertures are often incorporated in the process of the selective wet oxidation of high aluminum-content DBR layers. This technology has some potential drawbacks such as difficulty in controlling the uniformity of the oxide aperture diameters across a large-diameter (≥ 6 inch) production wafers, high DBR series resistance especially for small diameters below about 5 μm despite elaborate grading and doping schemes, free carrier absorption at longer emission wavelengths in the p-doped DBRs, reduced reliability for oxide apertures placed close to the quantum wells, and low thermal conductivity for transporting heat away from the active region. A prospective alternative mirror is a high refractive index contrast grating (HCG) monolithically integrated with the VCSEL cavity. Two HCG mirrors potentially offer a very compact and simplified VCSEL design although the problems of resistance, heat dissipation, and reliability are not completely solved. We present an analysis of a double HCG 980 nm GaAs-based ultra-thin VCSEL. We analyze the optical confinement of such a structure with a total optical thickness is ~1.0λ including the optical cavity and the two opposing and parallel HCG mirrors.
Kodama, Nao; Kose, Katsumi
2016-10-11
Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (~54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach.
On the wake of a Darrieus turbine
NASA Technical Reports Server (NTRS)
Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.
1981-01-01
The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.
Ding, Xi; Zhu, Xing-Hao; Liao, Sheng-Hui; Zhang, Xiu-Hua; Chen, Hong
2009-07-01
To establish a 3D finite element model of a mandible with dental implants for immediate loading and to analyze stress distribution in bone around implants of different diameters. Three mandible models, embedded with thread implants (ITI, Straumann, Switzerland) with diameters of 3.3, 4.1, and 4.8 mm, respectively, were developed using CT scanning and self-developed Universal Surgical Integration System software. The von Mises stress and strain of the implant-bone interface were calculated with the ANSYS software when implants were loaded with 150 N vertical or buccolingual forces. When the implants were loaded with vertical force, the von Mises stress concentrated on the mesial and distal surfaces of cortical bone around the neck of implants, with peak values of 25.0, 17.6 and 11.6 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains (5854, 4903, 4344 muepsilon) were located on the buccal cancellous bone around the implant bottom and threads of implants. The stress and strain were significantly lower (p < 0.05) with the increased diameter of implant. When the implants were loaded with buccolingual force, the peak von Mises stress values occurred on the buccal surface of cortical bone around the implant neck, with values of 131.1, 78.7, and 68.1 MPa for 3.3, 4.1, and 4.8 mm diameters, respectively, while the maximum strains occurred on the buccal surface of cancellous bone adjacent to the implant neck, with peak values of 14,218, 12,706, and 11,504 microm, respectively. The stress of the 4.1-mm diameter implants was significantly lower (p < 0.05) than those of 3.3-mm diameter implants, but not statistically different from that of the 4.8 mm implant. With an increase of implant diameter, stress and strain on the implant-bone interfaces significantly decreased, especially when the diameter increased from 3.3 to 4.1 mm. It appears that dental implants of 10 mm in length for immediate loading should be at least 4.1 mm in diameter, and uniaxial loading to dental implants should be avoided or minimized.
Kanellopoulos, Anastasios John; Asimellis, George
2014-01-01
To investigate, by high-precision digital analysis of data provided by Scheimpflug imaging, changes in pupil size and shape and anterior chamber (AC) parameters following cataract surgery. The study group (86 eyes, patient age 70.58±10.33 years) was subjected to cataract removal surgery with in-the-bag intraocular lens implantation (pseudophakic). A control group of 75 healthy eyes (patient age 51.14±16.27 years) was employed for comparison. Scheimpflug imaging (preoperatively and 3 months postoperatively) was employed to investigate central corneal thickness, AC depth, and AC volume. In addition, by digitally analyzing the black-and-white dotted line pupil edge marking in the Scheimpflug "large maps," the horizontal and vertical pupil diameters were individually measured and the pupil eccentricity was calculated. The correlations between AC depth and pupil shape parameters versus patient age, as well as the postoperative AC and pupil size and shape changes, were investigated. Compared to preoperative measurements, AC depth and AC volume of the pseudophakic eyes increased by 0.99±0.46 mm (39%; P<0.001) and 43.57±24.59 mm(3) (36%; P<0.001), respectively. Pupil size analysis showed that the horizontal pupil diameter was reduced by -0.27±0.22 mm (-9.7%; P=0.001) and the vertical pupil diameter was reduced by -0.32±0.24 mm (-11%; P<0.001). Pupil eccentricity was reduced by -39.56%; P<0.001. Cataract extraction surgery appears to affect pupil size and shape, possibly in correlation to AC depth increase. This novel investigation based on digital analysis of Scheimpflug imaging data suggests that the cataract postoperative photopic pupil is reduced and more circular. These changes appear to be more significant with increasing patient age.
NASA Astrophysics Data System (ADS)
Flament, Nicolas
2017-04-01
Global tectonic reconstructions can be used as boundary conditions of forward mantle convection models to simulate past mantle flow and long-wavelength dynamic topography. The predictions of such models can be compared to seismic tomography, to estimates of residual topography and to geological indicators of past vertical motions. Here we present models that reproduce the present-day structure of the lower mantle, including two large structures that resemble the Pacific and African Large Low Shear Velocity Provinces (LLSVPs, ˜15,000 km in diameter) and a smaller structure that resembles the recently discovered Perm Anomaly (˜1,000 km in diameter). The match between predicted and seismically inferred lower mantle structure is quantified across a series of mantle flow and tomography models. In the models, the Perm-like anomaly forms in isolation within a closed and long-lived subduction network (East Asia, Northern Tethys and Mongol-Okhotsk) ˜22,000 km in circumference before migrating ˜1,500 km westward at an average rate of 1 cm yr-1 since 150 million years ago. These results indicate a greater mobility of deep mantle structures than previously recognized, and illustrate that the predictive power of mantle flow models has significantly increased over the last thirty years. We suggest that the mobile Perm Anomaly could be linked to the ˜258 Ma Emeishan volcanics, in contrast to the previously proposed ˜251 Ma Siberian Traps. We also compare the present-day dynamic topography predicted by forward mantle flow models to residual topography models, and show that radial and lateral viscosity variations significantly influence the distribution of power of predicted dynamic topography as a function of spherical harmonic degree. We finally show how past vertical motions preserved in the geological record and the present-day position of slabs in the mantle inferred from seismic tomography may be used to constrain tectonic reconstructions and mantle rheology, including examples focusing on the large-scale topographic asymmetry of the South Atlantic domain and on the uplift history of the eastern highlands of Australia.
Control of Heat and Charge Transport in Nanostructured Hybrid Materials
2015-07-21
measurements in our groups have yielded device ZT values of 0.4 on thermoelectric modules consisting of vertically oriented silicon nanowires . This is... nanowires with aspect ratio’s exceeding 10,000. Temperature differences as high as 800 °C are achievable for both types. The bulk nanostructured...thermal conductivity of the silicon nanostructures. Specifically, experiments on an array of 20 nm diameter vertically oriented silicon nanowires have
Impact verification of space suit design for space station
NASA Technical Reports Server (NTRS)
Fish, Richard H.
1987-01-01
The ballistic limits of single sheet and double sheet structures made of 6061 T6 Aluminum of 1.8 mm and larger nominal thickness were investigated for projectiles of 1.5 mm diameter fired in the Vertical Gun Range Test Facility and NASA Ames Research Center. The hole diameters and sheet deformation behavior were studied for various ratios of sheet spacing to projectile diameter. The results indicate that for projectiles of less than 1.5 mm diameter the ballistic limit exceeds the nominal 10 km/sec orbital debris encounter velocity, if a single-sheet suit of 1.8 mm thickness is behind a single bumper sheet of 1 mm thickness spaced 12.5 mm apart.
Nonhuman Primate Ocular Biometry
Augusteyn, Robert C.; Maceo Heilman, Bianca; Ho, Arthur; Parel, Jean-Marie
2016-01-01
Purpose To examine ocular growth in nonhuman primates (NHPs) from measurements on ex vivo eyes. Methods We obtained NHP eyes from animals that had been killed as part of other studies or because of health-related issues. Digital calipers were used to measure the horizontal, vertical, and anteroposterior globe diameters as well as corneal horizontal and vertical diameters of excised globes from 98 hamadryas baboons, 551 cynomolgus monkeys, and 112 rhesus monkeys, at ages ranging from 23 to 360 months. Isolated lens sagittal thickness and equatorial diameter were measured by shadowphotogrammetry. Wet and fixed dry weights were obtained for lenses. Results Nonhuman primate globe growth continues throughout life, slowing toward an asymptotic maximum. The final globe size scales with negative allometry to adult body size. Corneal growth ceases at around 20 months. Lens diameter increases but thickness decreases with increasing age. Nonhuman primate lens wet and dry weight accumulation is monophasic, continuing throughout life toward asymptotic maxima. The dry/wet weight ratio reaches a maximum of 0.33. Conclusions Nonhuman primate ocular globe and lens growth differ in several respects from those in humans. Although age-related losses of lens power and accommodative amplitude are similar, lens growth and properties are different indicating care should be taken in extrapolating NHP observations to the study of human accommodation. PMID:26780314
Mouney, Meredith C; Townsend, Wendy M; Moore, George E
2012-12-01
To determine whether differences exist in the calculated intraocular lens (IOL) strengths of a population of adult horses and to assess the association between calculated IOL strength and horse height, body weight, and age, and between calculated IOL strength and corneal diameter. 28 clinically normal adult horses (56 eyes). Axial globe lengths and anterior chamber depths were measured ultrasonographically. Corneal curvatures were determined with a modified photokeratometer and brightness-mode ultrasonographic images. Data were used in the Binkhorst equation to calculate the predicted IOL strength for each eye. The calculated IOL strengths were compared with a repeated-measures ANOVA. Corneal curvature values (photokeratometer vs brightness-mode ultrasonographic images) were compared with a paired t test. Coefficients of determination were used to measure associations. Calculated IOL strengths (range, 15.4 to 30.1 diopters) differed significantly among horses. There was a significant difference in the corneal curvatures as determined via the 2 methods. Weak associations were found between calculated IOL strength and horse height and between calculated IOL strength and vertical corneal diameter. Calculated IOL strength differed significantly among horses. Because only weak associations were detected between calculated IOL strength and horse height and vertical corneal diameter, these factors would not serve as reliable indicators for selection of the IOL strength for a specific horse.
GaAs Substrates for High-Power Diode Lasers
NASA Astrophysics Data System (ADS)
Mueller, Georg; Berwian, Patrick; Buhrig, Eberhard; Weinert, Berndt
GaAs substrate crystals with low dislocation density (Etch-Pit Density (EPD) < 500,^-2) and Si-doping ( ~10^18,^-3) are required for the epitaxial production of high-power diode-lasers. Large-size wafers (= 3 mathrm{in} -> >=3,) are needed for reducing the manufacturing costs. These requirements can be fulfilled by the Vertical Bridgman (VB) and Vertical Gradient Freeze (VGF) techniques. For that purpose we have developed proper VB/VGF furnaces and optimized the thermal as well as the physico-chemical process conditions. This was strongly supported by extensive numerical process simulation. The modeling of the VGF furnaces and processes was made by using a new computer code called CrysVUN++, which was recently developed in the Crystal Growth Laboratory in Erlangen.GaAs crystals with diameters of 2 and 3in were grown in pyrolytic Boron Nitride (pBN) crucibles having a small-diameter seed section and a conical part. Boric oxide was used to fully encapsulate the crystal and the melt. An initial silicon content in the GaAs melt of c (melt) = 3 x10^19,^-3 has to be used in order to achieve a carrier concentration of n = (0.8- 2) x10^18,^-3, which is the substrate specification of the device manufacturer of the diode-laser. The EPD could be reduced to values between 500,^-2 and 50,^-2 with a Si-doping level of 8 x10^17 to 1 x10^18,^-3. Even the 3in wafers have rather large dislocation-free areas. The lowest EPDs ( <100,^-2) are achieved for long seed wells of the crucible.
NASA Astrophysics Data System (ADS)
Wang, Da-Yang; Jin, Ning-De; Zhuang, Lian-Xin; Zhai, Lu-Sheng; Ren, Ying-Yu
2018-07-01
Three types of rotating electric field conductance sensors (REFCSs) with four, six, and eight electrodes are designed and optimized in this paper to measure the water holdup of oil–gas–water three-phase flow in vertical upward 20 mm inner diameter pipe. The geometric parameters of the REFCSs are optimized using finite element method to access highly sensitive and homogeneous detection fields. The performance of the REFCSs in the water holdup measurement of three-phase flows is experimentally evaluated by generalizing the Maxwell equation. Based on the measured water holdup from the REFCSs, the slippage behaviors in oil–gas–water are uncovered and the superficial velocity of the water phase is determined. The results show that the REFCSs present a high resolution in the water holdup measurement. The REFCS with eight electrodes has better performance than those with four- and six-electrodes, which indicates that its configuration and geometric parameters are more suitable for vertical oil–gas–water three-phase flow measurement in 20 mm inner diameter pipe.
76 FR 9608 - Certain Welded Large Diameter Line Pipe From Mexico
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-18
... Large Diameter Line Pipe From Mexico AGENCY: United States International Trade Commission. ACTION... duty order on certain welded large diameter line pipe from Mexico. For further information concerning... welded large diameter line pipe from Mexico would not be likely to lead to continuation or recurrence of...
The New Dual-beam Spectropluviometer Concept
NASA Astrophysics Data System (ADS)
Delahaye, J. Y.; Barthes, L.; Golé, P.; Lavergnat, J.; Vinson, J. P.
A Dual Beam Spectropluviometer (DBS) measuring the equivalent diameter D, the vertical velocity V and the time T of arrival of particles is presented. Its main advan- tage over previous optical disdrometers is the extensive measurement range of atmo- spheric precipitations near ground. In particular, 0.15 mm diameter particles can be observed in quiet laboratory conditions and 0.2 mm is the smallest diameter observed in the outdoor turbulent air velocity field. The means for obtaining such results are (i) two uniform beams of rectangular cross-section 2 mm in height, 40 mm in width and 250 mm in length, with a 2 mm vertical gap, (ii) a dual 16-bit analog to digital converter, (iii) a dedicated program for extracting the 3 parameters in real time by computing the signal slopes and determining the correlation between both channels, (iii) various means for reducing splashing and vibration. Laboratory tests and typical rain measurements are shown. The DBS is particularly suited for extensive atmospheric and radio propagation research applications where the smallest drops were not correctly estimated in the distributions because of the lack of appropriate measurement devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, D; Turney, DE; Anantharaman, B
2014-04-24
The morphology of Zn electrodeposits is studied on carbon-coated transmission electron microscopy grids. At low over-potentials (eta = -50 mV), the morphology develops by aggregation at two distinct length scales: similar to 5 nm diameter monocrystalline nanoclusters form similar to 50 nm diameter polycrystalline aggregates, and the aggregates form a branched network. Epitaxial (00 (0) over bar2) growth above an overpotential of vertical bar eta(c)vertical bar > 125 mV leads to the formation of hexagonal single crystals up to 2 mu m in diameter. Potentiostatic current transients were used to calculate the nucleation rate from Scharifker et al.'s model. Themore » exp(eta) dependence of the nucleation rates indicates that atomistic nucleation theory explains the nucleation process better than Volmer-Weber theory. A kinetic model is provided using the rate equations of vapor solidification to simulate the evolution of the different morphologies. On solving these equations, we show that aggregation is attributed to cluster impingement and cluster diffusion while single-crystal formation is attributed to direct attachment.« less
Status of MSBS Study at NAL in 1995
NASA Technical Reports Server (NTRS)
Sawada, Hideo; Suenaga, Hisasi; Kunimasu, Tetuya; Kohno, Takashi
1996-01-01
Magnetic field intensity and currents passing through the coils of the National Aerospace Laboratory (NAL) 1O cm Magnetic Suspension and Balance System (MSBS) were measured while a cylindrical model was oscillated along x,y,z and also about y and z axes, respectively. The model was made of alnico 5 and was 8 mm in diameter and 60 mm long. Two kinds of tests were carried out. Amplitude of the oscillation was varied at a frequency of 10 Hz. Frequency was varied from 1 to 50 Hz in the other test. Results of the tests show that the relation between coil currents and magnetic force acting on the model is affected by frequency. They also show that the relation between measured magnetic field intensity and the force in vertical direction is independent of the frequency below 30 Hz. Using the measured magnetic field intensity, the vertical force can be evaluated at the MSBS instantaneously when a model moves at frequencies below 30 Hz. A static drag force calibration test was carried out at the 60 cm MSBS. Obtained relationships between measured drag coil currents and loads shows large hysteresis.
Fixed Base Modal Testing Using the NASA GRC Mechanical Vibration Facility
NASA Technical Reports Server (NTRS)
Staab, Lucas D.; Winkel, James P.; Suarez, Vicente J.; Jones, Trevor M.; Napolitano, Kevin L.
2016-01-01
The Space Power Facility at NASA's Plum Brook Station houses the world's largest and most powerful space environment simulation facilities, including the Mechanical Vibration Facility (MVF), which offers the world's highest-capacity multi-axis spacecraft shaker system. The MVF was designed to perform sine vibration testing of a Crew Exploration Vehicle (CEV)-class spacecraft with a total mass of 75,000 pounds, center of gravity (cg) height above the table of 284 inches, diameter of 18 feet, and capability of 1.25 gravity units peak acceleration in the vertical and 1.0 gravity units peak acceleration in the lateral directions. The MVF is a six-degree-of-freedom, servo-hydraulic, sinusoidal base-shake vibration system that has the advantage of being able to perform single-axis sine vibration testing of large structures in the vertical and two lateral axes without the need to reconfigure the test article for each axis. This paper discusses efforts to extend the MVF's capabilities so that it can also be used to determine fixed base modes of its test article without the need for an expensive test-correlated facility simulation.
The formation of spikes in the displacement of miscible fluids
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.; Schroer, R. T.
2004-01-01
We report on experiments in which a more viscous fluid displaces a less viscous one in a vertical cylindrical tube. These experiments were performed using silicone oils in a vertical pipette of small diameter. The more viscous fluid also had a slightly larger density than the less viscous fluid. In the initial configuration, the fluids were at rest, and the interface was nominally flat. A dye was added to the more viscous fluid for ease of observation of the interface between the fluids. The flow was initiated by pumping the more viscous fluid into the less viscous one. The displacement velocity was such that the Reynolds number was smaller than unity and the Peclet number for mass transfer between the fluids was large compared to unity. For upward displacement of the more viscous fluid from an initially stable configuration, an axisymmetric finger was observed under all conditions. However, a needle-shaped spike was seen to propagate from the main finger in many cases, similar to that observed by Petitjeans and Maxworthy for the displacement of a more viscous fluid by a less viscous one.
Dynamics of Oscillating and Rotating Liquid Drop using Electrostatic Levitator
NASA Astrophysics Data System (ADS)
Matsumoto, Satoshi; Awazu, Shigeru; Abe, Yutaka; Watanabe, Tadashi; Nishinari, Katsuhiro; Yoda, Shinichi
2006-11-01
In order to understand the nonlinear behavior of liquid drop with oscillatory and/or rotational motions, an experimental study was performed. The electrostatic levitator was employed to achieve liquid drop formation on ground. A liquid drop with about 3 mm in diameter was levitated. The oscillation of mode n=2 along the vertical axis was induced by an external electrostatic force. The oscillatory motions were observed to clarify the nonlinearities of oscillatory behavior. A relationship between amplitude and frequency shift was made clear and the effect of frequency shift on amplitude agreed well with the theory. The frequency shift became larger with increasing the amplitude of oscillation. To confirm the nonlinear effects, we modeled the oscillation by employing the mass-spring-damper system included the nonlinear term. The result indicates that the large-amplitude oscillation includes the effect of nonlinear oscillation. The sound pressure was imposed to rotate the liquid drop along a vertical axis by using a pair of acoustic transducers. The drop transited to the two lobed shape due to centrifugal force when nondimensional angular velocity exceeded to 0.58.
NASA Astrophysics Data System (ADS)
Gilani, Neda; Towfighi, Jafar; Rashidi, Alimorad; Mohammadi, Toraj; Omidkhah, Mohammad Reza; Sadeghian, Ahmad
2013-04-01
Separation of H2S from binary mixtures of H2S/CH4 using vertically aligned carbon nanotube membranes fabricated in anodic aluminum oxide (AAO) template was studied experimentally. Carbon nanotubes (CNTs) were grown in five AAO templates with different pore diameters using chemical vapor deposition, and CNT/AAO membranes with tubular carbon nanotube structure and open caps were selected for separation of H2S. For this, two tubular CNT/AAO membranes were fabricated with the CNT inner diameters of 23 and 8 nm. It was found that permeability and selectivity of the membrane with inner diameter of 23 nm for CNT were independent of upstream feed pressure and H2S feed concentration unlike that of CNT having an inner diameter of 8 nm. Selectivity of these membranes for separation of H2S was obtained in the ranges of 1.36-1.58 and 2.11-2.86, for CNTs with internal diameters of 23 and 8 nm, respectively. In order to enhance the separation of H2S from H2S/CH4 mixtures, dodecylamine was used to functionalize the CNT/AAO membrane with higher selectivity. The results showed that for amido-functionalized membrane, both upstream feed pressure and H2S partial pressure in the feed significantly increased H2S permeability, and selectivity for H2S being in the range of 3.0-5.57 respectively.
Crossflow between subchannels in a 5 x 5 rod-bundle geometry
NASA Astrophysics Data System (ADS)
Lee, Jungjin; Park, Hyungmin
2017-11-01
In the present study, we experimentally investigate the single-phase (water as a working fluid) flow in a vertical 5 x 5 rod-bundle geometry using a particle image velociemtry, especially focusing on the crossflow phenomena between subchannels. This crossflow phenomena is very important in determining the performance and safety of nuclear power plant. To measure the flow behind the rod, it is made of FEP (Fluorinated Ethylene Propylene) to achieve the index matching. The ratio of pitch between rods and rod diameter is 1.4, and the considered Reynolds number based on a hydraulic diameter of a channel and an axial bulk velocity is 10000. Also, the typical grid spacer is installed periodically along the streamwise direction. Depending on the location of subchannel (e.g., distance to the side wall or grid spacer), the flow (turbulence) statistics show large variations that will be discussed in detail. Furthermore, we will suggest a modified crossflow model that can explain the varying crossflow phenomena more clearly. Supported by NRF Grant (NRF-2016M2B2A9A02945068) of the Korean government.
Nonlinear quasi-static analysis of ultra-deep-water top-tension riser
NASA Astrophysics Data System (ADS)
Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun
2017-09-01
In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.
8. View of DR 3 antenna showing lower front connector, ...
8. View of DR 3 antenna showing lower front connector, third from left vertical member at first level above foundation level, showing small diameter turnbuckle stays, vertical member with flange connection, and various struts and connectors with antenna assembly in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
KODAMA, Nao; KOSE, Katsumi
2016-01-01
Echo-planar imaging (EPI) sequences were developed for a 9.4 Tesla vertical standard bore (∼54 mm) superconducting magnet using an unshielded gradient coil optimized for live mice imaging and a data correction technique with reference scans. Because EPI requires fast switching of intense magnetic field gradients, eddy currents were induced in the surrounding metallic materials, e.g., the room temperature bore, and this produced serious artifacts on the EPI images. We solved the problem using an unshielded gradient coil set of proper size (outer diameter = 39 mm, inner diameter = 32 mm) with time control of the current rise and reference scans. The obtained EPI images of a phantom and a plant sample were almost artifact-free and demonstrated the promise of our approach. PMID:27001398
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
The total number of craters within a bin of mean diameter, and the number of craters of each degradational type within that bin are tabulated. Rim-to-rim diameters were measured at arbitrary azimuths for rectified photos or photos taken at vertical incidence (most lunar photos), and at azimuths paralleling a local tangent to the limb for oblique images.
Duff, J.H.; Murphy, F.; Fuller, C.C.; Triska, F.J.
1998-01-01
A new method for collecting pore-water samples in sand and gravel streambeds is presented. We developed a mini drivepoint solution sampling (MINIPOINT) technique to collect pore-water samples at 2.5-cm vertical resolution. The sampler consisted of six small-diameter stainless steel drivepoints arranged in a 10-cm-diameter circular array. In a simple procedure, the sampler was installed in the streambed to preset drivepoint depths of 2.5, 5.0, 7.5, 10.0, 12.5, and 15.0 cm. Sampler performance was evaluated in the Shingobee River, Minnesota, and Pinal Creek, Arizona, by measuring the vertical gradient of chloride concentration in pore water beneath the streambed that was established by the uninterrupted injection to the stream for 3 d. Pore-water samples were withdrawn from all drivepoints simultaneously. In the first evaluation, the vertical chloride gradient was unchanged at withdrawal rates between 0.3 and 4.0 ml min-1 but was disturbed at higher rates. In the second evaluation, up to 70 ml of pore water was withdrawn from each drivepoint at a withdrawal rate of 2.5 ml min-1 without disturbing the vertical chloride gradient. Background concentrations of other solutes were also determined with MINIPOINT sampling. Steep vertical gradients were present for biologically reactive solutes such as DO, NH4/+, NO3/-, and dissolved organic C in the top 20 cm of the streambed. These detailed solute profiles in the hyporheic zone could not have been determined without a method for close interval vertical sampling that does not disturb natural hydrologic mixing between stream water and groundwater.
Workers painting the Flag and Meatball on the VAB
2007-01-03
Elevated platforms are seen hanging in front of the NASA Logo on the side of Kennedy Space Center's Vehicle Assembly Building. Also in view on the east side of the building are platforms on the facility's large vertical doors. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet.
Epitaxial MoS2/GaN structures to enable vertical 2D/3D semiconductor heterostructure devices
NASA Astrophysics Data System (ADS)
Ruzmetov, D.; Zhang, K.; Stan, G.; Kalanyan, B.; Eichfeld, S.; Burke, R.; Shah, P.; O'Regan, T.; Crowne, F.; Birdwell, A. G.; Robinson, J.; Davydov, A.; Ivanov, T.
MoS2/GaN structures are investigated as a building block for vertical 2D/3D semiconductor heterostructure devices that utilize a 3D substrate (GaN) as an active component of the semiconductor device without the need of mechanical transfer of the 2D layer. Our CVD-grown monolayer MoS2 has been shown to be epitaxially aligned to the GaN lattice which is a pre-requisite for high quality 2D/3D interfaces desired for efficient vertical transport and large area growth. The MoS2 coverage is nearly 50 % including isolated triangles and monolayer islands. The GaN template is a double-layer grown by MOCVD on sapphire and allows for measurement of transport perpendicular to the 2D layer. Photoluminescence, Raman, XPS, Kelvin force probe microscopy, and SEM analysis identified high quality monolayer MoS2. The MoS2/GaN structures electrically conduct in the out-of-plane direction and across the van der Waals gap, as measured with conducting AFM (CAFM). The CAFM current maps and I-V characteristics are analyzed to estimate the MoS2/GaN contact resistivity to be less than 4 Ω-cm2 and current spreading in the MoS2 monolayer to be approx. 1 μm in diameter. Epitaxial MoS2/GaN heterostructures present a promising platform for the design of energy-efficient, high-speed vertical devices incorporating 2D layered materials with 3D semiconductors.
Steady flow past a vertical surface-piercing circular cylinder
NASA Astrophysics Data System (ADS)
Chaplin, J. R.; Teigen, P.
2003-09-01
This paper describes experiments in which a vertical surface-piercing circular cylinder with a large draught was towed at steady speeds through water initially at rest. The cylinder diameter d was 210mm, and measurements were made of pressures around its circumference at elevations between 2.4d below still water level to 0.7d above, at Froude numbers (based on d) up to 1.67. The tests were carried out at a constant ratio of Reynolds number to Froude number of 2.79×105. The total resistance coefficient reached a maximum at a Froude number of about 1, when that part of the loading that can be attributed to the presence of the free surface was equivalent to the submerged form drag on a length of cylinder of about 0.9d. Measurements are also presented of the run-up on the front of the cylinder and of the depth of the depression at the back. Previous measurements by Hay (Flow about Semi-submerged Cylinders of Finite Length. Princeton University Report, Princeton, NJ, 1947) for the case of a cylinder with a submerged free end, and by Hsieh (Proc. Am. Soc. Civil Eng. 90 (1964) 161) of forces on cylinders standing on the floor of an open channel, are reanalysed. In most respects these results are found to be compatible with the present data for a cylinder of large draught.
NASA Astrophysics Data System (ADS)
Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.
2008-12-01
Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.
Vertically Aligned Carbon Nanotubes at Different Temperatures by Spray Pyrolysis Techniques
NASA Astrophysics Data System (ADS)
Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.
Vertically aligned arrays of multi-walled carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at temperatures higher than 700°C. Using this simple method, we report the successful growth of vertically aligned nanotubes of ~300μm length and diameter in the range of ?20-80nm on Si(100) substrate. The ferrocene acts as an in situ Fe catalyst precursor, forming the nano-sized metallic iron particles for formation of VACNTs on the Si substrate. The morphological characteristics of VACNTs are confirmed by SEM, TEM and Raman spectroscopy and growth mechanism is discussed in short.
NASA Astrophysics Data System (ADS)
Afre, Rakesh A.; Soga, T.; Jimbo, T.; Kumar, Mukul; Ando, Y.; Sharon, M.
2005-10-01
Vertically aligned carbon nanotubes (VACNTs) were grown by spray pyrolysis of turpentine oil and ferrocene mixture at 700 °C. Using this simple method, we report the successful growth of vertically aligned nanotubes of 300 μm length and diameter in the range of 50-100 nm on Si(1 0 0) substrate. The ferrocene act as an in situ Fe catalyst precursor and forming the nanosize iron particles for formation of VACNTs on Si and quartz substrates. Morphological differences between aligned carbon nanotubes grown on different substrates are studied and discussed by SEM, TEM and Raman spectroscopy characterizations.
Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria
Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...
2014-09-20
Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.
NASA Astrophysics Data System (ADS)
Levchenya, A. M.; Smirnov, E. M.; Zhukovskaya, V. D.
2018-05-01
The present contribution covers RANS-based simulation of 3D flow near a cylinder introduced into turbulent vertical-plate free-convection boundary layer. Numerical solutions were obtained with a finite-volume Navier-Stokes code of second-order accuracy using refined grids. Peculiarities of the flow disturbed by the obstacle are analyzed. Cylinder-diameter effect on the horseshoe vortex size and its position is evaluated.
Quantifying the Hierarchical Order in Self-Aligned Carbon Nanotubes from Atomic to Micrometer Scale.
Meshot, Eric R; Zwissler, Darwin W; Bui, Ngoc; Kuykendall, Tevye R; Wang, Cheng; Hexemer, Alexander; Wu, Kuang Jen J; Fornasiero, Francesco
2017-06-27
Fundamental understanding of structure-property relationships in hierarchically organized nanostructures is crucial for the development of new functionality, yet quantifying structure across multiple length scales is challenging. In this work, we used nondestructive X-ray scattering to quantitatively map the multiscale structure of hierarchically self-organized carbon nanotube (CNT) "forests" across 4 orders of magnitude in length scale, from 2.0 Å to 1.5 μm. Fully resolved structural features include the graphitic honeycomb lattice and interlayer walls (atomic), CNT diameter (nano), as well as the greater CNT ensemble (meso) and large corrugations (micro). Correlating orientational order across hierarchical levels revealed a cascading decrease as we probed finer structural feature sizes with enhanced sensitivity to small-scale disorder. Furthermore, we established qualitative relationships for single-, few-, and multiwall CNT forest characteristics, showing that multiscale orientational order is directly correlated with number density spanning 10 9 -10 12 cm -2 , yet order is inversely proportional to CNT diameter, number of walls, and atomic defects. Lastly, we captured and quantified ultralow-q meridional scattering features and built a phenomenological model of the large-scale CNT forest morphology, which predicted and confirmed that these features arise due to microscale corrugations along the vertical forest direction. Providing detailed structural information at multiple length scales is important for design and synthesis of CNT materials as well as other hierarchically organized nanostructures.
Xu, Liang; Yu, Fei-Hai; van Drunen, Elles; Schieving, Feike; Dong, Ming; Anten, Niels P R
2012-04-01
Grazing is a complex process involving the simultaneous occurrence of both trampling and defoliation. Clonal plants are a common feature of heavily grazed ecosystems where large herbivores inflict the simultaneous pressures of trampling and defoliation on the vegetation. We test the hypothesis that physiological integration (resource sharing between interconnected ramets) may help plants to deal with the interactive effects of trampling and defoliation. In a field study, small and large ramets of the root-suckering clonal tree Populus simonii were subjected to two levels of trampling and defoliation, while connected or disconnected to other ramets. Plant responses were quantified via survival, growth, morphological and stem mechanical traits. Disconnection and trampling increased mortality, especially in small ramets. Trampling increased stem length, basal diameter, fibrous root mass, stem stiffness and resistance to deflection in connected ramets, but decreased them in disconnected ones. Trampling decreased vertical height more in disconnected than in connected ramets, and reduced stem mass in disconnected ramets but not in connected ramets. Defoliation reduced basal diameter, leaf mass, stem mass and leaf area ratio, but did not interact with trampling or disconnection. Although clonal integration did not influence defoliation response, it did alleviate the effects of trampling. We suggest that by facilitating resource transport between ramets, clonal integration compensates for trampling-induced damage to fine roots.
NASA Astrophysics Data System (ADS)
Liao, Chengwei; Zhang, Yupeng; Pan, Chunxu
2012-12-01
In this study, a novel vertically aligned carbon material, named "cow-nipple-like" submicro-nano carbon isomeric structure, was synthesized by the thermal decomposition of C2H2 in a chemical-vapor deposition system with a high-voltage external electric field. The microstructures were characterized by using scanning electron microscopy, high-resolution transmission electron microscopy, and Raman spectroscopy, respectively. The results revealed that (1) the total height of the carbon isomeric structure was in a rang of 90-250 nm; (2) the carbon isomeric structure consisted of a submicro- or nano-sized hemisphere carbon ball with 30-120 nm in diameter at the bottom and a vertically grown carbon nanotube with 10-40 nm in diameter upon the carbon ball; (3) there was a sudden change in diameter at the junction of the carbon ball and carbon nanotube. In addition, the carbon isomeric structure showed an excellent controllability, that is, the density, height, and diameter could be controlled effectively by adjusting the precursor ferrocene concentration in the catalytic solution and C2H2 ventilation time. A possible growth model was proposed to describe the formation mechanism, and a theoretic calculation was carried out to discuss the effect of high-voltage electric field upon the growth of the carbon isomeric structure.
Rissech, Carme; López-Costas, Olalla; Turbón, Daniel
2013-01-01
The goal of the present study is to examine cross-sectional information on the growth of the humerus based on the analysis of four measurements, namely, diaphyseal length, transversal diameter of the proximal (metaphyseal) end of the shaft, epicondylar breadth and vertical diameter of the head. This analysis was performed in 181 individuals (90 ♂ and 91 ♀) ranging from birth to 25 years of age and belonging to three documented Western European skeletal collections (Coimbra, Lisbon and St. Bride). After testing the homogeneity of the sample, the existence of sexual differences (Student's t- and Mann-Whitney U-test) and the growth of the variables (polynomial regression) were evaluated. The results showed the presence of sexual differences in epicondylar breadth above 20 years of age and vertical diameter of the head from 15 years of age, thus indicating that these two variables may be of use in determining sex from that age onward. The growth pattern of the variables showed a continuous increase and followed first- and second-degree polynomials. However, growth of the transversal diameter of the proximal end of the shaft followed a fourth-degree polynomial. Strong correlation coefficients were identified between humeral size and age for each of the four metric variables. These results indicate that any of the humeral measurements studied herein is likely to serve as a useful means of estimating sub-adult age in forensic samples.
Li, Yanying; Wang, Yanming; Ryu, Seunghwa; Marshall, Ann F; Cai, Wei; McIntyre, Paul C
2016-03-09
Kinking, a common anomaly in nanowire (NW) vapor-liquid-solid (VLS) growth, represents a sudden change of the wire's axial growth orientation. This study focuses on defect-free kinking during germanium NW VLS growth, after nucleation on a Ge (111) single crystal substrate, using Au-Ge catalyst liquid droplets of defined size. Statistical analysis of the fraction of kinked NWs reveals the dependence of kinking probability on the wire diameter and the growth temperature. The morphologies of kinked Ge NWs studied by electron microscopy show two distinct, defect-free, kinking modes, whose underlying mechanisms are explained with the help of 3D multiphase field simulations. Type I kinking, in which the growth axis changes from vertical [111] to ⟨110⟩, was observed in Ge NWs with a nominal diameter of ∼ 20 nm. This size coincides with a critical diameter at which a spontaneous transition from ⟨111⟩ to ⟨110⟩ growth occurs in the phase field simulations. Larger diameter NWs only exhibit Type II kinking, in which the growth axis changes from vertical [111] directly to an inclined ⟨111⟩ axis during the initial stages of wire growth. This is caused by an error in sidewall facet development, which produces a shrinkage in the area of the (111) growth facet with increasing NW length, causing an instability of the Au-Ge liquid droplet at the tip of the NW.
Allam, Riham S. H. M.; Ahmed, Rania A.
2015-01-01
Purpose. To study features of the lower punctum in normal subjects using spectral domain anterior segment optical coherence tomography (SD AS-OCT). Methods. Observational cross-sectional study that included 147 punctae (76 subjects). Punctae were evaluated clinically for appearance, position, and size. AS-OCT was used to evaluate the punctal shape, contents, and junction with the vertical canaliculus. Inner and outer diameters as well as depth were measured. Results. 24 males and 52 females (mean age 44 ± 14.35 y) were included. Lower punctum was perceived by OCT to be an area with an outer diameter (mean 412.16 ± 163 μm), inner diameter (mean 233.67 ± 138.73 μm), and depth (mean 251.7 ± 126.58 μm). The OCT measured outer punctum diameter was significantly less than that measured clinically (P: 0.000). Seven major shapes were identified. The junction with the vertical canaliculus was detectable in 44%. Fluid was detected in 34%, one of which had an air bubble; however, 63% of punctae showed no contents and 4% had debris. Conclusions. AS-OCT can be a useful tool in understanding the anatomy of the punctum and distal lacrimal system as well as tear drainage physiology. Measuring the punctum size may play a role in plugs fitting. PMID:26090219
An Experimental study of Corner Turning in a Granular Ammonium Nitrate Based Explosive
NASA Astrophysics Data System (ADS)
Sorber, Susan; Taylor, Peter
2007-06-01
A novel experimental geometry has been designed to perform controlled studies of corner turning in a ``tap density'' granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionization probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive which is initiated on axis from below by a smaller diameter cylinder of the same explosive or a booster charge. Four experiments have been performed on a granular Ammonium Nitrate based non ideal explosive (NIE). Two experiments were initiated directly from a PE4 booster charge and two were initiated from a train including a booster charge and a 1'' diameter Copper cylinder containing the same NIE. Data from the four experiments was reproducible and observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster initiated geometries with a higher input shock pressure into the NIE gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.
An Experimental Study of Corner Turning in a Granular Ammonium Nitrate Based Explosive
NASA Astrophysics Data System (ADS)
Sorber, S.; Taylor, P.; Burns, M.
2007-12-01
A novel experimental geometry has been designed to perform controlled studies of corner turning in a "tap density" granular explosive. It enables the study of corner turning and detonation properties with high speed framing camera, piezo probes and ionisation probes. The basic geometry consists of a large diameter PMMA cylinder filled with the granular explosive and is initiated on axis from below by a smaller diameter cylinder of granular explosive or a booster charge. Four experiments were performed on a granular Ammonium Nitrate based non-ideal explosive (NIE). Two experiments were initiated directly with the PE4 booster and two were initiated from a train including a booster charge and a 1″ diameter copper cylinder containing the same NIE. Experimental data from the four experiments was reproducible and the observed detonation and shock waves showed good 2-D symmetry. Detonation phase velocity on the vertical side of the main container was observed and both shock and detonation velocities were observed in the corner turning region along the base of the main container. Analysis of the data shows that the booster-initiated geometries with a higher input shock pressure into the granular explosive gave earlier detonation arrival at the lowest probes on the container side. The corner turning data is compared to a hydrocode calculation using a simple JWL++ reactive burn model.
HECTOR: A 240kV micro-CT setup optimized for research
NASA Astrophysics Data System (ADS)
Masschaele, Bert; Dierick, Manuel; Van Loo, Denis; Boone, Matthieu N.; Brabant, Loes; Pauwels, Elin; Cnudde, Veerle; Van Hoorebeke, Luc
2013-10-01
X-ray micro-CT has become a very powerful and common tool for non-destructive three-dimensional (3D) visualization and analysis of objects. Many systems are commercially available, but they are typically limited in terms of operational freedom both from a mechanical point of view as well as for acquisition routines. HECTOR is the latest system developed by the Ghent University Centre for X-ray Tomography (http://www.ugct.ugent.be) in collaboration with X-Ray Engineering (XRE bvba, Ghent, Belgium). It consists of a mechanical setup with nine motorized axes and a modular acquisition software package and combines a microfocus directional target X-ray source up to 240 kV with a large flat-panel detector. Provisions are made to install a line-detector for a maximal operational range. The system can accommodate samples up to 80 kg, 1 m long and 80 cm in diameter while it is also suited for high resolution (down to 4 μm) tomography. The bi-directional detector tiling is suited for large samples while the variable source-detector distance optimizes the signal to noise ratio (SNR) for every type of sample, even with peripheral equipment such as compression stages or climate chambers. The large vertical travel of 1 m can be used for helical scanning and a vertical detector rotation axis allows laminography experiments. The setup is installed in a large concrete bunker to allow accommodation of peripheral equipment such as pumps, chillers, etc., which can be integrated in the modular acquisition software to obtain a maximal correlation between the environmental control and the CT data taken. The acquisition software does not only allow good coupling with the peripheral equipment but its scripting feature is also particularly interesting for testing new and exotic acquisition routines.
Separation of methane-nitrogen mixtures using synthesis vertically aligned carbon nanotube membranes
NASA Astrophysics Data System (ADS)
Gilani, Neda; Daryan, Jafar Towfighi; Rashidi, Alimorad; Omidkhah, Mohammad Reza
2012-03-01
In this paper, capabilities of carbon nanotube (CNT) membranes fabricated in cylindrical pores of anodic aluminum oxide (AAO) substrate to separate the binary mixtures of CH4/N2 are studied experimentally. For this purpose, the permeability and selectivity of three CNT/AAO membranes with different growth time as 6 h, 12 h and 18 h are investigated. CNTs are grown vertically through holes of AAO with average pore diameter of 45 nm by chemical vapor deposition (CVD) of acetylene gas. CNT/AAO membranes with the same CNTs' outer diameters and different inner diameters are synthesized. The AAO are characterized by SEM analysis. In addition, SEM, TEM, BET N2 adsorption analysis and Raman spectroscopy are employed to characterize aligned CNTs. Study on permeability and selectivity of membranes for three binary mixtures of CH4/N2 showed that when the CNT inner diameters are 34 nm and 24 nm, viscous flow is the governing mechanism and insignificant selectivities of 1.2-1.24 are achieved. However, the membrane with CNT inner diameter and wall thickness of 8 nm and 16 nm respectively is considerably selective for CH4 over N2. It was also found that CH4 mole fraction in the feed and upstream feed pressure have major effect on permeability and selectivity. The membrane with 18 h synthesis time showed the selectivity is in the range of 1.8-3.85. The enhancement factor for N2 single gas diffusivity was also found to be about three times larger than that predicted by Knudsen diffusion model.
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco
2018-06-07
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
Self-assembled Co-BaZrO 3 nanocomposite thin films with ultra-fine vertically aligned Co nanopillars
Huang, Jijie; Li, Leigang; Lu, Ping; ...
2017-05-11
A simple one-step pulsed laser deposition (PLD) method has been applied to grow self-assembled metal-oxide nanocomposite thin films. The as-deposited Co-BaZrO 3 films show high epitaxial quality with ultra-fine vertically aligned Co nanopillars (diameter <5 nm) embeded in BZO matrix. The diameter of the nanopillars can be further tuned by varying the deposition frequency. The metal and oxide phases grow separately without inter-diffusion or mixing. Taking advantage of this unique structure, a high saturation magnetization of ~1375 emu/cm 3 in the Co- BaZrO 3 nanocomposites has been achieved and further confirmed by Lorentz microscopy imaging in TEM. Furthermore, the coercivitymore » values of this nanocomposite thin films range from 600 Oe (20 Hz) to 1020 Oe (2 Hz), which makes the nanocomposite an ideal candidate for high-density perpendicular recording media.« less
NASA Astrophysics Data System (ADS)
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco
2018-06-01
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
[Eyeball shape in children with emmetropia and myopia].
Dolzhich, G I; Shurygina, I P; Shapovalova, V M
1991-01-01
In order to determine the eyeball shape, the authors have carried out ultrasonic biometry of its three major parameters, the anteroposterior axis (APA), horizontal diameter (HD), and vertical diameter (VD), and estimated the ratios of these values (APA/HD and APA/VD) in children with emmetropia (234 eyes) and those with slight and medium-grave myopia (660 eyes), aged 7 to 14. The findings evidence a compressed ellipsoidal shape of the eyeball, presenting as a vertical oval, in all subjects with emmetropic refraction, whatever their age. In myopia the eyeball shape transforms, and all the eyeball sizes are increased, but the APA size is growing more rapidly than the rest sizes, and the eyeball acquires the ball shape with a trend to an elongated ellipsoidal shape. The mean APA length in 7-14-year-old children with emmetropia was up to 23 +/- 0.15 mm, whereas in those with the ball shape of the eyeball it was distended.
Experimental study on flow boiling heat transfer of LNG in a vertical smooth tube
NASA Astrophysics Data System (ADS)
Chen, Dongsheng; Shi, Yumei
2013-10-01
An experimental apparatus is set up in this work to study the upward flow boiling heat transfer characteristics of LNG (liquefied natural gas) in vertical smooth tubes with inner diameters of 8 mm and 14 mm. The experiments were performed at various inlet pressures from 0.3 to 0.7 MPa. The results were obtained over the mass flux range from 16 to 200 kg m-2 s-1 and heat fluxes ranging from 8.0 to 32 kW m-2. The influences of quality, heat flux and mass flux, tube diameter on the heat transfer characteristic are examined and discussed. The comparisons of the experimental heat transfer coefficients with the predicted values from the existing correlations are analyzed. The correlation by Zou et al. [16] shows the best accuracy with the RMS deviation of 31.7% in comparison with the experimental data.
Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest
Lutz, James A.; Larson, Andrew J.; Swanson, Mark E.; Freund, James A.
2012-01-01
Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. Although both scaling theory and competition theory make predictions about the relative composition and spatial patterns of large-diameter trees compared to smaller diameter trees, these predictions are rarely tested. We established a 25.6 ha permanent plot within which we tagged and mapped all trees ≥1 cm dbh, all snags ≥10 cm dbh, and all shrub patches ≥2 m2. We sampled downed woody debris, litter, and duff with line intercept transects. Aboveground live biomass of the 23 woody species was 507.9 Mg/ha, of which 503.8 Mg/ha was trees (SD = 114.3 Mg/ha) and 4.1 Mg/ha was shrubs. Aboveground live and dead biomass was 652.0 Mg/ha. Large-diameter trees comprised 1.4% of individuals but 49.4% of biomass, with biomass dominated by Abies concolor and Pinus lambertiana (93.0% of tree biomass). The large-diameter component dominated the biomass of snags (59.5%) and contributed significantly to that of woody debris (36.6%). Traditional scaling theory was not a good model for either the relationship between tree radii and tree abundance or tree biomass. Spatial patterning of large-diameter trees of the three most abundant species differed from that of small-diameter conspecifics. For A. concolor and P. lambertiana, as well as all trees pooled, large-diameter and small-diameter trees were spatially segregated through inter-tree distances <10 m. Competition alone was insufficient to explain the spatial patterns of large-diameter trees and spatial relationships between large-diameter and small-diameter trees. Long-term observations may reveal regulation of forest biomass and spatial structure by fire, wind, pathogens, and insects in Sierra Nevada mixed-conifer forests. Sustaining ecosystem functions such as carbon storage or provision of specialist species habitat will likely require different management strategies when the functions are performed primarily by a few large trees as opposed to many smaller trees. PMID:22567132
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Pye, Steven; Hardin, Ernest
This study considers the feasibility of large diameter deep boreholes for waste disposal. The conceptual approach considers examples of deep large diameter boreholes that have been successfully drilled, and also other deep borehole designs proposed in the literature. The objective for large diameter boreholes would be disposal of waste packages with diameters of 22 to 29 inches, which could enable disposal of waste forms such as existing vitrified high level waste. A large-diameter deep borehole design option would also be amenable to other waste forms including calcine waste, treated Na-bonded and Na-bearing waste, and Cs and Sr capsules.
Effective solidity in vertical axis wind turbines
NASA Astrophysics Data System (ADS)
Parker, Colin M.; Leftwich, Megan C.
2016-11-01
The flow surrounding vertical axis wind turbines (VAWTs) is investigated using particle imaging velocimetry (PIV). This is done in a low-speed wind tunnel with a scale model that closely matches geometric and dynamic properties tip-speed ratio and Reynolds number of a full size turbine. Previous results have shown a strong dependance on the tip-speed ratio on the wake structure of the spinning turbine. However, it is not clear whether this is a speed or solidity effect. To determine this, we have measured the wakes of three turbines with different chord-to-diameter ratios, and a solid cylinder. The flow is visualized at the horizontal mid-plane as well as the vertical mid-plane behind the turbine. The results are both ensemble averaged and phase averaged by syncing the PIV system with the rotation of the turbine. By keeping the Reynolds number constant with both chord and diameter, we can determine how each effects the wake structure. As these parameters are varied there are distinct changes in the mean flow of the wake. Additionally, by looking at the vorticity in the phase averaged profiles we can see structural changes to the overall wake pattern.
Cylindrical surface profile and diameter measuring tool and method
NASA Technical Reports Server (NTRS)
Currie, James R. (Inventor); Kissel, Ralph R. (Inventor); Oliver, Charles E. (Inventor); Smith, Earnest C. (Inventor); Redmon, John W. (Inventor); Wallace, Charles C. (Inventor); Swanson, Charles P. (Inventor)
1989-01-01
A tool is shown having a cross beam assembly (15) made of beams (18, 19, 20, 21) joined by a center box structure (23). The assembly (15) is adapted to be mounted by brackets (16) to the outer end of a cylindrical case (11). The center box structure (23) has a vertical shaft (25) rotatably mounted therein and extending beneath the assembly (15). Secured to the vertical shaft (25) is a radius arm (28) which is adapted to rotate with shaft (25). On the longer end of the radius arm (28) is a measuring tip (30) which contacts the cylindrical surface to be measured and which provides an electric signal representing the radius of the cylindrical surface from the center of rotation of the radius arm (28). An electric servomotor (49) rotates the vertical shaft (25) and an electronic resolver (61) provides an electric signal representing the angle of rotation of the shaft (25). The electric signals are provided to a computer station (73) which has software for its computer to calculate and print out the continuous circumference profile of the cylindrical surface, and give its true diameter and the deviations from the ideal circle.
Katalinic, Andrej; Trinajstic Zrinski, Magda; Roksandic Vrancic, Zlatka; Spalj, Stjepan
2017-02-01
The study focused on the influence of screwdriver design in combination with and without predrilling a pilot hole of inner implant diameter on insertion torque of orthodontic mini-implants, controlling for cortical thickness and vertical insertion force as cofactors. One hundred twenty mini-implants (Forestadent) of 1.7 mm in diameter and 6 and 8 mm in length were manually inserted into 120 swine rib bone samples. Maximal insertion torque as a measure of primary stability and vertical force were measured. The study included procedures with and without pilot hole and different screwdriver handles and shaft length and 2 implant lengths. Design of manual screwdriver does not modify insertion torque to a significant extent. In multiple linear regression model, significant predictors of insertion torque are thicker cortical bone (explaining 16.6% of variability), higher vertical force at maximal torque (13.5%), 6-mm implant length (2.5%), and the presence of pilot hole (2.3%). Handle type and shaft length of manual screwdriver do not significantly influence insertion torque, whereas predrilling a pilot hole has low impact on torque values of manually inserted self-drilling orthodontic mini-implants.
NASA Astrophysics Data System (ADS)
Taucher, Jan; Stange, Paul; Algueró-Muñiz, María; Bach, Lennart T.; Nauendorf, Alice; Kolzenburg, Regina; Büdenbender, Jan; Riebesell, Ulf
2018-05-01
Particle aggregation and the consequent formation of marine snow alter important properties of biogenic particles (size, sinking rate, degradability), thus playing a key role in controlling the vertical flux of organic matter to the deep ocean. However, there are still large uncertainties about rates and mechanisms of particle aggregation, as well as the role of plankton community structure in modifying biomass transfer from small particles to large fast-sinking aggregates. Here we present data from a high-resolution underwater camera system that we used to observe particle size distributions and formation of marine snow (aggregates >0.5 mm) over the course of a 9-week in situ mesocosm experiment in the Eastern Subtropical North Atlantic. After an oligotrophic phase of almost 4 weeks, addition of nutrient-rich deep water (650 m) initiated the development of a pronounced diatom bloom and the subsequent formation of large marine snow aggregates in all 8 mesocosms. We observed a substantial time lag between the peaks of chlorophyll a and marine snow biovolume of 9-12 days, which is much longer than previously reported and indicates a marked temporal decoupling of phytoplankton growth and marine snow formation during our study. Despite this time lag, our observations revealed substantial transfer of biomass from small particle sizes (single phytoplankton cells and chains) to marine snow aggregates of up to 2.5 mm diameter (ESD), with most of the biovolume being contained in the 0.5-1 mm size range. Notably, the abundance and community composition of mesozooplankton had a substantial influence on the temporal development of particle size spectra and formation of marine snow aggregates: While higher copepod abundances were related to reduced aggregate formation and biomass transfer towards larger particle sizes, the presence of appendicularia and doliolids enhanced formation of large marine snow. Furthermore, we combined in situ particle size distributions with measurements of particle sinking velocity to compute instantaneous (potential) vertical mass flux. However, somewhat surprisingly, we did not find a coherent relationship between our computed flux and measured vertical mass flux (collected by sediment traps in 15 m depth). Although the onset of measured vertical flux roughly coincided with the emergence of marine snow, we found substantial variability in mass flux among mesocosms that was not related to marine snow numbers, and was instead presumably driven by zooplankton-mediated alteration of sinking biomass and export of small particles (fecal pellets). Altogether, our findings highlight the role of zooplankton community composition and feeding interactions on particle size spectra and formation of marine snow aggregates, with important implications for our understanding of particle aggregation and vertical flux of organic matter in the ocean.
Guo, Yin; Liu, Li Juan; Tang, Ping; Feng, Yi; Lv, Yan Yun; Wu, Min; Xu, Liang; Jonas, Jost B
2018-03-01
To assess the development and enlargement of the parapapillary gamma zone in school children. This school-based prospective longitudinal study included Chinese children attending grade 1 in 2011 and returning for yearly follow-up examinations until 2016. These examinations consisted of a comprehensive ocular examination with biometry and color fundus photographs. The parents underwent a standardized interview. The parapapillary gamma zone was defined as the area with visible sclera at the temporal optic disc margin, and the optic disc itself was measured on fundus photographs. The study included 294 children (mean age in 2016, 11.4 ± 0.5 years [range, 10-13 years]; mean axial length, 24.1 ± 1.1 mm [range, 21.13-27.29 mm]). In multivariate analysis, larger increases in the gamma zone area during the study period were correlated (coefficient of determination for bivariate analysis [r2], r2 = 0.69) with larger increases in the vertical-to-horizontal disc diameter ratios (P < 0.001; standardized regression coefficient beta [beta], 0.53; nonstandardized regression coefficient B [B], 4.05; 95% confidence intervals [CI], 3.37-4.73), larger axial elongation (P < 0.001; beta, 0.32; B, 0.37; 95% CI, 0.26-0.47), a larger vertical disc diameter at baseline (P < 0.001; beta, 0.22; B, 0.98; 95% CI, 0.62-1.33), a larger gamma zone area at baseline (P < 0.001; beta, 0.14; B, 0.41; 95% CI, 0.17-0.64), and more time spent indoors studying (P = 0.015; beta, 0.10; B, 0.09; 95% CI, 0.02-0.17). The development and enlargement of the gamma zone in the temporal parapapillary region were associated with an optic disc rotation around the vertical disc axis as indicated by an increasing vertical-to-horizontal disc diameter ratio. These morphologic findings fit with the notion of a backward pull of the temporal peripapillary sclera through the optic nerve dura mater in axially elongated eyes.
A Study Regarding the Possibility of True Polar Wander on the Asteroid Vesta
NASA Astrophysics Data System (ADS)
Karimi, M.; Dombard, A. J.
2014-12-01
The asteroid 4 Vesta, with an average diameter of ~525 km, is the second most massive asteroid in the solar system. Most of our knowledge about this differentiated asteroid comes from the Howardite-Eucrite-Diogenite class of meteorites that originated from Vesta, images provided by Hubble Space Telescope, and data from the Dawn spacecraft that orbited Vesta from July 2011 to September 2012. Notably, these close-range data confirmed what Hubble images suggested: a highly oblate shape in which the equatorial radius is ~60 km greater than the polar radius, a shape consistent with Vesta's short rotational period of ~5.3 hr. These images also revealed the presence of two large impact craters near the asteroid's south pole. Rheasilvia, the younger and larger crater at ~500 km in diameter, is superimposed over Veneneia, ~400 km in diameter. The occurrence of two large impacts near a pole, which possesses a relatively small area (less than 30% of the surface), is highly improbable. Thus, we investigate the possibility of True Polar Wander. We hypothesize that the integrated mass deficit of these two basins applied a torque to the lithosphere to reorient the surface relative to the spin axis and thereby placing these basins near the pole. In order for this phenomenon to occur, however, the lithosphere needs to be pliable enough to allow relaxation of the ancient rotational bulge and concurrent development of the current bulge. We have previously explored whether the lithosphere of Vesta could support the large-scale (~20 vertical km) topography of the basins (short answer: it can). Here, we explore whether this lithosphere could also permit True Polar Wander. We use the Finite Element Method and a viscoelastic rheology to simulate the relaxation of an oblate Vesta under a range of plausible thermal scenarios consistent with Vesta's expected budget of long-lived radiogenic nuclides. Our results indicate that under reasonable thermal conditions, the relaxation of the rotational bulge of Vesta and subsequent True Polar Wander cannot happen. As unlikely as it may be, it seems that both large impacts occurred in the south polar region of Vesta.
NASA Astrophysics Data System (ADS)
Jones, S. M.; Lovell, B.; Crosby, A. G.
2011-12-01
The topographies of Africa and Antarctica form patterns of interlocking swells. The admittance between swell topography and free-air gravity indicates that these swells are dynamically supported by mantle convection, with swell diameters of 1850±450 km and full heights between 800 and 1800 m. The implication is that mantle convection not only supports swells surrounding hotspots but also influences topography across the entire surface areas of Africa and Antarctica. Topographic swells and associated gravity anomalies with diameters over 1000 km are observed on other continents and throughout the oceans. Numerical models support the idea that dynamically supported swell topography is a worldwide phenomenon. We investigate whether dynamically supported swells are also observed throughout the geological record, focussing on intensively studied Mesozoic- Cenozoic sedimentary rocks around Britain and Ireland. Since 200 Ma, this region was affected by three dynamically supported swells that peaked during the Middle Jurassic, Early Cretaceous and Eocene (c. 175, 146 and 56 Ma), each several thousand kilometres in diameter, and the region now lies on the edge of the modern swell centred on Iceland. The diameters and maximum heights of the Mesozoic British swells and the modern African and Antarctic swells are similar. The ancient British swells grew in 5--10 Myr and decayed over 20--30 Myr, suggesting vertical motion rates comparable to those estimated from geomorphological studies of Africa. Igneous production rate and swell height are not correlated in the modern and the geological records. Vertical motions of Britain and Ireland, a typical piece of continental lithosphere far from a destructive plate boundary, have been demonstrably affected by convective support for over half of the past 200 Ma period. Mantle convection should be considered as a common control on regional sea-level at time periods from 10s down to 1 Myr or less, and with vertical motion rates in the order 10s to 100s m/Myr.
Khurana, Pardeep; Sharma, Arun; Sodhi, Kiranmeet Kaur
2013-12-01
The aims of this study were to investigate the effect of implant fine threads on crestal bone stress compared to a standard smooth implant collar and to analyze how different abutment diameters influenced the crestal bone stress level. Three-dimensional finite element imaging was used to create a cross-sectional model in SolidWorks 2007 software of an implant (5-mm platform and 10 mm in length) placed in the premolar region of the mandible. The implant model was created to resemble a commercially available fine thread implant. Abutments of different diameters (5.0 mm: standard, 4.5 mm, 4.0 mm, and 3.5 mm) were loaded with a force of 100 N at 90° vertical and 40° oblique angles. Finite element analysis was done in COSMOSWorks software, which was used to analyze the stress patterns in bone, especially in the crestal region. Upon loading, the fine thread implant model had greater stress at the crestal bone adjacent to the implant than the smooth neck implant in both vertical and oblique loading. When the abutment diameter decreased progressively from 5.0 mm to 4.5 mm to 4 mm and to 3.5 mm the thread model showed a reduction of stress at the crestal bone level from 23.2 MPa to 15.02 MPa for fine thread and from 22.7 to 13.5 MPa for smooth collar implant group after vertical loading and from 43.7 MPa to 33.1 MPa in fine thread model and from 36.9 to 20.5 MPa in smooth collar implant model after oblique loading. Fine threads increase crestal stress upon loading. Reduced abutment diameter that is platform switching resulted in less stress translated to the crestal bone in the fine thread and smooth neck.
Wind tunnel investigation of a 14 foot vertical axis windmill
NASA Technical Reports Server (NTRS)
Muraca, R. J.; Guillotte, R. J.
1976-01-01
A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.
2007-06-15
of 2006, the GBU - 39 /B Small Diameter Bomb (SDB) was first employed by Air Force aircraft (Weisgerber 2006). This newly developed munition was...Vertical, Limited horizontal 500# Impact, Delay ≤ 3m GBU-38 JDAM GPS/INS Vertical, Horizontal 500# Proximity, Impact, Delay ~10m GBU - 39 /B...between 5 to 15 nautical miles, though LGB maximum employment range may be further limited by the need to acquire and lase the target. The GBU - 39 offers
Structure and Characterization of Vertically Aligned Single-Walled Carbon Nanotube Bundles
Márquez, Francisco; López, Vicente; Morant, Carmen; ...
2010-01-01
Arrmore » ays of vertically aligned single-walled carbon nanotube bundles, SWCNTs, have been synthesized by simple alcohol catalytic chemical vapor deposition process, carried out at 800 ° C . The formed SWCNTs are organized in small groups perpendicularly aligned and attached to the substrate. These small bundles show a constant diameter of ca. 30 nm and are formed by the adhesion of no more than twenty individual SWCNTs perfectly aligned along their length.« less
1979-01-01
along the .beaches of glacial Lake Agassiz in Manitoba (Saylor 1975). The Plano Culture followed and was partially contemporaneous 4 with the Folsom...Culture in parts of the northern Plains. However, no Plano -like artifacts have been recovered in the Sheyenne River basin, and they are not abundant in...vertical incisions on the neck. The boss protrudes from the exterior *" surface and is 5.7 mm deep and 5.7 mm in diameter. The vertical incisions , made
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
... Administration [A-588-857] Welded Large Diameter Line Pipe From Japan: Notice of Rescission of Antidumping Duty... Japan. The review covers five producers/exporters of welded large diameter line pipe from Japan, which... diameter line pipe from Japan for the period December 1, 2010, through November 30, 2011. See Antidumping...
Burgess, Stephen S O; Pittermann, Jarmila; Dawson, Todd E
2006-02-01
The hydraulic limitation hypothesis of Ryan & Yoder (1997, Bioscience 47, 235-242) suggests that water supply to leaves becomes increasingly difficult with increasing tree height. Within the bounds of this hypothesis, we conjectured that the vertical hydrostatic gradient which gravity generates on the water column in tall trees would cause a progressive increase in xylem 'safety' (increased resistance to embolism and implosion) and a concomitant decrease in xylem 'efficiency' (decreased hydraulic conductivity). We based this idea on the historically recognized concept of a safety-efficiency trade-off in xylem function, and tested it by measuring xylem conductivity and vulnerability to embolism of Sequoia sempervirens branches collected at a range of heights. Measurements of resistance of branch xylem to embolism did indeed show an increase in 'safety' with height. However, the expected decrease in xylem 'efficiency' was not observed. Instead, sapwood-specific hydraulic conductivities (Ks) of branches increased slightly, while leaf-specific hydraulic conductivities increased dramatically, with height. The latter could be largely explained by strong vertical gradients in specific leaf area. The increase in Ks with height corresponded to a decrease in xylem wall fraction (a measure of wall thickness), an increase in percentage of earlywood and slight increases in conduit diameter. These changes are probably adaptive responses to the increased transport requirements of leaves growing in the upper canopy where evaporative demand is greater. The lack of a safety-efficiency tradeoff may be explained by opposing height trends in the pit aperture and conduit diameter of tracheids and the major and semi-independent roles these play in determining xylem safety and efficiency, respectively.
Oblique impacts: Catastrophic vs. protracted effects
NASA Technical Reports Server (NTRS)
Schultz, P. H.
1988-01-01
Proposed impacts as the cause of biologic catastrophes at the end of the Cretaceous and Eocene face several enigmas: protracted extinctions, even prior to the stratigraphic cosmogenic signature; widespread but non-uniform dispersal of the meteoritic component; absence of a crater of sufficient size; and evidence for massive intensive fires. Various hypotheses provide reasonable mechanisms for mass mortalities: global cooling by continental impact sites; global warming by oceanic impact sites; contrasting effects of asteroidal, cometary, and even multiple impacts; and stress on an already fragile global environment. Yet not every known large impact is associated with a major biologic catastrophe. An alternative is expanded: the consequences of an oblique impact. The most probable angle of impact is 45 deg with the probability for an impact at smaller angles decreasing: A vertical impact is as rare as a tangential impact with a 5 deg impact angle or less occurring only 8 percent of the time. Consequently a low-angle impact is a rare but probable event. Laboratory experiments at the NASA-Ames Vertical Gun Range reveal important information about cratering efficiency, impact vaporization, projectile dispersal, and phenomenology, thereby providing perspective for possible consequences of such an impact on both the Earth and Moon. Oblique impacts are rare but certain events through geologic time: A 5 deg impact by a 2 km-diameter impactor on the Earth would occur only once in about 18 my with a 10 km-diameter once in about 450 my. Major life extinctions beginning prior to the stratigraphic cosmogenic signature or protracted extinctions seemingly too long after the proposed event may not be evidence against an impact as a cause but evidence for a more complex but probable sequence of events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dresel, P.E.; Smith, R.M.; Williams, B.A.
2000-05-01
This report describes the results of the preliminary investigation of elevated tritium in groundwater discovered near the 618-11 burial ground, located in the eastern part of the Hanford Site. Tritium in one well downgradient of the burial ground was detected at levels up to 8,140,000 pCi/L. The 618-11 burial ground received a variety of radioactive waste from the 300 Area between 1962 and 1967. The burial ground covers 3.5 hectare (8.6 acre) and contains trenches, large diameter caissons, and vertical pipe storage units. The burial ground was stabilized with a native sediment covering. The Energy Northwest reactor complex was constructedmore » immediately east of the burial ground.« less
The structure of the stem endodermis in etiolated pea seedlings
NASA Technical Reports Server (NTRS)
Sack, F. D.
1987-01-01
Differentiation of the endodermis was examined in third internodes of etiolated Pisum sativum L. cv. Alaska seedlings. The endodermis in young internodes contains large, sedimented amyloplasts; in older internodes, a casparian strip differentiates and the endodermis becomes depleted of starch except for the proximal region of the stem, which retains sedimented amyloplasts and remains graviresponsive. Sedimentation occurs in the hook but does not occur consistently until cells reach the base of the hook, where the axis becomes vertical, rapid cell elongation starts, and amyloplast diameter increases substantially. Contact between endoplasmic reticulum and amyloplasts was observed. Endoplasmic reticulum is not distributed polarly with respect to gravity. No symplastic or apoplastic blockages exist in the endodermis at the level of the stem where lateral gradients may be established during tropic curvature.
2007-01-03
KENNEDY SPACE CENTER, FLA. -- Elevated platforms are seen hanging in front of the NASA Logo on the side of Kennedy Space Center's Vehicle Assembly Building. Also in view on the east side of the building are platforms on the facility's large vertical doors. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/George Shelton
NASA Technical Reports Server (NTRS)
Choi, J.; Cruz, Magda; Metzl, R.; Wang, W. S.; Aggarwal, M. D.; Penn, Benjamin G.; Frazier, Donald O.
1998-01-01
A new process for producing large bulk single crystals of benzil (C6H5COCOC6H5) is reported in this paper. Good quality crystals have been successfully grown using this approach to crystal growth. This method seems to be very promising for other thermally stable NLO organic materials also. The entire contents vycor crucible 1.5 inch in diameter and 2 inch deep was converted to single crystal. Purity of the starting growth material is also an important factor in the final quality of the grown crystals. The entire crystal can be very easily taken out of the crucible by simple maneuvering. Initial characterization of the grown crystals indicated that the crystals are as good as other crystals grown by conventional Bridgman Stockbarger technique.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-25
... Diameter Line Pipe From Japan; Scheduling of a Full Five-Year Review Concerning the Antidumping Duty Order on Welded Large Diameter Line Pipe From Japan AGENCY: United States International Trade Commission... revocation of the antidumping duty order on welded large diameter line pipe from Japan would be likely to...
Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solovyov, VF; Wu, LJ; Rupich, MW
2014-12-15
Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.
Rectifying properties of p-GaN nanowires and an n-silicon heterojunction vertical diode.
Manna, Sujit; Ashok, Vishal D; De, S K
2010-12-01
The heterojunction of a Pd-doped p-GaN nanowire and n-Si (100) is fabricated vertically by the vapor-liquid-solid method. The average diameter of the nanowire is 40 nm. The vertical junction reveals a significantly high rectification ratio of 10(3) at 5 V, a moderate ideality factor of ∼2, and a high breakdown voltage of ∼40 V. The charge transport across the p-n junction is dominated by the electron-hole recombination process. The voltage dependence of capacitance indicates a graded-type junction. The resistance of the junction decreases with an increase in the bias voltage confirmed by impedance measurements.
Advanced high performance vertical hybrid synthetic jet actuator
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor)
2011-01-01
The present invention comprises a high performance, vertical, zero-net mass-flux, synthetic jet actuator for active control of viscous, separated flow on subsonic and supersonic vehicles. The present invention is a vertical piezoelectric hybrid zero-net mass-flux actuator, in which all the walls of the chamber are electrically controlled synergistically to reduce or enlarge the volume of the synthetic jet actuator chamber in three dimensions simultaneously and to reduce or enlarge the diameter of orifice of the synthetic jet actuator simultaneously with the reduction or enlargement of the volume of the chamber. The jet velocity and mass flow rate for the present invention will be several times higher than conventional piezoelectric synthetic jet actuators.
Surfzone vorticity in the presence of extreme bathymetric variability
NASA Astrophysics Data System (ADS)
Clark, D.; Elgar, S.; Raubenheimer, B.
2014-12-01
Surfzone vorticity was measured at Duck, NC using a novel 5-m diameter vorticity sensor deployed in 1.75 m water depth. During the 4-week deployment the initially alongshore uniform bathymetry developed 200-m long mega-cusps with alongshore vertical changes of 1.5 m or more. When waves were small and the vorticity sensor was seaward of the surfzone, vorticity variance and mean vorticity varied with the tidally modulated water depth, consistent with a net seaward flux of surfzone-generated vorticity. Vorticity variance increased with incident wave heights up to 2-m. However, vorticity variance remained relatively constant for incident wave heights above 2-m, and suggests that eddy energy may become saturated in the inner surfzone during large wave events. In the presence of mega-cusps the mean vorticity (shear) is often large and generated by bathymetrically controlled rip currents, while vorticity variance remains strongly correlated with the incident wave height. Funded by NSF, ASD(R&E), and WHOI Coastal Ocean Institute.
NASA Astrophysics Data System (ADS)
Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sidorov, V. V.
2017-11-01
Deep foundations are used for the design of high-rise buildings due to a large pressure transfer on the soil base. The foundations of buildings sometimes use barrettes which are able to perceive significant vertical and horizontal loads due to improved lateral surface. Barrettes have increased load bearing capacity as compared with large diameter piles. In modern practice the interaction between barrettes and soil is investigated by analytical and numerical methods and has no sufficient experimental confirmation. The review of experimental methods for the research of the intense stress-strain state of the uniform soil massif at interaction with elements of a deep foundation is provided in this article. Experimental research are planned with the use of laboratory stand for the purpose of qualitative data obtaining on the interaction barrettes with an assessment of a settlement model adequacy and also at the research of the intense stress-strain state by numerical methods.
High compositional homogeneity of CdTe{sub x}Se{sub 1−x} crystals grown by the Bridgman method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.
2015-02-01
We obtained high-quality CdTe{sub x}Se{sub 1−x} (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd{sub x}Zn{sub 1−x}Te (CdZnTe or CZT)« less
High Compositional Homogeneity of CdTe xSe 1-x Crystals Grown by the Bridgman Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.
2015-02-03
We obtained high-quality CdTe xSe 1-x (CdTeSe) crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The resulting compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ~1.0. This uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing highermore » efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional Cd xZn 1-xTe (CdZnTe or CZT).« less
NASA Technical Reports Server (NTRS)
1976-01-01
An investigation was conducted in a 40 foot by 80 foot wind tunnel to determine the aerodynamic/propulsion characteristics of a large scale powered model of a lift/cruise fan V/STOL aircraft. The model was equipped with three 36 inch diameter turbotip X376B fans powered by three T58 gas generators. The lift fan was located forward of the cockpit area and the two lift/cruise fans were located on top of the wing adjacent to the fuselage. The three fans with associated thrust vectoring systems were used to provide vertical, and short, takeoff and landing capability. For conventional cruise mode operation, only the lift/cruise fans were utilized. The data that were obtained include lift, drag, longitudinal and lateral-directional stability characteristics, and control effectiveness. Data were obtained up to speeds of 120 knots at one model height of 20 feet for the conventional aerodynamic lift configuration and at several thrust vector angles for the powered lift configuration.
HFSB-seeding for large-scale tomographic PIV in wind tunnels
NASA Astrophysics Data System (ADS)
Caridi, Giuseppe Carlo Alp; Ragni, Daniele; Sciacchitano, Andrea; Scarano, Fulvio
2016-12-01
A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized droplets. With respect to a single bubble generator, the system increases the rate of bubbles emission by means of transient accumulation and rapid release. The governing parameters of the system are identified and discussed, namely the bubbles production rate, the accumulation and release times, the size of the bubble injector and its location with respect to the wind tunnel contraction. The relations between the above parameters, the resulting spatial concentration of tracers and measurement of dynamic spatial range are obtained and discussed. Large-scale experiments are carried out in a large low-speed wind tunnel with 2.85 × 2.85 m2 test section, where a vertical axis wind turbine of 1 m diameter is operated. Time-resolved tomographic PIV measurements are taken over a measurement volume of 40 × 20 × 15 cm3, allowing the quantitative analysis of the tip-vortex structure and dynamical evolution.
The 3.5-meter telescope enclosure
NASA Astrophysics Data System (ADS)
Brady, Michael H.
1994-04-01
The 3.5-m telescope enclosure is designed to perform two functions as part of the U.S. Air Force's 3.5-m telescope system: (1) to provide weather and temperature protection when the telescope is not in use and (2) to permit open-air operation of the telescope while minimizing atmospheric disturbances in the field of view (FOV). The use of a standard rotating dome is impractical because of the large telescope and its high rotational rate and acceleration. The enclosure is a 40-ft tall cylinder with a diameter of 72 ft. This steel and aluminum structure does not rotate but collapses vertically to fully expose the telescope to the open air and to provide it with an unobscured view of the horizon at all azimuthal angles. To lessen wind disturbances in the FOV, the enclosure has a moderately sloped roof and smooth, vertical walls. To minimize thermal flow, the outer surface has a high-reflectivity, low-emissivity coating and ambient air is forced through the double-skinned walls and roof. These measures make it possible to keep the enclosure surface temperature near that of the ambient air during viewing. With these features, the enclosure adds minimal degradation to the seeing.
[Research report of experimental database establishment of digitized virtual Chinese No.1 female].
Zhong, Shi-zhen; Yuan, Lin; Tang, Lei; Huang, Wen-hua; Dai, Jing-xing; Li, Jian-yi; Liu, Chang; Wang, Xing-hai; Li, Hua; Luo, Shu-qian; Qin, Dulie; Zeng, Shao-qun; Wu, Tao; Zhang, Mei-chao; Wu, Kun-cheng; Jiao, Pei-feng; Lu, Yun-tao; Chen, Hao; Li, Pei-liang; Gao, Yuan; Wang, Tong; Fan, Ji-hong
2003-03-01
To establish digitized virtual Chinese No.1 female (VCH-F1) image database. A 19 years old female cadaver was scanned by CT, MRI, and perfused with red filling material through formal artery before freezing and em- bedding. The whole body was cut by JZ1500A vertical milling machine with a 0.2 mm inter-spacing. All the images was produced by Fuji FinePix S2 Pro camera. The body index of VCH-F1 was 94%. We cut 8 556 sections of the whole body, and each image was 17.5 MB in size and the whole database reached 149.7 GB. We have totally 6 versions of the database for different applications. Compared with other databases, VCH-F1 has good representation of the Chinese body shape, colorful filling material in blood vessels providing enough information for future registration and segmentation. Vertical embedding and cutting helped to retain normal human physiological posture, and the image quality and operation efficiency were improved by using various techniques such as one-time freezing and fixation, double-temperature icehouse, large-diameter milling disc and whole body cutting.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... the following new facilities: (1) An upper reservoir inlet/outlet structure equipped with trash racks... trash racks; (2) a 620-foot-long, 43-foot-diameter vertical shaft connecting the upper reservoir inlet...
29 CFR 1917.121 - Spiral stairways.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 26.67 cm) in height; (3) Minimum loading capability shall be 100 pounds per square foot (4.79kN), and... shall be a minimum of 11/4 inches (3.18 cm) in outside diameter; and (5) Vertical clearance shall be at...
A Vertical Census of Precipitation Characteristics using Ground-based Dual-polarimetric Radar Data
NASA Astrophysics Data System (ADS)
Wolff, D. B.; Petersen, W. A.; Marks, D. A.; Pippitt, J. L.; Tokay, A.; Gatlin, P. N.
2017-12-01
Characterization of the vertical structure/variability of precipitation and resultant microphysics is critical in providing physical validation of space-based precipitation retrievals. In support of NASAs Global Precipitation Measurement (GPM) mission Ground Validation (GV) program, NASA has invested in a state-of-art dual-polarimetric radar known as NPOL. NPOL is routinely deployed on the Delmarva Peninsula in support of NASAs GPM Precipitation Research Facility (PRF). NPOL has also served as the backbone of several GPM field campaigns in Oklahoma, Iowa, South Carolina and most recently in the Olympic Mountains in Washington state. When precipitation is present, NPOL obtains very high-resolution vertical profiles of radar observations (e.g. reflectivity (ZH) and differential reflectivity (ZDR)), from which important particle size distribution parameters are retrieved such as the mass-weight mean diameter (Dm) and the intercept parameter (Nw). These data are then averaged horizontally to match the nadir resolution of the dual-frequency radar (DPR; 5 km) on board the GPM satellite. The GPM DPR, Combined, and radiometer algorithms (such as GPROF) rely on functional relationships built from assumed parametric relationships and/or retrieved parameter profiles and spatial distributions of particle size (PSD), water content, and hydrometeor phase within a given sample volume. Thus, the NPOL-retrieved profiles provide an excellent tool for characterization of the vertical profile structure and variability during GPM overpasses. In this study, we will use many such overpass comparisons to quantify an estimate of the true sub-IFOV variability as a function of hydrometeor and rain type (convective or stratiform). This presentation will discuss the development of a relational database to help provide a census of the vertical structure of precipitation via analysis and correlation of reflectivity, differential reflectivity, mean-weight drop diameter and the normalized intercept parameter of the gamma drop size distribution.
2014-01-01
Nanocomposite electrodes having three-dimensional (3-D) nanoscale architecture comprising of vertically aligned ZnO nanorod array core-polypyrrole (PPy) conducting polymer sheath and the vertical PPy nanotube arrays have been investigated for supercapacitor energy storage. The electrodes in the ZnO nanorod core-PPy sheath structure are formed by preferential nucleation and deposition of PPy layer over hydrothermally synthesized vertical ZnO nanorod array by controlled pulsed current electropolymerization of pyrrole monomer under surfactant action. The vertical PPy nanotube arrays of different tube diameter are created by selective etching of the ZnO nanorod core in ammonia solution for different periods. Cyclic voltammetry studies show high areal-specific capacitance approximately 240 mF.cm-2 for open pore and approximately 180 mF.cm-2 for narrow 30-to-36-nm diameter PPy nanotube arrays attributed to intensive faradic processes arising from enhanced access of electrolyte ions through nanotube interior and exterior. Impedance spectroscopy studies show that capacitive response extends over larger frequency domain in electrodes with PPy nanotube structure. Simulation of Nyquist plots by electrical equivalent circuit modeling establishes that 3-D nanostructure is better represented by constant phase element which accounts for the inhomogeneous electrochemical redox processes. Charge-discharge studies at different current densities establish that kinetics of the redox process in PPy nanotube electrode is due to the limitation on electron transport rather than the diffusive process of electrolyte ions. The PPy nanotube electrodes show deep discharge capability with high coulomb efficiency and long-term charge-discharge cyclic studies show nondegrading performance of the specific areal capacitance tested for 5,000 cycles. PMID:25246867
Harte, Philip T.; Flanagan, Sarah M.
2011-01-01
A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances.
Harte, P.T.; Flanagan, S.M.
2011-01-01
A new tool called ESASS (Enhanced Screen Auger Sampling System) was developed by the U.S. Geological Survey. The use of ESASS, because of its unique U.S. patent design (U.S. patent no. 7,631,705 B1), allows for the collection of representative, depth-specific groundwater samples (vertical profiling) in a quick and efficient manner using a 0.305-m long screen auger during hollow-stem auger drilling. With ESASS, the water column in the flights above the screen auger is separated from the water in the screen auger by a specially designed removable plug and collar. The tool fits inside an auger of standard inner diameter (82.55 mm). The novel design of the system constituted by the plug, collar, and A-rod allows the plug to be retrieved using conventional drilling A-rods. After retrieval, standard-diameter (50.8 mm) observation wells can be installed within the hollow-stem augers. Testing of ESASS was conducted at one waste-disposal site with tetrachloroethylene (PCE) contamination and at two reference sites with no known waste-disposal history. All three sites have similar geology and are underlain by glacial, stratified-drift deposits. For the applications tested, ESASS proved to be a useful tool in vertical profiling of groundwater quality. At the waste site, PCE concentrations measured with ESASS profiling at several depths were comparable (relative percent difference <25%) to PCE concentrations sampled from wells. Vertical profiling with ESASS at the reference sites illustrated the vertical resolution achievable in the profile system; shallow groundwater quality varied by a factor of five in concentration of some constituents (nitrate and nitrite) over short (0.61 m) distances. Ground Water Monitoring & Remediation ?? 2011, National Ground Water Association. No claim to original US government works.
Multi-Terrain Vertical Drop Tests of a Composite Fuselage Section
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.
2008-01-01
A 5-ft-diameter composite fuselage section was retrofitted with four identical blocks of deployable honeycomb energy absorber and crash tested on two different surfaces: soft soil, and water. The drop tests were conducted at the 70-ft. drop tower at the Landing and Impact Research (LandIR) Facility of NASA Langley. Water drop tests were performed into a 15-ft-diameter pool of water that was approximately 42-in. deep. For the soft soil impact, a 15-ft-square container filled with fine-sifted, unpacked sand was located beneath the drop tower. All drop tests were vertical with a nominally flat attitude with respect to the impact surface. The measured impact velocities were 37.4, and 24.7-fps for soft soil and water, respectively. A fuselage section without energy absorbers was also drop tested onto water to provide a datum for comparison with the test, which included energy absorbers. In order to facilitate this type of comparison and to ensure fuselage survivability for the no-energy-absorber case, the velocity of the water impact tests was restricted to 25-fps nominal. While all tests described in this paper were limited to vertical impact velocities, the implications and design challenges of utilizing external energy absorbers during combined forward and vertical impact velocities are discussed. The design, testing and selection of a honeycomb cover, which was required in soft surface and water impacts to transmit the load into the honeycomb cell walls, is also presented.
Asteroid Apophis: Evaluating the impact hazards of such bodies
NASA Astrophysics Data System (ADS)
Shuvalov, V. V.; Svettsov, V. V.; Artem'eva, N. A.; Trubetskaya, I. A.; Popova, O. P.; Glazachev, D. O.
2017-01-01
Soon after the discovery of asteroid 99942 Apophis, it was classified as a potentially hazardous object with a high probability of an impact on the Earth in 2029. Although subsequent observations have substantially reduced the probability of a collision, it has not been ruled out; moreover, similar-sized asteroids in orbits intersecting the Earth's orbit may well be discovered in the near future. We conduct a numerical simulation of an atmospheric passage and an impact on the Earth's surface of a stony cosmic body with a diameter of 300 m and kinetic energy of about 1000 Mt, which roughly corresponds to the parameters of the asteroid Apophis, at atmospheric entry angles of 90° (vertical stroke), 45°, and 30°. The simulation is performed by solving three-dimensional equations of hydrodynamics and radiative transfer equations in the approximations of radiative heat conduction and volume emission. The following hazards are considered: an air shock wave, ejecta from the crater, thermal radiation, and ionospheric disturbances. Our calculations of the overpressure and wind speed on the Earth's surface show that the zone of destruction of the weakest structures can be as large as 700-1000 km in diameter; a decrease in the flight path angle to the surface leads to a marked increase in the area affected by the shock wave. The ionospheric disturbances are global in nature and continue for hours: at distances of several thousand kilometers at altitudes of more than 100 km, air density disturbances are tens of percent and the vertical and horizontal velocity components reach hundreds of meters per second. The impact of radiation on objects on the Earth's surface is estimated by solving the equation of radiative transfer along rays passing through a luminous area. In clear weather, the size of the zone where thermal heating may ignite wood can be as large as 200 km, and the zone of individual fire outbreaks associated with the ignition of flammable materials can be twice as large. In the 100-km central area, which is characterized by very strong thermal damage, there is ignition of structures, roofs, clothes, etc. The human hazardous area increases with the decrease in the trajectory angle, and people may experience thermal effects at distances of up to 250-400 km from the crater.
NASA Astrophysics Data System (ADS)
Matsue, Kazuma; Arakawa, Masahiko; Yasui, Minami; Matsumoto, Rie; Tsujido, Sayaka; Takano, Shota; Hasegawa, Sunao
2015-08-01
Introduction: Recent spacecraft surveys clarified that asteroid surfaces were covered with regolith made of boulders and pebbles such as that found on the asteroid Itokawa. It was also found that surface morphologies of asteroids formed on the regolith layer were modified. For example, the high-resolution images of the asteroid Eros revealed the evidence of the downslope movement of the regolith layer, then it could cause the degradation and the erasure of small impact crater. One possible process to explain these observations is the regolith layer collapse caused by seismic vibration after projectile impacts. The impact-induced seismic wave might be an important physical process affecting the morphology change of regolith layer on asteroid surfaces. Therefore, it is significant for us to know the relationship between the impact energy and the impact-induced seismic wave. So in this study, we carried out impact cratering experiments in order to observe the seismic wave propagating through the target far from the impact crater.Experimental method: Impact cratering experiments were conducted by using a single stage vertical gas gun set at Kobe Univ and a two-stage vertical gas gun set at ISAS. We used quartz sands with the particle diameter of 500μm, and the bulk density of 1.48g/cm3. The projectile was a ball made of polycarbonate with the diameter of 4.75mm and aluminum, titan, zirconia, stainless steel, cupper, tungsten carbide projectile with the diameter of 2mm. These projectiles were launched at the impact velocity from 0.2 to 7km/s. The target was set in a vacuum chamber evacuated below 10 Pa. We measured the seismic wave by using a piezoelectric uniaxial accelerometer.Result: The impact-induced seismic wave was measured to show a large single peak and found to attenuate with the propagation distance. The maximum acceleration of the seismic wave was recognized to have a good relationship with the normalized distance x/R, where x is the propagation distance and R is the crater radius, irrespective of the impact velocities: gmax = 160(x/R)-2.98.
NASA Astrophysics Data System (ADS)
Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun
2017-11-01
2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.
Plume particle collection and sizing from static firing of solid rocket motors
NASA Technical Reports Server (NTRS)
Sambamurthi, Jay K.
1995-01-01
A unique dart system has been designed and built at the NASA Marshall Space Flight Center to collect aluminum oxide plume particles from the plumes of large scale solid rocket motors, such as the space shuttle RSRM. The capability of this system to collect clean samples from both the vertically fired MNASA (18.3% scaled version of the RSRM) motors and the horizontally fired RSRM motor has been demonstrated. The particle mass averaged diameters, d43, measured from the samples for the different motors, ranged from 8 to 11 mu m and were independent of the dart collection surface and the motor burn time. The measured results agreed well with those calculated using the industry standard Hermsen's correlation within the standard deviation of the correlation . For each of the samples analyzed from both MNASA and RSRM motors, the distribution of the cumulative mass fraction of the plume oxide particles as a function of the particle diameter was best described by a monomodal log-normal distribution with a standard deviation of 0.13 - 0.15. This distribution agreed well with the theoretical prediction by Salita using the OD3P code for the RSRM motor at the nozzle exit plane.
NASA Astrophysics Data System (ADS)
Shao, G.; Gallion, J.; Fei, S.
2016-12-01
Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.
NASA Technical Reports Server (NTRS)
Kyte, Frank T.
2003-01-01
Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.
Li, Junxia; Liu, Xingang; Yuan, Liang; Yin, Yan; Li, Zhanqing; Li, Peiren; Ren, Gang; Jin, Lijun; Li, Runjun; Dong, Zipeng; Li, Yiyu; Yang, Junmei
2015-08-01
Vertical distributions of aerosol optical properties based on aircraft measurements over the Loess Plateau were measured for the first time during a summertime aircraft campaign, 2013 in Shanxi, China. Data from four flights were analyzed. The vertical distributions of aerosol optical properties including aerosol scattering coefficients (σsc), absorption coefficients (σab), Angström exponent (α), single scattering albedo (ω), backscattering ratio (βsc), aerosol mass scattering proficiency (Qsc) and aerosol surface scattering proficiency (Qsc(')) were obtained. The mean statistical values of σsc were 77.45 Mm(-1) (at 450 nm), 50.72 Mm(-1) (at 550n m), and 32.02 Mm(-1) (at 700 nm). The mean value of σab was 7.62 Mm(-1) (at 550 nm). The mean values of α, βsc and ω were 1.93, 0.15, and 0.91, respectively. Aerosol concentration decreased with altitude. Most effective diameters (ED) of aerosols were less than 0.8 μm. The vertical profiles of σsc,, α, βsc, Qsc and Qsc(') showed that the aerosol scattering properties at lower levels contributed the most to the total aerosol radiative forcing. Both α and βsc had relatively large values, suggesting that most aerosols in the observational region were small particles. The mean values of σsc, α, βsc, Qsc, Qsc('), σab and ω at different height ranges showed that most of the parameters decreased with altitude. The forty-eight hour backward trajectories of air masses during the observation days indicated that the majority of aerosols in the lower level contributed the most to the total aerosol loading, and most of these particles originated from local or regional pollution emissions. Copyright © 2015. Published by Elsevier B.V.
Normalized vertical ice mass flux profiles from vertically pointing 8-mm-wavelength Doppler radar
NASA Technical Reports Server (NTRS)
Orr, Brad W.; Kropfli, Robert A.
1993-01-01
During the FIRE 2 (First International Satellite Cloud Climatology Project Regional Experiment) project, NOAA's Wave Propagation Laboratory (WPL) operated its 8-mm wavelength Doppler radar extensively in the vertically pointing mode. This allowed for the calculation of a number of important cirrus cloud parameters, including cloud boundary statistics, cloud particle characteristic sizes and concentrations, and ice mass content (imc). The flux of imc, or, alternatively, ice mass flux (imf), is also an important parameter of a cirrus cloud system. Ice mass flux is important in the vertical redistribution of water substance and thus, in part, determines the cloud evolution. It is important for the development of cloud parameterizations to be able to define the essential physical characteristics of large populations of clouds in the simplest possible way. One method would be to normalize profiles of observed cloud properties, such as those mentioned above, in ways similar to those used in the convective boundary layer. The height then scales from 0.0 at cloud base to 1.0 at cloud top, and the measured cloud parameter scales by its maximum value so that all normalized profiles have 1.0 as their maximum value. The goal is that there will be a 'universal' shape to profiles of the normalized data. This idea was applied to estimates of imf calculated from data obtained by the WPL cloud radar during FIRE II. Other quantities such as median particle diameter, concentration, and ice mass content can also be estimated with this radar, and we expect to also examine normalized profiles of these quantities in time for the 1993 FIRE II meeting.
NASA Astrophysics Data System (ADS)
Zhang, P.; Fu, X.
2009-10-01
Application of liquid nitrogen to cooling is widely employed in many fields, such as cooling of the high temperature superconducting devices, cryosurgery and so on, in which liquid nitrogen is generally forced to flow inside very small passages to maintain good thermal performance and stability. In order to have a full understanding of the flow and heat transfer characteristics of liquid nitrogen in micro-tube, high-speed digital photography was employed to acquire the typical two-phase flow patterns of liquid nitrogen in vertically upward micro-tubes of 0.531 and 1.042 mm inner diameters. It was found from the experimental results that the flow patterns were mainly bubbly flow, slug flow, churn flow and annular flow. And the confined bubble flow, mist flow, bubble condensation and flow oscillation were also observed. These flow patterns were characterized in different types of flow regime maps. The surface tension force and the size of the diameter were revealed to be the major factors affecting the flow pattern transitions. It was found that the transition boundaries of the slug/churn flow and churn/annular flow of the present experiment shifted to lower superficial vapor velocity; while the transition boundary of the bubbly/slug flow shifted to higher superficial vapor velocity compared to the results of the room-temperature fluids in the tubes with the similar hydraulic diameters. The corresponding transition boundaries moved to lower superficial velocity when reducing the inner diameter of the micro-tubes. Time-averaged void fraction and heat transfer characteristics for individual flow patterns were presented and special attention was paid to the effect of the diameter on the variation of void fraction.
James, M.R.; Lane, S.J.; Chouet, B.A.
2006-01-01
Seismic signals generated during the flow and degassing of low-viscosity magmas include long-period (LP) and very-long-period (VLP) events, whose sources are often attributed to dynamic fluid processes within the conduit. We present the results of laboratory experiments designed to investigate whether the passage of a gas slug through regions of changing conduit diameter could act as a suitable source mechanism. A vertical, liquid-filled glass tube featuring a concentric diameter change was used to provide canonical insights into potentially deep or shallow seismic sources. As gas slugs ascend the tube, we observe systematic pressure changes varying with slug size, liquid depth, tube diameter, and liquid viscosity. Gas slugs undergoing an abrupt flow pattern change upon entering a section of significantly increased tube diameter induce a transient pressure decrease in and above the flare and an associated pressure increase below it, which stimulates acoustic and inertial resonant oscillations. When the liquid flow is not dominantly controlled by viscosity, net vertical forces on the apparatus are also detected. The net force is a function of the magnitude of the pressure transients generated and the tube geometry, which dictates where, and hence when, the traveling pressure pulses can couple into the tube. In contrast to interpretations of related volcano-seismic data, where a single downward force is assumed to result from an upward acceleration of the center of mass in the conduit, our experiments suggest that significant downward forces can result from the rapid deceleration of relatively small volumes of downward-moving liquid. Copyright 2006 by the American Geophysical Union.
The controlled growth of GaN nanowires.
Hersee, Stephen D; Sun, Xinyu; Wang, Xin
2006-08-01
This paper reports a scalable process for the growth of high-quality GaN nanowires and uniform nanowire arrays in which the position and diameter of each nanowire is precisely controlled. The approach is based on conventional metalorganic chemical vapor deposition using regular precursors and requires no additional metal catalyst. The location, orientation, and diameter of each GaN nanowire are controlled using a thin, selective growth mask that is patterned by interferometric lithography. It was found that use of a pulsed MOCVD process allowed the nanowire diameter to remain constant after the nanowires had emerged from the selective growth mask. Vertical GaN nanowire growth rates in excess of 2 mum/h were measured, while remarkably the diameter of each nanowire remained constant over the entire (micrometer) length of the nanowires. The paper reports transmission electron microscopy and photoluminescence data.
Responses of buried corrugated metal pipes to earthquakes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.A.; Bardet, J.P.
2000-01-01
This study describes the results of field investigations and analyses carried out on 61 corrugated metal pipes (CMP) that were shaken by the 1994 Northridge earthquake. These CMPs, which include 29 small-diameter (below 107 cm) CMPs and 32 large-diameter (above 107 cm) CMPs, are located within a 10 km{sup 2} area encompassing the Van Normal Complex in the Northern San Fernando Valley, in Los Angeles, California. During the Northridge earthquake, ground movements were extensively recorded within the study area. Twenty-eight of the small-diameter CMPs performed well while the 32 large-diameter CMPs underwent performances ranging from no damage to complete collapse.more » The main cause of damage to the large-diameter CMPs was found to be the large ground strains. Based on this unprecedented data set, the factors controlling the seismic performance of the 32 large-diameter CMPs were identified and framed into a pseudostatic analysis method for evaluating the response of large diameter flexible underground pipes subjected to ground strain. The proposed analysis, which is applicable to transient and permanent strains, is capable of describing the observed performance of large-diameter CMPs during the 1994 Northridge earthquake. It indicates that peak ground velocity is a more reliable parameter for analyzing pipe damage than is peak ground acceleration. Results of this field investigation and analysis are useful for the seismic design and strengthening of flexible buried conduits.« less
Remote sensing of PM2.5 from ground-based optical measurements
NASA Astrophysics Data System (ADS)
Li, S.; Joseph, E.; Min, Q.
2014-12-01
Remote sensing of particulate matter concentration with aerodynamic diameter smaller than 2.5 um(PM2.5) by using ground-based optical measurements of aerosols is investigated based on 6 years of hourly average measurements of aerosol optical properties, PM2.5, ceilometer backscatter coefficients and meteorological factors from Howard University Beltsville Campus facility (HUBC). The accuracy of quantitative retrieval of PM2.5 using aerosol optical depth (AOD) is limited due to changes in aerosol size distribution and vertical distribution. In this study, ceilometer backscatter coefficients are used to provide vertical information of aerosol. It is found that the PM2.5-AOD ratio can vary largely for different aerosol vertical distributions. The ratio is also sensitive to mode parameters of bimodal lognormal aerosol size distribution when the geometric mean radius for the fine mode is small. Using two Angstrom exponents calculated at three wavelengths of 415, 500, 860nm are found better representing aerosol size distributions than only using one Angstrom exponent. A regression model is proposed to assess the impacts of different factors on the retrieval of PM2.5. Compared to a simple linear regression model, the new model combining AOD and ceilometer backscatter can prominently improve the fitting of PM2.5. The contribution of further introducing Angstrom coefficients is apparent. Using combined measurements of AOD, ceilometer backscatter, Angstrom coefficients and meteorological parameters in the regression model can get a correlation coefficient of 0.79 between fitted and expected PM2.5.
A ubiquitous ice size bias in simulations of tropical deep convection
NASA Astrophysics Data System (ADS)
Stanford, McKenna W.; Varble, Adam; Zipser, Ed; Strapp, J. Walter; Leroy, Delphine; Schwarzenboeck, Alfons; Potts, Rodney; Protat, Alain
2017-08-01
The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) joint field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions (PSDs), and vertical velocity (w) in high ice water content regions of mature and decaying tropical mesoscale convective systems (MCSs). The resulting dataset is used here to explore causes of the commonly documented high bias in radar reflectivity within cloud-resolving simulations of deep convection. This bias has been linked to overly strong simulated convective updrafts lofting excessive condensate mass but is also modulated by parameterizations of hydrometeor size distributions, single particle properties, species separation, and microphysical processes. Observations are compared with three Weather Research and Forecasting model simulations of an observed MCS using different microphysics parameterizations while controlling for w, TWC, and temperature. Two popular bulk microphysics schemes (Thompson and Morrison) and one bin microphysics scheme (fast spectral bin microphysics) are compared. For temperatures between -10 and -40 °C and TWC > 1 g m-3, all microphysics schemes produce median mass diameters (MMDs) that are generally larger than observed, and the precipitating ice species that controls this size bias varies by scheme, temperature, and w. Despite a much greater number of samples, all simulations fail to reproduce observed high-TWC conditions ( > 2 g m-3) between -20 and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes greater than 1 mm in diameter. Although more mass is distributed to large particle sizes relative to those observed across all schemes when controlling for temperature, w, and TWC, differences with observations are significantly variable between the schemes tested. As a result, this bias is hypothesized to partly result from errors in parameterized hydrometeor PSD and single particle properties, but because it is present in all schemes, it may also partly result from errors in parameterized microphysical processes present in all schemes. Because of these ubiquitous ice size biases, the frequently used microphysical parameterizations evaluated in this study inherently produce a high bias in convective reflectivity for a wide range of temperatures, vertical velocities, and TWCs.
Möhlhenrich, S C; Abouridouane, M; Heussen, N; Hölzle, F; Klocke, F; Modabber, A
2016-11-01
The aim of this study was to investigate the influence of bone density and drilling protocol on heat generation during implant bed preparation. Ten single and 10 gradual implant sites with diameters of 2.8, 3.5, and 4.2mm were prepared in four artificial bone blocks (density types I-IV; D1-D4). Drilling was done at constant speed (1500rpm) and with external irrigation (50ml/min); vertical speed was set at 2mm/s. An infrared camera was used for temperature measurements. Significantly higher temperatures for single drilling were found between 2.8-mm drills in D1 (P=0.0014) and D4 (P<0.0001) and between 3.5-mm drills in D3 (P=0.0087) and D4 (P<0.0001), as well as between 4.2-mm drills in D1 (P<0.0001) and D4 (P=0.0014). Low bone density led to a thermal decrease after single drilling and a thermal increase after gradual drilling. Burs with a large diameter always showed a higher temperature generation. In comparisons between 2.8- and 4.2-mm diameters for both single and gradual drills, significant differences (P<0.001) were noted for bone types II, III, and IV. Single drilling could generate more heat than traditional sequential drilling, and bone density, as well as drill diameter, influenced thermal increases. Particularly in lower-density bone, conventional sequential drilling seems to raise the temperature less. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Haihan; Hodshire, Anna L.; Ortega, John; Greenberg, James; McMurry, Peter H.; Carlton, Annmarie G.; Pierce, Jeffrey R.; Hanson, Dave R.; Smith, James N.
2018-01-01
Most prior field studies of new particle formation (NPF) have been performed at or near ground level, leaving many unanswered questions regarding the vertical extent of NPF. To address this, we measured concentrations of 11-16 nm diameter particles from ground level to 1000 m during the 2013 New Particle Formation Study at the Atmospheric Radiation Measurement Southern Great Plains site in Lamont, Oklahoma. The measurements were performed using a tethered balloon carrying two condensation particle counters that were configured for two different particle cut-off diameters. These observations were compared to data from three scanning mobility particle sizers at the ground level. We observed that 11-16 nm diameter particles were generated at the top region of the boundary layer, and were then rapidly mixed throughout the boundary layer. We also estimate liquid water content of nanoparticles using ground-based measurements of particle hygroscopicity obtained with a Humidified Tandem Differential Mobility Analyzer and vertically resolved relative humidity (RH) and temperature measured with a Raman lidar. Our analyses of these observations lead to the following conclusions regarding nanoparticles formed during NPF events at this site: (1) ground-based observations may not always accurately represent the timing, distribution, and meteorological conditions associated with the onset of NPF; (2) nanoparticles are highly hygroscopic and typically contain up to 50 % water by volume, and during conditions of high RH combined with high particle hygroscopicity, particles can be up to 95 % water by volume; (3) increased liquid water content of nanoparticles at high RH greatly enhances the partitioning of water-soluble species like organic acids into ambient nanoparticles.
Sanders, Duncan A; Swift, Michael R; Bowley, R M; King, P J
2004-11-12
We present event-driven simulation results for single and multiple intruders in a vertically vibrated granular bed. Under our vibratory conditions, the mean vertical position of a single intruder is governed primarily by a buoyancylike effect. Multiple intruders also exhibit buoyancy governed behavior; however, multiple neutrally buoyant intruders cluster spontaneously and undergo horizontal segregation. These effects can be understood by considering the dynamics of two neutrally buoyant intruders. We have measured an attractive force between such intruders which has a range of five intruder diameters, and we provide a mechanistic explanation for the origins of this force.
Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest.
Katayama, Ayumi; Kume, Tomonori; Komatsu, Hikaru; Ohashi, Mizue; Matsumoto, Kazuho; Ichihashi, Ryuji; Kumagai, Tomo'omi; Otsuki, Kyoichi
2014-05-01
Difficult access to 40-m-tall emergent trees in tropical rainforests has resulted in a lack of data related to vertical variations in wood CO2 efflux, even though significant variations in wood CO2 efflux are an important source of errors when estimating whole-tree total wood CO2 efflux. This study aimed to clarify vertical variations in wood CO2 efflux for emergent trees and to document the impact of the variations on the whole-tree estimates of stem and branch CO2 efflux. First, we measured wood CO2 efflux and factors related to tree morphology and environment for seven live emergent trees of two dipterocarp species at four to seven heights of up to ∼ 40 m for each tree using ladders and a crane. No systematic tendencies in vertical variations were observed for all the trees. Wood CO2 efflux was not affected by stem and air temperature, stem diameter, stem height or stem growth. The ratios of wood CO2 efflux at the treetop to that at breast height were larger in emergent trees with relatively smaller diameters at breast height. Second, we compared whole-tree stem CO2 efflux estimates using vertical measurements with those based on solely breast height measurements. We found similar whole-tree stem CO2 efflux estimates regardless of the patterns of vertical variations in CO2 efflux because the surface area in the canopy, where wood CO2 efflux often differed from that at breast height, was very small compared with that at low stem heights, resulting in little effect of the vertical variations on the estimate. Additionally, whole-tree branch CO2 efflux estimates using measured wood CO2 efflux in the canopy were considerably different from those measured using only breast height measurements. Uncertainties in wood CO2 efflux in the canopy did not cause any bias in stem CO2 efflux scaling, but affected branch CO2 efflux. © The Author 2014. Published by Oxford University Press. All rights reserved.
Wei, Yi-qing; Cui, Guo-fa
2014-12-01
Artificial nest can improve the breeding success of birds in the field, and it has been proved to be more effective to endangered species. We surveyed the structure characteristics of natural nest and the status of the use of artificial nests for oriental white stork, Ciconia boyciana, in Honghe National Nature Reserve, Heilongjiang Province. Differences were investigated among the structure characteristics of the used and unused artificial nests, and natural nests based on one-way ANOVA. It was observed that significant differences in the diameter of nest branch, the vertical an- gle between nest branch, the height of the jointthe height of the nest above ground exited in different nest types. On account of the structure characteristics of the natural nests of C. boyciana, the suitable diameter of nest pillar for artificial nest frame should be 15.0-25.0 cm with the height of 5.0-12.0 m, which would be better if they were constructed by some acid-resistant materials, e.g., cement. The number of nest stands should be 3-4 individuals with the diameter of 9.0-12.0 cm, the vertical angle of 45 degrees-60 degrees, and the length of 90.0-140.0 cm.
NASA Astrophysics Data System (ADS)
Williams, J. H.; Johnson, C. D.; Paillet, F. L.
2004-05-01
In the past, flow logging was largely restricted to the application of spinner flowmeters to determine flow-zone contributions in large-diameter production wells screened in highly transmissive aquifers. Development and refinement of tool-measurement technology, field methods, and analysis techniques has greatly extended and enhanced flow logging to include the hydraulic characterization of boreholes and aquifer flow zones at contaminated bedrock sites. State-of-the-art in flow logging will be reviewed, and its application to bedrock-contamination investigations will be presented. In open bedrock boreholes, vertical flows are measured with high-resolution flowmeters equipped with flexible rubber-disk diverters fitted to the nominal borehole diameters to concentrate flow through the measurement throat of the tools. Heat-pulse flowmeters measure flows in the range of 0.05 to 5 liters per minute, and electromagnetic flowmeters measure flows in the range of 0.3 to 30 liters per minute. Under ambient and low-rate stressed (either extraction or injection) conditions, stationary flowmeter measurements are collected in competent sections of the borehole between fracture zones identified on borehole-wall images. Continuous flow, fluid-resistivity, and temperature logs are collected under both sets of conditions while trolling with a combination electromagnetic flowmeter and fluid tool. Electromagnetic flowmeters are used with underfit diverters to measure flow rates greater than 30 liters per minute and suppress effects of diameter variations while trolling. A series of corrections are applied to the flow-log data to account for the zero-flow response, bypass, trolling, and borehole-diameter biases and effects. The flow logs are quantitatively analyzed by matching simulated flows computed with a numerical model to measured flows by varying the hydraulic properties (transmissivity and hydraulic head) of the flow zones. Several case studies will be presented that demonstrate the integration of flow logging in site-characterization activities framework; 2) evaluate cross-connection effects and determine flow-zone contributions to water-quality samples from open boreholes; and 3) design discrete-zone hydraulic tests and monitoring-well completions.
High pressure fiber optic sensor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guida, Renato; Xia, Hua; Lee, Boon K
2013-11-26
The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.
Giorgio Vacchiano; John D. Shaw; R. Justin DeRose; James N. Long
2008-01-01
Diameter increment is an important variable in modeling tree growth. Most facets of predicted tree development are dependent in part on diameter or diameter increment, the most commonly measured stand variable. The behavior of the Forest Vegetation Simulator (FVS) largely relies on the performance of the diameter increment model and the subsequent use of predicted dbh...
Macrosegregation during plane front directional solidification of Csl-1 wt. percent Tll alloy
NASA Technical Reports Server (NTRS)
Sidawi, I. M. S.; Tewari, S. N.
1991-01-01
Macrosegregation produced during vertical Bridgeman directional solidification of Csl-1 wt. pct. Tll in crucibles of varying diameter, from 0.5 to 2.0 cm, was examined. Gravity driven convection is present in the melt even in the smallest crucible diameter of 0.5 cm. Observed solutal profiles are in agreement with the analytical boundary layer model of Favier which describes macrosegregation in the presence of convection. The scintillation efficiency of Csl decreases along the specimen length as the thallium iodide content of the alloy increases.
NASA Technical Reports Server (NTRS)
Smith, C.; Messina, D.
1981-01-01
Cape and Paris meridian observations of the solar limbs which permit an estimate to be made of the solar semi-diameter were surveyed, sampled, and compared with Greenwich and U.S. Naval Observatory observations. Significant systematic errors were found in the Paris work and have been correlated with changes of instruments and observers. Results from the Cape series indicate that work should continue on the compilation of data from Cape observations of the Sun.
NASA Astrophysics Data System (ADS)
Hwang, Ji Hoon; Lee, Young Cheol; Lee, Wook Jin
2018-01-01
Sapphire single crystals have been highlighted for epitaxial of gallium nitride films in high-power laser and light emitting diode industries. In this study, the evolution of thermally induced stress in sapphire during the vertical Bridgman crystal growth process was investigated using a finite element model that simplified the real Bridgman process. A vertical Bridgman process of cylindrical sapphire crystal with a diameter of 50 mm was considered for the model. The solidification history effect during the growth was modeled by the quite element technique. The effects of temperature gradient, seeding interface shape and seeding position on the thermal stress during the process were discussed based on the finite element analysis results.
Numerical Investigation of Liquid Carryover in T-Junction with Different Diameter Ratios
NASA Astrophysics Data System (ADS)
Pao, William; Sam, Ban; Saieed, Ahmed; Tran, Cong Minh
2018-03-01
In offshore Malaysia, T-junction is installed at the production header as a compact separator to tap produced gas from reservoir as fuel gas for power generation. However, excessive liquid carryover in T-junction presents a serious operational issue because it trips the whole production platform. The primary objective of present study is to numerically investigate the liquid carryover due to formation of slug, subsequently its liquid carryover at different diameter ratio. The analyses were carried out on a model with 0.0254 m (1 inch) diameter horizontal main arm and a vertically upward side arm using Volume of Fluid Method. Three different sides to main arm diameter ratio of 1.0, 0.5 and 0.3 were investigated with different gas and liquid superficial velocities. The results showed that, while the general trend is true that smaller diameter ratio T-junction has lesser liquid take off capacity, it has a very high frequency of low liquid carryover threshold. In other words, under slug flow, smaller diameter ratio T-junction is constantly transporting liquid even though at a lesser volume in comparison to regular T-junction.
Evaluation of an earth heated bridge deck.
DOT National Transportation Integrated Search
1984-04-01
The design, construction, performance and analysis of the first ground heat pipe : system to heat an entire bridge deck are detailed. Each of the sixty heat pipes in : this system is comprised of a 6 em (2.4") diameter, 31 m (lOO')_long vertical grou...
2013-01-01
Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed. PMID:24004518
Labunov, Vladimir; Prudnikava, Alena; Bushuk, Serguei; Filatov, Serguei; Shulitski, Boris; Tay, Beng Kang; Shaman, Yury; Basaev, Alexander
2013-09-03
Femtosecond lasers (FSL) are playing an increasingly important role in materials research, characterization, and modification. Due to an extremely short pulse width, interactions of FSL irradiation with solid surfaces attract special interest, and a number of unusual phenomena resulted in the formation of new materials are expected. Here, we report on a new nanostructure observed after the interaction of FSL irradiation with arrays of vertically aligned carbon nanotubes (CNTs) intercalated with iron phase catalyst nanoparticles. It was revealed that the FSL laser ablation transforms the topmost layer of CNT array into iron phase nanospheres (40 to 680 nm in diameter) located at the tip of the CNT bundles of conical shape. Besides, the smaller nanospheres (10 to 30 nm in diameter) are found to be beaded at the sides of these bundles. Some of the larger nanospheres are encapsulated into carbon shells, which sometime are found to contain CNTs. The mechanism of creation of such nanostructures is proposed.
NASA Technical Reports Server (NTRS)
1983-01-01
Water impact tests using a 12.5 inch diameter model representing a 8.56 percent scale of the Space Shuttle Solid Rocket Booster configuration were conducted. The two primary objectives of this SRB scale model water impact test program were: 1. Obtain cavity collapse applied pressure distributions for the 8.56 percent rigid body scale model FWC pressure magnitudes as a function of full-scale initial impact conditions at vertical velocities from 65 to 85 ft/sec, horizontal velocities from 0 to 45 ft/sec, and angles from -10 to +10 degrees. 2. Obtain rigid body applied pressures on the TVC pod and aft skirt internal stiffener rings at initial impact and cavity collapse loading events. In addition, nozzle loads were measured. Full scale vertical velocities of 65 to 85 ft/sec, horizontal velocities of 0 to 45 ft/sec, and impact angles from -10 to +10 degrees simulated.
Jamming of Cylindrical Grains in Featureless Vertical Channels
NASA Astrophysics Data System (ADS)
Baxter, G. William; Barr, Nicholas; Weible, Seth; Friedl, Nicholas
2013-03-01
We study jamming of low aspect-ratio cylindrical Delrin grains falling through a featureless vertical channel. With a grain height less than the grain diameter, these grains resemble aspirin tablets, poker chips, or coins. Unidisperse grains are allowed to fall under the influence of gravity through a uniform channel of square cross-section where the channel width is greater than the grain size and constant along the length of the channel. Channel widths are chosen so that no combination of grain heights and diameters is equal to the channel width. Collections of grains sometimes form jams, stable structures in which the grains are supported by the channel walls and not by grains or walls beneath them. The probability of a jam occurring and the jam's strength are influenced by the grain dimensions and channel width. We will present experimental measurements of the jamming probability and jam strength and discuss the relationship of these results to other experiments and theories. Supported by an Undergraduate Research Grant from Penn State Erie, The Behrend College
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-07
... Pipe From Japan: Notice of Rescission of Antidumping Duty Administrative Review AGENCY: Import... antidumping duty order on welded large diameter line pipe from Japan. The review covers 4 producers/exporters of welded large diameter line pipe from Japan, which are, JFE Steel Corporation, Nippon Steel...
NASA Astrophysics Data System (ADS)
Thendie, Boanerges; Omachi, Haruka; Hirotani, Jun; Ohno, Yutaka; Miyata, Yasumitsu; Shinohara, Hisanori
2017-06-01
Large-diameter semiconductor single-wall carbon nanotubes (s-SWCNTs) have superior mobility and conductivity to small-diameter s-SWCNTs. However, the purification of s-SWCNTs with diameters larger than 1.6 nm by gel filtration has been difficult owing to the low selectivity of the conventional purification method in these large-diameter regions. We report a combination of temperature-controlled gel filtration and the gradient elution technique that we developed to enrich a high-purity s-SWCNT with a diameter as large as 1.9 nm. The thin-film transistor (TFT) device using the 1.9-nm-diameter SWCNT shows an average channel mobility of 23.7 cm2 V-1 s-1, which is much higher than those of conventional SWCNT-TFTs with smaller-diameters of 1.5 and 1.4 nm.
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
Nanowire systems: technology and design
Gaillardon, Pierre-Emmanuel; Amarù, Luca Gaetano; Bobba, Shashikanth; De Marchi, Michele; Sacchetto, Davide; De Micheli, Giovanni
2014-01-01
Nanosystems are large-scale integrated systems exploiting nanoelectronic devices. In this study, we consider double independent gate, vertically stacked nanowire field effect transistors (FETs) with gate-all-around structures and typical diameter of 20 nm. These devices, which we have successfully fabricated and evaluated, control the ambipolar behaviour of the nanostructure by selectively enabling one type of carriers. These transistors work as switches with electrically programmable polarity and thus realize an exclusive or operation. The intrinsic higher expressive power of these FETs, when compared with standard complementary metal oxide semiconductor technology, enables us to realize more efficient logic gates, which we organize as tiles to realize nanowire systems by regular arrays. This article surveys both the technology for double independent gate FETs as well as physical and logic design tools to realize digital systems with this fabrication technology. PMID:24567471
NASA Technical Reports Server (NTRS)
Chan, Kai-Wing; Zhang, WIlliam W.; Saha, Timo; Lehan, John P.; Mazzarella, James; Lozipone, Lawrence; Hong, Melinda; Byron, Glenn
2008-01-01
The Constellation-X Spectroscopy X-Ray Telescopes consists of segmented glass mirrors with an axial length of 200 mm, a width of up to 400 mm, and a thickness of 0.4 mm. To meet the requirement of less than 15 arc-second half-power diameter with the small thickness and relatively large size is a tremendous challenge in opto-mechanics. How shall we limit distortion of the mirrors due to gravity in ground tests, that arises from thermal stress, and that occurs in the process of mounting, affixing and assembling of these mirrors? In this paper, we will describe our current opto-mechanical approach to these problems. We will discuss, in particular, the approach and experiment where the mirrors are mounted vertically by first suspending it at two points.
VICS-120 - A tube-vehicle system test facility.
NASA Technical Reports Server (NTRS)
Marte, J. E.
1973-01-01
Description of a large test facility for carrying out research in support of the aerodynamic and ventilation section of a handbook on subway design. The facility described is vertically oriented and has a test section with a nominal inside diameter of 2 in. and a length of 109 ft. It is capable of operating at Reynolds numbers up to full-scale (60,000,000) under open-end tube conditions. The facility is distinguished by a high degree of flexibility in configuration and operational limits. Details are given concerning the plenum assembly, the test section tubes, the scaffold, the instrumentation, the model launcher, the model arrestor, and the models themselves. A step-by-step account is given of the operation of the facility, and a brief sample of the type of data obtained from the facility is presented.
Vertical integration from the large Hilbert space
NASA Astrophysics Data System (ADS)
Erler, Theodore; Konopka, Sebastian
2017-12-01
We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.
Measuring large-scale vertical motion in the atmosphere with dropsondes
NASA Astrophysics Data System (ADS)
Bony, Sandrine; Stevens, Bjorn
2017-04-01
Large-scale vertical velocity modulates important processes in the atmosphere, including the formation of clouds, and constitutes a key component of the large-scale forcing of Single-Column Model simulations and Large-Eddy Simulations. Its measurement has also been a long-standing challenge for observationalists. We will show that it is possible to measure the vertical profile of large-scale wind divergence and vertical velocity from aircraft by using dropsondes. This methodology was tested in August 2016 during the NARVAL2 campaign in the lower Atlantic trades. Results will be shown for several research flights, the robustness and the uncertainty of measurements will be assessed, ands observational estimates will be compared with data from high-resolution numerical forecasts.
The psychophysical periphery effect crosses the vertical meridian.
Kuyk, T; Niculescu, D
2001-01-01
This study measured the periphery effect and compared its magnitude when the peripheral stimulation was on the same or opposite side of the vertical meridian as the test spot. Test thresholds for a 1.5-deg diameter, 8-ms spot located 1.75 deg to one side of the vertical meridian were elevated by approximately 0.125 log units when a 0.25 cycles/deg (cpd) counterphased grating was presented at a similar eccentric offset on the other side of the vertical meridian. The periphery effect disappeared when the test spot was moved outward to 8-deg eccentricity. When the grating and test were presented on the same side of the vertical meridian, test thresholds at both retinal locations were elevated by the same amount, 0.2 log units. Consistent with the physiology in cat retina, the periphery effect in humans also crosses over the vertical meridian. However, the effect is small and the test spot must be in close proximity to the vertical meridian for it to be observed. Also, the crossover periphery effect is reduced in magnitude by 37.5% compared to when the grating and test are presented on the same side of the vertical meridian. This suggests there may be a difference in how the underlying neural mechanism that transmits the periphery effect signal laterally is organized for sending the periphery effect signal across the vertical meridian as compared to within a retinal hemifield.
All fiber passively Q-switched laser
Soh, Daniel B. S.; Bisson, Scott E
2015-05-12
Embodiments relate to an all fiber passively Q-switched laser. The laser includes a large core doped gain fiber having a first end. The large core doped gain fiber has a first core diameter. The laser includes a doped single mode fiber (saturable absorber) having a second core diameter that is smaller than the first core diameter. The laser includes a mode transformer positioned between a second end of the large core doped gain fiber and a first end of the single mode fiber. The mode transformer has a core diameter that transitions from the first core diameter to the second core diameter and filters out light modes not supported by the doped single mode fiber. The laser includes a laser cavity formed between a first reflector positioned adjacent the large core doped gain fiber and a second reflector positioned adjacent the doped single mode fiber.
NASA Astrophysics Data System (ADS)
Sebok, E.; Karan, S.; Engesgaard, P. K.; Duque, C.
2013-12-01
Due to its large spatial and temporal variability, groundwater discharge to streams is difficult to quantify. Methods using vertical streambed temperature profiles to estimate vertical fluxes are often of coarse vertical spatial resolution and neglect to account for the natural heterogeneity in thermal conductivity of streambed sediments. Here we report on a field investigation in a stream, where air, stream water and streambed sediment temperatures were measured by Distributed Temperature Sensing (DTS) with high spatial resolution to; (i) detect spatial and temporal variability in groundwater discharge based on vertical streambed temperature profiles, (ii) study the thermal regime of streambed sediments exposed to different solar radiation influence, (iii) describe the effect of solar radiation on the measured streambed temperatures. The study was carried out at a field site located along Holtum stream, in Western Denmark. The 3 m wide stream has a sandy streambed with a cobbled armour layer, a mean discharge of 200 l/s and a mean depth of 0.3 m. Streambed temperatures were measured with a high-resolution DTS system (HR-DTS). By helically wrapping the fiber optic cable around two PVC pipes of 0.05 m and 0.075 m outer diameter over 1.5 m length, temperature measurements were recorded with 5.7 mm and 3.8 mm vertical spacing, respectively. The HR-DTS systems were installed 0.7 m deep in the streambed sediments, crossing both the sediment-water and the water-air interface, thus yielding high resolution water and air temperature data as well. One of the HR-DTS systems was installed in the open stream channel with only topographical shading, while the other HR-DTS system was placed 7 m upstream, under the canopy of a tree, thus representing the shaded conditions with reduced influence of solar radiation. Temperature measurements were taken with 30 min intervals between 16 April and 25 June 2013. The thermal conductivity of streambed sediments was calibrated in a 1D flow and heat transport model (HydroGeoSphere). Subsequently, time series of vertical groundwater fluxes were computed based on the high-resolution vertical streambed sediment temperature profiles by coupling the model with PEST. The calculated vertical flux time series show spatial differences in discharge between the two HR-DTS sites. A similar temporal variability in vertical fluxes at the two test sites can also be observed, most likely linked to rainfall-runoff processes. The effect of solar radiation as streambed conduction is visible both at the exposed and shaded test site in form of increased diel temperature oscillations up to 14 cm depth from the streambed surface, with the test site exposed to solar radiation showing larger diel temperature oscillations.
NASA Astrophysics Data System (ADS)
Lothet, Emilie H.; Shaw, Kendrick M.; Horn, Charles C.; Lu, Hui; Wang, Yves T.; Jansen, E. Duco; Chiel, Hillel J.; Jenkins, Michael W.
2016-03-01
Sensory information is conveyed to the central nervous system via small diameter unmyelinated fibers. In general, smaller diameter axons have slower conduction velocities. Selective control of such fibers could create new clinical treatments for chronic pain, nausea in response to chemo-therapeutic agents, or hypertension. Electrical stimulation can control axonal activity, but induced axonal current is proportional to cross-sectional area, so that large diameter fibers are affected first. Physiologically, however, synaptic inputs generally affect small diameter fibers before large diameter fibers (the size principle). A more physiological modality that first affected small diameter fibers could have fewer side effects (e.g., not recruiting motor axons). A novel mathematical analysis of the cable equation demonstrates that the minimum length along the axon for inducing block scales with the square root of axon diameter. This implies that the minimum length along an axon for inhibition will scale as the square root of axon diameter, so that lower radiant exposures of infrared light will selectively affect small diameter, slower conducting fibers before those of large diameter. This prediction was tested in identified neurons from the marine mollusk Aplysia californica. Radiant exposure to block a neuron with a slower conduction velocity (B43) was consistently lower than that needed to block a faster conduction velocity neuron (B3). Furthermore, in the vagus nerve of the musk shrew, lower radiant exposure blocked slow conducting fibers before blocking faster conducting fibers. Infrared light can selectively control smaller diameter fibers, suggesting many novel clinical treatments.
AAFE large deployable antenna development program: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
The large deployable antenna development program sponsored by the Advanced Applications Flight Experiments of the Langley Research Center is summarized. Projected user requirements for large diameter deployable reflector antennas were reviewed. Trade-off studies for the selection of a design concept for 10-meter diameter reflectors were made. A hoop/column concept was selected as the baseline concept. Parametric data are presented for 15-meter, 30-meter, and 100-meter diameters. A 1.82-meter diameter engineering model which demonstrated the feasiblity of the concept is described.
Shehri, Fahad Al; Soliman, Khaled E A
2015-08-01
Diagnosis of sex from skeleton or individual bone plays an important role in identifying unknown bodies, parts of bodies or skeletal remains for forensic purposes. This study aims to examine the applicability of the measurements taken from the humerus to assess sex, and to contribute to establishing discriminant function equations for Saudi populations for medico legal applications. Archived X-ray radiographs of humerus for 387 patients (216 males & 171 females) who attended the orthopedic clinics at Suleiman Al-Habib Hospital, Qassim region, KSA in the period from January 2011 to December 2013 were reviewed and analyzed. Five dimensions, including maximum length, vertical head diameter, diameter of head+greater tubercle, right-left diameter at midshaft, and epicondylar breadth were taken and subjected to Univariate and multivariate discriminant function analysis. The studied radiographic dimensions of the humerus indicate that there are significant differences (p<0.05) between the males and females measurements while the difference between right and left measurements was not significant. The findings revealed that the proximal part of the humerus has greater diagnostic accuracy than distal and middle parts. Accuracy of correct classification varies between 68.0% (epicondylar breadth) and 90.4% (vertical head diameter) for univariate analyses. When the multivariate analyses were conducted, three functions were produced, with the accuracy of ranging between 88.4% and 94.3%. These findings suggested that the dimensions of the humerus, especially the measurements taken from the proximal parts, could be used successfully for sex diagnosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-11
... DEPARTMENT OF COMMERCE International Trade Administration [A-588-850] Certain Large Diameter Carbon and Alloy Seamless Standard, Line, and Pressure Pipe (Over 4\\1/2\\ Inches) From Japan: Extension of... administrative review of the antidumping duty order on certain large diameter carbon and alloy seamless standard...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.
Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less
Bhat, Pallavi; Ebrahimi, Fatima; Blackman, Eric G.
2016-07-06
Here, we study the dynamo generation (exponential growth) of large-scale (planar averaged) fields in unstratified shearing box simulations of the magnetorotational instability (MRI). In contrast to previous studies restricted to horizontal (x–y) averaging, we also demonstrate the presence of large-scale fields when vertical (y–z) averaging is employed instead. By computing space–time planar averaged fields and power spectra, we find large-scale dynamo action in the early MRI growth phase – a previously unidentified feature. Non-axisymmetric linear MRI modes with low horizontal wavenumbers and vertical wavenumbers near that of expected maximal growth, amplify the large-scale fields exponentially before turbulence and high wavenumbermore » fluctuations arise. Thus the large-scale dynamo requires only linear fluctuations but not non-linear turbulence (as defined by mode–mode coupling). Vertical averaging also allows for monitoring the evolution of the large-scale vertical field and we find that a feedback from horizontal low wavenumber MRI modes provides a clue as to why the large-scale vertical field sustains against turbulent diffusion in the non-linear saturation regime. We compute the terms in the mean field equations to identify the individual contributions to large-scale field growth for both types of averaging. The large-scale fields obtained from vertical averaging are found to compare well with global simulations and quasi-linear analytical analysis from a previous study by Ebrahimi & Blackman. We discuss the potential implications of these new results for understanding the large-scale MRI dynamo saturation and turbulence.« less
NASA Astrophysics Data System (ADS)
Bell, L.
2002-01-01
The Sasakawa International Center for Space Architecture (SICSA) has a long history of projects that involve design of space structures, including habitats for low-Earth orbit (LEO) and planetary applications. Most of these facilities and component systems are planned to comply with size, geometry and mass restrictions imposed by the Space Shuttle Orbiter's payload and lift/landing abort restrictions. These constraints limit launch elements to approximately 15 ft. diameter, 40 ft. long cylindrical dimensions weighing no more than approximately 25 metric tons. It is clear that future success of commercial space programs such as tourism will hinge upon the availability of bigger and more efficient Earth to LEO launch vehicles which can greatly reduce transportation and operational costs. This will enable development and utilization of larger habitat modules and other infrastructure elements which can be deployed with fewer launches and on-orbit assembly procedures. The sizing of these new heavy lift launchers should be scaled to optimize habitat functionality and efficiency, just as the habitat designs must consider optimization of launch vehicle economy. SICSA's planning studies address these vehicle and habitat optimization priorities as parallel and interdependent considerations. The allowable diameter of habitat modules established by launch vehicle capacity dictates functionally acceptable internal configuration options. Analyses of these options relative to practical dimensions for Earth-to-orbit launch vehicle scaling were conducted for two general schemes. The "bologna slice" configuration stacks the floors within a predominately cylindrical or spherical envelope, producing circular areas. The "banana split" approach divides a cylindrical module longitudinally, creating floors that are generally rectangular in shape. The assessments established minimum sizes for reasonable utility and efficiency. The bologna slice option. This configuration is only acceptable for modules with diameters of approximately 45 ft. or more. Smaller dimensions will severely limit maximum sight lines, creating claustrophobic conditions. Equipment racks and other elements typically located around internal parameters will further reduce open areas, and vertical circulation access ways between floor levels will diminish usable space even more. However this scheme can work very well for larger diameter habitats, particularly for surface applications where a relatively wide-based/low height module is to be landed vertically. The banana split option. A longitudinal floor orientation can serve very satisfactorily for modules with diameters of 15 ft. or more. Unlike the bologna slice's circular floors, the rectangular spaces offer considerable versatility to accommodate diverse equipment and functional arrangements. Modules smaller than 15 ft. in diameter (the International Space Station standard) will be incompatible with efficient equipment rack design and layouts due to tight-radius wall curvatures. Beyond the 15 ft. diameters, it is logical to scale the modules at dimensional increments based upon the number of desired floors, allowing approximately 8-9 ft. of height/level. Current SICSA Mars mission planning advocates development of new launchers with payload accommodations for 45 ft. diameter, 200 metric ton cargo elements. This large booster will offer launch economies along with habitat scaling advantages. Launch system design efficiencies are influenced by the amount of functional drag that results as the vehicle passes through the Earth's atmosphere. These drag losses are subject to a "cubed-squared law". As the launchcraft's external dimensions increase, its surface area increases with the square of the dimension, while the volume increases with the cube. Since drag is a function of surface, not volume, increasing the vehicle size will reduce proportional drag losses. For this reason, the huge Saturn V Moon rocket experienced relatively low drag. Module pressure envelope geometries also influence internal layout versatility and functionality. SICSA examined cylindrical and spherical envelope approaches for habitat module application, exploring special advantages and disadvantages each presented. The 45 ft. diameter sphere constrained functional volumes and layouts around the upper level perimeter. A modified scheme was selected which reshaped and expanded the height of that area. SICSA's final plan proposes 45 ft. diameter modules of modified spherical form.
NASA Astrophysics Data System (ADS)
Franca, Mário J.; Lemmin, Ulrich
2014-05-01
The occurrence of large scale flow structures (LSFS) coherently organized throughout the flow depth has been reported in field and laboratory experiments of flows over gravel beds, especially under low relative submergence conditions. In these, the instantaneous velocity is synchronized over the whole vertical profile oscillating at a low frequency above or below the time-averaged value. The detection of large scale coherently organized regions in the flow field is often difficult since it requires detailed simultaneous observations of the flow velocities at several levels. The present research avoids the detection problem by using an Acoustic Doppler Velocity Profiler (ADVP), which permits measuring three-dimensional velocities quasi-simultaneously over the full water column. Empirical mode decomposition (EMD) combined with the application of the Hilbert transform is then applied to the instantaneous velocity data to detect and isolate LSFS. The present research was carried out in a Swiss river with low relative submergence of 2.9, herein defined as h/D50, (where h is the mean flow depth and D50 the bed grain size diameter for which 50% of the grains have smaller diameters). 3D ADVP instantaneous velocity measurements were made on a 3x5 rectangular horizontal grid (x-y). Fifteen velocity profiles were equally spaced in the spanwise direction with a distance of 10 cm, and in the streamwise direction with a distance of 15 cm. The vertical resolution of the measurements is roughly 0.5 cm. A measuring grid covering a 3D control volume was defined. The instantaneous velocity profiles were measured for 3.5 min with a sampling frequency of 26 Hz. Oscillating LSFS are detected and isolated in the instantaneous velocity signal of the 15 measured profiles. Their 3D cycle geometry is reconstructed and investigated through phase averaging based on the identification of the instantaneous signal phase (related to the Hilbert transform) applied to the original raw signal. Results for all the profiles are consistent and indicate clearly the presence of LSFS throughout the flow depth with impact on the three components of the velocity profile and on the bed friction velocity. A high correlation of the movement is found throughout the flow depth, thus corroborating the hypothesis of large-scale coherent motion evolving over the whole water depth. These latter are characterized in terms of period, horizontal scale and geometry. The high spatial and temporal resolution of our ADVP was crucial for obtaining comprehensive results on coherent structures dynamics. EMD combined with the Hilbert transform have previously been successfully applied to geophysical flow studies. Here we show that this method can also be used for the analysis of river dynamics. In particular, we demonstrate that a clean, well-behaved intrinsic mode function can be obtained from a noisy velocity time series that allowed a precise determination of the vertical structure of the coherent structures. The phase unwrapping of the UMR and the identification of the phase related velocity components brings new insight into the flow dynamics Research supported by the Swiss National Science Foundation (2000-063818). KEY WORDS: large scale flow structures (LSFS); gravel-bed rivers; empirical mode decomposition; Hilbert transform
Controlled growth of well-aligned carbon nanotubes with large diameters
NASA Astrophysics Data System (ADS)
Wang, Xianbao; Liu, Yunqi; Zhu, Daoben
2001-06-01
Well-aligned carbon nanotubes (CNTs) with large diameters (25-200 nm) were synthesized by pyrolysis of iron(II) phthalocyanine. The outer diameter up to 218.5 nm and the length of the well-aligned CNTs can be systematically controlled by varying the growth time. A tube-in-tube nano-structure with large and small diameters of 176 and 16.7 nm, respectively, was found. The grain sizes of the iron catalyst play an important role in controlling the CNT diameters. These results are of great importance to design new aligned CNT-based electron field emitters in the potential application of panel displays.
Average properties of bidisperse bubbly flows
NASA Astrophysics Data System (ADS)
Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.
2018-03-01
Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.
50 CFR 14.172 - Primary enclosures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Wild Mammals and Birds to the United States Specifications for Birds § 14.172 Primary enclosures. (a) A primary enclosure for birds shall have ventilation openings on two vertical sides that comprise at least... creating a draft. (b) Perches shall be provided for birds that rest by perching. The diameter of the perch...
Thermal resistance of etched-pillar vertical-cavity surface-emitting laser diodes
NASA Astrophysics Data System (ADS)
Wipiejewski, Torsten; Peters, Matthew G.; Young, D. Bruce; Thibeault, Brian; Fish, Gregory A.; Coldren, Larry A.
1996-03-01
We discuss our measurements on thermal impedance and thermal crosstalk of etched-pillar vertical-cavity lasers and laser arrays. The average thermal conductivity of AlAs-GaAs Bragg reflectors is estimated to be 0.28 W/(cmK) and 0.35W/(cmK) for the transverse and lateral direction, respectively. Lasers with a Au-plated heat spreading layer exhibit a 50% lower thermal impedance compared to standard etched-pillar devices resulting in a significant increase of maximum output power. For an unmounted laser of 64 micrometer diameter we obtain an improvement in output power from 20 mW to 42 mW. The experimental results are compared with a simple analytical model showing the importance of heat sinking for maximizing the output power of vertical-cavity lasers.
Apparatus for measuring surface particulate contamination
Woodmansee, Donald E.
2002-01-01
An apparatus for measuring surface particulate contamination includes a tool for collecting a contamination sample from a target surface, a mask having an opening of known area formed therein for defining the target surface, and a flexible connector connecting the tool to the mask. The tool includes a body portion having a large diameter section defining a surface and a small diameter section extending from the large diameter section. A particulate collector is removably mounted on the surface of the large diameter section for collecting the contaminants. The tool further includes a spindle extending from the small diameter section and a spool slidingly mounted on the spindle. A spring is disposed between the small diameter section and the spool for biasing the spool away from the small diameter section. An indicator is provided on the spindle so as to be revealed when the spool is pressed downward to compress the spring.
NASA Astrophysics Data System (ADS)
1983-03-01
The design, fabrication, and site drawings associated with fabrication, installation, and check out of 100 kW 17 meter Vertical Axis Wind Turbines (VAWTs) were reported. The turbines are Darrieus type VAWTs with rotors 17 meters in diameter and 25.15 meters in height. They can produce 100 kW of electric power at a cost of energy as low as 3 cents per kWh, in an 18 mph wind regime using 12% annualized costs. Four turbines are produced, three are installed and operable.
Vertical-Screw-Auger Conveyer Feeder
NASA Technical Reports Server (NTRS)
Walton, Otis (Inventor); Vollmer, Hubert J. (Inventor)
2016-01-01
A conical feeder is attached to a vertically conveying screw auger. The feeder is equipped with scoops and rotated from the surface to force-feed regolith the auger. Additional scoops are possible by adding a cylindrical section above the conical funnel section. Such then allows the unit to collect material from swaths larger in diameter than the enclosing casing pipe of the screw auger. A third element includes a flexible screw auger. All three can be used in combination in microgravity and zero atmosphere environments to drill and recover a wide area of subsurface regolith and entrained volatiles through a single access point on the surface.
Noncontact Measurement Of Sizes And Eccentricities Of Holes
NASA Technical Reports Server (NTRS)
Chern, Engmin J.
1993-01-01
Semiautomatic eddy-current-probe apparatus makes noncontact measurements of nominally round holes in electrically conductive specimens and processes measurement data into diameters and eccentricities of holes. Includes x-y translation platform, which holds specimen and moves it horizontally. Probe mounted on probe scanner, positioning probe along vertical (z) direction and rotates probe about vertical axis at preset low speed. Eddy-current sensing coil mounted in side of probe near tip. As probe rotates, impedance analyzer measures electrical impedance (Z) of coil as function of instantaneous rotation angle. Translation and rotation mechanisms and impedance analyzer controlled by computer, which also processes impedance-measurement data.
Vertical structure use by the Stout Iguana (Cyclura pinguis) on Guana Island, BVI
Cheek, Christopher A.; Hlavaty, Shay; Perkins, Rebecca N.; Peyton, Mark A.; Ryan, Caitlin N.; Zavaleta, Jennifer C.; Boal, Clint W.; Perry, Gad
2013-01-01
The Stout Iguana (Cyclura pinguis) is a critically endangered species endemic to the Puerto Rico Bank and currently restricted to the British Virgin Islands (BVI). Our study on Guana Island, BVI, focused on vertical structure use. Based on previous incidental observations, we hypothesized that Stout Iguanas use vertical structures and that adults and juveniles use such structures differently. In October 2011, we documented movement and vertical structure use by adult (n = 4) and juvenile (n = 11) iguanas with tracking bobbins. We recorded structure types used, heights attained on structures, distances between structures, and structure sizes. We found that Stout Iguanas used vertical structure more than previously documented. Trees comprised a significantly greater (P < 0.001) proportion of structures used by juveniles than by adults, whereas rocks comprised the greatest proportion of structures used by adults. In addition to differential structure use, juveniles climbed significantly higher (2.4 vs. 0.9 m on average; P < 0.001) than adults. We found no difference in the diameter or distance between structures used by adults and juveniles. Our results suggest that vertical structure use may be an important habitat element for free-ranging juvenile Stout Iguanas. Habitat management that provides vertical structure may be advantageous for the conservation of this species.
Diameter Control and Photoluminescence of ZnO Nanorods from Trialkylamines
Andelman, Tamar; Gong, Yinyan; Neumark, Gertrude; ...
2007-01-01
A novel solution method to control the diameter of ZnO nanorods is reported. Small diameter (2-3 nm) nanorods were synthesized from trihexylamine, and large diameter (50–80 nm) nanorods were synthesized by increasing the alkyl chain length to tridodecylamine. The defect (green) emission of the photoluminescence (PL) spectra of the nanorods varies with diameter, and can thus be controlled by the diameter control. The small ZnO nanorods have strong green emission, while the large diameter nanorods exhibit a remarkably suppressed green band. We show that this observation supports surface oxygen vacancies as the defect that gives rise to the green emission.
Glavičić, Snježana; Anić, Ivica; Braut, Alen; Miletić, Ivana; Borčić, Josipa
2011-08-01
The purpose was to measure and analyse the vertical force and torque developed in the wider and narrower root canals during hand ProTaper instrumentation. Twenty human incisors were divided in two groups. Upper incisors were experimental model for the wide, while the lower incisors for the narrow root canals. Measurements of the force and torque were done by a device constructed for this purpose. Differences between the groups were statistically analysed by Mann-Whitney U-test with the significance level set to P<0.05. Vertical force in the upper incisors ranged 0.25-2.58 N, while in the lower incisors 0.38-6.94 N. Measured torque in the upper incisors ranged 0.53-12.03 Nmm, while in the lower incisor ranged 0.94-10.0 Nmm. Vertical force and torque were higher in the root canals of smaller diameter. The increase in the contact surface results in increase of the vertical force and torque as well in both narrower and wider root canals. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.
PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.
Lee, M.W.
1987-01-01
Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.
Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects
2014-11-20
automobile, rail, and air traffic, and wind background noise. 4.1.1 Targets Six braided nylon cords with diameters 3.2, 4.8, 6.4, 9.5 12.9 and 15.9mm (1/8, 3...fibers, (center) six braided nylon cords of increasing diameter (left) folded aluminum retroreflector. 0 ·5 ·5 ·10 ·10 ·15 $ 53’ ., ·15 ’-’ :s...impedance tube, here show in a vertical orientation has a speaker hosed at the top, two microphones flush mounted the the inner wall of the tube, and a
NASA Astrophysics Data System (ADS)
Rana, Parvez; Vauhkonen, Jari; Junttila, Virpi; Hou, Zhengyang; Gautam, Basanta; Cawkwell, Fiona; Tokola, Timo
2017-12-01
Large-diameter trees (taking DBH > 30 cm to define large trees) dominate the dynamics, function and structure of a forest ecosystem. The aim here was to employ sparse airborne laser scanning (ALS) data with a mean point density of 0.8 m-2 and the non-parametric k-most similar neighbour (k-MSN) to predict tree diameter at breast height (DBH) distributions in a subtropical forest in southern Nepal. The specific objectives were: (1) to evaluate the accuracy of the large-tree fraction of the diameter distribution; and (2) to assess the effect of the number of training areas (sample size, n) on the accuracy of the predicted tree diameter distribution. Comparison of the predicted distributions with empirical ones indicated that the large tree diameter distribution can be derived in a mixed species forest with a RMSE% of 66% and a bias% of -1.33%. It was also feasible to downsize the sample size without losing the interpretability capacity of the model. For large-diameter trees, even a reduction of half of the training plots (n = 250), giving a marginal increase in the RMSE% (1.12-1.97%) was reported compared with the original training plots (n = 500). To be consistent with these outcomes, the sample areas should capture the entire range of spatial and feature variability in order to reduce the occurrence of error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesage, S.; Sorel, D.; Cherry, J.A.
1995-12-31
The feasibility of using a biochemical treatment for the cleanup of DNAPL solvents in the saturated zone was tested using an in-situ large vertical column. Laboratory column studies have shown that a mixture of vitamin B12 and titanium citrate pumped through a column containing 100 {mu}L of tetrachloroethene can completely dissolve and degrade the residual to ethene in a few days. A vertical test column, 80 cm in diameter was installed within a sheet-pile cell isolating a portion of aquifer at CFB Borden. An equimolar mixture of tetrachloroethene and 1,1,1-trichloroethane was injected below the water table to form a residualmore » DNAPL. The injection withdrawal system was operated in an upward flow mode over a 2 m height. In order for the reaction to be proceed, the in-situ pH must be greater than 7 and the Eh lower than -480 mV. The redox of the aquifer and the formation of reaction products was monitored on site, through 8 side pods equipped with stainless steel tubing terminated with 40 {mu}m porous cups, installed at different heights in the test column. The volatile products at the withdrawal well were monitored on-line by dynamic headspace analysis/gas chromatography.« less
The natural statistics of blur
Sprague, William W.; Cooper, Emily A.; Reissier, Sylvain; Yellapragada, Baladitya; Banks, Martin S.
2016-01-01
Blur from defocus can be both useful and detrimental for visual perception: It can be useful as a source of depth information and detrimental because it degrades image quality. We examined these aspects of blur by measuring the natural statistics of defocus blur across the visual field. Participants wore an eye-and-scene tracker that measured gaze direction, pupil diameter, and scene distances as they performed everyday tasks. We found that blur magnitude increases with increasing eccentricity. There is a vertical gradient in the distances that generate defocus blur: Blur below the fovea is generally due to scene points nearer than fixation; blur above the fovea is mostly due to points farther than fixation. There is no systematic horizontal gradient. Large blurs are generally caused by points farther rather than nearer than fixation. Consistent with the statistics, participants in a perceptual experiment perceived vertical blur gradients as slanted top-back whereas horizontal gradients were perceived equally as left-back and right-back. The tendency for people to see sharp as near and blurred as far is also consistent with the observed statistics. We calculated how many observations will be perceived as unsharp and found that perceptible blur is rare. Finally, we found that eye shape in ground-dwelling animals conforms to that required to put likely distances in best focus. PMID:27580043
Taşaltın, Nevin; Oztürk, Sadullah; Kılınç, Necmettin; Yüzer, Hayrettin; Oztürk, Zaferziya
2010-05-01
A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current-time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm-2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially.
2010-01-01
A vertically aligned Pd nanowire array was successfully fabricated on an Au/Ti substrate using an anodic aluminum oxide (AAO) template by a direct voltage electrodeposition method at room temperature using diluted neutral electrolyte. The fabrication of Pd nanowires was controlled by analyzing the current–time transient during electrodeposition using potentiostat. The AAO template and the Pd nanowires were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) methods and X-Ray diffraction (XRD). It was observed that the Pd nanowire array was standing freely on an Au-coated Ti substrate after removing the AAO template in a relatively large area of about 5 cm2, approximately 50 nm in diameter and 2.5 μm in length with a high aspect ratio. The nucleation rate and the number of atoms in the critical nucleus were determined from the analysis of current transients. Pd nuclei density was calculated as 3.55 × 108 cm−2. Usage of diluted neutral electrolyte enables slower growing of Pd nanowires owing to increase in the electrodeposition potential and thus obtained Pd nanowires have higher crystallinity with lower dislocations. In fact, this high crystallinity of Pd nanowires provides them positive effect for sensor performances especially. PMID:20596417
NASA Technical Reports Server (NTRS)
Costen, Robert C.; Stock, Larry V.
1992-01-01
In this video (8 min., color, sound, VHS), animation depicts the inertial oscillation of a new mathematical model ('vertical rotating draft') for spinning up a single supercell storm. The oscillation consists of a long quiescent phase when the draft is large in diameter and rotates anticyclonically and a short intense phase when the draft is small and cyclonic. During the intense phase, the rotating draft resembles a supercell. The physical basis for the oscillation is depicted by tracking air parcels in the draft as they move along inertial circles (projected on a horizontal plane), where the horizontal pressure gradient is zero and the Coriolis force balances the centrifugal force. A side view of the oscillation shows that contraction and expansion are linked, respectively, to buoyantly driven compressible downdraft and updraft. An aerial view tracks the draft as it moves above the surface of the Earth and turns to the right during the intense phase. Radar echoes from a supercell storm are superimposed for comparison. The data appear to support only the intense phase. A critical experiment would measure the predominantly downward flow that theoretically occurs before the right turn in a supercell track and causes contraction and spin-up.
Qian, Fuping; Wang, Haigang
2010-04-15
The gas-solid two-phase flows in the plain wave fabric filter were simulated by computational fluid dynamics (CFD) technology, and the warps and wefts of the fabric filter were made of filaments with different dimensions. The numerical solutions were carried out using commercial computational fluid dynamics (CFD) code Fluent 6.1. The filtration performances of the plain wave fabric filter with different geometry parameters and operating condition, including the horizontal distance, the vertical distance and the face velocity were calculated. The effects of geometry parameters and operating condition on filtration efficiency and pressure drop were studied using response surface methodology (RSM) by means of the statistical software (Minitab V14), and two second-order polynomial models were obtained with regard to the effect of the three factors as stated above. Moreover, the models were modified by dismissing the insignificant terms. The results show that the horizontal distance, vertical distance and the face velocity all play an important role in influencing the filtration efficiency and pressure drop of the plane wave fabric filters. The horizontal distance of 3.8 times the fiber diameter, the vertical distance of 4.0 times the fiber diameter and Reynolds number of 0.98 are found to be the optimal conditions to achieve the highest filtration efficiency at the same face velocity, while maintaining an acceptable pressure drop. 2009 Elsevier B.V. All rights reserved.
Flow regimes of adiabatic gas-liquid two-phase under rolling conditions
NASA Astrophysics Data System (ADS)
Yan, Chaoxing; Yan, Changqi; Sun, Licheng; Xing, Dianchuan; Wang, Yang; Tian, Daogui
2013-07-01
Characteristics of adiabatic air/water two-phase flow regimes under vertical and rolling motion conditions were investigated experimentally. Test sections are two rectangular ducts with the gaps of 1.41 and 10 mm, respectively, and a circular tube with 25 mm diameter. Flow regimes were recorded by a high speed CCD-camera and were identified by examining the video images. The experimental results indicate that the characteristics of flow patterns in 10 mm wide rectangular duct under vertical condition are very similar to those in circular tube, but different from the 1.41 mm wide rectangular duct. Channel size has a significant influence on flow pattern transition, boundary of which in rectangular channels tends asymptotically towards that in the circular tube with increasing the width of narrow side. Flow patterns in rolling channels are similar to each other, nevertheless, the effect of rolling motion on flow pattern transition are significantly various. Due to the remarkable influences of the friction shear stress and surface tension in the narrow gap duct, detailed flow pattern maps of which under vertical and rolling conditions are indistinguishable. While for the circular tube with 25 mm diameter, the transition from bubbly to slug flow occurs at a higher superficial liquid velocity and the churn flow covers more area on the flow regime map as the rolling period decreases.
Sun, Zhelin; Wang, Deli; Xiang, Jie
2014-11-25
Spontaneous attractions between free-standing nanostructures have often caused adhesion or stiction that affects a wide range of nanoscale devices, particularly nano/microelectromechanical systems. Previous understandings of the attraction mechanisms have included capillary force, van der Waals/Casimir forces, and surface polar charges. However, none of these mechanisms universally applies to simple semiconductor structures such as silicon nanowire arrays that often exhibit bunching or adhesions. Here we propose a simple capacitive force model to quantitatively study the universal spontaneous attraction that often causes stiction among semiconductor or metallic nanostructures such as vertical nanowire arrays with inevitably nonuniform size variations due to fabrication. When nanostructures are uniform in size, they share the same substrate potential. The presence of slight size differences will break the symmetry in the capacitive network formed between the nanowires, substrate, and their environment, giving rise to electrostatic attraction forces due to the relative potential difference between neighboring wires. Our model is experimentally verified using arrays of vertical silicon nanowire pairs with varied spacing, diameter, and size differences. Threshold nanowire spacing, diameter, or size difference between the nearest neighbors has been identified beyond which the nanowires start to exhibit spontaneous attraction that leads to bridging when electrostatic forces overcome elastic restoration forces. This work illustrates a universal understanding of spontaneous attraction that will impact the design, fabrication, and reliable operation of nanoscale devices and systems.
The Importance of Large-Diameter Trees to Forest Structural Heterogeneity
Lutz, James A.; Larson, Andrew J.; Freund, James A.; Swanson, Mark E.; Bible, Kenneth J.
2013-01-01
Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579
The importance of large-diameter trees to forest structural heterogeneity.
Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J
2013-01-01
Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.
Diameter and Geometry Control of Vertically Aligned SWNTs through Catalyst Manipulation
NASA Astrophysics Data System (ADS)
Xiang, Rong; Einarsson, Erik; Okawa, Jun; Murakami, Yoichi; Maruyama, Shigeo
2009-03-01
We present our recent progress on manipulating our liquid-based catalyst loading process, which possesses greater potential than conventional deposition in terms of cost and scalability, to control the diameter and morphology of single-walled carbon nanotubes (SWNTs). We demonstrate that the diameter of aligned SWNTs synthesized by alcohol catalytic CVD can be tailored over a wide range by modifying the catalyst recipe. SWNT arrays with an average diameter as small as 1.2 nm were obtained by this method. Additionally, owing to the alignment of the array, the continuous change of the SWNT diameter during a single CVD process can be clearly observed and quantitatively characterized. We have also developed a versatile wet chemistry method to localize the growth of SWNTs to desired regions via surface modification. By functionalizing the silicon surface using a classic self-assembled monolayer, the catalyst can be selectively dip-coated onto hydrophilic areas of the substrate. This technique was successful in producing both random and aligned SWNTs with various patterns. The precise control of the diameter and morphology of SWNTs, achieved by simple and scalable liquid-based surface chemistry, could greatly facilitate the application of SWNTs as the building blocks of future nano-devices.
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake are discussed.
Free-electron laser power beaming to satellites at China Lake, California
NASA Astrophysics Data System (ADS)
Bennett, Harold E.; Rather, John D.; Montgomery, Edward E.
1994-05-01
Laser power beaming of energy through the atmosphere to a satellite can extend its lifetime by maintaining the satellite batteries in operating condition. An alternate propulsion system utilizing power beaming will also significantly reduce the initial insertion cost of these satellites, which now are as high as $DLR72,000/lb for geosynchronous orbit. Elements of the power beaming system are a high-power laser, a large diameter telescope to reduce diffractive losses, an adaptive optic beam conditioning system and possibly a balloon or aerostat carrying a large mirror to redirect the laser beam to low earth orbit satellites after it has traversed most of the earth's atmosphere vertically. China Lake, California has excellent seeing, averages 260 cloud-free days/year, has the second largest geothermal plant in the United States nearby for power, groundwater from the lake for cooling water, and is at the center of one of the largest restricted airspaces in the United States. It is an ideal site for such a laser power beaming system. Technological challenges in building such a system and installing it at China Lake will be discussed.
Mariella, Jr., Raymond P.
2018-03-06
An isotachophoresis system for separating a sample containing particles into discrete packets including a flow channel, the flow channel having a large diameter section and a small diameter section; a negative electrode operably connected to the flow channel; a positive electrode operably connected to the flow channel; a leading carrier fluid in the flow channel; a trailing carrier fluid in the flow channel; and a control for separating the particles in the sample into discrete packets using the leading carrier fluid, the trailing carrier fluid, the large diameter section, and the small diameter section.
Jian, Fuji; Jayas, Digvir S.; White, Noel D. G.
2006-01-01
Vertical movement and distribution of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) adults in stored wheat and corn were studied in small (0.1 x 0.1 x 1 m) and large (0.6 m diameter and 1.12 m high) columns. The adults were introduced at the top, middle, and bottom of the small columns with a uniform moisture content (wheat: 14.5 ± 0.1%, corn 13.5 ± 0.1%, 15.5 ± 0.1%, and 17.5 ± 0.1%) at 27.5 ± 0.5°C. When introduced at different locations, adults showed a similar distribution in stored grain bulk with a uniform temperature and moisture content of 14.5% for wheat or 15.5% for corn. Adults showed downward displacement over 24 h when corn moisture was lower than 15.5%, but they did not show downward displacement when moisture content was 17.5%. The upward or downward movement might partially be caused by a drift effect due to beetles sliding between seeds and the displacement of the adults might be the combined effect of walking and falling during their movement. The hydrophilic behavior plus the drift effect explain why the beetles had a faster downward dispersal in the 13.5% corn than in the 15.5% and 17.5% corn and a slight upward displacement in 17.5% corn because they were more active at the lower moisture contents. Adults had a similar movement and distribution in both the small and large wheat columns. PMID:19537976
NASA Astrophysics Data System (ADS)
Li, Haijun; Li, Gaoming; Duan, Xiyu; Wang, Thomas D.
2017-02-01
Aimed to build a dual-axes confocal endomicroscope with an outer diameter of 5.5mm for in-vivo imaging applications, an electrostatic MEMS scanner has been developed to enable two dimensional (2D) light scanning in either horizontal plane or vertical cross-sectional plane. The device has a compact structure design to match the dual axes confocal architecture in the probe without blocking the collimated light beams of excitation and collection, and a cutting-free silicon-on-insulator(SOI) micromachining process is used for the fabrication. A novel lever-based gimbal-like mechanism is employed to enable three degrees of freedom motions for lateral and axial light scanning, and its geometry is optimized for achieving large deflection with high scanning speed. Based on parametric excitation, the device can work in resonant modes. Testing result shows that, up to +/-27° optical deflection angle for inner axis torsion motion with a frequency of 4.9kHz, up to +/-28.5° optical deflection angle for outer axis torsion motion with a frequency of 0.65kHz and 360μm stroke for out-of-plane translation motion with a frequency of 0.53kHz are achieved with <60V driving voltage. Based on these results, 2D imaging with frame rate of 5 10Hz and large field of view (1000μm x 1000μm in horizontal plane and 1000μm x 400μm in vertical plane) can be enabled by this scanner.
NASA Astrophysics Data System (ADS)
Pao, W.; Hon, L.; Saieed, A.; Ban, S.
2017-10-01
A smaller diameter conduit pointing at 12 o’clock position is typically hot-tapped to a horizontal laying production header in offshore platform to tap produced gas for downstream process train. This geometric feature is commonly known as T-junction. The nature of multiphase fluid splitting at the T-junction is a major operational challenge due to unpredictable production environment. Often, excessive liquid carryover occurs in the T-junction, leading to complete platform trip and halt production. This is because the downstream process train is not designed to handle excessive liquid. The objective of this research is to quantify the effect of different diameter ratio on phase separation efficiency in T-junction. The liquid carryover is modelled as two-phase air-water flow using Eulerian Mixture Model coupled with Volume of Fluid Method to mimic the slug flow in the main pipe. The focus in this paper is 0.0254 m (1 inch) diameter horizontal main arm and vertical branch arm with diameter ratio of 1.0, 0.5 and 0.3. The present research narrowed the investigation to only slug flow regime using Baker’s map as reference. The investigation found that, contrary to common believe, smaller diameter ratio T-junction perform worse than larger diameter ratio T-junction.
NASA Technical Reports Server (NTRS)
Fulton, C. L.; Harris, R. L., Jr.
1980-01-01
Factors that can affect oculometer measurements of pupil diameter are: horizontal (azimuth) and vertical (elevation) viewing angle of the pilot; refraction of the eye and cornea; changes in distance of eye to camera; illumination intensity of light on the eye; and counting sensitivity of scan lines used to measure diameter, and output voltage. To estimate the accuracy of the measurements, an artificial eye was designed and a series of runs performed with the oculometer system. When refraction effects are included, results show that pupil diameter is a parabolic function of the azimuth angle similar to the cosine function predicted by theory: this error can be accounted for by using a correction equation, reducing the error from 6% to 1.5% of the actual diameter. Elevation angle and illumination effects were found to be negligible. The effects of counting sensitivity and output voltage can be calculated directly from system documentation. The overall accuracy of the unmodified system is about 6%. After correcting for the azimuth angle errors, the overall accuracy is approximately 2%.
Experimental constraints on the outgassing dynamics of basaltic magmas
NASA Astrophysics Data System (ADS)
Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.
2012-03-01
The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.
Flooding Experiments and Modeling for Improved Reactor Safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solmos, M.; Hogan, K. J.; Vierow, K.
2008-09-14
Countercurrent two-phase flow and “flooding” phenomena in light water reactor systems are being investigated experimentally and analytically to improve reactor safety of current and future reactors. The aspects that will be better clarified are the effects of condensation and tube inclination on flooding in large diameter tubes. The current project aims to improve the level of understanding of flooding mechanisms and to develop an analysis model for more accurate evaluations of flooding in the pressurizer surge line of a Pressurized Water Reactor (PWR). Interest in flooding has recently increased because Countercurrent Flow Limitation (CCFL) in the AP600 pressurizer surge linemore » can affect the vessel refill rate following a small break LOCA and because analysis of hypothetical severe accidents with the current flooding models in reactor safety codes shows that these models represent the largest uncertainty in analysis of steam generator tube creep rupture. During a hypothetical station blackout without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. The flooding model heavily influences the pressurizer emptying rate and the potential for surge line structural failure due to overheating and creep rupture. The air-water test results in vertical tubes are presented in this paper along with a semi-empirical correlation for the onset of flooding. The unique aspects of the study include careful experimentation on large-diameter tubes and an integrated program in which air-water testing provides benchmark knowledge and visualization data from which to conduct steam-water testing.« less
NASA Astrophysics Data System (ADS)
Twohy, C. H.; Anderson, B. E.; Ferrare, R. A.; Sauter, K. E.; L'Ecuyer, T. S.; van den Heever, S. C.; Heymsfield, A. J.; Ismail, S.; Diskin, G. S.
2017-08-01
Dry aerosol size distributions and scattering coefficients were measured on 10 flights in 32 clear-air regions adjacent to tropical storm anvils over the eastern Atlantic Ocean. Aerosol properties in these regions were compared with those from background air in the upper troposphere at least 40 km from clouds. Median values for aerosol scattering coefficient and particle number concentration >0.3 μm diameter were higher at the anvil edges than in background air, showing that convective clouds loft particles from the lower troposphere to the upper troposphere. These differences are statistically significant. The aerosol enhancement zones extended 10-15 km horizontally and 0.25 km vertically below anvil cloud edges but were not due to hygroscopic growth since particles were measured under dry conditions. Number concentrations of particles >0.3 μm diameter were enhanced more for the cases where Saharan dust layers were identified below the clouds with airborne lidar. Median number concentrations in this size range increased from 100 l-1 in background air to 400 l-1 adjacent to cloud edges with dust below, with larger enhancements for stronger storm systems. Integration with satellite cloud frequency data indicates that this transfer of large particles from low to high altitudes by convection has little impact on dust concentrations within the Saharan Air Layer itself. However, it can lead to substantial enhancement in large dust particles and, therefore, heterogeneous ice nuclei in the upper troposphere over the Atlantic. This may induce a cloud/aerosol feedback effect that could impact cloud properties in the region and downwind.
Thermal analysis of the vertical bridgman semiconductor crystal growth technique. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Jasinski, T. J.
1982-01-01
The quality of semiconductor crystals grown by the vertical Bridgman technique is strongly influenced by the axial and radial variations of temperature within the charge. The relationship between the thermal parameters of the vertical Bridgman system and the thermal behavior of the charge are examined. Thermal models are developed which are capable of producing results expressable in analytical form and which can be used without recourse to extensive computer work for the preliminary thermal design of vertical Bridgman crystal growth systems. These models include the effects of thermal coupling between the furnace and the charge, charge translation rate, charge diameter, thickness and thermal conductivity of the confining crucible, thermal conductivity change and liberation of latent heat at the growth interface, and infinite charge length. The hot and cold zone regions, considered to be at spatially uniform temperatures, are separated by a gradient control region which provides added thermal design flexibility for controlling the temperature variations near the growth interface.
Shielding of Turbomachinery Broadband Noise from a Hybrid Wing Body Aircraft Configuration
NASA Technical Reports Server (NTRS)
Hutcheson, Florence V.; Brooks, Thomas F.; Burley, Casey L.; Bahr, Christopher J.; Stead, Daniel J.; Pope, D. Stuart
2014-01-01
The results of an experimental study on the effects of engine placement and vertical tail configuration on shielding of exhaust broadband noise radiation are presented. This study is part of the high fidelity aeroacoustic test of a 5.8% scale Hybrid Wing Body (HWB) aircraft configuration performed in the 14- by 22-Foot Subsonic Tunnel at NASA Langley Research Center. Broadband Engine Noise Simulators (BENS) were used to determine insertion loss due to shielding by the HWB airframe of the broadband component of turbomachinery noise for different airframe configurations and flight conditions. Acoustics data were obtained from flyover and sideline microphones traversed to predefined streamwise stations. Noise measurements performed for different engine locations clearly show the noise benefit associated with positioning the engine nacelles further upstream on the HWB centerbody. Positioning the engine exhaust 2.5 nozzle diameters upstream (compared to 0.5 nozzle diameters downstream) of the HWB trailing edge was found of particular benefit in this study. Analysis of the shielding performance obtained with and without tunnel flow show that the effectiveness of the fuselage shielding of the exhaust noise, although still significant, is greatly reduced by the presence of the free stream flow compared to static conditions. This loss of shielding is due to the turbulence in the model near-wake/boundary layer flow. A comparison of shielding obtained with alternate vertical tail configurations shows limited differences in level; nevertheless, overall trends regarding the effect of cant angle and vertical location are revealed. Finally, it is shown that the vertical tails provide a clear shielding benefit towards the sideline while causing a slight increase in noise below the aircraft.
LSSA large area silicon sheet task continuous Czochralski process development
NASA Technical Reports Server (NTRS)
Rea, S. N.
1978-01-01
A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.
Tailoring the vapor-liquid-solid growth toward the self-assembly of GaAs nanowire junctions.
Dai, Xing; Dayeh, Shadi A; Veeramuthu, Vaithianathan; Larrue, Alexandre; Wang, Jian; Su, Haibin; Soci, Cesare
2011-11-09
New insights into understanding and controlling the intriguing phenomena of spontaneous merging (kissing) and the self-assembly of monolithic Y- and T-junctions is demonstrated in the metal-organic chemical vapor deposition growth of GaAs nanowires. High-resolution transmission electron microscopy for determining polar facets was coupled to electrostatic-mechanical modeling and position-controlled synthesis to identify nanowire diameter, length, and pitch, leading to junction formation. When nanowire patterns are designed so that the electrostatic energy resulting from the interaction of polar surfaces exceeds the mechanical energy required to bend the nanowires to the point of contact, their fusion can lead to the self-assembly of monolithic junctions. Understanding and controlling this phenomenon is a great asset for the realization of dense arrays of vertical nanowire devices and opens up new ways toward the large scale integration of nanowire quantum junctions or nanowire intracellular probes.
NASA Technical Reports Server (NTRS)
Kessinger, C. J.; Wilson, J. W.; Weisman, M.; Klemp, J.
1984-01-01
Data from three NCAR radars are used in both single and dual Doppler analyses to trace the evolution of a June 30, 1982 Colorado convective storm containing downburst-type winds and strong vortices 1-2 km in diameter. The analyses show that a series of small circulations formed along a persistent cyclonic shear boundary; at times as many as three misocyclones were present with vertical vorticity values as large as 0.1/s using a 0.25 km grid interval. The strength of the circulations suggests the possibility of accompanying tornadoes or funnels, although none were observed. Dual-Doppler analyses show that strong, small-scale downdrafts develop in close proximity to the misocyclones. A midlevel mesocyclone formed in the same general region of the storm where the misocylones later developed. The observations are compared with numerical simulations from a three-dimensional cloud model initialized with sounding data from the same day.
Remotely Operated Vehicle ROV/AUV Reliability Study. Phase 2.
1989-09-01
produce workable configurations for large diameter cyl nders strong enough to survive high compression forces. 11 1.4.5.1.1 Composites Although FWE...Since the main cylinder in manned submersibles is typically large diameter , and the interior is only partially filled with equipment, these systems...ceramics involve control of tolerances when manufacturing large diameter cylinders, although ongoing R&D may provide solutions to this. The major
Acoustic sorting models for improved log segregation
Xiping Wang; Steve Verrill; Eini Lowell; Robert J. Ross; Vicki L. Herian
2013-01-01
In this study, we examined three individual log measures (acoustic velocity, log diameter, and log vertical position in a tree) for their ability to predict average modulus of elasticity (MOE) and grade yield of structural lumber obtained from Douglas-fir (Pseudotsuga menziesii [Mirb. Franco]) logs. We found that log acoustic velocity only had a...
Anatomical and Radiological Aspects of the Supratrochlear Foramen in Brazilians
Gutfiten-Schlesinger, Gabriel; Leite, Túlio FO; Pires, Lucas AS; Silva, Julio G.
2016-01-01
Introduction The supratrochlear foramen is an anatomic variation of great clinical and anthropologic interest. Although many studies addressed this subject in different ethnic groups, there are no studies regarding Brazilians. Aim To verify the incidence and morphometric measures of the supratrochlear foramen in Brazilian humeri. Materials and Methods A total of 330 dry humeri were analysed and divided in three groups: bones presenting the supratrochlear foramen (Group 1), bones displaying a translucent foramen (Group 2) and humeri without the foramen (Group 3). The aperture was measured with a digital vernier caliper. Radiographic pictures with different incidences were taken. Results Our analysis showed that 22.5% of humeri belonged in Group 1, 41.2% in Group 2, and 36.3% in Group 3. The mean vertical diameter and the mean horizontal diameter of the supratrochlear foramen on the left side were 2.779±2.050 mm and 2.332±1.23 mm, respectively. The mean vertical diameter and the mean horizontal diameter of the foramen on the right side were 2.778±2.197 mm, and 2.365±1.396 mm, respectively. The student’s t-test showed that there was no significant difference regarding the size of the foramen between both sides. The best X-ray machine setup was 50 kilo voltage and 0.08 milliamperage per second, associated with a slight increase in the distance of the x-ray tube. Conclusion The aperture seems to be the key point during the pre-operative planning of intramedullary fixation, since it has direct relation to the size of the intramedullary canal, thus, being an entity of clinical, anatomical, anthropological, radiological, and surgical interest. PMID:27790415
NASA Astrophysics Data System (ADS)
Nakano, Haruhisa; Takahashi, Makoto; Sato, Motonobu; Kotsugi, Masato; Ohkochi, Takuo; Muro, Takayuki; Nihei, Mizuhisa; Yokoyama, Naoki
2013-11-01
The resistive switching characteristics of a TiO2/Ti structure have been investigated using a conductive atomic force microscopy (AFM) system with 5-nm-diameter carbon nanotube (CNT) probes. The resistive switching showed bipolar resistive random access memory (ReRAM) behaviors with extremely low switching currents in the order of Picoamperes when voltages were applied. From transmission electron microscopy (TEM) observation, we confirmed that filament-like nanocrystals, having a diameter of about 10 nm, existed in TiO2 films at resistive switching areas after not only set operation but also reset operation. Moreover, photoemission electron microscopy (PEEM) analysis showed that the anatase-type TiO2 structure did not change after set and reset operations. From these results, we suggested that the Picoampere resistive switching occurred at the interface between the TiO2 dielectric and conductive nanocrystal without any structural changes in the TiO2 film and nanocrystal. The resistive switching mechanism we suggested is highly promising to realize extremely low-power-consumption ReRAMs with vertically contacted CNT electrodes.
NASA Astrophysics Data System (ADS)
Nakamura, Kentaro; Kuriyama, Naoki; Takagiwa, Shota; Sato, Taiga; Kushida, Masahito
2016-03-01
Vertically aligned carbon nanotubes (VA-CNTs) were studied as a new catalyst support for polymer electrolyte fuel cells (PEFCs). Controlling the number density and the diameter of VA-CNTs may be necessary to optimize PEFC performance. As the catalyst for CNT growth, we fabricated Fe or Fe3O4 nanoparticle (NP) films by the Langmuir-Blodgett (LB) technique. The catalyst Fe or Fe3O4 NPs were widely separated by mixing with filler molecules [palmitic acid (C16)]. The number density of VA-CNTs was controlled by varying the ratio of catalyst NPs to C16 filler molecules. The VA-CNTs were synthesized from the catalyst NP-C16 LB films by thermal chemical vapor deposition (CVD) using acetylene gas as the carbon source. The developing solvents used in the LB technique and the hydrogen reduction conditions of CVD were optimized to improve the VA-CNT growth rate. We demonstrate that the proposed method can independently control both the density and the diameter of VA-CNTs.
NASA Astrophysics Data System (ADS)
Matsumoto, T.; Shirai, Y.; Shiotsu, M.; Fujita, K.; Kainuma, T.; Tatsumoto, H.; Naruo, Y.; Kobayashi, H.; Nonaka, S.; Inatani, Y.
2017-12-01
Liquid hydrogen has excellent physical properties, high latent heat and low viscosity of liquid, as a coolant for superconductors like MgB2. The knowledge of Departure from Nucleate Boiling (DNB) heat flux of liquid hydrogen is necessary for designing and cooling analysis of high critical temperature superconducting devices. In this paper, DNB heat fluxes of liquid hydrogen were measured under saturated and subcooled conditions at absolute pressures of 400, 700 and 1100 kPa for various flow velocities. Two wire test heaters made by Pt-Co alloy with the length of 200 mm and the diameter of 0.7 mm were used. And these round heaters were set in central axis of a flow channel made of Fiber Reinforced Plastic (FRP) with inner diameters of 8 mm and 12 mm. These test bodies were vertically mounted and liquid hydrogen flowed upward through the channel. From these experimental values, the correlations of DNB heat flux under saturated and subcooled conditions are presented in this paper.
Flow-field Survey of an Empennage Wake Interacting with a Pusher Propeller
NASA Technical Reports Server (NTRS)
Horne, W. Clifton; Soderman, Paul T.
1988-01-01
The flow field between a model empennage and a 591-mm-diameter pusher propeller was studied in the Ames 7- by 10-Foot Wind Tunnel with directional pressure probes and hot-wire anemometers. The region probed was bounded by the empennage trailing edge and downstream propeller. The wake properties, including effects of propeller operation on the empennage wake, were investigated for two empennage geometries: one, a vertical tail fin, the other, a Y-tail with a 34 deg dihedral. Results showed that the effect of the propeller on the empennage wake upstream of the propeller was not strong. The flow upstream of the propeller was accelerated in the streamwise direction by the propeller, but the empennage wake width and velocity defect were relatively unaffected by the presence of the propeller. The peak turbulence in the wake near the propeller tip station, 0.66 diameter behind the vertical tail fin, was approximately 3 percent of the free-stream velocity. The velocity field data can be used in predictions of the acoustic field due to propeller-wake interaction.
Bellholes: Ceiling Cavities Eroded By Bats in Caves of the Neotropical Climates
NASA Astrophysics Data System (ADS)
Miller, T.
2014-12-01
Hundreds of thousands of symmetrical, vertical, bullet-shaped cavities known as bellholes are present in the ceilings of caves restricted to the tropical Americas. Most have circular diameters (rarely influenced by joints or bedding) of at least 30 cm, and may be several meters in height. They are often paired with bellbasins (shallow depressions located vertically beneath them that contain guano produced by bats). Members of the species Artibeus jamaicensis (Jamaican Fruit Bat) are almost exclusive users of these roosts. Brown streaks flowing down the sides of the bellholes and centimeters-thick rinds of the basins below are largely apatite minerals produced by the reaction of the host limestone with phosphoric acids in the guano.Many bellholes have developed in speleothem in the cave ceilings, disproving early theories that they are the result of solution by phreatic currents in flooded caves. A. jamaicensis roosts singly or in harem groups of 2-14 that commonly cluster in the bellholes and it is likely that these social habits of this species focus corrosion resulting from the transfer of feces to rock (producing altered rock then removed by claws) to create discretely-spaced upward-growing cavities. Fossil evidence from Jamaica supports an arrival there from the mainland in the past 12,000 years, suggesting bellholes and bellbasins are geologically recent features in the Caribbean islands. Their locations (not all cave passages have bellholes) can provide information on the hydrological history or microclimate of a cave, due to the absence of both bellholes and bats in some specific situations, e.g. where physical barriers exist such as sumps, small airspaces above streams or through rock collapses, or with increasing distance from an entrance.Smaller circular, increasingly-indented ceiling cavities demonstrate a sequence of bellhole development. Small (23 cm diameter, 9 cm high), circular, streaked cavities in a limestone drainage tunnel constructed in 1927 in Puerto Rico suggest that a 30 cm diameter, 50 cm high bellhole could develop in fewer than 900 years. The numbers of bellholes and bellbasins suggest they may be an important post-formational erosional process in tropical caves, e.g. 4.8 linear cm of ceiling rock has been eroded just from the bellholes of only the first 600 m of a single cave in Puerto Rico.
Growth and FIB-SEM analyses of C60 microtubes vertically synthesized on porous alumina membranes
NASA Astrophysics Data System (ADS)
Miyazawa, Kun'ichi; Kuriyama, Ryota; Shimomura, Shuichi; Wakahara, Takatsugu; Tachibana, Masaru
2014-02-01
The vertical growth of C60 microtubes (C60MTs) on anodic aluminum oxide (AAO) membranes was investigated. The C60MT size dependence on isopropyl alcohol (IPA) injection rate, into C60-saturated toluene solutions through AAO membranes, was measured. A longitudinal section of the interface between a vertically grown C60MT (V-C60MT) and a membrane was prepared by focused ion beam processing, and observed with scanning electron microscopy. No cracking was observed along the interface, suggesting good bonding. V-C60MTs exhibited spiral growth. V-C60MT planar density, wall thickness and aspect ratio all decreased with increasing IPA injection rate. The relationships among length, inner and outer diameters of V-C60MTs were also investigated by varying IPA injection rate.
Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean P.; Grasser, Thomas W.
We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less
Laser-diagnostic mapping of temperature and soot statistics in a 2-m diameter turbulent pool fire
Kearney, Sean P.; Grasser, Thomas W.
2017-08-10
We present spatial profiles of temperature and soot-volume-fraction statistics from a sooting 2-m base diameter turbulent pool fire, burning a 10%-toluene / 90%-methanol fuel mixture. Dual-pump coherent anti-Stokes Raman scattering and laser-induced incandescence are utilized to obtain radial profiles of temperature and soot probability density functions (pdf) as well as estimates of temperature/soot joint statistics at three vertical heights above the surface of the methanol/toluene fuel pool. Results are presented both in the fuel vapor-dome region at ¼ base diameter and in the actively burning region at ½ and ¾ diameters above the fuel surface. The spatial evolution of themore » soot and temperature pdfs is discussed and profiles of the temperature and soot mean and rms statistics are provided. Joint temperature/soot statistics are presented as spatially resolved conditional averages across the fire plume, and in terms of a joint pdf obtained by including measurements from multiple spatial locations.« less
Analysis of pumping tests: Significance of well diameter, partial penetration, and noise
Heidari, M.; Ghiassi, K.; Mehnert, E.
1999-01-01
The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezemeters located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.The nonlinear least squares method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating piezometers and observation wells. Noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced a set of parameters that agrees very well with piezometer test data when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters decreased with increasing noise level.
U.S. Department of Energy Reference Model Program RM2: Experimental Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Craig; Neary, Vincent Sinclair; Gunawan, Budi
2014-08-01
The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN - SAFL) . Reference Model 2 (RM2) is a 1:15 geometric scale dual - rotor crossmore » flow vertical axis device with counter - rotating rotors, each with a rotor diameter d T = 0.43m and rotor height, h T = 0.323 m. RM2 is a river turbine designed for a site modeled after a reach in the lower Mississippi River near Baton Rouge, Louisiana (Barone et al. 2014) . Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADV) aligned with each rotor and the midpoint for RM2 . Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Q w = 2. 35m 3s -1 , resulting in a hub height velocity of approximately U hub = 1. 2 ms -1 and blade chord length Reynolds numbers of Re c = 6 .1x10 4. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing computational fluid dynamics (CFD) models and their ability to accurately simulate turbulent inflow environments, device performance metrics, and to reproduce wake velocity deficit, recovery and higher order turbulent statistics.« less
Pfautsch, Sebastian; Aspinwall, Michael J; Drake, John E; Chacon-Doria, Larissa; Langelaan, Rob J A; Tissue, David T; Tjoelker, Mark G; Lens, Frederic
2018-01-25
Sapwood traits like vessel diameter and intervessel pit characteristics play key roles in maintaining hydraulic integrity of trees. Surprisingly little is known about how sapwood traits covary with tree height and how such trait-based variation could affect the efficiency of water transport in tall trees. This study presents a detailed analysis of structural and functional traits along the vertical axes of tall Eucalyptus grandis trees. To assess a wide range of anatomical and physiological traits, light and electron microscopy was used, as well as field measurements of tree architecture, water use, stem water potential and leaf area distribution. Strong apical dominance of water transport resulted in increased volumetric water supply per unit leaf area with tree height. This was realized by continued narrowing (from 250 to 20 µm) and an exponential increase in frequency (from 600 to 13 000 cm-2) of vessels towards the apex. The widest vessels were detected at least 4 m above the stem base, where they were associated with the thickest intervessel pit membranes. In addition, this study established the lower limit of pit membrane thickness in tall E. grandis at ~375 nm. This minimum thickness was maintained over a large distance in the upper stem, where vessel diameters continued to narrow. The analyses of xylem ultrastructure revealed complex, synchronized trait covariation and trade-offs with increasing height in E. grandis. Anatomical traits related to xylem vessels and those related to architecture of pit membranes were found to increase efficiency and apical dominance of water transport. This study underlines the importance of studying tree hydraulic functioning at organismal scale. Results presented here will improve understanding height-dependent structure-function patterns in tall trees. © The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
1980-11-12
Range : 660,000 kilometers (400,000 miles) Time : 5:05 am PST This Voyager 1 picture of Mimas shows a large impact structure at 110 degrees W Long., located on that face of the moon which leads Mimas in its orbit. The feature, about 130 kilometers in diameter (80 miles), is more than 1/4 the diameter of the entire moon. This is a particularly interesting feature in view of its large diameter compared with the size of the satellite, and may have the largest crater diameter/satillite diameter ratio in the solar system. The crater has a raised rim and central peak, typical of large impact structures on terrestrial planets. Additional smaller craters, 15-45 kilometers in diameter, can be seen scattered across the surface, particularly alon the terminator. Mimas is one of the smaller Saturnian satellites with a low density implying its chief component is ice.
Quadruples in the Four-Number Game with Large Termination Times
ERIC Educational Resources Information Center
Yueh, Wen-Chyuan; Cheng, Sui Sun
2002-01-01
The discrete dynamical system of absolute differences defined by the map [psi]( x[subscript 1] , x[subscript 2] , x[subscript 3] , x[subscript 4] ) = ([vertical line] x[subscript 2] - x[subscript 1] [vertical line], [vertical line] x[subscript 3] - x[subscript 2] [vertical line], [vertical line] x[subscript 4] - x[subscript 3] [vertical line],…
PHYSICAL PROPERTIES OF LARGE AND SMALL GRANULES IN SOLAR QUIET REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Daren; Xie Zongxia; Hu Qinghua
The normal mode observations of seven quiet regions obtained by the Hinode spacecraft are analyzed to study the physical properties of granules. An artificial intelligence technique is introduced to automatically find the spatial distribution of granules in feature spaces. In this work, we investigate the dependence of granular continuum intensity, mean Doppler velocity, and magnetic fields on granular diameter. We recognized 71,538 granules by an automatic segmentation technique and then extracted five properties: diameter, continuum intensity, Doppler velocity, and longitudinal and transverse magnetic flux density to describe the granules. To automatically explore the intrinsic structures of the granules in themore » five-dimensional parameter space, the X-means clustering algorithm and one-rule classifier are introduced to define the rules for classifying the granules. It is found that diameter is a dominating parameter in classifying the granules and two families of granules are derived: small granules with diameters smaller than 1.''44, and large granules with diameters larger than 1.''44. Based on statistical analysis of the detected granules, the following results are derived: (1) the averages of diameter, continuum intensity, and Doppler velocity in the upward direction of large granules are larger than those of small granules; (2) the averages of absolute longitudinal, transverse, and unsigned flux density of large granules are smaller than those of small granules; (3) for small granules, the average of continuum intensity increases with their diameters, while the averages of Doppler velocity, transverse, absolute longitudinal, and unsigned magnetic flux density decrease with their diameters. However, the mean properties of large granules are stable; (4) the intensity distributions of all granules and small granules do not satisfy Gaussian distribution, while that of large granules almost agrees with normal distribution with a peak at 1.04 I{sub 0}.« less
Aerosol Fluxes over Amazon Rain Forest Measured with the Eddy Covariance Method
NASA Astrophysics Data System (ADS)
Ahlm, L.; Nilsson, E. D.; Krejci, R.; Mårtensson, E. M.; Vogt, M.; Artaxo, P.
2008-12-01
We present measurements of vertical aerosol fluxes over the Amazon carried out on top of K34, a 50 meter high tower in the Cuieiras Reserve about 50 km north of Manaus in northern Brazil. The turbulent fluxes were measured with the eddy covariance method. The covariance of vertical wind speed from a sonic anemometer Gill Windmaster and total aerosol number concentration from a condensation particle counter (CPC) TSI 3010 provided the total number flux (diameter >0.01 μm). The covariance of vertical wind speed and size resolved number concentrations from an optical particle counter (OPC) Grimm 1.109 provided size resolved number fluxes in 15 bins from 0.25 μm to 2.5 μm diameter. Additionally fluxes of CO2 and H2O were derived from Li-7500 observations. The observational period, from early March to early August, includes both wet and dry season. OPC fluxes generally show net aerosol deposition both during wet and dry season with the largest downward fluxes during midday. CPC fluxes show different patterns in wet and dry season. During dry season, when number concentrations are higher, downward fluxes clearly dominate. In the wet season however, when number concentrations are lower, our data indicates that upward and downward fluxes are quite evenly distributed during course of a day. On average there is a peak in upward flux during late morning and another peak during the afternoon. Since the OPC fluxes in the same time show net deposition, there is an indication of net source of primary aerosol particles with diameters between 10 and 250 nm emitted from the rain forest. Future data analysis will hopefully shed light on origin and formation mechanism of these particles and thus provide a deeper insight in the rain forest - atmosphere interactions. The aerosol flux measurements were carried out as a part of the AMAZE project in collaboration with University of Sao Paulo, Brazil, and financial support was provided by Swedish International Development Cooperation Agency (SIDA).
Observations of wave-induced pore pressure gradients and bed level response on a surf zone sandbar
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Cox, Dan; Mieras, Ryan; Puleo, Jack A.; Hsu, Tian-Jian
2017-06-01
Horizontal and vertical pressure gradients may be important physical mechanisms contributing to onshore sediment transport beneath steep, near-breaking waves in the surf zone. A barred beach was constructed in a large-scale laboratory wave flume with a fixed profile containing a mobile sediment layer on the crest of the sandbar. Horizontal and vertical pore pressure gradients were obtained by finite differences of measurements from an array of pressure transducers buried within the upper several centimeters of the bed. Colocated observations of erosion depth were made during asymmetric wave trials with wave heights between 0.10 and 0.98 m, consistently resulting in onshore sheet flow sediment transport. The pore pressure gradient vector within the bed exhibited temporal rotations during each wave cycle, directed predominantly upward under the trough and then rapidly rotating onshore and downward as the wavefront passed. The magnitude of the pore pressure gradient during each phase of rotation was correlated with local wave steepness and relative depth. Momentary bed failures as deep as 20 grain diameters were coincident with sharp increases in the onshore-directed pore pressure gradients, but occurred at horizontal pressure gradients less than theoretical critical values for initiation of the motion for compact beds. An expression combining the effects of both horizontal and vertical pore pressure gradients with bed shear stress and soil stability is used to determine that failure of the bed is initiated at nonnegligible values of both forces.
78 FR 60897 - Certain Welded Large Diameter Line Pipe From Japan
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-02
... Diameter Line Pipe From Japan Determination On the basis of the record \\1\\ developed in the subject five... order on certain welded large diameter line pipe from Japan would likely to lead to continuation or... Line Pipe from Japan: Investigation No. 731-TA-919 (Second Review). By order of the Commission. Issued...
NASA Astrophysics Data System (ADS)
Ellsworth, W. L.; Karrenbach, M. H.; Zumberge, M. A.
2017-12-01
The main borehole at the San Andreas Fault Observatory at Depth (SAFOD) contains optical fibers cemented in place in between casing strings from the surface to just below the top of the basement. The fibers are under tension of approximately 1 N and are housed in a 0.9 mm diameter stainless steel tube. Earth strain is transmitted to the fiber by frictional contact with the tube wall. One fiber has been in use as a vertical strainmeter since 2005, measuring the total strain between 9 and 740 m by laser interferometry. In June 2017 we attached an OptaSense Distributed Acoustic Sensing (DAS) system, model ODH3.1, to a second fiber that terminates at 864 m depth. The DAS laser interrogator measures the strain over a gauge length with a set spacing between gauge intervals. For this experiment we set the gauge length to 10 m with 1 m spacing between gauges. Including the surface run of the fiber, this gives us 936 channels measuring the vertical strain at a sample interval of 0.4 msec (2500 samples/s). Continuous recording of the string produces approximately 1 TB/day. During one month of data collection, we recorded local, regional and teleseismic earthquakes. With this recording geometry, the DAS system captures the full vertical wavefield between the basement interface and free surface, revealing direct, converted and refracted waves. Both P- and S- strain waves are clearly visible in the data, even for 10 km deep earthquakes located almost directly below the well (see figure). The incident and surface reflected wavefields can be separated by frequency-wavenumber filtering due to the large-aperture and fine spatial and temporal sampling. Up- and downgoing strain waves illuminate the subsurface within the sensor array's depth range. Accurate arrival time determinations of the initial arrival phase are possible due to consistent wave forms recorded at 1 m spatial intervals that can be used for fine-scale shallow velocity model estimation.
Fabrication of ф 160 mm convex hyperbolic mirror for remote sensing instrument
NASA Astrophysics Data System (ADS)
Kuo, Ching-Hsiang; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Wei-Yao; Chen, Fong-Zhi
2012-10-01
In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the Fabrication of ф160 mm Convex Hyperbolic Mirror for Remote Sensing Instrument160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.
A 12-coil superconducting 'bumpy torus' magnet facility for plasma research.
NASA Technical Reports Server (NTRS)
Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.
1972-01-01
A retrospective summary is presented of the performance of the two-coil superconducting pilot rig which preceded the NASA Lewis bumpy torus. The NASA Lewis bumpy torus facility consists of 12 superconducting coils, each with a 19 cm i.d. and capable of producing magnetic field strengths of 3.0 teslas on their axes. The magnets are equally spaced around a major circumference 1.52 m in diameter, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.59 m in diameter. The design value of maximum magnetic field on the magnetic axis (3.0 T) has been reached and exceeded.
High-speed 850 nm VCSELs with 28 GHz modulation bandwidth for short reach communication
NASA Astrophysics Data System (ADS)
Westbergh, Petter; Safaisini, Rashid; Haglund, Erik; Gustavsson, Johan S.; Larsson, Anders; Joel, Andrew
2013-03-01
We present results from our new generation of high performance 850 nm oxide confined vertical cavity surface-emitting lasers (VCSELs). With devices optimized for high-speed operation under direct modulation, we achieve record high 3dB modulation bandwidths of 28 GHz for ~4 μm oxide aperture diameter VCSELs, and 27 GHz for devices with a ~7 μm oxide aperture diameter. Combined with a high-speed photoreceiver, the ~7 μm VCSEL enables error-free transmission at data rates up to 47 Gbit/s at room temperature, and up to 40 Gbit/s at 85°C.
NASA Astrophysics Data System (ADS)
Uwaba, Tomoyuki; Ito, Masahiro; Nemoto, Junichi; Ichikawa, Shoichi; Katsuyama, Kozo
2014-09-01
The BAMBOO computer code was verified by results for the out-of-pile bundle compression test with large diameter pin bundle deformation under the bundle-duct interaction (BDI) condition. The pin diameters of the examined test bundles were 8.5 mm and 10.4 mm, which are targeted as preliminary fuel pin diameters for the upgraded core of the prototype fast breeder reactor (FBR) and for demonstration and commercial FBRs studied in the FaCT project. In the bundle compression test, bundle cross-sectional views were obtained from X-ray computer tomography (CT) images and local parameters of bundle deformation such as pin-to-duct and pin-to-pin clearances were measured by CT image analyses. In the verification, calculation results of bundle deformation obtained by the BAMBOO code analyses were compared with the experimental results from the CT image analyses. The comparison showed that the BAMBOO code reasonably predicts deformation of large diameter pin bundles under the BDI condition by assuming that pin bowing and cladding oval distortion are the major deformation mechanisms, the same as in the case of small diameter pin bundles. In addition, the BAMBOO analysis results confirmed that cladding oval distortion effectively suppresses BDI in large diameter pin bundles as well as in small diameter pin bundles.
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Shcheglov, Kirill
2002-01-01
Future concepts of ultra large space telescopes include segmented silicon mirrors and inflatable polymer mirrors. Primary mirrors for these systems cannot meet optical surface figure requirements and are likely to generate over several microns of wavefront errors. In order to correct for these large wavefront errors, high stroke optical quality deformable mirrors are required. JPL has recently developed a new technology for transferring an entire wafer-level mirror membrane from one substrate to another. A thin membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers. The measured peak-to-valley surface error of a transferred and patterned membrane (1 mm x 1 mm x 0.016 mm) is only 9 nm. The mirror element actuation principle is based on a piezoelectric unimorph. A voltage applied to the piezoelectric layer induces stress in the longitudinal direction causing the film to deform and pull on the mirror connected to it. The advantage of this approach is that the small longitudinal strains obtainable from a piezoelectric material at modest voltages are thus translated into large vertical displacements. Modeling is performed for a unimorph membrane consisting of clamped rectangular membrane with a PZT layer with variable dimensions. The membrane transfer technology is combined with the piezoelectric bimorph actuator concept to constitute a compact deformable mirror device with a large stroke actuation of a continuous mirror membrane, resulting in a compact A0 systems for use in ultra large space telescopes.
Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems.
Matlock-Colangelo, Lauren; Colangelo, Nicholas W; Fenzl, Christoph; Frey, Margaret W; Baeumner, Antje J
2016-08-05
Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450-550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8-2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3-10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices.
Passive Mixing Capabilities of Micro- and Nanofibres When Used in Microfluidic Systems
Matlock-Colangelo, Lauren; Colangelo, Nicholas W.; Fenzl, Christoph; Frey, Margaret W.; Baeumner, Antje J.
2016-01-01
Nanofibres are increasingly being used in the field of bioanalytics due to their large surface-area-to-volume ratios and easy-to-functionalize surfaces. To date, nanofibres have been studied as effective filters, concentrators, and immobilization matrices within microfluidic devices. In addition, they are frequently used as optical and electrochemical transduction materials. In this work, we demonstrate that electrospun nanofibre mats cause appreciable passive mixing and therefore provide dual functionality when incorporated within microfluidic systems. Specifically, electrospun nanofibre mats were integrated into Y-shaped poly(methyl methacrylate) microchannels and the degree of mixing was quantified using fluorescence microscopy and ImageJ analysis. The degree of mixing afforded in relationship to fibre diameter, mat height, and mat length was studied. We observed that the most mixing was caused by small diameter PVA nanofibres (450–550 nm in diameter), producing up to 71% mixing at the microchannel outlet, compared to up to 51% with polystyrene microfibres (0.8–2.7 μm in diameter) and 29% mixing in control channels containing no fibres. The mixing afforded by the PVA nanofibres is caused by significant inhomogeneity in pore size and distribution leading to percolation. As expected, within all the studies, fluid mixing increased with fibre mat height, which corresponds to the vertical space of the microchannel occupied by the fibre mats. Doubling the height of the fibre mat led to an average increase in mixing of 14% for the PVA nanofibres and 8% for the PS microfibres. Overall, mixing was independent of the length of the fibre mat used (3–10 mm), suggesting that most mixing occurs as fluid enters and exits the fibre mat. The mixing effects observed within the fibre mats were comparable to or better than many passive mixers reported in literature. Since the nanofibre mats can be further functionalized to couple analyte concentration, immobilization, and detection with enhanced fluid mixing, they are a promising nanomaterial providing dual-functionality within lab-on-a-chip devices. PMID:27527184
NASA Astrophysics Data System (ADS)
Kishino, Katsumi; Ishizawa, Shunsuke
2015-06-01
The growth of highly uniform arrays of GaN nanocolumns with diameters from 122 to 430 nm on Si (111) substrates was demonstrated. The employment of GaN film templates with flat surfaces (root mean square surface roughness of 0.84 nm), which were obtained using an AlN/GaN superlattice (SL) buffer on Si, contributed to the high-quality selective-area growth of nanocolumns using a thin Ti mask of 5 nm thickness by rf-plasma-assisted molecular beam epitaxy. Although the GaN template included a large number of dislocations (dislocation density ˜1011 cm-2), the dislocation filtering effect of nanocolumns was enhanced with decreasing nanocolumn diameters (D). Systematic transmission electron microscopy (TEM) observation enabled us to explain the dependence of the dislocation propagation behavior in nanocolumns on the nanocolumn diameter for the first time. Plan-view TEM analysis was performed for nanocolumns with D = 120-324 nm by slicing the nanocolumns horizontally at a height of ˜300 nm above their bottoms and dislocation propagation through the nanocolumns was analyzed by the cross-sectional TEM observation of nanocolumns with D ˜ 200 nm. It was clarified that dislocations were effectively filtered in the bottom 300 nm region of the nanocolumns, the dislocation density of the nanocolumns decreased with decreasing D, and for narrow nanocolumns with D < 200 nm, dislocation-free crystals were obtained in the upper part of the nanocolumns. The dramatic improvement in the emission properties of GaN nanocolumns observed with decreasing diameter is discussed in relation to the decreased dislocation density. The laser action of InGaN/GaN-based nanocolumn arrays with a nanocolumn diameter of 170 nm and a period of 200 nm on Si under optical excitation was obtained with an emission wavelength of 407 nm. We also fabricated red-emitting InGaN-based nanocolumn light-emitting diodes on Si that operated at a wavelength of 652 nm, demonstrating vertical conduction through the AlN/GaN SL buffer to the Si substrate.
Multi-component wind measurements of wind turbine wakes performed with three LiDARs
NASA Astrophysics Data System (ADS)
Iungo, G. V.; Wu, Y.-T.; Porté-Agel, F.
2012-04-01
Field measurements of the wake flow produced from the interaction between atmospheric boundary layer and a wind turbine are performed with three wind LiDARs. The tested wind turbine is a 2 MW Enercon E-70 located in Collonges, Switzerland. First, accuracy of mean values and frequency resolution of the wind measurements are surveyed as a function of the number of laser rays emitted for each measurement. Indeed, measurements performed with one single ray allow maximizing sampling frequency, thus characterizing wake turbulence. On the other hand, if the number of emitted rays is increased accuracy of mean wind is increased due to the longer sampling period. Subsequently, two-dimensional measurements with a single LiDAR are carried out over vertical sections of the wind turbine wake and mean wake flow is obtained by averaging 2D measurements consecutively performed. The high spatial resolution of the used LiDAR allows characterizing in details velocity defect present in the central part of the wake and its downstream recovery. Single LiDAR measurements are also performed by staring the laser beam at fixed directions for a sampling period of about ten minutes and maximizing the sampling frequency in order to characterize wake turbulence. From these tests wind fluctuation peaks are detected in the wind turbine wake at blade top-tip height for different downstream locations. The magnitude of these turbulence peaks is generally reduced by moving downstream. This increased turbulence level at blade top-tip height observed for a real wind turbine has been already detected from previous wind tunnel tests and Large Eddy simulations, thus confirming the presence of a source of dangerous fatigue loads for following wind turbines within a wind farm. Furthermore, the proper characterization of wind fluctuations through LiDAR measurements is proved by the detection of the inertial subrange from spectral analysis of these velocity signals. Finally, simultaneous measurements with two LiDARs are performed over the mean vertical symmetry plane of the wind turbine wake, while a third LiDAR measures the incoming wind over a vertical plane parallel to the mean wind direction and lying outside of the wake. One LiDAR is placed in proximity of the wind turbine location and measures pointing downstream, whereas a second LiDAR is located along the mean wind direction at a downstream distance of 6.5 diameters and measures pointing upstream. For these measurements axial and vertical velocity components are retrieved only for measurement points where the two laser beams result to be roughly orthogonal. Statistics of the two velocity components show in the near wake at hub height strong flow fluctuations with magnitudes about 30% of the mean value, and a gradual reduction for downstream distances larger than three rotor diameters.
NASA Astrophysics Data System (ADS)
Kamajaya, Ketut; Umar, Efrizon; Sudjatmi, K. S.
2012-06-01
This study focused on natural convection heat transfer using a vertical rectangular sub-channel and water as the coolant fluid. To conduct this study has been made pipe heaters are equipped with thermocouples. Each heater is equipped with five thermocouples along the heating pipes. The diameter of each heater is 2.54 cm and 45 cm in length. The distance between the central heating and the pitch is 29.5 cm. Test equipment is equipped with a primary cooling system, a secondary cooling system and a heat exchanger. The purpose of this study is to obtain new empirical correlations equations of the vertical rectangular sub-channel, especially for the natural convection heat transfer within a bundle of vertical cylinders rectangular arrangement sub-channels. The empirical correlation equation can support the thermo-hydraulic analysis of research nuclear reactors that utilize cylindrical fuel rods, and also can be used in designing of baffle-free vertical shell and tube heat exchangers. The results of this study that the empirical correlation equations of natural convection heat transfer coefficients with rectangular arrangement is Nu = 6.3357 (Ra.Dh/x)0.0740.
NASA Astrophysics Data System (ADS)
Woiwode, Wolfgang; Höpfner, Michael; Pitts, Michael; Poole, Lamont; Oelhaf, Hermann; Molleker, Sergej; Borrmann, Stephan; Ebersoldt, Andreas; Frey, Wiebke; Gulde, Thomas; Maucher, Guido; Piesch, Christof; Sartorius, Christian; Orphal, Johannes
2015-04-01
The understanding of the characteristics of large HNO3-containing particles (potential 'NAT-rocks') involved in vertical redistribution of HNO3 in the polar winter stratosphere is limited due to the difficult accessibility of these particles by observations. While robust polar stratospheric cloud (PSC) classification schemes exist for observations by the space-borne lidar aboard CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) as well as for the passive mid-infrared limb observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding), these observations are hardly exploited for the detection of large (diameter >10 μm) NAT particles. This is due to the facts that these particles have low overall number densities, resulting in weak detectable signatures, and that the physical characteristics of these particles (i.e. shape, morphology, HNO3-content and optical characteristics) are uncertain. We investigate collocated and complementary observations of a low-density potential large NAT particle field by the space-borne instruments CALIPSO and MIPAS-ENVISAT as well as the airborne observations by the limb-sounder MIPAS-STR and the in situ particle probe FSSP-100 (Forward Scattering Spectrometer Probe 100) aboard the high-altitude aircraft Geophysica. The observations aboard the Geophysica on 11 December 2011 associated to ESSenCe (ESa Sounder Campaign 2011) provided us the unique opportunity to study in detail the lower boundary region of a PSC where large potential NAT particles (>20 μm in diameter) were detected in situ. We analyse the ambient temperatures and gas-phase composition (HNO3 and H2O), the signatures of the observed particles in the CALIPSO and MIPAS observations, the HNO3-content of these particles suggested by the FSSP-100 and MIPAS-STR observations, and focus on the spectral fingerprint of these particles in the MIPAS-STR observations. While the spectral characterisation of the observed particles is subject of ongoing work, our results support that these particles consist of NAT and that the particle shape plays a crucial role.
NASA Astrophysics Data System (ADS)
Kundu, Snehasis
2018-09-01
In this study vertical distribution of sediment particles in steady uniform turbulent open channel flow over erodible bed is investigated using fractional advection-diffusion equation (fADE). Unlike previous investigations on fADE to investigate the suspension distribution, in this study the modified Atangana-Baleanu-Caputo fractional derivative with a non-singular and non-local kernel is employed. The proposed fADE is solved and an analytical model for finding vertical suspension distribution is obtained. The model is validated against experimental as well as field measurements of Missouri River, Mississippi River and Rio Grande conveyance channel and is compared with the Rouse equation and other fractional model found in literature. A quantitative error analysis shows that the proposed model is able to predict the vertical distribution of particles more appropriately than previous models. The validation results shows that the fractional model can be equally applied to all size of particles with an appropriate choice of the order of the fractional derivative α. It is also found that besides particle diameter, parameter α depends on the mass density of particle and shear velocity of the flow. To predict this parameter, a multivariate regression is carried out and a relation is proposed for easy application of the model. From the results for sand and plastic particles, it is found that the parameter α is more sensitive to mass density than the particle diameter. The rationality of the dependence of α on particle and flow characteristics has been justified physically.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, A. K.; Goossens, M.
2013-11-01
We present rare observational evidence of vertical kink oscillations in a laminar and diffused large-scale plasma curtain as observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. The X6.9-class flare in active region 11263 on 2011 August 9 induces a global large-scale disturbance that propagates in a narrow lane above the plasma curtain and creates a low density region that appears as a dimming in the observational image data. This large-scale propagating disturbance acts as a non-periodic driver that interacts asymmetrically and obliquely with the top of the plasma curtain and triggers the observed oscillations. In themore » deeper layers of the curtain, we find evidence of vertical kink oscillations with two periods (795 s and 530 s). On the magnetic surface of the curtain where the density is inhomogeneous due to coronal dimming, non-decaying vertical oscillations are also observed (period ≈ 763-896 s). We infer that the global large-scale disturbance triggers vertical kink oscillations in the deeper layers as well as on the surface of the large-scale plasma curtain. The properties of the excited waves strongly depend on the local plasma and magnetic field conditions.« less
Ultrafast Directional Beam Switching in Coupled VCSELs
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Goorjian, Peter
2001-01-01
We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.
What You See Is What You Get: Investigations with a View Tube
ERIC Educational Resources Information Center
Obara, Samuel
2009-01-01
This paper presents an investigation by pre-service secondary school teachers in a geometry class of the relationship between the perpendicular distance from the eyeball to the wall (x) and the viewable vertical distance on the wall (y) using a view tube of constant length and diameter. In undertaking the investigation, students used tabular and…
Influence of water movement and root growth on the downward dispersion of rotylenchulus reniformis
USDA-ARS?s Scientific Manuscript database
The presence of Rotylenchulus reniformis at depths of greater than 1.5 -m can have negative effects on cotton health. Two trials were established in 7.62 -cm diameter by 75 -cm deep soil cores to determine 1) the effect of water infiltration on vertical translocation of R. reniformis, and 2) the rol...
NASA Astrophysics Data System (ADS)
Yu, Hung Wei; Anandan, Deepak; Hsu, Ching Yi; Hung, Yu Chih; Su, Chun Jung; Wu, Chien Ting; Kakkerla, Ramesh Kumar; Ha, Minh Thien Huu; Huynh, Sa Hoang; Tu, Yung Yi; Chang, Edward Yi
2018-02-01
High-density (˜ 80/um2) vertical InAs nanowires (NWs) with small diameters (˜ 28 nm) were grown on bare Si (111) substrates by means of two-step metal organic chemical vapor deposition. There are two critical factors in the growth process: (1) a critical nucleation temperature for a specific In molar fraction (approximately 1.69 × 10-5 atm) is the key factor to reduce the size of the nuclei and hence the diameter of the InAs NWs, and (2) a critical V/III ratio during the 2nd step growth will greatly increase the density of the InAs NWs (from 45 μm-2 to 80 μm-2) and at the same time keep the diameter small. The high-resolution transmission electron microscopy and selected area diffraction patterns of InAs NWs grown on Si exhibit a Wurtzite structure and no stacking faults. The observed longitudinal optic peaks in the Raman spectra were explained in terms of the small surface charge region width due to the small NW diameter and the increase of the free electron concentration, which was consistent with the TCAD program simulation of small diameter (< 40 nm) InAs NWs.
Anatomic features of the cetacean globe.
Miller, Sarah; Samuelson, Don; Dubielzig, Richard
2013-07-01
To provide measurements of globe dimensions and describe morphological characteristics of the cetacean globe with an emphasis on Bowman's layer and encapsulated sensory corpuscles (ESC) for available cetacean species. Cetacean globes housed at the Comparative Ocular Pathology Laboratory of Wisconsin from various odontocete and two mysticete species. Measurements were taken from formalin fixed globes and images of formalin fixed globes with embedded rulers. Histological sections of globes were used to count ESC and measure Bowman's layer. The horizontal diameter of the globe was longer than the vertical diameter. The posterior sclera was thick, causing the internal axial length (and therefore the optical axis) to be shorter than the vertical diameter. The cornea was composed of an epithelium, Bowman's layer, collagenous stroma, thin Descemet's membrane and endothelial layer. Bowman's layer was present in all specimens except one Kogia breviceps. The thickness was variable, with the acellular layer thickest in Tursiops truncatus and thinnest in Kogia sp. The iris was well vascularized and muscled while the ciliary body lacked musculature, but retained vasculature. Single and clustered ESC were found in the anterior uvea, sclera surrounding the anterior uvea, trabecular meshwork, or some combination of these locations. They were often regionally grouped and varied from 0 to 21. There were three species where no ESC were found, L. borealis, D. capensis, and S. bredanensis, but the presence of these corpuscles cannot be ruled as only one section of the globe was analyzed. © 2013 American College of Veterinary Ophthalmologists.
Turbulent transport of large particles in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Richter, D. H.; Chamecki, M.
2017-12-01
To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.
Calculations of Asteroid Impacts into Deep and Shallow Water
NASA Astrophysics Data System (ADS)
Gisler, Galen; Weaver, Robert; Gittings, Michael
2011-06-01
Contrary to received opinion, ocean impacts of small (<500 m) asteroids do not produce tsunamis that lead to world-wide devastation. In fact the most dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent. There is some indication that near-field effects are more severe if the impact occurs in shallow water.
Growth of Ca 4YO(BO 3) 3 crystals by vertical Bridgman method
NASA Astrophysics Data System (ADS)
Luo, Jun; Fan, Shiji; Wang, Jinchang; Zhong, Zhenwu; Qian, Guoxing; Sun, Renying
2001-07-01
Growth of single crystals of Ca 4YO(BO 3) 3 (YCOB) by the vertical Bridgman method is reported in this paper. By using near-sealed Pt crucibles to prevent volatilization of B 2O 3, the high-optical-quality YCOB crystals of 25 mm diameter and more than 40 mm in length have been grown at the furnace temperature of 50-80°C above the melting point of YCOB and the crucible lowering rates of 0.2-0.6 mm/h. Owing to the low vertical and radial temperature gradient, crack-free YCOB crystals have been obtained in the <0 1 0> and <0 0 1> directions. At the top of a YCOB boule, the dislocation density was found to decrease from the center to the outer area, and the average dislocation density is about 600/cm 2.
Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth
Tzeng, Yan-Kai; Zhang, Jingyuan Linda; Lu, Haiyu; ...
2017-02-09
Color center-containing nanodiamonds have many applications in quantum technologies and biology. Diamondoids, molecular-sized diamonds have been used as seeds in chemical vapor deposition (CVD) growth. However, optimizing growth conditions to produce high crystal quality nanodiamonds with color centers requires varying growth conditions that often leads to ad-hoc and time-consuming, one-at-a-time testing of reaction conditions. In order to rapidly explore parameter space, we developed a microwave plasma CVD technique using a vertical, rather than horizontally oriented stage-substrate geometry. With this configuration, temperature, plasma density, and atomic hydrogen density vary continuously along the vertical axis of the substrate. Finally, this variation allowedmore » rapid identification of growth parameters that yield single crystal diamonds down to 10 nm in size and 75 nm diameter optically active center silicon-vacancy (Si-V) nanoparticles. Furthermore, this method may provide a means of incorporating a wide variety of dopants in nanodiamonds without ion irradiation damage.« less
Plasma surface figuring of large optical components
NASA Astrophysics Data System (ADS)
Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.
2012-04-01
Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.
NASA Astrophysics Data System (ADS)
Ghafouri, A.; Pourmahmoud, N.; Jozaei, A. F.
2017-03-01
The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.
Synopsis of moisture monitoring by neutron probe in the unsaturated zone at Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.
1997-12-31
Moisture profiles from neutron probe data provide valuable information in site characterization and to supplement ground water monitoring efforts. The neutron probe precision error (reproducibility) is found to be about 0.2 vol% under in situ field conditions where the slope in moisture content with depth is varying slowly. This error is about 2 times larger near moisture spikes (e.g., at the vapor phase notch), due to the sensitivity of the probe response to vertical position errors on the order of 0.5 inches. Calibrations were performed to correct the downhole probe response to the volumetric moisture content determined on core samples.more » Calibration is sensitive to borehole diameter and casing type, requiring 3 separate calibration relations for the boreholes surveyed here. Power law fits were used for calibration in this study to assure moisture content results greater than zero. Findings in the boreholes reported here confirm the broad features seen previously in moisture profiles at Area G, a near-surface region with large moisture variability, a very dry region at greater depths, and a moisture spike at the vapor phase notch (VPN). This feature is located near the interface between the vitrified and vitrified stratigraphic units and near the base of the mesa. This report describes the in-field calibration methods used for the neutron moisture probe measurements and summarizes preliminary results of the monitoring program in the in-situ monitoring network at Area G. Reported results include three main areas: calibration studies, profiles from each of the vertical boreholes at Area G, and time-dependent variations in a select subset of boreholes. Results are reported here for the vertical borehole network. Results from the horizontal borehole network will be described when available.« less
A study of in-situ sediment flocculation in the turbidity maxima of the Yangtze Estuary
NASA Astrophysics Data System (ADS)
Guo, Chao; He, Qing; Guo, Leicheng; Winterwerp, Johan C.
2017-05-01
In order to improve our understandings of temporal and vertical variations of sediment flocculation dynamics within the turbidity maxima (TM) of the highly turbid Yangtze Estuary (YE), we deployed LISST-100C, a laser instrument for in-situ monitor of the sizes and concentrations of flocculated particles in a wet season. Field data in terms of vertical profiles of flow velocity, suspended sediment concentration (SSC), salinity, flocculated particle size distribution and volume concentration were obtained, based on field works conducted at consecutive spring, moderate, and neap tides. Data analyses show that the mean floc diameters (DM) were in the range of 14-95 μm, and flocculation exhibited strong temporal and vertical variations within a tidal cycle and between spring-neap cycles. Larger DM were observed during high and low slack waters, and the averaged floc size at neap tide was found 57% larger than at spring tide. Effective density of flocs decreased with the increase of floc size, and fractal dimension of flocs in the YE was mainly between 1.5 and 2.1. We also estimated the settling velocity of flocs by 0.04-0.6 mm s-1 and the largest settling velocity occurred also at slack waters. Moreover, it is found that turbulence plays a dominant role in the flocculation process. Floc size decreases significantly when the shear rate parameter G is > 2-3 s-1, suggesting the turbulence breaking force. Combined effects of fine sediment flocculation, enhanced settling process, and high sediment concentration resulted in a large settling flux around high water, which can in part explain the severe siltation in the TM of the YE, thus shedding lights on the navigation channel management.
Large eccentric laser angioplasty catheter
NASA Astrophysics Data System (ADS)
Taylor, Kevin D.; Reiser, Christopher
1997-05-01
In response to recent demand for increased debulking of large diameter coronary vascular segments, a large eccentric catheter for excimer laser coronary angioplasty has been developed. The outer tip diameter is 2.0 mm and incorporates approximately 300 fibers of 50 micron diameter in a monorail- type percutaneous catheter. The basic function of the device is to ablate a coronary atherosclerotic lesion with 308 nm excimer laser pulses, while passing the tip of the catheter through the lesion. By employing multiple passes through the lesion, rotating the catheter 90 degrees after each pass, we expect to create luminal diameters close to 3 mm with this device. Design characteristics, in-vitro testing, and initial clinical experience is presented.
Status and trends of bottomland hardwood forests in the mid-Atlantic Region
Anita Rose; Steve Meadows
2016-01-01
Bottomland hardwood forests cover approximately 2.9 million acres of the Coastal Plain and Piedmont region of Virginia and North Carolina. As of 2014, 59 percent of bottomland hardwood forests were in the large-diameter stand-size class. Between 2002 and 2014, area of large-diameter sized stands increased, while that of medium- and small-diameter stands decreased,...
Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes.
Bauer, Sebastian; Park, Jung; von der Mark, Klaus; Schmuki, Patrik
2008-09-01
Self-organized layers of vertically orientated TiO(2) nanotubes providing defined diameters ranging from 15 up to 100nm were grown on titanium by anodic oxidation. These TiO(2) nanotube layers show super-hydrophilic behavior. After coating TiO(2) nanotube layers with a self-assembled monolayer (octadecylphosphonic acid) they showed a diameter-dependent wetting behavior ranging from hydrophobic (108+/-2 degrees ) up to super-hydrophobic (167+/-2 degrees ). Cell adhesion, spreading and growth of mesenchymal stem cells on the unmodified and modified nanotube layers were investigated and compared. We show that cell adhesion and proliferation are strongly affected in the super-hydrophobic range. Adsorption of extracellular matrix proteins as fibronectin, type I collagen and laminin, as well as bovine serum albumin, on the coated and uncoated surfaces showed a strong influence on wetting behavior and dependence on tube diameter.
Hole Quality Assessment in Drilling of Glass Microballoon/Epoxy Syntactic Foams
NASA Astrophysics Data System (ADS)
Ashrith, H. S.; Doddamani, Mrityunjay; Gaitonde, Vinayak; Gupta, Nikhil
2018-05-01
Syntactic foams reinforced with glass microballoons are used as alternatives for conventional materials in structural application of aircrafts and automobiles due to their unique properties such as light weight, high compressive strength, and low moisture absorption. Drilling is the most commonly used process of making holes for assembling structural components. In the present investigation, grey relation analysis (GRA) is used to optimize cutting speed, feed, drill diameter, and filler content to minimize cylindricity, circularity error, and damage factor. Experiments based on full factorial design are conducted using a vertical computer numerical control machine and tungsten carbide twist drills. GRA reveals that a combination of lower cutting speed, filler content, and drill diameter produces a good quality hole at optimum intermediate feed in drilling syntactic foams composites. GRA also shows that the drill diameter has a significant effect on the hole quality. Furthermore, damage on the hole exit side is analyzed using a scanning electron microscope.
NASA Astrophysics Data System (ADS)
Landaeta, Mauricio F.; Castro, Leonardo R.
2012-01-01
Variability in Chilean hake reproductive tactics off central Chile was assessed by analyzing ichthyoplankton samples from nine oceanographic cruises (1996-2005) and through experimental trials with early life stages (eggs, yolk-sac larvae) during the main (austral spring) and secondary (late summer-early autumn) spawning seasons. Abundant eggs in the plankton (1300-2000 eggs per 10 m 2) and historical adult reproductive data showed the highest reproductive activity in austral spring, with large egg aggregations near shelf break (50-100 m depth). Large, recently spawned eggs (1.15-1.20 mm diameter) were advected nearshore by coastward subsurface flows in the spring upwelling season. Experimental trials indicated that recently hatched larvae (3.4-3.5 mm) consumed their yolk-sac (0.17-0.41 mm 3) in 3-4 days at 10-12 °C; plankton sampling indicated that larval hake remained at mid-depth (50-100 m) without showing daily vertical migrations until completing their caudal fin formation (∼15 mm). During the secondary reproductive peak, hake spawned nearshore, when smaller eggs (0.95-1.13 mm) and recently hatched larvae (2.2-2.6 mm notochord length) occurred in surface waters (0-10 m depth). Their relatively large yolk-sac volumes (0.57 ± 0.11 mm 3) provided endogenous nourishment for at least 5 days at 10 °C, according to experiments. In the field, preflexion larvae occurred mainly in the mixed layer (0-25 m) and started ontogenetic daily vertical migrations at 7 mm. A strong decline occurred after 2002 in the adult Chilean hake biomass (estimated by hydroacoustic surveys) and body size, coinciding with variations in spawning locations (more coastward in early spring 2004 and 2005) and decline in egg size. Thus, recent variations in Chilean hake reproductive tactics may reflect an indirect effect of declines in the parental population size.
NASA Astrophysics Data System (ADS)
Koma, Zsófia; Székely, Balázs; Folly-Ritvay, Zoltán; Skobrák, Ferenc; Koenig, Kristina; Höfle, Bernhard
2016-04-01
Mobile Laser Scanning (MLS) is an evolving operational measurement technique for urban environment providing large amounts of high resolution information about trees, street features, pole-like objects on the street sides or near to motorways. In this study we investigate a robust segmentation method to extract the individual trees automatically in order to build an object-based tree database system. We focused on the large urban parks in Budapest (Margitsziget and Városliget; KARESZ project) which contained large diversity of different kind of tree species. The MLS data contained high density point cloud data with 1-8 cm mean absolute accuracy 80-100 meter distance from streets. The robust segmentation method contained following steps: The ground points are determined first. As a second step cylinders are fitted in vertical slice 1-1.5 meter relative height above ground, which is used to determine the potential location of each single trees trunk and cylinder-like object. Finally, residual values are calculated as deviation of each point from a vertically expanded fitted cylinder; these residual values are used to separate cylinder-like object from individual trees. After successful parameterization, the model parameters and the corresponding residual values of the fitted object are extracted and imported into the tree database. Additionally, geometric features are calculated for each segmented individual tree like crown base, crown width, crown length, diameter of trunk, volume of the individual trees. In case of incompletely scanned trees, the extraction of geometric features is based on fitted circles. The result of the study is a tree database containing detailed information about urban trees, which can be a valuable dataset for ecologist, city planners, planting and mapping purposes. Furthermore, the established database will be the initial point for classification trees into single species. MLS data used in this project had been measured in the framework of KARESZ project for whole Budapest. BSz contributed as an Alexander von Humboldt Research Fellow.
Termeie, Deborah; Klokkevold, Perry R; Caputo, Angelo A
2015-10-01
The long-term clinical success of a dental implant is dependent upon maintaining sufficient osseointegration to resist forces of occlusion. The purpose of this study was to investigate the effect of implant diameter on stress distribution around screw-type dental implants in mandibular first molar sites using photoelastic models. The design included models with different buccal-lingual dimension. Twelve composite photoelastic models were assembled using 2 different resins to simulate trabecular and cortical bone. Half of the models were fabricated with average dimensions for ridge width and the other half with narrower buccal-lingual dimensions. One internal connection implant (13 mm length) with either a standard (4 mm), wide (5 mm), or narrow (3.3 mm) diameter was embedded in the first molar position of each photoelastic model. Half the implants were tapered and the other half were straight. Full gold crowns in the shape of a mandibular first molar were fabricated and attached to the implants. Vertical and angled loads of 15 and 30 pounds were applied to specific points on the crown. Wide-diameter implants produced the least stress in all ridges while narrow-diameter implants generated the highest stress, especially in narrow ridges. It may be that the volume and quality of bone surrounding implants influences stress distribution with a greater ratio of cortical to trabecular bone, thus providing better support. Models with wide-diameter implants loaded axially had a more symmetrical stress distribution compared to standard and narrow diameter implants. A more asymmetrical stress pattern developed along the entire implant length with angled loads. Implant diameter and ridge width had considerable influence on stress distribution. Narrow-diameter implants produced more stress than wide diameter implants in all conditions tested.
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D
2013-02-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.
Vertical nanopillars for highly localized fluorescence imaging
Xie, Chong; Hanson, Lindsey; Cui, Yi; Cui, Bianxiao
2011-01-01
Observing individual molecules in a complex environment by fluorescence microscopy is becoming increasingly important in biological and medical research, for which critical reduction of observation volume is required. Here, we demonstrate the use of vertically aligned silicon dioxide nanopillars to achieve below-the-diffraction-limit observation volume in vitro and inside live cells. With a diameter much smaller than the wavelength of visible light, a transparent silicon dioxide nanopillar embedded in a nontransparent substrate restricts the propagation of light and affords evanescence wave excitation along its vertical surface. This effect creates highly confined illumination volume that selectively excites fluorescence molecules in the vicinity of the nanopillar. We show that this nanopillar illumination can be used for in vitro single-molecule detection at high fluorophore concentrations. In addition, we demonstrate that vertical nanopillars interface tightly with live cells and function as highly localized light sources inside the cell. Furthermore, specific chemical modification of the nanopillar surface makes it possible to locally recruit proteins of interest and simultaneously observe their behavior within the complex, crowded environment of the cell. PMID:21368157
Qiu, Zhen; Liu, Zhongyao; Duan, Xiyu; Khondee, Supang; Joshi, Bishnu; Mandella, Michael J.; Oldham, Kenn; Kurabayashi, Katsuo; Wang, Thomas D.
2013-01-01
We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0–400 μm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 μm, respectively, over a field-of-view of 800 μm (width) × 400 μm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument. PMID:23412564
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Ying-jun; Jia, Zhen-yuan; Zhang, Jun; Qian, Min
2011-01-01
In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.
NASA Astrophysics Data System (ADS)
Vaillancourt, Robert D.; Marra, John; Seki, Michael P.; Parsons, Michael L.; Bidigare, Robert R.
2003-07-01
A synoptic spatial examination of the eddy Haulani (17-20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m -3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria ( Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.
High Revision Rate for Large-head Metal-on-metal THA at a Mean of 7.1 Years: A Registry Study.
Seppänen, Matti; Laaksonen, Inari; Pulkkinen, Pekka; Eskelinen, Antti; Puhto, Ari-Pekka; Kettunen, Jukka; Leskinen, Jarkko; Manninen, Mikko; Mäkelä, Keijo
2018-06-01
Large-diameter head metal-on-metal (MoM) THA has largely been abandoned as a result of higher than anticipated revision rates. However, the majority of these implants are still in situ. Although earlier reports from the Finnish Arthroplasty Register noted similar short-term survivorship between large-diameter head MoM THA and conventional cemented THA, longer term survivorship of this population is unclear. Although reported revision rates for this implant group have been high, the majority of these implants have not been revised and followup is important to improve long-term management. The purposes of this study were (1) to compare the 10-year competing risk survivorship of large-diameter head MoM THA with the survivorship of conventional THA in the Finnish Arthroplasty Register; (2) to report the large-diameter head MoM THA survival at the manufacturer/brand level; and (3) to identify the most common reasons for revision of large-diameter head MoM THA in the Finnish Arthroplasty Register. The six most commonly used large-diameter head (≥ 38 mm) MoM THA devices in Finland between years 2004 and 2013 were selected (n = 10,959 implants). The completeness of the Finnish Registry is > 95% in primary THA and patients are censored from the date of death or at the point of emigration; followup continued until the end of 2015. The conventional THA control group consisted of the two most frequently used devices (Vision/Bimetric and ABG II/ABG II) with metal-on-polyethylene or ceramic-on-ceramic bearing surfaces implanted between 2002 and 2013 (n = 5177). The study group was formed by selecting all pairs of large-diameter head MoM and reference THA protheses within the same age group ( < 49, 50-54, 55-59, 60-64, 65-69, 70-74, and 75+ years), sex, diagnosis (osteoarthritis, other), and hospital yearly operation count (< 100 operations yearly, ≥ 100 operations yearly); 5166 matched pairs were identified. Revision for any reason was considered as the failure endpoint of followup. Implant survival (the proportion not revised) was calculated from corresponding cumulative incidence function adjusted for patient death as a competing event for revision. Large-diameter head MoM implant group revision hazard ratios with 95% confidence intervals were estimated with age group, sex, diagnosis, and hospital yearly operation count as confounding factors in a Cox regression model. Ten-year survivorship free from all-cause revision was lower for THAs that used a large-diameter femoral head than it was for the control group of conventional THA (83% [95% confidence interval {CI}, 82%-84%] versus 92% [95% CI, 91%-93%]). At the implant level, every large-diameter head MoM THA had a higher risk for revision compared with the conventional THA control group from the fourth postoperative year onward. The highest survival of MoM THA was 88% (95% CI, 86%-90%) for the ReCap/Bimetric and the lowest survival was 46% (95% CI, 41%-51%) for the recalled ASR with either the Summit® or Corail® stem. The most common revision reason in the MoM THA group was adverse reaction to metal debris, whereas dislocation was predominant in the conventional THA control group. The revision rate for all large-diameter head MoM THAs in this timeframe in the Finnish Arthroplasty Register is unacceptably high and in our view supports the decision to abandon their use. In agreement with the directives of other national organizations, we recommend regular followup of all patients with large-diameter head MoM THA. Based on our results, strict guidelines for followup should be maintained over the lifetime of the implant to assess patient symptoms and recommend revision when indicated. Level III, therapeutic study.
The Influence of Waves on the Near-Wake of an Axial-Flow Marine Hydrokinetic Turbine
NASA Astrophysics Data System (ADS)
Lust, Ethan; Luznik, Luksa; Flack, Karen
2017-11-01
Flow field results are presented for the near-wake of an axial-flow hydrokinetic turbine in the presence of surface gravity waves. The turbine is a 1/25 scale, 0.8 m diameter, two bladed turbine based on the U.S. Department of Energy's Reference Model 1 tidal current turbine. Measurements were obtained in the large towing tank facility at the U.S. Naval Academy with the turbine towed at a constant carriage speed and a tip speed ratio selected to provide maximum power. The turbine has been shown to be nearly scale independent for these conditions. Velocity measurements were obtained using an in-house designed and manufactured, submersible, planar particle image velocimetry (PIV) system at streamwise distances of up to two diameters downstream of the rotor plane. Phase averaged results for steady and unsteady conditions are presented for comparison showing further expansion of the wake in the presence of waves as compared to the quiescent case. The impact of waves on turbine tip vortex characteristics is also examined showing variation in core radius, swirl velocity, and circulation with wave phase. Some aspects of the highly coherent wake observed in the steady case are recognized in the unsteady wake, however, the unsteady velocities imposed by the waves, particularly the vertical velocity component, appears to convect tip vortices into the wake, potentially enhancing energy transport and accelerating the re-energization process.
Martian Impact Craters as Revealed by MGS and Odyssey
NASA Technical Reports Server (NTRS)
Barlow, N. G.
2005-01-01
A variety of ejecta and interior morphologies were revealed for martian impact craters by Viking imagery. Numerous studies have classified these ejecta and interior morphologies and looked at how these morphologies correlate with crater diameter, latitude, terrain, and elevation [1, 2, 3, 4]. Many of these features, particularly the layered (fluidized) ejecta morphologies and central pits, have been proposed to result when the crater formed in target material containing high concentrations of volatiles. The Catalog of Large Martian Impact Craters was originally derived from the Viking 1:2,000,000 photomosaics and contains information on 42,283 impact craters 5-km diameter distributed across the entire martian surface. The information in this Catalog has been used to study the distributions of craters displaying specific ejecta and interior morphologies in an attempt to understand the environmental conditions which give rise to these features and to estimate the areal and vertical extents of subsurface volatile reservoirs [4, 5]. The Catalog is currently undergoing revision utilizing Mars Global Surveyor (MGS) and Mars Odyssey data [6]. The higher resolution multispectral imagery is resulting in numerous revisions to the original classifications and the addition of new elemental, thermophysical, and topographic data is allowing new insights into the environmental conditions under which these features form. A few of the new results from analysis of data in the revised Catalog are discussed below.
NASA Astrophysics Data System (ADS)
Mutig, Alex; Lott, James A.; Blokhin, Sergey A.; Moser, Philip; Wolf, Philip; Hofmann, Werner; Nadtochiy, Alexey M.; Bimberg, Dieter
2011-03-01
The progressive penetration of optical communication links into traditional copper interconnect markets greatly expands the applications of vertical cavity surface emitting lasers (VCSELs) for the next-generation of board-to-board, moduleto- module, chip-to-chip, and on-chip optical interconnects. Stability of the VCSEL parameters at high temperatures is indispensable for such applications, since these lasers typically reside directly on or near integrated circuit chips. Here we present 980 nm oxide-confined VCSELs operating error-free at bit rates up to 25 Gbit/s at temperatures as high as 85 °C without adjustment of the drive current and peak-to-peak modulation voltage. The driver design is therefore simplified and the power consumption of the driver electronics is lowered, reducing the production and operational costs. Small and large signal modulation experiments at various temperatures from 20 up to 85 °C for lasers with different oxide aperture diameters are presented in order to analyze the physical processes controlling the performance of the VCSELs. Temperature insensitive maximum -3 dB bandwidths of around 13-15 GHz for VCSELs with aperture diameters of 10 μm and corresponding parasitic cut-off frequencies exceeding 22 GHz are observed. Presented results demonstrate the suitability of our VCSELs for practical high speed and high temperature stable short-reach optical links.
Radiocarbon dating of large termite mounds of the miombo woodland of Katanga, DR Congo
NASA Astrophysics Data System (ADS)
Erens, Hans; Boudin, Mathieu; Mees, Florias; Dumon, Mathijs; Mujinya, Basile; Van Strydonck, Mark; Baert, Geert; Boeckx, Pascal; Van Ranst, Eric
2015-04-01
The miombo woodlands of South Katanga (D.R. Congo) are characterized by a high spatial density of large conic termite mounds built by Macrotermes falciger (3 to 5 ha-1, ~5 m high, ~15 m in diameter). The time it takes for these mounds to attain this size is still largely unknown. In this study, the age of four of these mounds is determined by 14C-dating the acid-insoluble organic carbon fraction of samples taken along the central vertical axis of two active and two abandoned mounds. The age sequence in the active mounds is erratic, but the results for the abandoned mounds show a logical increase of 14C-age with depth. The ages measured at 50 cm above ground level were 2335 - 2119 cal yr BP for the large abandoned mound (630 cm high), and 796 - 684 cal yr BP for the small abandoned mound (320 cm high). Cold-water-extractable organic carbon (CWEOC) measurements combined with spectroscopic analysis revealed that the lower parts of the active mounds may have been contaminated with recent carbon that leached from the active nest. Nonetheless, this method appears to provide reliable age estimates of large, abandoned termite mounds, which are older than previously estimated. Furthermore, historical mound growth rates seem to correspond to past temperature changes, suggesting a relation between past environmental conditions and mound occupancy. Keywords : 14C, water-extractable carbon, low-temperature combustion
Fischer, Andreas; Bausch, Dirk; Richter-Schrag, Hans-Juergen
2013-02-01
The use of self-expandable stents to treat postoperative leaks and fistula in the upper gastrointestinal (GI) tract is an established treatment for leaks of the upper GI tract. However, lumen-to-stent size discrepancies (i.e., after sleeve gastrectomy or esophageal resection) may lead to insufficient sealing of the leaks requiring further surgical intervention. This is mainly due to the relatively small diameter (≤30 mm) of commonly used commercial stents. To overcome this problem, we developed a novel partially covered stent with a shaft diameter of 36 mm and a flare diameter of 40 mm. From September 2008 to September 2010, 11 consecutive patients with postoperative leaks were treated with the novel large diameter stent (gastrectomy, n = 5; sleeve gastrectomy, n = 2; fundoplication after esophageal perforation, n = 2; Roux-en-Y gastric bypass, n = 1; esophageal resection, n = 1). Treatment with commercially available stents (shaft/flare: 23/28 mm and 24/30 mm) had been unsuccessful in three patients before treatment with the large diameter stent. Due to dislocation, the large diameter stent was anchored in four patients (2× intraoperatively with transmural sutures, 2× endoscopically with transnasally externalized threads). Treatment was successful in 11 of 11 patients. Stent placement and removal was easy and safe. The median residence time of the stent was 24 (range, 18-41) days. Stent dislocation occurred in four cases (36 %). It was treated by anchoring the stent. Mean follow-up was 25 (range, 14-40) months. No severe complication occurred during or after intervention and no patient was dysphagic. Using the novel large diameter, partially covered stent to seal leaks in the upper GI tract is safe and effective. The large diameter of the stent does not seem to injure the wall of the upper GI tract. However, stent dislocation sometimes requires anchoring of the stent with sutures or transnasally externalized threads.
Characteristics of dilute gas-solids suspensions in drag reducing flow
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Measurements were performed on dilute flowing gas-solids suspensions and included data, with particles present, on gas friction factors, velocity profiles, turbulence intensity profiles, turbulent spectra, and particle velocity profiles. Glass beads of 10 to 60 micron diameter were suspended in air at Reynolds numbers of 10,000 to 25,000 and solids loading ratios from 0 to 4. Drag reduction was achieved for all particle sizes in vertical flow and for the smaller particle sizes in horizontal flow. The profile measurements in the vertical tube indicated that the presence of particles thickened the viscous sublayer. A quantitative theory based on particle-eddy interaction and viscous sublayer thickening has been proposed.
Preparative liquid column electrophoresis of T and B lymphocytes at gravity = 1
NASA Technical Reports Server (NTRS)
Van Oss, C. J.; Bigazzi, P. E.; Gillman, C. F.; Allen, R. E.
1974-01-01
Vertical liquid columns containing low-molecular-weight dextran density gradients can be used for preparative lymphocyte electrophoresis on earth, in simulation of zero gravity conditions. Another method that has been tested at 1 g, is the electrophoresis of lymphocytes in an upward direction in vertical columns. By both methods up to 100 million lymphocytes can be separated at one time in a 30-cm glass column of 8-mm inside diameter, at 12 V/cm, in two hours. Due to convection and sedimentation problems, the separation at 1 g is less than ideal, but it is expected that at zero gravity electrophoresis will probe to be a uniquely powerful cell separation tool.
Change in corneal aberrations after cataract surgery with 2 types of aspherical intraocular lenses.
Marcos, Susana; Rosales, Patricia; Llorente, Lourdes; Jiménez-Alfaro, Ignacio
2007-02-01
To study the effect of cataract surgery through 3.2 mm superior incisions on corneal aberrations with 2 types of monofocal intraocular lenses (IOLs) with an aspherical design. Instituto de Optica, Consejo Superior de Investigaciones Científicas, and Fundación Jiménez Díaz, Madrid, Spain. Corneal topography of 43 eyes was obtained before and after small corneal incision cataract surgery. Twenty-two eyes had implantation of a Tecnis Z9000 silicone IOL (Advanced Medical Optics) and 21 had implantation of an AcrySof IQ SN60WF acrylic IOL (Alcon Research Labs) using the recommended injector for each IOL type. The intended incision size (3.2 mm) was similar in the 2 groups. Corneal aberrations were estimated using custom-developed algorithms (based on ray tracing) for 10.0 mm and 5.0 mm pupils. Comparisons between preoperative and postoperative measurements and across the groups were made for individual Zernike terms and root-mean-square (RMS) wavefront error. The RMS (excluding tilt and defocus) did not change in the AcrySof IQ group and increased significantly in the Tecnis group with the 10.0 mm and 5.0 mm pupil diameters. Spherical aberration and coma-like terms did not change significantly; however, vertical astigmatism, vertical trefoil, and vertical tetrafoil changed significantly with surgery with the 10.0 mm and 5.0 mm pupil diameters (P<.0005). The induced wave aberration pattern for 3rd- and higher-order aberrations consistently showed a superior lobe, resulting from a combination of positive vertical trefoil (Z(3)(-3)) and negative tetrafoil (Z(4)(4)). The mean vertical astigmatism increased by 2.47 microm +/- 1.49 (SD) and 1.74 +/- 1.44 microm, vertical trefoil increased by 1.81 +/- 1.19 microm and 1.20 +/- 1.34 microm, and tetrafoil increased by -1.10 +/- 0.78 microm and -0.89 +/- 0.68 microm in the Tecnis group and AcrySof IQ group, respectively. There were no significant differences between the corneal aberrations in the 2 postoperative groups, although there was a tendency toward more terms or orders changing statistically significantly in the Tecnis group, which had slightly higher amounts of induced aberrations. Cataract surgery with a small superior incision induced consistent and significant changes in several corneal Zernike terms (vertical astigmatism, trefoil, and tetrafoil), resulting in a significantly increased overall corneal RMS wavefront error. These results can be used to improve predictions of optical performance with new IOL designs using computer eye models and identify the potentially different impact of incision strategies on cataract surgery.
NASA Technical Reports Server (NTRS)
Fastig, Shlomo; Deoung, Russell J.
1998-01-01
Acrylic plastic Fresnel lenses are very light and can have large diameters. Such lenses could be used in lidar telescope receivers if the focal spot is not too large or distorted. This research effort characterizes the focal spot diameter produced by a Fresnel lens with a diameter of 30.5 cm (12 in.). It was found that the focal spot diameter varied from 1.2 mm at 750 nm to 1.6 mm at 910 nm. The focal spot was irregular and not easily described by a Gaussian profile.
Marie Yee; Simon J. Grove; Alastair M.M. Richardson; Caroline L. Mohammed
2006-01-01
It is not clear why large diameter logs generally host saproxylic beetle assemblages that are different from those of small diameter logs. In a study in Tasmanian wet eucalypt forest, two size-classes of Eucalyptus obliqua logs (>100cm and 30-60cm diameter) were destructively sampled to assess their beetle fauna and the associations of this fauna...
Measuring Diameters Of Large Vessels
NASA Technical Reports Server (NTRS)
Currie, James R.; Kissel, Ralph R.; Oliver, Charles E.; Smith, Earnest C.; Redmon, John W., Sr.; Wallace, Charles C.; Swanson, Charles P.
1990-01-01
Computerized apparatus produces accurate results quickly. Apparatus measures diameter of tank or other large cylindrical vessel, without prior knowledge of exact location of cylindrical axis. Produces plot of inner circumference, estimate of true center of vessel, data on radius, diameter of best-fit circle, and negative and positive deviations of radius from circle at closely spaced points on circumference. Eliminates need for time-consuming and error-prone manual measurements.
Foliar Nutrient Concentrations and Hardwood Growth Influenced by Cultural Treatments
Harvey E. Kennedy
1981-01-01
Six species of hardwoods were planted at a 3 by 3 m spacing on a slackwater clay soil (Vertic Haplaquept) in western Mississippi and subjected to three intensities of cultural treatments. Periodic disking- significantly increased heights, diameters, and survival of trees. Cultural treatments during the 4 years of the study did not cause any significant changes in soil...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
...-foot diameter penstock; (4) two vertical Kaplan turbine-generator units with a combined capacity of 7.0... ) under the ``eFiling'' link. For a simpler method of submitting text only comments, click on ``Quick... project, including a copy of the application can be viewed or printed on the ``eLibrary'' link of...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-23
...-foot-wide, 98-foot-deep concrete lined vertical shaft containing 10-foot-diameter siphon piping and a... via the Internet. See 18 CFR Sec. 385.2001(a)(1)(iii) and the instructions on the Commission's Web... Commission's Web site at http://www.ferc.gov/docs-filing/elibrary.asp . Enter the docket number (P-14360) in...
DNB heat flux on inner side of a vertical pipe in forced flow of liquid hydrogen and liquid nitrogen
NASA Astrophysics Data System (ADS)
Shirai, Yasuyuki; Tatsumoto, Hideki; Shiotsu, Masahiro; Hata, Koichi; Kobayashi, Hiroaki; Naruo, Yoshihiro; Inatani, Yoshifumi
2018-06-01
Heat transfer from inner side of a heated vertical pipe to liquid hydrogen flowing upward was measured at the pressures of 0.4, 0.7 and 1.1 MPa for wide ranges of flow rate and liquid temperature. Nine test heaters with different inner diameters of 3, 4, 6 and 9 mm and the lengths of 50, 100, 150, 200, 250 and 300 mm were used. The DNB (departure from nucleate boiling) heat fluxes in forced flow of liquid hydrogen were measured for various subcoolings and flow velocities at pressures of 0.4, 0.7 and 1.1 MPa. Effect of L/d (ratio of heater length to diameter) was clarified for the range of L / d ⩽ 50 . A new correlation of DNB heat flux was presented based on a simple model and the experimental data. Similar experiments were performed for liquid nitrogen at pressures of 0.5 MPa and 1.0 MPa by using the same experimental system and some of the test heaters. It was confirmed that the new correlation can describe not only the hydrogen data, but also the data of liquid nitrogen.
Size-tunable synthesis of SiO(2) nanotubes via a simple in situ templatelike process.
Shen, Guozhen; Bando, Yoshio; Golberg, Dmitri
2006-11-23
SiO(2) nanotubes with tunable diameters and lengths have been successfully synthesized via a simple in situ templatelike process by thermal evaporation of SiO, ZnS, and GaN in a vertical induction furnace. The structure and morphologies were systematically investigated using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry. Studies found that both the diameters and lengths of the SiO(2) nanotubes can be effectively tuned by simply changing the reaction temperatures. The range of changes was from 30 nm (diameter) and several hundred micrometers (length) at 1450 degrees C to 100 nm (diameter) and 2-10 micrometers (length) at 1300 degrees C. Varying some other experimental parameters results in the formation of additional SiO(2)-based nanostructures, such as core-shell ZnS-SiO(2) nanocables, ZnS nanoparticle filled SiO(2) nanotubes, and fluffy SiO(2) spheres. Based on the observations, an in situ templatelike process was proposed to explain the possible growth mechanism.
NASA Astrophysics Data System (ADS)
Williams, C. R.; Chandra, C. V.
2017-12-01
The vertical evolution of falling raindrops is a result of evaporation, breakup, and coalescence acting upon those raindrops. Computing these processes using vertically pointing radar observations is a two-step process. First, the raindrop size distribution (DSD) and vertical air motion need to be estimated throughout the rain shaft. Then, the changes in DSD properties need to be quantified as a function of height. The change in liquid water content is a measure of evaporation, and the change in raindrop number concentration and size are indicators of net breakup or coalescence in the vertical column. The DSD and air motion can be retrieved using observations from two vertically pointing radars operating side-by-side and at two different wavelengths. While both radars are observing the same raindrop distribution, they measure different reflectivity and radial velocities due to Rayleigh and Mie scattering properties. As long as raindrops with diameters greater than approximately 2 mm are in the radar pulse volumes, the Rayleigh and Mie scattering signatures are unique enough to estimate DSD parameters using radars operating at 3- and 35-GHz (Williams et al. 2016). Vertical decomposition diagrams (Williams 2016) are used to explore the processes acting on the raindrops. Specifically, changes in liquid water content with height quantify evaporation or accretion. When the raindrops are not evaporating, net raindrop breakup and coalescence are identified by changes in the total number of raindrops and changes in the DSD effective shape as the raindrops. This presentation will focus on describing the DSD and air motion retrieval method using vertical profiling radar observations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in Northern Oklahoma.
Cellular behavior controlled by bio-inspired and geometry-tunable nanohairs.
Heo, Chaejeong; Jeong, Chanho; Im, Hyeon Seong; Kim, Jong Uk; Woo, Juhyun; Lee, Ji Yeon; Park, Byeonghak; Suh, Minah; Kim, Tae-Il
2017-11-23
A cicada wing has a biocidal feature of rupturing the membrane of cells, while the cactus spine can transmit a water drop to the stem of the plant. Both of these properties have evolved from their respective unique structures. Here, we endeavor to develop geometry-controllable nanohairs that mimic the cicada's wing-like vertical hairs and the cactus spine-like stooped hairs, and to quantitatively characterize the cell migration behavior of the hairy structures. It was found that the neuroblastoma cells are highly sensitive to the variation of surfaces: flat, vertical, and stooped nanohairs (100 nm diameter and 900 nm height). The cells on the vertical hairs showed significantly decreased proliferation. It was found that the behavior of cells cultured on stooped nanohairs is strongly influenced by the direction of the stooped pattern of hairs when we quantitatively measured the migration of cells on flat, vertical, and stooped structures. However, the cells on the flat structures showed random movement and the cells on the vertical nanohairs restricted the nanohair movement. Cells on the stooped structure showed higher forward migration preference compared to that of the other structures. Furthermore, we found that these cellular behaviors on the different patterns of nanohairs were affected by intracellular actin flament change. Consistent with these results, the vertical and stooped structures can facilitate the control of cell viability and guide directional migration for biomedical applications such as organogenesis.
Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth
Shen, Youde; Chen, Renjie; Yu, Xuechao; ...
2016-06-02
Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor–liquid–solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. In this paper, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs–Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed tomore » impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs–Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. Finally, these results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.« less
Transverse Mode Dynamics of VCSELs Undergoing Current Modulation
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind
2000-01-01
Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling
Impact Cratering Physics al Large Planetary Scales
NASA Astrophysics Data System (ADS)
Ahrens, Thomas J.
2007-06-01
Present understanding of the physics controlling formation of ˜10^3 km diameter, multi-ringed impact structures on planets were derived from the ideas of Scripps oceanographer, W. Van Dorn, University of London's, W, Murray, and, Caltech's, D. O'Keefe who modeled the vertical oscillations (gravity and elasticity restoring forces) of shock-induced melt and damaged rock within the transient crater immediately after the downward propagating hemispheric shock has processed rock (both lining, and substantially below, the transient cavity crater). The resulting very large surface wave displacements produce the characteristic concentric, multi-ringed basins, as stored energy is radiated away and also dissipated upon inducing further cracking. Initial calculational description, of the above oscillation scenario, has focused upon on properly predicting the resulting density of cracks, and, their orientations. A new numerical version of the Ashby--Sammis crack damage model is coupled to an existing shock hydrodynamics code to predict impact induced damage distributions in a series of 15--70 cm rock targets from high speed impact experiments for a range of impactor type and velocity. These are compared to results of crack damage distributions induced in crustal rocks with small arms impactors and mapped ultrasonically in recent Caltech experiments (Ai and Ahrens, 2006).
Evaluating a small footprint, waveform-resolving lidar over coastal vegetation communities
Nayegandhl, A.; Brock, J.C.; Wright, C.W.; O'Connell, M. J.
2006-01-01
NASA's Experimental Advanced Airborne Research Lidar (EAARL) is a raster-scanning, waveform-resolving, green-wavelength (532 nm) lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor records the time history of the return waveform within a small footprint (20 cm diameter) for each laser pulse, enabling characterization of vegetation canopy structure and "bare earth" topography under a variety of vegetation types. A collection of individual waveforms combined within a synthesized large footprint was used to define three metrics: canopy height (CH), canopy reflection ratio (CRR), and height of median energy (HOME). Bare Earth Elevation (BEE) metric was derived using the individual small-footprint waveforms. All four metrics were tested for reproducibility, which resulted in an average of 95 percent correspondence within two standard deviations of the mean. CH and BEE values were also tested for accuracy using ground-truth data. The results presented in this paper show that combining several individual small-footprint laser pulses to define a composite "large-footprint" waveform is a possible method to depict the vertical structure of a vegetation canopy. ?? 2006 American Society for Photogrammetry and Remote Sensing.
Gibbs-Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth.
Shen, Youde; Chen, Renjie; Yu, Xuechao; Wang, Qijie; Jungjohann, Katherine L; Dayeh, Shadi A; Wu, Tom
2016-07-13
Epitaxy-enabled bottom-up synthesis of self-assembled planar nanowires via the vapor-liquid-solid mechanism is an emerging and promising approach toward large-scale direct integration of nanowire-based devices without postgrowth alignment. Here, by examining large assemblies of indium tin oxide nanowires on yttria-stabilized zirconia substrate, we demonstrate for the first time that the growth dynamics of planar nanowires follows a modified version of the Gibbs-Thomson mechanism, which has been known for the past decades to govern the correlations between thermodynamic supersaturation, growth speed, and nanowire morphology. Furthermore, the substrate orientation strongly influences the growth characteristics of epitaxial planar nanowires as opposed to impact at only the initial nucleation stage in the growth of vertical nanowires. The rich nanowire morphology can be described by a surface-energy-dependent growth model within the Gibbs-Thomson framework, which is further modulated by the tin doping concentration. Our experiments also reveal that the cutoff nanowire diameter depends on the substrate orientation and decreases with increasing tin doping concentration. These results enable a deeper understanding and control over the growth of planar nanowires, and the insights will help advance the fabrication of self-assembled nanowire devices.
NASA Technical Reports Server (NTRS)
Gandrud, B. W.; Dye, J. E.; Baumgardner, D.; Ferry, G. V.; Loewenstein, M.; Chan, K. R.; Sanford, L.; Gary, B.
1990-01-01
In-situ particle measurements made aboard the NASA ER-2 in the Arctic on 890130 (YYMMDD) show Type 1 PSC particles over much of the flight, with instances of embedded Type 2 PSCs. The Type 2 particles were observed at temperatures warmer than the local frost-point temperature of water; extended up to the upper size cutoff of the instrument (about 24-micron diameter); and are shown to contain too large a volume to be primarily NAT. Based on measured vertical temperature profiles, it is concluded that the Type 2 particles observed on this day were formed above the aircraft in a region where saturation with respect to ice was achieved and were sufficiently large to have fallen into the path of the ER-2. Although the amount of material in the particles, expressed as water, is small by comparison to the total (vapor + aerosol) water concentration, the flux of water from the falling particles is of sufficient magnitude, if sustained, to lead to dehydration of the source region. These observations verify the mechanism for dehydration of polar vortex air masses by precipitation of ice particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemasa, Yuichi; Togari, Satoshi; Arai, Yoshinobu
1996-11-01
Vertical temperature differences tend to be great in a large indoor space such as an atrium, and it is important to predict variations of vertical temperature distribution in the early stage of the design. The authors previously developed and reported on a new simplified unsteady-state calculation model for predicting vertical temperature distribution in a large space. In this paper, this model is applied to predicting the vertical temperature distribution in an existing low-rise atrium that has a skylight and is affected by transmitted solar radiation. Detailed calculation procedures that use the model are presented with all the boundary conditions, andmore » analytical simulations are carried out for the cooling condition. Calculated values are compared with measured results. The results of the comparison demonstrate that the calculation model can be applied to the design of a large space. The effects of occupied-zone cooling are also discussed and compared with those of all-zone cooling.« less
Cutting Diameter Influences Early Survival and Growth of Several Populus Clones
Donald Dickmann; Howard Phipps; Daniel Netzer
1980-01-01
The effects of cutting diameter on early survival and growth of several Populus clones were studied in field tests in Wisconsin and Michigan. Generally, large diameter cuttings survived and grew better than small diameter cuttings. Response differences among clones were evident.
Shabanpour, Reza; Mousavi, Niloufar; Ghodsi, Safoura; Alikhasi, Marzieh
2015-08-01
The purpose of the current study was to compare the fracture resistance and mode of failure of zirconia and titanium abutments with different diameters. Fourteen groups of abutments including prefabricated zirconia, copy-milled zirconia and titanium abutments of an implant system (XiVE, Dentsply) were prepared in different diameters. An increasing vertical load was applied to each specimen until failure occurred. Fracture resistance was measured in each group using the universal testing machine. Moreover, the failure modes were studied and categorized as abutment screw fracture, connection area fracture, abutment body fracture, abutment body distortion, screw distortion and connection area distortion. Groups were statistically compared using univariate and post-hoc tests. The level of statistical significance was set at 5%. Fabrication method (p = 0.03) and diameter (p < 0.001) had significant effect on the fracture resistance of abutments. Fracture resistance of abutments with 5.5 mm diameter was higher than other diameters (p < 0.001). The observed modes of failure were dependent on the abutment material as well. All of the prefabricated titanium abutments fractured within the abutment screw. Abutment screw distortion, connection area fracture, and abutment body fracture were the common failure type in other groups. Diameter had a significant effect on fracture resistance of implant abutments, as abutments with greater diameters were more resistant to static loads. Copy-milled abutments showed lower fracture resistance as compared to other experimental groups. Although zirconia abutments have received great popularity among clinicians and even patients selecting them for narrow implants should be with caution.
Mechanical design of NASA Ames Research Center vertical motion simulator
NASA Technical Reports Server (NTRS)
Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.
1976-01-01
NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.
Phases of a stack of membranes in a large number of dimensions of configuration space
NASA Astrophysics Data System (ADS)
Borelli, M. E.; Kleinert, H.
2001-05-01
The phase diagram of a stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is calculated exactly in a large number of dimensions of configuration space. At low temperatures, the system forms a lamellar phase with spontaneously broken translational symmetry in the vertical direction. At a critical temperature, the stack disorders vertically in a meltinglike transition. The critical temperature is determined as a function of the interlayer separation l.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyan; Tang, Dan; Huang, Kangrong; Hu, Die; Zhang, Fengyuan; Gao, Xingsen; Lu, Xubing; Zhou, Guofu; Zhang, Zhang; Liu, Junming
2016-04-01
In this report, vertically free-standing lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (PZT) nanocup arrays with good ordering and high density (1.3 × 1010 cm-2) were demonstrated. By a template-assisted ion beam etching (IBE) strategy, the PZT formed in the pore-through anodic aluminum oxide (AAO) membrane on the Pt/Si substrate was with a cup-like nanostructure. The mean diameter and height of the PZT nanocups (NCs) was about 80 and 100 nm, respectively, and the wall thickness of NCs was about 20 nm with a hole depth of about 80 nm. Uppermost, the nanocup structure with low aspect ratio realized vertically free-standing arrays when losing the mechanical support from templates, avoiding the collapse or bundling when compared to the typical nanotube arrays. X-ray diffraction (XRD) and Raman spectrum revealed that the as-prepared PZT NCs were in a perovskite phase. By the vertical piezoresponse force microscopy (VPFM) measurements, the vertically free-standing ordered ferroelectric PZT NCs showed well-defined ring-like piezoresponse phase and hysteresis loops, which indicated that the high-density PZT nanocup arrays could have potential applications in ultra-high non-volatile ferroelectric memories (NV-FRAM) or other nanoelectronic devices.
Vertical drop test of a transport fuselage section located aft of the wing
NASA Technical Reports Server (NTRS)
Fasanella, E. L.; Alfaro-Bou, E.
1986-01-01
A 12-foot long Boeing 707 aft fuselage section with a tapering cross section was drop tested at the NASA Langley Research Center to measure structural, seat, and occupant response to vertical crash laods and to provide data for nonlinear finite element modeling. This was the final test in a series of three different transport fuselage sections tested under identical conditions. The test parameters at impact were: 20 ft/s velocity, and zero pitch, roll, and yaw. In addition, the test was an operational shock test of the data acquisition system used for the Controlled Impact Demonstration (CID) of a remotely piloted Boeing 720 that was crash tested at NASA Ames Dryden Flight Research Facility on December 1, 1984. Post-test measurements of the crush showed that the front of the section (with larger diameter) crushed vertically approximately 14 inches while the rear crushed 18 inches. Analysis of the data traces indicate the maximum peak normal (vertical) accelerations at the bottom of the frames were approximately 109 G at body station 1040 and 64 G at body station 1120. The peak floor acceleration varied from 14 G near the wall to 25 G near the center where high frequency oscillations of the floor were evident. The peak anthropomorphic dummy pelvis normal (vertical) acceleration was 19 G's.
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as "scale" effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments.
Pan, Ying; Zhang, Yunshu; Peng, Yan; Zhao, Qinghua; Sun, Shucun
2015-01-01
Aquatic microcosm studies often increase either chamber height or base diameter (to increase water volume) to test spatial ecology theories such as “scale” effects on ecological processes, but it is unclear whether the increase of chamber height or base diameter have the same effect on the processes, i.e., whether the effect of the shape of three-dimensional spaces is significant. We orthogonally manipulated chamber height and base diameter and determined swimming activity, average swimming velocity and grazing rates of the cladocerans Daphnia magna and Moina micrura (on two algae Scenedesmus quadricauda and Chlorella vulgaris; leading to four aquatic algae-cladoceran systems in total) under different microcosm conditions. Across all the four aquatic systems, increasing chamber height at a given base diameter significantly decreased the duration and velocity of horizontal swimming, and it tended to increase the duration but decrease the velocity of vertical swimming. These collectively led to decreases in both average swimming velocity and grazing rate of the cladocerans in the tall chambers (at a given base diameter), in accordance with the positive relationship between average swimming velocity and grazing rate. In contrast, an increase of base diameter at a given chamber height showed contrasting effects on the above parameters. Consistently, at a given chamber volume increasing ratio of chamber height to base diameter decreased the average swimming velocity and grazing rate across all the aquatic systems. In general, increasing chamber depth and base diameter may exert contrasting effects on zooplankton behavior and thus phytoplankton-zooplankton interactions. We suggest that spatial shape plays an important role in determining ecological process and thus should be considered in a theoretical framework of spatial ecology and also the physical setting of aquatic microcosm experiments. PMID:26273836
Semi-analytical model of the axial movements of an oil-well drillstring in vertical wellbores
NASA Astrophysics Data System (ADS)
Hovda, Sigve
2018-03-01
A lumped element model for the axial movement of an oil-well drillstring is presented. In this paper, the model is restricted to vertical holes, where damping is due to skin friction from time dependent Newtonian annular Couette-Poiseuille flow. The drillstring is constructed of pipes with different diameters and the diameter of the hole varies as a function of depth. Under these assumptions, the axial movement anywhere in the drillstring is basically a convolution between the axial movement on the top and a semi-analytical function that is derived in this paper. Expressions are given for transfer functions for downhole movements and pressures (surge and swab). In a vertical drilling situation, the motion is clearly underdamped, even when the hole is tight. The semi-analytical model illuminates various factors that are shown to be important for describing downhole pressure and motion. In particular the effect of added mass, the steady state viscous forces, the Basset viscous forces and the distribution of pipe sizes in the hole. The latter have non-neglectable impacts on where the resonant frequencies are located, how much they are amplified and what happens to the downhole pressure. Together with statistical power spectra of ocean wave patterns and the response amplitude operators for a floating structure, this model illustrates design concerns related to heave motion and how fast one can run the drillstring into the hole. Moreover, because of the computational simplicity of computing the convolution, the model is well suited for a real-time implementation.
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine
Wosnik, Martin; Gunawan, Budi; Neary, Vincent S.
2016-01-01
The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy’s Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor’s angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor’s NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case—a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding—responsible for mean vertical advection—and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available. PMID:27684076
Experimental Study of a Reference Model Vertical-Axis Cross-Flow Turbine.
Bachant, Peter; Wosnik, Martin; Gunawan, Budi; Neary, Vincent S
The mechanical power, total rotor drag, and near-wake velocity of a 1:6 scale model (1.075 m diameter) of the US Department of Energy's Reference Model vertical-axis cross-flow turbine were measured experimentally in a towing tank, to provide a comprehensive open dataset for validating numerical models. Performance was measured for a range of tip speed ratios and at multiple Reynolds numbers by varying the rotor's angular velocity and tow carriage speed, respectively. A peak power coefficient CP = 0.37 and rotor drag coefficient CD = 0.84 were observed at a tip speed ratio λ0 = 3.1. A regime of weak linear Re-dependence of the power coefficient was observed above a turbine diameter Reynolds number ReD ≈ 106. The effects of support strut drag on turbine performance were investigated by covering the rotor's NACA 0021 struts with cylinders. As expected, this modification drastically reduced the rotor power coefficient. Strut drag losses were also measured for the NACA 0021 and cylindrical configurations with the rotor blades removed. For λ = λ0, wake velocity was measured at 1 m (x/D = 0.93) downstream. Mean velocity, turbulence kinetic energy, and mean kinetic energy transport were compared with results from a high solidity turbine acquired with the same test apparatus. Like the high solidity case, mean vertical advection was calculated to be the largest contributor to near-wake recovery. However, overall, lower levels of streamwise wake recovery were calculated for the RM2 case-a consequence of both the relatively low solidity and tapered blades reducing blade tip vortex shedding-responsible for mean vertical advection-and lower levels of turbulence caused by higher operating tip speed ratio and therefore reduced dynamic stall. Datasets, code for processing and visualization, and a CAD model of the turbine have been made publicly available.
Sex Determination by Biometry of Anterior Features of Human Hip Bones in South Indian Population.
Rajasekhar, Sssn; Vasudha, T K; Aravindhan, K
2017-06-01
Sex determination is the first step in establishing the identity of skeletal remains. Many studies included biometry of posterior features of hip bone. Very few studies are reported involving the biometry of anterior features of the hip bone. Anterior features of hip bone are important especially, if there is damage to the posterior features of hip bone in cases involving deliberate disfigurement of the body to resist identification of the crime in medicolegal cases. The present study was done to evaluate the effectiveness of anterior border parameters of the hip bone for prediction of sex using discriminant function analysis in South Indian population. A total of 206 dry bones were used (121 male and 85 female) and parameters like the distance between pubic tubercle and anterior rim of acetabulum, vertical acetabular diameter, transverse acetabular diameter, and the distance between pubic tubercle to highest point on the iliopubic eminence were measured using Vernier calipers. Normally distributed variables were compared using Students t-test to analyse the significance. There was significant difference between the male and female hip bones of the observed variables with p-value less than 0.05. In parameters like the distance between pubic tubercle to anterior rim of acetabulum and distance between the highest points on iliopubic eminence to pubic tubercle; the values were more in female when compared to males. In parameters like vertical and transverse acetabular diameters; the values in males were more when compared to females. These parameters of hip bone can be utilised for sex determination in South Indian population.
Carbon-Nanotube-Based Electrodes for Biomedical Applications
NASA Technical Reports Server (NTRS)
Li, Jun; Meyyappan, M.
2008-01-01
A nanotube array based on vertically aligned nanotubes or carbon nanofibers has been invented for use in localized electrical stimulation and recording of electrical responses in selected regions of an animal body, especially including the brain. There are numerous established, emerging, and potential applications for localized electrical stimulation and/or recording, including treatment of Parkinson s disease, Tourette s syndrome, and chronic pain, and research on electrochemical effects involved in neurotransmission. Carbon-nanotube-based electrodes offer potential advantages over metal macroelectrodes (having diameters of the order of a millimeter) and microelectrodes (having various diameters ranging down to tens of microns) heretofore used in such applications. These advantages include the following: a) Stimuli and responses could be localized at finer scales of spatial and temporal resolution, which is at subcellular level, with fewer disturbances to, and less interference from, adjacent regions. b) There would be less risk of hemorrhage on implantation because nano-electrode-based probe tips could be configured to be less traumatic. c) Being more biocompatible than are metal electrodes, carbon-nanotube-based electrodes and arrays would be more suitable for long-term or permanent implantation. d) Unlike macro- and microelectrodes, a nano-electrode could penetrate a cell membrane with minimal disruption. Thus, for example, a nanoelectrode could be used to generate an action potential inside a neuron or in proximity of an active neuron zone. Such stimulation may be much more effective than is extra- or intracellular stimulation via a macro- or microelectrode. e) The large surface area of an array at a micron-scale footprint of non-insulated nanoelectrodes coated with a suitable electrochemically active material containing redox ingredients would make it possible to obtain a pseudocapacitance large enough to dissipate a relatively large amount of electric charge, so that a large stimulation current could be applied at a micron-scale region without exhausting the redox ingredients. f) Carbon nanotube array is more compatible with the three-dimensional network of tissues. Particularly, a better electrical-neural interface can be formed. g) A carbon nanotube array inlaid in insulating materials with only the ends exposed is an extremely sensitive electro-analysis tool that can measure the local neurotransmitter signal at extremely high sensitivity and temporal resolution.
Impact of beta thalassemia on maxillary sinuses and sino-nasal passages: A case control study.
Ragab, Ahmed; Ragab, Seham Mohammed; Shawki, Mohammed
2015-12-01
Skeletal changes among beta (β) thalassemia children are well documented, but without available data regarding sino-nasal passages alterations. The authors investigated the maxillary sinuses and sino-nasal passages changes in β-thalassemia children and correlated such changes with the amount of transfused red cells and the erythroid marrow activity. Clinical analyses including otorhinolaryngical examination (ORL) were obtained in twenty β-thalassemia children and 20 matched healthy controls. Hemoglobin (Hb), serum ferritin, soluble transferrin receptor (sTfR) levels and bone mineral density of the lumbar spine (BMD ls) were assayed. The two groups were analyzed for the CT image parameters: bone thickness, anterior and posterior choanae diameters, extramedullary hematopoiesis and chronic rhinosinusitis (CRS) RESULTS: Nasal congestion/obstruction was identified in 14 (70%) children. Eight patients (40%) had criteria of chronic rhinosinusitis. In comparison with the normal controls, the increase in the roof, floor, medial, anterior, lateral and posterior maxillary bony walls thickness was significantly higher (1.26, 2.46, 2.6, 2.9, 3.23 and 5.34-folds, respectively). The mean posterior choanae horizontal, vertical diameters and their surface area were significantly reduced in the patients compared to the controls. The mean anterior maxillary wall bone thickness directly correlated with sTfR (P=0.047) while that of the posterior wall correlated inversely with Hb level (P=0.013). The mean vertical posterior choanae diameter had positive correlation with the amount of transfused red cells (P=0.001) and negative correlation with sTfR (P=0.001). The Hounsfield unit of maxillary sinus wall had direct relation with BMDls (P=0.003) CONCLUSIONS: Thalassemia children are at risk of different folds increase of maxillary sinuses walls thicknesses utmost at posterior and lateral walls. Other sino-nasal morbidities include diminished posterior choanal diameter, nasal obstruction and CRS. Certain morbidities had relations to the erythroid marrow activity and the transfusion adequacy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Finelle, Gary; Papadimitriou, Dimitrios E V; Souza, André B; Katebi, Negin; Gallucci, German O; Araújo, Mauricio G
2015-04-01
To assess (i) the outcome of changing the horizontal-offset dimension on the peri-implant soft tissues and the crestal bone and (ii) the effect of different healing abutments (flared vs. straight) on the marginal peri-implant soft tissues and crestal bone. Two-piece dental implants diameters of 3.5 and 4.5 mm were placed at least 1 mm subcrestal in five beagle dogs. Three different investigational groups: (i) 3.5-mm-diameter implant with narrow healing abutment (3.5N), (ii) 4.5-mm-diameter implant with narrow healing abutment (4.5N), and (iii) 3.5-mm-diameter implant with wide healing abutment (3.5W), were assessed. After 4 months of healing, the vertical distance from the marginal crestal bone (MB) to the implant shoulder (IS); the vertical distance from the IS to the first bone-to-implant contact; and the horizontal distance of bone ingrowth on the implant platform were measured with a high-resolution micro-CT (Xradia MicroXCT-200 system). Implants with a narrow healing caps showed an interproximal MB located between 0 and 1 mm above the implant shoulder, while the 3.5W group exhibits a mean value -0.50 mm. As all implants in group 3.5N presented a fBIC located at the level of the IS. For the 4.5N group, the mean fBIC-IS distance was -0.52 mm apically to the IS. For the 3.5WC group, the mean fBIC-IS distance was -1.42 mm. Horizontal bone apposition was only observed for the 3.5N group and the 4.5N group. The dimension of the horizontal offset would play a minimal role in reducing bone remodeling, whereas the configuration of the transmucosal component would directly influence marginal bone remodeling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Effects of Vertical Direction and Aperture Size on the Perception of Visual Acceleration.
Mueller, Alexandra S; González, Esther G; McNorgan, Chris; Steinbach, Martin J; Timney, Brian
2016-02-06
It is not well understood whether the distance over which moving stimuli are visible affects our sensitivity to the presence of acceleration or our ability to track such stimuli. It is also uncertain whether our experience with gravity creates anisotropies in how we detect vertical acceleration and deceleration. To address these questions, we varied the vertical extent of the aperture through which we presented vertically accelerating and decelerating random dot arrays. We hypothesized that observers would better detect and pursue accelerating and decelerating stimuli that extend over larger than smaller distances. In Experiment 1, we tested the effects of vertical direction and aperture size on acceleration and deceleration detection accuracy. Results indicated that detection is better for downward motion and for large apertures, but there is no difference between vertical acceleration and deceleration detection. A control experiment revealed that our manipulation of vertical aperture size affects the ability to track vertical motion. Smooth pursuit is better (i.e., with higher peak velocities) for large apertures than for small apertures. Our findings suggest that the ability to detect vertical acceleration and deceleration varies as a function of the direction and vertical extent over which an observer can track the moving stimulus. © The Author(s) 2016.
Large-size TlBr single crystal growth and defect study
NASA Astrophysics Data System (ADS)
Zhang, Mingzhi; Zheng, Zhiping; Chen, Zheng; Zhang, Sen; Luo, Wei; Fu, Qiuyun
2018-04-01
Thallium bromide (TlBr) is an attractive semiconductor material for fabrication of radiation detectors due to its high photon stopping power originating from its high atomic number, wide band gap and high resistivity. In this paper the vertical Bridgman method was used for crystal growth and TlBr single crystals with diameter of 15 mm were grown. X-ray diffraction (XRD) was used to identify phase and orientation. Electron backscatter diffraction (EBSD) was used to investigate crystal microstructure and crystallographic orientation. The optical and electric performance of the crystal was characterized by infrared (IR) transmittance spectra and I-V measurement. The types of point defects in the crystals were investigated by thermally stimulated current (TSC) spectra and positron annihilation spectroscopy (PAS). Four types of defects, with ionization energy of each defect fitting as follows: 0.1308, 0.1540, 0.3822 and 0.538 eV, were confirmed from the TSC result. The PAS result showed that there were Tl vacancies in the crystal.
Statistical properties of gravity-driven granular discharge flow under the influence of an obstacle
NASA Astrophysics Data System (ADS)
Endo, Keita; Katsuragi, Hiroaki
2017-06-01
Two-dimensional granular discharge flow driven by gravity under the influence of an obstacle is experimentally investigated. A horizontal exit of width W is opened at the bottom of vertical Hele-Shaw cell filled with stainless-steel particles to start the discharge flow. In this experiment, a circular obstacle is placed in front of the exit. Thus, the distance between the exit and obstacle L is also an important parameter. During the discharge, granular-flow state is acquired by a high-speed camera. The bulk discharge-flow rate is also measured by load cell sensors. The obtained high-speed-image data are analyzed to clarify the particle-level granular-flow dynamics. Using the measured data, we find that the obstacle above the exit affects the granular- flow field. Specifically, the existence of obstacle results in large horizontal granular temperature and small packing fraction. This tendency becomes significant when L is smaller than approximately 6Dg when W ≃ 4Dg, where Dg is diameter of particles.
Three-Dimensional Simulations of Oblique Asteroid Impacts into Water
NASA Astrophysics Data System (ADS)
Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.
2016-12-01
Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chlachidze, G.; et al.
2016-08-30
The US LHC Accelerator Research Program (LARP) and CERN combined their efforts in developing Nb3Sn magnets for the High-Luminosity LHC upgrade. The ultimate goal of this collaboration is to fabricate large aperture Nb3Sn quadrupoles for the LHC interaction regions (IR). These magnets will replace the present 70 mm aperture NbTi quadrupole triplets for expected increase of the LHC peak luminosity by a factor of 5. Over the past decade LARP successfully fabricated and tested short and long models of 90 mm and 120 mm aperture Nb3Sn quadrupoles. Recently the first short model of 150 mm diameter quadrupole MQXFS was builtmore » with coils fabricated both by the LARP and CERN. The magnet performance was tested at Fermilab’s vertical magnet test facility. This paper reports the test results, including the quench training at 1.9 K, ramp rate and temperature dependence studies.« less
Segmented Hoop as a Physical Pendulum
ERIC Educational Resources Information Center
Layton, William; Rodriguez, Nuria
2013-01-01
An interesting demonstration with a surprising result is to suspend a hoop from a point near its edge and set it swinging in a vertical plane as a pendulum. If a simple pendulum of length equal to the diameter of the hoop is set oscillating at the same time, the two will have nearly the same period. However, the real surprise is if the pendulum is…
N. S. Copeland; B. S. Sharratt; J. Q. Wu; R. B. Foltz; J. H. Dooley
2009-01-01
Fugitive dust from eroding land poses risks to environmental quality and human health, and thus, is regulated nationally based on ambient air quality standards for particulate matter with mean aerodynamic diameter ≤ 10 μm (PM10) established in the Clean Air Act. Agricultural straw has been widely used for rainfall-induced...
7. View of DR 3 antenna typical front stay concrete ...
7. View of DR 3 antenna typical front stay concrete showing embedment anchors, foundation steel base plate, vertical member with small diameter turnbuckles, antenna assembly in background, and story board for scale. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK
Improved method for producing small hollow spheres
Rosencwaig, A.; Koo, J.C.; Dressler, J.L.
An improved method and apparatus for producing small hollow spheres of glass having an outer diameter ranging from about 100..mu.. to about 500..mu.. with a substantially uniform wall thickness in the range of about 0.5 to 20..mu.. are described. The method involves introducing aqueous droplets of a glass-forming solution into a long vertical drop oven or furnace having varying temperature regions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-07
... working platform; (5) a new 60-foot-long, 30-inch-diameter steel penstock leading to; (6) an existing 20... proposed Freedom Falls Hydroelectric Project would consist of: (1) An existing 90-foot-long, 12-foot-high concrete-capped stone masonry dam with a 25-foot-long, 10-foot-high spillway with two vertical lift sluice...
Cooling of Water in a Flask: Convection Currents in a Fluid with a Density Maximum
ERIC Educational Resources Information Center
Velasco, S.; White, J. A.; Roman, F. L.
2010-01-01
The effect of density inversion on the convective flow of water in a spherical glass flask cooled with the help of an ice-water bath is shown. The experiment was carried out by temperature measurements (cooling curves) taken at three different heights along the vertical diameter of the flask. Flows inside the flask are visualized by seeding the…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-28
...-deep, 24-foot-diameter vertical shaft to connect the upper and lower reservoir to the power tunnel; (6... electronically via the Internet. See 18 CFR 385.2001(a)(1)(iii) and the instructions on the Commission's Web site...Library'' link of Commission's Web site at http:[sol][sol]www.ferc.gov/docs-filing/ elibrary.asp. Enter...
Michael D. Ulyshen; Villu Soon; James L. Hanula
2011-01-01
Efforts to investigate the vertical dimension of forests continue to refine our thinking on issues of biodiversity and ecology. Arthropod communities exhibit a high degree of vertical stratification in forests worldwide but the vertical distribution patterns of most taxa remain largely unexplored or poorly understood. For example, only 2 studies provide information on...
NASA Astrophysics Data System (ADS)
Wang, S.; Sobel, A. H.; Nie, J.
2015-12-01
Two Madden Julian Oscillation (MJO) events were observed during October and November 2011 in the equatorial Indian Ocean during the DYNAMO field campaign. Precipitation rates and large-scale vertical motion profiles derived from the DYNAMO northern sounding array are simulated in a small-domain cloud-resolving model using parameterized large-scale dynamics. Three parameterizations of large-scale dynamics --- the conventional weak temperature gradient (WTG) approximation, vertical mode based spectral WTG (SWTG), and damped gravity wave coupling (DGW) --- are employed. The target temperature profiles and radiative heating rates are taken from a control simulation in which the large-scale vertical motion is imposed (rather than directly from observations), and the model itself is significantly modified from that used in previous work. These methodological changes lead to significant improvement in the results.Simulations using all three methods, with imposed time -dependent radiation and horizontal moisture advection, capture the time variations in precipitation associated with the two MJO events well. The three methods produce significant differences in the large-scale vertical motion profile, however. WTG produces the most top-heavy and noisy profiles, while DGW's is smoother with a peak in midlevels. SWTG produces a smooth profile, somewhere between WTG and DGW, and in better agreement with observations than either of the others. Numerical experiments without horizontal advection of moisture suggest that that process significantly reduces the precipitation and suppresses the top-heaviness of large-scale vertical motion during the MJO active phases, while experiments in which the effect of cloud on radiation are disabled indicate that cloud-radiative interaction significantly amplifies the MJO. Experiments in which interactive radiation is used produce poorer agreement with observation than those with imposed time-varying radiative heating. Our results highlight the importance of both horizontal advection of moisture and cloud-radiative feedback to the dynamics of the MJO, as well as to accurate simulation and prediction of it in models.
Structure of Highly Sheared Tropical Storm Chantal during CAMEX-4
NASA Technical Reports Server (NTRS)
Heymsfield, G. M.; Halverson, J.; Ritchie, E.; Simpson, Joanne; Molinari, J.; Tian, L.
2006-01-01
Tropical Storm Chantal during August 2001 was a storm that failed to intensify over the few days prior to making landfall on the Yucatan Peninsula. An observational study of Tropical Storm Chantal is presented using a diverse dataset including remote and in situ measurements from the NASA ER-2 and DC-8 and the NOAA WP-3D N42RF aircraft and satellite. The authors discuss the storm structure from the larger-scale environment down to the convective scale. Large vertical shear (850-200-hPa shear magnitude range 8-15 m/s) plays a very important role in preventing Chantal from intensifying. The storm had a poorly defined vortex that only extended up to 5-6-km altitude, and an adjacent intense convective region that comprised a mesoscale convective system (MCS). The entire low-level circulation center was in the rain-free western side of the storm, about 80 km to the west-southwest of the MCS. The MCS appears to have been primarily the result of intense convergence between large-scale, low-level easterly flow with embedded downdrafts, and the cyclonic vortex flow. The individual cells in the MCS such as cell 2 during the period of the observations were extremely intense, with reflectivity core diameters of 10 km and peak updrafts exceeding 20 m/s. Associated with this MCS were two broad subsidence (warm) regions, both of which had portions over the vortex. The first layer near 700 hPa was directly above the vortex and covered most of it. The second layer near 500 hPa was along the forward and right flanks of cell 2 and undercut the anvil divergence region above. There was not much resemblance of these subsidence layers to typical upper-level warm cores in hurricanes that are necessary to support strong surface winds and a low central pressure. The observations are compared to previous studies of weakly sheared storms and modeling studies of shear effects and intensification. The configuration of the convective updrafts, low-level circulation, and lack of vertical coherence between the upper- and lower-level warming regions likely inhibited intensification of Chantal. This configuration is consistent with modeled vortices in sheared environments, which suggest the strongest convection and rain in the downshear left quadrant of the storm, and subsidence in the upshear right quadrant. The vertical shear profile is, however, different from what was assumed in previous modeling in that the winds are strongest in the lowest levels and the deep tropospheric vertical shear is on the order of 10-12 m/s.
Gas sensing with gold-decorated vertically aligned carbon nanotubes
Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Colomer, Jean-François
2014-01-01
Summary Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length. PMID:24991529
Gas sensing with gold-decorated vertically aligned carbon nanotubes.
Mudimela, Prasantha R; Scardamaglia, Mattia; González-León, Oriol; Reckinger, Nicolas; Snyders, Rony; Llobet, Eduard; Bittencourt, Carla; Colomer, Jean-François
2014-01-01
Vertically aligned carbon nanotubes of different lengths (150, 300, 500 µm) synthesized by thermal chemical vapor deposition and decorated with gold nanoparticles were investigated as gas sensitive materials for detecting nitrogen dioxide (NO2) at room temperature. Gold nanoparticles of about 6 nm in diameter were sputtered on the top surface of the carbon nanotube forests to enhance the sensitivity to the pollutant gas. We showed that the sensing response to nitrogen dioxide depends on the nanotube length. The optimum was found to be 300 µm for getting the higher response. When the background humidity level was changed from dry to 50% relative humidity, an increase in the response to NO2 was observed for all the sensors, regardless of the nanotube length.
NASA Astrophysics Data System (ADS)
Koai, K.; Sonnenberg, K.; Wenzl, H.
1994-03-01
Crucible assembly in a vertical Bridgman furnace is investigated by a numerical finite element model with the aim to obtain convex interfaces during the growth of GaAs crystals. During the growth stage of the conic section, a new funnel shaped crucible support has been found more effective than the concentric cylinders design similar to that patented by AT & T in promoting interface convexity. For the growth stages of the constant diameter section, the furnace profile can be effectively modulated by localized radial heating at the gradient zone. With these two features being introduced into a new furnace design, it is shown numerically that enhancement of interface convexity can be achieved using the presently available crucible materials.
Nonlinear Dynamic Characteristics of Oil-in-Water Emulsions
NASA Astrophysics Data System (ADS)
Yin, Zhaoqi; Han, Yunfeng; Ren, Yingyu; Yang, Qiuyi; Jin, Ningde
2016-08-01
In this article, the nonlinear dynamic characteristics of oil-in-water emulsions under the addition of surfactant were experimentally investigated. Firstly, based on the vertical upward oil-water two-phase flow experiment in 20 mm inner diameter (ID) testing pipe, dynamic response signals of oil-in-water emulsions were recorded using vertical multiple electrode array (VMEA) sensor. Afterwards, the recurrence plot (RP) algorithm and multi-scale weighted complexity entropy causality plane (MS-WCECP) were employed to analyse the nonlinear characteristics of the signals. The results show that the certainty is decreasing and the randomness is increasing with the increment of surfactant concentration. This article provides a novel method for revealing the nonlinear dynamic characteristics, complexity, and randomness of oil-in-water emulsions with experimental measurement signals.
Convective heat transfer around vertical jet fires: an experimental study.
Kozanoglu, Bulent; Zárate, Luis; Gómez-Mares, Mercedes; Casal, Joaquim
2011-12-15
The convection heat transfer phenomenon in vertical jet fires was experimentally analyzed. In these experiments, turbulent propane flames were generated in subsonic as well as sonic regimes. The experimental data demonstrated that the rate of convection heat transfer increases by increasing the length of the flame. Assuming the solid flame model, the convection heat transfer coefficient was calculated. Two equations in terms of adimensional numbers were developed. It was found out that the Nusselt number attains greater values for higher values of the Rayleigh and Reynolds numbers. On the other hand, the Froude number was analyzed only for the subsonic flames where the Nusselt number grows by this number and the diameter of the orifice. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1976-01-01
The methodology used to predict full scale space shuttle solid rocket booster (SRB) water impact loads from scale model test data is described. Tests conducted included 12.5 inch and 120 inch diameter models of the SRB. Geometry and mass characteristics of the models were varied in each test series to reflect the current SRB baseline configuration. Nose first and tail first water entry modes were investigated with full-scale initial impact vertical velocities of 40 to 120 ft/sec, horizontal velocities of 0 to 60 ft/sec., and off-vertical angles of 0 to plus or minus 30 degrees. The test program included a series of tests with scaled atmospheric pressure.
Luttrell, Edward; Turner, Paul W.
1978-01-01
This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.
The Slug and Churn Turbulence Characteristics of Oil-Gas-Water Flows in a Vertical Small Pipe
NASA Astrophysics Data System (ADS)
Liu, Weixin; Han, Yunfeng; Wang, Dayang; Zhao, An; Jin, Ningde
2017-08-01
The intention of the present study was to investigate the slug and churn turbulence characteristics of a vertical upward oil-gas-water three-phase flow. We firstly carried out a vertical upward oil-gas-water three-phase flow experiment in a 20-mm inner diameter (ID) pipe to measure the fluctuating signals of a rotating electric field conductance sensor under different flow patterns. Afterwards, typical flow patterns were identified with the aid of the texture structures in a cross recurrence plot. Recurrence quantitative analysis and multi-scale cross entropy (MSCE) algorithms were applied to investigate the turbulence characteristics of slug and churn flows with the varying flow parameters. The results suggest that with cross nonlinear analysis, the underlying dynamic characteristics in the evolution from slug to churn flow can be well understood. The present study provides a novel perspective for the analysis of the spatial-temporal evolution instability and complexity in oil-gas-water three-phase flow.
Final report, PT IP-535-C: Test of smaller VSR`s in DR reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, A.D.
1963-04-17
Because of rod-sticking problems at DR Reactor, a knuckle rod of B Reactor design was installed in vertical safety channel number 28. The substitute VSR, which has a smaller diameter than the original DR rod, has been tested for its operational feasibility including both drop time and reactivity effect. The reactivity effect of the rod was estimated by comparison of the reactivity transient caused by insertion of the specific B-type rod after scramming into the pile, with similar transients caused by normal vertical safety rod in an adjacent channel. This document lists the indicated relative control strength of the rodmore » as an empirical basis for future safety calculations. Results indicate that the B-type knuckel rod in DR reactor is about 80% as strong as a normal DR vertical safety rod if used in equivalent flux distribution and location; this makes it reasonable to assume that the local control strength of the B-type knuckel rod is 98 {mu}b.« less
NASA Astrophysics Data System (ADS)
Prabhakaran, SP.; Ramesh Babu, R.; Sukumar, M.; Bhagavannarayana, G.; Ramamurthi, K.
2014-03-01
Growth of bulk single crystal of 4-Aminobenzophenone (4-ABP) from the vertical dynamic gradient freeze (VDGF) setup designed with eight zone furnace was investigated. The experimental parameters for the growth of 4-ABP single crystal with respect to the design of VDGF setup are discussed. The eight zones were used to generate multiple temperature gradients over the furnace, and video imaging system helped to capture the real time growth and solid-liquid interface. 4-ABP single crystal with the size of 18 mm diameter and 40 mm length was grown from this investigation. Structural and optical quality of grown crystal was examined by high resolution X-ray diffraction and UV-visible spectral analysis, respectively and the blue emission was also confirmed from the photoluminescence spectrum. Microhardness number of the crystal was estimated at different loads using Vicker's microhardness tester. The size and quality of single crystal grown from the present investigation are compared with the vertical Bridgman grown 4-ABP.
Performance of a 12-coil superconducting 'bumpy torus' magnet facility.
NASA Technical Reports Server (NTRS)
Roth, J. R.; Holmes, A. D.; Keller, T. A.; Krawczonek, W. M.
1972-01-01
The NASA-Lewis 'bumpy torus' facility consists of 12 superconducting coils, each 19 cm ID and capable of 3.0 tesla on their axes. The coils are equally spaced around a toroidal array with a major diameter of 1.52 m, and are mounted with the major axis of the torus vertical in a single vacuum tank 2.6 m in diameter. Final shakedown tests of the facility mapped out its magnetic, cryogenic, vacuum, mechanical, and electrical performance. The facility is now ready for use as a plasma physics research facility. A maximum magnetic field on the magnetic axis of 3.23 teslas has been held for a period of more than sixty minutes without a coil normalcy.
Hoggan, Rita E.; Zuck, Larry D.; Cannon, W. Roger; ...
2016-05-26
A study of improved methods of processing fuel pellets was undertaken using ceria and zirconia/yttria/alumina as surrogates. Through proper granulation and vertical vibration (tapping) of the parts bag prior to dry bag isostatic pressing (DBIP), reproducibility of diameter profiles among multiple pellets of ceria was improved by almost an order of magnitude. Reproducibility of sintered pellets was sufficiently good to possibly avoid grinding. Deviation from the mean diameter along the length of multiple pellets, as well as, deviation from roundness, decreased after sintering. This is not generally observed with dry pressed pellets. Thus it is possible to machine to tolerancemore » before sintering if grinding is necessary.« less
Chen, Shen-Zhi; Shi, Jian-Ping; Dai, Li
2018-04-17
A new species of the genus Mongolotettix Rehn, 1928 from Fujian, China is described in this paper. The new species Mongolotettix.fujianensis sp. nov. is similar to M. wulingyuanensis Shi, Liu et Li, 2016, but differs from the latter by maximum width of cubital area 1.4 times maximum width of medial area in tegmina of male; body small, length of body ♂ 21.5. mm, ♀ 30.6 mm; vertical diameter eye 1.3 times horizontal diameter in male; hind femur of male with 103 stridulatory pegs on inner side and epiphallus with indistinct projection on inner side of lateral plates. Type specimens are deposited in the Shanghai Entomological Museum, Chinese Academy of Sciences, Shanghai, 200032, China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Webb, Aaron P.; Carlson, Charles T.; Honan, Michael
A plurality of masks is attached to the underside of a mask frame. This attachment is made such that each mask can independently move relative to the mask frame in three directions. This relative movement allows each mask to adjust its position to align with respective alignment pins disposed on a working surface. In one embodiment, each mask is attached to the mask frame using fasteners, where the fasteners have a shaft with a diameter smaller than the diameter of the mounting hole disposed on the mask. A bias element may be used to allow relative movement between the maskmore » and the mask frame in the vertical direction. Each mask may also have kinematic features to mate with the respective alignment pins on the working surface.« less
NASA Technical Reports Server (NTRS)
Smith, G. A.; Meyer, G.
1981-01-01
A full envelope automatic flight control system based on nonlinear inverse systems concepts has been applied to a vertical attitude takeoff and landing (VATOL) fighter aircraft. A new method for using an airborne digital aircraft model to perform the inversion of a nonlinear aircraft model is presented together with the results of a simulation study of the nonlinear inverse system concept for the vertical-attitude hover mode. The system response to maneuver commands in the vertical attitude was found to be excellent; and recovery from large initial offsets and large disturbances was found to be very satisfactory.
Caputo, Maria C.; de Carlo, L.; Masciopinto, C.; Nimmo, J.R.
2010-01-01
Up to now, field studies set up to measure field-saturated hydraulic conductivity to evaluate contamination risks, have employed small cylinders that may not be representative of the scale of measurements in heterogeneous media. In this study, a large adjustable ring infiltrometer was designed to be installed on-site directly on rock to measure its field-saturated hydraulic conductivity. The proposed device is inexpensive and simple to implement, yet also very versatile, due to its large adjustable diameter that can be fixed on-site. It thus allows an improved representation of the natural system's heterogeneity, while also taking into consideration irregularities in the soil/rock surface. The new apparatus was tested on an outcrop of karstic fractured limestone overlying the deep Murge aquifer in the South of Italy, which has recently been affected by untreated sludge disposal, derived from municipal and industrial wastewater treatment plants. The quasi-steady vertical flow into the unsaturated fractures was investigated by measuring water levels during infiltrometer tests. Simultaneously, subsurface electrical resistivity measurements were used to visualize the infiltration of water in the subsoil, due to unsaturated water flow in the fractures. The proposed experimental apparatus works well on rock outcrops, and allows the repetition of infiltration tests at many locations in order to reduce model uncertainties in heterogeneous media. ?? 2009 Springer-Verlag.
The Influence of Surface Gravity Waves on Marine Current Turbine Performance
NASA Astrophysics Data System (ADS)
Lust, E.; Luznik, L.; Flack, K. A.; Walker, J.; Van Benthem, M.
2013-12-01
Surface gravity waves can significantly impact operating conditions for a marine current turbine, imparting unsteady velocities several orders of magnitude larger than the ambient turbulence. The influence of surface waves on the performance characteristics of a two-bladed horizontal axis marine current turbine was investigated experimentally in a large towing tank facility at the United States Naval Academy. The turbine model had a 0.8 m diameter (D) rotor with a NACA 63-618 cross section, which is Reynolds number independent with respect to lift coefficient in the operating range of Rec ≈ 4 x 105. The torque, thrust and rotational speed were measured at a range of tip speed ratios (TSR) from 5 < TSR < 11. Tests were performed at two rotor depths (1.3D and 2.25D) with and without waves. The average turbine performance characteristics were largely unchanged by depth or the presence of waves. However, tests with waves indicate large variations in thrust, rotational speed, and torque occurred with the passage of the wave. These results demonstrate the impact of surface gravity waves on power production and structural loading and suggest that turbines should be positioned vertically within the water column at a depth which maximizes power output while minimizing material fatigue. Keywords-- marine current turbine, tidal turbine, towing-tank experiments, surface gravity waves, fatigue loading, phase averaging
NASA Technical Reports Server (NTRS)
Yang, T. L.; Dixon, M. W.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
1999-01-01
In six experiments we demonstrate that the vertical-horizontal illusion that is evoked when viewing photographs and line drawings is relatively small, whereas the magnitude of this illusion when large objects are viewed is at least twice as great. Furthermore, we show that the illusion is due more to vertical overestimation than horizontal underestimation. The lack of a difference in vertical overestimation between pictures and line drawings suggests that vertical overestimation in pictures depends solely on the perceived physical size of the projection on the picture surface, rather than on what is apparent about an object's represented size. The vertical-horizontal illusion is influenced by perceived physical size. It is greater when viewing large objects than small pictures of these same objects, even when visual angles are equated.
NASA Astrophysics Data System (ADS)
tongqing, Wu; liang, Li; xinjian, Liu; Xu, nianchun; Tian, Mao
2018-03-01
Self-balanced method is carried out on the large diameter rock-socketed filling piles of high-pile wharf at Inland River, to explore the distribution laws of load-displacement curve, pile internal force, pile tip friction resistance and pile side friction resistance under load force. The results showed that: the tip resistance of S1 and S2 test piles accounted for 53.4% and 53.6% of the pile bearing capacity, respectively, while the total side friction resistance accounted for 46.6% and 46.4% of the pile bearing capacity, respectively; both the pile tip friction resistance and pile side friction resistance can be fully played, and reach to the design requirements. The reasonability of large diameter rock-socketed filling design is verified through test analysis, which can provide basis for the optimization of high-pile wharf structural type, thus reducing the wharf project cost, and also providing reference for the similar large diameter rock-socketed filling piles of high-pile wharf at Inland River.
NASA Astrophysics Data System (ADS)
Reddy, S. R.
2010-12-01
We investigated the possible relationship between the large- scale heat fluxes and intensity change associated with the landfall of Hurricane Katrina. After reaching the category 5 intensity on August 28th , 2005 over the central Gulf of Mexico, Katrina weekend to category 3 before making landfall (August 29th , 2005) on the Louisiana coast with the maximum sustained winds of over 110 knots. We also examined the vertical motions associated with the intensity change of the hurricane. The data on Convective Available Potential Energy (CAPE), sea level pressure and wind speed were obtained from the Atmospheric Soundings, and NOAA National Hurricane Center (NHC), respectively for the period August 24 to September 3, 2005. We developed an empirical model and a C++ program to calculate surface potential temperatures and heat fluxes using the above data. We also computed vertical motions using CAPE values. The study showed that the large-scale heat fluxes reached maximum (7960W/m2) with the central pressure 905mb. The Convective Available Potential Energy and the vertical motions peaked 3-5 days before landfall. The large atmospheric vertical motions associated with the land falling hurricane Katrina produced severe weather including thunderstorms and tornadoes.
Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells
NASA Technical Reports Server (NTRS)
Hrinda, Glenn A.
2012-01-01
Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.
NASA Astrophysics Data System (ADS)
Witter, M. R.; Ort, M. H.; Leudemann, L. A.
2013-12-01
Colton Crater, located within the San Francisco Volcanic Field (SFVF) in northern Arizona, is one of over 600 scoria cones in the field. Unlike most other volcanoes in the SFVF, Colton Crater is characterized as a hybrid volcano that had Strombolian, Hawaiian, and Surtseyan explosions. Surtseyan explosions led to the excavation of the center of the volcano, creating a large 1.3-km-diameter crater with a 30-m post-phreatomagmatic scoria cone at its center. A vertical erosion-resistant feature along the northern rim of the crater, originally mapped as a dike, provides valuable information about the sequence and timing of the transition to phreatomagmatic eruptions because it disrupts the otherwise continuous spatter layers deposited just prior to that change. Stratigraphic sections and paleomagnetic analysis of Colton Crater reveal the origin and timing of emplacement of this vertical structure and its place in the transitional eruptive history. The prominent upper layers in the crater walls show some variation throughout the crater, but generally are composed of agglutinated spatter, welded scoria and bombs, and rootless lava flows. The uppermost portion of the outward-dipping spatter layers that lie between the two saddles on the northern rim closely match the layers observed in the vertical structure, revealing that the structure is a section of rotated spatter. The characteristic remanent magnetization (ChRM), identified using alternating field (AF) demagnetization, shows the timing of the displacement of sections of the agglutinated spatter and welded cinder. Sites along the vertical structure yield ChRMs statistically identical to non-rotated sites, which indicates that rotation of the vertical structure occurred before the ChRM had been set, i.e., the layers were above the Curie temperature during rotation. The eruption started as Strombolian and Hawaiian perhaps because the flux of magma overpowered the influx of water from local aquifer formations, creating a stable and sealed conduit. Lava flows associated with the Strombolian and Hawaiian activity breached the northern flank and destabilized the walls of the crater. Water may have been introduced to the magmatic system through conduit collapse beneath the water table or vent migration to a conduit location with greater water flux, leading to the Surtseyan explosions. As space was created on the northern rim, the destabilized spatter layers detached and rotated, creating the vertical structure. The eruption ended with a small Strombolian phase, forming the 30-m-high scoria cone in the bottom of the crater. The sequence of these events must have happened within a short time period because the rotated spatter layers of the vertical structure remained above 580 oC.
Role of macular hole angle in macular hole closure.
Chhablani, Jay; Khodani, Mitali; Hussein, Abdullah; Bondalapati, Sailaja; Rao, Harsha B; Narayanan, Raja; Sudhalkar, Aditya
2015-12-01
To evaluate correlation of various spectral-domain optical coherence tomography (SD-OCT) parameters including macular hole angle as well as various indices with anatomical and visual outcomes after idiopathic macular hole repair surgery. Retrospective study of 137 eyes of 137 patients who underwent idiopathic macular hole repair surgery between January 2008 and January 2014 was performed. Various qualitative parameters such as presence of vitreomacular traction, epiretinal membrane and cystic edges at the macular hole as well as quantitative parameters such as maximum diameter on the apex of the hole, minimum diameter between edges, nasal and temporal vertical height, longest base diameter and macular hole angle between the retinal edge and the retinal pigment epithelium were noted. Indices including hole form factor, Macular Hole Index (MHI), Diameter Hole Index and Tractional Hole Index (THI) were calculated. Univariate and multivariate regression analysis was performed separately for final visual acuity (VA) and type of closure as dependent variable in relation to SD-OCT parameters as independent variables. On multivariate regression only minimum diameter between edges (p≤0.01) and longest base diameter (p≤0.03) were correlated significantly with both, type 1 closure and final VA. Among the indices, significant correlation of MHI (p=0.009) was noted with type of closure and that of THI with final VA (p=0.017). Our study shows no significant correlation between macular hole angle and hole closure. Minimum diameter between the edges and longest diameter of the hole are best predictors of hole closure and postoperative VA. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Mioche, Guillaume; Jourdan, Olivier; Delanoë, Julien; Gourbeyre, Christophe; Febvre, Guy; Dupuy, Régis; Monier, Marie; Szczap, Frédéric; Schwarzenboeck, Alfons; Gayet, Jean-François
2017-10-01
This study aims to characterize the microphysical and optical properties of ice crystals and supercooled liquid droplets within low-level Arctic mixed-phase clouds (MPCs). We compiled and analyzed cloud in situ measurements from four airborne spring campaigns (representing 18 flights and 71 vertical profiles in MPCs) over the Greenland and Norwegian seas mainly in the vicinity of the Svalbard archipelago. Cloud phase discrimination and representative vertical profiles of the number, size, mass and shape of ice crystals and liquid droplets are established. The results show that the liquid phase dominates the upper part of the MPCs. High concentrations (120 cm-3 on average) of small droplets (mean values of 15 µm), with an averaged liquid water content (LWC) of 0.2 g m-3 are measured at cloud top. The ice phase dominates the microphysical properties in the lower part of the cloud and beneath it in the precipitation region (mean values of 100 µm, 3 L-1 and 0.025 g m-3 for diameter, particle concentration and ice water content (IWC), respectively). The analysis of the ice crystal morphology shows that the majority of ice particles are irregularly shaped or rimed particles; the prevailing regular habits found are stellars and plates. We hypothesize that riming and diffusional growth processes, including the Wegener-Bergeron-Findeisen (WBF) mechanism, are the main growth mechanisms involved in the observed MPCs. The impact of larger-scale meteorological conditions on the vertical profiles of MPC properties was also investigated. Large values of LWC and high concentration of smaller droplets are possibly linked to polluted situations and air mass origins from the south, which can lead to very low values of ice crystal size and IWC. On the contrary, clean situations with low temperatures exhibit larger values of ice crystal size and IWC. Several parameterizations relevant for remote sensing or modeling studies are also determined, such as IWC (and LWC) - extinction relationship, ice and liquid integrated water paths, ice concentration and liquid water fraction according to temperature.
NASA Technical Reports Server (NTRS)
Guerrero, R.; Ashen, J.; Sole, M.; Margulis, L.
1993-01-01
Large (up to 100 micrometers long), loosely coiled, free-living spirochetes with variable diameters (from 0.4 to 3 micrometers in the same cell) were seen at least 40 times between August 1990 and January 1993. These spirochetes were observed in mud water and enrichment media from highly specific habitats in intertidal evaporite flats at three disjunct localities, one in Spain and two in Mexico. All three are sites of commercial saltworks. Associated with Microcoleus chthonoplastes the large spirochetes from Spain display phototaxis and a composite organization. Shorter and smaller-diameter spirochetes are seen inside both healthy and spent periplasm of larger ones. Small spirochetes attached to large ones have been observed live. From two to twelve spirochete protoplasmic cylinders were seen inside a single common outer membrane. A distinctive granulated cytoplasm in which the granules are of similar diameter (20-32 nanometers) to that of the flagella (26 nanometers) was present. Granule diameters were measured in thin section and in negatively-stained whole-mount preparations. Based on their ultrastructure, large size, variable diameter, number of flagella (3 to 6), and phototactic behavior these unique spirochetes are formally named Spirosymplokos deltaeiberi. Under anoxic (or low oxygen) conditions they formed blooms in mixed culture in media selective for spirochetes. Cellobiose was the major carbon source in 80% seawater, the antibiotic rifampicin was added, mat from the original field site was present and tubes were incubated in the light at from 18-31 degrees C. Within 1-2 weeks populations of the large spirochete developed at 25 degrees C but they could not be transferred to fresh medium.