Sample records for large engineering materials

  1. Large-Scale 3D Printing: The Way Forward

    NASA Astrophysics Data System (ADS)

    Jassmi, Hamad Al; Najjar, Fady Al; Ismail Mourad, Abdel-Hamid

    2018-03-01

    Research on small-scale 3D printing has rapidly evolved, where numerous industrial products have been tested and successfully applied. Nonetheless, research on large-scale 3D printing, directed to large-scale applications such as construction and automotive manufacturing, yet demands a great a great deal of efforts. Large-scale 3D printing is considered an interdisciplinary topic and requires establishing a blended knowledge base from numerous research fields including structural engineering, materials science, mechatronics, software engineering, artificial intelligence and architectural engineering. This review article summarizes key topics of relevance to new research trends on large-scale 3D printing, particularly pertaining (1) technological solutions of additive construction (i.e. the 3D printers themselves), (2) materials science challenges, and (3) new design opportunities.

  2. Infiltration performance of engineered surfaces commonly used for distributed stormwater management

    NASA Astrophysics Data System (ADS)

    Valinski, Nicholas A.

    Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas.

  3. Infiltration performance of engineered surfaces commonly used for distributed stormwater management.

    PubMed

    Valinski, N A; Chandler, D G

    2015-09-01

    Engineered porous media are commonly used in low impact development (LID) structures to mitigate excess stormwater in urban environments. Differences in infiltrability of these LID systems arise from the wide variety of materials used to create porous surfaces and subsequent maintenance, debris loading, and physical damage. In this study, the infiltration capacity of six common materials was tested by multiple replicate experiments with automated mini-disk infiltrometers. The tested materials included porous asphalt, porous concrete, porous brick pavers, flexible porous pavement, engineered soils, and native soils. Porous asphalt, large porous brick pavers, and curb cutout rain gardens showed the greatest infiltration rates. Most engineered porous pavements and soils performed better than the native silt loam soils. Infiltration performance was found to be related more to site design and environmental factors than material choice. Sediment trap zones in both pavements and engineered soil rain gardens were found to be beneficial to the whole site performance. Winter chloride application had a large negative impact on poured in place concrete, making it a poor choice for heavily salted areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials.

    PubMed

    Nguyen, Peter Q; Courchesne, Noémie-Manuelle Dorval; Duraj-Thatte, Anna; Praveschotinunt, Pichet; Joshi, Neel S

    2018-05-01

    Vast potential exists for the development of novel, engineered platforms that manipulate biology for the production of programmed advanced materials. Such systems would possess the autonomous, adaptive, and self-healing characteristics of living organisms, but would be engineered with the goal of assembling bulk materials with designer physicochemical or mechanical properties, across multiple length scales. Early efforts toward such engineered living materials (ELMs) are reviewed here, with an emphasis on engineered bacterial systems, living composite materials which integrate inorganic components, successful examples of large-scale implementation, and production methods. In addition, a conceptual exploration of the fundamental criteria of ELM technology and its future challenges is presented. Cradled within the rich intersection of synthetic biology and self-assembling materials, the development of ELM technologies allows the power of biology to be leveraged to grow complex structures and objects using a palette of bio-nanomaterials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Countermeasures to Hazardous Chemicals,

    DTIC Science & Technology

    1989-04-01

    Chemical Engineers (AIChE), 3. Hazardous Materials Advisery, Council (HMAC), (not the same as the Memphis/Shelby County HMAC), 4. American Petroleum...retired chemical engineers , will volunteer to avos t the I wcal communities in their pl. ining efforts. S1i !NSTITrTE OF HAZARDOUS MATERIALS MANAGEMENT The... chemicals may be considered to be a man-made wind. Such large gas volumes can be produced by blowcr equipment incorporating surplus jet engines . Such blowers

  6. Engineering Ferroic and Multiferroic Materials for Active Cooling Applications

    DTIC Science & Technology

    2014-02-11

    large strain gradients (>105 m-1) – nearly 5-6 orders of magnitude larger than what can be achieved in bulk-versions of materials. These large strain...larger than what can be achieved in bulk-versions of materials. These large strain gradients gave rise to unexpected crystal and domain structure...parameters that are more favorable for generating a compressively strained variety of the Zr-rich phases. In this case, akin to what has been

  7. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine

    PubMed Central

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S.; Khandhar, Amit; Krishnan, Kannan M.

    2015-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body –– an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field. PMID:26586919

  8. Magnetic Nanoparticles: Material Engineering and Emerging Applications in Lithography and Biomedicine.

    PubMed

    Bao, Yuping; Wen, Tianlong; Samia, Anna Cristina S; Khandhar, Amit; Krishnan, Kannan M

    2016-01-01

    We present an interdisciplinary overview of material engineering and emerging applications of iron oxide nanoparticles. We discuss material engineering of nanoparticles in the broadest sense, emphasizing size and shape control, large-area self-assembly, composite/hybrid structures, and surface engineering. This is followed by a discussion of several non-traditional, emerging applications of iron oxide nanoparticles, including nanoparticle lithography, magnetic particle imaging, magnetic guided drug delivery, and positive contrast agents for magnetic resonance imaging. We conclude with a succinct discussion of the pharmacokinetics pathways of iron oxide nanoparticles in the human body -- an important and required practical consideration for any in vivo biomedical application, followed by a brief outlook of the field.

  9. Structural integrity of engineering composite materials: a cracking good yarn.

    PubMed

    Beaumont, Peter W R; Soutis, Costas

    2016-07-13

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large-scale engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a 'fracture safe design' is immense. Fitness considerations for long-life implementation of large composite structures include understanding phenomena such as impact, fatigue, creep and stress corrosion cracking that affect reliability, life expectancy and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined, and takes service duty into account. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).

  10. Materials for a Stirling engine heater head

    NASA Technical Reports Server (NTRS)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  11. Evaluating Instructional Design Models: A Proposed Research Approach

    ERIC Educational Resources Information Center

    Gropper, George L.

    2015-01-01

    Proliferation of prescriptive models in an "engineering" field is not a sign of its maturity. Quite the opposite. Materials engineering, for example, meets the criterion of parsimony. Sadly, the very large number of models in "instructional design," putatively an engineering field, raises questions about its status. Can the…

  12. Engineering charge ordering into multiferroicity

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan

    2016-04-01

    Multiferroic materials have attracted great interest but are rare in nature. In many transition-metal oxides, charge ordering and magnetic ordering coexist, so that a method of engineering charge-ordered materials into ferroelectric materials would lead to a large class of multiferroic materials. We propose a strategy for designing new ferroelectric or even multiferroic materials by inserting a spacing layer into each two layers of charge-ordered materials and artificially making a superlattice. One example of the model demonstrated here is the perovskite (LaFeO3)2/LaTiO3 (111) superlattice, in which the LaTiO3 layer acts as the donor and the spacing layer, and the LaFeO3 layer is half doped and performs charge ordering. The collaboration of the charge ordering and the spacing layer breaks the space inversion symmetry, resulting in a large ferroelectric polarization. As the charge ordering also leads to a ferrimagnetic structure, (LaFeO3)2/LaTiO3 is multiferroic. It is expected that this work can encourage the designing and experimental implementation of a large class of multiferroic structures with novel properties.

  13. A method to estimate weight and dimensions of large and small gas turbine engines

    NASA Technical Reports Server (NTRS)

    Onat, E.; Klees, G. W.

    1979-01-01

    A computerized method was developed to estimate weight and envelope dimensions of large and small gas turbine engines within + or - 5% to 10%. The method is based on correlations of component weight and design features of 29 data base engines. Rotating components were estimated by a preliminary design procedure which is sensitive to blade geometry, operating conditions, material properties, shaft speed, hub tip ratio, etc. The development and justification of the method selected, and the various methods of analysis are discussed.

  14. LSA: Low-cost Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Topics discussed include silicon material processing; large-area silicon sheet development; encapsulation materials testing and development; project engineering and operations activities, and manufacturing techniques. The steps taken to integrate these efforts, are described.

  15. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE PAGES

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika; ...

    2017-05-30

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  16. Non-Destructive Characterization of Engineering Materials Using High-Energy X-rays at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jun-Sang; Okasinski, John; Chatterjee, Kamalika

    High energy X-rays can penetrate large components and samples made from engineering alloys. Brilliant synchrotron sources like the Advanced Photon Source (APS) combined with unique experimental setups are increasingly allowing scientists and engineers to non-destructively characterize the state of materials across a range of length scales. In this article, some of the new developments at the APS, namely the high energy diffraction microscopy technique for grain-by-grain maps and aperture-based techniques for aggregate maps, are described.

  17. Applicability of Online Education to Large Undergraduate Engineering Courses

    NASA Astrophysics Data System (ADS)

    Bir, Devayan Debashis

    With the increase in undergraduate engineering enrollment, many universities have chosen to teach introductory engineering courses such as Statics of Engineering and Mechanics of Materials in large classes due to budget limitations. With the overwhelming literature against traditionally taught large classes, this study aims to see the effects of the trending online pedagogy. Online courses are the latest trend in education due to the flexibility they provide to students in terms of schedule and pace of learning with the added advantage of being less expensive for the university over a period. In this research, the effects of online lectures on engineering students' course performances and students' attitudes towards online learning were examined. Specifically, the academic performances of students enrolled in a traditionally taught, lecture format Mechanics of Materials course with the performance of students in an online Mechanics of Materials course in summer 2016 were compared. To see the effect of the two different teaching approaches across student types, students were categorized by gender, enrollment status, nationality, and by the grades students obtained for Statics, one of the prerequisite courses for Mechanics of Materials. Student attitudes towards the online course will help to keep the process of continuously improving the online course, specifically, to provide quality education through the online medium in terms of course content and delivery. The findings of the study show that the online pedagogy negatively affects student academic performance when compared to the traditional face-to-face pedagogy across all categories, except for the high scoring students. Student attitudes reveal that while they enjoyed the flexibility schedule and control over their pace of studying, they faced issues with self-regulation and face-to-face interaction.

  18. Soft network materials with isotropic negative Poisson's ratios over large strains.

    PubMed

    Liu, Jianxing; Zhang, Yihui

    2018-01-31

    Auxetic materials with negative Poisson's ratios have important applications across a broad range of engineering areas, such as biomedical devices, aerospace engineering and automotive engineering. A variety of design strategies have been developed to achieve artificial auxetic materials with controllable responses in the Poisson's ratio. The development of designs that can offer isotropic negative Poisson's ratios over large strains can open up new opportunities in emerging biomedical applications, which, however, remains a challenge. Here, we introduce deterministic routes to soft architected materials that can be tailored precisely to yield the values of Poisson's ratio in the range from -1 to 1, in an isotropic manner, with a tunable strain range from 0% to ∼90%. The designs rely on a network construction in a periodic lattice topology, which incorporates zigzag microstructures as building blocks to connect lattice nodes. Combined experimental and theoretical studies on broad classes of network topologies illustrate the wide-ranging utility of these concepts. Quantitative mechanics modeling under both infinitesimal and finite deformations allows the development of a rigorous design algorithm that determines the necessary network geometries to yield target Poisson ratios over desired strain ranges. Demonstrative examples in artificial skin with both the negative Poisson's ratio and the nonlinear stress-strain curve precisely matching those of the cat's skin and in unusual cylindrical structures with engineered Poisson effect and shape memory effect suggest potential applications of these network materials.

  19. Conversion of low BMEP 4-cylinder to high BMEP 2-cylinder large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Ladd, John

    There are more than 6,000 integral compressor engines in use on US natural gas pipelines, operating 24 hours a day, 365 days a year. Many of these engines have operated continuously for more than 50 years, with little to no modifications. Due to recent emission regulations at the local, state and federal levels much of the aging infrastructure requires retrofit technology to remain within compliance. The Engines and Energy Conversion Laboratory was founded to test these retrofit technologies on its large bore engine testbed (LBET). The LBET is a low brake mean effective pressure (BMEP) Cooper Bessemer GMVTF-4. Newer GMV models, constructed in 1980's, utilize turbocharging to increase the output power, achieving BMEP's nearly double that of the LBET. To expand the lab's testing capability and to reduce the LBET's running cost: material testing, in-depth modeling, and on engine testing was completed to evaluate the feasibility of uprating the LBET to a high BMEP two cylinder engine. Due to the LBET's age, the crankcase material properties were not known. Material samples were removed from engine to conduct an in-depth material analysis. It was found that the crankcase was cast out of a specific grade of gray iron, class 25 meehanite. A complete three dimensional model of the LBET's crankcase and power cylinders was created. Using historical engine data, the force inputs were created for a finite element analysis model of the LBET, to determine the regions of high stress. The areas of high stress were instrumented with strain gauges to iterate and validate the model's findings. Several test cases were run at the high and intermediate BMEP engine conditions. The model found, at high BMEP conditions the LBET would operate at the fatigue limit of the class 25 meehanite, operating with no factor of safety but the intermediate case were deemed acceptable.

  20. TOPICAL REVIEW: Progress in engineering high strain lead-free piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Leontsev, Serhiy O.; Eitel, Richard E.

    2010-08-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The 'structural engineering' approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications.

  1. Large strain variable stiffness composites for shear deformations with applications to morphing aircraft skins

    NASA Astrophysics Data System (ADS)

    McKnight, G. P.; Henry, C. P.

    2008-03-01

    Morphing or reconfigurable structures potentially allow for previously unattainable vehicle performance by permitting several optimized structures to be achieved using a single platform. The key to enabling this technology in applications such as aircraft wings, nozzles, and control surfaces, are new engineered materials which can achieve the necessary deformations but limit losses in parasitic actuation mass and structural efficiency (stiffness/weight). These materials should exhibit precise control of deformation properties and provide high stiffness when exercised through large deformations. In this work, we build upon previous efforts in segmented reinforcement variable stiffness composites employing shape memory polymers to create prototype hybrid composite materials that combine the benefits of cellular materials with those of discontinuous reinforcement composites. These composites help overcome two key challenges for shearing wing skins: the resistance to out of plane buckling from actuation induced shear deformation, and resistance to membrane deflections resulting from distributed aerodynamic pressure loading. We designed, fabricated, and tested composite materials intended for shear deformation and address out of plane deflections in variable area wing skins. Our designs are based on the kinematic engineering of reinforcement platelets such that desired microstructural kinematics is achieved through prescribed boundary conditions. We achieve this kinematic control by etching sheets of metallic reinforcement into regular patterns of platelets and connecting ligaments. This kinematic engineering allows optimization of materials properties for a known deformation pathway. We use mechanical analysis and full field photogrammetry to relate local scale kinematics and strains to global deformations for both axial tension loading and shear loading with a pinned-diamond type fixture. The Poisson ratio of the kinematically engineered composite is ~3x higher than prototypical orthotropic variable stiffness composites. This design allows us to create composite materials that have high stiffness in the cold state below SMP T g (4-14GPa) and yet achieve large composite shear strains (5-20%) in the hot state (above SMP T g).

  2. Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features

    NASA Technical Reports Server (NTRS)

    Zeman, J.

    1945-01-01

    Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.

  3. Damage characterization in engineering materials using a combination of optical, acoustic, and thermal techniques

    NASA Astrophysics Data System (ADS)

    Tragazikis, I. K.; Exarchos, D. A.; Dalla, P. T.; Matikas, T. E.

    2016-04-01

    This paper deals with the use of complimentary nondestructive methods for the evaluation of damage in engineering materials. The application of digital image correlation (DIC) to engineering materials is a useful tool for accurate, noncontact strain measurement. DIC is a 2D, full-field optical analysis technique based on gray-value digital images to measure deformation, vibration and strain a vast variety of materials. In addition, this technique can be applied from very small to large testing areas and can be used for various tests such as tensile, torsion and bending under static or dynamic loading. In this study, DIC results are benchmarked with other nondestructive techniques such as acoustic emission for damage localization and fracture mode evaluation, and IR thermography for stress field visualization and assessment. The combined use of these three nondestructive methods enables the characterization and classification of damage in materials and structures.

  4. Responsive Education Applied to Engineering Mechanics.

    ERIC Educational Resources Information Center

    Brillhart, Lia V.

    1981-01-01

    With less time to spend with individual students, teachers of large classes may need course materials that augment texts and lectures. The author discusses what criteria such materials must meet and gives examples from a course in statics. (Author/DS)

  5. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    NASA Astrophysics Data System (ADS)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  6. Newly invented biobased materials from low-carbon, diverted waste fibers: research methods, testing, and full-scale application in a case study structure

    Treesearch

    Julee A Herdt; John Hunt; Kellen Schauermann

    2016-01-01

    This project demonstrates newly invented, biobased construction materials developed by applying lowcarbon, biomass waste sources through the Authors’ engineered fiber processes and technology. If manufactured and applied large-scale the project inventions can divert large volumes of cellulose waste into high-performance, low embodied energy, environmental construction...

  7. Novel Membranes and Systems for Industrial and Municipal Water Purification and Reuse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This factsheet describes a project that developed nano-engineered, high-permeance membrane materials with more than double the permeance of current reverse osmosis membranes as well as manufacturing technologies for large-scale production of the novel materials.

  8. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    NASA Technical Reports Server (NTRS)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  9. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing.

    PubMed

    Butscher, A; Bohner, M; Hofmann, S; Gauckler, L; Müller, R

    2011-03-01

    This article reviews the current state of knowledge concerning the use of powder-based three-dimensional printing (3DP) for the synthesis of bone tissue engineering scaffolds. 3DP is a solid free-form fabrication (SFF) technique building up complex open porous 3D structures layer by layer (a bottom-up approach). In contrast to traditional fabrication techniques generally subtracting material step by step (a top-down approach), SFF approaches allow nearly unlimited designs and a large variety of materials to be used for scaffold engineering. Today's state of the art materials, as well as the mechanical and structural requirements for bone scaffolds, are summarized and discussed in relation to the technical feasibility of their use in 3DP. Advances in the field of 3DP are presented and compared with other SFF methods. Existing strategies on material and design control of scaffolds are reviewed. Finally, the possibilities and limiting factors are addressed and potential strategies to improve 3DP for scaffold engineering are proposed. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Band structure engineering of 2D materials using patterned dielectric superlattices.

    PubMed

    Forsythe, Carlos; Zhou, Xiaodong; Watanabe, Kenji; Taniguchi, Takashi; Pasupathy, Abhay; Moon, Pilkyung; Koshino, Mikito; Kim, Philip; Dean, Cory R

    2018-05-07

    The ability to manipulate electrons in two-dimensional materials with external electric fields provides a route to synthetic band engineering. By imposing artificially designed and spatially periodic superlattice potentials, electronic properties can be further altered beyond the constraints of naturally occurring atomic crystals 1-5 . Here, we report a new approach to fabricate high-mobility superlattice devices by integrating surface dielectric patterning with atomically thin van der Waals materials. By separating the device assembly and superlattice fabrication processes, we address the intractable trade-off between device processing and mobility degradation that constrains superlattice engineering in conventional systems. The improved electrostatics of atomically thin materials allows smaller wavelength superlattice patterns relative to previous demonstrations. Moreover, we observe the formation of replica Dirac cones in ballistic graphene devices with sub-40 nm wavelength superlattices and report fractal Hofstadter spectra 6-8 under large magnetic fields from superlattices with designed lattice symmetries that differ from that of the host crystal. Our results establish a robust and versatile technique for band structure engineering of graphene and related van der Waals materials with dynamic tunability.

  11. Progress in engineering high strain lead-free piezoelectric ceramics

    PubMed Central

    Leontsev, Serhiy O; Eitel, Richard E

    2010-01-01

    Environmental concerns are strongly driving the need to replace the lead-based piezoelectric materials currently employed as multilayer actuators. The current review describes both compositional and structural engineering approaches to achieve enhanced piezoelectric properties in lead-free materials. The review of the compositional engineering approach focuses on compositional tuning of the properties and phase behavior in three promising families of lead-free perovskite ferroelectrics: the titanate, alkaline niobate and bismuth perovskites and their solid solutions. The ‘structural engineering’ approaches focus instead on optimization of microstructural features including grain size, grain orientation or texture, ferroelectric domain size and electrical bias field as potential paths to induce large piezoelectric properties in lead-free piezoceramics. It is suggested that a combination of both compositional and novel structural engineering approaches will be required in order to realize viable lead-free alternatives to current lead-based materials for piezoelectric actuator applications. PMID:27877343

  12. Green materials for sustainable development

    NASA Astrophysics Data System (ADS)

    Purwasasmita, B. S.

    2017-03-01

    Sustainable development is an integrity of multidiscipline concept combining ecological, social and economic aspects to construct a liveable human living system. The sustainable development can be support through the development of green materials. Green materials offers a unique characteristic and properties including abundant in nature, less toxic, economically affordable and versatility in term of physical and chemical properties. Green materials can be applied for a numerous field in science and technology applications including for energy, building, construction and infrastructures, materials science and engineering applications and pollution management and technology. For instance, green materials can be developed as a source for energy production. Green materials including biomass-based source can be developed as a source for biodiesel and bioethanol production. Biomass-based materials also can be transformed into advanced functionalized materials for advanced bio-applications such as the transformation of chitin into chitosan which further used for biomedicine, biomaterials and tissue engineering applications. Recently, cellulose-based material and lignocellulose-based materials as a source for the developing functional materials attracted the potential prospect for biomaterials, reinforcing materials and nanotechnology. Furthermore, the development of pigment materials has gaining interest by using the green materials as a source due to their unique properties. Eventually, Indonesia as a large country with a large biodiversity can enhance the development of green material to strengthen our nation competitiveness and develop the materials technology for the future.

  13. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  14. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    NASA Astrophysics Data System (ADS)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  15. How Much Is Enough? Examining Computer Science and Civil Engineering Citation Data to Inform Collection Development and Retention Decisions in Three Large Canadian University Libraries

    ERIC Educational Resources Information Center

    Spence, Michelle; Mawhinney, Tara; Barsky, Eugene

    2012-01-01

    Science and engineering libraries have an important role to play in preserving the intellectual content in research areas of the departments they serve. This study employs bibliographic data from the Web of Science database to examine how much research material is required to cover 90% of faculty citations in civil engineering and computer…

  16. Material degradation due to moisture and temperature. Part 1: mathematical model, analysis, and analytical solutions

    NASA Astrophysics Data System (ADS)

    Xu, C.; Mudunuru, M. K.; Nakshatrala, K. B.

    2016-11-01

    The mechanical response, serviceability, and load-bearing capacity of materials and structural components can be adversely affected due to external stimuli, which include exposure to a corrosive chemical species, high temperatures, temperature fluctuations (i.e., freezing-thawing), cyclic mechanical loading, just to name a few. It is, therefore, of paramount importance in several branches of engineering—ranging from aerospace engineering, civil engineering to biomedical engineering—to have a fundamental understanding of degradation of materials, as the materials in these applications are often subjected to adverse environments. As a result of recent advancements in material science, new materials such as fiber-reinforced polymers and multi-functional materials that exhibit high ductility have been developed and widely used, for example, as infrastructural materials or in medical devices (e.g., stents). The traditional small-strain approaches of modeling these materials will not be adequate. In this paper, we study degradation of materials due to an exposure to chemical species and temperature under large strain and large deformations. In the first part of our research work, we present a consistent mathematical model with firm thermodynamic underpinning. We then obtain semi-analytical solutions of several canonical problems to illustrate the nature of the quasi-static and unsteady behaviors of degrading hyperelastic solids.

  17. Periodic nanostructural materials for nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Choi, Dukhyun

    2017-02-01

    Nanoscale periodic material design and fabrication are essentially fundamental requirement for basic scientific researches and industrial applications of nanoscience and engineering. Innovative, effective, reproducible, large-area uniform, tunable and robust nanostructure/material syntheses are still challenging. Here, I would like to introduce the novel periodic nanostructural materials particularly with uniformly ordered nanoporous or nanoflower structures, which are fabricated by simple, cost-effective, and high-throughput wet chemical methods. I also report large-area periodic plasmonic nanostructures based on template-based nanolithography. The surface morphology and optical properties are characterized by SEM and UV-vis. spectroscopy. Furthermore, their enhancement factor is evaluated by using SERS signals.

  18. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.

    PubMed

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-05-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.

  19. I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source

    PubMed Central

    Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz

    2015-01-01

    I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103

  20. The status, recent progress and promise of superconducting materials for practical applications

    NASA Astrophysics Data System (ADS)

    Rowell, J. M.

    1989-03-01

    The author summarizes the progress in materials science and engineering that created today's superconducting technology. He reviews the state of the technology with conventional materials by looking at two particular applications: large-scale applications involving conductors, for example, magnets; and electronics and instrumentation applications. The state-of-the art is contrasted with the present understanding of the high-Tc oxide materials.

  1. Integrating ethics into technical courses: micro-insertion.

    PubMed

    Davis, Michael

    2006-10-01

    Perhaps the most common reason science and engineering faculty give for not including 'ethics' (that is, research ethics, engineering ethics, or some discussion of professional responsibility) in their technical classes is that 'there is no room'. This article 1) describes a technique ('micro-insertion') that introduces ethics (and related topics) into technical courses in small enough units not to push out technical material, 2) explains where this technique might fit into the larger undertaking of integrating ethics into the technical (scientific or engineering) curriculum, and 3) concludes with some quantified evidence (collected over more than a decade) suggesting success. Integrating ethics into science and engineering courses is largely a matter of providing context for what is already being taught, context that also makes the material already being taught seem 'more relevant'.

  2. Studying Radiation Damage in Structural Materials by Using Ion Accelerators

    NASA Astrophysics Data System (ADS)

    Hosemann, Peter

    2011-02-01

    Radiation damage in structural materials is of major concern and a limiting factor for a wide range of engineering and scientific applications, including nuclear power production, medical applications, or components for scientific radiation sources. The usefulness of these applications is largely limited by the damage a material can sustain in the extreme environments of radiation, temperature, stress, and fatigue, over long periods of time. Although a wide range of materials has been extensively studied in nuclear reactors and neutron spallation sources since the beginning of the nuclear age, ion beam irradiations using particle accelerators are a more cost-effective alternative to study radiation damage in materials in a rather short period of time, allowing researchers to gain fundamental insights into the damage processes and to estimate the property changes due to irradiation. However, the comparison of results gained from ion beam irradiation, large-scale neutron irradiation, and a variety of experimental setups is not straightforward, and several effects have to be taken into account. It is the intention of this article to introduce the reader to the basic phenomena taking place and to point out the differences between classic reactor irradiations and ion irradiations. It will also provide an assessment of how accelerator-based ion beam irradiation is used today to gain insight into the damage in structural materials for large-scale engineering applications.

  3. Substitution of ceramics for high temperature alloys. [advantages of using silicon carbides and silicon nitrides in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1978-01-01

    The high temperature capability of ceramics such as silicon nitride and silicon carbide can result in turbine engines of improved efficiency. Other advantages when compared to the nickel and cobalt alloys in current use are raw material availability, lower weight, erosion/corrosion resistance, and potentially lower cost. The use of ceramics in three different sizes of gas turbine is considered; these are the large utility turbines, advanced aircraft turbines, and small automotive turbines. Special consideration, unique to each of these applications, arise when one considers substituting ceramics for high temperature alloys. The effects of material substitutions are reviewed in terms of engine performance, operating economy, and secondary effects.

  4. Engineering analyses of large precision cathode strip chambers for GEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horvath, J.A.; Belser, F.C.; Pratuch, S.M.

    Structural analyses of large precision cathode strip chambers performed up to the date of this publication are documented. Mechanical property data for typical chamber materials are included. This information, originally intended to be an appendix to the {open_quotes}CSC Structural Design Bible,{close_quotes} is presented as a guide for future designers of large chambers.

  5. Low-cost Solar Array (LSA) project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Progress made by the Low-Cost Silicon Solar Array Project during the period January through March 1978 is reported. It includes task reports on silicon material processing, large-area silicon sheet development, encapsulation materials testing and development, project engineering and operations, and manufacturing techniques, plus the steps taken to integrate these efforts.

  6. Carbon Nanotubes: Miracle of Materials Science?

    NASA Technical Reports Server (NTRS)

    Files, Bradley S.; Mayeaux, Brian M.

    1999-01-01

    Article to be sent to Advanced Materials and Processes, journal of ASM International, as attached. This is a news-type technical journal for a large organization of scientists, engineers, salesmen, and managers. The article is quite general, meant to be an introduction to the properties of nanotubes. This is a materials science organization, therefore the article is geared toward using nanotubes for materials uses. Pictures have not been included in this version.

  7. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for April 2000 Through September 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, DR

    2000-12-11

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advantages LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOx and 0.05 g/bhp-h particulates. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles.« less

  8. Subscale Carbon-Carbon Nozzle Extension Development and Hot Fire Testing in Support of Upper Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Valentine, Peter; Crisanti, Matthew; Greene, Sandy Elam

    2016-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures increasing exhaust velocities. Due to the large size of such nozzles and the related engine performance requirements, carbon-carbon (C/C) composite nozzle extensions are being considered for use in order to reduce weight impacts. NASA and industry partner Carbon-Carbon Advanced Technologies (C-CAT) are working towards advancing the technology readiness level of large-scale, domestically-fabricated, C/C nozzle extensions. These C/C extensions have the ability to reduce the overall costs of extensions relative to heritage metallic and composite extensions and to decrease weight by 50%. Material process and coating developments have advanced over the last several years, but hot fire testing to fully evaluate C/C nozzle extensions in relevant environments has been very limited. NASA and C-CAT have designed, fabricated and hot fire tested multiple subscale nozzle extension test articles of various C/C material systems, with the goal of assessing and advancing the manufacturability of these domestically producible materials as well as characterizing their performance when subjected to the typical environments found in a variety of liquid rocket and scramjet engines. Testing at the MSFC Test Stand 115 evaluated heritage and state-of-the-art C/C materials and coatings, demonstrating the capabilities of the high temperature materials and their fabrication methods. This paper discusses the design and fabrication of the 1.2k-lbf sized carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work.

  9. Space Shuttle Main Engine - The Relentless Pursuit of Improvement

    NASA Technical Reports Server (NTRS)

    VanHooser, Katherine P.; Bradley, Douglas P.

    2011-01-01

    The Space Shuttle Main Engine (SSME) is the only reusable large liquid rocket engine ever developed. The specific impulse delivered by the staged combustion cycle, substantially higher than previous rocket engines, minimized volume and weight for the integrated vehicle. The dual pre-burner configuration permitted precise mixture ratio and thrust control while the fully redundant controller and avionics provided a very high degree of system reliability and health diagnosis. The main engine controller design was the first rocket engine application to incorporate digital processing. The engine was required to operate at a high chamber pressure to minimize engine volume and weight. Power level throttling was required to minimize structural loads on the vehicle early in flight and acceleration levels on the crew late in ascent. Fatigue capability, strength, ease of assembly and disassembly, inspectability, and materials compatibility were all major considerations in achieving a fully reusable design. During the multi-decade program the design evolved substantially using a series of block upgrades. A number of materials and manufacturing challenges were encountered throughout SSME s history. Significant development was required for the final configuration of the high pressure turbopumps. Fracture control was implemented to assess life limits of critical materials and components. Survival in the hydrogen environment required assessment of hydrogen embrittlement. Instrumentation systems were a challenge due to the harsh thermal and dynamic environments within the engine. Extensive inspection procedures were developed to assess the engine components between flights. The Space Shuttle Main Engine achieved a remarkable flight performance record. All flights were successful with only one mission requiring an ascent abort condition, which still resulted in an acceptable orbit and mission. This was achieved in large part via extensive ground testing to fully characterize performance and to establish acceptable life limits. During the program over a million seconds of accumulated test and flight time was achieved. Post flight inspection and assessment was a key part of assuring proper performance of the flight hardware. By the end of the program the predicted reliability had improved by a factor of four. These unique challenges, evolution of the design, and the resulting reliability will be discussed in this paper.

  10. Hanyu Zhang | NREL

    Science.gov Websites

    investigate approaches that can make 2D materials with better functionality by studying the energetic ., Engineering Chemically-Exfoliated Large-Area Two-Dimensional MoS2 Nanolayers with Porphyrins for Improved

  11. Linear Spectral Analysis of Plume Emissions Using an Optical Matrix Processor

    NASA Technical Reports Server (NTRS)

    Gary, C. K.

    1992-01-01

    Plume spectrometry provides a means to monitor the health of a burning rocket engine, and optical matrix processors provide a means to analyze the plume spectra in real time. By observing the spectrum of the exhaust plume of a rocket engine, researchers have detected anomalous behavior of the engine and have even determined the failure of some equipment before it would normally have been noticed. The spectrum of the plume is analyzed by isolating information in the spectrum about the various materials present to estimate what materials are being burned in the engine. Scientists at the Marshall Space Flight Center (MSFC) have implemented a high resolution spectrometer to discriminate the spectral peaks of the many species present in the plume. Researchers at the Stennis Space Center Demonstration Testbed Facility (DTF) have implemented a high resolution spectrometer observing a 1200-lb. thrust engine. At this facility, known concentrations of contaminants can be introduced into the burn, allowing for the confirmation of diagnostic algorithms. While the high resolution of the measured spectra has allowed greatly increased insight into the functioning of the engine, the large data flows generated limit the ability to perform real-time processing. The use of an optical matrix processor and the linear analysis technique described below may allow for the detailed real-time analysis of the engine's health. A small optical matrix processor can perform the required mathematical analysis both quicker and with less energy than a large electronic computer dedicated to the same spectral analysis routine.

  12. Three-dimensional engineered fiberboard : opportunities for the use of low valued timber and recycled material

    Treesearch

    John F. Hunt; David P. Harper; Katherine A. Friedrich

    2004-01-01

    Fiberboard sandwich panels constructed of a structural core with exterior skins can be produced with high strength and stiffness values that compare to other wood-based panels. At the same time, as much as two-thirds less material is used in the process compared to commercial wood composite products. This offers large savings in raw material and weight. The panel...

  13. Polymer microarray technology for stem cell engineering

    PubMed Central

    Coyle, Robert; Jia, Jia; Mei, Ying

    2015-01-01

    Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. During the past decade, significant progress has been made in developing soluble factors (e.g., small molecules and growth factors) to direct stem cells into a desired phenotype. However, the current lack of suitable synthetic materials to regulate stem cell activity has limited the realization of the enormous potential of stem cells. This can be attributed to a large number of materials properties (e.g., chemical structures and physical properties of materials) that can affect stem cell fate. This makes it challenging to design biomaterials to direct stem cell behavior. To address this, polymer microarray technology has been developed to rapidly identify materials for a variety of stem cell applications. In this article, we summarize recent developments in polymer array technology and their applications in stem cell engineering. Statement of significance Stem cells hold remarkable promise for applications in tissue engineering and disease modeling. In the last decade, significant progress has been made in developing chemically defined media to direct stem cells into a desired phenotype. However, the current lack of the suitable synthetic materials to regulate stem cell activities has been limiting the realization of the potential of stem cells. This can be attributed to the number of variables in material properties (e.g., chemical structures and physical properties) that can affect stem cells. Polymer microarray technology has shown to be a powerful tool to rapidly identify materials for a variety of stem cell applications. Here we summarize recent developments in polymer array technology and their applications in stem cell engineering. PMID:26497624

  14. Low-cost solar array project and Proceedings of the 14th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1980-01-01

    Activities are reported on the following areas: project analysis and integration; technology development in silicon material, large area sheet silicon, and encapsulation; production process and equipment development; and engineering and operations, and the steps taken to integrate these efforts. Visual materials presented at the project Integration Meeting are included.

  15. Seismic Barrier Protection of Critical Infrastructure

    DTIC Science & Technology

    2017-05-14

    where collapsing buildings claim by far most lives. Moreover, in recent events, industry activity of oil extraction and wastewater reinjection are...engineering building structural designs and materials have evolved over many years to minimize the destructive effects of seismic surface waves. However...Rayleigh, Love, shear). To protect against them, a large body of earthquake engineering has been developed, and effective building practices are

  16. Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design.

    PubMed

    van 't Hag, Leonie; Gras, Sally L; Conn, Charlotte E; Drummond, Calum J

    2017-05-22

    Ordered amphiphile self-assembly materials with a tunable three-dimensional (3D) nanostructure are of fundamental interest, and crucial for progressing several biological and biomedical applications, including in meso membrane protein crystallization, as drug and medical contrast agent delivery vehicles, and as biosensors and biofuel cells. In binary systems consisting of an amphiphile and a solvent, the ability to tune the 3D cubic phase nanostructure, lipid bilayer properties and the lipid mesophase is limited. A move beyond the binary compositional space is therefore required for efficient engineering of the required material properties. In this critical review, the phase transitions upon encapsulation of more than 130 amphiphilic and soluble additives into the bicontinuous lipidic cubic phase under excess hydration are summarized. The data are interpreted using geometric considerations, interfacial curvature, electrostatic interactions, partition coefficients and miscibility of the alkyl chains. The obtained lyotropic liquid crystal engineering design rules can be used to enhance the formulation of self-assembly materials and provides a large library of these materials for use in biomedical applications (242 references).

  17. Space propulsion

    NASA Astrophysics Data System (ADS)

    Kazaroff, John M.

    1993-02-01

    Lewis Research Center is developing broad-based new technologies for space chemical engines to satisfy long-term needs of ETO launch vehicles and other vehicles operating in and beyond Earth orbit. Specific objectives are focused on high performance LO2/LH2 engines providing moderate thrusts of 7,5-200 klb. This effort encompasses research related to design analysis and manufacturing processes needed to apply advanced materials to subcomponents, components, and subsystems of space-based systems and related ground-support equipment. High-performance space-based chemical engines face a number of technical challenges. Liquid hydrogen turbopump impellers are often so large that they cannot be machined from a single piece, yet high stress at the vane/shroud interface makes bonding extremely difficult. Tolerances on fillets are critical on large impellers. Advanced materials and fabricating techniques are needed to address these and other issues of interest. Turbopump bearings are needed which can provide reliable, long life operation at high speed and high load with low friction losses. Hydrostatic bearings provide good performance, but transients during pump starts and stops may be an issue because no pressurized fluid is available unless a separate bearing pressurization system is included. Durable materials and/or coatings are needed that can demonstrate low wear in the harsh LO2/LH2 environment. Advanced materials are also needed to improve the lifetime, reliability and performance of other propulsion system elements such as seals and chambers.

  18. Physics Education in a Multidisciplinary Materials Research Environment

    NASA Astrophysics Data System (ADS)

    Doyle, W. D.

    1997-03-01

    The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.

  19. A NARROW SHORT-DURATION GRB JET FROM A WIDE CENTRAL ENGINE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffell, Paul C.; Quataert, Eliot; MacFadyen, Andrew I., E-mail: duffell@berkeley.edu

    2015-11-01

    We use two-dimensional relativistic hydrodynamic numerical calculations to show that highly collimated relativistic jets can be produced in neutron star merger models of short-duration gamma-ray bursts (GRBs) without the need for a highly directed engine or a large net magnetic flux. Even a hydrodynamic engine generating a very wide sustained outflow on small scales can, in principle, produce a highly collimated relativistic jet, facilitated by a dense surrounding medium that provides a cocoon surrounding the jet core. An oblate geometry to the surrounding gas significantly enhances the collimation process. Previous numerical simulations have shown that the merger of two neutronmore » stars produces an oblate, expanding cloud of dynamical ejecta. We show that this gas can efficiently collimate the central engine power much like the surrounding star does in long-duration GRB models. For typical short-duration GRB central engine parameters, we find jets with opening angles of an order of 10° in which a large fraction of the total outflow power of the central engine resides in highly relativistic material. These results predict large differences in the opening angles of outflows from binary neutron star mergers versus neutron star–black hole mergers.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.D.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal ismore » also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.« less

  1. Special features of large-size resistors for high-voltage pulsed installations

    NASA Astrophysics Data System (ADS)

    Minakova, N. N.; Ushakov, V. Ya.

    2017-12-01

    Many structural materials in pulsed power engineering operate under extreme conditions. For example, in high-voltage electrophysical installations among which there are multistage high-voltage pulse generators (HVPG), rigid requirements are imposed on characteristics of solid-state resistors that are more promising in comparison with widely used liquid resistors. Materials of such resistors shall be able to withstand strong electric fields, operate at elevated temperatures, in transformer oil, etc. Effective charge of high-voltage capacitors distributed over the HVPG steps (levels) requires uniform voltage distribution along the steps of the installation that can be obtained using large-size resistors. For such applications, polymer composite materials are considered rather promising. They can work in transformer oil and have small mass in comparison with bulky resistors on inorganic basis. This allows technical solutions already developed and implemented in HVPG with liquid resistors to be employed. This paper is devoted to the solution of some tasks related to the application of filled polymers in high-voltage engineering.

  2. An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique

    PubMed Central

    An, Jia

    2016-01-01

    3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future. PMID:28149624

  3. An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique.

    PubMed

    An, Jia; Chua, Chee Kai

    2016-12-01

    3D printing is a large family of many distinct technologies covering a wide range of topics. From an engineering point of view, there should be considerations for selection of design, material, and process when using 3D printing for surgical technique innovation such as personalized scaffolds. Moreover, cost should also be considered if there are equally effective alternatives to the innovation. Furthermore, engineering considerations and options should be clearly communicated and readily available to surgeons for advancement in future.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.« less

  5. Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    1993-01-01

    In order to reduce heat transfer between a hot gas heat source and a metallic engine component, a thermal insulating layer of material is placed between them. This thermal barrier coating is applied by plasma spray processing the thin films. The coating has been successfully employed in aerospace applications for many years. Lewis Research Center, a leader in the development engine components coating technology, has assisted Caterpillar, Inc. in applying ceramic thermal barrier coatings on engines. Because these large engines use heavy fuels containing vanadium, engine valve life is sharply decreased. The barrier coating controls temperatures, extends valve life and reduces operating cost. Additional applications are currently under development.

  6. Simulation of the Vibratory Condition of the Compressor Blade with a Pressed wire Material “MR” Damper Which Located Around the Root Attachment

    NASA Astrophysics Data System (ADS)

    Gvozdev, Alexander S.; Melentjev, Vladimir S.

    2018-01-01

    When you create a modern gas turbine engines urgent task is to improve the reliability by preventing fatigue damages of rotor blades. Such damage is largely determined by the level of vibration stresses. In this paper, using the finite element method and transient analysis of propose a method calculating the damping characteristics of the plates of the pressed wire material “MR” around the root attachment of the compressor blades of a gas turbine engine. Where taken into account contact interaction between the blades and the impeller disk.

  7. Conference on Fire Resistant Materials: A compilation of presentations and papers

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A. (Editor); Johnson, G. A. (Editor)

    1979-01-01

    The proceedings of the NASA IRE Resistant Materials Engineering (FIREMEN) Program held at Boeing Commercial Airplane Company, Seattle, Washington, on March 1-2, 1979 are reported. The conference was to discuss the results of research by the National Aeronautics and Space Administration in the field of aircraft fire safety and fire-resistant materials. The program topics include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) fire modeling.

  8. Conference on Fire Resistant Materials (FIREMEN): A compilation of presentations and papers

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A. (Editor)

    1978-01-01

    The proceedings of the NASA Fire Resistant Materials Engineering (FIREMEN) Program held at Ames Research Center on April, 13, 14, 1978 are reported. The purpose of the conference was to discuss the results of NASA in the field of aircraft fire safety and fire resistant materials. The program components include the following: (1) large-scale testing; (2) fire toxicology; (3) polymeric materials; and (4) bibliography related and/or generated from the program.

  9. Marshall Space Flight Center Materials and Processes Laboratory

    NASA Technical Reports Server (NTRS)

    Tramel, Terri L.

    2012-01-01

    Marshall?s Materials and Processes Laboratory has been a core capability for NASA for over fifty years. MSFC has a proven heritage and recognized expertise in materials and manufacturing that are essential to enable and sustain space exploration. Marshall provides a "systems-wise" capability for applied research, flight hardware development, and sustaining engineering. Our history of leadership and achievements in materials, manufacturing, and flight experiments includes Apollo, Skylab, Mir, Spacelab, Shuttle (Space Shuttle Main Engine, External Tank, Reusable Solid Rocket Motor, and Solid Rocket Booster), Hubble, Chandra, and the International Space Station. MSFC?s National Center for Advanced Manufacturing, NCAM, facilitates major M&P advanced manufacturing partnership activities with academia, industry and other local, state and federal government agencies. The Materials and Processes Laborato ry has principal competencies in metals, composites, ceramics, additive manufacturing, materials and process modeling and simulation, space environmental effects, non-destructive evaluation, and fracture and failure analysis provide products ranging from materials research in space to fully integrated solutions for large complex systems challenges. Marshall?s materials research, development and manufacturing capabilities assure that NASA and National missions have access to cutting-edge, cost-effective engineering design and production options that are frugal in using design margins and are verified as safe and reliable. These are all critical factors in both future mission success and affordability.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monreal, Benjamin; Stuart, David; Nelson, Harry

    The R&D efforts of the UCSB Detector R&D program in the 2015--2017 period are reported. These were to develop a liquid scintillator based detector to be used for characterizing radioactive impurities in samples for rapid and effective screening of low background materials for direct dark matter detection experiments; complete engineering and simulation work investigating the feasibility of constructing large detectors in salt caverns; and provide engineering innovation for development of new ideas.

  11. Experimental and analytical study of ceramic-coated turbine-tip shroud seals for small turbine engines

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Mcdonald, G. E.; Hendricks, R. C.; Little, J. K.; Robinson, R. A.; Klann, G. A.; Lassow, E. S.

    1985-01-01

    The results of an experimental and analytical evaluation of ceramic turbine tip shrouds within a small turbine engine operating environment are presented. The ceramic shrouds were subjected to 1001 cycles between idle and high power and steady-state conditions for a total of 57.8 engine hr. Posttest engine inspection revealed mud-flat surface cracking, which was attributed to microcracking under tension with crack penetration to the ceramic and bond coat interface. Sections and micrographs tend to corroborate the thesis. The engine test data provided input to a thermomechanical analysis to predict temperature and stress profiles throughout the ceramic gas-path seal. The analysis predicts cyclic thermal stresses large enough to cause the seal to fail. These stresses are, however, mitigated by inelastic behavior of the shroud materials and by the microfracturing that tensile stresses produce. Microfracturing enhances shroud longevity during early life but provides the failure mechanism during life but provides the failure mechanism during extended life when coupled with the time dependent inelastic materials effects.

  12. Bio-based materials with novel characteristics for tissue engineering applications - A review.

    PubMed

    Bedian, Luis; Villalba-Rodríguez, Angel M; Hernández-Vargas, Gustavo; Parra-Saldivar, Roberto; Iqbal, Hafiz M N

    2017-05-01

    Recently, a wider spectrum of bio-based materials and materials-based novel constructs and systems has been engineered with high interests. The key objective is to help for an enhanced/better quality of life in a secure way by avoiding/limiting various adverse effects of some in practice traditional therapies. In this context, different methodological approaches including in vitro, in vivo, and ex vivo techniques have been exploited, so far. Among them, bio-based therapeutic constructs are of supreme interests for an enhanced and efficient delivery in the current biomedical sector of the modern world. The development of new types of novel, effective and highly reliable materials-based novel constructs for multipurpose applications is essential and a core demand to tackle many human health related diseases. Bio-based materials possess several complementary functionalities, e.g. unique chemical structure, bioactivity, non-toxicity, biocompatibility, biodegradability, recyclability, etc. that position them well in the modern world's materials sector. In this context, the utilization of biomaterials provides extensive opportunities for experimentation in the field of interdisciplinary and multidisciplinary scientific research. With an aim to address the global dependence on petroleum-based polymers, researchers have been redirecting their interests to the engineering of biological materials for targeted applications in different industries including cosmetics, pharmaceuticals, and other biotechnological or biomedical applications. Herein, we reviewed biotechnological advancements at large and tissue engineering from a biomaterials perspective in particular and envision directions of future developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Engineering science and mechanics; Proceedings of the International Symposium, Tainan, Republic of China, December 29-31, 1981. Parts 1 & 2

    NASA Astrophysics Data System (ADS)

    Hsia, H.-M.; Chou, Y.-L.; Longman, R. W.

    1983-07-01

    The topics considered are related to measurements and controls in physical systems, the control of large scale and distributed parameter systems, chemical engineering systems, aerospace science and technology, thermodynamics and fluid mechanics, and computer applications. Subjects in structural dynamics are discussed, taking into account finite element approximations in transient analysis, buckling finite element analysis of flat plates, dynamic analysis of viscoelastic structures, the transient analysis of large frame structures by simple models, large amplitude vibration of an initially stressed thick plate, nonlinear aeroelasticity, a sensitivity analysis of a combined beam-spring-mass structure, and the optimal design and aeroelastic investigation of segmented windmill rotor blades. Attention is also given to dynamics and control of mechanical and civil engineering systems, composites, and topics in materials. For individual items see A83-44002 to A83-44061

  14. ENGINEERING BULLETIN: SOLIDIFICATION/STABILIZATION OF ORGANICS AND INORGANICS

    EPA Science Inventory

    Solidification refers to techniques that encapsulate hazardous waste into a solid material of high structural integrity. Encapsulation involves either fine waste particles (microencapsulation) or a large block or container of wastes (macroencapsulation). Stabilization refe...

  15. Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties

    NASA Astrophysics Data System (ADS)

    Gaultois, Michael W.; Oliynyk, Anton O.; Mar, Arthur; Sparks, Taylor D.; Mulholland, Gregory J.; Meredig, Bryce

    2016-05-01

    The experimental search for new thermoelectric materials remains largely confined to a limited set of successful chemical and structural families, such as chalcogenides, skutterudites, and Zintl phases. In principle, computational tools such as density functional theory (DFT) offer the possibility of rationally guiding experimental synthesis efforts toward very different chemistries. However, in practice, predicting thermoelectric properties from first principles remains a challenging endeavor [J. Carrete et al., Phys. Rev. X 4, 011019 (2014)], and experimental researchers generally do not directly use computation to drive their own synthesis efforts. To bridge this practical gap between experimental needs and computational tools, we report an open machine learning-based recommendation engine (http://thermoelectrics.citrination.com) for materials researchers that suggests promising new thermoelectric compositions based on pre-screening about 25 000 known materials and also evaluates the feasibility of user-designed compounds. We show this engine can identify interesting chemistries very different from known thermoelectrics. Specifically, we describe the experimental characterization of one example set of compounds derived from our engine, RE12Co5Bi (RE = Gd, Er), which exhibits surprising thermoelectric performance given its unprecedentedly high loading with metallic d and f block elements and warrants further investigation as a new thermoelectric material platform. We show that our engine predicts this family of materials to have low thermal and high electrical conductivities, but modest Seebeck coefficient, all of which are confirmed experimentally. We note that the engine also predicts materials that may simultaneously optimize all three properties entering into zT; we selected RE12Co5Bi for this study due to its interesting chemical composition and known facile synthesis.

  16. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.

    PubMed

    Zha, Jian; Koffas, Mattheos A G

    2017-12-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  17. A Center for Extraterrestrial Engineering and Construction (CETEC)

    NASA Technical Reports Server (NTRS)

    Leigh, Gerald G.

    1992-01-01

    A group of knowledgeable scientists and engineers in New Mexico has recognized the need for such a testing capability and has proposed a project to evelop an extraterrestrial surface simulation facility. A group of universities, national laboratories, and private industrial firms is proposing to establish a Center for Extraterrestrial Engineering and Construction (CETEC) and to develop large extraterrestrial surface simulation facilities in which this needed testing can be realistically performed. The CETEC is envisioned to be both a center of knowledge and data regarding engineering, construction, mining, and material process operations on extraterrestrial bodies and a set of extraterrestrial surface simulation facilities. The primary CETEC facility is proposed to be a large domed building made of steel reinforced concrete with more than one acre of test floor area covered with several feet of simulated lunar soil and dust. Various aspects of the project are presented in viewgraph form.

  18. Effective Materials Property Information Management for the 21st Century

    NASA Technical Reports Server (NTRS)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  19. Epitaxial Growth of Molecular Crystals on van der Waals Substrates for High-Performance Organic Electronics

    DTIC Science & Technology

    2014-01-01

    Taniguchi Advanced Materials Laboratory National Institute for Materials Science 1–1 Namiki, Tsukuba , 305–0044 , Japan Prof. J. Hone Department...of Mechanical Engineering Columbia University New York , NY , 10027 , USA DOI : 10.1002/adma.201304973 The growth of high-quality organic...vdW heterostructures, combined with recent progress on large-area growth of layered materials , [ 6,7 ] provides new opportunities for the scalable

  20. Bioenvironmental Engineering Guide for Composite Materials

    DTIC Science & Technology

    2014-03-31

    Russell J. Advanced composite cargo aircraft proves large structure practicality. High- Performance Composites 2010 Jan. Retrieved 3 January 2014 from...fuel or hydraulic fluid; location of radioactive components associated with the aircraft, such as depleted uranium counterweights, isotopes

  1. Highly compressible 3D periodic graphene aerogel microlattices

    PubMed Central

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; Golobic, Alexandra M.; Kuntz, Joshua D.; Spadaccini, Christopher M.; Worsley, Marcus A.

    2015-01-01

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young's moduli of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications. PMID:25902277

  2. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E.

    2015-01-01

    To better understand Cermet engine performance, examined historical material development reports two issues: High vaporization rate of UO2, High temperature chemical stability of UO2. Cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance. Few samples were tested above 2770 K. Results above 2770 K are ambiguous. Contemporary testing may clarify performance. Cermet sample testing during the NERVA Rover era. Important properties, melting temperature, vaporization rate, strength, Brittle-to-Ductile Transition, cermet sample test results, engine performance, location, peak temperature.

  3. Dynamics of cracks in disordered materials

    NASA Astrophysics Data System (ADS)

    Bonamy, Daniel

    2017-05-01

    Predicting when rupture occurs or cracks progress is a major challenge in numerous fields of industrial, societal, and geophysical importance. It remains largely unsolved: stress enhancement at cracks and defects, indeed, makes the macroscale dynamics extremely sensitive to the microscale material disorder. This results in giant statistical fluctuations and non-trivial behaviors upon upscaling, difficult to assess via the continuum approaches of engineering.

  4. Summary of semi-initiative and initiative control automobile engine vibration

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Qu, Zhou

    2009-07-01

    Engine vibration accounts for around 55% of automobile vibration, separating the engine vibration from transmitting to automobile to the utmost extent is significant for improving NVH performance. Semi-initiative and initiative control of engine vibration is one of the hot spots of technical research in domestic and foreign automobile industry, especially luxury automobiles which adopt this technology to improve amenity and competitiveness. This article refers to a large amount of domestic and foreign related materials, fully introduces the research status of semi-initiative and initiative control suspension of engine vibration suspension and many kinds of structural style, and provides control policy and method of semi-initiative and initiative control suspension system. Compare and analyze the structural style of semi-initiative and initiative control and merits and demerits of current structures of semi-initiative and initiative control of mechanic electrorheological, magnetorheological, electromagnetic actuator, piezoelectric ceramics, electrostriction material, pneumatic actuator etc. Models of power assembly mounting system was classified.Calculation example indicated that reasonable selection of engine mounting system parameters is useful to reduce engine vibration transmission and to increase ride comfort. Finally we brought forward semi-initiative and initiative suspension which might be applied for automobiles, and which has a promising future.

  5. Type I Collagen and Strontium-Containing Mesoporous Glass Particles as Hybrid Material for 3D Printing of Bone-Like Materials.

    PubMed

    Montalbano, Giorgia; Fiorilli, Sonia; Caneschi, Andrea; Vitale-Brovarone, Chiara

    2018-04-28

    Bone tissue engineering offers an alternative promising solution to treat a large number of bone injuries with special focus on pathological conditions, such as osteoporosis. In this scenario, the bone tissue regeneration may be promoted using bioactive and biomimetic materials able to direct cell response, while the desired scaffold architecture can be tailored by means of 3D printing technologies. In this context, our study aimed to develop a hybrid bioactive material suitable for 3D printing of scaffolds mimicking the natural composition and structure of healthy bone. Type I collagen and strontium-containing mesoporous bioactive glasses were combined to obtain suspensions able to perform a sol-gel transition under physiological conditions. Field emission scanning electron microscopy (FESEM) analyses confirmed the formation of fibrous nanostructures homogeneously embedding inorganic particles, whereas bioactivity studies demonstrated the large calcium phosphate deposition. The high-water content promoted the strontium ion release from the embedded glass particles, potentially enhancing the osteogenic behaviour of the composite. Furthermore, the suspension printability was assessed by means of rheological studies and preliminary extrusion tests, showing shear thinning and fast material recovery upon deposition. In conclusion, the reported results suggest that promising hybrid systems suitable for 3D printing of bioactive scaffolds for bone tissue engineering have been developed.

  6. Machine learning and data science in soft materials engineering

    NASA Astrophysics Data System (ADS)

    Ferguson, Andrew L.

    2018-01-01

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  7. Machine learning and data science in soft materials engineering.

    PubMed

    Ferguson, Andrew L

    2018-01-31

    In many branches of materials science it is now routine to generate data sets of such large size and dimensionality that conventional methods of analysis fail. Paradigms and tools from data science and machine learning can provide scalable approaches to identify and extract trends and patterns within voluminous data sets, perform guided traversals of high-dimensional phase spaces, and furnish data-driven strategies for inverse materials design. This topical review provides an accessible introduction to machine learning tools in the context of soft and biological materials by 'de-jargonizing' data science terminology, presenting a taxonomy of machine learning techniques, and surveying the mathematical underpinnings and software implementations of popular tools, including principal component analysis, independent component analysis, diffusion maps, support vector machines, and relative entropy. We present illustrative examples of machine learning applications in soft matter, including inverse design of self-assembling materials, nonlinear learning of protein folding landscapes, high-throughput antimicrobial peptide design, and data-driven materials design engines. We close with an outlook on the challenges and opportunities for the field.

  8. Establishment of a National Wind Energy Center at University of Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Su Su

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design, composite materials, integrated manufacturing, and structural reliability and integrity. The educational program have trained many graduate and undergraduate students and post-doctoral level researchers to learn critical science and engineering of wind energy production systems through graduate-level courses and research, and participating in various projects in center’s large multi-disciplinary research. These students and researchers are now employed by the wind industry, national labs and universities to support the US and international wind energy industry. The national offshore wind turbine blade research facility developed in the project has been used to support the technical and training tasks planned in the program to accomplish their goals, and it is a national asset which is available for used by domestic and international researchers in the wind energy arena.« less

  9. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  10. Summary of NACA Research on Afterburners for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Lundin, Bruce T; Gabriel, David S; Fleming, William A

    1956-01-01

    NACA research on afterburners for turbojet engines during the past 5 years is summarized. Although most of this work has been directed toward the development of specific afterburners for various engines rather than toward the accumulation of systematic data, it has, nevertheless, provided a large fund of experimental data and experience in the field. The references cited present over 1000 afterburner configurations and some 3500 hours of operation. In the treatment of the material of this summary, the principal effort has been to convey to the reader the "know-how" acquired by research engineers in the course of the work rather than to formulate a set of design rules.

  11. Surface alloy engineering in 2D trigonal lattice: giant Rashba spin splitting and two large topological gaps

    NASA Astrophysics Data System (ADS)

    Liu, Zhao; Jin, Yingdi; Yang, Yuchen; Wang, Z. F.; Yang, Jinlong

    2018-02-01

    We demonstrate that sp 2 based trigonal lattice can exhibit giant Rashba splitting and two large topological gaps simultaneously. First, an effective tight binding model is developed to describe the Rashba spin-orbit coupling (SOC) on a real surface and give a topological phase diagram based on two independent SOC parameters. Second, based on density functional theory calculations, it is proposed that Au/Si(111)-\\sqrt{3}× \\sqrt{3} surface with 1/3 monolayer Bi coverage is a good material candidate to realize both giant Rashba splitting and two large topological gaps. These results would inspire great research interests for searching two-dimensional topological insulator and manipulating Rashba spin splitting through surface alloy engineering.

  12. Protein-based materials, toward a new level of structural control.

    PubMed

    van Hest, J C; Tirrell, D A

    2001-10-07

    Through billions of years of evolution nature has created and refined structural proteins for a wide variety of specific purposes. Amino acid sequences and their associated folding patterns combine to create elastic, rigid or tough materials. In many respects, nature's intricately designed products provide challenging examples for materials scientists, but translation of natural structural concepts into bio-inspired materials requires a level of control of macromolecular architecture far higher than that afforded by conventional polymerization processes. An increasingly important approach to this problem has been to use biological systems for production of materials. Through protein engineering, artificial genes can be developed that encode protein-based materials with desired features. Structural elements found in nature, such as beta-sheets and alpha-helices, can be combined with great flexibility, and can be outfitted with functional elements such as cell binding sites or enzymatic domains. The possibility of incorporating non-natural amino acids increases the versatility of protein engineering still further. It is expected that such methods will have large impact in the field of materials science, and especially in biomedical materials science, in the future.

  13. Exploring Advanced Technology Gas Turbine Engine Design and Performance for the Large Civil Tiltrotor (LCTR)

    NASA Technical Reports Server (NTRS)

    Snyder, Christopher A.

    2014-01-01

    A Large Civil Tiltrotor (LCTR) conceptual design was developed as part of the NASA Heavy Lift Rotorcraft Systems Investigation in order to establish a consistent basis for evaluating the benefits of advanced technology for large tiltrotors. The concept has since evolved into the second-generation LCTR2, designed to carry 90 passengers for 1,000 nautical miles at 300 knots, with vertical takeoff and landing capability. This paper explores gas turbine component performance and cycle parameters to quantify performance gains possible for additional improvements in component and material performance beyond those identified in previous LCTR2 propulsion studies and to identify additional research areas. The vehicle-level characteristics from this advanced technology generation 2 propulsion architecture will help set performance levels as additional propulsion and power systems are conceived to meet ever-increasing requirements for mobility and comfort, while reducing energy use, cost, noise and emissions. The Large Civil Tiltrotor vehicle and mission will be discussed as a starting point for this effort. A few, relevant engine and component technology studies, including previous LCTR2 engine study results will be summarized to help orient the reader on gas turbine engine architecture, performance and limitations. Study assumptions and methodology used to explore engine design and performance, as well as assess vehicle sizing and mission performance will then be discussed. Individual performance for present and advanced engines, as well as engine performance effects on overall vehicle size and mission fuel usage, will be given. All results will be summarized to facilitate understanding the importance and interaction of various component and system performance on overall vehicle characteristics.

  14. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He received the B.S. degree in metallurgical engineering from Seoul National University, Seoul, South Korea, in 1974, and the M.S. and Ph.D. degrees in material science and engineering from Stanford University, Stanford, CA, USA, in 1980 and 1983, respectively. He is currently a Professor with the Department of Materials Science and Engineering, Seoul National University, Seoul.

  15. Programmable biofilm-based materials from engineered curli nanofibres.

    PubMed

    Nguyen, Peter Q; Botyanszki, Zsofia; Tay, Pei Kun R; Joshi, Neel S

    2014-09-17

    The significant role of biofilms in pathogenicity has spurred research into preventing their formation and promoting their disruption, resulting in overlooked opportunities to develop biofilms as a synthetic biological platform for self-assembling functional materials. Here we present Biofilm-Integrated Nanofiber Display (BIND) as a strategy for the molecular programming of the bacterial extracellular matrix material by genetically appending peptide domains to the amyloid protein CsgA, the dominant proteinaceous component in Escherichia coli biofilms. These engineered CsgA fusion proteins are successfully secreted and extracellularly self-assemble into amyloid nanofibre networks that retain the functions of the displayed peptide domains. We show the use of BIND to confer diverse artificial functions to the biofilm matrix, such as nanoparticle biotemplating, substrate adhesion, covalent immobilization of proteins or a combination thereof. BIND is a versatile nanobiotechnological platform for developing robust materials with programmable functions, demonstrating the potential of utilizing biofilms as large-scale designable biomaterials.

  16. Current developments in optical engineering and commercial optics; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)

    1989-01-01

    Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.

  17. Zero Launch Mass 3D printer

    NASA Image and Video Library

    2018-05-01

    Packing light is the idea behind the Zero Launch Mass 3-D Printer. Instead of loading up on heavy building supplies, a large scale 3-D printer capable of using recycled plastic waste and dirt at the destination as construction material would save mass and money when launching robotic precursor missions to build infrastructure on the Moon or Mars in preparation for human habitation. To make this a reality, Nathan Gelino, a researcher engineer with NASA’s Swamp Works at Kennedy Space Center, measured the temperature of a test specimen from the 3-D printer Tuesday as an early step in characterizing printed material strength properties. Material temperature plays a large role in the strength of bonds between layers.

  18. A Fully Non-metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2014-01-01

    The Non-Metallic Gas Turbine Engine project, funded by NASA Aeronautics Research Institute (NARI), represents the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. This will be achieved by assessing the feasibility of using additive manufacturing technologies for fabricating polymer matrix composite (PMC) and ceramic matrix composite (CMC) gas turbine engine components. The benefits of the proposed effort include: 50 weight reduction compared to metallic parts, reduced manufacturing costs due to less machining and no tooling requirements, reduced part count due to net shape single component fabrication, and rapid design change and production iterations. Two high payoff metallic components have been identified for replacement with PMCs and will be fabricated using fused deposition modeling (FDM) with high temperature capable polymer filaments. The first component is an acoustic panel treatment with a honeycomb structure with an integrated back sheet and perforated front sheet. The second component is a compressor inlet guide vane. The CMC effort, which is starting at a lower technology readiness level, will use a binder jet process to fabricate silicon carbide test coupons and demonstration articles. The polymer and ceramic additive manufacturing efforts will advance from monolithic materials toward silicon carbide and carbon fiber reinforced composites for improved properties. Microstructural analysis and mechanical testing will be conducted on the PMC and CMC materials. System studies will assess the benefits of fully nonmetallic gas turbine engine in terms of fuel burn, emissions, reduction of part count, and cost. The proposed effort will be focused on a small 7000 lbf gas turbine engine. However, the concepts are equally applicable to large gas turbine engines. The proposed effort includes a multidisciplinary, multiorganization NASA - industry team that includes experts in ceramic materials and CMCs, polymers and PMCs, structural engineering, additive manufacturing, engine design and analysis, and system analysis.

  19. Effective Materials Property Information Management for the 21st Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weiju; Cebon, David; Barabash, Oleg M

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive modelsmore » and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.« less

  20. Thermal Load Considerations for Detonative Combustion-Based Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.; Perkins, H. Douglas

    2004-01-01

    An analysis was conducted to assess methods for, and performance implications of, cooling the passages (tubes) of a pulse detonation-based combustor conceptually installed in the core of a gas turbine engine typical of regional aircraft. Temperature-limited material stress criteria were developed from common-sense engineering practice, and available material properties. Validated, one-dimensional, numerical simulations were then used to explore a variety of cooling methods and establish whether or not they met the established criteria. Simulation output data from successful schemes were averaged and used in a cycle-deck engine simulation in order to assess the impact of the cooling method on overall performance. Results were compared to both a baseline engine equipped with a constant-pressure combustor and to one equipped with an idealized detonative combustor. Major findings indicate that thermal loads in these devices are large, but potentially manageable. However, the impact on performance can be substantial. Nearly one half of the ideally possible specific fuel consumption (SFC) reduction is lost due to cooling of the tubes. Details of the analysis are described, limitations are presented, and implications are discussed.

  1. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.R.

    1997-04-01

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goalmore » is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.« less

  2. Realizing thin electromagnetic absorbers for wide incidence angles from commercially available planar circuit materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glover, Brian B; Whites, Kieth W; Radway, Matthew J

    2009-01-01

    In this study, recent work on engineering R-card surface resistivity with printed metallic patterns is extended to the design of thin electromagnetic absorbers. Thin electromagnetic absorbers for wide incidence angles and both polarizations have recently been computationally verified by Luukkonen et al.. These absorbers are analytically modeled high-impedance surfaces with capacitive arrays of square patches implemented with relatively high dielectric constant and high loss substrate. However, the advantages provided by the accurate analytical model are largely negated by the need to obtain high dielectric constant material with accurately engineered loss. Fig. I(c) illustrates full-wave computational results for an absorber withoutmore » vias engineered as proposed by Luukkonen et al.. Unique values for the dielectric loss are required for different center frequencies. Parameters for the capacitive grid are D=5.0 mm and w=O.l mm for a center frequency of 3.36 GHz. The relative permittivity and thickness is 9.20(1-j0.234) and 1=3.048 mm. Consider a center frequency of5.81 GHz and again 1=3.048 mm, the required parameters for the capacitive grid are D=2.0 mm and w=0.2 mm where the required relative permittivity is now 9.20(1-j0.371) Admittedly, engineered dielectrics are themselves a historically interesting and fruitful research area which benefits today from advances in monolithic fabrication using direct-write of dielectrics with nanometer scale inclusions. However, our objective in the present study is to realize the advantages of the absorber proposed by Luukkonen et al. without resort to engineered lossy dielectrics. Specifically we are restricted to commercially available planer circuit materials without use of in-house direct-write technology or materials engineering capability. The materials considered here are TMM 10 laminate with (35 {mu}lm copper cladding with a complex permittivity 9.20-j0.0022) and Ohmegaply resistor conductor material (maximum 250 {Omega}/sq.). A thin electromagnetic absorber for incidence angles greater than 30deg. but less than 60deg. and both polarizations is computationally demonstrated. This absorber utilizes high-permittivity, low-loss microwave substrate in conjunction with an engineered lossy sheet impedance. The lossy sheet impedance is easily engineered with simple analytical approximations and can be manufactured from commercially available laminate materials on microwave substrate.« less

  3. Supercruiser Arrow HS-8

    NASA Technical Reports Server (NTRS)

    Lord, Paul; Kao, Edward; Abobo, Joey B.; Collins, Todd A.; Ma, Leong; Murad, Adnan; Naran, Hitesh; Nguyen, Thuan P.; Nuon, Timithy I.; Thomas, Dimitri D.

    1992-01-01

    Technology in aeronautics has advanced dramatically since the last design of a production High Speed Civil Transport (HSCT) aircraft. Newly projected requirements call for a new High Speed Civil Transport aircraft with a range of approximately 550 nm and at least 275 passenger capacity. The aircraft must be affordable and marketable. The new HSCT must be able to sustain long-duration flights and to absorb the abuse of daily operation. The new aircraft must be safe and simple to fly and require a minimum amount of maintenance. This aircraft must meet FAA certification criteria of FAR Part 25 and environmental constraints. Several design configurations were examined and two designs were selected for further investigation. The first design employs the delta planform wings and conventional empennage layout. The other design uses a swing wing layout and conventional empennage. Other engineering challenges, including materials and propulsion are also discussed. At a cruise flight speed between Mach 2.2 and Mach 3.0, no current generation of materials can endure the thermal loading of supersonic flight and satisfy the stringent weight requirements. A new generation of lightweight composite materials must be developed for the HSCT. With the enforcement of stage 3 noise restrictions, these new engines must be able to propel the aircraft and satisfy the noise limit. The engine with the most promise is the variable cycle engine. At low subsonic speeds the engine operates like a turbofan engine, providing the most efficient performance. At higher speeds the variable cycle engine operates as a turbojet power plant. The two large engine manufacturers, General Electric and Pratt & Whitney in the United States, are combining forces to make the variable cycle engine a reality.

  4. Engineered materials characterization report, volume 3 - corrosion data and modeling update for viability assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCright, R D

    1998-06-30

    This Engineered Materials Characterization Report (EMCR), Volume 3, discusses in considerable detail the work of the past 18 months on testing the candidate materials proposed for the waste-package (WP) container and on modeling the performance of those materials in the Yucca Mountain (YM) repository setting This report was prepared as an update of information and serves as one of the supporting documents to the Viability Assessment (VA) of the Yucca Mountain Project. Previous versions of the EMCR have provided a history and background of container-materials selection and evaluation (Volume I), a compilation of physical and mechanical properties for the WPmore » design effort (Volume 2), and corrosion-test data and performance-modeling activities (Volume 3). Because the information in Volumes 1 and 2 is still largely current, those volumes are not being revised. As new information becomes available in the testing and modeling efforts, Volume 3 is periodically updated to include that information.« less

  5. Discussion on the Development of Green Chemistry and Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  6. Thermodynamic and structural insights into nanocomposites engineering by comparing two materials assembly techniques for graphene.

    PubMed

    Zhu, Jian; Zhang, Huanan; Kotov, Nicholas A

    2013-06-25

    Materials assembled by layer-by-layer (LBL) assembly and vacuum-assisted flocculation (VAF) have similarities, but a systematic study of their comparative advantages and disadvantages is missing. Such a study is needed from both practical and fundamental perspectives aiming at a better understanding of structure-property relationships of nanocomposites and purposeful engineering of materials with unique properties. Layered composites from polyvinyl alcohol (PVA) and reduced graphene (RG) are made by both techniques. We comparatively evaluate their structure, mechanical, and electrical properties. LBL and VAF composites demonstrate clear differences at atomic and nanoscale structural levels but reveal similarities in micrometer and submicrometer organization. Epitaxial crystallization and suppression of phase transition temperatures are more pronounced for PVA in LBL than for VAF composites. Mechanical properties are virtually identical for both assemblies at high RG contents. We conclude that mechanical properties in layered RG assemblies are largely determined by the thermodynamic state of PVA at the polymer/nanosheet interface rather than the nanometer scale differences in RG packing. High and nearly identical values of toughness for LBL and VAF composites reaching 6.1 MJ/m(3) observed for thermodynamically optimal composition confirm this conclusion. Their toughness is the highest among all other layered assemblies from RG, cellulose, clay, etc. Electrical conductivity, however, is more than 10× higher for LBL than for VAF composites for the same RG contents. Electrical properties are largely determined by the tunneling barrier between RG sheets and therefore strongly dependent on atomic/nanoscale organization. These findings open the door for application-oriented methods of materials engineering using both types of layered assemblies.

  7. How much improvement in thermoelectric performance can come from reducing thermal conductivity?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaultois, Michael W., E-mail: mgaultois@mrl.ucsb.edu; Sparks, Taylor D., E-mail: sparks@eng.utah.edu

    Large improvements in the performance of thermoelectric materials have come from designing materials with reduced thermal conductivity. Yet as the thermal conductivity of some materials now approaches their amorphous limit, it is unclear if microstructure engineering can further improve thermoelectric performance in these cases. In this contribution, we use large data sets to examine 300 compositions in 11 families of thermoelectric materials and present a type of plot that quickly reveals the maximum possible zT that can be achieved by reducing the thermal conductivity. This plot allows researchers to quickly distinguish materials where the thermal conductivity has been optimized frommore » those where improvement can be made. Moreover, through these large data sets we examine structure-property relationships to identify methods that decrease thermal conductivity and improve thermoelectric performance. We validate, with the data, that increasing (i) the volume of a unit cell and/or (ii) the number of atoms in the unit cell decreases the thermal conductivity of many classes of materials, without changing the electrical resistivity.« less

  8. Engine Propeller Research Building at the Lewis Flight Propulsion Laboratory

    NASA Image and Video Library

    1955-02-21

    The Engine Propeller Research Building, referred to as the Prop House, emits steam from its acoustic silencers at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. In 1942 the Prop House became the first completed test facility at the new NACA laboratory in Cleveland, Ohio. It contained four test cells designed to study large reciprocating engines. After World War II, the facility was modified to study turbojet engines. Two of the test cells were divided into smaller test chambers, resulting in a total of six engine stands. During this period the NACA Lewis Materials and Thermodynamics Division used four of the test cells to investigate jet engines constructed with alloys and other high temperature materials. The researchers operated the engines at higher temperatures to study stress, fatigue, rupture, and thermal shock. The Compressor and Turbine Division utilized another test cell to study a NACA-designed compressor installed on a full-scale engine. This design sought to increase engine thrust by increasing its airflow capacity. The higher stage pressure ratio resulted in a reduction of the number of required compressor stages. The last test cell was used at the time by the Engine Research Division to study the effect of high inlet densities on a jet engine. Within a couple years of this photograph the Prop House was significantly altered again. By 1960 the facility was renamed the Electric Propulsion Research Building to better describe its new role in electric propulsion.

  9. Space construction engineering - A new career field

    NASA Technical Reports Server (NTRS)

    Hagler, T.

    1979-01-01

    Opportunities for engineers in the design and construction of future large space structures are outlined. Possible space structures for the 1980's include a large mirror to reflect sunlight to earth for night lighting, an antenna for a personal communications system, a deep space communications relay system and a large passive radiometer to measure soil moisture. Considerations in the design of such structures include the lack of gravity, allowing structures to be built with much less supporting weight, the cost of transportation to orbit, leading to the use of aluminum or composite materials stored on reels and attached to a beam builder, and the required surface accuracy in the presence of thermal stresses. Construction factors to consider include the use of astronauts and remote manipulators in assembly, both of which have been demonstrated to be feasible.

  10. Solar power satellite system definition study, phase 2.

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A program plan for the Solar Power Satellite Program is presented. The plan includes research, development, and evaluation phase, engineering and development and cost verification phase, prototype construction, and commercialization. Cost estimates and task requirements are given for the following technology areas: (1) solar arrays; (2) thermal engines and thermal systems; (3) power transmission (to earth); (4) large space structures; (5) materials technology; (6) system control; (7) space construction; (8) space transportation; (9) power distribution, and space environment effects.

  11. Identification Damage Model for Thermomechanical Degradation of Ductile Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Amri, A. El; Yakhloufi, M. H. El; Khamlichi, A.

    2017-05-01

    The failure of ductile materials subject to high thermal and mechanical loading rates is notably affected by material inertia. The mechanisms of fatigue-crack propagation are examined with particular emphasis on the similarities and differences between cyclic crack growth in ductile materials, such as metals, and corresponding behavior in brittle materials, such as intermetallic and ceramics. Numerical simulations of crack propagation in a cylindrical specimen demonstrate that the proposed method provides an effective means to simulate ductile fracture in large scale cylindrical structures with engineering accuracy. The influence of damage on the intensity of the destruction of materials is studied as well.

  12. On the Problems of Cracking and the Question of Structural Integrity of Engineering Composite Materials

    NASA Astrophysics Data System (ADS)

    Beaumont, Peter W. R.

    2014-02-01

    Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.

  13. Prediction of the High Thermoelectric Performance of Pnictogen Dichalcogenide Layered Compounds with Quasi-One-Dimensional Gapped Dirac-like Band Dispersion

    NASA Astrophysics Data System (ADS)

    Ochi, Masayuki; Usui, Hidetomo; Kuroki, Kazuhiko

    2017-12-01

    Thermoelectric power generation has been recognized as one of the most important technologies, and high-performance thermoelectric materials have long been pursued. However, because of the large number of candidate materials, this quest is extremely challenging, and it has become clear that a firm theoretical concept from the viewpoint of band-structure engineering is needed. We theoretically demonstrate that pnictogen dichalcogenide layered compounds, which originally attracted attention as a family of superconductors and have recently been investigated as thermoelectric materials, can exhibit very high thermoelectric performance with elemental substitution. Specifically, we clarify a promising guiding principle for material design and find that LaOAsSe2, a material that has yet to be synthesized, has a power factor that is 6 times as large as that of the known compound LaOBiS2 and can exhibit a very large Z T under some plausible assumptions. This large enhancement of the thermoelectric performance originates from the quasi-one-dimensional gapped Dirac-like band dispersion, which is realized by the square-lattice network. We offer one ideal limit of the band structure for thermoelectric materials. Because our target materials have high controllability of constituent elements and feasibility of carrier doping, experimental studies along this line are eagerly awaited.

  14. Corrosion/Degradation Monitoring Technology for Composite Materials used to Extend Building Service Life

    DTIC Science & Technology

    2014-07-01

    for patching concrete structures that have corroded reinforcing steel , but the Army largely avoids structural composite repair applications because...J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF). The work was performed by the Engineering and Materials...buildings in the Army inventory often have se- verely corroded reinforcing steel that necessitates structural upgrades for conformance to current safety

  15. Study on the fabricating process monitoring of thermoplastic based materials packaged OFBG and their sensing properties

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Zhou, Zhi; Zhang, Zhichun; Ou, Jinping

    2007-04-01

    As common materials or engineering materials, thermoplastic resin based materials can be used not only directly fabricating products but also FRTP(fiber reinforced thermoplastic polymer) materials for other uses. As one kind of FRTP material, GFRPP(glass fiber reinforced polypropylene) has lots of merits, such as: light weight, high strength, high tenacity, high elongation percentage, good durability, reshaping character and no environmental pollution characters. And they also can be conveniently formed hoop rebar in civil engineering. While a new kind of GFRPP-OFBG smart rod which combined GFRPP and OFBG together can be used as not only structure materials but also sensing materials. Meanwhile, PP packaged OFBG strain sensor can be expected for its low modulus, good sensitivity and good durability. Furthermore, it can be used for large strain measuring. In this paper, we have successfully fabricated a new kind of GFRPP-OFBG(Glass Fiber Reinforced Polypropylene-Optic Fiber Bragg Grating) rod by our own thermoplastic pultrusion production line and a new kind of PP packaged OFBG strain sensor by extruding techniques. And we monitored the inner strain and temperature changes with tow OFBG simultaneously of the fabricating process. The results show that: OFBG can truly reflect the strain and temperature changes in both the GFRPP rod and the PP packaged OFBG, these are very useful to modify our processing parameters. And we also find that because of the shrinkage of PP, this new kind of PP packaged OFBG have -13000μɛ storage, and the strain sensing performance is still very well, so which can be used for large strain measuring. Besides these, GFRPP-OFBG smart rod has good sensing performance in strain sensing just like that of FRSP-OFBG rod, the strain sensitivity coefficient is about1.19pm/μɛ. Besides these, the surface of GFRPP-OFBG rods can be handled just as steel bars and also can be bended and reshaped. These are all very useful and very important for the use of FRP materials in civil engineering structures.

  16. Recent advances in biomimetic sensing technologies.

    PubMed

    Johnson, E A C; Bonser, R H C; Jeronimidis, G

    2009-04-28

    The importance of biological materials has long been recognized from the molecular level to higher levels of organization. Whereas, in traditional engineering, hardness and stiffness are considered desirable properties in a material, biology makes considerable and advantageous use of softer, more pliable resources. The development, structure and mechanics of these materials are well documented and will not be covered here. The purpose of this paper is, however, to demonstrate the importance of such materials and, in particular, the functional structures they form. Using only a few simple building blocks, nature is able to develop a plethora of diverse materials, each with a very different set of mechanical properties and from which a seemingly impossibly large number of assorted structures are formed. There is little doubt that this is made possible by the fact that the majority of biological 'materials' or 'structures' are based on fibres and that these fibres provide opportunities for functional hierarchies. We show how these structures have inspired a new generation of innovative technologies in the science and engineering community. Particular attention is given to the use of insects as models for biomimetically inspired innovations.

  17. Ethanol production using engineered mutant E. coli

    DOEpatents

    Ingram, Lonnie O.; Clark, David P.

    1991-01-01

    The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

  18. Highly compressible 3D periodic graphene aerogel microlattices

    DOE PAGES

    Zhu, Cheng; Han, T. Yong-Jin; Duoss, Eric B.; ...

    2015-04-22

    Graphene is a two-dimensional material that offers a unique combination of low density, exceptional mechanical properties, large surface area and excellent electrical conductivity. Recent progress has produced bulk 3D assemblies of graphene, such as graphene aerogels, but they possess purely stochastic porous networks, which limit their performance compared with the potential of an engineered architecture. Here we report the fabrication of periodic graphene aerogel microlattices, possessing an engineered architecture via a 3D printing technique known as direct ink writing. The 3D printed graphene aerogels are lightweight, highly conductive and exhibit supercompressibility (up to 90% compressive strain). Moreover, the Young’s modulimore » of the 3D printed graphene aerogels show an order of magnitude improvement over bulk graphene materials with comparable geometric density and possess large surface areas. Ultimately, adapting the 3D printing technique to graphene aerogels realizes the possibility of fabricating a myriad of complex aerogel architectures for a broad range of applications.« less

  19. Reference Material Kydex(registered trademark)-100 Test Data Message for Flammability Testing

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Richardson, Erin; Davis, Eddie

    2003-01-01

    The Marshall Space Flight Center (MSFC) Materials and Processes Technical Information System (MAPTIS) database contains, as an engineering resource, a large amount of material test data carefully obtained and recorded over a number of years. Flammability test data obtained using Test 1 of NASA-STD-6001 is a significant component of this database. NASA-STD-6001 recommends that Kydex 100 be used as a reference material for testing certification and for comparison between test facilities in the round-robin certification testing that occurs every 2 years. As a result of these regular activities, a large volume of test data is recorded within the MAPTIS database. The activity described in this technical report was undertaken to mine the database, recover flammability (Test 1) Kydex 100 data, and review the lessons learned from analysis of these data.

  20. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  1. Tritium

    DTIC Science & Technology

    2011-11-01

    fusion energy -production processes of the particular type of reactor using a lithium (Li) blanket or related alloys such as the Pb-17Li eutectic. As such, tritium breeding is intimately connected with energy production, thermal management, radioactivity management, materials properties, and mechanical structures of any plausible future large-scale fusion power reactor. JASON is asked to examine the current state of scientific knowledge and engineering practice on the physical and chemical bases for large-scale tritium

  2. Materials, Manufacturing and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Handschuh, Katherine M.; Miller, Sandi G.; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Pereira, J. Michael; Ruggeri, Charles R.

    2014-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite of is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  3. Materials, Manufacturing, and Test Development of a Composite Fan Blade Leading Edge Subcomponent for Improved Impact Resistance

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Handschuh, Katherine; Sinnott, Matthew J.; Kohlman, Lee W.; Roberts, Gary D.; Martin, Richard E.; Ruggeri, Charles R.; Pereira, J. Michael

    2015-01-01

    Application of polymer matrix composite materials for jet engine fan blades is becoming attractive as an alternative to metallic blades; particularly for large engines where significant weight savings are recognized on moving to a composite structure. However, the weight benefit of the composite is offset by a reduction of aerodynamic efficiency resulting from a necessary increase in blade thickness; relative to the titanium blades. Blade dimensions are largely driven by resistance to damage on bird strike. Further development of the composite material is necessary to allow composite blade designs to approximate the dimensions of a metallic fan blade. The reduction in thickness over the state of the art composite blades is expected to translate into structural weight reduction, improved aerodynamic efficiency, and therefore reduced fuel consumption. This paper presents test article design, subcomponent blade leading edge fabrication, test method development, and initial results from ballistic impact of a gelatin projectile on the leading edge of composite fan blades. The simplified test article geometry was developed to realistically simulate a blade leading edge while decreasing fabrication complexity. Impact data is presented on baseline composite blades and toughened blades; where a considerable improvement to impact resistance was recorded.

  4. Advances in multi-scale modeling of solidification and casting processes

    NASA Astrophysics Data System (ADS)

    Liu, Baicheng; Xu, Qingyan; Jing, Tao; Shen, Houfa; Han, Zhiqiang

    2011-04-01

    The development of the aviation, energy and automobile industries requires an advanced integrated product/process R&D systems which could optimize the product and the process design as well. Integrated computational materials engineering (ICME) is a promising approach to fulfill this requirement and make the product and process development efficient, economic, and environmentally friendly. Advances in multi-scale modeling of solidification and casting processes, including mathematical models as well as engineering applications are presented in the paper. Dendrite morphology of magnesium and aluminum alloy of solidification process by using phase field and cellular automaton methods, mathematical models of segregation of large steel ingot, and microstructure models of unidirectionally solidified turbine blade casting are studied and discussed. In addition, some engineering case studies, including microstructure simulation of aluminum casting for automobile industry, segregation of large steel ingot for energy industry, and microstructure simulation of unidirectionally solidified turbine blade castings for aviation industry are discussed.

  5. Similitude design for the vibration problems of plates and shells: A review

    NASA Astrophysics Data System (ADS)

    Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou

    2017-06-01

    Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.

  6. Global Failure Modes in High Temperature Composite Structures

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.

    1998-01-01

    Composite materials have been considered for many years as the major advance in the construction of energy efficient aerospace structures. Notable advances have been made in understanding the special design considerations that set composites apart from the usual "isotropic" engineering materials such as the metals. As a result, a number of significant engineering designs have been accomplished. However, one shortcoming of the currently favored composites is their relatively unforgiving behavior with respect to failure (brittleness) under seemingly mild impact conditions and large efforts are underway to rectify that situation, much along the lines of introducing thermoplastic matrix materials. Because of their relatively more pronounced (thermo) viscoelastic behavior these materials respond with "toughness" in fracture situations. From the point of view of applications requiring material strength, this property is highly desirable. This feature impacts several important and distinct engineering problems which have been' considered under this grant and cover the 1) effect of impact damage on structural (buckling) stability of composite panels, the 2) effect of time dependence on the progression of buckling instabilities, and the 3) evolution of damage and fracture at generic thickness discontinuities in structures. The latter topic has serious implications for structural stability problems (buckling failure in reinforced shell structures) as well as failure progression in stringer-reinforced shell structures. This grant has dealt with these issues. Polymer "toughness" is usually associated with uncrosslinked or thermo-plastic polymers. But, by comparison with their thermoset counterparts they tend to exhibit more pronounced time dependent material behavior; also, that time dependence can occur at lower temperatures which places restriction in the high temperature use of these "newer and tougher" materials that are not quite so serious with the thermoset matrix materials. From a structural point of view the implications of this material behavior are potentially severe in that structural failure characteristics are no longer readily observed in short term qualification tests so characteristic for aerospace structures built from typical engineering metals.

  7. Application of fiber-reinforced bismaleimide materials to aircraft nacelle structures

    NASA Technical Reports Server (NTRS)

    Peros, Vasilios; Ruth, John; Trawinski, David

    1992-01-01

    Existing aircraft engine nacelle structures employ advanced composite materials to reduce weight and thereby increase overall performance. Use of advanced composite materials on existing aircraft nacelle structures includes fiber-reinforced epoxy structures and has typically been limited to regions furthest away from the hot engine core. Portions of the nacelle structure that are closer to the engine require materials with a higher temperature capability. In these portions, existing nacelle structures employ aluminum sandwich construction and skin/stringer construction. The aluminum structure is composed of many detail parts and assemblies and is usually protected by some form of ablative, insulator, or metallic thermal shield. A one-piece composite inner cowl for a new-generation engine nacelle structure has been designed using fiber-reinforced bismaleimide (BMI) materials and honeycomb core in a sandwich construction. The new composite design has many advantages over the existing aluminum structure. Multiple details were integrated into the one-piece composite design, thereby significantly reducing the number of detail parts and fasteners. The use of lightweight materials and the reduction of the number of joints result in a significant weight reduction over the aluminum design; manufacturing labor and the overall number of tools required have also been reduced. Several significant technical issues were addressed in the development of a BMI composite design. Technical evaluation of the available BMI systems led to the selection of a toughened BMI material which was resistant to microcracking under thermal cyclic loading and enhanced the damage tolerance of the structure. Technical evaluation of the degradation of BMI materials in contact with aluminum and other metals validated methods for isolation of the various materials. Graphite-reinforced BMI in contact with aluminum and some steels was found to degrade in salt spray testing. Isolation techniques such as those used for graphite-reinforced epoxy structures were shown to provide adequate protection. The springback and producibility of large BMI structures were evaluated by manufacturing prototype hardware which had the full-scale cross section of the one-piece composite structure.

  8. Recombinant DNA production of spider silk proteins

    PubMed Central

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-01-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. PMID:24119078

  9. Spark Plug Defects and Tests

    NASA Technical Reports Server (NTRS)

    Silsbee, F B; Loeb, L B; Sawyer, L G; Fonseca, E L; Dickinson, H C; Agnew, P G

    1920-01-01

    The successful operation of the spark plug depends to a large extent on the gas tightness of the plug. Part 1 of this report describes the method used for measuring the gas tightness of aviation spark plugs. Part 2 describes the methods used in testing the electrical conductivity of the insulation material when hot. Part 3 describes the testing of the cold dielectric strength of the insulation material, the resistance to mechanical shock, and the final engine test.

  10. Retaining large and adjustable elastic strains of kilogram-scale Nb nanowires [Better Superconductor by Elastic Strain Engineering: Kilogram-scale Free-Standing Niobium Metal Composite with Large Retained Elastic Strains

    DOE PAGES

    Hao, Shijie; Cui, Lishan; Wang, Hua; ...

    2016-02-10

    Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less

  11. Engineering clinically relevant volumes of vascularized bone

    PubMed Central

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-01-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. PMID:25877690

  12. Highly-stretchable 3D-architected Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Yanhui; Wang, Qiming

    2016-09-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  13. Highly-stretchable 3D-architected Mechanical Metamaterials.

    PubMed

    Jiang, Yanhui; Wang, Qiming

    2016-09-26

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity.

  14. Application and utilization of a space chamber for the drying and decontamination of books, documents and other materials

    NASA Technical Reports Server (NTRS)

    Koesterer, M. G.; Geating, J. A.

    1975-01-01

    Truckloads of materials such as rare books, papers, engineering drawings, blue prints, art work, leather objects such as shoes, and clothing were successfully dried, decontaminated and impregnated against future infestation by microorganisms in a large 12 x 24 foot vacuum chamber designed originally for testing unmanned spacecraft. The process is unique in that it allows either frozen or wet material, soaked by some castastrophic event to be dried and sterilized in the same chamber with a minimum of handling and transportation.

  15. Life prediction of materials exposed to monotonic and cyclic loading: Bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Moya, N.; Stuhrke, W. F.

    1975-01-01

    This bibliography is comprised of approximately 1200 reference citations related to the mechanics of failure in aerospace structures. Most of the references are for information on life prediction for materials exposed to monotonic and cyclic loading in elevated temperature environments such as that in the hot end of a gas turbine engine. Additional citations listed are for documents on the thermal and mechanical effects on solar cells in the cryogenic vacuum environment; radiation effects on high temperature mechanical properties; and high cycle fatigue technology as applicable to gas turbine engine bearings. The bibliography represents a search of the literature published in the period April 1962 through April 1974 and is largely limited to documents published in the United States. It is a companion volume to NASA CR-134750, Life Prediction of Materials Exposed to Monotonic and cyclic Loading - A Technology Survey.

  16. Topography preserved microwave plasma etching for top-down layer engineering in MoS2 and other van der Waals materials.

    PubMed

    Varghese, Abin; Sharma, Chithra H; Thalakulam, Madhu

    2017-03-17

    A generic and universal layer engineering strategy for van der Waals (vW) materials, scalable and compatible with the current semiconductor technology, is of paramount importance in realizing all-two-dimensional logic circuits and to move beyond the silicon scaling limit. In this letter, we demonstrate a scalable and highly controllable microwave plasma based layer engineering strategy for MoS 2 and other vW materials. Using this technique we etch MoS 2 flakes layer-by-layer starting from an arbitrary thickness and area down to the mono- or the few-layer limit. From Raman spectroscopy, atomic force microscopy, photoluminescence spectroscopy, scanning electron microscopy and transmission electron microscopy, we confirm that the structural and morphological properties of the material have not been compromised. The process preserves the pre-etch layer topography and yields a smooth and pristine-like surface. We explore the electrical properties utilising a field effect transistor geometry and find that the mobility values of our samples are comparable to those of the pristine ones. The layer removal does not involve any reactive gasses or chemical reactions and relies on breaking the weak inter-layer vW interaction making it a generic technique for a wide spectrum of layered materials and heterostructures. We demonstrate the wide applicability of the technique by extending it to other systems such as graphene, h-BN and WSe 2 . In addition, using microwave plasma in combination with standard lithography, we illustrate a lateral patterning scheme making this process a potential candidate for large scale device fabrication in addition to layer engineering.

  17. New Insights into Intrinsic Point Defects in V2VI3 Thermoelectric Materials.

    PubMed

    Zhu, Tiejun; Hu, Lipeng; Zhao, Xinbing; He, Jian

    2016-07-01

    Defects and defect engineering are at the core of many regimes of material research, including the field of thermoelectric study. The 60-year history of V 2 VI 3 thermoelectric materials is a prime example of how a class of semiconductor material, considered mature several times, can be rejuvenated by better understanding and manipulation of defects. This review aims to provide a systematic account of the underexplored intrinsic point defects in V 2 VI 3 compounds, with regard to (i) their formation and control, and (ii) their interplay with other types of defects towards higher thermoelectric performance. We herein present a convincing case that intrinsic point defects can be actively controlled by extrinsic doping and also via compositional, mechanical, and thermal control at various stages of material synthesis. An up-to-date understanding of intrinsic point defects in V 2 VI 3 compounds is summarized in a (χ, r)-model and applied to elucidating the donor-like effect. These new insights not only enable more innovative defect engineering in other thermoelectric materials but also, in a broad context, contribute to rational defect design in advanced functional materials at large.

  18. Considerations in development and implementation of elasto-viscoplastic constitutive model for high temperature applications

    NASA Technical Reports Server (NTRS)

    Riff, Richard

    1988-01-01

    The prediction of inelastic behavior of metallic materials at elevated temperatures has increased in importance in recent years. The operating conditions within the hot section of a rocket motor or a modern gas turbine engine present an extremely harsh thermomechanical environment. Large thermal transients are induced each time the engine is started or shut down. Additional thermal transients from an elevated ambient occur whenever the engine power level is adjusted to meet flight requirements. The structural elements employed in such hot sections, as well as any engine components located therein, must be capable of withstanding such extreme conditions. Failure of a component would, due to the critical nature of the hot section, lead to an immediate and catastrophic loss in power. Consequently, assuring satisfactory long term performance for such components is a major concern. Nonisothermal loading of structures often causes excursion of stress well into the inelastic range. Moreover, the influence of geometry changes on the response is also significant in most cases. Therefore, both material and geometric nonlinear effects are considered.

  19. Decoupling local mechanics from large-scale structure in modular metamaterials.

    PubMed

    Yang, Nan; Silverberg, Jesse L

    2017-04-04

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such "inverse design" is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module's design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  20. Decoupling local mechanics from large-scale structure in modular metamaterials

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Silverberg, Jesse L.

    2017-04-01

    A defining feature of mechanical metamaterials is that their properties are determined by the organization of internal structure instead of the raw fabrication materials. This shift of attention to engineering internal degrees of freedom has coaxed relatively simple materials into exhibiting a wide range of remarkable mechanical properties. For practical applications to be realized, however, this nascent understanding of metamaterial design must be translated into a capacity for engineering large-scale structures with prescribed mechanical functionality. Thus, the challenge is to systematically map desired functionality of large-scale structures backward into a design scheme while using finite parameter domains. Such “inverse design” is often complicated by the deep coupling between large-scale structure and local mechanical function, which limits the available design space. Here, we introduce a design strategy for constructing 1D, 2D, and 3D mechanical metamaterials inspired by modular origami and kirigami. Our approach is to assemble a number of modules into a voxelized large-scale structure, where the module’s design has a greater number of mechanical design parameters than the number of constraints imposed by bulk assembly. This inequality allows each voxel in the bulk structure to be uniquely assigned mechanical properties independent from its ability to connect and deform with its neighbors. In studying specific examples of large-scale metamaterial structures we show that a decoupling of global structure from local mechanical function allows for a variety of mechanically and topologically complex designs.

  1. Evaluation of an innovative high temperature ceramic wafer seal for hypersonic engine applications. Ph.D. Thesis, 1991

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1992-01-01

    A critical mechanical system in advanced hypersonic engines is the panel-edge seal system that seals gaps between the articulating engine panels and the adjacent engine splitter walls. Significant advancements in seal technology are required to meet the extreme demands placed on the seals, including the simultaneous requirements of low leakage, conformable, high temperature, high pressure, sliding operation. In this investigation, the design, development, analytical and experimental evaluation of a new ceramic wafer seal that shows promise of meeting these demands will be addressed. A high temperature seal test fixture was designed and fabricated to measure static seal leakage performance under engine simulated conditions. Ceramic wafer seal leakage rates are presented for engine-simulated air pressure differentials (up to 100 psi), and temperature (up to 1350 F), sealing both flat and distorted wall conditions, where distortions can be as large as 0.15 inches in only an 18 inch span. Seal leakage rates are low, meeting an industry-established tentative leakage limit for all combinations of temperature, pressure and wall conditions considered. A seal leakage model developed from externally-pressurized gas film bearing theory is also presented. Predicted leakage rates agree favorably with the measured data for nearly all conditions of temperature and pressure. Discrepancies noted at high engine pressure and temperature are attributed to thermally-induced, non-uniform changes in the size and shape of the leakage gap condition. The challenging thermal environment the seal must operate in places considerable demands on the seal concept and material selection. Of the many high temperature materials considered in the design, ceramics were the only materials that met the many challenging seal material design requirements. Of the aluminum oxide, silicon carbide, and silicon nitride ceramics considered in the material ranking scheme developed herein, the silicon nitride class of ceramics ranked the highest because of their high temperature strength; resistance to the intense heating rates; resistance to hydrogen damage; and good structural properties. Baseline seal feasibility has been established through the research conducted in this investigation. Recommendations for future work are also discussed.

  2. Cumulative metal leaching from utilisation of secondary building materials in river engineering.

    PubMed

    Leuven, R S E W; Willems, F H G

    2004-01-01

    The present paper estimates the utilisation of bulky wastes (minestone, steel slag, phosphorus slag and demolition waste) in hydraulic engineering structures in Dutch parts of the rivers Rhine, Meuse and Scheldt over the period 1980-2025. Although they offer several economic, technical and environmental benefits, these secondary building materials contain various metals that may leach into river water. A leaching model was used to predict annual emissions of arsenic, cadmium, copper, chromium, lead, mercury, nickel and zinc. Under the current utilisation and model assumptions, the contribution of secondary building materials to metal pollution in Dutch surface waters is expected to be relatively low compared to other sources (less than 0.1% and 0.2% in the years 2000 and 2025, respectively). However, continued and widespread large-scale applications of secondary building materials will increase pollutant leaching and may require further cuts to be made in emissions from other sources to meet emission reduction targets and water quality standards. It is recommended to validate available leaching models under various field conditions. Complete registration of secondary building materials will be required to improve input data for leaching models.

  3. Characteristics of Well-Propagated Teaching Innovations in Undergraduate STEM

    ERIC Educational Resources Information Center

    Khatri, Raina; Henderson, Charles; Cole, Renee; Froyd, Jeffrey E.; Friedrichsen, Debra; Stanford, Courtney

    2017-01-01

    Background: The undergraduate science, technology, engineering, and mathematics (STEM) education community has developed a large number of innovative teaching strategies and materials, but the majority of these go unused by instructors. To help understand how to improve adoption of evidence-based education innovations, this study focuses on…

  4. Low-cost solar array project and Proceedings of the 15th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Progress made by the Low-Cost Solar Array Project during the period December 1979 to April 1980 is described. Project analysis and integration, technology development in silicon material, large area silicon sheet and encapsulation, production process and equipment development, engineering, and operation are included.

  5. Chemical characterisation of dredged sediments in relation to their potential use in civil engineering.

    PubMed

    Zuliani, Tea; Mladenovič, Ana; Ščančar, Janez; Milačič, Radmila

    2016-04-01

    During capital and/or maintenance dredging operations, large amounts of material are produced. Instead of their discharge, dredged sediments may be a valuable natural resource if not contaminated. One of the possible areas of application is civil engineering. In the present work, the environmental status of seaport dredged sediment was evaluated in order to investigate its potential applicability as a secondary raw material. Sediments were analysed for element concentrations in digested samples, aqueous extracts and fractions from sequential extraction; for fluoride, chloride and sulphate concentrations in aqueous extracts; and for tributyltin (TBT). Granulometric and mineralogical compositions were also analysed. The elemental impact was evaluated by calculation of the enrichment factors. The total element concentrations determined showed moderate contamination of the dredged sediments as was confirmed also by their moderate enrichment factors, presumably as a result of industrial and port activities. Elemental concentrations in the aqueous extract were very low and therefore do not represent any hazard for the environment. The water-soluble element concentrations were under the threshold levels set by the EU Directive on the landfill of waste, on the basis of which the applicability of dredged sediments in civil engineering is evaluated, while the content of chloride and sulphate were above the threshold levels. It was found out that due to the large amounts of sediment available, civil engineering applications such as the construction of embankments and backfilling is the most beneficial recycling solution at present.

  6. Scale-Up of GRCop: From Laboratory to Rocket Engines

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2016-01-01

    GRCop is a high temperature, high thermal conductivity copper-based series of alloys designed primarily for use in regeneratively cooled rocket engine liners. It began with laboratory-level production of a few grams of ribbon produced by chill block melt spinning and has grown to commercial-scale production of large-scale rocket engine liners. Along the way, a variety of methods of consolidating and working the alloy were examined, a database of properties was developed and a variety of commercial and government applications were considered. This talk will briefly address the basic material properties used for selection of compositions to scale up, the methods used to go from simple ribbon to rocket engines, the need to develop a suitable database, and the issues related to getting the alloy into a rocket engine or other application.

  7. Metal spar/superhybrid shell composite fan blades. [for application to turbofan engins

    NASA Technical Reports Server (NTRS)

    Salemme, C. T.; Murphy, G. C.

    1979-01-01

    The use of superhybrid materials in the manufacture and testing of large fan blades is analyzed. The FOD resistance of large metal spar/superhybrid fan blades is investigated. The technical effort reported was comprised of: (1) preliminary blade design; (2) detailed analysis of two selected superhybrid blade designs; (3) manufacture of two process evaluation blades and destructive evaluation; and (4) manufacture and whirligig testing of six prototype superhybrid blades.

  8. Initial conditions and modeling for simulations of shock driven turbulent material mixing

    DOE PAGES

    Grinstein, Fernando F.

    2016-11-17

    Here, we focus on the simulation of shock-driven material mixing driven by flow instabilities and initial conditions (IC). Beyond complex multi-scale resolution issues of shocks and variable density turbulence, me must address the equally difficult problem of predicting flow transition promoted by energy deposited at the material interfacial layer during the shock interface interactions. Transition involves unsteady large-scale coherent-structure dynamics capturable by a large eddy simulation (LES) strategy, but not by an unsteady Reynolds-Averaged Navier–Stokes (URANS) approach based on developed equilibrium turbulence assumptions and single-point-closure modeling. On the engineering end of computations, such URANS with reduced 1D/2D dimensionality and coarsermore » grids, tend to be preferred for faster turnaround in full-scale configurations.« less

  9. Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers.

    PubMed

    Choi, Sumin; Tran, Toan Trong; Elbadawi, Christopher; Lobo, Charlene; Wang, Xuewen; Juodkazis, Saulius; Seniutinas, Gediminas; Toth, Milos; Aharonovich, Igor

    2016-11-02

    Hexagonal boron nitride is a wide-band-gap van der Waals material that has recently emerged as a promising platform for quantum photonics experiments. In this work, we study the formation and localization of narrowband quantum emitters in large flakes (up to tens of micrometers wide) of hexagonal boron nitride. The emitters can be activated in as-grown hexagonal boron nitride by electron irradiation or high-temperature annealing, and the emitter formation probability can be increased by ion implantation or focused laser irradiation of the as-grown material. Interestingly, we show that the emitters are always localized at the edges of the flakes, unlike most luminescent point defects in three-dimensional materials. Our results constitute an important step on the roadmap of deploying hexagonal boron nitride in nanophotonics applications.

  10. Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character.

    PubMed

    van der Zwaag, S; van Dijk, N H; Jonkers, H M; Mookhoek, S D; Sloof, W G

    2009-05-13

    Man-made engineering materials generally demonstrate excellent mechanical properties, which often far exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without (much) intentional human interaction. This inability is the unintentional consequence of the damage prevention paradigm underlying all current engineering material optimization strategies. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account.

  11. Plastic Behavior of Metallic Damping Materials under Cyclical Shear Loading

    PubMed Central

    Zhang, Chaofeng; Wang, Longfei; Wu, Meiping; Zhao, Junhua

    2016-01-01

    Metallic shear panel dampers (SPDs) have been widely adopted in seismic engineering. In this study, axial and torsional specimens of four types of metallic damping materials, including three conventional metallic steels as well as low yield strength steel 160 (LYS160), were tested in order to investigate the material response under repeated large plastic strain and low cycle fatigue between 10 and 30 cycles. The present study demonstrated that both the deformation capacity and fatigue performance of LYS160 were underestimated by the conversion from the traditional uniaxial tensile test. The main difference in the failure mechanism between LYS160 and the three conventional materials was determined from the scanning electron microscopy data. The dominant failure mode in LYS160 is stable interlaminate slip and not bucking. Our results provide physical insights into the origin of the large deformation capacity, which is an important foundation for the lightweight design of SPDs. PMID:28773618

  12. [The method of accelerating osteanagenesis and revascularization of tissue engineered bone in big animal in vivo].

    PubMed

    Chen, Bin; Pei, Guo-xian; Wang, Ke; Jin, Dan; Wei, Kuan-hai; Ren, Gao-hong

    2003-02-01

    To study whether tissue engineered bone can repair the large segment bone defect of large animal or not. To observe what character the fascia flap played during the osteanagenesis and revascularization process of tissue engineered bone. 9 Chinese goats were made 2 cm left tibia diaphyseal defect. The repairing effect of the defects was evaluated by ECT, X-ray and histology. 27 goats were divided into three groups: group of CHAP, the defect was filled with coral hydroxyapatite (CHAP); group of tissue engineered bone, the defect was filled with CHAP + bone marrow stroma cells (BMSc); group of fascia flap, the defect was filled with CHAP + BMSc + fascia flap. After finished culturing and inducing the BMSc, CHAP of group of tissue engineered bone and of fascia flap was combined with it. Making fascia flap, different materials as described above were then implanted separately into the defects. Radionuclide bone imaging was used to monitor the revascularization of the implants at 2, 4, 8 weeks after operation. X-ray examination, optical density index of X-ray film, V-G staining of tissue slice of the implants were used at 4, 8, 12 weeks after operation, and the biomechanical character of the specimens were tested at 12 weeks post operation. In the first study, the defect showed no bone regeneration phenomenon. 2 cm tibia defect was an ideal animal model. In the second study, group of CHAP manifested a little trace of bone regeneration, as to group of tissue engineered bone, the defect was almost repaired totally. In group of fascia flap, with the assistance of fascia flap which gave more chance to making implants to get more nutrient, the repair was quite complete. The model of 2 cm caprine tibia diaphyseal defect cannot be repaired by goat itself and can satisfy the tissue engineering's demands. Tissue engineered bone had good ability to repair large segment tibia defect of goat. Fascia flap can accelerate the revascularization process of tissue engineered bone. And by this way, it augment the ability of tissue engineered bone to repair the large bone defect of goat.

  13. Non-Linear Material Three Degree of Freedom Analysis of Submarine Drydock Blocking System

    DTIC Science & Technology

    1988-05-01

    drydock blocking materials laminates should be used. For example, if laminated oak timbers are judged to be suitable they would exhibit a minimum of...1/4 of the strength variation of solid timbers . They would not have the inherent defects of large sawn timbers such as grain slope, checks, shakes ,and...experiments on this concept have been carried out over the last few years using the shaking table at the Earthquake Engineering Research Center

  14. The relationship between the thermoelectric generator efficiency and the device engineering figure of merit Zd,eng. The maximum efficiency 𝜼max

    NASA Astrophysics Data System (ADS)

    Hapenciuc, C. L.; Borca-Tasciuc, T.; Mihailescu, I. N.

    2017-04-01

    Thermoelectric materials are used today in thermoelectric devices for heat to electricity(thermoelectric generators-TEG) or electricity to heat(heat pumps) conversion in a large range of applications. In the case of TEGs the final measure of their performance is given by a quantity named the maximum efficiency which shows how much from the heat input is converted into electrical power. Therefore it is of great interest to know correctly how much is the efficiency of a device to can make commercial assessments. The concept of engineering figure of merit, Zeng, and engineering power factor, Peng, were already introduced in the field to quantify the efficiency of a single material under temperature dependent thermoelectric properties, with the mention that the formulas derivation was limited to one leg of the thermoelectric generator. In this paper we propose to extend the concept of engineering figure of merit to a thermoelectric generator by introducing a more general concept of device engineering thermoelectric figure of merit, Zd,eng, which depends on the both TEG materials properties and which shall be the right quantity to be used when we are interested in the evaluation of the efficiency. Also, this work takes into account the electrical contact resistance between the electrodes and thermoelement legs in an attempt to quantify its influence upon the performance of a TEG. Finally, a new formula is proposed for the maximum efficiency of a TEG.

  15. Advanced materials for aircraft engine applications.

    PubMed

    Backman, D G; Williams, J C

    1992-02-28

    A review of advances for aircraft engine structural materials and processes is presented. Improved materials, such as superalloys, and the processes for making turbine disks and blades have had a major impact on the capability of modern gas turbine engines. New structural materials, notably composites and intermetallic materials, are emerging that will eventually further enhance engine performance, reduce engine weight, and thereby enable new aircraft systems. In the future, successful aerospace manufacturers will combine product design and materials excellence with improved manufacturing methods to increase production efficiency, enhance product quality, and decrease the engine development cycle time.

  16. Large Scale GW Calculations on the Cori System

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  17. Materials technology assessment for stirling engines

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.; Watson, G. K.; Johnston, J. R.; Croft, W. J.

    1977-01-01

    A materials technology assessment of high temperature components in the improved (metal) and advanced (ceramic) Stirling engines was undertaken to evaluate the current state-of-the-art of metals and ceramics, identify materials research and development required to support the development of automotive Stirling engines, and to recommend materials technology programs to assure material readiness concurrent with engine system development programs. The most critical component for each engine is identified and some of the material problem areas are discussed.

  18. Systematic design of 3D auxetic lattice materials with programmable Poisson's ratio for finite strains

    NASA Astrophysics Data System (ADS)

    Wang, Fengwen

    2018-05-01

    This paper presents a systematic approach for designing 3D auxetic lattice materials, which exhibit constant negative Poisson's ratios over large strain intervals. A unit cell model mimicking tensile tests is established and based on the proposed model, the secant Poisson's ratio is defined as the negative ratio between the lateral and the longitudinal engineering strains. The optimization problem for designing a material unit cell with a target Poisson's ratio is formulated to minimize the average lateral engineering stresses under the prescribed deformations. Numerical results demonstrate that 3D auxetic lattice materials with constant Poisson's ratios can be achieved by the proposed optimization formulation and that two sets of material architectures are obtained by imposing different symmetry on the unit cell. Moreover, inspired by the topology-optimized material architecture, a subsequent shape optimization is proposed by parametrizing material architectures using super-ellipsoids. By designing two geometrical parameters, simple optimized material microstructures with different target Poisson's ratios are obtained. By interpolating these two parameters as polynomial functions of Poisson's ratios, material architectures for any Poisson's ratio in the interval of ν ∈ [ - 0.78 , 0.00 ] are explicitly presented. Numerical evaluations show that interpolated auxetic lattice materials exhibit constant Poisson's ratios in the target strain interval of [0.00, 0.20] and that 3D auxetic lattice material architectures with programmable Poisson's ratio are achievable.

  19. A Versatile Rocket Engine Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Green, James M.

    1993-01-01

    The capabilities of a versatile rocket engine facility, located in the Rocket Laboratory at the NASA Lewis Research Center, are presented. The gaseous hydrogen/oxygen facility can be used for thermal shock and hot gas testing of materials and structures as well as rocket propulsion testing. Testing over a wide range of operating conditions in both fuel and oxygen rich regimes can be conducted, with cooled or uncooled test specimens. The size and location of the test cell provide the ability to conduct large amounts of testing in short time periods with rapid turnaround between programs.

  20. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    PubMed

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  1. A predictive model for failure properties of thermoset resins

    NASA Technical Reports Server (NTRS)

    Caruthers, James M.; Bowles, Kenneth J.

    1989-01-01

    A predictive model for the three-dimensional failure behavior of engineering polymers has been developed in a recent NASA-sponsored research program. This model acknowledges the underlying molecular deformation mechanisms and thus accounts for the effects of different chemical compositions, crosslink density, functionality of the curing agent, etc., on the complete nonlinear stress-strain response including yield. The material parameters required by the model can be determined from test-tube quantities of a new resin in only a few days. Thus, we can obtain a first-order prediction of the applicability of a new resin for an advanced aerospace application without synthesizing the large quantities of material needed for failure testing. This technology will effect order-of-magnitude reductions in the time and expense required to develop new engineering polymers.

  2. Metallized compliant 3D microstructures for dry contact thermal conductance enhancement

    NASA Astrophysics Data System (ADS)

    Cui, Jin; Wang, Jicheng; Zhong, Yang; Pan, Liang; Weibel, Justin A.

    2018-05-01

    Microstructured three-dimensional (3D) materials can be engineered to enable new capabilities for various engineering applications; however, microfabrication of large 3D structures is typically expensive due to the conventional top-down fabrication scheme. Herein we demonstrated the use of projection micro-stereolithography and electrodeposition as cost-effective and high-throughput methods to fabricate compliant 3D microstructures as a thermal interface material (TIM). This novel TIM structure consists of an array of metallized micro-springs designed to enhance the dry contact thermal conductance between nonflat surfaces under low interface pressures (10s-100s kPa). Mechanical compliance and thermal resistance measurements confirm that this dry contact TIM can achieve conformal contact between mating surfaces with a nonflatness of approximately 5 µm under low interface pressures.

  3. Development of an electrostatic propulsion engine using sub-micron powders as the reaction mass

    NASA Technical Reports Server (NTRS)

    Herbert, F.; Kendall, K. R.

    1991-01-01

    Asteroid sample return missions would benefit from development of an improved rocket engine. Chemical rockets achieve their large thrust with high mass consumption rate (dm/dt) but low exhaust velocity; therefore, a large fraction of their total mass is fuel. Present day ion thrusters are characterized by high exhaust velocity, but low dm/dt; thus, they are inherently low thrust devices. However, their high exhausy velocity is poorly matched to typical mission requirements and therefore, wastes energy. A better match would be intermediate between the two forms of propulsion. This could be achieved by electrostatically accelerating solid powder grains, raising the possibility that interplanetary material could be processed to use as reaction mass. An experiment to study the charging properties of sub-micron sized powder grains is described. If a suitable material can be identified, then it could be used as the reaction mass in an electrostatic propulsion engine. The experiment employs a time of flight measurement to determine the exhaust velocity (v) of various negatively charged powder grains that were charged and accelerated in a simple device. The purpose is to determine the charge to mass ratio that can be sustained for various substances. In order to be competitive with present day ion thrusters, a specific impulse (v/g) of 3000 to 5000 seconds is required. Preliminary results are presented. More speculatively, there are some mission profiles that would benefit from collection of reaction mass at the remote asteroid site. Experiments that examine the generation of sub-micron clusters by electrostatic self-disruption of geologically derived material are planned.

  4. Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering

    NASA Astrophysics Data System (ADS)

    Kainer, Karl U.

    2006-02-01

    Since the properties of MMCs can be directly designed "into" the material, they can fulfill all the demands set by design engineers. This book surveys the latest results and development possibilities for MMCs as engineering and functional materials, making it of utmost value to all materials scientists and engineers seeking in-depth background information on the potentials these materials have to offer in research, development and design engineering.

  5. Electroluminescence in SrTiO3:Cr single-crystal nonvolatile memory cells

    NASA Astrophysics Data System (ADS)

    Alvarado, S. F.; La Mattina, F.; Bednorz, J. G.

    2007-10-01

    Materials chemistry has emerged as one of the most consistent fabrication tools for the rational delivery of high purity functional nanomaterials, engineered from molecular to microscopic scale at low cost and large scale. An overview of the major achievements and latest advances of a recently developed growth concept and low temperature aqueous synthesis method, for the fabrication of purpose-built large bandgap metal oxide semiconductor materials and oriented nano-arrays is presented. Important insight of direct relevance for semiconductor technology, optoelectronics, photovoltaics and photocatalysis for solar hydrogen generation, are revealed by in-depth investigations of the electronic structure of metal oxide nanostructures with new morphology and architecture, carried out at synchrotron radiation facilities.

  6. Carbon-Carbon Nozzle Extension Development in Support of In-Space and Upper-Stage Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Gradl, Paul R.; Valentine, Peter G.

    2017-01-01

    Upper stage and in-space liquid rocket engines are optimized for performance through the use of high area ratio nozzles to fully expand combustion gases to low exit pressures, increasing exhaust velocities. Due to the large size of such nozzles, and the related engine performance requirements, carbon-carbon (C-C) composite nozzle extensions are being considered to reduce weight impacts. Currently, the state-of-the-art is represented by the metallic and foreign composite nozzle extensions limited to approximately 2000 degrees F. used on the Atlas V, Delta IV, Falcon 9, and Ariane 5 launch vehicles. NASA and industry partners are working towards advancing the domestic supply chain for C-C composite nozzle extensions. These development efforts are primarily being conducted through the NASA Small Business Innovation Research (SBIR) program in addition to other low level internal research efforts. This has allowed for the initial material development and characterization, subscale hardware fabrication, and completion of hot-fire testing in relevant environments. NASA and industry partners have designed, fabricated and hot-fire tested several subscale domestically produced C-C extensions to advance the material and coatings fabrication technology for use with a variety of liquid rocket and scramjet engines. Testing at NASA's Marshall Space Flight Center (MSFC) evaluated heritage and state-of-the-art C-C materials and coatings, demonstrating the initial capabilities of the high temperature materials and their fabrication methods. This paper discusses the initial material development, design and fabrication of the subscale carbon-carbon nozzle extensions, provides an overview of the test campaign, presents results of the hot fire testing, and discusses potential follow-on development work. The follow on work includes the fabrication of ultra-high temperature materials, larger C-C nozzle extensions, material characterization, sub-element testing and hot-fire testing at larger scale.

  7. Advanced ceramic matrix composite materials for current and future propulsion technology applications

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Beyer, S.; Knabe, H.; Immich, H.; Meistring, R.; Gessler, A.

    2004-08-01

    Current rocket engines, due to their method of construction, the materials used and the extreme loads to which they are subjected, feature a limited number of load cycles. Various technology programmes in Europe are concerned, besides developing reliable and rugged, low cost, throwaway equipment, with preparing for future reusable propulsion technologies. One of the key roles for realizing reusable engine components is the use of modern and innovative materials. One of the key technologies which concern various engine manufacturers worldwide is the development of fibre-reinforced ceramics—ceramic matrix composites. The advantages for the developers are obvious—the low specific weight, the high specific strength over a large temperature range, and their great damage tolerance compared to monolithic ceramics make this material class extremely interesting as a construction material. Over the past years, the Astrium company (formerly DASA) has, together with various partners, worked intensively on developing components for hypersonic engines and liquid rocket propulsion systems. In the year 2000, various hot-firing tests with subscale (scale 1:5) and full-scale nozzle extensions were conducted. In this year, a further decisive milestone was achieved in the sector of small thrusters, and long-term tests served to demonstrate the extraordinary stability of the C/SiC material. Besides developing and testing radiation-cooled nozzle components and small-thruster combustion chambers, Astrium worked on the preliminary development of actively cooled structures for future reusable propulsion systems. In order to get one step nearer to this objective, the development of a new fibre composite was commenced within the framework of a regionally sponsored programme. The objective here is to create multidirectional (3D) textile structures combined with a cost-effective infiltration process. Besides material and process development, the project also encompasses the development of special metal/ceramic and ceramic/ceramic joining techniques as well as studying and verifying non destructive investigation processes for the purpose of testing components.

  8. Flat Plate Solar Array Project: Proceedings of the 20th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1982-01-01

    Progress made by the Flat-Plate Solar Array Project during the period November 1981 to April 1982 is reported. Project analysis and integration, technology research in silicon material, large-area silicon sheet and environmental isolation, cell and module formation, engineering sciences, and module performance and failure analysis are covered.

  9. Progress Report 18 for the Period February to July 1981 and Proceeidngs of the 18th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Progress in the low cost solar array project during the period February to July 1981 is reported. Included are: (1) project analysis and integration; (2) technology development in silicon material, large area silicon sheer and encapsulation; (3) process development; (4) engineering, and operations.

  10. The effect of mechanical extension stimulation combined with epithelial cell sorting on outcomes of implanted tissue-engineered muscular urethras.

    PubMed

    Fu, Qiang; Deng, Chen-Liang; Zhao, Ren-Yan; Wang, Ying; Cao, Yilin

    2014-01-01

    Urethral defects are common and frequent disorders and are difficult to treat. Simple natural or synthetic materials do not provide a satisfactory curative solution for long urethral defects, and urethroplasty with large areas of autologous tissues is limited and might interfere with wound healing. In this study, adipose-derived stem cells were used. These cells can be derived from a wide range of sources, have extensive expansion capability, and were combined with oral mucosal epithelial cells to solve the problem of finding seeding cell sources for producing the tissue-engineered urethras. We also used the synthetic biodegradable polymer poly-glycolic acid (PGA) as a scaffold material to overcome issues such as potential pathogen infections derived from natural materials (such as de-vascular stents or animal-derived collagen) and differing diameters. Furthermore, we used a bioreactor to construct a tissue-engineered epithelial-muscular lumen with a double-layer structure (the epithelial lining and the muscle layer). Through these steps, we used an epithelial-muscular lumen built in vitro to repair defects in a canine urethral defect model (1 cm). Canine urethral reconstruction was successfully achieved based on image analysis and histological techniques at different time points. This study provides a basis for the clinical application of tissue engineering of an epithelial-muscular lumen. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Electroactive materials for organic electronics: preparation strategies, structural aspects and characterization techniques.

    PubMed

    Pron, Adam; Gawrys, Pawel; Zagorska, Malgorzata; Djurado, David; Demadrille, Renaud

    2010-07-01

    This critical review discusses specific chemical and physicochemical requirements which must be met for organic compounds to be considered as promising materials for applications in organic electronics. Although emphasis is put on molecules and macromolecules suitable for fabrication of field effect transistors (FETs), a large fraction of the discussed compounds can also be applied in other organic or hybrid (organic-inorganic) electronic devices such as photodiodes, light emitting diodes, photovoltaic cells, etc. It should be of interest to chemists, physicists, material scientists and electrical engineers working in the domain of organic electronics (423 references).

  12. Raising of Operating a Motor Vehicle Effects on Environment in Winter

    NASA Astrophysics Data System (ADS)

    Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.

    2016-08-01

    Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.

  13. Impact of Materials Defects on Engine Structures Integrity (L’Impact des Defauts des Materiaux sur l’Integrite des Structures des Moteurs)

    DTIC Science & Technology

    1993-04-01

    years have been a continuous inspiration to me. AGARD-R-769, NATO-AGARD, 1988. I thank them for allowing me to assist them in their learning endeavors...ceramics. These ceramic filters have been very effective in improving VIM ingot quality in r.cnt years. Eddy Current Might be applicable to deep ...appropriately defined material behavior. In general. all these sample can become prohibitively large. elements: fractography of failed test pieces

  14. Nondestructive ultrasonic characterization of armor grade silicon carbide

    NASA Astrophysics Data System (ADS)

    Portune, Andrew Richard

    Ceramic materials have traditionally been chosen for armor applications for their superior mechanical properties and low densities. At high strain rates seen during ballistic events, the behavior of these materials relies upon the total volumetric flaw concentration more so than any single anomalous flaw. In this context flaws can be defined as any microstructural feature which detriments the performance of the material, potentially including secondary phases, pores, or unreacted sintering additives. Predicting the performance of armor grade ceramic materials depends on knowledge of the absolute and relative concentration and size distribution of bulk heterogeneities. Ultrasound was chosen as a nondestructive technique for characterizing the microstructure of dense silicon carbide ceramics. Acoustic waves interact elastically with grains and inclusions in large sample volumes, and were well suited to determine concentration and size distribution variations for solid inclusions. Methodology was developed for rapid acquisition and analysis of attenuation coefficient spectra. Measurements were conducted at individual points and over large sample areas using a novel technique entitled scanning acoustic spectroscopy. Loss spectra were split into absorption and scattering dominant frequency regimes to simplify analysis. The primary absorption mechanism in polycrystalline silicon carbide was identified as thermoelastic in nature. Correlations between microstructural conditions and parameters within the absorption equation were established through study of commercial and custom engineered SiC materials. Nonlinear least squares regression analysis was used to estimate the size distributions of boron carbide and carbon inclusions within commercial SiC materials. This technique was shown to additionally be capable of approximating grain size distributions in engineered SiC materials which did not contain solid inclusions. Comparisons to results from electron microscopy exhibited favorable agreement between predicted and observed distributions. Developed techniques were applied to large sample areas using scanning acoustic spectroscopy to map variations in the size distribution and concentration of grains and solid inclusions within the bulk microstructure. The experiments performed in this thesis form the foundation of a novel characterization technique capable of mapping variations in sample composition which could be extended to a wide range of dense polycrystalline heterogeneous materials.

  15. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    PubMed

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Materials & Engineering: Propelling Innovation MRS Bulletin Special Issue Session

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Gopal

    Materials enable engineering; and, engineering in turn depends on materials to transform design concepts and equations into physical entities. This relationship continues to grow with expanding societal demand for new products and processes. MRS Bulletin, a publication of the Materials Research Society (MRS) and Cambridge University Press, planned a special issue for December 2015 on Materials and Engineering: Propelling Innovation. This special issue of MRS Bulletin captured the unique relationship between materials and engineering, which are closely intertwined. A special half day session at the 2015 MRS Fall Meeting in Boston captured this discussion through presentations by high level expertsmore » followed by a panel discussion on what it takes to translate materials discoveries into products to benefit society. The Special Session included presentations by experts who are practitioners in materials as well as engineering applications, followed by a panel discussion. Participants discussed state-of-the-art in materials applications in engineering, as well as how engineering needs have pushed materials developments, as also reflected in the 20 or so articles published in the special issue of MRS Bulletin. As expected, the discussions spanned the broad spectrum of materials and provided very strong interdisciplinary interactions and discussions by participants and presenters.« less

  17. The Institute of Biological Engineering 2013 Annual Conference

    DTIC Science & Technology

    2014-10-30

    of Bioengineering University of Washington Presentation: Peptide-Based materials for Drug Delivery Dr. Ya-Ping Sun (Supported by the Grant) Frank...Professor of Biomedical Engineering and Mechanical Engineering and Materials Science Duke University Presentation: Acoustic Microfluidics and New...Triangle Materials Research Science and Engineering Center, Department of Biomedical Engineering, Duke University, Department of Mechanical Engineering

  18. A Review of Materials for Gas Turbines Firing Syngas Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, Thomas; Wright, Ian G

    2009-05-01

    Following the extensive development work carried out in the 1990's, gas turbine combined-cycle (GTCC) systems burning natural gas represent a reliable and efficient power generation technology widely used in many parts of the world. A critical factor was that, in order to operate at the high turbine entry temperatures required for high efficiency operation, aero-engine technology, i.e., single-crystal blades, thermal barrier coatings, and sophisticated cooling techniques had to be rapidly scaled up and introduced into these large gas turbines. The problems with reliability that resulted have been largely overcome, so that the high-efficiency GTCC power generation system is now amore » mature technology, capable of achieving high levels of availability. The high price of natural gas and concern about emission of greenhouse gases has focused attention on the desirability of replacing natural gas with gas derived from coal (syngas) in these gas turbine systems, since typical systems analyses indicate that IGCC plants have some potential to fulfil the requirement for a zero-emissions power generation system. In this review, the current status of materials for the critical hot gas path parts in large gas turbines is briefly considered in the context of the need to burn syngas. A critical factor is that the syngas is a low-Btu fuel, and the higher mass flow compared to natural gas will tend to increase the power output of the engine. However, modifications to the turbine and to the combustion system also will be necessary. It will be shown that many of the materials used in current engines will also be applicable to units burning syngas but, since the combustion environment will contain a greater level of impurities (especially sulfur, water vapor, and particulates), the durability of some components may be prejudiced. Consequently, some effort will be needed to develop improved coatings to resist attack by sulfur-containing compounds, and also erosion.« less

  19. Highly-stretchable 3D-architected Mechanical Metamaterials

    PubMed Central

    Jiang, Yanhui; Wang, Qiming

    2016-01-01

    Soft materials featuring both 3D free-form architectures and high stretchability are highly desirable for a number of engineering applications ranging from cushion modulators, soft robots to stretchable electronics; however, both the manufacturing and fundamental mechanics are largely elusive. Here, we overcome the manufacturing difficulties and report a class of mechanical metamaterials that not only features 3D free-form lattice architectures but also poses ultrahigh reversible stretchability (strain > 414%), 4 times higher than that of the existing counterparts with the similar complexity of 3D architectures. The microarchitected metamaterials, made of highly stretchable elastomers, are realized through an additive manufacturing technique, projection microstereolithography, and its postprocessing. With the fabricated metamaterials, we reveal their exotic mechanical behaviors: Under large-strain tension, their moduli follow a linear scaling relationship with their densities regardless of architecture types, in sharp contrast to the architecture-dependent modulus power-law of the existing engineering materials; under large-strain compression, they present tunable negative-stiffness that enables ultrahigh energy absorption efficiencies. To harness their extraordinary stretchability and microstructures, we demonstrate that the metamaterials open a number of application avenues in lightweight and flexible structure connectors, ultraefficient dampers, 3D meshed rehabilitation structures and stretchable electronics with designed 3D anisotropic conductivity. PMID:27667638

  20. High resolution micro-CT of low attenuating organic materials using large area photon-counting detector

    NASA Astrophysics Data System (ADS)

    Kumpová, I.; Vavřík, D.; Fíla, T.; Koudelka, P.; Jandejsek, I.; Jakůbek, J.; Kytýř, D.; Zlámal, P.; Vopálenský, M.; Gantar, A.

    2016-02-01

    To overcome certain limitations of contemporary materials used for bone tissue engineering, such as inflammatory response after implantation, a whole new class of materials based on polysaccharide compounds is being developed. Here, nanoparticulate bioactive glass reinforced gelan-gum (GG-BAG) has recently been proposed for the production of bone scaffolds. This material offers promising biocompatibility properties, including bioactivity and biodegradability, with the possibility of producing scaffolds with directly controlled microgeometry. However, to utilize such a scaffold with application-optimized properties, large sets of complex numerical simulations using the real microgeometry of the material have to be carried out during the development process. Because the GG-BAG is a material with intrinsically very low attenuation to X-rays, its radiographical imaging, including tomographical scanning and reconstructions, with resolution required by numerical simulations might be a very challenging task. In this paper, we present a study on X-ray imaging of GG-BAG samples. High-resolution volumetric images of investigated specimens were generated on the basis of micro-CT measurements using a large area flat-panel detector and a large area photon-counting detector. The photon-counting detector was composed of a 010× 1 matrix of Timepix edgeless silicon pixelated detectors with tiling based on overlaying rows (i.e. assembled so that no gap is present between individual rows of detectors). We compare the results from both detectors with the scanning electron microscopy on selected slices in transversal plane. It has been shown that the photon counting detector can provide approx. 3× better resolution of the details in low-attenuating materials than the integrating flat panel detectors. We demonstrate that employment of a large area photon counting detector is a good choice for imaging of low attenuating materials with the resolution sufficient for numerical simulations.

  1. Polymer Brushes: Synthesis, Characterization, Applications

    NASA Astrophysics Data System (ADS)

    Advincula, Rigoberto C.; Brittain, William J.; Caster, Kenneth C.; Rühe, Jürgen

    2004-09-01

    Materials scientists, polymer chemists, surface physicists and materials engineers will find this book a complete and detailed treatise on the field of polymer brushes, their synthesis, characterization and manifold applications. In a first section, the various synthetic pathways and different surface materials are introduced and explained, followed by a second section covering important aspects of characterization and analysis in both flat surfaces and particles. These specific surface initiated polymerization (SIP) systems such as linear polymers, homopolymers, block copolymers, and hyperbranched polymers are unique compared to previously reported systems by chemisorption or physisorption. They have found their way in both large-scale and miniature applications of polymer brushes, which is covered in the last section. Such 'hairy' surfaces offer fascinating opportunities for addressing numerous problems of both academic and, in particular, industrial interest: high-quality, functional or protective coatings, composite materials, surface engineered particles, metal-organic interfaces, biological applications, micro-patterning, colloids, nanoparticles, functional devices, and many more. It is the desire of the authors that this book will be of benefit to readers who want to "brush-up on polymers".

  2. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  3. Materials Development for Next Generation Optical Fiber

    PubMed Central

    Ballato, John; Dragic, Peter

    2014-01-01

    Optical fibers, the enablers of the Internet, are being used in an ever more diverse array of applications. Many of the rapidly growing deployments of fibers are in high-power and, particularly, high power-per-unit-bandwidth systems where well-known optical nonlinearities have historically not been especially consequential in limiting overall performance. Today, however, nominally weak effects, most notably stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are among the principal phenomena restricting continued scaling to higher optical power levels. In order to address these limitations, the optical fiber community has focused dominantly on geometry-related solutions such as large mode area (LMA) designs. Since such scattering, and all other linear and nonlinear optical phenomena including higher order mode instability (HOMI), are fundamentally materials-based in origin, this paper unapologetically advocates material solutions to present and future performance limitations. As such, this paper represents a ‘call to arms’ for material scientists and engineers to engage in this opportunity to drive the future development of optical fibers that address many of the grand engineering challenges of our day. PMID:28788683

  4. Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals

    DOE PAGES

    Diroll, Benjamin T.; Guo, Peijun; Chang, Robert P. H.; ...

    2016-10-18

    Here, epsilon-near-zero materials may be synthesized as colloidal nanocrystals which display large magnitude subpicosecond switching of infrared localized surface plasmon resonances. Such nanocrystals offer a solution-processable, scalable source of tunable metamaterials compatible with arbitrary substrates. Under intraband excitation, these nanocrystals display a red-shift of the plasmon feature arising from the low electron heat capacities and conduction band nonparabolicity of the oxide. Under interband pumping, they show in an ultrafast blueshift of the plasmon resonance due to transient increases in the carrier density. Combined with their high-quality factor, large changes in relative transmittance (+86%) and index of refraction (+85%) at modestmore » control fluences (<5 mJ/cm 2) suggest that these materials offer great promise for all-optical switching, wavefront engineering, and beam steering operating at terahertz switching frequencies.« less

  5. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engines, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over 1 million seconds total accumulated hot-fire time. In addition, there were also 16 flight engines and 2 development engines remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway to improve system affordability and eliminate obsolescence concerns. These key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  6. Bone tissue engineering: state of the art and future trends.

    PubMed

    Salgado, António J; Coutinho, Olga P; Reis, Rui L

    2004-08-09

    Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.

  7. Theoretical and experimental study on fiber-optic displacement sensor with bowknot bending modulation

    NASA Astrophysics Data System (ADS)

    Zheng, Yong; Huang, Da; Zhu, Zheng-Wei

    2018-03-01

    A novel and simple fiber-optic sensor for measuring a large displacement range in civil engineering has been developed. The sensor incorporates an extremely simple bowknot bending modulation that increases its sensitivity in bending, light source and detector. In this paper, to better understand the working principle and improve the performance of the sensor, the transduction of displacement to light loss is described analytically by using the geometry of sensor and principle of optical fiber loss. Results of the calibration tests show a logarithmic function relationship between light loss and displacement with two calibrated parameters. The sensor has a response over a wide displacement range of 44.7 mm with an initial accuracy of 2.65 mm, while for a small displacement range of 34 mm it shows a more excellent accuracy of 0.98 mm. The direct shear tests for the six models with the same dimensions were conducted to investigate the application of the sensor for warning the shear and sliding failure in civil engineering materials or geo-materials. Results address that the sliding displacement of sliding body can be relatively accurately captured by the theory logarithmic relation between sliding distance and optical loss in a definite structure, having a large dynamic range of 22.32 mm with an accuracy of 0.99 mm, which suggests that the sensor has a promising prospect in monitoring civil engineering, especially for landslides.

  8. Cranioplasty prosthesis manufacturing based on reverse engineering technology

    PubMed Central

    Chrzan, Robert; Urbanik, Andrzej; Karbowski, Krzysztof; Moskała, Marek; Polak, Jarosław; Pyrich, Marek

    2012-01-01

    Summary Background Most patients with large focal skull bone loss after craniectomy are referred for cranioplasty. Reverse engineering is a technology which creates a computer-aided design (CAD) model of a real structure. Rapid prototyping is a technology which produces physical objects from virtual CAD models. The aim of this study was to assess the clinical usefulness of these technologies in cranioplasty prosthesis manufacturing. Material/Methods CT was performed on 19 patients with focal skull bone loss after craniectomy, using a dedicated protocol. A material model of skull deficit was produced using computer numerical control (CNC) milling, and individually pre-operatively adjusted polypropylene-polyester prosthesis was prepared. In a control group of 20 patients a prosthesis was manually adjusted to each patient by a neurosurgeon during surgery, without using CT-based reverse engineering/rapid prototyping. In each case, the prosthesis was implanted into the patient. The mean operating times in both groups were compared. Results In the group of patients with reverse engineering/rapid prototyping-based cranioplasty, the mean operating time was shorter (120.3 min) compared to that in the control group (136.5 min). The neurosurgeons found the new technology particularly useful in more complicated bone deficits with different curvatures in various planes. Conclusions Reverse engineering and rapid prototyping may reduce the time needed for cranioplasty neurosurgery and improve the prosthesis fitting. Such technologies may utilize data obtained by commonly used spiral CT scanners. The manufacturing of individually adjusted prostheses should be commonly used in patients planned for cranioplasty with synthetic material. PMID:22207125

  9. High performance carbon nanotube-Si core-shell wires with a rationally structured core for lithium ion battery anodes.

    PubMed

    Fan, Yu; Zhang, Qing; Lu, Congxiang; Xiao, Qizhen; Wang, Xinghui; Tay, Beng Kang

    2013-02-21

    Core-shell Si nanowires are very promising anode materials. Here, we synthesize vertically aligned carbon nanotubes (CNTs) with relatively large diameters and large inter-wire spacing as core wires and demonstrate a CNT-Si core-shell wire composite as a lithium ion battery (LIB) anode. Owing to the rationally engineered core structure, the composite shows good capacity retention and rate performance. The excellent performance is superior to most core-shell nanowires previously reported.

  10. Scale-Up: Improving Large Enrollment Physics Courses

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    1999-11-01

    The Student-Centered Activities for Large Enrollment University Physics (SCALE-UP) project is working to establish a learning environment that will promote increased conceptual understanding, improved problem-solving performance, and greater student satisfaction, while still maintaining class sizes of approximately 100. We are also addressing the new ABET engineering accreditation requirements for inquiry-based learning along with communication and team-oriented skills development. Results of studies of our latest classroom design, plans for future classroom space, and the current iteration of instructional materials will be discussed.

  11. Compatibility of potential reinforcing ceramics with Ni and Fe aluminides

    NASA Technical Reports Server (NTRS)

    Clark, William A. T.; Moser, Jeffrey A.

    1991-01-01

    There is a great deal of interest in the possible utilization of intermetallic compounds in advanced high temperature gas turbine engines. These compounds exhibit a variety of promising properties, including reasonable strength, high melting points, relatively low densities, and good corrosion resistance. However, in general, they also show limited ductilities and toughness, and less than optimum creep strengths at elevated temperatures. In addition, in applications involving advanced gas turbine engines, it is often necessary for candidate materials to have large elastic moduli. The present study is part of a program whose objective is to identify a high temperature fiber reinforced composite. The approach adopted was to fabricate laboratory samples of the combinations of materials considered by Misra, in order to determine the extent to which the thermodynamic calculations can predict phase stability. As many of the ceramic phases considered are not currently available in fiber form, they were added as particulates to the alloy matrices. The ways in which the materials were produced and evaluated are described.

  12. High-performance shape-engineerable thermoelectric painting

    PubMed Central

    Park, Sung Hoon; Jo, Seungki; Kwon, Beomjin; Kim, Fredrick; Ban, Hyeong Woo; Lee, Ji Eun; Gu, Da Hwi; Lee, Se Hwa; Hwang, Younghun; Kim, Jin-Sang; Hyun, Dow-Bin; Lee, Sukbin; Choi, Kyoung Jin; Jo, Wook; Son, Jae Sung

    2016-01-01

    Output power of thermoelectric generators depends on device engineering minimizing heat loss as well as inherent material properties. However, the device engineering has been largely neglected due to the limited flat or angular shape of devices. Considering that the surface of most heat sources where these planar devices are attached is curved, a considerable amount of heat loss is inevitable. To address this issue, here, we present the shape-engineerable thermoelectric painting, geometrically compatible to surfaces of any shape. We prepared Bi2Te3-based inorganic paints using the molecular Sb2Te3 chalcogenidometalate as a sintering aid for thermoelectric particles, with ZT values of 0.67 for n-type and 1.21 for p-type painted materials that compete the bulk values. Devices directly brush-painted onto curved surfaces produced the high output power of 4.0 mW cm−2. This approach paves the way to designing materials and devices that can be easily transferred to other applications. PMID:27834369

  13. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  14. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  15. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  16. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  17. 46 CFR 31.30-1 - Marine engineering regulations and material specifications-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Marine engineering regulations and material... INSPECTION AND CERTIFICATION Marine Engineering § 31.30-1 Marine engineering regulations and material..., of subchapter F (Marine Engineering) of this chapter, whenever applicable, except as such regulations...

  18. Pistons and Cylinders Made of Carbon-Carbon Composite Materials

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

    2000-01-01

    An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

  19. Cellular response of preosteoblasts to nanograined/ultrafine-grained structures.

    PubMed

    Misra, R D K; Thein-Han, W W; Pesacreta, T C; Hasenstein, K H; Somani, M C; Karjalainen, L P

    2009-06-01

    Metallic materials with submicron- to nanometer-sized grains provide surfaces that are different from conventional polycrystalline materials because of the large proportion of grain boundaries with high free energy. In the study described here, the combination of cellular and molecular biology, materials science and engineering advances our understanding of cell-substrate interactions, especially the cellular activity between preosteoblasts and nanostructured metallic surfaces. Experiments on the effect of nano-/ultrafine grains have shown that cell attachment, proliferation, viability, morphology and spread are favorably modulated and significantly different from conventional coarse-grained structures. Additionally, immunofluorescence studies demonstrated stronger vinculin signals associated with actin stress fibers in the outer regions of the cells and cellular extensions on nanograined/ultrafine-grained substrate. These observations suggest enhanced cell-substrate interaction and activity. The differences in the cellular response on nanograined/ultrafine-grained and coarse-grained substrates are attributed to grain size and degree of hydrophilicity. The outcomes of the study are expected to reduce challenges to engineer bulk nanostructured materials with specific physical and surface properties for medical devices with improved cellular attachment and response. The data lay the foundation for a new branch of nanostructured materials for biomedical applications.

  20. Design with brittle materials - An interdisciplinary educational program

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.; Bollard, R. J. H.; Hartz, B. J.; Kobayashi, A. S.; Love, W. J.; Scott, W. D.; Taggart, R.; Whittemore, O. J.

    1980-01-01

    A series of interdisciplinary design courses being offered to senior and graduate engineering students at the University of Washington is described. Attention is given to the concepts and some of the details on group design projects that have been undertaken during the past two years. It is noted that ceramic materials normally demonstrate a large scatter in strength properties. As a consequence, when designing with these materials, the conventional 'mil standards' design stresses with acceptable margins of safety cannot by employed and the designer is forced to accept a probable number of failures in structures of a given brittle material. It is this prediction of the probability of failure for structures of given, well-characterized materials that forms the basis for this series of courses.

  1. Transitioning Rationally Designed Catalytic Materials to Real 'Working' Catalysts Produced at Commercial Scale: Nanoparticle Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaidle, Joshua A.; Habas, Susan E.; Baddour, Frederick G.

    Catalyst design, from idea to commercialization, requires multi-disciplinary scientific and engineering research and development over 10-20 year time periods. Historically, the identification of new or improved catalyst materials has largely been an empirical trial-and-error process. However, advances in computational capabilities (new tools and increased processing power) coupled with new synthetic techniques have started to yield rationally-designed catalysts with controlled nano-structures and tailored properties. This technological advancement represents an opportunity to accelerate the catalyst development timeline and to deliver new materials that outperform existing industrial catalysts or enable new applications, once a number of unique challenges associated with the scale-up ofmore » nano-structured materials are overcome.« less

  2. Engineering clinically relevant volumes of vascularized bone.

    PubMed

    Roux, Brianna M; Cheng, Ming-Huei; Brey, Eric M

    2015-05-01

    Vascularization remains one of the most important challenges that must be overcome for tissue engineering to be consistently implemented for reconstruction of large volume bone defects. An extensive vascular network is needed for transport of nutrients, waste and progenitor cells required for remodelling and repair. A variety of tissue engineering strategies have been investigated in an attempt to vascularize tissues, including those applying cells, soluble factor delivery strategies, novel design and optimization of bio-active materials, vascular assembly pre-implantation and surgical techniques. However, many of these strategies face substantial barriers that must be overcome prior to their ultimate translation into clinical application. In this review recent progress in engineering vascularized bone will be presented with an emphasis on clinical feasibility. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Gender and engineering aptitude: Is the color of science, technology, engineering, and math materials related to children's performance?

    PubMed

    Mulvey, Kelly Lynn; Miller, Bridget; Rizzardi, Victoria

    2017-08-01

    To investigate gender stereotypes, demonstrated engineering aptitude, and attitudes, children (N=105) solved an engineering problem using either pastel-colored or primary-colored materials. Participants also evaluated the acceptability of denial of access to engineering materials based on gender and counter-stereotypic preferences (i.e., a boy who prefers pastel-colored materials). Whereas material color was not related to differences in female participants' performance, younger boys assigned to pastel materials demonstrated lower engineering aptitude than did other participants. In addition, results documented age- and gender-related differences; younger participants, and sometimes boys, exhibited less flexibility regarding gender stereotypes than did older and female participants. The findings suggest that attempts to enhance STEM (science, technology, engineering, and math) engagement or performance through the color of STEM materials may have unintended consequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Compliant heterogeneous assemblies of micro-VCSELs as a new materials platform for integrated optoelectronics

    NASA Astrophysics Data System (ADS)

    Kang, Dongseok; Lee, Sung-Min; Kwong, Anthony; Yoon, Jongseung

    2015-03-01

    Despite many unique advantages, vertical cavity surface emitting lasers (VCSELs) have been available mostly on rigid, planar wafers over restricted areas, thereby limiting their usage for applications that can benefit from large-scale, programmable assemblies, hybrid integration with dissimilar materials and devices, or mechanically flexible constructions. Here, materials design and fabrication strategies that address these limitations of conventional VCSELs are presented. Specialized design of epitaxial materials and etching processes, together with printing-based deterministic assemblies and substrate thermal engineering, enabled defect-free release of microscale VCSELs and their device- and circuit-level implementation on non-native, flexible substrates with performance comparable to devices on the growth substrate.

  5. Nanoscale defect architectures and their influence on material properties

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  6. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  7. Materials engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramley, A.N.

    1985-01-01

    This book presents the Proceedings of the Second Materials Engineering Conference. This valuable collection of papers deal with the awareness, creative use, economics, reliability, selection, design, testing and warranty of materials. The papers address topics of both immediate and lasting industrial importance at a readily assimilated level and contain information which will lead speedily to improvements in industrial practice. Topics considered include recent developments in the science and technology of high modulus polymers; computer aided design of advanced composites; a systematic approach to materials testing in metal forming; new cold working tool steels; friction surfacing and its applications; fatigue lifemore » assessment and materials engineering; alternative materials for internal combustion engines; adhesives and the engineer; thermoplastic bearings; engineering applications of ZA alloys; and utility and complexity in the selection of polymeric materials.« less

  8. Clinical Application of Stem Cells in the Cardiovascular System

    NASA Astrophysics Data System (ADS)

    Stamm, Christof; Klose, Kristin; Choi, Yeong-Hoon

    Regenerative medicine encompasses "tissue engineering" - the in vitro fabrication of tissues and/or organs using scaffold material and viable cells - and "cell therapy" - the transplantation or manipulation of cells in diseased tissue in vivo. In the cardiovascular system, tissue engineering strategies are being pursued for the development of viable replacement blood vessels, heart valves, patch material, cardiac pacemakers and contractile myocardium. Anecdotal clinical applications of such vessels, valves and patches have been described, but information on systematic studies of the performance of such implants is not available, yet. Cell therapy for cardiovascular regeneration, however, has been performed in large series of patients, and numerous clinical studies have produced sometimes conflicting results. The purpose of this chapter is to summarize the clinical experience with cell therapy for diseases of the cardiovascular system, and to analyse possible factors that may influence its outcome.

  9. Student Interactions with Online Videos in a Large Hybrid Mechanics of Materials Course

    ERIC Educational Resources Information Center

    Ahn, Benjamin; Bir, Devayan D.

    2018-01-01

    The hybrid course format has gained popularity in the engineering education community over the past few years. Although studies have examined student outcomes and attitudes toward hybrid courses, a limited number of studies have examined how students interact with online videos in hybrid courses. This study examined the video-viewing behaviors of…

  10. ADVANCED MANUFACTURING TEAM

    NASA Image and Video Library

    2016-03-17

    JOHNNIE CLARK, BRIAN WEST, AND ZACK JONES OF MSFC’S ADVANCED MANUFACTURING TEAM, WITH MSFC’S XLINE SELECTIVE LASER MELTING SYSTEM. CURRENTLY ONE OF THE LARGEST METAL 3D PRINTERS, THE XLINE AT MARSHALL IS BEING USED TO DEVELOP AND CERTIFY NICKEL ALLOY 718 MATERIAL PROPERTIES AND LARGE MANUFACTURING TECH DEMOS FOR THE RS25 ENGINE AND THE COMMERCIAL CREWED VEHICLE PROJECTS.

  11. Energy Conservation Projects to Benefit the Railroad Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifford Mirman; Promod Vohra

    The Energy Conservation Projects to benefit the railroad industry using the Norfolk Southern Company as a model for the railroad industry has five unique tasks which are in areas of importance within the rail industry, and specifically in the area of energy conservation. The NIU Engineering and Technology research team looked at five significant areas in which research and development work can provide unique solutions to the railroad industry in energy the conservation. (1) Alternate Fuels - An examination of various blends of bio-based diesel fuels for the railroad industry, using Norfolk Southern as a model for the industry. Themore » team determined that bio-diesel fuel is a suitable alternative to using straight diesel fuel, however, the cost and availability across the country varies to a great extent. (2) Utilization of fuel cells for locomotive power systems - While the application of the fuel cell has been successfully demonstrated in the passenger car, this is a very advanced topic for the railroad industry. There are many safety and power issues that the research team examined. (3) Thermal and emission reduction for current large scale diesel engines - The current locomotive system generates large amount of heat through engine cooling and heat dissipation when the traction motors are used to decelerate the train. The research team evaluated thermal management systems to efficiently deal with large thermal loads developed by the operating engines. (4) Use of Composite and Exotic Replacement Materials - Research team redesigned various components using new materials, coatings, and processes to provide the needed protection. Through design, analysis, and testing, new parts that can withstand the hostile environments were developed. (5) Tribology Applications - Identification of tribology issues in the Railroad industry which play a significant role in the improvement of energy usage. Research team analyzed and developed solutions which resulted in friction modification to improve energy efficiency.« less

  12. Supply Chain Engineering and the Use of a Supporting Knowledge Management Application

    NASA Astrophysics Data System (ADS)

    Laakmann, Frank

    The future competition in markets will happen between logistics networks and no longer between enterprises. A new approach for supporting the engineering of logistics networks is developed by this research as a part of the Collaborative Research Centre (SFB) 559: "Modeling of Large Networks in Logistics" at the University of Dortmund together with the Fraunhofer-Institute of Material Flow and Logistics founded by Deutsche Forschungsgemeinschaft (DFG). Based on a reference model for logistics processes, the process chain model, a guideline for logistics engineers is developed to manage the different types of design tasks of logistics networks. The technical background of this solution is a collaborative knowledge management application. This paper will introduce how new Internet-based technologies support supply chain design projects.

  13. An Updated Assessment of NASA Ultra-Efficient Engine Technologies

    NASA Technical Reports Server (NTRS)

    Tong Michael T.; Jones, Scott M.

    2005-01-01

    NASA's Ultra Efficient Engine Technology (UEET) project features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, and advanced fan containment technology. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft CO2 (or equivalent fuel burn) and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-lb) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the current UEET technology portfolio has very high probabilities of meeting the UEET minimum success criteria for CO2 reduction (-12% from the baseline) and LTO (landing and takeoff) NOx reductions (-65% relative to the 1996 International Civil Aviation Organization rule).

  14. Applying ``intelligent`` materials for materials education: The Labless Lab{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrade, J.D.; Scheer, R.

    1994-12-31

    A very large number of science and engineering courses taught in colleges and universities today do not involve laboratories. Although good instructors incorporate class demonstrations, hands on homework, and various teaching aids, including computer simulations, the fact is that students in such courses often accept key concepts and experimental results without discovering them for themselves. The only partial solution to this problem has been increasing use of class demonstrations and computer simulations. The authors feel strongly that many complex concepts can be observed and assimilated through experimentation with properly designed materials. They propose the development of materials and specimens designedmore » specifically for education purposes. Intelligent and communicative materials are ideal for this purpose. Specimens which respond in an observable fashion to new environments and situations provided by the students/experimenter provide a far more effective materials science and engineering experience than readouts and data generated by complex and expensive machines, particularly in an introductory course. Modern materials can be designed to literally communicate with the observer. The authors embarked on a project to develop a series of Labless Labs{trademark} utilizing various degrees and levels of intelligence in materials. It is expected that such Labless Labs{trademark} would be complementary to textbooks and computer simulations and to be used to provide a reality for students in courses and other learning situations where access to a laboratory is non-existent or limited.« less

  15. Synthesis of water soluble, biodegradable, and electroactive polysaccharide crosslinker with aldehyde and carboxylic groups for biomedical applications.

    PubMed

    Wang, Qian; He, Wen; Huang, Junqi; Liu, Siwei; Wu, Guifu; Teng, Wei; Wang, Qinmei; Dong, Yugang

    2011-03-10

    We report the synthesis and characterization of a polysaccharide crosslinker of tetraaniline grafting oxidized sodium alginate with large aldehyde and carboxylic groups. We demonstrate that this copolymer has the following properties: it is water soluble under any pH, biodegradable, electroactive, and noncytotoxic; it can self-assemble into nanoparticles with large active functional groups on the outer surface; it can crosslink materials with amino and aminoderivative groups like gelatin to form hydrogels, and thus the electroactivity is readily introduced to the materials. This copolymer has potential applications in biomedical fields such as tissue engineering, drug delivery, and nerve probes where electroactivity is required. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.

    PubMed

    Lee, Sung-Min; Biswas, Roshni; Li, Weigu; Kang, Dongseok; Chan, Lesley; Yoon, Jongseung

    2014-10-28

    Nanostructured forms of crystalline silicon represent an attractive materials building block for photovoltaics due to their potential benefits to significantly reduce the consumption of active materials, relax the requirement of materials purity for high performance, and hence achieve greatly improved levelized cost of energy. Despite successful demonstrations for their concepts over the past decade, however, the practical application of nanostructured silicon solar cells for large-scale implementation has been hampered by many existing challenges associated with the consumption of the entire wafer or expensive source materials, difficulties to precisely control materials properties and doping characteristics, or restrictions on substrate materials and scalability. Here we present a highly integrable materials platform of nanostructured silicon solar cells that can overcome these limitations. Ultrathin silicon solar microcells integrated with engineered photonic nanostructures are fabricated directly from wafer-based source materials in configurations that can lower the materials cost and can be compatible with deterministic assembly procedures to allow programmable, large-scale distribution, unlimited choices of module substrates, as well as lightweight, mechanically compliant constructions. Systematic studies on optical and electrical properties, photovoltaic performance in experiments, as well as numerical modeling elucidate important design rules for nanoscale photon management with ultrathin, nanostructured silicon solar cells and their interconnected, mechanically flexible modules, where we demonstrate 12.4% solar-to-electric energy conversion efficiency for printed ultrathin (∼ 8 μm) nanostructured silicon solar cells when configured with near-optimal designs of rear-surface nanoposts, antireflection coating, and back-surface reflector.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jiajun; Wang, Liguang; Eng, Christopher

    We present that irreversible electrochemical behavior and large voltage hysteresis are commonly observed in battery materials, in particular for materials reacting through conversion reaction, resulting in undesirable round-trip energy loss and low coulombic efficiency. Seeking solutions to these challenges relies on the understanding of the underlying mechanism and physical origins. Here, this study combines in operando 2D transmission X-ray microscopy with X-ray absorption near edge structure, 3D tomography, and galvanostatic intermittent titration techniques to uncover the conversion reaction in sodium–metal sulfide batteries, a promising high-energy battery system. This study shows a high irreversible electrochemistry process predominately occurs at first cycle,more » which can be largely linked to Na ion trapping during the first desodiation process and large interfacial ion mobility resistance. Subsequently, phase transformation evolution and electrochemical reaction show good reversibility at multiple discharge/charge cycles due to materials' microstructural change and equilibrium. The origin of large hysteresis between discharge and charge is investigated and it can be attributed to multiple factors including ion mobility resistance at the two-phase interface, intrinsic slow sodium ion diffusion kinetics, and irreversibility as well as ohmic voltage drop and overpotential. In conclusion, this study expects that such understandings will help pave the way for engineering design and optimization of materials microstructure for future-generation batteries.« less

  18. Prototype Morphing Fan Nozzle Demonstrated

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Song, Gang-Bing

    2004-01-01

    Ongoing research in NASA Glenn Research Center's Structural Mechanics and Dynamics Branch to develop smart materials technologies for aeropropulsion structural components has resulted in the design of the prototype morphing fan nozzle shown in the photograph. This prototype exploits the potential of smart materials to significantly improve the performance of existing aircraft engines by introducing new inherent capabilities for shape control, vibration damping, noise reduction, health monitoring, and flow manipulation. The novel design employs two different smart materials, a shape-memory alloy and magnetorheological fluids, to reduce the nozzle area by up to 30 percent. The prototype of the variable-area fan nozzle implements an overlapping spring leaf assembly to simplify the initial design and to provide ease of structural control. A single bundle of shape memory alloy wire actuators is used to reduce the nozzle geometry. The nozzle is subsequently held in the reduced-area configuration by using magnetorheological fluid brakes. This prototype uses the inherent advantages of shape memory alloys in providing large induced strains and of magnetorheological fluids in generating large resistive forces. In addition, the spring leaf design also functions as a return spring, once the magnetorheological fluid brakes are released, to help force the shape memory alloy wires to return to their original position. A computerized real-time control system uses the derivative-gain and proportional-gain algorithms to operate the system. This design represents a novel approach to the active control of high-bypass-ratio turbofan engines. Researchers have estimated that such engines will reduce thrust specific fuel consumption by 9 percent over that of fixed-geometry fan nozzles. This research was conducted under a cooperative agreement (NCC3-839) at the University of Akron.

  19. Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays

    PubMed Central

    Wu, Hao; Tang, Biao; Hayes, Robert A.; Dou, Yingying; Guo, Yuanyuan; Jiang, Hongwei; Zhou, Guofu

    2016-01-01

    Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities. PMID:28773826

  20. Coating and Patterning Functional Materials for Large Area Electrofluidic Arrays.

    PubMed

    Wu, Hao; Tang, Biao; Hayes, Robert A; Dou, Yingying; Guo, Yuanyuan; Jiang, Hongwei; Zhou, Guofu

    2016-08-19

    Industrialization of electrofluidic devices requires both high performance coating laminates and efficient material utilization on large area substrates. Here we show that screen printing can be effectively used to provide homogeneous pin-hole free patterned amorphous fluoropolymer dielectric layers to provide both the insulating and fluidic reversibility required for devices. Subsequently, we over-coat photoresist using slit coating on this normally extremely hydrophobic layer. In this way, we are able to pattern the photoresist by conventional lithography to provide the chemical contrast required for liquids dosing by self-assembly and highly-reversible electrofluidic switching. Materials, interfacial chemistry, and processing all contribute to the provision of the required engineered substrate properties. Coating homogeneity as characterized by metrology and device performance data are used to validate the methodology, which is well-suited for transfer to high volume production in existing LCD cell-making facilities.

  1. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    NASA Astrophysics Data System (ADS)

    Sheridan, Robert; Roche, Juan; Lofland, Samuel E.; vonLockette, Paris R.

    2014-09-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a reduction in the amount of magnetic torque transferred from the particles to the matrix.

  2. Parameter Estimation for Viscoplastic Material Modeling

    NASA Technical Reports Server (NTRS)

    Saleeb, Atef F.; Gendy, Atef S.; Wilt, Thomas E.

    1997-01-01

    A key ingredient in the design of engineering components and structures under general thermomechanical loading is the use of mathematical constitutive models (e.g. in finite element analysis) capable of accurate representation of short and long term stress/deformation responses. In addition to the ever-increasing complexity of recent viscoplastic models of this type, they often also require a large number of material constants to describe a host of (anticipated) physical phenomena and complicated deformation mechanisms. In turn, the experimental characterization of these material parameters constitutes the major factor in the successful and effective utilization of any given constitutive model; i.e., the problem of constitutive parameter estimation from experimental measurements.

  3. Recent developments in turbomachinery component materials and manufacturing challenges for aero engine applications

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.

    2018-02-01

    In the recent years the development of turbomachinery materials performance enhancement plays a vital role especially in aircraft air breathing engines like turbojet engine, turboprop engine, turboshaft engine and turbofan engines. Especially the transonic flow engines required highly sophisticated materials where it can sustain the entire thrust which can create by the engine. The main objective of this paper is to give an overview of the present cost-effective and technological capabilities process for turbomachinery component materials. Especially the main focus is given to study the Electro physical, Photonic additive removal process and Electro chemical process for turbomachinery parts manufacture. The aeronautical propulsion based technologies are reviewed thoroughly where in surface reliability, geometrical precession, and material removal and highly strengthened composite material deposition rates usually difficult to cut dedicated steels, Titanium and Nickel based alloys. In this paper the past aeronautical and propulsion mechanical based manufacturing technologies, current sophisticated technologies and also future challenging material processing techniques are covered. The paper also focuses on the brief description of turbomachinery components of shaping process and coating in aeromechanical applications.

  4. Repository Planning, Design, and Engineering: Part II-Equipment and Costing.

    PubMed

    Baird, Phillip M; Gunter, Elaine W

    2016-08-01

    Part II of this article discusses and provides guidance on the equipment and systems necessary to operate a repository. The various types of storage equipment and monitoring and support systems are presented in detail. While the material focuses on the large repository, the requirements for a small-scale startup are also presented. Cost estimates and a cost model for establishing a repository are presented. The cost model presents an expected range of acquisition costs for the large capital items in developing a repository. A range of 5,000-7,000 ft(2) constructed has been assumed, with 50 frozen storage units, to reflect a successful operation with growth potential. No design or engineering costs, permit or regulatory costs, or smaller items such as the computers, software, furniture, phones, and barcode readers required for operations have been included.

  5. Lewis Researcher in the Materials and Stresses Building

    NASA Image and Video Library

    1952-12-21

    A materials researcher at the NACA’s Lewis Flight Propulsion Laboratory examines a surface crack detection apparatus in the Materials and Stresses Building during December 1952. Materials research was an important aspect of propulsion technology. Advanced engine systems relied upon alloys, and later composites, that were strong, lightweight, and impervious to high temperatures. Jet engines which became increasingly popular in the late 1940s, produced much higher temperatures than piston engines. These higher temperatures stressed engine components, particularly turbines. Although Lewis materials research began during World War II, the Materials and Thermodynamics Division was not created until 1949. Its primary laboratories were located in the Materials and Stresses Building. The group sought to create new, improved materials and to improve engine design through increased understanding of materials. The Lewis materials researchers of the 1950s made contributions to nickel-aluminum alloys, cermet blades, metal matrix composites, oxide dispersion strengthened superalloys, and universal slopes.

  6. Recombinant DNA production of spider silk proteins.

    PubMed

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Large strain detection of SRM composite shell based on fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Chang, Xinlong; Zhang, Youhong; Yang, Fan

    2017-12-01

    There may be more than 2% strain of carbon fiber composite material on solid rocket motor (SRM) in some extreme cases. A surface-bonded silica fiber Bragg grating (FBG) strain sensor coated by polymer is designed to detect the large strain of composite material. The strain transfer relation of the FBG large strain sensor is deduced, and the strain transfer mechanism is verified by finite element simulation. To calibrate the sensors, the tensile test is done by using the carbon fiber composite plate specimen attached to the designed strain sensor. The results show that the designed sensor can detect the strain more than 3%, the strain sensitivity is 0.0762 pm/μɛ, the resolution is 13.13μɛ, and the fitting degree of the wavelength-strain curve fitting function is 0.9988. The accuracy and linearity of the sensor can meet the engineering requirements.

  8. Enhanced Large Solid Rocket Motor Understanding Through Performance Margin Testing: RSRM Five-Segment Engineering Test Motor (ETM-3)

    NASA Technical Reports Server (NTRS)

    Huppi, Hal; Tobias, Mark; Seiler, James

    2003-01-01

    The Five-Segment Engineering Test Motor (ETM-3) is an extended length reusable solid rocket motor (RSRM) intended to increase motor performance and internal environments above the current four-segment RSRM flight motor. The principal purpose of ETM-3 is to provide a test article for RSRM component margin testing. As the RSRM and Space Shuttle in general continue to age, replacing obsolete materials becomes an ever-increasing issue. Having a five-segment motor that provides environments in excess of normal opera- tion allows a mechanism to subject replacement materials to a more severe environment than experienced in flight. Additionally, ETM-3 offers a second design data point from which to develop and/or validate analytical models that currently have some level of empiricism associated with them. These enhanced models have the potential to further the understanding of RSRM motor performance and solid rocket motor (SRM) propulsion in general. Furthermore, these data could be leveraged to support a five-segment booster (FSB) development program should the Space Shuttle program choose to pursue this option for abort mode enhancements during the ascent phase. A tertiary goal of ETM-3 is to challenge both the ATK Thiokol Propulsion and NASA MSFC technical personnel through the design and analysis of a large solid rocket motor without the benefit of a well-established performance database such as the RSRM. The end result of this undertaking will be a more competent and experienced workforce for both organizations. Of particular interest are the motor design characteristics and the systems engineering approach used to conduct a complex yet successful large motor static test. These aspects of ETM-3 and more will be summarized.

  9. Electron Technology - ELTE 2013

    NASA Astrophysics Data System (ADS)

    Szczepański, Paweł; Kisiel, Ryszard; Romaniuk, Ryszard S.

    2013-07-01

    The paper presents a digest of chosen research and technical work results shown by researchers from technical universities, governmental institutes and research firms during the XIth Scientific Conference on Electron Technology ELTE 2013. ELTE Conference has been held every three years since more than three decades. The ELTE 2013 conference was held in Ryn Castle (Poland) on 16-20 April 2013 and gathered around 270 scientists, theoreticians, technologists and engineers from such areas as material engineering, chemistry, sensors, integrated circuits, electronics engineering, laser industry, photonics, etc. The conference featured the following major four topical sessions - Micro and Nano, Photonics, Materials and Technologies, and Microsystems; two dedicated sessions - a keynote plenary session on hot topics in electron technology, as well as a session on large research projects and grants realized by the relevant community. Oral topical sessions were accompanied by poster sessions. The paper is a succinct topical introduction to the volume of ELTE 2013 proceedings. Over 100 papers, gathered in the volume, present a very relevant cross section and state-of-the-art of this branch of science and technology in Poland with involved international co-operation.

  10. Combustor technology for future small gas turbine aircraft

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie J.; Niedzwiecki, Richard W.

    1993-01-01

    Future engine cycles proposed for advanced small gas turbine engines will increase the severity of the operating conditions of the combustor. These cycles call for increased overall engine pressure ratios which increase combustor inlet pressure and temperature. Further, the temperature rise through the combustor and the corresponding exit temperature also increase. Future combustor technology needs for small gas turbine engines is described. New fuel injectors with large turndown ratios which produce uniform circumferential and radial temperature patterns will be required. Uniform burning will be of greater importance because hot gas temperatures will approach turbine material limits. The higher combustion temperatures and increased radiation at high pressures will put a greater heat load on the combustor liners. At the same time, less cooling air will be available as more of the air will be used for combustion. Thus, improved cooling concepts and/or materials requiring little or no direct cooling will be required. Although presently there are no requirements for emissions levels from small gas turbine engines, regulation is expected in the near future. This will require the development of low emission combustors. In particular, nitrogen oxides will increase substantially if new technologies limiting their formation are not evolved and implemented. For example, staged combustion employing lean, premixed/prevaporized, lean direct injection, or rich burn-quick quench-lean burn concepts could replace conventional single stage combustors.

  11. Manufacturing Process Developments for Regeneratively-Cooled Channel Wall Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Gradl, Paul; Brandsmeier, Will

    2016-01-01

    Regeneratively cooled channel wall nozzles incorporate a series of integral coolant channels to contain the coolant to maintain adequate wall temperatures and expand hot gas providing engine thrust and specific impulse. NASA has been evaluating manufacturing techniques targeting large scale channel wall nozzles to support affordability of current and future liquid rocket engine nozzles and thrust chamber assemblies. The development of these large scale manufacturing techniques focus on the liner formation, channel slotting with advanced abrasive water-jet milling techniques and closeout of the coolant channels to replace or augment other cost reduction techniques being evaluated for nozzles. NASA is developing a series of channel closeout techniques including large scale additive manufacturing laser deposition and explosively bonded closeouts. A series of subscale nozzles were completed evaluating these processes. Fabrication of mechanical test and metallography samples, in addition to subscale hardware has focused on Inconel 625, 300 series stainless, aluminum alloys as well as other candidate materials. Evaluations of these techniques are demonstrating potential for significant cost reductions for large scale nozzles and chambers. Hot fire testing is planned using these techniques in the future.

  12. Application of Advanced Materials in Petroleum Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  13. Designing Radiation Resistance in Materials for Fusion Energy

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Snead, L. L.

    2014-07-01

    Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.

  14. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and materials with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  15. Jet engine applications for materials with nanometer-scale dimensions

    NASA Technical Reports Server (NTRS)

    Appleby, J. W., Jr.

    1995-01-01

    The performance of advanced military and commercial gas turbine engines is often linked to advances in materials technology. High performance gas turbine engines being developed require major material advances in strength, toughness, reduced density and improved temperature capability. The emerging technology of nanostructured materials has enormous potential for producing materials with significant improvements in these properties. Extraordinary properties demonstrated in the laboratory include material strengths approaching theoretical limit, ceramics that demonstrate ductility and toughness, and material with ultra-high hardness. Nanostructured materials and coatings have the potential for meeting future gas turbine engine requirements for improved performance, reduced weight and lower fuel consumption.

  16. Deployment of Large-Size Shell Constructions by Internal Pressure

    NASA Astrophysics Data System (ADS)

    Pestrenin, V. M.; Pestrenina, I. V.; Rusakov, S. V.; Kondyurin, A. V.

    2015-11-01

    A numerical study on the deployment pressure (the minimum internal pressure bringing a construction from the packed state to the operational one) of large laminated CFRP shell structures is performed using the ANSYS engineering package. The shell resists both membrane and bending deformations. Structures composed of shell elements whose median surface has an involute are considered. In the packed (natural) states of constituent elements, the median surfaces coincide with their involutes. Criteria for the termination of stepwise solution of the geometrically nonlinear problem on determination of the deployment pressure are formulated, and the deployment of cylindrical, conical (full and truncated cones), and large-size composite shells is studied. The results obtained are shown by graphs illustrating the deployment pressure in relation to the geometric and material parameters of the structure. These studies show that large pneumatic composite shells can be used as space and building structures, because the deployment pressure in them only slightly differs from the excess pressure in pneumatic articles made from films and soft materials.

  17. Development of carbon slurry fuels for transportation (hybrid fuels, phase 2)

    NASA Technical Reports Server (NTRS)

    Ryan, T. W., III; Dodge, L. G.

    1984-01-01

    Slurry fuels of various forms of solids in diesel fuel are developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations are formulated using eight different materials. A variety of properties are examined including ash content, sulfur content, particle size distribution, and rheological properties. Attempts are made to determine the effects of these variations on these fuel properties on injection, atomization, and combustion processes. The slurries are also tested in a single cylinder CLR engine in both direct injection and prechamber configurations. The data includes the normal performance parameters as well as heat release rates and emissions. The slurries perform very much like the baseline fuel. The combustion data indicate that a large fraction (90 percent or more) of the solids are burning in the engine. It appears that the prechamber engine configuration is more tolerant of the slurries than the direct injection configuration.

  18. Virtual Reality Used to Serve the Glenn Engineering Community

    NASA Technical Reports Server (NTRS)

    Carney, Dorothy V.

    2001-01-01

    There are a variety of innovative new visualization tools available to scientists and engineers for the display and analysis of their models. At the NASA Glenn Research Center, we have an ImmersaDesk, a large, single-panel, semi-immersive display device. This versatile unit can interactively display three-dimensional images in visual stereo. Our challenge is to make this virtual reality platform accessible and useful to researchers. An example of a successful application of this computer technology is the display of blade out simulations. NASA Glenn structural dynamicists, Dr. Kelly Carney and Dr. Charles Lawrence, funded by the Ultra Safe Propulsion Project under Base R&T, are researching blade outs, when turbine engines lose a fan blade during operation. Key objectives of this research include minimizing danger to the aircraft via effective blade containment, predicting destructive loads due to the imbalance following a blade loss, and identifying safe, cost-effective designs and materials for future engines.

  19. Near-field three-terminal thermoelectric heat engine

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Hua; Imry, Yoseph

    2018-03-01

    We propose a near-field inelastic thermoelectric heat engine where quantum dots are used to effectively rectify the charge flow of photocarriers. The device converts near-field heat radiation into useful electrical power. Heat absorption and inelastic transport can be enhanced by introducing two continuous spectra separated by an energy gap. The thermoelectric transport properties of the heat engine are studied in the linear-response regime. Using a small band-gap semiconductor as the absorption material, we show that the device achieves very large thermopower and thermoelectric figure of merit, as well as considerable power factor. By analyzing thermal-photocarrier generation and conduction, we reveal that the Seebeck coefficient and the figure of merit have oscillatory dependence on the thickness of the vacuum gap. Meanwhile, the power factor, the charge, and thermal conductivity are significantly improved by near-field radiation. Conditions and guiding principles for powerful and efficient thermoelectric heat engines are discussed in details.

  20. A Historical Review of Cermet Fuel Development and the Engine Performance Implications

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    2015-01-01

    This paper reviews test data for cermet fuel samples developed in the 1960's to better quantify Nuclear Thermal Propulsion (NTP) cermet engine performance, and to better understand contemporary fuel testing results. Over 200 cermet (W-UO2) samples were tested by thermally cycling to 2500 deg (2770 K) in hydrogen. The data indicates two issues at high temperatures: the vaporization rate of UO2 and the chemical stability of UO2. The data show that cladding and chemical stabilizers each result in large, order of magnitude improvements in high temperature performance, while other approaches yield smaller, incremental improvements. Data is very limited above 2770 K, and this complicates predictions of engine performance at high Isp. The paper considers how this material performance data translates into engine performance. In particular, the location of maximum temperature within the fuel element and the effect of heat deposition rate are examined.

  1. Point Defects in Oxides: Tailoring Materials Through Defect Engineering

    NASA Astrophysics Data System (ADS)

    Tuller, Harry L.; Bishop, Sean R.

    2011-08-01

    Optimization of electrical, optical, mechanical, and other properties of many advanced, functional materials today relies on precise control of point defects. This article illustrates the progress that has been made in elucidating the often complex equilibria exhibited by many materials by examining two recently well-characterized model systems, TlBr for radiation detection and PrxCe1-xO2-δ, of potential interest in solid-oxide fuel cells. The interplay between material composition, electrical conductivity, and mechanical properties (electrochemomechanics) is discussed, and implications in these relations, for example, enhancing electrical properties through large mechanical strains, are described. The impact of space charge and strain fields at interfaces, particularly important in nanostructure materials, is also emphasized. Key experimental techniques useful in characterizing bulk and surface defects are summarized and reviewed.

  2. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    PubMed

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  3. 2000 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2001-01-01

    The 2000 NASA Seal/Secondary Air System Workshop covered four main areas: (1) overviews of NASA-sponsored Ultra-Efficient Engine Technology (UEET) and Access to Space Programs, with emphasis on program goals and seal needs; (2) review of turbine engine seal issues from the perspective of end users such as United Airlines; (3) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (4) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future engine system efficiency and emission goals. GE, Pratt & Whitney, and Honeywell presented advanced seal development work being performed within their organizations. The NASA-funded GE/Stein Seal team has successfully demonstrated a large (3-ft. diam) aspirating seal that can withstand all anticipated pressures, speeds, and rotor runouts anticipated for a GE90 L.P. turbine balance piston location. GE/Stein Seal are fabricating a full-scale seal to be tested in a GE-90 ground test engine in early 2002. Pratt & Whitney and Stein Seal are investigating carbon seals to accommodate large radial movements anticipated in future geared-fan gearbox locations. Honeywell presented a finger seal design being considered for a high-temperature static combustor location incorporating ceramic finger elements. Successful demonstration of the braided carbon rope thermal barriers to extreme temperatures (5500 F) for short durations provide a new form of very high temperature thermal barrier for future Shuttle solid rocket motor nozzle joints. The X-37, X-38, and future highly reusable launch vehicles pose challenging control surface seal demands that require new seal concepts made from emerging high temperature ceramics and other materials.

  4. The 19th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1981-01-01

    The Flat-Plate Solar Array Project is described. Project analysis and integration is discussed. Technology research in silicon material, large-area silicon sheet and environmental isolation; cell and module formation; engineering sciences, and module performance and failure analysis. It includes a report on, and copies of visual presentations made at, the 19th Project Integration Meeting held at Pasadena, California, on November 11, 1981.

  5. Multi-casting approach for vascular networks in cellularized hydrogels.

    PubMed

    Justin, Alexander W; Brooks, Roger A; Markaki, Athina E

    2016-12-01

    Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200-250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel. © 2016 The Authors.

  6. Biphasic Finite Element Modeling Reconciles Mechanical Properties of Tissue-Engineered Cartilage Constructs Across Testing Platforms.

    PubMed

    Meloni, Gregory R; Fisher, Matthew B; Stoeckl, Brendan D; Dodge, George R; Mauck, Robert L

    2017-07-01

    Cartilage tissue engineering is emerging as a promising treatment for osteoarthritis, and the field has progressed toward utilizing large animal models for proof of concept and preclinical studies. Mechanical testing of the regenerative tissue is an essential outcome for functional evaluation. However, testing modalities and constitutive frameworks used to evaluate in vitro grown samples differ substantially from those used to evaluate in vivo derived samples. To address this, we developed finite element (FE) models (using FEBio) of unconfined compression and indentation testing, modalities commonly used for such samples. We determined the model sensitivity to tissue radius and subchondral bone modulus, as well as its ability to estimate material parameters using the built-in parameter optimization tool in FEBio. We then sequentially tested agarose gels of 4%, 6%, 8%, and 10% weight/weight using a custom indentation platform, followed by unconfined compression. Similarly, we evaluated the ability of the model to generate material parameters for living constructs by evaluating engineered cartilage. Juvenile bovine mesenchymal stem cells were seeded (2 × 10 7 cells/mL) in 1% weight/volume hyaluronic acid hydrogels and cultured in a chondrogenic medium for 3, 6, and 9 weeks. Samples were planed and tested sequentially in indentation and unconfined compression. The model successfully completed parameter optimization routines for each testing modality for both acellular and cell-based constructs. Traditional outcome measures and the FE-derived outcomes showed significant changes in material properties during the maturation of engineered cartilage tissue, capturing dynamic changes in functional tissue mechanics. These outcomes were significantly correlated with one another, establishing this FE modeling approach as a singular method for the evaluation of functional engineered and native tissue regeneration, both in vitro and in vivo.

  7. Abradable compressor and turbine seals, volume 1. [for turbofan engines

    NASA Technical Reports Server (NTRS)

    Sundberg, D. V.; Dennis, R. E.; Hurst, L. G.

    1979-01-01

    The application and advantages of abradable coatings as gas-path seals in a general aviation turbine engine were evaluated for use on the high-pressure compressor, the high-pressure turbine, and the low-pressure turbine shrouds. Topics covered include: (1) the initial selection of candidate materials for interim full-scale engine testing; (2) interim engine testing of the initially selected materials and additional candidate materials; (3) the design of the component required to adapt the hardware to permit full-scale engine testing of the most promising materials; (4) finalization of the fabrication methods used in the manufacture of engine test hardware; and (5) the manufacture of the hardware necessary to support the final full-scale engine tests.

  8. The prospect of modern thermomechanics in structural integrity calculations of large-scale pressure vessels

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás

    2018-05-01

    Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well-grounded theoretical foundation for a new modeling framework of structural integrity. This paper presents the first findings of the research project.

  9. Materials for Liquid Propulsion Systems. Chapter 12

    NASA Technical Reports Server (NTRS)

    Halchak, John A.; Cannon, James L.; Brown, Corey

    2016-01-01

    Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton's third law: for every action there is an equal and opposite reaction. Solid rocket motors are cheaper to manufacture and offer good values for their cost. Liquid propellant engines offer higher performance, that is, they deliver greater thrust per unit weight of propellant burned. They also have a considerably higher thrust to weigh ratio. Since liquid rocket engines can be tested several times before flight, they have the capability to be more reliable, and their ability to shut down once started provides an extra margin of safety. Liquid propellant engines also can be designed with restart capability to provide orbital maneuvering capability. In some instances, liquid engines also can be designed to be reusable. On the solid side, hybrid solid motors also have been developed with the capability to stop and restart. Solid motors are covered in detail in chapter 11. Liquid rocket engine operational factors can be described in terms of extremes: temperatures ranging from that of liquid hydrogen (-423 F) to 6000 F hot gases; enormous thermal shock (7000 F/sec); large temperature differentials between contiguous components; reactive propellants; extreme acoustic environments; high rotational speeds for turbo machinery and extreme power densities. These factors place great demands on materials selection and each must be dealt with while maintaining an engine of the lightest possible weight. This chapter will describe the design considerations for the materials used in the various components of liquid rocket engines and provide examples of usage and experiences in each.

  10. NASA Glenn Research Center UEET (Ultra-Efficient Engine Technology) Program: Agenda and Abstracts

    NASA Technical Reports Server (NTRS)

    Manthey, Lri

    2001-01-01

    Topics discussed include: UEET Overview; Technology Benefits; Emissions Overview; P&W Low Emissions Combustor Development; GE Low Emissions Combustor Development; Rolls-Royce Low Emissions Combustor Development; Honeywell Low Emissions Combustor Development; NASA Multipoint LDI Development; Stanford Activities In Concepts for Advanced Gas Turbine Combustors; Large Eddy Simulation (LES) of Gas Turbine Combustion; NASA National Combustion Code Simulations; Materials Overview; Thermal Barrier Coatings for Airfoil Applications; Disk Alloy Development; Turbine Blade Alloy; Ceramic Matrix Composite (CMC) Materials Development; Ceramic Matrix Composite (CMC) Materials Characterization; Environmental Barrier Coatings (EBC) for Ceramic Matrix Composite (CMC) Materials; Ceramic Matrix Composite Vane Rig Testing and Design; Ultra-High Temperature Ceramic (UHTC) Development; Lightweight Structures; NPARC Alliance; Technology Transfer and Commercialization; and Turbomachinery Overview; etc.

  11. Method for reducing pressure drop through filters, and filter exhibiting reduced pressure drop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sappok, Alexander; Wong, Victor

    Methods for generating and applying coatings to filters with porous material in order to reduce large pressure drop increases as material accumulates in a filter, as well as the filter exhibiting reduced and/or more uniform pressure drop. The filter can be a diesel particulate trap for removing particulate matter such as soot from the exhaust of a diesel engine. Porous material such as ash is loaded on the surface of the substrate or filter walls, such as by coating, depositing, distributing or layering the porous material along the channel walls of the filter in an amount effective for minimizing ormore » preventing depth filtration during use of the filter. Efficient filtration at acceptable flow rates is achieved.« less

  12. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    NASA Astrophysics Data System (ADS)

    Ganni, Venkatarao; Fesmire, James

    2012-06-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  13. Cryogenics for superconductors: Refrigeration, delivery, and preservation of the cold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatarao Ganni, James Fesmire

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-usermore » with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.« less

  14. Cryogenics for Superconductors: Refrigeration, Delivery, and Preservation of the Cold

    NASA Technical Reports Server (NTRS)

    Ganni, V.; Fesmire, J. E.

    2011-01-01

    Applications in superconductivity have become widespread, enabled by advancements in cryogenic engineering. In this paper, the history of cryogenic refrigeration, its delivery, its preservation and the important scientific and engineering advancements in these areas in the last 100 years will be reviewed, beginning with small laboratory dewars to very large scale systems. The key technological advancements in these areas that enabled the development of superconducting applications at temperatures from 4 to 77 K are identified. Included are advancements in the components used up to the present state-of-the-art in refrigeration systems design. Viewpoints as both an equipment supplier and the end-user with regard to the equipment design and operations will be presented. Some of the present and future challenges in these areas will be outlined. Most of the materials in this paper are a collection of the historical materials applicable to these areas of interest.

  15. LAMMPS integrated materials engine (LIME) for efficient automation of particle-based simulations: application to equation of state generation

    NASA Astrophysics Data System (ADS)

    Barnes, Brian C.; Leiter, Kenneth W.; Becker, Richard; Knap, Jaroslaw; Brennan, John K.

    2017-07-01

    We describe the development, accuracy, and efficiency of an automation package for molecular simulation, the large-scale atomic/molecular massively parallel simulator (LAMMPS) integrated materials engine (LIME). Heuristics and algorithms employed for equation of state (EOS) calculation using a particle-based model of a molecular crystal, hexahydro-1,3,5-trinitro-s-triazine (RDX), are described in detail. The simulation method for the particle-based model is energy-conserving dissipative particle dynamics, but the techniques used in LIME are generally applicable to molecular dynamics simulations with a variety of particle-based models. The newly created tool set is tested through use of its EOS data in plate impact and Taylor anvil impact continuum simulations of solid RDX. The coarse-grain model results from LIME provide an approach to bridge the scales from atomistic simulations to continuum simulations.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slattery, Stuart R

    ExaMPM is a mini-application for the Material Point Method (MPM) for studying the application of MPM to future exascale computing systems. MPM is a general method for computational mechanics and fluids and is used in a wide variety of science and engineering disciplines to study problems with large deformations, phase change, fracture, and other phenomena. ExaMPM provides a reference implementation of MPM as described in the 1994 work of Sulsky et.al. (Sulsky, Deborah, Zhen Chen, and Howard L. Schreyer. "A particle method for history-dependent materials." Computer methods in applied mechanics and engineering 118.1-2 (1994): 179-196.). The software can solve basicmore » MPM problems in solid mechanics using the original algorithm of Sulsky with explicit time integration, basic geometries, and free-slip and no-slip boundary conditions as described in the reference. ExaMPM is intended to be used as a starting point to design new parallel algorithms for the next generation of DOE supercomputers.« less

  17. Large Scale Many-Body Perturbation Theory calculations: methodological developments, data collections, validation

    NASA Astrophysics Data System (ADS)

    Govoni, Marco; Galli, Giulia

    Green's function based many-body perturbation theory (MBPT) methods are well established approaches to compute quasiparticle energies and electronic lifetimes. However, their application to large systems - for instance to heterogeneous systems, nanostructured, disordered, and defective materials - has been hindered by high computational costs. We will discuss recent MBPT methodological developments leading to an efficient formulation of electron-electron and electron-phonon interactions, and that can be applied to systems with thousands of electrons. Results using a formulation that does not require the explicit calculation of virtual states, nor the storage and inversion of large dielectric matrices will be presented. We will discuss data collections obtained using the WEST code, the advantages of the algorithms used in WEST over standard techniques, and the parallel performance. Work done in collaboration with I. Hamada, R. McAvoy, P. Scherpelz, and H. Zheng. This work was supported by MICCoM, as part of the Computational Materials Sciences Program funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and by ANL.

  18. Large space structures and systems in the space station era: A bibliography with indexes (supplement 03)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Bibliographies and abstracts are listed for 1221 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and June 30, 1991. Topics covered include large space structures and systems, space stations, extravehicular activity, thermal environments and control, tethering, spacecraft power supplies, structural concepts and control systems, electronics, advanced materials, propulsion, policies and international cooperation, vibration and dynamic controls, robotics and remote operations, data and communication systems, electric power generation, space commercialization, orbital transfer, and human factors engineering.

  19. Mesoporous bioactive glasses: structure characteristics, drug/growth factor delivery and bone regeneration application

    PubMed Central

    Wu, Chengtie; Chang, Jiang

    2012-01-01

    The impact of bone diseases and trauma in the whole world has increased significantly in the past decades. Bioactive glasses are regarded as an important bone regeneration material owing to their generally excellent osteoconductivity and osteostimulativity. A new class of bioactive glass, referred to as mesoporous bioglass (MBG), was developed 7 years ago, which possess a highly ordered mesoporous channel structure and a highly specific surface area. The study of MBG for drug/growth factor delivery and bone tissue engineering has grown significantly in the past several years. In this article, we review the recent advances of MBG materials, including the preparation of different forms of MBG, composition–structure relationship, efficient drug/growth factor delivery and bone tissue engineering application. By summarizing our recent research, the interaction of MBG scaffolds with bone-forming cells, the effect of drug/growth factor delivery on proliferation and differentiation of tissue cells and the in vivo osteogenesis of MBG scaffolds are highlighted. The advantages and limitations of MBG for drug delivery and bone tissue engineering have been compared with microsize bioactive glasses and nanosize bioactive glasses. The future perspective of MBG is discussed for bone regeneration application by combining drug delivery with bone tissue engineering and investigating the in vivo osteogenesis mechanism in large animal models. PMID:23741607

  20. Engineering-Scale Demonstration of DuraLith and Ceramicrete Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Gary B.; Westsik, Joseph H.; Pires, Richard P.

    2011-09-23

    To support the selection of a waste form for the liquid secondary wastes from the Hanford Waste Immobilization and Treatment Plant, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing on four candidate waste forms. Two of the candidate waste forms have not been developed to scale as the more mature waste forms. This work describes engineering-scale demonstrations conducted on Ceramicrete and DuraLith candidate waste forms. Both candidate waste forms were successfully demonstrated at an engineering scale. A preliminary conceptual design could be prepared for full-scale production of the candidate waste forms. However, both waste forms are stillmore » too immature to support a detailed design. Formulations for each candidate waste form need to be developed so that the material has a longer working time after mixing the liquid and solid constituents together. Formulations optimized based on previous lab studies did not have sufficient working time to support large-scale testing. The engineering-scale testing was successfully completed using modified formulations. Further lab development and parametric studies are needed to optimize formulations with adequate working time and assess the effects of changes in raw materials and process parameters on the final product performance. Studies on effects of mixing intensity on the initial set time of the waste forms are also needed.« less

  1. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE PAGES

    Song, Bo; Sanborn, Brett

    2018-05-07

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  2. Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Bo; Sanborn, Brett

    In this paper, a Johnson–Cook model was used as an example to analyze the relationship of compressive stress-strain response of engineering materials experimentally obtained at constant engineering and true strain rates. There was a minimal deviation between the stress-strain curves obtained at the same constant engineering and true strain rates. The stress-strain curves obtained at either constant engineering or true strain rates could be converted from one to the other, which both represented the intrinsic material response. There is no need to specify the testing requirement of constant engineering or true strain rates for material property characterization, provided that eithermore » constant engineering or constant true strain rate is attained during the experiment.« less

  3. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    NASA Astrophysics Data System (ADS)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more realistic granular material geometries are simulated using the ESyS-Particle [2] DEM simulation software on cluster supercomputers. Individual grains of the granular material are represented as convex polyhedra. Initially the polyhedra are packed in a low bulk porosity configuration prior to commencing silo flow simulations. The resultant flow dynamics are markedly different to that predicted by ellipsoid theory. Initially shearing occurs around the silo outlet however rapidly shear localization in a particular direction dominates other directions, causing preferential movement in that direction. Within the shear band itself, the granular material becomes hgihly dilated however elsewhere the bulk porosity remains low. The low porosity within these regions promotes entrainment whereby large volumes of granular material interlock and begin to rotate and translate as a single rigid body. In some cases, entrainment may result in complete overturning of a large volume of material. The consequences of preferential shear localization and in particular, entrainment, for granular media flow in cave mines and natural settings (such as brecchia pipes) is a topic of ongoing research to be presented at the meeting.

  4. Power system applications of high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Garlick, W. G.

    This paper presents an overview of potential applications for high temperature superconductors (HTSs) in the field of power engineering. For almost 10 years material scientists, chemists and physicists have had the freedom to find, explore and characterize the properties of new HTS materials. 10 years is not a long time in the development of a revolutionary technology, but it seems like an age to the engineer who has recognized its potential and waits impatiently for the technology to stabilize in order to apply it. Largely due to Government and Industry partnerships, only a few years after the discovery of HTS, electrical power applications based on HTS are now being designed and tested. These applications offer many benefits to the resident electrical system: increased energy efficiency, smaller equipment, reduced emissions, increased stability and reliability, deferred expansion and flexible transmission and distribution. They have a common focus: lower electricity costs, improved environmental quality and more competitive products for a global market. For HTS to become a commercial success, the development of materials technologies is necessary but not sufficient on its own; the development of a capability to design and manufacture products that use the materials is also fundamental to a viable and successful industrial base.

  5. A Probabilistic Assessment of NASA Ultra-Efficient Engine Technologies for a Large Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Jones, Scott M.; Arcara, Philip C., Jr.; Haller, William J.

    2004-01-01

    NASA's Ultra Efficient Engine Technology (UEET) program features advanced aeropropulsion technologies that include highly loaded turbomachinery, an advanced low-NOx combustor, high-temperature materials, intelligent propulsion controls, aspirated seal technology, and an advanced computational fluid dynamics (CFD) design tool to help reduce airplane drag. A probabilistic system assessment is performed to evaluate the impact of these technologies on aircraft fuel burn and NOx reductions. A 300-passenger aircraft, with two 396-kN thrust (85,000-pound) engines is chosen for the study. The results show that a large subsonic aircraft equipped with the UEET technologies has a very high probability of meeting the UEET Program goals for fuel-burn (or equivalent CO2) reduction (15% from the baseline) and LTO (landing and takeoff) NOx reductions (70% relative to the 1996 International Civil Aviation Organization rule). These results are used to provide guidance for developing a robust UEET technology portfolio, and to prioritize the most promising technologies required to achieve UEET program goals for the fuel-burn and NOx reductions.

  6. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2016-05-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  7. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2017-03-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  8. ‘Sciencenet’—towards a global search and share engine for all scientific knowledge

    PubMed Central

    Lütjohann, Dominic S.; Shah, Asmi H.; Christen, Michael P.; Richter, Florian; Knese, Karsten; Liebel, Urban

    2011-01-01

    Summary: Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, ‘Sciencenet’, which facilitates rapid searching over this large data space. By ‘bringing the search engine to the data’, we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. Availability and Implementation: The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the ‘AskMe’ experiment publisher is written in Python 2.7, and the backend ‘YaCy’ search engine is based on Java 1.6. Contact: urban.liebel@kit.edu Supplementary Material: Detailed instructions and descriptions can be found on the project homepage: http://sciencenet.kit.edu. PMID:21493657

  9. Stress distribution retrieval in granular materials: A multi-scale model and digital image correlation measurements

    NASA Astrophysics Data System (ADS)

    Bruno, Luigi; Decuzzi, Paolo; Gentile, Francesco

    2016-01-01

    The promise of nanotechnology lies in the possibility of engineering matter on the nanoscale and creating technological interfaces that, because of their small scales, may directly interact with biological objects, creating new strategies for the treatment of pathologies that are otherwise beyond the reach of conventional medicine. Nanotechnology is inherently a multiscale, multiphenomena challenge. Fundamental understanding and highly accurate predictive methods are critical to successful manufacturing of nanostructured materials, bio/mechanical devices and systems. In biomedical engineering, and in the mechanical analysis of biological tissues, classical continuum approaches are routinely utilized, even if these disregard the discrete nature of tissues, that are an interpenetrating network of a matrix (the extra cellular matrix, ECM) and a generally large but finite number of cells with a size falling in the micrometer range. Here, we introduce a nano-mechanical theory that accounts for the-non continuum nature of bio systems and other discrete systems. This discrete field theory, doublet mechanics (DM), is a technique to model the mechanical behavior of materials over multiple scales, ranging from some millimeters down to few nanometers. In the paper, we use this theory to predict the response of a granular material to an external applied load. Such a representation is extremely attractive in modeling biological tissues which may be considered as a spatial set of a large number of particulate (cells) dispersed in an extracellular matrix. Possibly more important of this, using digital image correlation (DIC) optical methods, we provide an experimental verification of the model.

  10. TiO2/porous adsorbents: Recent advances and novel applications.

    PubMed

    MiarAlipour, Shayan; Friedmann, Donia; Scott, Jason; Amal, Rose

    2018-01-05

    This article reviews two interrelated areas of research: the first is the use of TiO 2 -supported adsorbent materials as enhanced heterogeneous photocatalysts and their application to various reactions for organic pollutant removal from air and water; the second is the combination of adsorbent materials with TiO 2 photocatalysts which aims to efficiently regenerate adsorbent materials using illumination. By reviewing both areas of research, the following topics are covered; (i) photocatalytic activation of TiO 2; (ii) related properties of photocatalytic TiO 2; (iii) shortcomings of photocatalytic processes; (iv) preparation methods of composite TiO 2 /adsorbent materials and their photocatalytic performance; (v) properties of common adsorbents and their applications for pollutant removal from air and water; (vi) adsorbent regeneration methods and their economic and operational issues; (vii) conclusions and future outlooks. This topic has not been previously reviewed to such an extent, and considerable knowledge can be gained from assembling the large number of studies on adsorption-photocatalysis combinations. As such, this review provides guidance for researchers working in the fields of environmental and chemical engineering focussing on organic pollutant removal and the engineering of new high performance photocatalytic TiO 2 -supported porous adsorbent materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Systems metabolic engineering for chemicals and materials.

    PubMed

    Lee, Jeong Wook; Kim, Tae Yong; Jang, Yu-Sin; Choi, Sol; Lee, Sang Yup

    2011-08-01

    Metabolic engineering has contributed significantly to the enhanced production of various value-added and commodity chemicals and materials from renewable resources in the past two decades. Recently, metabolic engineering has been upgraded to the systems level (thus, systems metabolic engineering) by the integrated use of global technologies of systems biology, fine design capabilities of synthetic biology, and rational-random mutagenesis through evolutionary engineering. By systems metabolic engineering, production of natural and unnatural chemicals and materials can be better optimized in a multiplexed way on a genome scale, with reduced time and effort. Here, we review the recent trends in systems metabolic engineering for the production of chemicals and materials by presenting general strategies and showcasing representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    NASA Astrophysics Data System (ADS)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  13. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  14. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.

    PubMed

    Temple, Joshua P; Hutton, Daphne L; Hung, Ben P; Huri, Pinar Yilgor; Cook, Colin A; Kondragunta, Renu; Jia, Xiaofeng; Grayson, Warren L

    2014-12-01

    The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts. © 2014 Wiley Periodicals, Inc.

  15. Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials

    NASA Astrophysics Data System (ADS)

    Jothi, Sathiskumar

    Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.

  16. [Strategies to choose scaffold materials for tissue engineering].

    PubMed

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which mixed with sustained-release nano-microsphere containing growth factors. What's more, the stent internal surface coated with glue/collagen matrix mixing layer containing bFGF and EGF so could supplying the early release of the two cytokines. Finally, combining the poly(L-lactic acid)/poly(ε-caprolactone) biliary stent with the induced cells was the last step for preparing tissue-engineered bile duct. This literature reviewed a variety of the existing tissue engineering scaffold materials and briefly introduced the impact factors on the characteristics of tissue engineering scaffold materials such as preparation procedure, surface modification of scaffold, and so on. We explored the choosing strategy of desired tissue engineering scaffold materials.

  17. Graphene-based materials for tissue engineering.

    PubMed

    Shin, Su Ryon; Li, Yi-Chen; Jang, Hae Lin; Khoshakhlagh, Parastoo; Akbari, Mohsen; Nasajpour, Amir; Zhang, Yu Shrike; Tamayol, Ali; Khademhosseini, Ali

    2016-10-01

    Graphene and its chemical derivatives have been a pivotal new class of nanomaterials and a model system for quantum behavior. The material's excellent electrical conductivity, biocompatibility, surface area and thermal properties are of much interest to the scientific community. Two-dimensional graphene materials have been widely used in various biomedical research areas such as bioelectronics, imaging, drug delivery, and tissue engineering. In this review, we will highlight the recent applications of graphene-based materials in tissue engineering and regenerative medicine. In particular, we will discuss the application of graphene-based materials in cardiac, neural, bone, cartilage, skeletal muscle, and skin/adipose tissue engineering. We will also discuss the potential risk factors of graphene-based materials in tissue engineering. In conclusion, we will outline the opportunities in the usage of graphene-based materials for clinical applications. Published by Elsevier B.V.

  18. Selective laser sintering in biomedical engineering.

    PubMed

    Mazzoli, Alida

    2013-03-01

    Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master's thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

  19. Welding parameter optimization of alloy material by friction stir welding using Taguchi approach and design of experiments

    NASA Astrophysics Data System (ADS)

    Karwande, Amit H.; Rao, Seeram Srinivasa

    2018-04-01

    Friction stir welding (FSW) a welding process in which metals are joint by melting them at their solid state. In different engineering areas such as civil, mechanical, naval and aeronautical engineering beams are widely used of the magnesium alloys for different applications and that are joined by conventional inert gas welding process. Magnesium metal has less density and low melting point for that reason large heat generation in the common welding process so its necessity to adapt new welding process. FSW process increases the weld quality which observed under various mechanical testing by using different tool size.

  20. Strain-induced band-gap engineering of graphene monoxide and its effect on graphene

    NASA Astrophysics Data System (ADS)

    Pu, H. H.; Rhim, S. H.; Hirschmugl, C. J.; Gajdardziska-Josifovska, M.; Weinert, M.; Chen, J. H.

    2013-02-01

    Using first-principles calculations we demonstrate the feasibility of band-gap engineering in two-dimensional crystalline graphene monoxide (GMO), a recently reported graphene-based material with a 1:1 carbon/oxygen ratio. The band gap of GMO, which can be switched between direct and indirect, is tunable over a large range (0-1.35 eV) for accessible strains. Electron and hole transport occurs predominantly along the zigzag and armchair directions (armchair for both) when GMO is a direct- (indirect-) gap semiconductor. A band gap of ˜0.5 eV is also induced in graphene at the K' points for GMO/graphene hybrid systems.

  1. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  2. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov Websites

    ChairMaterials Science and Engineering(414) 229-2668nidal@uwm.eduEng & Math Sciences E351 profile photo (414) 229-2615jhchen@uwm.eduEng & Math Sciences 1225 profile photo Benjamin Church, Ph.D.Associate ProfessorMaterials Science & Engineering(414) 229-2825church@uwm.eduEng & Math Sciences EMS 1175 profile

  3. Solid State Cooling with Advanced Oxide Materials

    DTIC Science & Technology

    2014-06-03

    Department of Materials Science and Engineering , Department of Mechanical Science and Engineering , and Department of Electrical and Computer... Engineering University of Illinois, Urbana-Champaign Program Overview The focus of this program was to probe electro-(magneto-)caloric materials for... engineering systems by developing theoretical and experimental approaches to study thermodynamic properties and effects in thin film systems. Despite

  4. Rotorcraft Dynamics 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the conference proceedings are 24 presented papers, their discussions, and material given in two panels. The presented papers address the general areas of the dynamics of rotorcraft or helicopters. Specific topics include the stability of rotors in hover and forward flight, the stability of coupled rotor-fuselage systems in hover, the loads on a rotor in forward flight including new developments in rotor loads calculations, and the calculation of rotorcraft vibration and means for its control or suppression. Material in the first panel deals with the successful application of dynamics technology to engineering development of flight vehicles. Material in the second panel is concerned with large data bases in the area of rotorocraft dynamics and how they are developed, managed, and used.

  5. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  6. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Hou, Songyan; Danang Birowosuto, Muhammad; Umar, Saleem; Ange Anicet, Maurice; Yingjie Tay, Roland; Coquet, Philippe; Tay, Beng Kang; Wang, Hong; Teo, Edwin Hang Tong

    2018-01-01

    Hexagonal boron nitride (hBN) has emerged as a promising two-dimensional (2D) material for photonics device due to its large bandgap and flexibility in nanophotonic circuits. Here, we report bright and localized luminescent centres can be engineered in hBN monolayers and flakes using laser irradiation. The transition from hBN to cBN emerges in laser irradiated hBN large monolayers while is absent in processed hBN flakes. Remarkably, the colour centres in hBN flakes exhibit room temperature cleaner single photon emissions with g 2(0) ranging from 0.20 to 0.42, a narrower line width of 1.4 nm and higher brightness compared with monolayers. Our results pave the way to engineering deterministic defects in hBN induced by laser pulse and show great prospect for application of defects in hBN used as nano-size light source in photonics.

  7. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  8. Elucidating the Irreversible Mechanism and Voltage Hysteresis in Conversion Reaction for High-Energy Sodium-Metal Sulfide Batteries

    DOE PAGES

    Wang, Jiajun; Wang, Liguang; Eng, Christopher; ...

    2017-03-03

    We present that irreversible electrochemical behavior and large voltage hysteresis are commonly observed in battery materials, in particular for materials reacting through conversion reaction, resulting in undesirable round-trip energy loss and low coulombic efficiency. Seeking solutions to these challenges relies on the understanding of the underlying mechanism and physical origins. Here, this study combines in operando 2D transmission X-ray microscopy with X-ray absorption near edge structure, 3D tomography, and galvanostatic intermittent titration techniques to uncover the conversion reaction in sodium–metal sulfide batteries, a promising high-energy battery system. This study shows a high irreversible electrochemistry process predominately occurs at first cycle,more » which can be largely linked to Na ion trapping during the first desodiation process and large interfacial ion mobility resistance. Subsequently, phase transformation evolution and electrochemical reaction show good reversibility at multiple discharge/charge cycles due to materials' microstructural change and equilibrium. The origin of large hysteresis between discharge and charge is investigated and it can be attributed to multiple factors including ion mobility resistance at the two-phase interface, intrinsic slow sodium ion diffusion kinetics, and irreversibility as well as ohmic voltage drop and overpotential. In conclusion, this study expects that such understandings will help pave the way for engineering design and optimization of materials microstructure for future-generation batteries.« less

  9. Three-dimensional Architecture Enabled by Strained Two-dimensional Material Heterojunction.

    PubMed

    Lou, Shuai; Liu, Yin; Yang, Fuyi; Lin, Shuren; Zhang, Ruopeng; Deng, Yang; Wang, Michael; Tom, Kyle B; Zhou, Fei; Ding, Hong; Bustillo, Karen C; Wang, Xi; Yan, Shancheng; Scott, Mary; Minor, Andrew; Yao, Jie

    2018-03-14

    Engineering the structure of materials endows them with novel physical properties across a wide range of length scales. With high in-plane stiffness and strength, but low flexural rigidity, two-dimensional (2D) materials are excellent building blocks for nanostructure engineering. They can be easily bent and folded to build three-dimensional (3D) architectures. Taking advantage of the large lattice mismatch between the constituents, we demonstrate a 3D heterogeneous architecture combining a basal Bi 2 Se 3 nanoplate and wavelike Bi 2 Te 3 edges buckling up and down forming periodic ripples. Unlike 2D heterostructures directly grown on substrates, the solution-based synthesis allows the heterostructures to be free from substrate influence during the formation process. The balance between bending and in-plane strain energies gives rise to controllable rippling of the material. Our experimental results show clear evidence that the wavelengths and amplitudes of the ripples are dependent on both the widths and thicknesses of the rippled material, matching well with continuum mechanics analysis. The rippled Bi 2 Se 3 /Bi 2 Te 3 heterojunction broadens the horizon for the application of 2D materials heterojunction and the design and fabrication of 3D architectures based on them, which could provide a platform to enable nanoscale structure generation and associated photonic/electronic properties manipulation for optoelectronic and electromechanic applications.

  10. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  11. Material development for fan blade containment casing

    NASA Astrophysics Data System (ADS)

    McMillan, A.

    2008-03-01

    This paper describes the physics reasoning and the engineering development process for the structured material system adopted for the containment system of the Trent 900 engine. This is the Rolls-Royce engine that powers the Airbus A380 double-decker aeroplane, which is on the point of entering service. The fan blade containment casing is the near cylindrical casing that surrounds the fan blades at the front of the engine. The fan blades provide the main part of the thrust of the engine; the power to the fan is provided through a shaft from the turbine. The fan is approximately three meters in diameter, with the tips of the blade travelling at a little over Mach speed. The purpose of the containment system is to catch and contain a blade in the extremely unlikely event of a part or whole blade becoming detached. This is known as a ''Fan Blade Off (FBO)'' event. The requirement is that no high-energy fragments should escape the containment system; this is essential to prevent damage to other engines or to the fuselage of the aircraft. Traditionally the containment system philosophy has been to provide a sufficiently thick solid metallic skin that the blade cannot penetrate. Obviously, this is heavy. A good choice of metal in this case is a highly ductile steel, which arrests the kinetic energy of the blade through plastic deformation, and possibly, a controlled amount of cracking. This is known as ''hard wall'' containment. More recently, to reduce weight, containment systems have incorporated a Kevlar fibre wrap. In this case, the thinner metallic wall provides some containment, which is backed up by the stretching of the Kevlar fibres. This is known as ''soft wall'' containment; but it suffers the disadvantage of requiring a large empty volume in the nacelle in to which to expand. For the Trent 900 engine, there was a requirement to make a substantial weight saving while still adopting a hard wall style of containment system. To achieve this, a hollow structured material system was developed, with much of the kinetic energy arrest provided by the mechanism of crushing. A number of structural elements were included within the containment system to maximise the area of material involved in the arrest and thereby minimise the overall weight.

  12. Engineered Multifunctional Nanophotonic Materials for Ultrafast Optical Switching

    DTIC Science & Technology

    2012-11-02

    and Co3 + placed at tetrahedral and octahedral sites, respectively. Single -layer thin films of Co3O4 nanoparticles have large optical nonlinearity and...the first two methodologies in systems having weakly resonant structures, including 3-D and/or 1-D photonic crystal structures (i.e. nonlinear Bragg...Nonlinear optical transmission of lead phthalocyanine-doped nematic liquid crystal composites for multiscale nonlinear switching from nanosecond to

  13. New Bedford Harbor Superfund Project Acushnet River Estuary Engineering Feasibility Study of Dredging and Dredged Material Disposal Alternatives. Report 10. Evaluation of Dredging and Dredging Control Technologies

    DTIC Science & Technology

    1988-11-01

    position and pulled through the sediment. Different opening configurations can be used to suit the sediment being removed (Figure 8). 42. The AMTEC ...associated with the New Bedford Harbor site and the relatively large minimum working depth of the AMTEC pneumatic system, this type of dredging

  14. Synthesis and Characterization of DNase 1-Stabilized Gold Nanoclusters

    DTIC Science & Technology

    2014-10-01

    Acknowledgments The authors would like to thank Victor Rodriguez Santiago for the X-ray photoelectron spectroscopy. We also acknowledge the support of the...a Materials Research Science and Engineering Center Shared Experimental Facility. The authors would also like to thank Michael Sellers and Joshua...Postdoctoral Associateship. vi INTENTIONALLY LEFT BLANK. 1 1. Introduction The labeling of biological molecules like protein or DNA has been a large

  15. Diesel Technology: Engines. [Teacher and Student Editions.

    ERIC Educational Resources Information Center

    Barbieri, Dave; Miller, Roger; Kellum, Mary

    Competency-based teacher and student materials on diesel engines are provided for a diesel technology curriculum. Seventeen units of instruction cover the following topics: introduction to engine principles and procedures; engine systems and components; fuel systems; engine diagnosis and maintenance. The materials are based on the…

  16. Advanced high temperature materials for the energy efficient automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.

    1984-01-01

    The Stirling Engine is under investigated jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling Engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion.

  17. Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations

    NASA Technical Reports Server (NTRS)

    Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.

  18. Net-Shape HIP Powder Metallurgy Components for Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bampton, Cliff; Goodin, Wes; VanDaam, Tom; Creeger, Gordon; James, Steve

    2005-01-01

    True net shape consolidation of powder metal (PM) by hot isostatic pressing (HIP) provides opportunities for many cost, performance and life benefits over conventional fabrication processes for large rocket engine structures. Various forms of selectively net-shape PM have been around for thirty years or so. However, it is only recently that major applications have been pursued for rocket engine hardware fabricated in the United States. The method employs sacrificial metallic tooling (HIP capsule and shaped inserts), which is removed from the part after HIP consolidation of the powder, by selective acid dissolution. Full exploitation of net-shape PM requires innovative approaches in both component design and materials and processing details. The benefits include: uniform and homogeneous microstructure with no porosity, irrespective of component shape and size; elimination of welds and the associated quality and life limitations; removal of traditional producibility constraints on design freedom, such as forgeability and machinability, and scale-up to very large, monolithic parts, limited only by the size of existing HIP furnaces. Net-shape PM HIP also enables fabrication of complex configurations providing additional, unique functionalities. The progress made in these areas will be described. Then critical aspects of the technology that still require significant further development and maturation will be discussed from the perspective of an engine systems builder and end-user of the technology.

  19. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  20. Aeronautics and Space Engineering Board: Aeronautics Assessment Committee

    NASA Technical Reports Server (NTRS)

    1977-01-01

    High temperature engine materials, fatigue and fracture life prediction, composite materials, propulsion noise pollution, propulsion components, full-scale engine research, V/STOL propulsion, advanced engine concepts, and advanced general aviation propulsion research were discussed.

  1. Oxidation of Copper Alloy Candidates for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. Thomas; Humphrey, Donald L.

    2002-01-01

    The gateway to affordable and reliable space transportation in the near future remains long-lived rocket-based propulsion systems; and because of their high conductivities, copper alloys remain the best materials for lining rocket engines and dissipating their enormous thermal loads. However, Cu and its alloys are prone to oxidative degradation -- especially via the ratcheting phenomenon of blanching, which occurs in situations where the local ambient can oscillate between oxidation and reduction, as it does in a H2/02- fuelled rocket engine. Accordingly, resistance to blanching degradation is one of the key requirements for the next generation of reusable launch vehicle (RLV) liner materials. Candidate copper alloys have been studied with a view to comparing their oxidation behavior, and hence resistance to blanching, in ambients corresponding to conditions expected in rocket engine service. These candidate materials include GRCop-84 and GRCop-42 (Cu - Cr-8 - Nb-4 and Cu - Cr-4 - Nb-2 respectively); NARloy-Z (Cu-3%Ag-0.5%Y), and GlidCop (Cu-O.l5%Al2O3 ODS alloy); they represent different approaches to improving the mechanical properties of Cu without incurring a large drop in thermal conductivity. Pure Cu (OFHC-Cu) was included in the study to provide a baseline for comparison. The samples were exposed for 10 hours in the TGA to oxygen partial pressures ranging from 322 ppm to 1.0 atmosphere and at temperatures of up to 700 C, and examined by SEM-EDS and other techniques of metallography. This paper will summarize the results obtained.

  2. Next-Generation RS-25 Engines for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Ballard, Richard O.

    2017-01-01

    The utilization of heritage RS-25 engine, also known as the Space Shuttle Main Engine (SSME), has enabled rapid progress in the development and certification of the NASA Space Launch System (SLS) toward operational flight status. The RS-25 brings design maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. Beyond these initial SLS flights, NASA must have a renewed supply of RS-25 engines that must reflect program affordability imperatives as well as technical requirements imposed by the SLS Block-1B vehicle (i.e., 111% RPL power level, reduced service life). Recognizing the long lead times needed for the fabrication, assembly and acceptance testing of flight engines, design activities are underway at NASA and the RS-25 engine provider, Aerojet Rocketdyne, to improve system affordability and eliminate obsolescence concerns. This paper describes how the achievement of these key objectives are enabled largely by utilizing modern materials and fabrication technologies, but also by innovations in systems engineering and integration (SE&I) practices.

  3. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category airplane...

  4. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category airplane...

  5. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category airplane...

  6. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category airplane... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Large transport category airplanes: Turbine...

  7. 14 CFR 135.381 - Large transport category airplanes: Turbine engine powered: En route limitations: One engine...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Limitations § 135.381 Large transport category airplanes: Turbine engine powered: En route limitations: One engine inoperative. (a) No person operating a turbine engine powered large transport category airplane... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Large transport category airplanes: Turbine...

  8. Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation. Premature failure in regions of the unit cell near the edge of the straight-sided specimens was observed for transverse tensile tests in which the braid axial fibers were perpendicular to the specimen axis and the bias fibers terminated on the cut edges in the specimen gage section. This edge effect is one factor that could contribute to a measured strength that is lower than the actual material strength in a structure without edge effects.

  9. Preface - BraMat 2017

    NASA Astrophysics Data System (ADS)

    Munteanu, Daniel

    2018-04-01

    The main goal of the BraMat 2017 Conference was, as for the previous editions, to stimulate an international exchange of information in the field of materials science and engineering and to establish future research directions. The main topics of this edition included: ​Metallic materials (Section I), Biomaterials (Section II), Ceramics, polymers and composite materials (Section III), Surface engineering (Section IV), Nanomaterials (Section V), Welding engineering (Section VI), Safety engineering (Section VII), and Magnesium science and engineering (Section VIII).

  10. Approaches for Achieving Superlubricity in Two-Dimensional Materials.

    PubMed

    Berman, Diana; Erdemir, Ali; Sumant, Anirudha V

    2018-03-27

    Controlling friction and reducing wear of moving mechanical systems is important in many applications, from nanoscale electromechanical systems to large-scale car engines and wind turbines. Accordingly, multiple efforts are dedicated to design materials and surfaces for efficient friction and wear manipulation. Recent advances in two-dimensional (2D) materials, such as graphene, hexagonal boron nitride, molybdenum disulfide, and other 2D materials opened an era for conformal, atomically thin solid lubricants. However, the process of effectively incorporating 2D films requires a fundamental understanding of the atomistic origins of friction. In this review, we outline basic mechanisms for frictional energy dissipation during sliding of two surfaces against each other, and the procedures for manipulating friction and wear by introducing 2D materials at the tribological interface. Finally, we highlight recent progress in implementing 2D materials for friction reduction to near-zero values-superlubricity-across scales from nano- up to macroscale contacts.

  11. Building Honeycomb-Like Hollow Microsphere Architecture in a Bubble Template Reaction for High-Performance Lithium-Rich Layered Oxide Cathode Materials.

    PubMed

    Chen, Zhaoyong; Yan, Xiaoyan; Xu, Ming; Cao, Kaifeng; Zhu, Huali; Li, Lingjun; Duan, Junfei

    2017-09-13

    In the family of high-performance cathode materials for lithium-ion batteries, lithium-rich layered oxides come out in front because of a high reversible capacity exceeding 250 mAh g -1 . However, the long-term energy retention and high energy densities for lithium-rich layered oxide cathode materials require a stable structure with large surface areas. Here we propose a "bubble template" reaction to build "honeycomb-like" hollow microsphere architecture for a Li 1.2 Mn 0.52 Ni 0.2 Co 0.08 O 2 cathode material. Our material is designed with ca. 8-μm-sized secondary particles with hollow and highly exposed porous structures that promise a large flexible volume to achieve superior structure stability and high rate capability. Our preliminary electrochemical experiments show a high capacity of 287 mAh g -1 at 0.1 C and a capacity retention of 96% after 100 cycles at 1.0 C. Furthermore, the rate capability is superior without any other modifications, reaching 197 mAh g -1 at 3.0 C with a capacity retention of 94% after 100 cycles. This approach may shed light on a new material engineering for high-performance cathode materials.

  12. Antiferromagnetism in Bulk Rutile RuO2

    NASA Astrophysics Data System (ADS)

    Berlijn, T.; Snijders, P. C.; Kent, P. R. C.; Maier, T. A.; Zhou, H.-D.; Cao, H.-B.; Delaire, O.; Wang, Y.; Koehler, M.; Weitering, H. H.

    While bulk rutile RuO2 has long been considered to be a Pauli paramagnet, we conclude it to host antiferromagnetism based on our combined theoretical and experimental study. This constitutes an important finding given the large amount of applications of RuO2 in the electrochemical and electronics industry. Furthermore the high onset temperature of the antiferromagnetism around 1000K together with the high electrical conductivity makes RuO2 unique among the ruthenates and among oxide materials in general. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  13. Safe Life Propulsion Design Technologies (3rd Generation Propulsion Research and Technology)

    NASA Technical Reports Server (NTRS)

    Ellis, Rod

    2000-01-01

    The tasks outlined in this viewgraph presentation on safe life propulsion design technologies (third generation propulsion research and technology) include the following: (1) Ceramic matrix composite (CMC) life prediction methods; (2) Life prediction methods for ultra high temperature polymer matrix composites for reusable launch vehicle (RLV) airframe and engine application; (3) Enabling design and life prediction technology for cost effective large-scale utilization of MMCs and innovative metallic material concepts; (4) Probabilistic analysis methods for brittle materials and structures; (5) Damage assessment in CMC propulsion components using nondestructive characterization techniques; and (6) High temperature structural seals for RLV applications.

  14. Review of high field superconducting magnet development at Oxford Instruments

    NASA Astrophysics Data System (ADS)

    Brown, F. J.; Kerley, N. W.; Knox, R. B.; Timms, K. W.

    1996-02-01

    Present commercial development activity for high field superconducting magnets is focused clearly in three directions. The development of solenoid magnets with flux densities in excess of 20 T, the production of highly homogeneous fields at 20 T, and development of large split pair magnets in excess of 12 T. Recent developments in split pair technology allows us to build magnets with useful access, transverse to the field, up to 15 T. Compact solenoid magnets to 20 T have been available commercially for over 3 yr now with a progressive increment in bore size, providing associated engineering challenges. A 20 T solenoid with a clear bore of 52 mm and a homogeneity of 0.1% is now a standard production item. Improving the homogeneity to the 1 ppm level involves re-assessment of critical design parameters and choice of materials. Our development over the last twelve months has culminated in a 20 T solenoid with base homogeneity of 5 ppm over a 10 mm sphere. In order to realise persistent fields in excess of 20 T, requires the priority on development to be switched from engineering and manufacturing towards material development and enhancement. We present the findings and conclusions of our high field development program over the last 3 yr, together with an outline of our requirements and activities in materials and engineering leading to the next step in high field magnet manufacture, using conventional low Tc conductors.

  15. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  16. Design and Control of a Proof-of-Concept Active Jet Engine Intake Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Song, Gangbing; Ma, Ning; Penney, Nicholas; Barr, Todd; Lee, Ho-Jun; Arnold, Steven M.

    2004-01-01

    The design and control of a novel proof-of-concept active jet engine intake using Nickel-Titanium (Ni-Ti or Nitinol) shape memory alloy (SMA) wire actuators is used to demonstrate the potential of an adaptive intake to improve the fuel efficiency of a jet engine. The Nitinol SMA material is selected for this research due to the material's ability to generate large strains of up to 5 percent for repeated operations, a high power-to-weight ratio, electrical resistive actuation, and easy fabrication into a variety of shapes. The proof-of-concept engine intake employs an overlapping leaf design arranged in a concentric configuration. Each leaf is mounted on a supporting bar that rotates upon actuation by SMA wires electrical resistive heating. Feedback control is enabled through the use of a laser range sensor to detect the movement of a leaf and determine the radius of the intake area. Due to the hysteresis behavior inherent in SMAs, a nonlinear robust controller is used to direct the SMA wire actuation. The controller design utilizes the sliding-mode approach to compensate for the nonlinearities associated with the SMA actuator. Feedback control experiments conducted on a fabricated proof-of-concept model have demonstrated the capability to precisely control the intake area and achieve up to a 25 percent reduction in intake area. The experiments demonstrate the feasibility of engine intake area control using the proposed design.

  17. Evolution of a Materials Data Infrastructure

    NASA Astrophysics Data System (ADS)

    Warren, James A.; Ward, Charles H.

    2018-06-01

    The field of materials science and engineering is writing a new chapter in its evolution, one of digitally empowered materials discovery, development, and deployment. The 2008 Integrated Computational Materials Engineering (ICME) study report helped usher in this paradigm shift, making a compelling case and strong recommendations for an infrastructure supporting ICME that would enable access to precompetitive materials data for both scientific and engineering applications. With the launch of the Materials Genome Initiative in 2011, which drew substantial inspiration from the ICME study, digital data was highlighted as a core component of a Materials Innovation Infrastructure, along with experimental and computational tools. Over the past 10 years, our understanding of what it takes to provide accessible materials data has matured and rapid progress has been made in establishing a Materials Data Infrastructure (MDI). We are learning that the MDI is essential to eliminating the seams between experiment and computation by providing a means for them to connect effortlessly. Additionally, the MDI is becoming an enabler, allowing materials engineering to tie into a much broader model-based engineering enterprise for product design.

  18. Bioinspired engineering of thermal materials.

    PubMed

    Tao, Peng; Shang, Wen; Song, Chengyi; Shen, Qingchen; Zhang, Fangyu; Luo, Zhen; Yi, Nan; Zhang, Di; Deng, Tao

    2015-01-21

    In the development of next-generation materials with enhanced thermal properties, biological systems in nature provide many examples that have exceptional structural designs and unparalleled performance in their thermal or nonthermal functions. Bioinspired engineering thus offers great promise in the synthesis and fabrication of thermal materials that are difficult to engineer through conventional approaches. In this review, recent progress in the emerging area of bioinspired advanced materials for thermal science and technology is summarized. State-of-the-art developments of bioinspired thermal-management materials, including materials for efficient thermal insulation and heat transfer, and bioinspired materials for thermal/infrared detection, are highlighted. The dynamic balance of bioinspiration and practical engineering, the correlation of inspiration approaches with the targeted applications, and the coexistence of molecule-based inspiration and structure-based inspiration are discussed in the overview of the development. The long-term outlook and short-term focus of this critical area of advanced materials engineering are also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an intended..., 1958, but before August 30, 1959 (SR422A). No person may operate a turbine engine powered large...

  20. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an intended..., 1958, but before August 30, 1959 (SR422A). No person may operate a turbine engine powered large...

  1. Robust Informatics Infrastructure Required For ICME: Combining Virtual and Experimental Data

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Holland, Frederic A. Jr.; Bednarcyk, Brett A.

    2014-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for robust automated materials information management system(s) enabling sophisticated data mining tools is increasing, as evidenced by the emphasis on Integrated Computational Materials Engineering (ICME) and the recent establishment of the Materials Genome Initiative (MGI). This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and or multi-scale models requires both the processing of large volumes of test data and complex materials data necessary to establish processing-microstructure-property-performance relationships. Fortunately, material information management systems have kept pace with the growing user demands and evolved to enable: (i) the capture of both point wise data and full spectra of raw data curves, (ii) data management functions such as access, version, and quality controls;(iii) a wide range of data import, export and analysis capabilities; (iv) data pedigree traceability mechanisms; (v) data searching, reporting and viewing tools; and (vi) access to the information via a wide range of interfaces. This paper discusses key principles for the development of a robust materials information management system to enable the connections at various length scales to be made between experimental data and corresponding multiscale modeling toolsets to enable ICME. In particular, NASA Glenn's efforts towards establishing such a database for capturing constitutive modeling behavior for both monolithic and composites materials

  2. Understanding the Role of Academic Language on Conceptual Understanding in an Introductory Materials Science and Engineering Course

    NASA Astrophysics Data System (ADS)

    Kelly, Jacquelyn

    Students may use the technical engineering terms without knowing what these words mean. This creates a language barrier in engineering that influences student learning. Previous research has been conducted to characterize the difference between colloquial and scientific language. Since this research had not yet been applied explicitly to engineering, conclusions from the area of science education were used instead. Various researchers outlined strategies for helping students acquire scientific language. However, few examined and quantified the relationship it had on student learning. A systemic functional linguistics framework was adopted for this dissertation which is a framework that has not previously been used in engineering education research. This study investigated how engineering language proficiency influenced conceptual understanding of introductory materials science and engineering concepts. To answer the research questions about engineering language proficiency, a convenience sample of forty-one undergraduate students in an introductory materials science and engineering course was used. All data collected was integrated with the course. Measures included the Materials Concept Inventory, a written engineering design task, and group observations. Both systemic functional linguistics and mental models frameworks were utilized to interpret data and guide analysis. A series of regression analyses were conducted to determine if engineering language proficiency predicts group engineering term use, if conceptual understanding predicts group engineering term use, and if conceptual understanding predicts engineering language proficiency. Engineering academic language proficiency was found to be strongly linked to conceptual understanding in the context of introductory materials engineering courses. As the semester progressed, this relationship became even stronger. The more engineering concepts students are expected to learn, the more important it is that they are proficient in engineering language. However, exposure to engineering terms did not influence engineering language proficiency. These results stress the importance of engineering language proficiency for learning, but warn that simply exposing students to engineering terms does not promote engineering language proficiency.

  3. Reliability and Confidence Interval Analysis of a CMC Turbine Stator Vane

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Gyekenyesi, John P.; Mital, Subodh K.

    2008-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight, enable higher operating temperatures requiring less cooling and thus leading to increased engine efficiencies. However, these materials are brittle and show degradation with time at high operating temperatures due to creep as well as cyclic mechanical and thermal loads. In addition, these materials are heterogeneous in their make-up and various factors affect their properties in a specific design environment. Most of these advanced composites involve two- and three-dimensional fiber architectures and require a complex multi-step high temperature processing. Since there are uncertainties associated with each of these in addition to the variability in the constituent material properties, the observed behavior of composite materials exhibits scatter. Traditional material failure analyses employing a deterministic approach, where failure is assumed to occur when some allowable stress level or equivalent stress is exceeded, are not adequate for brittle material component design. Such phenomenological failure theories are reasonably successful when applied to ductile materials such as metals. Analysis of failure in structural components is governed by the observed scatter in strength, stiffness and loading conditions. In such situations, statistical design approaches must be used. Accounting for these phenomena requires a change in philosophy on the design engineer s part that leads to a reduced focus on the use of safety factors in favor of reliability analyses. The reliability approach demands that the design engineer must tolerate a finite risk of unacceptable performance. This risk of unacceptable performance is identified as a component's probability of failure (or alternatively, component reliability). The primary concern of the engineer is minimizing this risk in an economical manner. The methods to accurately determine the service life of an engine component with associated variability have become increasingly difficult. This results, in part, from the complex missions which are now routinely considered during the design process. These missions include large variations of multi-axial stresses and temperatures experienced by critical engine parts. There is a need for a convenient design tool that can accommodate various loading conditions induced by engine operating environments, and material data with their associated uncertainties to estimate the minimum predicted life of a structural component. A probabilistic composite micromechanics technique in combination with woven composite micromechanics, structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Furthermore, input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Since the measured data for the ceramic matrix composite properties is very limited, obtaining a probabilistic distribution with their corresponding parameters is difficult. In case of limited data, confidence bounds are essential to quantify the uncertainty associated with the distribution. Usually 90 and 95% confidence intervals are computed for material properties. Failure properties are then computed with the confidence bounds. Best estimates and the confidence bounds on the best estimate of the cumulative probability function for R-S (strength - stress) are plotted. The methodologies and the results from these analyses will be discussed in the presentation.

  4. Aligned carbon nanotube based ultrasonic microtransducers for durability monitoring in civil engineering.

    PubMed

    Lebental, B; Chainais, P; Chenevier, P; Chevalier, N; Delevoye, E; Fabbri, J-M; Nicoletti, S; Renaux, P; Ghis, A

    2011-09-30

    Structural health monitoring of porous materials such as concrete is becoming a major component in our resource-limited economy, as it conditions durable exploitation of existing facilities. Durability in porous materials depends on nanoscale features which need to be monitored in situ with nanometric resolution. To address this problem, we put forward an approach based on the development of a new nanosensor, namely a capacitive micrometric ultrasonic transducer whose vibrating membrane is made of aligned single-walled carbon nanotubes (SWNT). Such sensors are meant to be embedded in large numbers within a porous material in order to provide information on its durability by monitoring in situ neighboring individual micropores. In the present paper, we report on the feasibility of the key building block of the proposed sensor: we have fabricated well-aligned, ultra-thin, dense SWNT membranes that show above-nanometer amplitudes of vibration over a large range of frequencies spanning from 100 kHz to 5 MHz.

  5. Material design and engineering of next-generation flow-battery technologies

    NASA Astrophysics Data System (ADS)

    Park, Minjoon; Ryu, Jaechan; Wang, Wei; Cho, Jaephil

    2017-01-01

    Spatial separation of the electrolyte and electrode is the main characteristic of flow-battery technologies, which liberates them from the constraints of overall energy content and the energy/power ratio. The concept of a flowing electrolyte not only presents a cost-effective approach for large-scale energy storage, but has also recently been used to develop a wide range of new hybrid energy storage and conversion systems. The advent of flow-based lithium-ion, organic redox-active materials, metal-air cells and photoelectrochemical batteries promises new opportunities for advanced electrical energy-storage technologies. In this Review, we present a critical overview of recent progress in conventional aqueous redox-flow batteries and next-generation flow batteries, highlighting the latest innovative alternative materials. We outline their technical feasibility for use in long-term and large-scale electrical energy-storage devices, as well as the limitations that need to be overcome, providing our view of promising future research directions in the field of redox-flow batteries.

  6. Ceramic regenerator systems development program. [for automobile gas turbine engines

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.

    1977-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines. The results of 19,600 hours of turbine engine durability testing are described. Two materials, aluminum silicate and magnesium aluminum silicate, continue to show promise toward achieving the durability objectives of this program. A regenerator core made from aluminum silicate showed minimal evidence of chemical attack damage after 6935 hours of engine test at 800 C and another showed little distress after 3510 hours at 982 C. Results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  7. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    ATTAP activities during the past year were highlighted by an extensive materials assessment, execution of a reference powertrain design, test-bed engine design and development, ceramic component design, materials and component characterization, ceramic component process development and fabrication, component rig design and fabrication, test-bed engine fabrication, and hot gasifier rig and engine testing. Materials assessment activities entailed engine environment evaluation of domestically supplied radial gasifier turbine rotors that were available at the conclusion of the Advanced Gas Turbine (AGT) Technology Development Project as well as an extensive survey of both domestic and foreign ceramic suppliers and Government laboratories performing ceramic materials research applicable to advanced heat engines. A reference powertrain design was executed to reflect the selection of the AGT-5 as the ceramic component test-bed engine for the ATTAP. Test-bed engine development activity focused on upgrading the AGT-5 from a 1038 C (1900 F) metal engine to a durable 1371 C (2500 F) structural ceramic component test-bed engine. Ceramic component design activities included the combustor, gasifier turbine static structure, and gasifier turbine rotor. The materials and component characterization efforts have included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities were initiated for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig development activities included combustor, hot gasifier, and regenerator rigs. Test-bed engine fabrication activities consisted of the fabrication of an all-new AGT-5 durability test-bed engine and support of all engine test activities through instrumentation/build/repair. Hot gasifier rig and test-bed engine testing activities were performed.

  8. Facet‐Engineered Surface and Interface Design of Photocatalytic Materials

    PubMed Central

    Wang, Lili; Li, Zhengquan

    2016-01-01

    The facet‐engineered surface and interface design for photocatalytic materials has been proven as a versatile approach to enhance their photocatalytic performance. This review article encompasses some recent advances in the facet engineering that has been performed to control the surface of mono‐component semiconductor systems and to design the surface and interface structures of multi‐component heterostructures toward photocatalytic applications. The review begins with some key points which should receive attention in the facet engineering on photocatalytic materials. We then discuss the synthetic approaches to achieve the facet control associated with the surface and interface design. In the following section, the facet‐engineered surface design on mono‐component photocatalytic materials is introduced, which forms a basis for the discussion on more complex systems. Subsequently, we elucidate the facet‐engineered surface and interface design of multi‐component photocatalytic materials. Finally, the existing challenges and future prospects are discussed. PMID:28105398

  9. Advances in vascular tissue engineering.

    PubMed

    Thomas, Anita C; Campbell, Gordon R; Campbell, Julie H

    2003-01-01

    Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the supply of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. "Tissue-engineered blood vessels" may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. "Artificial arteries" may be also be derived from peritoneal granulation tissue in body "bioreactors" by adapting the body's natural wound healing response to produce a hollow tube.

  10. Three-Dimensional (3D) Additive Construction: Printing with Regolith

    NASA Technical Reports Server (NTRS)

    Tsoras, Alexandra

    2013-01-01

    Three dimensional (3D) printing is a new and booming topic in many realms of research and engineering technology. When it comes to space science and aerospace engineering, it can be useful in numerous ways. As humans travel deeper into space and farther from Earth, sending large quantities of needed supplies from Earth for a mission becomes astronomically expensive and less plausible. In order to reach further to new places, In Situ Resource Utilization (ISRU), a project that pushes for technologies to use materials already present in the destination's environment, is necessary. By using materials already available in space such as regolith from the Moon, Mars, or an asteroid's surface, fewer materials need to be brought into space on a launched vehicle. This allows a vehicle to be filled with more necessary supplies for a deep space mission that may not be found in space, like food and fuel. This project's main objective was to develop a 3D printer that uses regolith to "print" large structures, such as a dome, to be used as a heat shield upon a vehicle's reentry into the atmosphere or even a habitat. 3D printing is a growing technology that uses many different methods to mix, heat, and mold a material into a specific shape. In order to heat the regolith enough to stick together into a solid shape, it must be sintered at each layer of material that is laid. Sintering is a process that heats and compresses a powdered material until it fuses into a solid, which requires a lot of energy input. As an alternative, a polymer can be mixed with the regolith before or as it is sent to the 3D printer head to be placed in the specific shape. The addition of the polymer, which melts and binds at much lower temperatures than sintering temperatures, greatly decreases the required heating temperature and energy input. The main task of the project was to identify a functional material for the printer. The first step was to find a miscible. polymer/solvent solution. This solution was added to the regolith and the solvent was evaporated essentially leaving polymer-coated regolith particles. This material would be sent through the printer head and heated layer by layer to melt the polymer and bind the regolith. This method was one of many in a large goal to utilize materials in space with a custom-made 3D printer that builds dome-shaped habitats and other essential equipment for future deep space missions.

  11. The Teaching of Crystallography to Materials Scientists and Engineers.

    ERIC Educational Resources Information Center

    Wuensch, Bernhardt J.

    1988-01-01

    Provides a framework of the disciplines of materials science and engineering as they have developed. Discusses the philosophy, content, and approach to teaching these courses. Indicates the range of crystallographic topics contained in the materials science and engineering curriculum at the Massachussetts Institute of Technology. (CW)

  12. Naturally occurring minichromosome platforms in chromosome engineering: an overview.

    PubMed

    Raimondi, Elena

    2011-01-01

    Artificially modified chromosome vectors are non-integrating gene delivery platforms that can shuttle very large DNA fragments in various recipient cells: theoretically, no size limit exists for the chromosome segments that an engineered minichromosome can accommodate. Therefore, genetically manipulated chromosomes might be potentially ideal vector systems, especially when the complexity of higher eukaryotic genes is concerned. This review focuses on those chromosome vectors generated using spontaneously occurring small markers as starting material. The definition and manipulation of the centromere domain is one of the main obstacles in chromosome engineering: naturally occurring minichromosomes, due to their inherent small size, were helpful in defining some aspects of centromere function. In addition, several distinctive features of small marker chromosomes, like their appearance as supernumerary elements in otherwise normal karyotypes, have been successfully exploited to use them as gene delivery vectors. The key technologies employed for minichromosome engineering are: size reduction, gene targeting, and vector delivery in various recipient cells. In spite of the significant advances that have been recently achieved in all these fields, several unsolved problems limit the potential of artificially modified chromosomes. Still, these vector systems have been exploited in a number of applications where the investigation of the controlled expression of large DNA segments is needed. A typical example is the analysis of genes whose expression strictly depends on the chromosomal environment in which they are positioned, where engineered chromosomes can be envisaged as epigenetically regulated expression systems. A novel and exciting advance concerns the use of engineered minichromosomes to study the organization and dynamics of local chromatin structures.

  13. Review on antibacterial characteristics of bridge engineering biomaterials.

    PubMed

    Zhao, Qing-Qing; Chen, Meng-Yao; He, Rui-Lin; Zhang, Zhong-Feng; Ashraf, Muhammad Aqeel

    2016-01-01

    This review summarizes the research on timber construction materials used in bridge construction. It focuses on the application of antiseptic treatments and the use of timber engineering materials in decks and bridges. This review also provides an overview on the future research and prospects of engineered timber materials.

  14. Genetically Engineered Autologous Cells for Antiangiogenic Therapy of Breast Cancer

    DTIC Science & Technology

    2004-07-01

    consisted of a large, fragmented avascular center surrounded by a thin band of vascularized matrix material, itself covered by a capsule of connective tissue...contained dead cells that showed features of coagulation necrosis . The minimal inflammatory response consisted of neutrophils scattered within the...vascularize most likely contributed to the death (coagulation necrosis ) of implanted MSCs localized in the implant core and to the fragmentation of the

  15. Damage Detection Using Lamb Waves for Structural Health Monitoring

    DTIC Science & Technology

    2007-03-01

    experiments have been reported by Seth Kessler [8]. 2.2 Large Aluminum Plate The second experiment included a 2024-0 aluminum plate with dimensions of...Mechanical Engineering Congress , (IMECE2002- 39017) (17-22 November 2002). 6. Kessler , Seth S. Piezoelectric-Based In-Situ Damage Detection of...Composite Materials for Structural Health Monitoring Systems. Ph.D. thesis, Massachusetts Institute of Technology, January 2002. 7. Kessler , Seth S. “Metis

  16. User’s Guide Engineering Data Compendium Human Perception and Performance

    DTIC Science & Technology

    1988-01-01

    covered (CRef. 1.222) by large wedges of sound-absorbing material to minimize Achromatic. (1) Characterized by an absence of chroma reflections and...walk model. A model of the perception and Risley prism. A prism assembly comprised of two thin decision response components in reaction time tasks... wedge prisms (generally identical) arranged in series. According to the model, an ideal detector accumulates Rotating the two prisms in opposite

  17. The 17th Project Integration Meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1981-01-01

    Progress made by the Low-Cost Solar Array Project during the period September 1980 to February 1981 is described. Included are reports on project analysis and integration; technology development in silicon material, large-area silicon sheet and encapsulation; production process and equipment development; engineering, and operations. A report on and copies of visual presentations made at the Project Integration Meeting held at Pasadena, California on February 4 and 5, 1981 are also included.

  18. Design and implemention of a multi-functional x-ray computed tomography system

    NASA Astrophysics Data System (ADS)

    Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin; Zhang, Xiang; Deng, Lin; Chen, Siyu; Jin, Zhao; Li, Zengguang

    2015-10-01

    A powerful volume X-ray tomography system has been designed and constructed to provide an universal tool for the three-dimensional nondestructive testing and investigation of industrial components, automotive, electronics, aerospace components, new materials, etc. The combined system is equipped with two commercial X-ray sources, sharing one flat panel detector of 400mm×400mm. The standard focus 450kV high-energy x-ray source is optimized for complex and high density components such as castings, engine blocks and turbine blades. And the microfocus 225kV x-ray source is to meet the demands of micro-resolution characterization applications. Thus the system's penetration capability allows to scan large objects up to 200mm thick dense materials, and the resolution capability can meet the demands of 20μm microstructure inspection. A high precision 6-axis manipulator system is fitted, capable of offset scanning mode in large field of view requirements. All the components are housed in a room with barium sulphate cement. On the other hand, the presented system expands the scope of applications such as dual energy research and testing. In this paper, the design and implemention of the flexible system is described, as well as the preliminary tomographic imaging results of an automobile engine block.

  19. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  20. Interior of Vacuum Tank at the Electric Propulsion Laboratory

    NASA Image and Video Library

    1961-08-21

    Interior of the 20-foot diameter vacuum tank at the NASA Lewis Research Center’s Electric Propulsion Laboratory. Lewis researchers had been studying different electric rocket propulsion methods since the mid-1950s. Harold Kaufman created the first successful ion engine, the electron bombardment ion engine, in the early 1960s. These engines used electric power to create and accelerate small particles of propellant material to high exhaust velocities. Electric engines have a very small thrust, but can operate for long periods of time. The ion engines are often clustered together to provide higher levels of thrust. The Electric Propulsion Laboratory, which began operation in 1961, contained two large vacuum tanks capable of simulating a space environment. The tanks were designed especially for testing ion and plasma thrusters and spacecraft. The larger 25-foot diameter tank included a 10-foot diameter test compartment to test electric thrusters with condensable propellants. The portals along the chamber floor lead to the massive exhauster equipment that pumped out the air to simulate the low pressures found in space.

  1. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    PubMed Central

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  2. Materials science tools for regenerative medicine

    NASA Astrophysics Data System (ADS)

    Richardson, Wade Nicholas

    Regenerative therapies originating from recent technological advances in biology could revolutionize medicine in the coming years. In particular, the advent of human pluripotent stem cells (hPSCs), with their ability to become any cell in the adult body, has opened the door to an entirely new way of treating disease. However, currently these medical breakthroughs remain only a promise. To make them a reality, new tools must be developed to surmount the new technical hurdles that have arisen from dramatic departure from convention that this field represents. The collected work presented in this dissertation covers several projects that seek to apply the skills and knowledge of materials science to this tool synthesizing effort. The work is divided into three chapters. The first deals with our work to apply Raman spectroscopy, a tool widely used for materials characterization, to degeneration in cartilage. We have shown that Raman can effectively distinguish the matrix material of healthy and diseased tissue. The second area of work covered is the development of a new confocal image analysis for studying hPSC colonies that are chemical confined to uniform growth regions. This tool has important application in understanding the heterogeneity that may slow the development of hPSC -based treatment, as well as the use of such confinement in the eventually large-scale manufacture of hPSCs for therapeutic use. Third, the use of structural templating in tissue engineering scaffolds is detailed. We have utilized templating to tailor scaffold structures for engineering of constructs mimicking two tissues: cartilage and lung. The work described here represents several important early steps towards large goals in regenerative medicine. These tools show a great deal of potential for accelerating progress in this field that seems on the cusp of helping a great many people with otherwise incurable disease.

  3. Novel Approach to Strengthening Ceramic Cathode Contact and Validation in a Generic Stack Test Fixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Yeong-Shyung; Bonnett, Jeff F.; Stevenson, Jeffry W.

    The ceramic contact material at the cathode side has been identified as the weakest mechanical link in solid oxide fuel cells, due to poor sintering at low stack fabrication temperatures. In this work, a novel approach of mechanical interlocking with an engineered surface was proposed to strengthen LSM-type contacts. The engineered cathode surface was made by depositing large LSM20 granules onto a wet cathode print, followed by sintering. Granules of three sizes were tested (mesh #35, #60, and #100). Small coupons of anode-supported YSZ electrolyte with LSM cathode were joined at 850 and 950oC for 2h with LSM contact usingmore » either the engineered surface or plain surfaces. The results of contact strength measurements showed about 14 times increase with engineered surface compared to plain surfaces. Validation with a 2”x2” LSM-based cell in a generic stack fixture showed good thermal cycle stability with minimal change in ohmic impedance over ten cycles.« less

  4. Performance investigation of bandgap, gate material work function and gate dielectric engineered TFET with device reliability improvement

    NASA Astrophysics Data System (ADS)

    Raad, Bhagwan Ram; Nigam, Kaushal; Sharma, Dheeraj; Kondekar, P. N.

    2016-06-01

    This script features a study of bandgap, gate material work function and gate dielectric engineering for enhancement of DC and Analog/RF performance, reduction in the hot carriers effect (HCEs) and drain induced barrier lowering (DIBL) for better device reliability. In this concern, the use of band gap and gate material work function engineering improves the device performance in terms of the ON-state current and suppressed ambipolar behaviour with maintaining the low OFF-state current. With these advantages, the use of gate material work function engineering imposes restriction on the high frequency performance due to increment in the parasitic capacitances and also introduces the hot carrier effects. Hence, the gate dielectric engineering with bandgap and gate material work function engineering are used in this paper to overcome the cons of the gate material work function engineering by obtaining a superior performance in terms of the current driving capability, ambipolar conduction, HCEs, DIBL and high frequency parameters of the device for ultra-low power applications. Finally, the optimization of length for different work function is performed to get the best out of this.

  5. Advanced Ceramics for NASA's Current and Future Needs

    NASA Technical Reports Server (NTRS)

    Jaskowiak, Martha H.

    2006-01-01

    Ceramic composites and monolithics are widely recognized by NASA as enabling materials for a variety of aerospace applications. Compared to traditional materials, ceramic materials offer higher specific strength which can enable lighter weight vehicle and engine concepts, increased payloads, and increased operational margins. Additionally, the higher temperature capabilities of these materials allows for increased operating temperatures within the engine and on the vehicle surfaces which can lead to improved engine efficiency and vehicle performance. To meet the requirements of the next generation of both rocket and air-breathing engines, NASA is actively pursuing the development and maturation of a variety of ceramic materials. Anticipated applications for carbide, nitride and oxide-based ceramics will be presented. The current status of these materials and needs for future goals will be outlined. NASA also understands the importance of teaming with other government agencies and industry to optimize these materials and advance them to the level of maturation needed for eventual vehicle and engine demonstrations. A number of successful partnering efforts with NASA and industry will be highlighted.

  6. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on the... operators may select an airport as an alternate airport for a turbine engine powered large transport...

  7. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport... and terrain. (c) A program manager or other person flying a turbine engine powered large transport...

  8. 14 CFR 135.387 - Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....387 Large transport category airplanes: Turbine engine powered: Landing limitations: Alternate... alternate airport for a turbine engine powered large transport category airplane unless (based on the... operators may select an airport as an alternate airport for a turbine engine powered large transport...

  9. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take off... this section, no person operating a turbine engine powered large transport category airplane may take...

  10. 14 CFR 91.1037 - Large transport category airplanes: Turbine engine powered; Limitations; Destination and...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1037 Large transport category airplanes: Turbine engine powered; Limitations; Destination and alternate airports. (a) No program manager or any other person may permit a turbine engine powered large transport... and terrain. (c) A program manager or other person flying a turbine engine powered large transport...

  11. 14 CFR 135.385 - Large transport category airplanes: Turbine engine powered: Landing limitations: Destination...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....385 Large transport category airplanes: Turbine engine powered: Landing limitations: Destination airports. (a) No person operating a turbine engine powered large transport category airplane may take off... this section, no person operating a turbine engine powered large transport category airplane may take...

  12. 14 CFR 135.371 - Large transport category airplanes: Reciprocating engine powered: En route limitations: One...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Limitations § 135.371 Large transport category airplanes: Reciprocating engine powered: En route limitations... reciprocating engine powered large transport category airplane may take off that airplane at a weight, allowing..., under an approved procedure, operate a reciprocating engine powered large transport category airplane at...

  13. Assesment of hydraulics properties of technosoil constructed with waste material using Beerkan infiltration

    NASA Astrophysics Data System (ADS)

    Yilmaz, Deniz; Peyneau, Pierre-Emmanuel; Beaudet, Laure; Cannavo, Patrice; Sere, Geoffroy

    2017-04-01

    For the characterization of hydraulics soils functions, in situ infiltration experiments are commonly used. The BEST method based on the infiltration through a single ring is well suited for soils containing coarse material. Technosols built from Civil engineering waste material such as brick waste, concrete waste, track ballast and demolition rubble wastes contain large part of coarse material. In this work, different materials made of civil engineering wastes mixed with organic wastes are tested for greening applications in an urban environment using in situ lysimeters. Beerkan infiltrations experiments were performed on these technosols. Experimental data are used to estimate hydraulics properties through the BEST method. The results shows from a hydraulic point of view that studied technosols can achieve the role of urban soil for greening application. Five combinations of artefacts were tested either as "growing material" (one combination) or "structural material" (4 combinations) - as support for traffic. Structural materials consisted in 27 wt.% earth material, 60 wt.% mineral coarse material and 3 wt.% organic material. These constructed technosols were studied in situ using lysimeters under two contrasted climatic conditions in two sites in France (Angers, in northwestern France and Homécourt, in northeastern France). Constructed technosols exhibited high porosities (31-48 vol% for structural materials, 70 vol% for the growing material). The dry bulk density of the growing material is estimated to 0.66 kg/m3 and 1.59 kg/m3 for structural material. The particle size distribution analysis, involving manual sieving (> 2 mm) and complemented by a grain size analysis (< 2 mm) were used as described in the BEST method (2006) for the estimation of the shape parameter n of hydraulics functions (Van-Genuchten -Mualem, 1980). This n parameter was estimated to 2.23 for growing materials and 2.29 for structural materials. Beerkan infiltrations experiments data were inversed using the BEST method, the results exhibited high saturated hydraulic conductivities 10.7 cm/h for structural materials and 14,8 cm/h for the growing material. Beerkan infiltration experiements are well suited for assesment of hydraulic properties of technosol constructed with civil engineering wastes. According to the estimated hydraulics functions, the studied technosols can be classified between a sand and a loam soil. It shows that these materials can achieve the role of alternative to the consumption of natural arable earth for urban greening applications such as gardens, parks and trees lines.

  14. Tribological characteristics of silicon carbide whisker-reinforced alumina at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1991-01-01

    The enhanced fracture toughness of whisker reinforced ceramics makes them attractive candidates for sliding components of advanced hear engines. Examples include piston rings and valve stems for Stirling engines and other low heat rejection devices. However, the tribological behavior of whisker reinforced ceramics is largely unknown. This is especially true for the applications described where use temperatures can vary from below ambient to well over 1000 C. An experimental research program to identify the dominant wear mechanism(s) for a silicon carbide whisker reinforced alumina composite, SiCw-Al2O3 is described. In addition, a wear mechanism model is developed to explain and corroborate the experimental results and to provide insight for material improvement.

  15. CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL AERIAL VIEW OF "COLD" NORTH HALF OF MTR COMPLEX. CAMERA FACING EASTERLY. FOREGROUND CORNER CONTAINS OIL STORAGE TANKS. WATER TANKS AND WELL HOUSES ARE BEYOND THEM TO THE LEFT. LARGE LIGHT-COLORED BUILDING IN CENTER OF VIEW IS STEAM PLANT. DEMINERALIZER AND WATER STORAGE TANK ARE BEYOND. SIX-CELL COOLING TOWER AND ITS PUMP HOUSE ARE ABOVE IT IN VIEW. SERVICE BUILDINGS INCLUDING CANTEEN ARE ON NORTH SIDE OF ROAD. "EXCLUSION" AREA IS BEYOND ROAD. COMPARE LOCATION OF EXCLUSION-AREA GATE WITH PHOTO ID-33-G-202. INL NEGATIVE NO. 3608. Unknown Photographer, 10/30/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. Review of Phase Change Materials Based on Energy Storage System with Applications

    NASA Astrophysics Data System (ADS)

    Thamaraikannn, R.; Kanimozhi, B.; Anish, M.; Jayaprabakar, J.; Saravanan, P.; Rohan Nicholas, A.

    2017-05-01

    The use of Different types of storage system using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCM’s for heating and cooling applications have been investigated during the past decade. There are large numbers of PCM’s, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of Phase Change materials used in Different Types of storage systems with different applications.

  17. Porous Networks Through Colloidal Templates

    NASA Astrophysics Data System (ADS)

    Li, Qin; Retsch, Markus; Wang, Jianjun; Knoll, Wolfgang; Jonas, Ulrich

    Porous networks represent a class of materials with interconnected voids with specific properties concerning adsorption, mass and heat transport, and spatial confinement, which lead to a wide range of applications ranging from oil recovery and water purification to tissue engineering. Porous networks with well-defined, highly ordered structure and periodicities around the wavelength of light can furthermore show very sophisticated optical properties. Such networks can be fabricated from a very large range of materials by infiltration of a sacrificial colloidal crystal template and subsequent removal of the template. The preparation procedures reported in the literature are discussed in this review and the resulting porous networks are presented with respect to the underlying material class. Furthermore, methods for hierarchical superstructure formation and functionalization of the network walls are discussed.

  18. Evaluation of some candidate materials for automobile thermal reactors in engine-dynamometer screening tests

    NASA Technical Reports Server (NTRS)

    Oldrieve, R. E.

    1971-01-01

    Fourteen materials were evaluated in engine screening tests on full-size thermal reactors for automobile engine pollution control systems. Cyclic test-stand engine operation provided 2 hours at 1040 C and a 20-minute air-cool to 70 C each test cycle. Each reactor material was exposed to 83 cycles in 200 hours of engine testing. On the basis of resistance to oxidation and distortion, the best materials included two ferritic iron alloys (Ge 1541 and Armco 18S/R), several commercial oxidation-resistant coatings on AlSl 651 (19-9 DL), and possibly uncoated AISI 310. The best commercial coatings were Cr-Al, Ni-Cr, and a glass ceramic.

  19. Low Density Materials

    DTIC Science & Technology

    2012-03-09

    materials structures across scales for design of engineered systems ODISSEI: Origami Design for Integration of Self-assembling Systems for...AGENCIES Origami Engineering US-India Tunable Materials Forum US-AFRICA Initiative Reliance 21 Board Materials and Processing COI 29 DISTRIBUTION A

  20. DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    STERN, E.A.; LODGE, J.; JONES, K.W.

    2000-12-03

    Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including themore » use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.« less

  1. Structuring of material parameters in lithium niobate crystals with low-mass, high-energy ion radiation

    NASA Astrophysics Data System (ADS)

    Peithmann, K.; Eversheim, P.-D.; Goetze, J.; Haaks, M.; Hattermann, H.; Haubrich, S.; Hinterberger, F.; Jentjens, L.; Mader, W.; Raeth, N. L.; Schmid, H.; Zamani-Meymian, M.-R.; Maier, K.

    2011-10-01

    Ferroelectric lithium niobate crystals offer a great potential for applications in modern optics. To provide powerful optical components, tailoring of key material parameters, especially of the refractive index n and the ferroelectric domain landscape, is required. Irradiation of lithium niobate crystals with accelerated ions causes strong structured modifications in the material. The effects induced by low-mass, high-energy ions (such as 3He with 41 MeV, which are not implanted, but transmit through the entire crystal volume) are reviewed. Irradiation yields large changes of the refractive index Δn, improved domain engineering capability within the material along the ion track, and waveguiding structures. The periodic modification of Δn as well as the formation of periodically poled lithium niobate (PPLN) (supported by radiation damage) is described. Two-step knock-on displacement processes, 3He→Nb and 3He→O causing thermal spikes, are identified as origin for the material modifications.

  2. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  3. Evaluation and ranking of candidate ceramic wafer engine seal materials

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.

    1991-01-01

    Modern engineered ceramics offer high temperature capabilities not found in even the best superalloy metals. The high temperature properties of several selected ceramics including aluminum oxide, silicon carbide, and silicon nitride are reviewed as they apply to hypersonic engine seal design. A ranking procedure is employed to objectively differentiate among four different monolithic ceramic materials considered, including: a cold-pressed and sintered aluminum oxide; a sintered alpha-phase silicon carbide; a hot-isostatically pressed silicon nitride; and a cold-pressed and sintered silicon nitride. This procedure is used to narrow the wide range of potential ceramics considered to an acceptable number for future detailed and costly analyses and tests. The materials are numerically scored according to their high temperature flexural strength; high temperature thermal conductivity; resistance to crack growth; resistance to high heating rates; fracture toughness; Weibull modulus; and finally according to their resistance to leakage flow, where materials having coefficients of thermal expansion closely matching the engine panel material resist leakage flow best. The cold-pressed and sintered material (Kyocera SN-251) ranked the highest in the overall ranking especially when implemented in engine panels made of low expansion rate materials being considered for the engine, including Incoloy and titanium alloys.

  4. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K.

    PubMed

    Kirichek, O; Timms, J D; Kelleher, J F; Down, R B E; Offer, C D; Kabra, S; Zhang, S Y

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  5. Sample environment for neutron scattering measurements of internal stresses in engineering materials in the temperature range of 6 K to 300 K

    NASA Astrophysics Data System (ADS)

    Kirichek, O.; Timms, J. D.; Kelleher, J. F.; Down, R. B. E.; Offer, C. D.; Kabra, S.; Zhang, S. Y.

    2017-02-01

    Internal stresses in materials have a considerable effect on material properties including strength, fracture toughness, and fatigue resistance. The ENGIN-X beamline is an engineering science facility at ISIS optimized for the measurement of strain and stress using the atomic lattice planes as a strain gauge. Nowadays, the rapidly rising interest in the mechanical properties of engineering materials at low temperatures has been stimulated by the dynamic development of the cryogenic industry and the advanced applications of the superconductor technology. Here we present the design and discuss the test results of a new cryogenic sample environment system for neutron scattering measurements of internal stresses in engineering materials under a load of up to 100 kN and in the temperature range of 6 K to 300 K. Complete cooling of the system starting from the room temperature down to the base temperature takes around 90 min. Understanding of internal stresses in engineering materials at cryogenic temperatures is vital for the modelling and designing of cutting-edge superconducting magnets and other superconductor based applications.

  6. Composition-spread Growth and the Robust Topological Surface State of Kondo Insulator SmB6 Thin Films

    DTIC Science & Technology

    2014-01-01

    1,2 1 Center for Nanophysics & Advanced Materials , University of Maryland, College Park, Maryland 20742, USA 2 Department of physics, University of...Maryland, College Park, Maryland 20742, USA 3 Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 4...Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA 5 Department of Materials Science & Engineering

  7. On-Board Hydrogen Gas Production System For Stirling Engines

    DOEpatents

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  8. Geotechnical engineering for ocean waste disposal. An introduction

    USGS Publications Warehouse

    Lee, Homa J.; Demars, Kenneth R.; Chaney, Ronald C.; ,

    1990-01-01

    As members of multidisciplinary teams, geotechnical engineers apply quantitative knowledge about the behavior of earth materials toward designing systems for disposing of wastes in the oceans and monitoring waste disposal sites. In dredge material disposal, geotechnical engineers assist in selecting disposal equipment, predict stable characteristics of dredge mounds, design mound caps, and predict erodibility of the material. In canister disposal, geotechnical engineers assist in specifying canister configurations, predict penetration depths into the seafloor, and predict and monitor canister performance following emplacement. With sewage outfalls, geotechnical engineers design foundation and anchor elements, estimate scour potential around the outfalls, and determine the stability of deposits made up of discharged material. With landfills, geotechnical engineers evaluate the stability and erodibility of margins and estimate settlement and cracking of the landfill mass. Geotechnical engineers also consider the influence that pollutants have on the engineering behavior of marine sediment and the extent to which changes in behavior affect the performance of structures founded on the sediment. In each of these roles, careful application of geotechnical engineering principles can contribute toward more efficient and environmentally safe waste disposal operations.

  9. Applications of smart materials in structural engineering.

    DOT National Transportation Integrated Search

    2003-10-01

    With the development of materials and technology, many new materials find their applications in civil engineering to deal with the deteriorating infrastructure. Smart material is a promising example that deserves a wide focus, from research to applic...

  10. 46 CFR 162.018-1 - Applicable specifications, and referenced material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) The ASME Code may be obtained from the American Society of Mechanical Engineers, United Engineering..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied... (Procedures Applicable to the Public) and Subpart 50.15 of Subchapter F (Marine Engineering) of this chapter...

  11. 46 CFR 162.018-1 - Applicable specifications, and referenced material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) The ASME Code may be obtained from the American Society of Mechanical Engineers, United Engineering..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied... (Procedures Applicable to the Public) and Subpart 50.15 of Subchapter F (Marine Engineering) of this chapter...

  12. 46 CFR 162.018-1 - Applicable specifications, and referenced material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) The ASME Code may be obtained from the American Society of Mechanical Engineers, United Engineering..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied... (Procedures Applicable to the Public) and Subpart 50.15 of Subchapter F (Marine Engineering) of this chapter...

  13. 46 CFR 162.018-1 - Applicable specifications, and referenced material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) The ASME Code may be obtained from the American Society of Mechanical Engineers, United Engineering..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied... (Procedures Applicable to the Public) and Subpart 50.15 of Subchapter F (Marine Engineering) of this chapter...

  14. 46 CFR 162.018-1 - Applicable specifications, and referenced material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) The ASME Code may be obtained from the American Society of Mechanical Engineers, United Engineering..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL ENGINEERING EQUIPMENT Safety Relief Valves, Liquefied... (Procedures Applicable to the Public) and Subpart 50.15 of Subchapter F (Marine Engineering) of this chapter...

  15. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an intended...

  16. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an intended...

  17. 14 CFR 135.383 - Large transport category airplanes: Turbine engine powered: En route limitations: Two engines...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Large transport category airplanes: Turbine... Limitations § 135.383 Large transport category airplanes: Turbine engine powered: En route limitations: Two...). No person may operate a turbine engine powered large transport category airplane along an intended...

  18. Engineering Hollow Carbon Architecture for High-Performance K-Ion Battery Anode.

    PubMed

    Bin, De-Shan; Lin, Xi-Jie; Sun, Yong-Gang; Xu, Yan-Song; Zhang, Ke; Cao, An-Min; Wan, Li-Jun

    2018-05-31

    K-ion batteries (KIBs) are now drawing increasing research interest as an inexpensive alternative to Li-ion batteries (LIBs). However, due to the large size of K + , stable electrode materials capable of sustaining the repeated K + intercalation/deintercalation cycles are extremely deficient especially if a satisfactory reversible capacity is expected. Herein, we demonstrated that the structural engineering of carbon into a hollow interconnected architecture, a shape similar to the neuron-cell network, promised high conceptual and technological potential for a high-performance KIB anode. Using melamine-formaldehyde resin as the starting material, we identify an interesting glass blowing effect of this polymeric precursor during its carbonization, which features a skeleton-softening process followed by its spontaneous hollowing. When used as a KIB anode, the carbon scaffold with interconnected hollow channels can ensure a resilient structure for a stable potassiation/depotassiation process and deliver an extraordinary capacity (340 mAh g -1 at 0.1 C) together with a superior cycling stability (no obvious fading over 150 cycles at 0.5 C).

  19. Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine.

    PubMed

    Martins, Ivone M; Reis, Rui L; Azevedo, Helena S

    2016-11-18

    The field of regenerative medicine has been gaining momentum steadily over the past few years. The emphasis in regenerative medicine is to use various in vitro and in vivo approaches that leverage the intrinsic healing mechanisms of the body to treat patients with disabling injuries and chronic diseases such as diabetes, osteoarthritis, and degenerative disorders of the cardiovascular and central nervous system. Phage display has been successfully employed to identify peptide ligands for a wide variety of targets, ranging from relatively small molecules (enzymes, cell receptors) to inorganic, organic, and biological (tissues) materials. Over the past two decades, phage display technology has advanced tremendously and has become a powerful tool in the most varied fields of research, including biotechnology, materials science, cell biology, pharmacology, and diagnostics. The growing interest in and success of phage display libraries is largely due to its incredible versatility and practical use. This review discusses the potential of phage display technology in biomaterials engineering for applications in regenerative medicine.

  20. Engineering microbial fuels cells: recent patents and new directions.

    PubMed

    Biffinger, Justin C; Ringeisen, Bradley R

    2008-01-01

    Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.

  1. Phonon bottleneck identification in disordered nanoporous materials

    NASA Astrophysics Data System (ADS)

    Romano, Giuseppe; Grossman, Jeffrey C.

    2017-09-01

    Nanoporous materials are a promising platform for thermoelectrics in that they offer high thermal conductivity tunability while preserving good electrical properties, a crucial requirement for high-efficiency thermal energy conversion. Understanding the impact of the pore arrangement on thermal transport is pivotal to engineering realistic materials, where pore disorder is unavoidable. Although there has been considerable progress in modeling thermal size effects in nanostructures, it has remained a challenge to screen such materials over a large phase space due to the slow simulation time required for accurate results. We use density functional theory in connection with the Boltzmann transport equation to perform calculations of thermal conductivity in disordered porous materials. By leveraging graph theory and regressive analysis, we identify the set of pores representing the phonon bottleneck and obtain a descriptor for thermal transport, based on the sum of the pore-pore distances between such pores. This approach provide a simple tool to estimate phonon suppression in realistic porous materials for thermoelectric applications and enhance our understanding of heat transport in disordered materials.

  2. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  3. The effects of space radiation on a chemically modified graphite-epoxy composite material

    NASA Technical Reports Server (NTRS)

    Reed, S. M.; Herakovich, C. T.; Sykes, G. F.

    1986-01-01

    The effects of the space environment on the engineering properties and chemistry of a chemically modified T300/934 graphite-epoxy composite system are characterized. The material was subjected to 1.0 x 10 to the 10th power rads of 1.0 MeV electron irradiation under vacuum to simulate 30 years in geosynchronous earth orbit. Monotonic tension tests were performed at room temperature (75 F/24 C) and elevated temperature (250 F/121 C) on 4-ply unidirectional laminates. From these tests, inplane engineering and strength properties (E sub 1, E sub 2, Nu sub 12, G sub 12, X sub T, Y sub T) were determined. Cyclic tests were also performed to characterize energy dissipation changes due to irradiation and elevated temperature. Large diameter graphite fibers were tested to determine the effects of radiation on their stiffness and strength. No significant changes were observed. Dynamic-mechanical analysis demonstrated that the glass transition temperature was reduced by 50 F(28 C) after irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated material. The chemical modification of the epoxy did not aid in producing a material which was more radiation resistant than the standard T300/934 graphite-epoxy system. Irradiation was found to cause crosslinking and chain scission in the polymer. The latter produced low molecular weight products which plasticize the material at elevated temperatures and cause apparent material stiffening at low stresses at room temperature.

  4. Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media.

    PubMed

    Finlayson, Chris E; Baumberg, Jeremy J

    2017-06-22

    We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid "gum-like" media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or "polymer opals") with intense tunable structural color. The further engineering of this shear-ordering using a controllable "roll-to-roll" process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics.

  5. Generating Bulk-Scale Ordered Optical Materials Using Shear-Assembly in Viscoelastic Media

    PubMed Central

    Finlayson, Chris E.; Baumberg, Jeremy J.

    2017-01-01

    We review recent advances in the generation of photonics materials over large areas and volumes, using the paradigm of shear-induced ordering of composite polymer nanoparticles. The hard-core/soft-shell design of these particles produces quasi-solid “gum-like” media, with a viscoelastic ensemble response to applied shear, in marked contrast to the behavior seen in colloidal and granular systems. Applying an oscillatory shearing method to sub-micron spherical nanoparticles gives elastomeric photonic crystals (or “polymer opals”) with intense tunable structural color. The further engineering of this shear-ordering using a controllable “roll-to-roll” process known as Bending Induced Oscillatory Shear (BIOS), together with the interchangeable nature of the base composite particles, opens potentially transformative possibilities for mass manufacture of nano-ordered materials, including advances in optical materials, photonics, and metamaterials/plasmonics. PMID:28773044

  6. Surface erosion caused on Mars from Viking descent engine plume

    USGS Publications Warehouse

    Hutton, R.E.; Moore, H.J.; Scott, R.F.; Shorthill, R.W.; Spitzer, C.R.

    1980-01-01

    During the Martian landings the descent engine plumes on Viking Lander 1 (VL-1) and Viking Lander 2 (VL-2) eroded the Martian surface materials. This had been anticipated and investigated both analytically and experimentally during the design phase of the Viking spacecraft. This paper presents data on erosion obtained during the tests of the Viking descent engine and the evidence for erosion by the descent engines of VL-1 and VL-2 on Mars. From these and other results, it is concluded that there are four distinct surface materials on Mars: (1) drift material, (2) crusty to cloddy material, (3) blocky material, and (4) rock. ?? 1980 D. Reidel Publishing Co.

  7. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2001-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  8. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    2000-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  9. Effects of Heat Treatment on the Ballistic Impact Properties of Inconel 718 for Jet Engine Fan Containment Applications

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Lerch, Bradley A.

    1999-01-01

    The effects of heat treating Inconel 718 on the ballistic impact response and failure mechanisms were studied. Two different annealing conditions and an aged condition were considered. Large differences in the static properties were found between the annealed and the aged material, with the annealed condition having lower strength and hardness and greater elongation than the aged. High strain rate tests show similar results. Correspondingly large differences were found in the velocity required to penetrate material in the two conditions in impact tests involving 12.5 mm diameter, 25.4 mm long cylindrical Ti-6-4 projectiles impacting flat plates at velocities in the range of 150 to 300 m/sec. The annealed material was able to absorb over 25 percent more energy than the aged. This is contrary to results observed for ballistic impact response for higher velocity impacts typically encountered in military applications where it has been shown that there exists a correlation between target hardness and ballistic impact strength. Metallographic examination of impacted plates showed strong indication of failure due to adiabatic shear. In both materials localized bands of large shear deformation were apparent, and microhardness measurements indicated an increase in hardness in these bands compared to the surrounding material. These bands were more localized in the aged material than in the annealed material. In addition the annealed material underwent significantly greater overall deformation before failure. The results indicate that lower elongation and reduced strain hardening behavior lead to a transition from shear to adiabatic shear failure, while high elongation and better strain hardening capabilities reduce the tendency for shear to localize and result in an unstable adiabatic shear failure. This supports empirical containment design methods that relate containment thickness to the static toughness.

  10. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  11. 40 CFR 1048.620 - What are the provisions for exempting large engines fueled by natural gas or liquefied petroleum...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... large engines fueled by natural gas or liquefied petroleum gas? 1048.620 Section 1048.620 Protection of... exempting large engines fueled by natural gas or liquefied petroleum gas? (a) If an engine meets all the... natural gas or liquefied petroleum gas. (2) The engine must have maximum engine power at or above 250 kW...

  12. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing," evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door, were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  13. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  14. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  15. An experiment of used palm oil refinery using the value engineering method

    NASA Astrophysics Data System (ADS)

    Sumiati; Waluyo, M.

    2018-01-01

    Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.

  16. Synthesis and characterization of transition metal oxide/sulfide nanostructures for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Yilmaz, Gamze

    This thesis is essentially oriented to develop low-cost nanostructured transition metal (nickel and vanadium) oxides and sulfides with high energy density, power density and electrochemical stability via strategies of structural design, hybridization, functionalization and surface engineering. Metal oxide and metal oxide/sulfide hybrid nanostructures in several designs, including hierarchical porous nanostructures, hollow polyhedrons, nanocubes, nanoframes, octopod nanoframes, and nanocages, were synthesized to study the contribution of structural design, compositional engineering, functionalization and surface engineering to the electrochemical properties of the materials. Modulated compositional and structural features disclosed the opportunities of large accessible active sites, facile ion transport, robustness and enhanced electrical conductivity. The best electrochemical performance with merits of highest energy density (38.9 Wh kg-1), power density (7.4 kW kg-1) and electrochemical stability (90.9% after 10000 cycles) was obtained for nickel cobalt layered double hydroxide/cobalt sulfide (NiCo-LDH/Co9S8) hybrid hollow polyhedron structure.

  17. Liquid chromatographic analysis of a formulated ester from a gas-turbine engine test

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography (SEC) utilizing mu-Bondagel and mu-Styragel columns with a tetrahydrofuran mobile phase was used to determine the chemical degradation of lubricant samples from a gas-turbine engine test. A MIL-L-27502 candidate, ester-based lubricant was run in a J57-29 engine at a bulk oil temperature of 216 C. In general, the analyses indicated a progressive loss of primary ester, additive depletion, and formation of higher molecular weight material. An oil sample taken at the conclusion of the test showed a reversal of this trend because of large additions of new oil. The high-molecular-weight product from the degraded ester absorbed strongly in the ultraviolet region at 254 nanometers. This would indicate the presence of chromophoric groups. An analysis of a similar ester lubricant from a separate high-temperature bearing test yielded qualitatively similar results.

  18. Photonics Applications and Web Engineering: WILGA 2017

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2017-08-01

    XLth Wilga Summer 2017 Symposium on Photonics Applications and Web Engineering was held on 28 May-4 June 2017. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, modern optics, mechatronics, applied physics, electronics technologies and applications. There were presented around 300 oral and poster papers in a few main topical tracks, which are traditional for Wilga, including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Things, measurement systems for astronomy, high energy physics experiments, and other. The paper is a traditional introduction to the 2017 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations. This year Symposium was divided to the following topical sessions/conferences: Optics, Optoelectronics and Photonics, Computational and Artificial Intelligence, Biomedical Applications, Astronomical and High Energy Physics Experiments Applications, Material Research and Engineering, and Advanced Photonics and Electronics Applications in Research and Industry.

  19. Material experiments: Environment and engineering institutions in the early American republic.

    PubMed

    Johnson, Ann

    2009-01-01

    In nineteenth-century America, strength of materials, an engineering science, focused on empirical research that yielded practical tools about how to predict the behavior of a wide variety of materials engineers might encounter as they built the nation's infrastructure. This orientation toward "cookbook formulae" that could accommodate many different kinds of timber, stone, mortar, metals, and so on was specifically tailored for the American context, where engineers were peripatetic, materials diverse, and labor in short supply. But these methods also reflected deeper beliefs about the specialness of the landscape and the providential site of the American political experiment. As such, engineers' appreciation of natural bounty both emerged from and contributed to larger values about exceptionalism and the practical character of Americans.

  20. ''Virtual Welding,'' a new aid for teaching Manufacturing Process Engineering

    NASA Astrophysics Data System (ADS)

    Portela, José M.; Huerta, María M.; Pastor, Andrés; Álvarez, Miguel; Sánchez-Carrilero, Manuel

    2009-11-01

    Overcrowding in the classroom is a serious problem in universities, particularly in specialties that require a certain type of teaching practice. These practices often require expenditure on consumables and a space large enough to hold the necessary materials and the materials that have already been used. Apart from the budget, another problem concerns the attention paid to each student. The use of simulation systems in the early learning stages of the welding technique can prove very beneficial thanks to error detection functions installed in the system, which provide the student with feedbach during the execution of the practice session, and the significant savings in both consumables and energy.

  1. Impact of Multimedia and Network Services on an Introductory Level Course

    NASA Technical Reports Server (NTRS)

    Russ, John C.

    1996-01-01

    We will demonstrate and describe the impact of our use of multimedia and network connectivity on a sophomore-level introductory course in materials science. This class services all engineering students, resulting in large (more than 150) class sections with no hands-on laboratory. In 1990 we began to develop computer graphics that might substitute for some laboratory or real-world experiences, and demonstrate relationships hard to show with static textbook images or chalkboard drawings. We created a comprehensive series of modules that cover the entire course content. Called VIMS (Visualizations in Materials Science), these are available in the form of a CD-ROM and also via the internet.

  2. Special Quasirandom Structures to Study the (K0.5Na0.5)NbO3 Random Alloy

    DTIC Science & Technology

    2014-07-31

    first-principles discovery of novel materials with properties such as ferroelectricity, piezoelectricity, ferromagnetism , and thermoelectricity. For...Tan,1 Valentino R. Cooper,4,* and Scott P. Beckman1,† 1Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA...2Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 36211, USA 3Department of Materials Science and Engineering

  3. Integrated computational materials engineering: Tools, simulations and new applications

    DOE PAGES

    Madison, Jonathan D.

    2016-03-30

    Here, Integrated Computational Materials Engineering (ICME) is a relatively new methodology full of tremendous potential to revolutionize how science, engineering and manufacturing work together. ICME was motivated by the desire to derive greater understanding throughout each portion of the development life cycle of materials, while simultaneously reducing the time between discovery to implementation [1,2].

  4. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  5. Hydrogen as a fuel for today and tomorrow: expectations for advanced hydrogen storage materials/systems research.

    PubMed

    Hirose, Katsuhiko

    2011-01-01

    History shows that the evolution of vehicles is promoted by several environmental restraints very similar to the evolution of life. The latest environmental strain is sustainability. Transport vehicles are now facing again the need to advance to use sustainable fuels such as hydrogen. Hydrogen fuel cell vehicles are being prepared for commercialization in 2015. Despite intensive research by the world's scientists and engineers and recent advances in our understanding of hydrogen behavior in materials, the only engineering phase technology which will be available for 2015 is high pressure storage. Thus industry has decided to implement the high pressure tank storage system. However the necessity of smart hydrogen storage is not decreasing but rather increasing because high market penetration of hydrogen fuel cell vehicles is expected from around 2025 onward. In order to bring more vehicles onto the market, cheaper and more compact hydrogen storage is inevitable. The year 2025 seems a long way away but considering the field tests and large scale preparation required, there is little time available for research. Finding smart materials within the next 5 years is very important to the success of fuel cells towards a low carbon sustainable world.

  6. Towards a Biosynthetic UAV

    NASA Technical Reports Server (NTRS)

    Block, Eli; Byemerwa, Jovita; Dispenza, Ross; Doughty, Benjamin; Gillyard, KaNesha; Godbole, Poorwa; Gonzales-Wright, Jeanette; Hull, Ian; Kannappan, Jotthe; Levine, Alexander; hide

    2014-01-01

    We are currently working on a series of projects towards the construction of a fully biological unmanned aerial vehicle (UAV) for use in scientific and humanitarian missions. The prospect of a biologically-produced UAV presents numerous advantages over the current manufacturing paradigm. First, a foundational architecture built by cells allows for construction or repair in locations where it would be difficult to bring traditional tools of production. Second, a major limitation of current research with UAVs is the size and high power consumption of analytical instruments, which require bulky electrical components and large fuselages to support their weight. By moving these functions into cells with biosensing capabilities - for example, a series of cells engineered to report GFP, green fluorescent protein, when conditions exceed a certain threshold concentration of a compound of interest, enabling their detection post-flight - these problems of scale can be avoided. To this end, we are working to engineer cells to synthesize cellulose acetate as a novel bioplastic, characterize biological methods of waterproofing the material, and program this material's systemic biodegradation. In addition, we aim to use an "amberless" system to prevent horizontal gene transfer from live cells on the material to microorganisms in the flight environment.

  7. Tribological properties of alumina-boria-silicate fabric from 25 to 850 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    Demanding tribological properties are required of the materials used for the sliding seal between the sidewalls and the lower wall of the variable area hypersonic engine. Temperatures range from room temperature and below to operating temperatures of 1000 C in an environment of air, hydrogen, and water vapor. Candidate sealing materials for this application are an alumina-boria-silicate, ceramic, fabric rope sliding against the engine walls which may be made from copper- or nickel-based alloys. Using a pin-on-disk tribometer, the friction and wear properties of some of these potential materials and possible lubrication methods are evaluated. The ceramic fabric rope displayed unacceptably high friction coefficients (0.6 to 1.3) and, thus, requires lubrication. Sputtered thin films of gold, silver, and CaF2 reduced the friction by a factor of two. Sprayed coatings of boride nitride did not effectively lubricate the fabric. Static heat treatment tests at 950 C indicate that the fabric is chemically attacked by large quantities of silver, CaF2, and boron nitride. Sputtered films or powder impregnation of the fabric with gold may provide adequate lubrication up to 1000 C without showing any chemical attack.

  8. The National Spallation Neutron Source Target Station.

    NASA Astrophysics Data System (ADS)

    Gabriel, T. A.

    1997-05-01

    The technologies that are being utilized to design and build a state-of-the-art high powered (>= 1 MW), short pulsed (<= 1 μsec), and reliable spallation neutron source target station are discussed. The protons which directly and indirectly produce the neutrons will be obtained from a 1 GeV proton accelerator composed of an ion gun, rfq, linac, and storage ring. Many scientific and technical disciplines are required to produce a successful target station. These disciplines include engineering, remote handling, neutronics, materials, thermal hydraulics, shock analysis, etc. In the areas of engineering and remote handling special emphasis is being given to rapid and efficient assembly and disassembly of critical parts of the target station. In the neutronics area, emphasis is being given to neutron yield and pulse optimization from the moderators, and heating and activation rates throughout the station. Development of structural materials to withstand aggressive radiation environments and that are compatible with other materials is also an important area. Thermal hydraulics and shock analysis are being closely studied since large amounts of energy are being deposited in small volumes in relatively short time periods (< 1 μsec). These areas will be expanded upon in the paper.

  9. A high throughput mechanical screening device for cartilage tissue engineering.

    PubMed

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  10. Ceramic regenerator systems development program

    NASA Technical Reports Server (NTRS)

    Cook, J. A.; Fucinari, C. A.; Lingscheit, J. N.; Rahnke, C. J.; Rao, V. D.

    1978-01-01

    Ceramic regenerator cores are considered that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability tests/in industrial gas turbine engines. A regenerator core made from aluminum silicate shows minimal evidence of chemical attack damage after 7804 hours of engine test at 800 C and another showed little distress after 4983 hours at 982 C. The results obtained in ceramic material screening tests, aerothermodynamic performance tests, stress analysis, cost studies, and material specifications are also included.

  11. Insinuating electronics in the brain.

    PubMed

    Hughes, Mark A

    2016-08-01

    There is an expanding interface between electronic engineering and neurosurgery. Rapid advances in microelectronics and materials science, driven largely by consumer demand, are inspiring and accelerating development of a new generation of diagnostic, therapeutic, and prosthetic devices for implantation in the nervous system. This paper reviews some of the basic science underpinning their development and outlines some opportunities and challenges for their use in neurosurgery. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  12. Tunable VO2/Au Hyperbolic Metamaterial

    DTIC Science & Technology

    2016-02-12

    phenomenon having a potential of advancing the control of light-matter interaction . Metamaterials are engineered composite materials containing sub...ellipsoids15 – the phenomenon known as hyperbolic dispersion. Hyperbolic metamaterials can propagate light waves with very large wave vectors and have a...incidence angles equal to 15°, 45° and 65°. The spectra measured at 45o are depicted in Fig. 6(a). The wavy pattern in the spectra is due to the parasitic

  13. The Shock and Vibration Bulletin. Part 3. Invited Papers, Pyrotechnic Shock, Pyrotechnic Shock Workshop

    DTIC Science & Technology

    1986-08-01

    Technology Laboratory, Watertown, MA AIR FORCE BASIC RESEARCH IN DYNAMICS AND CONTROL OF LARGE SPACE STRUCTURES Anthony K. Amos, Boiling Air Force Base...Engineering, Watchun$, NJ TEMPERATURE SHIFT CONSIDERATIONS FOR DAMPING MATERIALS L. Rogers, Air Force Wright Aeronautictl Laboratories, Wright...INDUCED CAVITY ACOUSTICS L.L. Shaw,. Air Force Wr4ht Aeroaauical Laborawrics, Wri•ht-Paucswon AFB. OH i 4i SESSION CHAIRMEN AND COCHAIRMEN 56th Shock and

  14. Integration of Biological Specificity with Solid-State Devices for Selective Chemical Sensing

    DTIC Science & Technology

    2016-01-29

    materials onto a single sensor chip. We demonstrate a path to combine a large number of DNA aptamers with nanoscale device arrays to achieve integrated...solid-state, sensor chips with specificity. 15. SUBJECT TERMS DNA sensors aptamers chemiresistors nanosensors LSER specificity vapor 16. SECURITY...and engineering. In particular, DNA and RNA aptamers are a class of man- made receptors with a high degree of specificity that rivals proteins. DNA

  15. Characterization of Strain-Induced Anisotropy in Titanium at Large Strains under Monotonic and Bauschinger Loading

    DTIC Science & Technology

    2010-07-15

    1966), Texture Strenthening, Metals Engineering Quaterly –American Society Vol 6 , No 4 . W. Terry (2008), TEM investigation of Titanium based sheet...Report 3. DATES COVERED (From – To) 1 November 2007 - 01-Nov-08 4 . TITLE AND SUBTITLE Characterization of strain-induced anisotropy in Titanium at...CNRS - CONFIDENTIAL - Privileged Information - EOARD & CNRS’s proprietary information" 6 Introduction Titanium based materials deform by twinning

  16. Implementation of NASA Materials and Processes Requirements at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Powers, Charles E.

    2009-01-01

    This slide presentation reviews the history and current practices of the Materials Engineering Branch (MEB) at the Goddard Space Flight Center. Included in the presentation is a review of the general Materials and Processes (M&P) requirements in the NASA-STD-6016. The work that the Materials Engineering Branch does to support GSFC Projects is also reviewed. The Materials Engineering Branch capabilities are listed, the expertise that is available to GSFC projects is also listed. Included in the backup slides are forms that the MEB uses to identify the materials in the spacecraft under development.

  17. Thermal and Electrical Transport in Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Ravichandran, Jayakanth

    This dissertation presents a study of thermal and electrical transport phenomena in heterostructures of transition metal oxides, with specific interest in understanding and tailoring thermoelectricity in these systems. Thermoelectric energy conversion is a promising method for waste heat recovery and the efficiency of such an engine is directly related to a material dependent figure of merit, Z, given as S2sigma/kappa, where S is thermopower and sigma and kappa are electrical and thermal conductivity respectively. Achieving large figure of merit has been hampered by the coupling between these three thermoelectric coefficients, and the primary aim of this study is to understand the nature of thermoelectricity in complex oxides and identify mechanisms which can allow tuning of one or more thermoelectric coefficients in a favorable manner. Unlike the heavily studied conventional thermoelectric semiconductors, transition metals based complex oxides show conduction band characteristics dominated by d-bands, with much larger effective masses and varying degrees of electron correlations. These systems provide for exotic thermoelectric effects which are typically not explained by conventional theories and hence provide an ideal platform for exploring the limits of thermoelectricity. Meanwhile, oxides are composed of earth abundant elements and have excellent high temperature stability, thus providing compelling technological possibilities for thermoelectrics based power generation. In this dissertation, we address specific aspects of thermoelectricity in model complex oxide systems such as perovskite titanates and layered cobaltates to understand thermal and thermoelectric behavior and explore the tunability of thermoelectricity in these systems. The demonstration of band engineering as a viable method to tune physical properties of materials is explored. The model system used for this case is strontium titanate, where two dopants such as La on the Sr-site and oxygen vacancies are employed to achieve band engineering. This method was used to obtain tunable transparent conducting properties and thermoelectric properties for heavily doped strontium titanate. The second aspect investigated is the use of strongly correlated materials for thermoelectricity. The cobaltates, specifically layered cobaltates, show large thermopower even at very large carrier densities. The coupling of thermopower and electrical conductivity is shown to be weaker for a strongly correlated material such as cobaltate, which opens up possibilities of complete decoupling of all three thermoelectric coefficients. Finally, the thermal properties of complex oxides, specifically in perovskite titanates, is addressed in detail. Thermal conductivity is demonstrated to be a sensitive probe for defects in a system, where processing conditions play a significant role in modulating the crystallinity of the material. The perovskite titanate superlattice system of strontium titanate and calcium titanate is used beat alloy limit. It also shows interesting period thickness dependent thermal properties. The possible origin of this effect is briefly discussed and future directions for this research is also elaborated in detail.

  18. Stanene cyanide: a novel candidate of Quantum Spin Hall insulator at high temperature

    PubMed Central

    Ji, Wei-xiao; Zhang, Chang-wen; Ding, Meng; Li, Ping; Li, Feng; Ren, Miao-juan; Wang, Pei-ji; Hu, Shu-jun; Yan, Shi-shen

    2015-01-01

    The search for quantum spin Hall (QSH) insulators with high stability, large and tunable gap and topological robustness, is critical for their realistic application at high temperature. Using first-principle calculations, we predict the cyanogen saturated stanene SnCN as novel topological insulators material, with a bulk gap as large as 203 meV, which can be engineered by applying biaxial strain and electric field. The band topology is identified by Z2 topological invariant together with helical edge states, and the mechanism is s-pxy band inversion at G point induced by spin-orbit coupling (SOC). Remarkably, these systems have robust topology against chemical impurities, based on the calculations on halogen and cyano group co-decorated stanene SnXxX′1−x (X,X′  =  F, Cl, Br, I and CN), which makes it an appropriate and flexible candidate material for spintronic devices. PMID:26688269

  19. Quality of bottom material and elutriates in the lower Willamette River, Portland Harbor, Oregon

    USGS Publications Warehouse

    Fuhrer, Gregory J.

    1989-01-01

    In October 1983 the U.S. Geological Survey, in cooperation with the U.S. Army Corp of Engineers, collected bottom-material and water samples from Portland Harbor, Oregon to determine concentrations of trace metals and organic compounds in elutriate-test filtrate and bottom material. Of the trace metals examined in bottom material, concentrations of cadmium slightly exceed those of local rocks, whereas lead and zinc exceedance is substantially larger. Of the organochlorine compounds examined in bottom material chlordane, DDD, DDE, DDT, dieldrin, and polychlorinated biphenyls (PCB's) were detected and quantified in at least 30% of the samples tested. A large DDT concentration (2,700 microgram/kilogram) near Doane Lake outlet is indicative of recent contamination. Polychlorinated biphenyls are ubiquitous in bottom sediments; median concentrations are nearly 65 micrograms/kilogram and as large as 550 microgram/kilogram. PCB loading to the Columbia River from Willamette River suspended sediment has been estimated to be 72 kilograms/year, nearly five times the PCB dredge load of 15 kilogram/year. The acid and base-neutral extractable di-n-butyl phthalate and bis (2-ethylhexyl)phthalate occur in sediments of Terminal No. 2 in concentrations as large as 1,965 and 2,200 micrograms/kilogram, respectively. Of the trace metals examined in both standard and oxic elutriate-test filtrate, only copper concentration in an oxic elutriate-test filtrate (19 micrograms/L) exceeded the water quality criteria (5.7 micrograms/L). (USGS)

  20. Conservation of strategic metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1982-01-01

    A long-range program in support of the aerospace industry aimed at reducing the use of strategic materials in gas turbine engines is discussed. The program, which is called COSAM (Conservation of Strategic Aerospace Materials), has three general objectives. The first objective is to contribute basic scientific understanding to the turbine engine technology bank so that our national security is not jeopardized if our strategic material supply lines are disrupted. The second objective is to help reduce the dependence of United States military and civilian gas turbine engines on worldwide supply and price fluctuations in regard to strategic materials. The third objective is, through research, to contribute to the United States position of preeminence in the world gas turbine engine markets by minimizing the acquisition costs and optimizing the performance of gas turbine engines. Three major research thrusts are planned: strategic element substitution; advanced processing concepts; and alternate material identification. Results from research and any required supporting technology will give industry the materials technology options it needs to make tradeoffs in material properties for critical components against the cost and availability impacts related to their strategic metal content.

  1. PNNL Development and Analysis of Material-Based Hydrogen Storage Systems for the Hydrogen Storage Engineering Center of Excellence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, Kriston P.; Alvine, Kyle J.; Johnson, Kenneth I.

    The Hydrogen Storage Engineering Center of Excellence is a team of universities, industrial corporations, and federal laboratories with the mandate to develop lower-pressure, materials-based, hydrogen storage systems for hydrogen fuel cell light-duty vehicles. Although not engaged in the development of new hydrogen storage materials themselves, it is an engineering center that addresses engineering challenges associated with the currently available hydrogen storage materials. Three material-based approaches to hydrogen storage are being researched: 1) chemical hydrogen storage materials 2) cryo-adsorbents, and 3) metal hydrides. As a member of this Center, Pacific Northwest National Laboratory (PNNL) has been involved in the design andmore » evaluation of systems developed with each of these three hydrogen storage materials. This report is a compilation of the work performed by PNNL for this Center.« less

  2. Stirling material technology

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Stephens, J. R.; Scheuermann, C. M.

    1984-01-01

    The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A materials research and technology program identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818, NASAUT 4G-A1, and NASACC-1 as candidate replacements for the cobalt containing alloys used in current prototype engines. It is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. Results of research that lead to this conclusion are presented.

  3. Shape Memory Polymers: A Joint Chemical and Materials Engineering Hands-On Experience

    ERIC Educational Resources Information Center

    Seif, Mujan; Beck, Matthew

    2018-01-01

    Hands-on experiences are excellent tools for increasing retention of first year engineering students. They also encourage interdisciplinary collaboration, a critical skill for modern engineers. In this paper, we describe and evaluate a joint Chemical and Materials Engineering hands-on lab that explores cross-linking and glass transition in…

  4. Military Curriculum Materials for Vocational and Technical Education. Engine Principles, 8-3. Edition 5.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This individualized, self-paced course for independent study in engine principles has been adapted from military curriculum materials for vocational education use. The course provides the student with basic information on engine principles including different kinds of combustion engines, lubrication systems, and cooling systems. It is organized…

  5. Overview of NASA Glenn Seal Program

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Proctor, Margaret P.; Dunlap, Patrick H., Jr.; Delgado, Irebert; DeMange, Jeffrey J.; Daniels, Christopher C.; Lattime, Scott B.

    2003-01-01

    The Seal Team is divided into four primary areas. These areas include turbine engine seal development, structural seal development, acoustic seal development, and adaptive seal development. The turbine seal area focuses on high temperature, high speed shaft seals for secondary air system flow management. The structural seal area focuses on high temperature, resilient structural seals required to accommodate large structural distortions for both space- and aero-applications. Our goal in the acoustic seal project is to develop non-contacting, low leakage seals exploiting the principles of advanced acoustics. We are currently investigating a new acoustic field known as Resonant Macrosonic Synthesis (RMS) to see if we can harness the large acoustic standing pressure waves to form an effective air-barrier/seal. Our goal in the adaptive seal project is to develop advanced sealing approaches for minimizing blade-tip (shroud) or interstage seal leakage. We are planning on applying either rub-avoidance or regeneration clearance control concepts (including smart structures and materials) to promote higher turbine engine efficiency and longer service lives.

  6. Physical Science Informatics: Providing Open Science Access to Microheater Array Boiling Experiment Data

    NASA Technical Reports Server (NTRS)

    McQuillen, John; Green, Robert D.; Henrie, Ben; Miller, Teresa; Chiaramonte, Fran

    2014-01-01

    The Physical Science Informatics (PSI) system is the next step in this an effort to make NASA sponsored flight data available to the scientific and engineering community, along with the general public. The experimental data, from six overall disciplines, Combustion Science, Fluid Physics, Complex Fluids, Fundamental Physics, and Materials Science, will present some unique challenges. Besides data in textual or numerical format, large portions of both the raw and analyzed data for many of these experiments are digital images and video, requiring large data storage requirements. In addition, the accessible data will include experiment design and engineering data (including applicable drawings), any analytical or numerical models, publications, reports, and patents, and any commercial products developed as a result of the research. This objective of paper includes the following: Present the preliminary layout (Figure 2) of MABE data within the PSI database. Obtain feedback on the layout. Present the procedure to obtain access to this database.

  7. The Evolution of CERN EDMS

    NASA Astrophysics Data System (ADS)

    Wardzinska, Aleksandra; Petit, Stephan; Bray, Rachel; Delamare, Christophe; Garcia Arza, Griselda; Krastev, Tsvetelin; Pater, Krzysztof; Suwalska, Anna; Widegren, David

    2015-12-01

    Large-scale long-term projects such as the LHC require the ability to store, manage, organize and distribute large amounts of engineering information, covering a wide spectrum of fields. This information is a living material, evolving in time, following specific lifecycles. It has to reach the next generations of engineers so they understand how their predecessors designed, crafted, operated and maintained the most complex machines ever built. This is the role of CERN EDMS. The Engineering and Equipment Data Management Service has served the High Energy Physics Community for over 15 years. It is CERN's official PLM (Product Lifecycle Management), supporting engineering communities in their collaborations inside and outside the laboratory. EDMS is integrated with the CAD (Computer-aided Design) and CMMS (Computerized Maintenance Management) systems used at CERN providing tools for engineers who work in different domains and who are not PLM specialists. Over the years, human collaborations and machines grew in size and complexity. So did EDMS: it is currently home to more than 2 million files and documents, and has over 6 thousand active users. In April 2014 we released a new major version of EDMS, featuring a complete makeover of the web interface, improved responsiveness and enhanced functionality. Following the results of user surveys and building upon feedback received from key users group, we brought what we think is a system that is more attractive and makes it easy to perform complex tasks. In this paper we will describe the main functions and the architecture of EDMS. We will discuss the available integration options, which enable further evolution and automation of engineering data management. We will also present our plans for the future development of EDMS.

  8. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.

    PubMed

    Shadjou, Nasrin; Hasanzadeh, Mohammad

    2015-10-01

    Bone disorders are of significant concern due to increase in the median age of our population. It is in this context that tissue engineering has been emerging as a valid approach to the current therapies for bone regeneration/substitution. Tissue-engineered bone constructs have the potential to alleviate the demand arising from the shortage of suitable autograft and allograft materials for augmenting bone healing. Silica based mesostructured nanomaterials possessing pore sizes in the range 2-50 nm and surface reactive functionalities have elicited immense interest due to their exciting prospects in bone tissue engineering. In this review we describe application of silica-based mesoporous nanomaterials for bone tissue engineering. We summarize the preparation methods, the effect of mesopore templates and composition on the mesopore-structure characteristics, and different forms of these materials, including particles, fibers, spheres, scaffolds and composites. Also, the effect of structural and textural properties of mesoporous materials on development of new biomaterials for production of bone implants and bone cements was discussed. Also, application of different mesoporous materials on construction of manufacture 3-dimensional scaffolds for bone tissue engineering was discussed. It begins by giving the reader a brief background on tissue engineering, followed by a comprehensive description of all the relevant components of silica-based mesoporous biomaterials on bone tissue engineering, going from materials to scaffolds and from cells to tissue engineering strategies that will lead to "engineered" bone. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.

    PubMed

    Guex, Anne Géraldine; Puetzer, Jennifer L; Armgarth, Astrid; Littmann, Elena; Stavrinidou, Eleni; Giannelis, Emmanuel P; Malliaras, George G; Stevens, Molly M

    2017-10-15

    Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m 2 ·g -1 . The electrical conductivity, based on I-V curves, was measured to be 140µS·cm -1 with a reduced, but stable conductivity of 6.1µS·cm -1 after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold based on PEDOT:PSS, and provide evidence that this purely synthetic material is a promising candidate for bone tissue engineering. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. The Teach for America RockCorps, Year 1: Turning Authentic Research Experiences in Geophysics for STEM Teachers into Modeling Instruction™ in High School Classrooms

    NASA Astrophysics Data System (ADS)

    Garrison, D. R., Jr.; Neubauer, H.; Barber, T. J.; Griffith, W. A.

    2015-12-01

    National reform efforts such as the Next Generation Science Standards, Modeling Instruction™, and Project Lead the Way (PLTW) seek to more closely align K-12 students' STEM learning experiences with the practices of scientific and engineering inquiry. These reform efforts aim to lead students toward deeper understandings constructed through authentic scientific and engineering inquiry in classrooms, particularly via model building and testing, more closely mirroring the professional practice of scientists and engineers, whereas traditional instructional approaches have typically been lecture-driven. In this vein, we describe the approach taken in the first year of the Teach for America (TFA) RockCorps, a five-year, NSF-sponsored project designed to provide authentic research experiences for secondary teachers and foster the development of Geophysics-themed teaching materials through cooperative lesson plan development and purchase of scientific equipment. Initially, two teachers were selected from the local Dallas-Fort Worth Region of TFA to participate in original research studying the failure of rocks under impulsive loads using a Split-Hopkinson-Pressure Bar (SHPB). For the teachers, this work provides a context from which to derive Geophysics-themed lesson plans for their courses, Physics/Pre-AP and Principles of Engineering (POE), offered at two large public high schools in Dallas ISD. The Physics course will incorporate principles of seismic wave propagation to allow students to develop a model of wave behavior, including velocity, refraction, and resonance, and apply the model to predict propagation properties of a variety of waves through multiple media. For the PLTW POE course, tension and compression testing of a variety of rock samples will be incorporated into materials properties and testing units. Also, a project will give a group of seniors in the PLTW Engineering Design and Development course at this certified NAF Academy of Engineering the opportunity to collaborate with UT Arlington scientists to design and prototype a fixturing solution for material testing. These course adaptations address learning objectives specified by the Texas Essential Knowledge and Skills, using geoscience examples to make abstract concepts more concrete.

  11. Microfabrication of hierarchical structures for engineered mechanical materials

    NASA Astrophysics Data System (ADS)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  12. A Computer Code for Gas Turbine Engine Weight And Disk Life Estimation

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Ghosn, Louis J.; Halliwell, Ian; Wickenheiser, Tim (Technical Monitor)

    2002-01-01

    Reliable engine-weight estimation at the conceptual design stage is critical to the development of new aircraft engines. It helps to identify the best engine concept amongst several candidates. In this paper, the major enhancements to NASA's engine-weight estimate computer code (WATE) are described. These enhancements include the incorporation of improved weight-calculation routines for the compressor and turbine disks using the finite-difference technique. Furthermore, the stress distribution for various disk geometries was also incorporated, for a life-prediction module to calculate disk life. A material database, consisting of the material data of most of the commonly-used aerospace materials, has also been incorporated into WATE. Collectively, these enhancements provide a more realistic and systematic way to calculate the engine weight. They also provide additional insight into the design trade-off between engine life and engine weight. To demonstrate the new capabilities, the enhanced WATE code is used to perform an engine weight/life trade-off assessment on a production aircraft engine.

  13. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. When biomolecules meet graphene: from molecular level interactions to material design and applications.

    PubMed

    Li, Dapeng; Zhang, Wensi; Yu, Xiaoqing; Wang, Zhenping; Su, Zhiqiang; Wei, Gang

    2016-12-01

    Graphene-based materials have attracted increasing attention due to their atomically-thick two-dimensional structures, high conductivity, excellent mechanical properties, and large specific surface areas. The combination of biomolecules with graphene-based materials offers a promising method to fabricate novel graphene-biomolecule hybrid nanomaterials with unique functions in biology, medicine, nanotechnology, and materials science. In this review, we focus on a summarization of the recent studies in functionalizing graphene-based materials using different biomolecules, such as DNA, peptides, proteins, enzymes, carbohydrates, and viruses. The different interactions between graphene and biomolecules at the molecular level are demonstrated and discussed in detail. In addition, the potential applications of the created graphene-biomolecule nanohybrids in drug delivery, cancer treatment, tissue engineering, biosensors, bioimaging, energy materials, and other nanotechnological applications are presented. This review will be helpful to know the modification of graphene with biomolecules, understand the interactions between graphene and biomolecules at the molecular level, and design functional graphene-based nanomaterials with unique properties for various applications.

  15. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions

    NASA Astrophysics Data System (ADS)

    Ning, Cun-Zheng; Dou, Letian; Yang, Peidong

    2017-12-01

    Over the past decade, tremendous progress has been achieved in the development of nanoscale semiconductor materials with a wide range of bandgaps by alloying different individual semiconductors. These materials include traditional II-VI and III-V semiconductors and their alloys, inorganic and hybrid perovskites, and the newly emerging 2D materials. One important common feature of these materials is that their nanoscale dimensions result in a large tolerance to lattice mismatches within a monolithic structure of varying composition or between the substrate and target material, which enables us to achieve almost arbitrary control of the variation of the alloy composition. As a result, the bandgaps of these alloys can be widely tuned without the detrimental defects that are often unavoidable in bulk materials, which have a much more limited tolerance to lattice mismatches. This class of nanomaterials could have a far-reaching impact on a wide range of photonic applications, including tunable lasers, solid-state lighting, artificial photosynthesis and new solar cells.

  16. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    PubMed

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  17. Wood handbook : wood as an engineering material.

    Treesearch

    Forest Products Laboratory

    1999-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  18. Wood handbook : wood as an engineering material

    Treesearch

    Robert J. Ross; Forest Products Laboratory USDA Forest Service.

    2010-01-01

    Summarizes information on wood as an engineering material. Presents properties of wood and wood-based products of particular concern to the architect and engineer. Includes discussion of designing with wood and wood-based products along with some pertinent uses.

  19. Natural Origin Materials for Osteochondral Tissue Engineering.

    PubMed

    Bonani, Walter; Singhatanadgige, Weerasak; Pornanong, Aramwit; Motta, Antonella

    2018-01-01

    Materials selection is a critical aspect for the production of scaffolds for osteochondral tissue engineering. Synthetic materials are the result of man-made operations and have been investigated for a variety of tissue engineering applications. Instead, the products of physiological processes and the metabolic activity of living organisms are identified as natural materials. Over the recent decades, a number of natural materials, namely, biopolymers and bioceramics, have been proposed as the main constituent of osteochondral scaffolds, but also as cell carriers and signaling molecules. Overall, natural materials have been investigated both in the bone and in the cartilage compartment, sometimes alone, but often in combination with other biopolymers or synthetic materials. Biopolymers and bioceramics possess unique advantages over their synthetic counterparts due similarity with natural extracellular matrix, the presence of cell recognition sites and tunable chemistry. However, the characteristics of natural origin materials can vary considerably depending on the specific source and extraction process. A deeper understanding of the relationship between material variability and biological activity and the definition of standardized manufacturing procedures will be crucial for the future of natural materials in tissue engineering.

  20. Extraterrestrial resource utilization for economy in space missions

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.; Ramohalli, K.; Triffet, T.

    1990-01-01

    The NASA/University of Arizona Space Engineering Research Center is dedicated to research on the discovery, characterization, mapping, beneficiation, extraction, processing, and fabrication of useful products from extraterrestrial material. Schemes for the automated production of low-technology products that are likely to be desired in large quantities in the early stages of any large-scale space activity are identified and developed. This paper summarizes the research program, concentrating upon the production of (1) propellants, both cryogenic and storable, (2) volatiles such as water, nitrogen, and carbon dioxide for use in life-support systems (3) structural metals, and (4) refractories for use in aerobrakes and furnace linings.

  1. Challenges and payoff of composites in transport aircraft: 777 empennage and future applications

    NASA Technical Reports Server (NTRS)

    Quinlivan, John

    1993-01-01

    The Boeing 777 is the first of a new family of wide body airplanes. The new large twin is sized to accommodate 360 to 390 passengers in typical two-class configurations and planned growth beyond that. The 777 offers airlines three engine options, extremely attractive operating costs, and compatibility with existing airport gates and taxiways. The 777 has a wingspan of nearly 197 feet and is offered with a wing-tip folding mechanism that will reduce the span to 156 feet. Extensive use of advance composite is included in the 777. The application range from fiberglass fairing to primary structures. The 777 empennage includes vertical fin and a horizontal stabilizer. The material used for the empennage is a new, toughened epoxy materials. The material provides outstanding resistance to impact damage.

  2. Effect of contamination on the optical properties of transmitting and reflecting materials exposed to a MMH/N2O4 rocket exhaust

    NASA Technical Reports Server (NTRS)

    Bowman, R. L.; Spisz, E. W.; Jack, J. R.

    1973-01-01

    The changes are presented in spectral transmittance, and reflectance due to exposure of various optical materials to the exhaust plume of a 5-pound thrust bipropellant rocket. The engine was fired in a pulsed mode for a total exposure of 223.7 second. Spectral optical properties were measured in air before and after exposure to the exhaust plume in vacuum. The contaminating layer resulted in both absorption and scattering effects which caused changes as large as 30-50% for transmitting elements and 15% for mirrors in the near ultraviolet wavelengths. The changes in spectral properties of materials exposed to the exhaust plume for 44 and 223.7 seconds are compared and found to be similar.

  3. Lunar exploration for resource utilization

    NASA Technical Reports Server (NTRS)

    Duke, Michael B.

    1992-01-01

    The strategy for developing resources on the Moon depends on the stage of space industrialization. A case is made for first developing the resources needed to provide simple materials required in large quantities for space operations. Propellants, shielding, and structural materials fall into this category. As the enterprise grows, it will be feasible to develop additional sources - those more difficult to obtain or required in smaller quantities. Thus, the first materials processing on the Moon will probably take the abundant lunar regolith, extract from it major mineral or glass species, and do relatively simple chemical processing. We need to conduct a lunar remote sensing mission to determine the global distribution of features, geophysical properties, and composition of the Moon, information which will serve as the basis for detailed models of and engineering decisions about a lunar mine.

  4. High diffraction efficiency of three-layer diffractive optics designed for wide temperature range and large incident angle.

    PubMed

    Mao, Shan; Cui, Qingfeng; Piao, Mingxu; Zhao, Lidong

    2016-05-01

    A mathematical model of diffraction efficiency and polychromatic integral diffraction efficiency affected by environment temperature change and incident angle for three-layer diffractive optics with different dispersion materials is put forward, and its effects are analyzed. Taking optical materials N-FK5 and N-SF1 as the substrates of multilayer diffractive optics, the effect on diffraction efficiency and polychromatic integral diffraction efficiency with intermediate materials POLYCARB is analyzed with environment temperature change as well as incident angle. Therefore, three-layer diffractive optics can be applied in more wide environmental temperature ranges and larger incident angles for refractive-diffractive hybrid optical systems, which can obtain better image quality. Analysis results can be used to guide the hybrid imaging optical system design for optical engineers.

  5. The Transition from Stiff to Compliant Materials in Squid Beaks

    PubMed Central

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert

    2009-01-01

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-l-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications. PMID:18369144

  6. The transition from stiff to compliant materials in squid beaks.

    PubMed

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W; Waite, J Herbert

    2008-03-28

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.

  7. The Transition from Stiff to Compliant Materials in Squid Beaks

    NASA Astrophysics Data System (ADS)

    Miserez, Ali; Schneberk, Todd; Sun, Chengjun; Zok, Frank W.; Waite, J. Herbert

    2008-03-01

    The beak of the Humboldt squid Dosidicus gigas represents one of the hardest and stiffest wholly organic materials known. As it is deeply embedded within the soft buccal envelope, the manner in which impact forces are transmitted between beak and envelope is a matter of considerable scientific interest. Here, we show that the hydrated beak exhibits a large stiffness gradient, spanning two orders of magnitude from the tip to the base. This gradient is correlated with a chemical gradient involving mixtures of chitin, water, and His-rich proteins that contain 3,4-dihydroxyphenyl-L-alanine (dopa) and undergo extensive stabilization by histidyl-dopa cross-link formation. These findings may serve as a foundation for identifying design principles for attaching mechanically mismatched materials in engineering and biological applications.

  8. Thermal Characterization of Carbon Nanotubes by Photothermal Techniques

    NASA Astrophysics Data System (ADS)

    Leahu, G.; Li Voti, R.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.; Nefedov, I.; Anoshkin, I. V.

    2015-06-01

    Carbon nanotubes (CNTs) are multifunctional materials commonly used in a large number of applications in electronics, sensors, nanocomposites, thermal management, actuators, energy storage and conversion, and drug delivery. Despite recent important advances in the development of CNT purity assessment tools and atomic resolution imaging of individual nanotubes by scanning tunnelling microscopy and high-resolution transmission electron microscopy, the macroscale assessment of the overall surface qualities of commercial CNT materials remains a great challenge. The lack of quantitative measurement technology to characterize and compare the surface qualities of bulk manufactured and engineered CNT materials has negative impacts on the reliable and consistent nanomanufacturing of CNT products. In this paper it is shown how photoacoustic spectroscopy and photothermal radiometry represent useful non-destructive tools to study the optothermal properties of carbon nanotube thin films.

  9. Carbon composites in space vehicle structures

    NASA Technical Reports Server (NTRS)

    Mayer, N. J.

    1974-01-01

    Recent developments in the technology of carbon or graphite filaments now provide the designer with greatly improved materials offering high specific strength and modulus. Besides these advantages are properties which are distinctly useful for space applications and which provide feasibility for missions not obtainable by other means. Current applications include major and secondary structures of communications satellites. A number of R & D projects are exploring carbon-fiber application to rocket engine motor cases, advanced antenna systems, and space shuttle components. Future system studies are being made, based on the successful application of carbon fibers for orbiting space telescope assemblies, orbital transfer vehicles, and very large deployable energy generation systems. Continued technology development is needed in analysis, material standards, and advanced structural concepts to exploit the full potential of carbon filaments in composite materials.

  10. Engineered nanomaterials: exposures, hazards, and risk prevention

    PubMed Central

    2011-01-01

    Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public in industrialized nations) are either developing or using engineered nanomaterials (ENMs) or ENM-containing products. However, our understanding of the occupational, health and safety aspects of ENMs is still in its formative stage. A survey of the literature indicates the available information is incomplete, many of the early findings have not been independently verified, and some may have been over-interpreted. This review describes ENMs briefly, their application, the ENM workforce, the major routes of human exposure, some examples of uptake and adverse effects, what little has been reported on occupational exposure assessment, and approaches to minimize exposure and health hazards. These latter approaches include engineering controls such as fume hoods and personal protective equipment. Results showing the effectiveness - or lack thereof - of some of these controls are also included. This review is presented in the context of the Risk Assessment/Risk Management framework, as a paradigm to systematically work through issues regarding human health hazards of ENMs. Examples are discussed of current knowledge of nanoscale materials for each component of the Risk Assessment/Risk Management framework. Given the notable lack of information, current recommendations to minimize exposure and hazards are largely based on common sense, knowledge by analogy to ultrafine material toxicity, and general health and safety recommendations. This review may serve as an overview for health and safety personnel, management, and ENM workers to establish and maintain a safe work environment. Small start-up companies and research institutions with limited personnel or expertise in nanotechnology health and safety issues may find this review particularly useful. PMID:21418643

  11. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids.

    PubMed

    Bansal, Sunil; Durrett, Timothy P

    2016-01-01

    Triacylglycerols (TAG) containing modified fatty acids with functionality beyond those found in commercially grown oil seed crops can be used as feedstocks for biofuels and bio-based materials. Over the years, advances have been made in transgenically engineering the production of various modified fatty acids in the model plant Arabidopsis thaliana. However, the inability to produce large quantities of transgenic seed has limited the functional testing of the modified oil. In contrast, the emerging oil seed crop Camelina sativa possesses important agronomic traits that recommend it as an ideal production platform for biofuels and industrial feedstocks. Camelina possesses low water and fertilizer requirements and is capable of yields comparable to other oil seed crops, particularly under stress conditions. Importantly, its relatively short growing season enables it to be grown as part of a double cropping system. In addition to these valuable agronomic features, Camelina is amenable to rapid metabolic engineering. The development of a simple and effective transformation method, combined with the availability of abundant transcriptomic and genomic data, has allowed the generation of transgenic Camelina lines capable of synthesizing high levels of unusual lipids. In some cases these levels have surpassed what was achieved in Arabidopsis. Further, the ability to use Camelina as a crop production system has allowed for the large scale growth of transgenic oil seed crops, enabling subsequent physical property testing. The application of new techniques such as genome editing will further increase the suitability of Camelina as an ideal platform for the production of biofuels and bio-materials. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Tough and deformable glasses with bioinspired cross-ply architectures.

    PubMed

    Yin, Zhen; Dastjerdi, Ahmad; Barthelat, Francois

    2018-05-15

    Glasses are optically transparent, hard materials that have been in sustained demand and usage in architectural windows, optical devices, electronics and solar panels. Despite their outstanding optical qualities and durability, their brittleness and low resistance to impact still limits wider applications. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. This seemingly minor enrichment completely transforms the way laminated glass deforms and fractures, and it turns a traditionally brittle material into a stretchy and tough material with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes, and localization is delayed in tension, even if a strain softening interlayer is used, in a remarkable mechanism which is generated by the kinematics of the plies and geometrical hardening. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and 50 times tougher in energy terms. Despite the outstanding optical qualities and durability of glass, its brittleness and low resistance to impact still limits its wider application. Here we present new laminated glass designs that contain toughening cross-ply architectures inspired from fish scales and arthropod cuticles. Enriching laminated designs with crossplies completely transforms the material deforms and fractures, and turns a traditionally brittle material into a stretchy and tough material - with little impact on surface hardness and optical quality. Large ply rotation propagates over large volumes and localization is delayed in tension because of a remarkable and unexpected geometrical hardening effect. Compared to traditional laminated glass which degrades significantly in performance when damaged, our cross-ply architecture glass is damage-tolerant and it is 50 times tougher in energy terms. Our glass-based, transparent material is highly innovative and it is the first of its kind. We believe it will have impact in broad range of applications in construction, coatings, chemical engineering, electronics, photovoltaics. Copyright © 2018. Published by Elsevier Ltd.

  13. Probabilistic Structural Analysis Program

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Chamis, Christos C.; Murthy, Pappu L. N.; Stefko, George L.; Riha, David S.; Thacker, Ben H.; Nagpal, Vinod K.; Mital, Subodh K.

    2010-01-01

    NASA/NESSUS 6.2c is a general-purpose, probabilistic analysis program that computes probability of failure and probabilistic sensitivity measures of engineered systems. Because NASA/NESSUS uses highly computationally efficient and accurate analysis techniques, probabilistic solutions can be obtained even for extremely large and complex models. Once the probabilistic response is quantified, the results can be used to support risk-informed decisions regarding reliability for safety-critical and one-of-a-kind systems, as well as for maintaining a level of quality while reducing manufacturing costs for larger-quantity products. NASA/NESSUS has been successfully applied to a diverse range of problems in aerospace, gas turbine engines, biomechanics, pipelines, defense, weaponry, and infrastructure. This program combines state-of-the-art probabilistic algorithms with general-purpose structural analysis and lifting methods to compute the probabilistic response and reliability of engineered structures. Uncertainties in load, material properties, geometry, boundary conditions, and initial conditions can be simulated. The structural analysis methods include non-linear finite-element methods, heat-transfer analysis, polymer/ceramic matrix composite analysis, monolithic (conventional metallic) materials life-prediction methodologies, boundary element methods, and user-written subroutines. Several probabilistic algorithms are available such as the advanced mean value method and the adaptive importance sampling method. NASA/NESSUS 6.2c is structured in a modular format with 15 elements.

  14. Pigs taking wing with transposons and recombinases

    PubMed Central

    Clark, Karl J; Carlson, Daniel F; Fahrenkrug, Scott C

    2007-01-01

    Swine production has been an important part of our lives since the late Mesolithic or early Neolithic periods, and ranks number one in world meat production. Pig production also contributes to high-value-added medical markets in the form of pharmaceuticals, heart valves, and surgical materials. Genetic engineering, including the addition of exogenous genetic material or manipulation of the endogenous genome, holds great promise for changing pig phenotypes for agricultural and medical applications. Although the first transgenic pigs were described in 1985, poor survival of manipulated embryos; inefficiencies in the integration, transmission, and expression of transgenes; and expensive husbandry costs have impeded the widespread application of pig genetic engineering. Sequencing of the pig genome and advances in reproductive technologies have rejuvenated efforts to apply transgenesis to swine. Pigs provide a compelling new resource for the directed production of pharmaceutical proteins and the provision of cells, vascular grafts, and organs for xenotransplantation. Additionally, given remarkable similarities in the physiology and size of people and pigs, swine will increasingly provide large animal models of human disease where rodent models are insufficient. We review the challenges facing pig transgenesis and discuss the utility of transposases and recombinases for enhancing the success and sophistication of pig genetic engineering. 'The paradise of my fancy is one where pigs have wings.' (GK Chesterton). PMID:18047690

  15. Scallop-Inspired Shell Engineering of Microparticles for Stable and High Volumetric Capacity Battery Anodes.

    PubMed

    Zhang, Xinghao; Guo, Ruiying; Li, Xianglong; Zhi, Linjie

    2018-06-01

    Building stable and efficient electron and ion transport pathways are critically important for energy storage electrode materials and systems. Herein, a scallop-inspired shell engineering strategy is proposed and demonstrated to confine high volume change silicon microparticles toward the construction of stable and high volumetric capacity binder-free lithium battery anodes. As for each silicon microparticle, the methodology involves an inner sealed but adaptable overlapped graphene shell, and an outer open hollow shell consisting of interconnected reduced graphene oxide, mimicking the scallop structure. The inner closed shell enables simultaneous stabilization of the interfaces of silicon with both carbon and electrolyte, substantially facilitates efficient and rapid transport of both electrons and lithium ions from/to silicon, the outer open hollow shell creates stable and robust transport paths of both electrons and lithium ions throughout the electrode without any sophisticated additives. The resultant self-supported electrode has achieved stable cycling with rapidly increased coulombic efficiency in the early stage, superior rate capability, and remarkably high volumetric capacity upon a facile pressing process. The rational design and engineering of graphene shells of the silicon microparticles developed can provide guidance for the development of a wide range of other high capacity but large volume change electrochemically active materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Contact and Bandgap Engineering in Two Dimensional Crystal

    NASA Astrophysics Data System (ADS)

    Chu, Tao

    At the heart of semiconductor research, bandgap is one of the key parameters for materials and determine their applications in modern technologies. For traditional bulk semiconductors, the bandgap is determined by the chemical composition and specific arrangement of the crystal lattices, and usually invariant during the device operation. Nevertheless, it is highly desirable for many optoelectronic and electronic applications to have materials with continuously tunable bandgap available. In the past decade, 2D layered materials including graphene and transition metal dichalcogenides (TMDs) have sparked interest in the scientific community, owing to their unique material properties and tremendous potential in various applications. Among many newly discovered properties that are non-existent in bulk materials, the strong in-plane bonding and weak van der Waals inter-planar interaction in these 2D layered structures leads to a widely tunable bandgap by electric field. This provides an extra knob to engineer the fundamental material properties and open a new design space for novel device operation. This thesis focuses on this field controlled dynamic bandgap and can be divided into three parts: (1) bilayer graphene is the first known 2D crystal with a bandgap can be continuously tuned by electric field. However, the electrical transport bandgaps is much smaller than both theoretical predictions and extracted bandgaps from optical measurements. In the first part of the thesis, the limiting factors of preventing achieving a large transport bandgap in bilayer graphene are investigated and different strategies to achieve a large transport bandgap are discussed, including the vertically scaling of gate oxide and patterning channel into ribbon structure. With a record large transport bandgap of ~200meV, a dual-gated semiconducting bilayer graphene P/N junction with extremely scaled gap of 20nm in-between is fabricated. A tunable local maxima feature, associated with 1D vHs DOS at the band edge of bilayer graphene, was experimentally observed in transport for the first time. (2) The bandgap of bilayer MoS2 is also predicted to be continuously tuned to zero by applying a perpendicular electric field. Here, the first experimental realization of tuning the bandgap of bilayer MoS2 by a vertical electric field is presented. An analytical approach utilizing the threshold voltages from ambipolar characteristics is employed to quantitatively extract bandgaps, which is further benchmarked by temperature dependent bandgap measurements and photoluminescence measurements. (3) Few layer graphene is employed as an example to demonstrate a novel self-aligned edge contacting scheme for layered material systems.

  17. The NanoSustain and NanoValid project--two new EU FP7 research initiatives to assess the unique physical-chemical and toxicological properties of engineered nanomaterials.

    PubMed

    Reuther, Rudolf

    2011-02-01

    In 2010, the EU FP NanoSustain project (247989) has been successfully launched with the objective to develop innovative solutions for the sustainable use, recycling and final treatment of engineered nanomaterials (ENMs). The same year, NanoValid (263147), a large-scale integrating EU FP7 project has been initiated and contract negotiations with the European Commission commenced, to develop new reference methods and materials applicable to the unique properties of ENMs. The paper presented will give an overview on the main objectives of these 2 new European research initiatives, on main tasks to achieve objectives, and on the impact on current standardization efforts and technical innovations.

  18. Accelerator boom hones China's engineering expertise

    NASA Astrophysics Data System (ADS)

    Normile, Dennis

    2018-02-01

    In raising the curtain on the China Spallation Neutron Source, China has joined just four other nations in having mastered the technology of accelerating and controlling beams of protons. The $277 million facility, set to open to users this spring in Dongguan, is expected to yield big dividends in materials science, chemistry, and biology. More world class machines are on the way, as China this year starts construction on four other major accelerator facilities. The building boom is prompting a scramble to find enough engineers and technicians to finish the projects. But if they all come off as planned, the facilities would position China to tackle the next global megaproject: a giant accelerator that would pick up where Europe's Large Hadron Collider leaves off.

  19. Genetically Engineered Microelectronic Infrared Filters

    NASA Technical Reports Server (NTRS)

    Cwik, Tom; Klimeck, Gerhard

    1998-01-01

    A genetic algorithm is used for design of infrared filters and in the understanding of the material structure of a resonant tunneling diode. These two components are examples of microdevices and nanodevices that can be numerically simulated using fundamental mathematical and physical models. Because the number of parameters that can be used in the design of one of these devices is large, and because experimental exploration of the design space is unfeasible, reliable software models integrated with global optimization methods are examined The genetic algorithm and engineering design codes have been implemented on massively parallel computers to exploit their high performance. Design results are presented for the infrared filter showing new and optimized device design. Results for nanodevices are presented in a companion paper at this workshop.

  20. Bandgap engineering through nanocrystalline magnetic alloy grafting on reduced graphene oxide.

    PubMed

    De, D; Chakraborty, M; Majumdar, S; Giri, S

    2014-09-28

    High conductivity and the absence of ferromagnetism in pristine graphene fail to satisfy primary criteria for possible technological application in spintronics. Opening of the bandgap in graphene is primarily desirable for such applications. We report a simplified and novel approach of controlled grafting of a magnetic alloy on reduced graphene oxide. This eventually leads to ferromagnetism of the stable hybrid material at room temperature, with a large moment (∼1.2 μB) and a remarkable decrease in conductivity (∼10 times) compared to highly ordered pyrolytic graphite. Our model band-structure calculation indicates that the combined effect of controlled vacancies and impurities attributed to the nanocrystalline alloy grafting leads to a promising step toward band gap engineering.

  1. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  2. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  3. Clean-Burning Diesel Engines.

    DTIC Science & Technology

    1986-03-01

    Dietzmann L.R. Smith Engines, Emissions, and Vehicle Research Division Southwest Research Institute San Antonio, Texas Prepared for Belvoir Fuels and...replacing the currently used electric forklift with diesel engine-powered forklifts in handling hazardous materials. Electric -powered forklifts have no...diesel engines considered as potential candidates for forklift vehicles used to handle hazardous materials. The first program was conducted to

  4. Heat Pipes Reduce Engine-Exhaust Emissions

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1986-01-01

    Increased fuel vaporization raises engine efficiency. Heat-pipe technology increased efficiency of heat transfer beyond that obtained by metallic conduction. Resulted in both improved engine operation and reduction in fuel consumption. Raw material conservation through reduced dependence on strategic materials also benefit from this type of heat-pipe technology. Applications result in improved engine performance and cleaner environment.

  5. ATK Launch Systems Engineering NASA Programs Engineering Examples

    NASA Technical Reports Server (NTRS)

    Richardson, David

    2007-01-01

    This presentation provides an overview of the work done at ATK Launch Systems with and indication of how engineering knowledge can be applied to several real world problems. All material in the presentation has been screened to meet ITAR restrictions. The information provided is a compilation of general engineering knowledge and material available in the public domain. The presentation provides an overview of ATK Launch Systems and NASA programs. Some discussion is provided about the types of engineering conducted at the Promontory plant with added detail about RSRM nozzle engineering. Some brief examples of examples of nozzle technical issues with regard to adhesives and phenolics are shared. These technical issue discussions are based on material available in the public domain.

  6. Multi-scale Material Parameter Identification Using LS-DYNA® and LS-OPT®

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stander, Nielen; Basudhar, Anirban; Basu, Ushnish

    2015-09-14

    Ever-tightening regulations on fuel economy, and the likely future regulation of carbon emissions, demand persistent innovation in vehicle design to reduce vehicle mass. Classical methods for computational mass reduction include sizing, shape and topology optimization. One of the few remaining options for weight reduction can be found in materials engineering and material design optimization. Apart from considering different types of materials, by adding material diversity and composite materials, an appealing option in automotive design is to engineer steel alloys for the purpose of reducing plate thickness while retaining sufficient strength and ductility required for durability and safety. A project tomore » develop computational material models for advanced high strength steel is currently being executed under the auspices of the United States Automotive Materials Partnership (USAMP) funded by the US Department of Energy. Under this program, new Third Generation Advanced High Strength Steel (i.e., 3GAHSS) are being designed, tested and integrated with the remaining design variables of a benchmark vehicle Finite Element model. The objectives of the project are to integrate atomistic, microstructural, forming and performance models to create an integrated computational materials engineering (ICME) toolkit for 3GAHSS. The mechanical properties of Advanced High Strength Steels (AHSS) are controlled by many factors, including phase composition and distribution in the overall microstructure, volume fraction, size and morphology of phase constituents as well as stability of the metastable retained austenite phase. The complex phase transformation and deformation mechanisms in these steels make the well-established traditional techniques obsolete, and a multi-scale microstructure-based modeling approach following the ICME [0]strategy was therefore chosen in this project. Multi-scale modeling as a major area of research and development is an outgrowth of the Comprehensive Test Ban Treaty of 1996 which banned surface testing of nuclear devices [1]. This had the effect that experimental work was reduced from large scale tests to multiscale experiments to provide material models with validation at different length scales. In the subsequent years industry realized that multi-scale modeling and simulation-based design were transferable to the design optimization of any structural system. Horstemeyer [1] lists a number of advantages of the use of multiscale modeling. Among these are: the reduction of product development time by alleviating costly trial-and-error iterations as well as the reduction of product costs through innovations in material, product and process designs. Multi-scale modeling can reduce the number of costly large scale experiments and can increase product quality by providing more accurate predictions. Research tends to be focussed on each particular length scale, which enhances accuracy in the long term. This paper serves as an introduction to the LS-OPT and LS-DYNA methodology for multi-scale modeling. It mainly focuses on an approach to integrate material identification using material models of different length scales. As an example, a multi-scale material identification strategy, consisting of a Crystal Plasticity (CP) material model and a homogenized State Variable (SV) model, is discussed and the parameter identification of the individual material models of different length scales is demonstrated. The paper concludes with thoughts on integrating the multi-scale methodology into the overall vehicle design.« less

  7. Recent Advances in Biohybrid Materials for Tissue Engineering and Regenerative Medicine

    NASA Astrophysics Data System (ADS)

    Wan, Ying; Li, Xing; Wang, Shenqi

    2016-07-01

    Biohybrid materials play an important role in tissue engineering, artificial organs and regenerative medicine due to their regulation of cell function through specific cell-matrix interactions involving integrins, mostly those of fibroblasts and myofibroblasts, and ligands on the matrix surface, which have become current research focus. In this paper, recent progress of biohybrid materials, mainly including main types of biohybrid materials, rapid prototype (RP) technique for construction of 3D biohybrid materials, was reviewed in detail; moreover, their applications in tissue engineering, artificial organs and regenerative medicine were also reviewed in detail. At last, we address the challenges biohybrid materials may face.

  8. Revolutionary opportunities for materials and structures study

    NASA Technical Reports Server (NTRS)

    Schweiger, F. A.

    1987-01-01

    The revolutionary opportunities for materials and structures study was performed to provide Government and Industry focus for advanced materials technology. Both subsonic and supersonic engine studies and aircraft fuel burn and DOC evaluation are examined. Year 2010 goal materials were used in the advanced engine studies. These goal materials and improved component aero yielded subsonic fuel burn and DOC improvements of 13.4 percent and 5 percent, respectively and supersonic fuel burn and DOC improvements of 21.5 percent and 18 percent, respectively. Conclusions are that the supersonic study engine yielded fuel burn and DOC improvements well beyond the program goals; therefore, it is appropriate that advanced material programs be considered.

  9. Indentation mapping revealed poroelastic, but not viscoelastic, properties spanning native zonal articular cartilage.

    PubMed

    Wahlquist, Joseph A; DelRio, Frank W; Randolph, Mark A; Aziz, Aaron H; Heveran, Chelsea M; Bryant, Stephanie J; Neu, Corey P; Ferguson, Virginia L

    2017-12-01

    Osteoarthrosis is a debilitating disease affecting millions, yet engineering materials for cartilage regeneration has proven difficult because of the complex microstructure of this tissue. Articular cartilage, like many biological tissues, produces a time-dependent response to mechanical load that is critical to cell's physiological function in part due to solid and fluid phase interactions and property variations across multiple length scales. Recreating the time-dependent strain and fluid flow may be critical for successfully engineering replacement tissues but thus far has largely been neglected. Here, microindentation is used to accomplish three objectives: (1) quantify a material's time-dependent mechanical response, (2) map material properties at a cellular relevant length scale throughout zonal articular cartilage and (3) elucidate the underlying viscoelastic, poroelastic, and nonlinear poroelastic causes of deformation in articular cartilage. Untreated and trypsin-treated cartilage was sectioned perpendicular to the articular surface and indentation was used to evaluate properties throughout zonal cartilage on the cut surface. The experimental results demonstrated that within all cartilage zones, the mechanical response was well represented by a model assuming nonlinear biphasic behavior and did not follow conventional viscoelastic or linear poroelastic models. Additionally, 10% (w/w) agarose was tested and, as anticipated, behaved as a linear poroelastic material. The approach outlined here provides a method, applicable to many tissues and biomaterials, which reveals and quantifies the underlying causes of time-dependent deformation, elucidates key aspects of material structure and function, and that can be used to provide important inputs for computational models and targets for tissue engineering. Elucidating the time-dependent mechanical behavior of cartilage, and other biological materials, is critical to adequately recapitulate native mechanosensory cues for cells. We used microindentation to map the time-dependent properties of untreated and trypsin treated cartilage throughout each cartilage zone. Unlike conventional approaches that combine viscoelastic and poroelastic behaviors into a single framework, we deconvoluted the mechanical response into separate contributions to time-dependent behavior. Poroelastic effects in all cartilage zones dominated the time-dependent behavior of articular cartilage, and a model that incorporates tension-compression nonlinearity best represented cartilage mechanical behavior. These results can be used to assess the success of regeneration and repair approaches, as design targets for tissue engineering, and for development of accurate computational models. Copyright © 2017 Acta Materialia Inc. All rights reserved.

  10. Biodegradable Microfluidic Scaffolds for Vascular Tissue Engineering

    DTIC Science & Technology

    2005-01-01

    Engineering DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE: Materials Research...Society Symposium Proceedings. Volume 845, 2005. Nanoscale Materials Science in Biology and Medicine, Held in Boston, MA on 28 November-2 December 2004...Symp. Proc. Vol. 845 © 2005 Materials Research Society AA1.6 Biodegradable Microfluidic Scaffolds for Vascular Tissue Engineering C. J. Bettinger" 3

  11. PREFACE: 6th EEIGM International Conference on Advanced Materials Research

    NASA Astrophysics Data System (ADS)

    Horwat, David; Ayadi, Zoubir; Jamart, Brigitte

    2012-02-01

    The 6th EEIGM Conference on Advanced Materials Research (AMR 2011) was held at the European School of Materials Engineering (EEIGM) on the 7-8 November 2011 in Nancy, France. This biennial conference organized by the EEIGM is a wonderful opportunity for all scientists involved in the EEIGM programme, in the 'Erasmus Mundus' Advanced Materials Science and Engineering Master programme (AMASE) and the 'Erasmus Mundus' Doctoral Programme in Materials Science and Engineering (DocMASE), to present their research in the various fields of Materials Science and Engineering. This conference is also open to other universities who have strong links with the EEIGM and provides a forum for the exchange of ideas, co-operation and future orientations by means of regular presentations, posters and a round-table discussion. This edition of the conference included a round-table discussion on composite materials within the Interreg IVA project '+Composite'. Following the publication of the proceedings of AMR 2009 in Volume 5 of this journal, it is with great pleasure that we present this selection of articles to the readers of IOP Conference Series: Materials Science and Engineering. Once again it represents the interdisciplinary nature of Materials Science and Engineering, covering basic and applicative research on organic and composite materials, metallic materials and ceramics, and characterization methods. The editors are indebted to all the reviewers for reviewing the papers at very short notice. Special thanks are offered to the sponsors of the conference including EEIGM-Université de Lorraine, AMASE, DocMASE, Grand Nancy, Ville de Nancy, Region Lorraine, Fédération Jacques Villermaux, Conseil Général de Meurthe et Moselle, Casden and '+Composite'. Zoubir Ayadi, David Horwat and Brigitte Jamart

  12. Ab initio calculations for industrial materials engineering: successes and challenges.

    PubMed

    Wimmer, Erich; Najafabadi, Reza; Young, George A; Ballard, Jake D; Angeliu, Thomas M; Vollmer, James; Chambers, James J; Niimi, Hiroaki; Shaw, Judy B; Freeman, Clive; Christensen, Mikael; Wolf, Walter; Saxe, Paul

    2010-09-29

    Computational materials science based on ab initio calculations has become an important partner to experiment. This is demonstrated here for the effect of impurities and alloying elements on the strength of a Zr twist grain boundary, the dissociative adsorption and diffusion of iodine on a zirconium surface, the diffusion of oxygen atoms in a Ni twist grain boundary and in bulk Ni, and the dependence of the work function of a TiN-HfO(2) junction on the replacement of N by O atoms. In all of these cases, computations provide atomic-scale understanding as well as quantitative materials property data of value to industrial research and development. There are two key challenges in applying ab initio calculations, namely a higher accuracy in the electronic energy and the efficient exploration of large parts of the configurational space. While progress in these areas is fueled by advances in computer hardware, innovative theoretical concepts combined with systematic large-scale computations will be needed to realize the full potential of ab initio calculations for industrial applications.

  13. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1999-01-01

    Studies on the growth of small cracks have led to the observation that fatigue life of many engineering materials is primarily "crack growth" from micro-structural features, such as inclusion particles, voids, slip-bands or from manufacturing defects. This paper reviews the capabilities of a plasticity-induced crack-closure model to predict fatigue lives of metallic materials using "small-crack theory" under various loading conditions. Constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (delta-Keff) under constant-amplitude loading. Modifications to the delta-Keff-rate relations in the near-threshold regime were needed to fit measured small-crack growth rate behavior. The model was then used to calculate small-and large-crack growth rates, and to predict total fatigue lives, for notched and un-notched specimens under constant-amplitude and spectrum loading. Fatigue lives were predicted using crack-growth relations and micro-structural features like those that initiated cracks in the fatigue specimens for most of the materials analyzed. Results from the tests and analyses agreed well.

  14. 11 things a geologist thinks an engineer should know about carbonate beaches

    USGS Publications Warehouse

    Halley, Robert B.; Magoon, Orville T.; Robbins, Lisa L.; Ewing, Lesley

    2002-01-01

    This is a review of the geological aspects of carbonate beaches that a geologist thinks may be useful for an engineer. Classical geologic problems of carbonate beaches, for example how ancient examples are recognized in rock sequences, are of little interest to engineers. Geologists not involved in engineering problems may find it difficult to know what an engineer should understand about carbonate beaches. Nevertheless, there are at least eleven topics that are potentially very useful for engineers to keep in mind. These eleven are chosen with as much thought going into what has been omitted as has been given to the eleven included topics. Some qualifications are in order: First, this paper does not discuss certain kinds of carbonate shorelines that are beyond the scope of engineering issues. For example, this review does not discuss very high-energy carbonate boulder beaches. These beaches are comprised of pieces of carbonate material ganging in size from ten centimeters to meters. Typically, these are high-energy storm deposits formed from pieces of either eroded carbonate rock or other large carbonate pieces such as pieces of large corals. This paper focuses on sand-sized (0.0625–2.0 mm) coastal carbonate deposits. Second, offshore beaches will not be discussed. There are many carbonate beaches that form on banks or shoals exposed at low tide, but our discussion is confined to what most people think of when they go to some tropical island and/or resort and walk out to lay on the beach. Third, this paper does not consider mixed carbonate/quartz sand beaches. While mixed beaches are common, only the end member of purely carbonate sand beaches is considered. Fourth, there will be no order of preference of the eleven topics. And lastly, these eleven topics are not consensus items. These are simply one geologist s thoughts about the aspects of carbonate beaches that would be useful for engineering colleagues to keep in mind. Where possible, general reference is made to textbooks that will lead the reader to extensive literature on carbonate sediments. Several of the topics are not so broad as to have had a large general treatment in texts, and in those cases some original literature is cited.

  15. Interplay between defects, disorder and flexibility in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Bennett, Thomas D.; Cheetham, Anthony K.; Fuchs, Alain H.; Coudert, François-Xavier

    2017-01-01

    Metal-organic frameworks are a novel family of chemically diverse materials, which are of interest across engineering, physics, chemistry, biology and medicine-based disciplines. Since the development of the field in its current form more than two decades ago, priority has been placed on the synthesis of new structures. However, more recently, a clear trend has emerged in shifting the emphasis from material design to exploring the chemical and physical properties of structures already known. In particular, although such nanoporous materials were traditionally seen as rigid crystalline structures, there is growing evidence that large-scale flexibility, the presence of defects and long-range disorder are not the exception in metal-organic frameworks, but the rule. Here we offer some perspective into how these concepts are perhaps inescapably intertwined, highlight recent advances in our understanding and discuss how a consideration of the interfaces between them may lead to enhancements of the materials' functionalities.

  16. Orthotropic Laminated Open-cell Frameworks Retaining Strong Auxeticity under Large Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiro; Suga, Kaito; Iwata, Naoki; Shibutani, Yoji

    2017-01-01

    Anisotropic materials form inside living tissue and are widely applied in engineered structures, where sophisticated structural and functional design principles are essential to employing these materials. This paper presents a candidate laminated open-cell framework, which is an anisotropic material that shows remarkable mechanical performance. Using additive manufacturing, artificial frameworks are fabricated by lamination of in-plane orthotropic microstructures made of elbowed beam and column members; this fabricated structure features orthogonal anisotropy in three-dimensional space. Uniaxial loading tests reveal strong auxeticity (high negative Poisson’s ratios) in the out-of-plane direction, which is retained reproducibly up to the nonlinear elastic region, and is equal under tensile and compressive loading. Finite element simulations support the observed auxetic behaviors for a unit cell in the periodic framework, which preserve the theoretical elastic properties of an orthogonal solid. These findings open the possibility of conceptual materials design based on geometry.

  17. Caracterisation of Titanium Nitride Layers Deposited by Reactive Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Roşu, Radu Alexandru; Şerban, Viorel-Aurel; Bucur, Alexandra Ioana; Popescu, Mihaela; Uţu, Dragoş

    2011-01-01

    Forming and cutting tools are subjected to the intense wear solicitations. Usually, they are either subject to superficial heat treatments or are covered with various materials with high mechanical properties. In recent years, thermal spraying is used increasingly in engineering area because of the large range of materials that can be used for the coatings. Titanium nitride is a ceramic material with high hardness which is used to cover the cutting tools increasing their lifetime. The paper presents the results obtained after deposition of titanium nitride layers by reactive plasma spraying (RPS). As deposition material was used titanium powder and as substratum was used titanium alloy (Ti6Al4V). Macroscopic and microscopic (scanning electron microscopy) images of the deposited layers and the X ray diffraction of the coatings are presented. Demonstration program with layers deposited with thickness between 68,5 and 81,4 μm has been achieved and presented.

  18. The potential for CMCs to replace superalloys in engine exhaust ducts

    NASA Astrophysics Data System (ADS)

    Roth, Richard; Clark, Joel P.; Field, Frank R.

    1994-01-01

    The Materials Systems Laboratory at the Massachusetts Institute of Technology has conducted research to develop decision tools that can facilitate materials selection and provide a deeper understanding of the design tradeoffs that occur when choosing among advanced aerospace materials for high-temperature applications. As an illustration of the use of these tools, this paper describes research done to evaluate the material alternatives currently under consideration for exhaust ducts in aircraft gas turbine engines. Although nickel-based superalloys currently prevail for this application, the increasing temperatures of modern engines are necessitating the usage of higher temperature materials.

  19. Engineering study of the module/array interface for large terrestrial photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Three major areas--structural, electrical, and maintenance--were evaluated. Efforts in the structural area included establishing acceptance criteria for materials and members, determining loading criteria, and analyzing glass modules in various framing system configurations. Array support structure design was addressed briefly. Electrical considerations included evaluation of module characteristics, intermodule connectors, array wiring, converters and lightning protection. Plant maintenance features such as array cleaning, failure detection, and module installation and replacement were addressed.

  20. Proceedings of the 13th Project integration meeting

    NASA Technical Reports Server (NTRS)

    Mcdonald, R. R.

    1979-01-01

    Progress made by the Low Cost Solar Array Project during the period April through August 1979 is presented. Reports are given on project analysis and integration; technology development in silicon material, large area sheet silicon, and encapsulation; production process and equipment development; engineering and operations, and a discussion of the steps taken to integrate these efforts. A report on, and copies of viewgraphs presented at the Project Integration Meeting held August 22-23, 1979 are presented.

  1. Electron-pinned defect-dipoles for high-performance colossal permittivity materials

    NASA Astrophysics Data System (ADS)

    Hu, Wanbiao; Liu, Yun; Withers, Ray L.; Frankcombe, Terry J.; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO2 rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 104) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that ‘triangular’ In23+VO••Ti3+ and ‘diamond’ shaped Nb25+Ti3+ATi (A  =  Ti3+/In3+/Ti4+) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO2. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  2. Electron-pinned defect-dipoles for high-performance colossal permittivity materials.

    PubMed

    Hu, Wanbiao; Liu, Yun; Withers, Ray L; Frankcombe, Terry J; Norén, Lasse; Snashall, Amanda; Kitchin, Melanie; Smith, Paul; Gong, Bill; Chen, Hua; Schiemer, Jason; Brink, Frank; Wong-Leung, Jennifer

    2013-09-01

    The immense potential of colossal permittivity (CP) materials for use in modern microelectronics as well as for high-energy-density storage applications has propelled much recent research and development. Despite the discovery of several new classes of CP materials, the development of such materials with the required high performance is still a highly challenging task. Here, we propose a new electron-pinned, defect-dipole route to ideal CP behaviour, where hopping electrons are localized by designated lattice defect states to generate giant defect-dipoles and result in high-performance CP materials. We present a concrete example, (Nb+In) co-doped TiO₂ rutile, that exhibits a largely temperature- and frequency-independent colossal permittivity (> 10(4)) as well as a low dielectric loss (mostly < 0.05) over a very broad temperature range from 80 to 450 K. A systematic defect analysis coupled with density functional theory modelling suggests that 'triangular' In₂(3+)Vo(••)Ti(3+) and 'diamond' shaped Nb₂(5+)Ti(3+)A(Ti) (A = Ti(3+)/In(3+)/Ti(4+)) defect complexes are strongly correlated, giving rise to large defect-dipole clusters containing highly localized electrons that are together responsible for the excellent CP properties observed in co-doped TiO₂. This combined experimental and theoretical work opens up a promising feasible route to the systematic development of new high-performance CP materials via defect engineering.

  3. Nanotechnology and health safety--toxicity and risk assessments of nanostructured materials on human health.

    PubMed

    Singh, Surya; Nalwa, Hari Singh

    2007-09-01

    The field of nanotechnology has recently emerged as the most commercially viable technology of this century because of its wide-ranging applications in our daily lives. Man-made nanostructured materials such as fullerenes, nanoparticles, nanopowders, nanotubes, nanowires, nanorods, nanofibers, quantum dots, dendrimers, nanoclusters, nanocrystals, and nanocomposites are globally produced in large quantities due to their wide potential applications, e.g., in skincare and consumer products, healthcare, electronics, photonics, biotechnology, engineering products, pharmaceuticals, drug delivery, and agriculture. Human exposure to these nanostructured materials is inevitable, as they can enter the body through the lungs or other organs via food, drink, and medicine and affect different organs and tissues such as the brain, liver, kidney, heart, colon, spleen, bone, blood, etc., and may cause cytotoxic effects, e.g., deformation and inhibition of cell growth leading to various diseases in humans and animals. Since a very wide variety of nanostructured materials exits, their interactions with biological systems and toxicity largely depend upon their properties, such as size, concentration, solubility, chemical and biological properties, and stability. The toxicity of nanostructured materials could be reduced by chemical approaches such by surface treatment, functionalization, and composite formation. This review summarizes the sources of various nanostructured materials and their human exposure, biocompatibility in relation to potential toxicological effects, risk assessment, and safety evaluation on human and animal health as well as on the environment.

  4. Sandia National Laboratories: Exceptional Service in the National Interest

    Science.gov Websites

    Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Electromagnetics Engineering Science Geoscience Materials Science Nanodevices & Microsystems Radiation Effects Geoscience Materials Science Nanodevices & Microsystems Radiation Effects & High Energy Density

  5. Pyrolysis Model Development for a Multilayer Floor Covering

    PubMed Central

    McKinnon, Mark B.; Stoliarov, Stanislav I.

    2015-01-01

    Comprehensive pyrolysis models that are integral to computational fire codes have improved significantly over the past decade as the demand for improved predictive capabilities has increased. High fidelity pyrolysis models may improve the design of engineered materials for better fire response, the design of the built environment, and may be used in forensic investigations of fire events. A major limitation to widespread use of comprehensive pyrolysis models is the large number of parameters required to fully define a material and the lack of effective methodologies for measurement of these parameters, especially for complex materials. The work presented here details a methodology used to characterize the pyrolysis of a low-pile carpet tile, an engineered composite material that is common in commercial and institutional occupancies. The studied material includes three distinct layers of varying composition and physical structure. The methodology utilized a comprehensive pyrolysis model (ThermaKin) to conduct inverse analyses on data collected through several experimental techniques. Each layer of the composite was individually parameterized to identify its contribution to the overall response of the composite. The set of properties measured to define the carpet composite were validated against mass loss rate curves collected at conditions outside the range of calibration conditions to demonstrate the predictive capabilities of the model. The mean error between the predicted curve and the mean experimental mass loss rate curve was calculated as approximately 20% on average for heat fluxes ranging from 30 to 70 kW·m−2, which is within the mean experimental uncertainty. PMID:28793556

  6. A new material for tissue engineered vagina reconstruction: Acellular porcine vagina matrix.

    PubMed

    Zhang, Jing-Kun; Du, Run-Xuan; Zhang, Lin; Li, Ya-Nan; Zhang, Ming-Le; Zhao, Shuo; Huang, Xiang-Hua; Xu, Yan-Fang

    2017-07-01

    Acellular matrix materials have been widely used to repair various tissues and organs. According to the plastic principle, when a part of the body is lost, it should be replaced with a similar material. Therefore, the use of a homologous organ-specific acellular vaginal tissue in vagina reconstruction repair surgery may show good results. However, the acellular vagina matrix (AVM) form large vertebrates is difficult to isolate. In this study, we described a multistep method to prepare porcine AVM and evaluated the efficacy of acellularization. We also investigated the biomechanical properties, biological activity elements, and biocompatibility of the porcine AVM. We then used this material to reconstruct a rat vagina and performed further morphologic and functional analyses. Small intestinal submucosa (SIS), which is a commonly used acellular matrix material, was used in a control group. Histological examination, DNA content analysis, and agarose gel electrophoresis revealed that the decellularization procedure was effective. The AVM had acceptable biomechanical properties and sufficient growth factor production (VEGF, FGF, TGF-β1, and PDGF-BB) compared with that of the SIS. Subcutaneous transplantation in rats showed that the AVM had good biocompatibility. The tissue-engineered vagina using the AVM more resembled normal-appearing tissue than did that using SIS following morphologic and functional analyses. The AVM has great potential for application in vaginal reconstructive surgery. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1949-1959, 2017. © 2017 Wiley Periodicals, Inc.

  7. Disks and cones: interferometry of the dusty and molecular material of AGN on parsec sales

    NASA Astrophysics Data System (ADS)

    Tristam, Konrad R. W.

    2016-08-01

    The central engine of Active Galactic Nuclei (AGN) is surrounded by dense molecular and dusty material on parsec scales. Typically referred to as the ""dusty torus"", this material is a key ingredient of AGN because it (1) provides the angle dependent obscuration of the central engine and (2) most likely plays an important role for the accretion of the material onto the supermassive black hole. Observations using interferometry in the infrared have, in the last ten years, resolved and characterised the thermal emission from the dust heated by the AGN beyond simple fits of the spectral energy distribution, leading to a great leap forward in our view of the dusty material surrounding AGN. In general the torus is parsec-sized, with a large scatter in extension between individual objects. Our studies have led to the surprising discovery that the dust emission is clearly separated into two distinct components: an inner disk-like emission region which is surrounded by a polar elongated emitter. I will demonstrate these discoveries using the results obtained for the Circinus galaxy, and discuss how the results for this galaxy compare to other well studied sources. While putting strong constraints on torus models, our findings are in good qualitative agreement with recent hydrodynamic simulations of AGN tori. The next big step forward can be expected from sub-mm interferometry and I will give a short glimpse at the results from our recent ALMA observations of the outer torus in the Circinus galaxy.

  8. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less

  10. Outbrief - Long Life Rocket Engine Panel

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2004-01-01

    This white paper is an overview of the JANNAF Long Life Rocket Engine (LLRE) Panel results from the last several years of activity. The LLRE Panel has met over the last several years in order to develop an approach for the development of long life rocket engines. Membership for this panel was drawn from a diverse set of the groups currently working on rocket engines (Le. government labs, both large and small companies and university members). The LLRE Panel was formed in order to determine the best way to enable the design of rocket engine systems that have life capability greater than 500 cycles while meeting or exceeding current performance levels (Specific Impulse and Thrust/Weight) with a 1/1,OOO,OOO likelihood of vehicle loss due to rocket system failure. After several meetings and much independent work the panel reached a consensus opinion that the primary issues preventing LLRE are a lack of: physics based life prediction, combined loads prediction, understanding of material microphysics, cost effective system level testing. and the inclusion of fabrication process effects into physics based models. With the expected level of funding devoted to LLRE development, the panel recommended that fundamental research efforts focused on these five areas be emphasized.

  11. Laser microprocessing and nanoengineering of large-area functional micro/nanostructures

    NASA Astrophysics Data System (ADS)

    Tang, M.; Xie, X. Z.; Yang, J.; Chen, Z. C.; Xu, L.; Choo, Y. S.; Hong, M. H.

    2011-12-01

    Laser microprocessing and nanoengineering are of great interest to both scientists and engineers, since the inspired properties of functional micro/nanostructures over large areas can lead to numerous unique applications. Currently laser processing systems combined with high speed automation ensure the focused laser beam to process various materials at a high throughput and a high accuracy over large working areas. UV lasers are widely used in both laser microprocessing and nanoengineering. However by improving the processing methods, green pulsed laser is capable of replacing UV lasers to make high aspect ratio micro-grooves on fragile and transparent sapphire substrates. Laser micro-texturing can also tune the wetting property of metal surfaces from hydrophilic to super-hydrophobic at a contact angle of 161° without chemical coating. Laser microlens array (MLA) can split a laser beam into multiple laser beams and reduce the laser spot size down to sub-microns. It can be applied to fabricate split ring resonator (SRR) meta-materials for THz sensing, surface plasmonic resonance (SPR) structures for NIR and molding tools for soft lithography. Furthermore, laser interference lithography combined with thermal annealing can obtain a large area of sub-50nm nano-dot clusters used for SPR applications.

  12. Evaluation of ceramics for stator application: Gas turbine engine report

    NASA Technical Reports Server (NTRS)

    Trela, W.; Havstad, P. H.

    1978-01-01

    Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.

  13. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering

    PubMed Central

    Ogueri, Kenneth S.; Escobar Ivirico, Jorge L.; Nair, Lakshmi S.; Allcock, Harry R.; Laurencin, Cato T.

    2017-01-01

    The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. Lay Summary Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications. PMID:28596987

  14. Biodegradable Polyphosphazene-Based Blends for Regenerative Engineering.

    PubMed

    Ogueri, Kenneth S; Escobar Ivirico, Jorge L; Nair, Lakshmi S; Allcock, Harry R; Laurencin, Cato T

    2017-03-01

    The occurrence of musculoskeletal tissue injury or disease and the subsequent functional impairment is at an alarming rate. It continues to be one of the most challenging problems in the human health care. Regenerative engineering offers a promising transdisciplinary strategy for tissues regeneration based on the convergence of tissue engineering, advanced materials science, stem cell science, developmental biology and clinical translation. Biomaterials are emerging as extracellular-mimicking matrices designed to provide instructive cues to control cell behavior and ultimately, be applied as therapies to regenerate damaged tissues. Biodegradable polymers constitute an attractive class of biomaterials for the development of scaffolds due to their flexibility in chemistry and the ability to be excreted or resorbed by the body. Herein, the focus will be on biodegradable polyphosphazene-based blend systems. The synthetic flexibility of polyphosphazene, combined with the unique inorganic backbone, has provided a springboard for more research and subsequent development of numerous novel materials that are capable of forming miscible blends with poly (lactide-co-glycolide) (PLAGA). Laurencin and co-workers has demonstrated the exploitation of the synthetic flexibility of Polyphosphazene that will allow the design of novel polymers, which can form miscible blends with PLAGA for biomedical applications. These novel blends, due to their well-tuned biodegradability, and mechanical and biological properties coupled with the buffering capacity of the degradation products, constitute ideal materials for regeneration of various musculoskeletal tissues. Regenerative engineering aims to regenerate complex tissues to address the clinical challenge of organ damage. Tissue engineering has largely focused on the restoration and repair of individual tissues and organs, but over the past 25 years, scientific, engineering, and medical advances have led to the introduction of this new approach which involves the regeneration of complex tissues and biological systems such as a knee or a whole limb. While a number of excellent advanced biomaterials have been developed, the choice of biomaterials, however, has increased over the past years to include polymers that can be designed with a range of mechanical properties, degradation rates, and chemical functionality. The polyphosphazenes are one good example. Their chemical versatility and hydrogen bonding capability encourages blending with other biologically relevant polymers. The further development of Polyphosphazene-based blends will present a wide spectrum of advanced biomaterials that can be used as scaffolds for regenerative engineering and as well as other biomedical applications.

  15. 40 CFR 1068.95 - What materials does this part reference?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... material from the Society of Automotive Engineers that we have incorporated by reference. The first column... reference it. Anyone may purchase copies of these materials from the Society of Automotive Engineers, 400... Materials Document number and name Part 1068reference SAE J1930, Electrical/Electronic Systems Diagnostic...

  16. 40 CFR 1068.95 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... material from the Society of Automotive Engineers that we have incorporated by reference. The first column... reference it. Anyone may purchase copies of these materials from the Society of Automotive Engineers, 400... Materials Document number and name Part 1068reference SAE J1930, Electrical/Electronic Systems Diagnostic...

  17. 40 CFR 1045.810 - What materials does this part reference?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Definitions and Other Reference Information § 1045.810 What materials does this part reference? Documents... material. Table 1 to this section lists material from the Society of Automotive Engineers that we have... the Society of Automotive Engineers, 400 Commonwealth Drive, Warrendale, PA 15096 or http://www.sae...

  18. 14 CFR 33.15 - Materials.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Materials. 33.15 Section 33.15 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.15 Materials. The suitability and durability of materials used in the engine must— (a) Be established on the basis of experience or tests; and...

  19. 14 CFR 33.15 - Materials.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Materials. 33.15 Section 33.15 Aeronautics... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.15 Materials. The suitability and durability of materials used in the engine must— (a) Be established on the basis of experience or tests; and...

  20. Ceramic Technology For Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. The objective of the project is to develop the industrial technology base required for reliable ceramicsmore » for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. This advanced materials technology is being developed in parallel and close coordination with the ongoing DOE and industry proof of concept engine development programs. To facilitate the rapid transfer of this technology to U.S. industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. Abstracts prepared for appropriate papers.« less

Top