A stress-controlled mechanism for the intensity of very large magnitude explosive eruptions
NASA Astrophysics Data System (ADS)
Costa, A.; Gottsmann, J.; Melnik, O.; Sparks, R. S. J.
2011-10-01
Large magnitude explosive eruptions are the result of the rapid and large-scale transport of silicic magma stored in the Earth's crust, but the mechanics of erupting teratonnes of silicic magma remain poorly understood. Here, we demonstrate that the combined effect of local crustal extension and magma chamber overpressure can sustain linear dyke-fed explosive eruptions with mass fluxes in excess of 10 10 kg/s from shallow-seated (4-6 km depth) chambers during moderate extensional stresses. Early eruption column collapse is facilitated with eruption duration of the order of few days with an intensity of at least one order of magnitude greater than the largest eruptions in the 20th century. The conditions explored in this study are one way in which high mass eruption rates can be achieved to feed large explosive eruptions. Our results corroborate geological and volcanological evidences from volcano-tectonic complexes such as the Sierra Madre Occidental (Mexico) and the Taupo Volcanic Zone (New Zealand).
Mechanism of explosive eruptions of Kilauea Volcano, Hawaii
Dvorak, J.J.
1992-01-01
A small explosive eruption of Kilauea Volcano, Hawaii, occurred in May 1924. The eruption was preceded by rapid draining of a lava lake and transfer of a large volume of magma from the summit reservoir to the east rift zone. This lowered the magma column, which reduced hydrostatic pressure beneath Halemaumau and allowed groundwater to flow rapidly into areas of hot rock, producing a phreatic eruption. A comparison with other events at Kilauea shows that the transfer of a large volume of magma out of the summit reservoir is not sufficient to produce a phreatic eruption. For example, the volume transferred at the beginning of explosive activity in May 1924 was less than the volumes transferred in March 1955 and January-February 1960, when no explosive activity occurred. Likewise, draining of a lava lake and deepening of the floor of Halemaumau, which occurred in May 1922 and August 1923, were not sufficient to produce explosive activity. A phreatic eruption of Kilauea requires both the transfer of a large volume of magma from the summit reservoir and the rapid removal of magma from near the surface, where the surrounding rocks have been heated to a sufficient temperature to produce steam explosions when suddenly contacted by groundwater. ?? 1992 Springer-Verlag.
Bluth, G.J.S.; Casadevall, T.J.; Schnetzler, C.C.; Doiron, S.D.; Walter, Louis S.; Krueger, A.J.; Badruddin, M.
1994-01-01
Galunggung volcano, Java, awoke from a 63-year quiescence in April 1982, and erupted sporadically through January 1983. During its most violent period from April to October, the Cikasasah Volcano Observatory reported 32 large and 56 moderate to small eruptions. From April 5 through September 19 the Total Ozone Mapping Spectrometer (TOMS), carried on NASA's Nimbus-7 satellite, detected and measured 24 different sulfur dioxide clouds; an estimated 1730 kilotons (kt) of SO2 were outgassed by these explosive eruptions. The trajectories, and rapid dispersion rates, of the SO2 clouds were consistent with injection altitudes below the tropopause. An additional 300 kt of SO2 were estimated to have come from 64 smaller explosive eruptions, based on the detection limit of the TOMS instrument. For the first time, an extended period of volcanic activity was monitored by remote sensing techniques which enabled observations of both the entire SO2 clouds produced by large explosive eruptions (using TOMS), and the relatively lower levels of SO2 emissions during non-explosive outgassing (using the Correlation Spectrometer, or COSPEC). Based on COSPEC measurements from August 1982 to January 1983, and on the relationship between explosive and non-explosive degassing, approximately 400 kt of SO2 were emitted during non-explosive activity. The total sulfur dioxide outgassed from Galunggung volcano from April 1982 to January 1983 is calculated to be 2500 kt (?? 30%) from both explosive and non-explosive activity. While Galunggung added large quantities of sulfur dioxide to the atmosphere, its sporadic emissions occurred in relatively small events distributed over several months, and reached relatively low altitudes, and are unlikely to have significantly affected aerosol loading of the stratosphere in 1982 by volcanic activity. ?? 1994.
Petersen, Tanja; De Angelis, Silvio; Tytgat, Guy; McNutt, Stephen R.
2006-01-01
We present and interpret acoustic waveforms associated with a sequence of large explosion events that occurred during the initial stages of the 2006 eruption of Augustine Volcano, Alaska. During January 11–28, 2006, 13 large explosion events created ash-rich plumes that reached up to 14 km a.s.l., and generated atmospheric pressure waves that were recorded on scale by a microphone located at a distance of 3.2 km from the active vent. The variety of recorded waveforms included sharp N-shaped waves with durations of a few seconds, impulsive signals followed by complex codas, and extended signals with emergent character and durations up to minutes. Peak amplitudes varied between 14 and 105 Pa; inferred acoustic energies ranged between 2×108 and 4×109 J. A simple N-shaped short-duration signal recorded on January 11, 2006 was associated with the vent-opening blast that marked the beginning of the explosive eruption sequence. During the following days, waveforms with impulsive onsets and extended codas accompanied the eruptive activity, which was characterized by explosion events that generated large ash clouds and pyroclastic flows along the flanks of the volcano. Continuous acoustic waveforms that lacked a clear onset were more common during this period. On January 28, 2006, the occurrence of four large explosion events marked the end of this explosive eruption phase at Augustine Volcano. After a transitional period of about two days, characterized by many small discrete bursts, the eruption changed into a stage of more sustained and less explosive activity accompanied by the renewed growth of a summit lava dome.
Volatile Transport by Volcanic Plumes on Earth, Venus and Mars
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Self, Stephen; Baloga, Steve; Stofan, Ellen R.
2012-01-01
Explosive volcanic eruptions can produce sustained, buoyant columns of ash and gas in the atmosphere (Fig. 1). Large flood basalt eruptions may also include significant explosive phases that generate eruption columns. Such eruptions can transport volcanic volatiles to great heights in the atmosphere. Volcanic eruption columns can also redistribute chemical species within the atmosphere by entraining ambient atmosphere at low altitudes and releasing those species at much higher altitudes.
Pallister, J.S.; Hoblitt, R.P.; Crandell, D.R.; Mullineaux, D.R.
1992-01-01
Available geophysical and geologic data provide a simplified model of the current magmatic plumbing system of Mount St. Helens (MSH). This model and new geochemical data are the basis for the revised hazards assessment presented here. The assessment is weighted by the style of eruptions and the chemistry of magmas erupted during the past 500 years, the interval for which the most detailed stratigraphic and geochemical data are available. This interval includes the Kalama (A. D. 1480-1770s?), Goat Rocks (A.D. 1800-1857), and current eruptive periods. In each of these periods, silica content decreased, then increased. The Kalama is a large amplitude chemical cycle (SiO2: 57%-67%), produced by mixing of arc dacite, which is depleted in high field-strength and incompatible elements, with enriched (OIB-like) basalt. The Goat Rocks and current cycles are of small amplitude (SiO2: 61%-64% and 62%-65%) and are related to the fluid dynamics of magma withdrawal from a zoned reservoir. The cyclic behavior is used to forecast future activity. The 1980-1986 chemical cycle, and consequently the current eruptive period, appears to be virtually complete. This inference is supported by the progressively decreasing volumes and volatile contents of magma erupted since 1980, both changes that suggest a decreasing potential for a major explosive eruption in the near future. However, recent changes in seismicity and a series of small gas-release explosions (beginning in late 1989 and accompanied by eruption of a minor fraction of relatively low-silica tephra on 6 January and 5 November 1990) suggest that the current eruptive period may continue to produce small explosions and that a small amount of magma may still be present within the conduit. The gas-release explosions occur without warning and pose a continuing hazard, especially in the crater area. An eruption as large or larger than that of 18 May 1980 (???0.5 km3 dense-rock equivalent) probably will occur only if magma rises from an inferred deep (???7 km), relative large (5-7 km3) reservoir. A conservative approach to hazard assessment is to assume that this deep magma is rich in volatiles and capable of erupting explosively to produce voluminous fall deposits and pyroclastic flows. Warning of such an eruption is expectable, however, because magma ascent would probably be accompanied by shallow seismicity that could be detected by the existing seismic-monitoring system. A future large-volume eruption (???0.1 km3) is virtually certain; the eruptive history of the past 500 years indicates the probability of a large explosive eruption is at least 1% annually. Intervals between large eruptions at Mount St. Helens have varied widely; consequently, we cannot confidently forecast whether the next large eruption will be years decades, or farther in the future. However, we can forecast the types of hazards, and the areas that will be most affected by future large-volume eruptions, as well as hazards associated with the approaching end of the current eruptive period. ?? 1992 Springer-Verlag.
Lattice Boltzmann modeling to explain volcano acoustic source.
Brogi, Federico; Ripepe, Maurizio; Bonadonna, Costanza
2018-06-22
Acoustic pressure is largely used to monitor explosive activity at volcanoes and has become one of the most promising technique to monitor volcanoes also at large scale. However, no clear relation between the fluid dynamics of explosive eruptions and the associated acoustic signals has yet been defined. Linear acoustic has been applied to derive source parameters in the case of strong explosive eruptions which are well-known to be driven by large overpressure of the magmatic fluids. Asymmetric acoustic waveforms are generally considered as the evidence for supersonic explosive dynamics also for small explosive regimes. We have used Lattice-Boltzmann modeling of the eruptive fluid dynamics to analyse the acoustic wavefield produced by different flow regimes. We demonstrate that acoustic waveform well reproduces the flow dynamics of a subsonic fluid injection related to discrete explosive events. Different volumetric flow rate, at low-Mach regimes, can explain both the observed symmetric and asymmetric waveform. Hence, asymmetric waveforms are not necessarily related to the shock/supersonic fluid dynamics of the source. As a result, we highlight an ambiguity in the general interpretation of volcano acoustic signals for the retrieval of key eruption source parameters, necessary for a reliable volcanic hazard assessment.
Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets
NASA Astrophysics Data System (ADS)
Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep K.
2018-05-01
We follow up on the Sterling et al. discovery that nearly all polar coronal X-ray jets are made by an explosive eruption of a closed magnetic field carrying a miniature filament in its core. In the same X-ray and EUV movies used by Sterling et al., we examine the onset and growth of the driving magnetic explosion in 15 of the 20 jets that they studied. We find evidence that (1) in a large majority of polar X-ray jets, the runaway internal/tether-cutting reconnection under the erupting minifilament flux rope starts after both the minifilament’s rise and the spire-producing external/breakout reconnection have started; and (2) in a large minority, (a) before the eruption starts, there is a current sheet between the explosive closed field and the ambient open field, and (b) the eruption starts with breakout reconnection at that current sheet. The variety of event sequences in the eruptions supports the idea that the magnetic explosions that make polar X-ray jets work the same way as the much larger magnetic explosions that make a flare and coronal mass ejection (CME). That idea and recent observations indicating that magnetic flux cancellation is the fundamental process that builds the field in and around the pre-jet minifilament and triggers that field’s jet-driving explosion together suggest that flux cancellation inside the magnetic arcade that explodes in a flare/CME eruption is usually the fundamental process that builds the explosive field in the core of the arcade and triggers that field’s explosion.
Developing Regional Tephrostratigraphic Frameworks: Applications and Challenges.
NASA Astrophysics Data System (ADS)
Fontijn, K.; Pyle, D. M.; Smith, V.; Mather, T. A.
2017-12-01
Detailed stratigraphic studies of pyroclastic deposits form arguably the best tool to estimate the frequency and magnitude of explosive eruptions at volcanoes where limited or no historical records exist. As such tephrostratigraphy forms a first-order assessment of potential future eruptive behavior at poorly known volcanoes. Alternations of soils and pyroclastic deposits at proximal to medial distances of the volcano however typically only allow reconstructing eruptive behavior within the Holocene. Moreover, they only tend to preserve relatively large explosive eruptions, of magnitude 3-4 and above, and therefore almost invariably form a biased view of the frequency-magnitude relationships at a particular volcano. Long lacustrine records in medial to distal regions offer significant potential to obtain a more complete view of the explosive eruptive record as they often preserve thin fine-grained tephra deposits representing either small-scale explosive eruptions not preserved on land, or distal ash deposits from large explosive eruptions. Furthermore, these sedimentary records often contain material that can be dated to establish a detailed age-depth model that can be used to date the eruptions and estimate the tempo of activity. In settings where volcanoes and lakes closely co-exist, integrating terrestrial and lacustrine data therefore allows the development of regional-scale tephrostratigraphic frameworks. Such frameworks provide a view of temporal trends in volcanic activity and mid/long-term eruptive rates on a regional scale rather than at the level of an individual volcano, i.e. in interaction with regional tectonic stress regimes. They also highlight the spatial distribution of deposits from large explosive eruptions, allowing improved estimates of magnitudes of individual eruptions as well as of frequency of impact by volcanic ash in specific regions. Provided such tephra horizons are well characterized and dated they can be used as age marker horizons and help fine-tune age models for palaeoenvironmental studies. In this presentation we will highlight a few key examples of both local and regional-scale tephrostratigraphic frameworks in East Africa, Chile and South-East Asia, and discuss the multidisciplinary applications as well as challenges posed by data acquisition.
Interdisciplinary studies of eruption at Chaitén volcano, Chile
Pallister, John S.; Major, Jon J.; Pierson, Thomas C.; Holitt, Richard P.; Lowenstern, Jacob B.; Eichelberger, John C.; Luis, Lara; Moreno, Hugo; Muñoz, Jorge; Castro, Jonathan M.; Iroumé, Andrés; Andreoli, Andrea; Jones, Julia; Swanson, Fred; Crisafulli, Charlie
2010-01-01
High-silica rhyolite magma fuels Earth's largest and most explosive eruptions. Recurrence intervals for such highly explosive eruptions are in the 100- to 100,000-year time range, and there have been few direct observations of such eruptions and their immediate impacts. Consequently, there was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaitén volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions [Naranjo and Stern, 2004semi; Servicio Nacional de Geología y Minería (SERNAGEOMIN), 2008semi; Carn et al., 2009; Castro and Dingwell, 2009; Lara, 2009; Muñoz et al., 2009]. Vigorous explosions occurred through 8 May 2008, after which explosive activity waned and a new lava dome was extruded.
Steam explosions, earthquakes, and volcanic eruptions -- what's in Yellowstone's future?
Lowenstern, Jacob B.; Christiansen, Robert L.; Smith, Robert B.; Morgan, Lisa A.; Heasler, Henry
2005-01-01
Yellowstone, one of the world?s largest active volcanic systems, has produced several giant volcanic eruptions in the past few million years, as well as many smaller eruptions and steam explosions. Although no eruptions of lava or volcanic ash have occurred for many thousands of years, future eruptions are likely. In the next few hundred years, hazards will most probably be limited to ongoing geyser and hot-spring activity, occasional steam explosions, and moderate to large earthquakes. To better understand Yellowstone?s volcano and earthquake hazards and to help protect the public, the U.S. Geological Survey, the University of Utah, and Yellowstone National Park formed the Yellowstone Volcano Observatory, which continuously monitors activity in the region.
NASA Astrophysics Data System (ADS)
Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún
2018-04-01
Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.
Increased rates of large-magnitude explosive eruptions in Japan in the late Neogene and Quaternary.
Mahony, S H; Sparks, R S J; Wallace, L M; Engwell, S L; Scourse, E M; Barnard, N H; Kandlbauer, J; Brown, S K
2016-07-01
Tephra layers in marine sediment cores from scientific ocean drilling largely record high-magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera-forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6-4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike-slip-dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc-normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera-forming eruptions.
NASA Astrophysics Data System (ADS)
La Spina, G.; de'Michieli Vitturi, M.; Clarke, A. B.
2017-04-01
Volcanic activity exhibits a wide range of eruption styles, from relatively slow effusive eruptions that produce lava flows and lava domes, to explosive eruptions that can inject large volumes of fragmented magma and volcanic gases high into the atmosphere. Although controls on eruption style and scale are not fully understood, previous research suggests that the dynamics of magma ascent in the shallow subsurface (< 10 km depth) may in part control the transition from effusive to explosive eruption and variations in eruption style and scale. Here we investigate the initial stages of explosive eruptions using a 1D transient model for magma ascent through a conduit based on the theory of the thermodynamically compatible systems. The model is novel in that it implements finite rates of volatile exsolution and velocity and pressure relaxation between the phases. We validate the model against a simple two-phase Riemann problem, the Air-Water Shock Tube problem, which contains strong shock and rarefaction waves. We then use the model to explore the role of the aforementioned finite rates in controlling eruption style and duration, within the context of two types of eruptions at the Soufrière Hills Volcano, Montserrat: Vulcanian and sub-Plinian eruptions. Exsolution, pressure, and velocity relaxation rates all appear to exert important controls on eruption duration. More significantly, however, a single finite exsolution rate characteristic of the Soufrière Hills magma composition is able to produce both end-member eruption durations observed in nature. The duration therefore appears to be largely controlled by the timescales available for exsolution, which depend on dynamic processes such as ascent rate and fragmentation wave speed.
Onset of a basaltic explosive eruption from Kīlauea’s summit in 2008: Chapter 19
Carey, Rebecca J.; Swavely, Lauren; Swanson, Don; Houghton, Bruce F.; Orr, Tim R.; Elias, Tamar; Sutton, Andrew; Carey, Rebecca; Cayol, Valérie; Poland, Michael P.; Weis, Dominique
2015-01-01
The onset of a basaltic eruption at the summit of Kīlauea volcano in 2008 is recorded in the products generated during the first three weeks of the eruption and suggests an evolution of both the physical properties of the magma and also lava lake levels and vent wall stability. Ash componentry and the microtextures of the early erupted lapilli products reveal that the magma was largely outgassed, perhaps in the preceding weeks to months. An increase in the juvenile:lithic ratio and size of ash collected from March 23 to April 3 records an increasing level of the magma within the conduit. After April 3 until the explosive eruption of April 9, a trend of decreasing juvenile:lithic ratio suggests that vent wall collapses were more frequent, possibly because lava level increased and destabilized the overhanging wall [Orr et al. 2013]. Despite increasing lake height, the microtextural characteristics of the lapilli suggest that the outgassed end-member was still being tapped between March 26 and April 8. The April 9 rockfall triggered an explosive eruption that produced a new component in the eruption deposits not seen in the preceding weeks; microvesicular juvenile lapilli, the first evidence of an actively vesiculating magma. Two additional dense end-member pyroclast types were also erupted during the April 9 explosion, likely related to outgassed magma with longer residence times than the microvesicular magma. We link these pyroclasts to a stagnant viscous crust at the top of the magma column or to convecting, downwelling magma. Our study of ash componentry and the textures of juvenile lapilli suggests that the April 9 explosive event effectively cleared the conduit of largely outgassed magma. The degassing processes during this eruption are complex and varied: in the period of persistent degassing during March 26-April 8 small resident bubbles at shallow levels in the lava lake were coupled to the magma whereas large bubbles ascended, expanded and fragmented. During the rockfall- triggered explosion of April 9, all bubbles were coupled to the host magma on the timescale of decompression, but additional exsolution, decompression and expansion of deeper, more gas-rich resident magma likely occurred [cf. Carey et al. 2012]. Where external conditions play a significant role in eruption dynamics, e.g., by triggering eruptions, vesiculation and degassing dynamics can be expected to be complex.
NASA Astrophysics Data System (ADS)
Rougier, Jonty; Cashman, Kathy; Sparks, Stephen
2016-04-01
We have analysed the Large Magnitude Explosive Volcanic Eruptions database (LaMEVE) for volcanoes that classify as stratovolcanoes. A non-parametric statistical approach is used to assess the global recording rate for large (M4+). The approach imposes minimal structure on the shape of the recording rate through time. We find that the recording rates have declined rapidly, going backwards in time. Prior to 1600 they are below 50%, and prior to 1100 they are below 20%. Even in the recent past, e.g. the 1800s, they are likely to be appreciably less than 100%.The assessment for very large (M5+) eruptions is more uncertain, due to the scarcity of events. Having taken under-recording into account the large-eruption rates of stratovolcanoes are modelled exchangeably, in order to derive an informative prior distribution as an input into a subsequent volcano-by-volcano hazard assessment. The statistical model implies that volcano-by-volcano predictions can be grouped by the number of recorded large eruptions. Further, it is possible to combine all volcanoes together into a global large eruption prediction, with an M4+ rate computed from the LaMEVE database of 0.57/yr.
Study New Pregress on Volcanic Phreatomagmatic Eruption
NASA Astrophysics Data System (ADS)
Sun, Q.; Fan, Q.; Li, N.
2007-12-01
As an essential and important type of volcanic eruption on earth, phreatomagmatic eruption is characterized by groundwater-related explosive eruption and subsequent base surge deposit and maar lakes. Base surge deposit and maar lakes are widely distributed all over the world, and also in the Northeast China and the southern China. Study of phreatomagmatic eruption maybe dated back to 1921, and in the following over 80 years, many works have been done on phreatomagmatic eruption, using various of methods of volcanic geology, petrology, sedimentology, physical volcanology and digital modeling, to discuss its origin and mechanism. In this paper, we focus on the geological feature of the base surge deposit and dynamic mechanism of the phreatomagmatic eruption. When ascending basaltic magma meets with ground ( surface ) water, violent explosion would occur, this action was called phreatomagmatic eruption. The main product of this kind of eruption are maars and base surge. As to the base surge, it has long been treated as sedimentary tuff by mistake. Usually, base surge is distributed around maar, different from the distribution of sedimentary tuff. Typical phenomena of base surge caused by phreatomagmatic eruption can be observed through the detail field work, such as large-scale and low-angle cross-bedding, slaty-bedding, current-bedding and distal facies accretionary lapilli. In order to explain the dynamic mechanism of phreatomagmatic eruption thoroughly, we propose a simple model in this paper in light of the elasticity theory. Some conclusions can be drawn as follows: the larger the radius of maar, the larger the explosive wallop needed for the formation of maar is; provided that the radius of maar and depth of explosive point are limited, then the larger the area of contact surface between magma and groundwater, the stronger the explosive energy will be; if the explosive energy and area of explosive point are restricted, the larger the radius of maar, the greater the depth of explosive point can be inferred; when the explosive energy and radius of maar are qualified, the depth of explosive point decreases with increasing of the area of contact surface between magma and groundwater. As for the maximum stress, undoubtedly it should occur on the surface of the overlying formation.
What factors control the superficial lava dome explosivity?
NASA Astrophysics Data System (ADS)
Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.
2015-04-01
Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Thus the probability of a superficial lava dome explosion inversely depends on its size; explosive activity more likely occurs at the onset of the lava dome extrusion in agreement with observations. We evidence a two-step process in magma ascent with edification of the lava dome that may be accompanied by a rapid ascent of an undegassed batch of magma some days prior the explosive activity. This new result is of interest for the whole volcanological community and for risk management.
Pallister, John S.; Schneider, David; Griswold, Julia P.; Keeler, Ronald H.; Burton, William C.; Noyles, Christopher; Newhall, Christopher G.; Ratdomopurbo, Antonius
2013-01-01
Despite dense cloud cover, satellite-borne commercial Synthetic Aperture Radar (SAR) enabled frequent monitoring of Merapi volcano's 2010 eruption. Near-real-time interpretation of images derived from the amplitude of the SAR signals and timely delivery of these interpretations to those responsible for warnings, allowed satellite remote sensing for the first time to play an equal role with in situ seismic, geodetic and gas monitoring in guiding life-saving decisions during a major volcanic crisis. Our remotely sensed data provide an observational chronology for the main phase of the 2010 eruption, which lasted 12 days (26 October–7 November, 2010). Unlike the prolonged low-rate and relatively low explosivity dome-forming and collapse eruptions of recent decades at Merapi, the eruption began with an explosive eruption that produced a new summit crater on 26 October and was accompanied by an ash column and pyroclastic flows that extended 8 km down the flanks. This initial explosive event was followed by smaller explosive eruptions on 29 October–1 November, then by a period of rapid dome growth on 1–4 November, which produced a summit lava dome with a volume of ~ 5 × 106 m3. A paroxysmal VEI 4 magmatic eruption (with ash column to 17 km altitude) destroyed this dome, greatly enlarged the new summit crater and produced extensive pyroclastic flows (to ~ 16 km radial distance in the Gendol drainage) and surges during the night of 4–5 November. The paroxysmal eruption was followed by a period of jetting of gas and tephra and by a second short period (12 h) of rapid dome growth on 6 November. The eruption ended with low-level ash and steam emissions that buried the 6 November dome with tephra and continued at low levels until seismicity decreased to background levels by about 23 November. Our near-real-time commercial SAR documented the explosive events on 26 October and 4–5 November and high rates of dome growth (> 25 m3 s− 1). An event tree analysis for the previous 2006 Merapi eruption indicated that for lava dome extrusion rates > 1.2 m3 s− 1, the probability of a large (1872-scale) eruption was ~ 10%. Consequently, the order-of-magnitude greater rates in 2010, along with the explosive start of the eruption on 26 October, the large volume of lava accumulating at the summit by 4 November, and the rapid and large increases in seismic energy release, deformation and gas emissions were the basis for warnings of an unusually large eruption by the Indonesian Geological Agency's Center for Volcanology and Geologic Hazard Mitigation (CVGHM) and their Volcano Research and Technology Development Center (BPPTK) in Yogyakarta — warnings that saved thousands of lives.
Decompression experiments identify kinetic controls on explosive silicic eruptions
Mangan, M.T.; Sisson, T.W.; Hankins, W.B.
2004-01-01
Eruption intensity is largely controlled by decompression-induced release of water-rich gas dissolved in magma. It is not simply the amount of gas that dictates how forcefully magma is propelled upwards during an eruption, but also the rate of degassing, which is partly a function of the supersaturation pressure (??Pcritical) triggering gas bubble nucleation. High temperature and pressure decompression experiments using rhyolite and dacite melt reveal compositionally-dependent differences in the ??Pcritical of degassing that may explain why rhyolites have fueled some of the most explosive eruptions on record.
Increased rates of large‐magnitude explosive eruptions in Japan in the late Neogene and Quaternary
Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.
2016-01-01
Abstract Tephra layers in marine sediment cores from scientific ocean drilling largely record high‐magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera‐forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6–4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike‐slip‐dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc‐normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera‐forming eruptions. PMID:27656115
NASA Astrophysics Data System (ADS)
Cashman, Katharine V.; Giordano, Guido
2014-11-01
Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned magma chamber (termed the Standard Model by Gualda and Ghiorso, 2013) to eruptions that are better explained by tapping multiple, rather than single, melt lenses stored within a largely crystalline mush (which we term complex magma reservoirs). We then discuss the implications of magma storage within complex, rather than simple, reservoirs for identifying magmatic systems with the potential to produce large eruptions, and for monitoring eruption progress under conditions where successive melt lenses may be tapped. We conclude that emerging views of complex magma reservoir configurations provide exciting opportunities for re-examining volcanological concepts of caldera-forming systems.
A sight "fearfully grand": eruptions of Lassen Peak, California, 1914 to 1917
Clynne, Michael A.; Christiansen, Robert L.; Stauffer, Peter H.; Hendley, James W.; Bleick, Heather A.
2014-01-01
On May 22, 1915, a large explosive eruption at the summit of Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 280 miles to the east. This explosion was the most powerful in a series of eruptions during 1914–17 that were the last to occur in the Cascade Range before the 1980 eruption of Mount St. Helens, Washington. A century after the Lassen eruptions, work by U.S. Geological Survey (USGS) scientists in cooperation with the National Park Service is shedding new light on these events.
NASA Astrophysics Data System (ADS)
Tarff, R.; Day, S. J.; Downes, H.; Seghedi, I.
2015-12-01
Groundwater heating and pressurization of aquifers trapped between dikes in ocean island volcanoes has been proposed as a mechanism for destabilizing and triggering large-volume flank collapses. Previous modelling has indicated that heat transfer from sustained magma flow through dikes during eruption has the potential to produce destabilizing levels of pressure on time scales of 4 to 400 days, if the aquifers remain confined. Here we revisit this proposal from a different perspective. We examine evidence for pressure variations in dike-confined aquifers during eruptions at high elevation vents on ocean island volcanoes. Initially magmatic, these eruptions change to mostly small-volume explosive phreatomagmatic activity. A recent example is the 1949 eruption on La Palma, Canary Islands. Some such eruptions involve sequences of larger-volume explosive phases or cycles, including production of voluminous low-temperature, pyroclastic density currents (PDC). Here we present and interpret data from the Cova de Paul crater eruption (Santo Antao, Cape Verde Islands). The phreatomagmatic part of this eruption formed two cycles, each culminating with eruption of PDCs. Compositional and textural variations in the products of both cycles indicate that the diatreme fill began as coarse-grained and permeable which allowed gas to escape. During the eruption, the fill evolved to a finer grained, poorly sorted, less permeable material, in which pore fluid pressures built up to produce violent explosive phases. This implies that aquifers adjacent to the feeder intrusion were not simply depressurized at the onset of phreatomagmatic explosivity but experienced fluctuations in pressure throughout the eruption as the vent repeatedly choked and emptied. In combination with fluctuations in magma supply rate, driving of aquifer pressurization by cyclical vent choking will further complicate the prediction of flank destabilization during comparable eruptions on ocean island volcanoes.
Investigating Degassing in Felsic and Mafic Magmas by 3-D Imaging of Vesicle Pathways
NASA Astrophysics Data System (ADS)
Polacci, M.; Baker, D. R.; Piochi, M.; Mancini, L.
2009-12-01
Volatiles are the motor of volcanic eruptions. Studies of vesiculation in erupted products can provide information on how volatiles exsolve, grow and are lost from magmas as lava and tephra fragments bear the fingerprints of such processes in vesicle and crystal textures. We summarize here the results of a series of X-ray computed microtomographic experiments that were performed on about 70 volcanic specimens of mainly basaltic and trachytic compositions. A first sample suite comprises samples collected from explosive activity at persistently degassing basaltic volcanoes, namely Stromboli (Aeolian Islands), Etna (Eastern Sicily) and Ambrym (Vanuatu Islands); a second suite consists of pumice and scoria clasts from Plinian to Subplinian to Vulcanian eruptions that occurred in the Campi Flegrei caldera (Southern Italy). The tomographic images provide us with a complete 3-D view of our sampled material through which it is possible to reconstruct the geometry of the vesicle network and explore how gas was transported in the investigated magmas. We find that basaltic scoriae exhibit two types of vesicles: large (~ mm^3), coalescing vesicles with complex, convoluted shapes and small-to-intermediate sized (<~1x10^-3 mm^3), spherical to sub-spherical, poorly connected or isolated vesicles. The former vesicles were interpreted as percolation pathways for gas to flow non-explosively to the volcano crater and thought to sustain the persistent passive gas release that characterizes these volcanoes. The fact that such vesicles were found in products erupted from active basaltic volcanoes located in different tectonic settings and characterized by different explosivity strongly suggests that basaltic systems appear to follow a common degassing pathway. However, not all explosive basaltic rocks contain large, coalescing vesicles. Pumice clasts from the much more violent, dangerous and less frequent paroxysmal explosions at Stromboli do not have this type of vesicles, demonstrating that basaltic volcanoes develop different vesicle textures and therefore degassing dynamics with increasing explosive activity. Trachytic pumices from highly explosive eruptions display a much finer structure in comparison to scoriae having sub-spherical to slightly deformed large vesicles and a large population of small spherical vesicles (1x10^-3 - <1x10^-5 mm^3). These two vesicle textures were mainly ascribed to the rapid ascent of a supersaturated magma under closed-system degassing, in comparison to the open-system conditions of basaltic magmas. Large interconnected vesicles that form micro-cracks are, however, found in some denser pyroclasts from Campi Flegrei. This suggests that gas was percolating in the conduit system before the eruption and that open-system degassing may be an effective way through which gas is lost in a moderately violent manner at the crater surface in some explosive felsic eruptions. Ultimately this study reveals that 3-D imaging of volcanic rocks is an essential tool for investigating degassing conditions in erupted magmas.
Large, Moderate or Small? The Challenge of Measuring Mass Eruption Rates in Volcanic Eruptions
NASA Astrophysics Data System (ADS)
Gudmundsson, M. T.; Dürig, T.; Hognadottir, T.; Hoskuldsson, A.; Bjornsson, H.; Barsotti, S.; Petersen, G. N.; Thordarson, T.; Pedersen, G. B.; Riishuus, M. S.
2015-12-01
The potential impact of a volcanic eruption is highly dependent on its eruption rate. In explosive eruptions ash may pose an aviation hazard that can extend several thousand kilometers away from the volcano. Models of ash dispersion depend on estimates of the volcanic source, but such estimates are prone to high error margins. Recent explosive eruptions, including the 2010 eruption of Eyjafjallajökull in Iceland, have provided a wealth of data that can help in narrowing these error margins. Within the EU-funded FUTUREVOLC project, a multi-parameter system is currently under development, based on an array of ground and satellite-based sensors and models to estimate mass eruption rates in explosive eruptions in near-real time. Effusive eruptions are usually considered less of a hazard as lava flows travel slower than eruption clouds and affect smaller areas. However, major effusive eruptions can release large amounts of SO2 into the atmosphere, causing regional pollution. In very large effusive eruptions, hemispheric cooling and continent-scale pollution can occur, as happened in the Laki eruption in 1783 AD. The Bárdarbunga-Holuhraun eruption in 2014-15 was the largest effusive event in Iceland since Laki and at times caused high concentrations of SO2. As a result civil protection authorities had to issue warnings to the public. Harmful gas concentrations repeatedly persisted for many hours at a time in towns and villages at distances out to 100-150 km from the vents. As gas fluxes scale with lava fluxes, monitoring of eruption rates is therefore of major importance to constrain not only lava but also volcanic gas emissions. This requires repeated measurements of lava area and thickness. However, most mapping methods are problematic once lava flows become very large. Satellite data on thermal emissions from eruptions have been used with success to estimate eruption rate. SAR satellite data holds potential in delivering lava volume and eruption rate estimates, although availability and repeat times of radar platforms is still low compared to e.g. the thermal satellites. In the 2014-15 eruption, lava volume was estimated repeatedly from an aircraft-based system that combines radar altimeter with an on-board DGPS, yielding a several estimates of lava volume and time-averaged mass eruption rate.
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.
2014-05-01
High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.
NASA Astrophysics Data System (ADS)
Colombier, M.; Gurioli, L.; Druitt, T. H.; Shea, T.; Boivin, P.; Miallier, D.; Cluzel, N.
2017-02-01
Textural parameters such as density, porosity, pore connectivity, permeability, and vesicle size distributions of vesiculated and dense pyroclasts from the 9.4-ka eruption of Kilian Volcano, were quantified to constrain conduit and eruptive processes. The eruption generated a sequence of five vertical explosions of decreasing intensity, producing pyroclastic density currents and tephra fallout. The initial and final phases of the eruption correspond to the fragmentation of a degassed plug, as suggested by the increase of dense juvenile clasts (bimodal density distributions) as well as non-juvenile clasts, resulting from the reaming of a crater. In contrast, the intermediate eruptive phases were the results of more open-conduit conditions (unimodal density distributions, decreases in dense juvenile pyroclasts, and non-juvenile clasts). Vesicles within the pyroclasts are almost fully connected; however, there are a wide range of permeabilities, especially for the dense juvenile clasts. Textural analysis of the juvenile clasts reveals two vesiculation events: (1) an early nucleation event at low decompression rates during slow magma ascent producing a population of large bubbles (>1 mm) and (2) a syn-explosive nucleation event, followed by growth and coalescence of small bubbles controlled by high decompression rates immediately prior to or during explosive fragmentation. The similarities in pyroclast textures between the Kilian explosions and those at Soufrière Hills Volcano on Montserrat, in 1997, imply that eruptive processes in the two systems were rather similar and probably common to vulcanian eruptions in general.
The global magnitude-frequency relationship for large explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Rougier, Jonathan; Sparks, R. Stephen J.; Cashman, Katharine V.; Brown, Sarah K.
2018-01-01
For volcanoes, as for other natural hazards, the frequency of large events diminishes with their magnitude, as captured by the magnitude-frequency relationship. Assessing this relationship is valuable both for the insights it provides about volcanism, and for the practical challenge of risk management. We derive a global magnitude-frequency relationship for explosive volcanic eruptions of at least 300Mt of erupted mass (or M4.5). Our approach is essentially empirical, based on the eruptions recorded in the LaMEVE database. It differs from previous approaches mainly in our conservative treatment of magnitude-rounding and under-recording. Our estimate for the return period of 'super-eruptions' (1000Gt, or M8) is 17ka (95% CI: 5.2ka, 48ka), which is substantially shorter than previous estimates, indicating that volcanoes pose a larger risk to human civilisation than previously thought.
The frequency of explosive volcanic eruptions in Southeast Asia.
Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E
There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.
Impact of explosive volcanic eruptions around Vesuvius: a story of resilience in Roman time
NASA Astrophysics Data System (ADS)
Scarpati, Claudio; Perrotta, Annamaria; De Simone, Girolamo Ferdinando
2016-03-01
Large explosive eruptions have reshaped the landscape around Vesuvius many times in prehistoric and historical times. Previous stratigraphic surveys suggested that people living in this area have probably abandoned their settlements (in the Bronze Age) or towns and villas (in the Roman period) for centuries after each major plinian eruption. New archaeological excavations on the northern slope of Vesuvius suggest a much more intriguing scenario. At Pollena Trocchia, an ongoing excavation has shown the superimposition of three different Roman structures, sandwiched between the deposits of the AD 79, AD 472, and AD 512 Vesuvius eruptions. Each of these eruptions more or less completely destroyed and buried the buildings under meters of volcanic products. Surprisingly, after a few years or decades, a new settlement was established exactly on the top of the buried one, indicating the immediate recovery of part of the devastated area. Our research documents the destruction of Roman buildings by volcanic eruptions over a period of five centuries (first to sixth century AD) and provides new insight into human behavior after major explosive eruptions.
NASA Astrophysics Data System (ADS)
Stern, C. R.; Naranjo, J. A.
2008-12-01
Chaitén volcano is one of 13 large volcanic centers, and numerous small cones, comprising the southern part of the Andean Southern Volcanic Zone (SVZ), that results from the subduction of the Nazca plate (at 7.8 cm/yr) between the landward extension of the Chiloé FZ at 42S and the Chile Rise - Trench triple junction at 46S. Chaitén is a rhyolite dome inside a 3 km diameter caldera located 15 km west of the larger Michinmahuida stratovolcano. Other stratovolcanoes in the SSVZ include Yate, Hornopirén, Corcovado, Yanteles, Melimoyu, Mentolat, Cay and Macá. Hudson volcano, the southernmost in the Southern SVZ, is a large 10 km caldera, while Huequi and Hualaihué - Cordón Cabrera are a group of small aligned cinder cones possibly related to a larger eroded volcanic complex. Prior to the May 2008 eruption of Chaitén, the only well documented historic eruptions in this segment of the Andean arc were the explosive eruption of Hudson in August 1991 (Naranjo et al. 1993), and two eruptions of Michinmahuida in 1742 and 1834-35. Tephra deposits provide evidence of 11 prehistoric explosive Holocene eruptions of the southernmost SSVZ Hudson volcano, including two large eruptions near <6700 and <3600 BP (Naranjo and Stern 1998). The 6700 BP eruption produced greater than 18 km3 of andesitic tephra, possibly the largest Holocene eruption in all the southern Andes. Although Hudson is clearly the most active of the Southern SVZ volcanoes in terms of both volume and frequency of explosive eruptions, tephra deposits indicate that seven of the other SSVZ volcanoes, including Chaitén, also have had medium to large Holocene explosive eruptions (Naranjo and Stern 2004). Three of these eruptions were from Corcovado at approximately <9190, <7980 and <6870 BP, one from Yanteles at <9180 BP, two from Melimoyu at <2740 and <1750 BP, one from Mentolat at <6960 and one from Macá at <1540 BP. Two other eruptions, at <6350 and <3820 BP, we interpret as having been produced by Michinmahuida, because no evidence of tephra from this eruption is found around the Chaitén volcano. The younger and larger of these eruptions (MIC2) generated rhyolites similar in composition to those erupted from Chaitén, suggesting some possible relation between the Michinmahuida and Chaitén magma plumbing systems. Chaitén erupted at approximately <9370 BP based on dating of charcoal within the pyroclastic flow deposit produced by this eruption. This deposit decreases from 3.5 m thick 10 km north of the volcano to 1.5 m thick 30 km north of the volcano, and is covered by a 1.65 to 0.3 m thick tehra fall deposit of rhyolite pumice capped by a thin layer of dark mafic scoria. We consider the pre-May 2008 rhyolite obsidian dome to have formed at this time, or at least before 5610 BP, the age of pre-historic occupation sites with obsidian artifacts fashioned from this obsidian (Stern et al. 2002). Both the thickness of this deposit and the size of the dome in the crater prior to the May 2008 eruption suggest that the current event is not yet as large as the 9370 BP event, which ended with the eruption of a more mafic magma. Thus the current eruption cycle may have a way to go yet before it is complete. Naranjo et al. 1993, Boletin No 44, SERNAGEOMIN, 50 p. Naranjo and Stern 1998, Bull Volcanology 59: 291-306. Naranjo and Stern 2004, Revista Geologica de Chile 31: 225-240. Stern et al. 2002, Anales del Intituto de la Patagonia 30: 167-174.
NASA Astrophysics Data System (ADS)
Jónsdóttir, Tinna; Larsen, Guðrún; Guðmundsson, Magnús
2014-05-01
Basaltic explosive eruptions in Iceland are frequent and often occur from vents in regions of surface lakes, large groundwater reservoirs or within glaciers. The recent Eyjafjallajökull eruption in 2010 and Grímsvötn eruption 2011 highlighted the vulnerability of passenger jet aircraft to ash in the atmosphere. Iceland's volcanoes are the most potent producers of tephra in Europe, and the frequent occurrence of basaltic explosive eruptions is a major factor in causing this. As a step in increasing the knowledge on the tephra erupted in basaltic explosive eruptions, we study the grain size distribution of a large (~5 km3) explosive basaltic eruption that occurred in AD 871±2. The source is the 25 km long Vatnaöldur crater row in south-central Iceland. The crater row lies within the Bárðarbunga-Veiðivötn volcanic system, one of the most productive volcanic systems in Iceland in recent times. Samples for grain size analysis were collected at six different locations along the broad northwest-trending dispersal axis. Sampling sites ranged in 1.5 km to 120 km distance from the largest vent Skyggnir, near the southern end of the crater row. The Vatnaöldur eruption has been classified as phreatomagmatic, erupting through fractured bedrock composed of recent lavas, hyaloclastites and pillow lava in an area characterized by a high groundwater level and surface lakes. Explosive activity dominanted the ~ 25 km long discontinuous fissure, as tuff cones were formed and conduits reached under groundwater table. During the eruption the tephra layer was dispersed in all directions. The area within the 0.5 cm isopach is 50,000 km2 and this tephra has also been identified in Greenland ice cores. The grain size analysis indicates that one dominant characteristic of the tephra is the scarcity of pyroclasts over 1 mm in diameter. In the ash sampled more than 4 km from source larger grain sizes are absent. The dispersion in the more distal parts, at distances of 60 - 120 km is dominated by peaks between 0.250 and 0.063 mm, with the deposit showing slight tendency for progressively higher proportion of fines with distance.In the more proximal sections different phases in the eruption have been identified.
NASA Technical Reports Server (NTRS)
Self, S.; Rampino, M. R.
1981-01-01
The 1883 eruption of Krakatau was a modest ignimbrite-forming event. The deposits are primarily coarse-grained dacitic, non-welded ignimbrite. Large explosions produced pyroclastic flows that entered the sea, generating destructive tsunami. Grain-size studies of the ignimbrite suggest that these explosions were not driven by magma-seawater interaction. The total bulk volume of pyroclastic deposits, including co-ignimbrite ash, is estimated to be 18-21 cu km.
The effects and consequences of very large explosive volcanic eruptions.
Self, S
2006-08-15
Every now and again Earth experiences tremendous explosive volcanic eruptions, considerably bigger than the largest witnessed in historic times. Those yielding more than 450km3 of magma have been called super-eruptions. The record of such eruptions is incomplete; the most recent known example occurred 26000 years ago. It is more likely that the Earth will next experience a super-eruption than an impact from a large meteorite greater than 1km in diameter. Depending on where the volcano is located, the effects will be felt globally or at least by a whole hemisphere. Large areas will be devastated by pyroclastic flow deposits, and the more widely dispersed ash falls will be laid down over continent-sized areas. The most widespread effects will be derived from volcanic gases, sulphur gases being particularly important. This gas is converted into sulphuric acid aerosols in the stratosphere and layers of aerosol can cover the global atmosphere within a few weeks to months. These remain for several years and affect atmospheric circulation causing surface temperature to fall in many regions. Effects include temporary reductions in light levels and severe and unseasonable weather (including cool summers and colder-than-normal winters). Some aspects of the understanding and prediction of super-eruptions are problematic because they are well outside modern experience. Our global society is now very different to that affected by past, modest-sized volcanic activity and is highly vulnerable to catastrophic damage of infrastructure by natural disasters. Major disruption of services that society depends upon can be expected for periods of months to, perhaps, years after the next very large explosive eruption and the cost to global financial markets will be high and sustained.
NASA Astrophysics Data System (ADS)
Sweeney, M. R.; Valentine, G.; Grosso, Z.
2016-12-01
Diatremes represent a unique example of a volcanic plumbing system in which the physical characteristics of the system control eruption dynamics, but in turn, the eruption dynamics greatly dictate how the diatreme evolves. As a result, interpreting surface deposits such as tephra rings is difficult in the context of the whole volcano system. Here we present a novel application of multiphase numerical modeling to simulate intra-diatreme explosions and their effects on transport and mixing length scales. This and previous work have shown that whether an explosion erupts material out of the diatreme depends on several variables, but especially the depth and energy of the explosion. Explosions deeper than 250 m are unlikely to erupt unless extremely large amounts of magma and water are involved. Erupted material at maar-diatreme volcanoes is therefore mostly sourced from the upper-most part of the diatreme. Our modeling shows that following an explosion, the material immediately surrounding and overlying the explosion site is propelled toward the surface via debris jets, which are imperfectly coupled gas-solid mixtures. As the debris jet ascends, material elsewhere in the diatreme undergoes substantial subsidence. This subsidence can be responsible for long residence times of clasts in the diatreme, which together with other factors such as "non-erupting" explosions, can bias a simple interpretation of tephra ring deposits (i.e. the presence of a certain lithology is indicative of the depth at which the eruption originated from). In light of these findings, tephra ring componentry from Dotsero Volcano (Colorado, USA) is compared to volume estimates of the well-constrained subsurface geology to estimate the proportions of different country rock units that might preside in the diatreme. These data in conjunction with different modeling scenarios elucidate intra-diatreme processes such as debris jet activity and their role in forming surface deposits.
NASA Astrophysics Data System (ADS)
Martin, C.; Nicolaysen, K. P.; McConville, K.; Hatfield, V.; West, D.
2013-12-01
By examining the existing geological and archeological record of radiocarbon dated Aleutian tephras of the last 12,000 years, this study sought to determine whether there were spatial or temporal patterns of explosive eruptive activity. The Holocene tephra record has important implications because two episodes of migration and colonization by humans of distinct cultures established the Unangan/Aleut peoples of the Aleutian Islands concurrently with the volcanic activity. From Aniakchak Volcano on the Alaska Peninsula to the Andreanof Islands (158 to 178° W longitude), 55 distinct tephras represent significant explosive eruptions of the last 12,000 years. Initial results suggest that the Andreanof and Fox Island regions of the archipelago have had frequent explosive eruptions whereas the Islands of Four Mountains, Rat, and Near Island regions have apparently had little or no eruptive activity. However, one clear result of the investigation is that sampling bias strongly influences the apparent spatial patterns. For example field reconnaissance in the Islands of Four Mountains documents two Holocene calderas and a minimum of 20 undated tephras in addition to the large ignimbrites. Only the lack of significant explosive activity in the Near Islands seems a valid spatial result as archeological excavations and geologic reports failed to document Holocene tephras there. An intriguing preliminary temporal pattern is the apparent absence of large explosive eruptions across the archipelago from ca. 4,800 to 6,000 yBP. To test the validity of apparent patterns, a statistical treatment of the compiled data grappled with the sampling bias by considering three confounding variables: larger island size allows more opportunity for geologic preservation of tephras; larger magnitude eruption promotes tephra preservation by creating thicker and more widespread deposits; the comprehensiveness of the tephra sampling of each volcano and island varies widely because of logistical and financial limitations. This initial statistical investigation proposes variables to mitigate the effects of sampling bias and makes recommendations for sampling strategies to enable statistically valid examination of research questions. Further, though caldera-forming eruptions occurred throughout the Holocene - and several remain undated - four of six dated eruptions occurred throughout the archipelago between 8,000-9,100 yBP, a period coinciding with some of the earliest human occupation (Early Anangula Phase) of the eastern Aleutians.
Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins
Pierson, Thomas C.; Major, Jon J.
2014-01-01
Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.
NASA Astrophysics Data System (ADS)
Tarff, R. W.; Day, S. J.
2011-12-01
Episodes of hazardous phreatomagmatic explosive activity, including Surtseyan activity, occur within otherwise less dangerous effusive to mildly explosive magmatic eruptions at high-elevation vents on many oceanic island volcanoes. The water driving these explosions is sourced from freshwater aquifers within the volcanic edifices. Understanding volcanic and geophysical precursors to, and mechanisms of, the (frequently abrupt) transitions to explosive activity is required as a basis for effective warning and mitigation of the resulting hazards. Here we describe near-vent deposits around the large Cova de Paúl crater on the island of Santo Antão, Cape Verde Islands, which provide some insights into a transition from mild magmatic to violently explosive phreatomagmatic activity in one such eruption. This pre-historic but well-preserved crater formed in a single eruption that produced extensive low-temperature, lithic-rich phreatomagmatic pyroclastic flows and surge deposits; these are interbedded in proximal outcrops with airfall breccia and ash beds containing varying proportions of lithic and juvenile clasts, pointing to a series of climactic explosions within an extended period of milder explosive activity of broadly Surtseyan type. Prior to the transition to phreatomagmatic activity, the eruption had been characterized by mild Strombolian activity that produced scoria and spatter deposits of broadly tephritic composition. The Strombolian deposits contain a distinct population of strongly banded, low-vesicularity angular clasts with strongly prolate vesicles and a notably glassy appearance. These became markedly larger and more abundant just below the transition to the phreatomagmatic deposits. Comparisons of these clasts with the Strombolian scoria suggest that they are fragments of flow-banded chilled margins from the walls of the eruptive conduit. Thermal shattering of these margins to produce the angular glassy clasts may record the onset of groundwater flow into the conduit, leading to the phreatomagmatic explosive phase of the eruption. Fragmentation of the conduit wall and ingress of groundwater would likely have been accompanied by seismic swarms consisting of high-frequency fracture events and episodes of harmonic tremor, pointing to a potential geophysical signature of the onset of phreatomagmatic explosive activity in comparable future eruptions on Santo Antão and other oceanic islands.
The hazards of eruptions through lakes and seawater
Mastin, L.G.; Witter, J.B.
2000-01-01
Eruptions through crater lakes or shallow seawater, referred to here as subaqueous eruptions, present hazards from hydromagmatic explosions, such as base surges, lahars, and tsunamis, which may not exist at volcanoes on dry land. We have systematically compiled information from eruptions through surface water in order to understand the circumstances under which these hazards occur and what disastrous effects they have caused in the past. Subaqueous eruptions represent only 8% of all recorded eruptions but have produced about 20% of all fatalities associated with volcanic activity in historical time. Excluding eruptions that have resulted in about a hundred deaths or less, lahars have killed people in the largest number of historical subaqueous eruptions (8), followed by pyroclastic flows (excluding base surges; 5) tsunamis (4), and base surges (2). Subaqueous eruptions have produced lahars primarily on high (>1000 m), steep-sided volcanoes containing small (<1 km diameter) crater lakes. Tsunamis and other water waves have caused death or destroyed man-made structures only at submarine volcanoes and at Lake Taal in the Philippines. In spite of evidence that magma-water mixing makes eruptions more explosive, such explosions and their associated base surges have caused fewer deaths, and have been implicated in fewer eruptions involving large numbers of fatalities than lahars and tsunamis. The latter hazards are more deadly because they travel much farther from a volcano and inundate coastal areas and stream valleys that tend to be densely settled.
Numerical modeling of the 1840s major eruption of η Carinae as an explosion
NASA Astrophysics Data System (ADS)
González, Ricardo F.
2018-01-01
In this paper, new two-dimensional hydrodynamical simulations of η Car's nebulae are performed. In the 1840s, the massive star η Car suffered a major eruption that resulted in the formation of a bipolar structure, which is commonly known as the large Homunculus. During this event, η Car expelled into the circumstellar material a total mass of 10 M⊙ and released a total energy of Ek 1050 erg over a very short time (≤5 yr). These kinds of explosive events are frequently called supernova impostors due to their resemblance to a type II supernova, but the stars survive the explosion. In the case of η Car, a brief explosion scenario provides a potential explanation for the behavior of the historical light curve of η Car a few years ( 10 yr) after the nineteenth century outburst. Here, such an alternative scenario of an explosion is assumed (instead of a super-Eddington wind) in order to investigate whether an explosive event is also able to explain the shape and kinematics of the large Homunculus. I show that the numerical simulations presented here indeed resemble some of the observed features of the nebula, such as the present-day double-shell structure of the Homunculus, with a thin outer dense shell and a thicker inner layer, as well as thermal instabilities (Rayleigh-Taylor and Kelvin-Helmholtz) along the dense shell that may lead to the current mottled appearance of the large Homunculus. Nonetheless, the explosion model for the 1840s major eruption of η Car is not able to account for the estimated age of the large Homunculus.
Eruption History of Cone D: Implications for Current and Future Activity at Okmok Caldera
NASA Astrophysics Data System (ADS)
Beget, J.; Almberg, L.; Faust-Larsen, J.; Neal, C.
2008-12-01
Cone B at Okmok Caldera erupted in 1817, and since then activity has beeen centered in and around Cone A in the SW part of Okmok Caldera. However, prior to 1817 at least a half dozen other eruptive centers were active at various times within the caldera. Cone D was active between ca. 2000-1500 yr BP., and underwent at least two separate intervals characterized by violent hydromagmatic explosions and surge production followed by the construction of extensive lava deltas in a 150-m-deep intra-caldera lake. Reconstructions of cone morphology indicate the hydromagmatic explosions occurred when lake levels were shallow or when the eruptive cones had grown to reach the surface of the intra-caldera lake. The effusion rate over this interval averaged several million cubic meters of lava per year, implying even higher outputs during the actual eruptive episodes. At least two dozen tephra deposits on the volcano flanks date to this interval, and record frequent explosive eruptions. The pyroclastic flows and surges from Cone D and nearby cones extend as far as 14 kilometers from the caldera rim, where dozens of such deposits are preserved in a section as much as 6 m thick at a distance of 8 km beyond the rim. A hydromagmatic explosive eruption at ca. 1500 yr BP generated very large floods and resulted in the draining of the caldera lake. The 2008 hydromagmatic explosive eruptions in the Cone D area caused by interactions with lake water resulted in the generation of surges, floods and lahars that are smaller but quite similar in style to the prehistoric eruptions at Cone E ca. 2000-1500 yr BP. The style and magnitude of future eruptions at vents around Cone D will depend strongly on the evolution of the intra-caldera lake system.
NASA Astrophysics Data System (ADS)
Khalaf, Ezz El Din Abdel Hakim
2013-07-01
Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.
NASA Astrophysics Data System (ADS)
Curry, A. C.; Caricchi, L.; Lipman, P. W.
2017-12-01
A primary goal of volcanology is to understand the frequency and magnitude of large, explosive volcanic eruptions to mitigate their impact on society. Recent studies show that the average magma flux and the time between magma injections into a given magmatic-volcanic system fundamentally control the frequency and magnitude of volcanic eruptions, yet these parameters are unknown for many volcanic regions on Earth. We focus on major and trace element chemistry of individual phases and whole-rock samples, initial zircon ID-TIMS analyses, and zircon SIMS oxygen isotope analyses of four caldera-forming ignimbrites from the San Juan caldera cluster in the Southern Rocky Mountain volcanic field, Colorado, to determine the physical and chemical processes leading to large eruptions. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Rat Creek Tuff ( 150 km3), Cebolla Creek Tuff ( 250 km3), and Nelson Mountain Tuff (>500 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these large eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek Tuff) and 26.87 ± 0.02 Ma (Snowshoe Mountain Tuff), providing an opportunity to investigate the temporal evolution of magmatic systems feeding large, explosive volcanic eruptions. Major and trace element analyses show that the first and last eruption of the San Luis caldera complex (Rat Creek Tuff and Nelson Mountain Tuff) are rhyolitic to dacitic ignimbrites, whereas the Cebolla Creek Tuff and Snowshoe Mountain Tuff are crystal-rich, dacitic ignimbrites. Trace elements show enrichment in light rare-earth elements (LREEs) over heavy rare-earth elements (HREEs), and whereas the trace element patterns are similar for each caldera cycle, trace element values for each ignimbrite show variability in HREE concentrations. This variability indicates that these large eruptions sampled a magmatic system with some degree of internal heterogeneity. These results have implications for the chemical and physical processes, such as magmatic flux and injection periodicity, leading to the formation of large magmatic systems prior to large, explosive eruptions.
NASA Astrophysics Data System (ADS)
Tadini, A.; Bisson, M.; Neri, A.; Cioni, R.; Bevilacqua, A.; Aspinall, W. P.
2017-06-01
This study presents new and revised data sets about the spatial distribution of past volcanic vents, eruptive fissures, and regional/local structures of the Somma-Vesuvio volcanic system (Italy). The innovative features of the study are the identification and quantification of important sources of uncertainty affecting interpretations of the data sets. In this regard, the spatial uncertainty of each feature is modeled by an uncertainty area, i.e., a geometric element typically represented by a polygon drawn around points or lines. The new data sets have been assembled as an updatable geodatabase that integrates and complements existing databases for Somma-Vesuvio. The data are organized into 4 data sets and stored as 11 feature classes (points and lines for feature locations and polygons for the associated uncertainty areas), totaling more than 1700 elements. More specifically, volcanic vent and eruptive fissure elements are subdivided into feature classes according to their associated eruptive styles: (i) Plinian and sub-Plinian eruptions (i.e., large- or medium-scale explosive activity); (ii) violent Strombolian and continuous ash emission eruptions (i.e., small-scale explosive activity); and (iii) effusive eruptions (including eruptions from both parasitic vents and eruptive fissures). Regional and local structures (i.e., deep faults) are represented as linear feature classes. To support interpretation of the eruption data, additional data sets are provided for Somma-Vesuvio geological units and caldera morphological features. In the companion paper, the data presented here, and the associated uncertainties, are used to develop a first vent opening probability map for the Somma-Vesuvio caldera, with specific attention focused on large or medium explosive events.
NASA Astrophysics Data System (ADS)
Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.
2016-10-01
Sudden hydrothermal eruptions occur in many volcanic settings and may include high-energy explosive phases. Ballistics launched by such events, together with ash plumes and pyroclastic density currents, generate deadly proximal hazards. The violence of hydrothermal eruptions (or explosive power) depends on the energy available within the driving-fluids (gas or liquid), which also influences the explosive mechanisms, volumes, durations, and products of these eruptions. Experimental studies in addition to analytical modeling were used here to elucidate the fragmentation mechanism and aspects of energy balance within hydrothermal eruptions. We present results from a detailed study of recent event that occurred on the 6th of August 2012 at Upper Te Maari within the Tongariro volcanic complex (New Zealand). The eruption was triggered by a landslide from this area, which set off a rapid stepwise decompression of the hydrothermal system. Explosive blasts were directed both westward and eastward of the collapsed area, with a vertical ash plume sourced from an adjacent existing crater. All explosions ejected blocks on ballistic trajectories, hundreds of which impacted New Zealand's most popular hiking trail and a mountain lodge, 1.4 km from the explosion locus. We have employed rocks representative of the eruption source area to perform rapid decompression experiments under controlled laboratory conditions that mimic hydrothermal explosions under controlled laboratory conditions. An experimental apparatus for 34 by 70 mm cylindrical samples was built to reduce the influence of large lithic enclaves (up to 30 mm in diameter) within the rock. The experiments were conducted in a temperature range of 250 °C-300 °C and applied pressure between 4 MPa and 6.5 MPa, which span the range of expected conditions below the Te Maari crater. Within this range we tested rapid decompression of pre-saturated samples from both liquid-dominated conditions and the vapor-dominated field. Further, we tested dry samples at the same pressure and temperature conditions. Results showed that host rock lithology and state of the interstitial fluid was a major influence on the fragmentation and ejection processes, as well as the energy partitioning. Clasts were ejected with velocities of up to 160 m/s as recorded by high-speed camera. In addition to rare large clasts (analogous to ballistics), a large amount of fine and very fine (<63 μm) ash was produced in all experiments. The efficiency of transformation of the total explosive energy into fragmentation energy was estimated between 10 to 15%, depending on the host rock lithology, while less than 0.1% of this was converted into kinetic energy. Our results suggest that liquid-to-vapor (flashing) expansion provides an order of magnitude higher energy release than steam expansion, which best explains the dynamics of the westward (and most energetic) directed blast at Te Maari. Considering the steam flashing as the primary energy source, the experiments suggested that a minimum explosive energy of 7 ×1010 to 2 ×1012 J was involved in the Te Maari blast. Experimental studies under controlled conditions, compared closely to a field example are thus highly useful in providing new insights into the energy release and hazards associated with eruptions in hydrothermal areas.
The 2010 explosive eruption of Java's Merapi volcano—A ‘100-year’ event
Surono,; Jousset, Philippe; Pallister, John S.; Boichu, Marie; Buongiorno, M. Fabrizia; Budisantoso, Agus; Costa, Fidel; Andreastuti, Supriyati; Prata, Fred; Schneider, David; Clarisse, Lieven; Humaida, Hanik; Sumarti, Sri; Bignami, Christian; Griswold, Julia P.; Carn, Simon A.; Oppenheimer, Clive; Lavigne, Franck
2012-01-01
Merapi volcano (Indonesia) is one of the most active and hazardous volcanoes in the world. It is known for frequent small to moderate eruptions, pyroclastic flows produced by lava dome collapse, and the large population settled on and around the flanks of the volcano that is at risk. Its usual behavior for the last decades abruptly changed in late October and early November 2010, when the volcano produced its largest and most explosive eruptions in more than a century, displacing at least a third of a million people, and claiming nearly 400 lives. Despite the challenges involved in forecasting this ‘hundred year eruption’, we show that the magnitude of precursory signals (seismicity, ground deformation, gas emissions) was proportional to the large size and intensity of the eruption. In addition and for the first time, near-real-time satellite radar imagery played an equal role with seismic, geodetic, and gas observations in monitoring eruptive activity during a major volcanic crisis. The Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) issued timely forecasts of the magnitude of the eruption phases, saving 10,000–20,000 lives. In addition to reporting on aspects of the crisis management, we report the first synthesis of scientific observations of the eruption. Our monitoring and petrologic data show that the 2010 eruption was fed by rapid ascent of magma from depths ranging from 5 to 30 km. Magma reached the surface with variable gas content resulting in alternating explosive and rapid effusive eruptions, and released a total of ~ 0.44 Tg of SO2. The eruptive behavior seems also related to the seismicity along a tectonic fault more than 40 km from the volcano, highlighting both the complex stress pattern of the Merapi region of Java and the role of magmatic pressurization in activating regional faults. We suggest a dynamic triggering of the main explosions on 3 and 4 November by the passing seismic waves generated by regional earthquakes on these days.
NASA Astrophysics Data System (ADS)
gurioli, L.; Harris, A. J.
2013-12-01
Strombolian activity is the most common type of explosive eruption (by frequency) experienced by Earth's volcanoes. It is commonly viewed as consisting of a succession of short discrete explosions where fragments of incandescent magma are ejected a few tens to hundreds meters into the air. This kind of activity is generally restricted to basaltic or basaltic-andesitic magmas because these systems have the sufficiently low viscosities so as to allow gas coalescence and decoupled slug ascent. Mercalli (1907) proposed one of the first formal classifications of explosive activity based on the character of the erupted products and descriptions of case-type eruptions. Later, Walker (1973) devised a classification based on grain size and dispersion, within which strombolian explosions formed the low-to-middle end of the classification. Other classifications have categorized strombolian activity on the basis of erupted magnitude and/or intensity, such as Newhall and Self's (1982) Volcanic Explosivity Index (VEI). Classification can also be made on the basis of explosion mechanism, where strombolian eruptions have become associated with bursting of large gas bubbles, as opposed to release of locked in bubble populations in rapidly ascending magma that feed sustained fountains. Finally, strombolian eruptions can be defined on the basis of geophysical metrics for the explosion source and plume ascent dynamics. Recently, the volcanology community has begun to discuss the difficulty of actually placing strombolian explosions within the compartments defined by each scheme. New sampling strategies in active strombolian volcanic fields have allowed us to parameterize these mildly explosive events both physically and geophysically. Our data show that individual 'normal' and "major" explosions at Stromboli are extremely small, meaning that the classical deposit-based classification thresholds need to be reduced, or a new category defined, if the 'strombolian' eruption style at Stromboli, and other volcanoes like it, are to plot in the strombolian fields of deposit-based classifications. We also quenched a number of bombs soon explosion at Stromboli. This enabled us to quantify the degassing history and rheology of the magma(s) resident in the shallow, near-surface, system. The different textural facies observed in these bombs showed that fresh magma, mingled with partially or completely degassed, oxidized, re-crystallized, evolved and high viscosity magma, was ejected. The degassed magma appears to sit at the top of the conduit, playing only a passive role in the explosive process. Our best model, is that the degassed, oxidized magma forms a plug, or rheologically defined layer, at the top of the conduit, through which the fresh magma bursts. Integration of geophysical measurements with sample analyses, indicates that popular (bubble-bursting) models may not fit this case, thus also changeling the model-based definition of this eruption type.
Wessels, Rick L.; Vaughan, R. Greg; Patrick, Matthew R.; Coombs, Michelle L.
2013-01-01
A combination of satellite and airborne high-resolution visible and thermal infrared (TIR) image data detected and measured changes at Redoubt Volcano during the 2008–2009 unrest and eruption. The TIR sensors detected persistent elevated temperatures at summit ice-melt holes as seismicity and gas emissions increased in late 2008 to March 2009. A phreatic explosion on 15 March was followed by more than 19 magmatic explosive events from 23 March to 4 April that produced high-altitude ash clouds and large lahars. Two (or three) lava domes extruded and were destroyed between 23 March and 4 April. After 4 April, the eruption extruded a large lava dome that continued to grow until at least early July 2009.
NASA Astrophysics Data System (ADS)
Biass, S.; Todde, A.; Cioni, R.; Pistolesi, M.; Geshi, N.; Bonadonna, C.
2017-10-01
We present an exposure analysis of infrastructure and lifeline to tephra fallout for a future large-scale explosive eruption of Sakurajima volcano. An eruption scenario is identified based on the field characterization of the last subplinian eruption at Sakurajima and a review of reports of the eruptions that occurred in the past six centuries. A scenario-based probabilistic hazard assessment is performed using the Tephra2 model, considering various eruption durations to reflect complex eruptive sequences of all considered reference eruptions. A quantitative exposure analysis of infrastructures and lifelines is presented primarily using open-access data. The post-event impact assessment of Magill et al. (Earth Planets Space 65:677-698, 2013) after the 2011 VEI 2 eruption of Shinmoedake is used to discuss the vulnerability and the resilience of infrastructures during a future large eruption of Sakurajima. Results indicate a main eastward dispersal, with longer eruption durations increasing the probability of tephra accumulation in proximal areas and reducing it in distal areas. The exposure analysis reveals that 2300 km of road network, 18 km2 of urban area, and 306 km2 of agricultural land have a 50% probability of being affected by an accumulation of tephra of 1 kg/m2. A simple qualitative exposure analysis suggests that the municipalities of Kagoshima, Kanoya, and Tarumizu are the most likely to suffer impacts. Finally, the 2011 VEI 2 eruption of Shinmoedake demonstrated that the already implemented mitigation strategies have increased resilience and improved recovery of affected infrastructures. Nevertheless, the extent to which these mitigation actions will perform during the VEI 4 eruption presented here is unclear and our hazard assessment points to possible damages on the Sakurajima peninsula and the neighboring municipality of Tarumizu.
Interdisciplinary studies of eruption at Chaiten Volcano, Chile
John S. Pallister; Jon J. Major; Thomas C. Pierson; Richard P. Hoblitt; Jacob B. Lowenstern; John C. Eichelberger; Lara Luis; Hugo Moreno; Jorge Munoz; Jonathan M. Castro; Andres Iroume; Andrea Andreoli; Julia Jones; Fred Swanson; Charlie Crisafulli
2010-01-01
There was keen interest within the volcanology community when the first large eruption of high-silica rhyolite since that of Alaska's Novarupta volcano in 1912 began on 1 May 2008 at Chaiten volcano, southern Chile, a 3-kilometer-diameter caldera volcano with a prehistoric record of rhyolite eruptions. Vigorous explosions occurred through 8 May 2008, after which...
NASA Astrophysics Data System (ADS)
Giachetti, T.; Shea, T.; Gonnermann, H. M.; McCann, K. A.; Hoxsie, E. C.
2016-12-01
Significant explosive activity generally precedes or coexists with the large effusion of rhyolitic lava (e.g., Mono Craters; Medicine Lake Volcano; Newberry; Chaitén; Cordón Caulle). Such explosive-to-effusive transitions and, ultimately, cessation of activity are commonly explained by the overall waning magma chamber pressure accompanying magma withdrawal, albeit modulated by magma outgassing. The tephra deposits of such explosive-to-effusive eruptions record the character of the transition - abrupt or gradual - as well as potential changes in eruptive conditions, such as magma composition, volatiles content, mass discharge rate, conduit size, magma outgassing. Results will be presented from a detailed study of both the gas-rich (pumice) and gas-poor (obsidian) juvenile pyroclasts produced during the Plinian phase of the 1060 CE Glass Mountain eruption of Medicine Lake Volcano, California. In the proximal deposits, a multitude of pumice-rich sections separated by layers rich in dense clasts suggests a pulsatory behavior of the explosive phase. Density measurements on 2,600 pumices show that the intermediate, most voluminous deposits have a near constant median porosity of 65%. However, rapid increase in porosity to 75-80% is observed at both the bottom and the top of the fallout deposits, suggestive of rapid variations in magma degassing. In contrast, a water content of pyroclastic obsidians of approximately 0.6 wt% does remain constant throughout the eruption, suggesting that the pyroclastic obsidians degassed up to a constant pressure of a few megapascals. Numerical modeling of eruptive magma ascent and degassing is used to provide constraints on eruption conditions.
Potential hazards from future eruptions of Mount St. Helens Volcano, Washington
Crandell, Dwight Raymond; Mullineaux, Donal Ray
1978-01-01
Mount St. Helens has been more active and more explosive during the last 4,500 years than any other volcano in the conterminous United States. Eruptions of that period repeatedly formed domes, large volumes of pumice, hot pyroclastic flows, and, during the last 2,500 years, lava flows. Some of this activity resulted in mudflows that extended tens of kilometers down the floors of valleys that head at the volcano. This report describes the nature of the phenomena and their threat to people and property; the accompanying maps show areas likely to be affected by future eruptions of Mount St. Helens. Explosive eruptions that produce large volumes of pumice affect large areas because winds can carry the lightweight material hundreds of kilometers from the volcano. Because of prevailing winds, the 180-degree sector east of the volcano will be affected most often and most severely by future eruptions of this kind. However, the pumice from any one eruption will fall in only a small part of that sector. Pyroclastic flows and mudflows also can affect areas far from the volcano, but the areas they affect are smaller because they follow valleys. Mudflows and possibly pyroclastic flows moving rapidly down Swift and Pine Creeks could displace water in Swift Reservoir, which could cause disastrous floods farther downvalley.
NASA Astrophysics Data System (ADS)
Arámbula-Mendoza, R.; Lesage, P.; Valdés-González, C.; Varley, N. R.; Reyes-Dávila, G.; Navarro, C.
2011-08-01
Volcán de Colima is considered the most active in Mexico. A period of large eruptive activity occurred in 2004-2005. It began as a swarm of long-period events (LPs) in late September 2004, indicating the onset of growth of a new lava dome in its crater. Subsequently, avalanches of incandescent material and pyroclastic flows during a period of approximately 2 months occurred. Then, the activity became more explosive with moderate explosions. Finally, swarms of LPs accompanied the magma ascent and extrusion of small domes and vulcanian explosions with pyroclastic flows in 2005. This eruptive period was investigated with a continuous seismic signal study, cross-correlation of LPs and autoregressive analysis of monochromatic LPs. For the vast majority of the explosions, an increase in the rate of seismic energy was observed with the Seismic Spectral Energy Measurement (SSEM) from 1 to 3 Hz, before each explosive event. This increase in energy is proportional to the increase in the rate of LPs, probably as a result of an increase in the emission rate. Applying the material failure forecasting method (FFM) and using SSEM inverse of parameter, the time of the explosions is estimated as the time when the adjusted line reaches the null value. We observe a systematic delay of a few hours between the real time of occurrence of the explosions and the estimated time. This suggests that more complex processes than pure damaging of the plug occur before the explosions. The swarms associated with the large explosions include a large proportion of LPs with similar waveforms. They form a dozen of families which stay during the whole period of activity and which indicate repetitive sources. Some of the families are active only before the explosions and could therefore be used as early warning. Monochromatic LP events occurred during this period, some of them just some hours before an explosion. However, no clear relationship between their occurrence and the explosions could be found.
Identifying recycled ash in basaltic eruptions
D'Oriano, Claudia; Bertagnini, Antonella; Cioni, Raffaello; Pompilio, Massimo
2014-01-01
Deposits of mid-intensity basaltic explosive eruptions are characterized by the coexistence of different types of juvenile clasts, which show a large variability of external properties and texture, reflecting alternatively the effects of primary processes related to magma storage or ascent, or of syn-eruptive modifications occurred during or immediately after their ejection. If fragments fall back within the crater area before being re-ejected during the ensuing activity, they are subject to thermally- and chemically-induced alterations. These ‘recycled' clasts can be considered as cognate lithic for the eruption/explosion they derive. Their exact identification has consequences for a correct interpretation of eruption dynamics, with important implications for hazard assessment. On ash erupted during selected basaltic eruptions (at Stromboli, Etna, Vesuvius, Gaua-Vanuatu), we have identified a set of characteristics that can be associated with the occurrence of intra-crater recycling processes, based also on the comparison with results of reheating experiments performed on primary juvenile material, at variable temperature and under different redox conditions. PMID:25069064
Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April-May 2010
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Vergoz, Julien; Le Pichon, Alexis; Ceranna, Lars; Green, David N.; Evers, Läslo G.; Ripepe, Maurizio; Campus, Paola; Liszka, Ludwik; Kvaerna, Tormod; Kjartansson, Einar; Höskuldsson, Ármann
2011-03-01
The April-May 2010 summit eruption of Eyjafjallajökull, Iceland, was recorded by 14 atmospheric infrasound sensor arrays at ranges between 1,700 and 3,700 km, indicating that infrasound from modest-size eruptions can propagate for thousands of kilometers in atmospheric waveguides. Although variations in both atmospheric propagation conditions and background noise levels at the sensors generate fluctuations in signal-to-noise ratios and signal detectability, array processing techniques successfully discriminate between volcanic infrasound and ambient coherent and incoherent noise. The current global infrasound network is significantly more dense and sensitive than any previously operated network and signals from large volcanic explosions are routinely recorded. Because volcanic infrasound is generated during the explosive release of fluid into the atmosphere, it is a strong indicator that an eruption has occurred. Therefore, long-range infrasonic monitoring may aid volcanic explosion detection by complementing other monitoring technologies, especially in remote regions with sparse ground-based instrument networks.
NASA Astrophysics Data System (ADS)
Moiseenko, K. B.; Malik, N. A.
2015-11-01
Intensive volcanic eruptions of an explosive type are accompanied by release of a great amount of ash particles into the atmosphere. These particles are finely dispersed (<2 mm in size) products of magmatic melt fermentation, and their precipitation on the underlying surface is largely controlled by atmospheric transport. The present work proposes an approach to estimate the total released mass (TRM) of ash at minimal a priori data on dynamics of explosive process, on the basis of, first, direct numerical modeling of atmospheric transport and gravity precipitation of ash particles and, second, field observation data. To exemplify, the case study of the strong explosive eruption of Bezymyanny volcano on December 24, 2006 is considered (TRM > 3.8 Mt, height of eruptive column is 13-15 km above sea level). The results of the model calculations for this event are compared to independent TRM estimates by using standard methods based on the counting of precipitation areas.
Analyses of Etna Eruptive Activity From 18th Century and Characterization of Flank Eruptions
NASA Astrophysics Data System (ADS)
del Carlo, P.; Branca, S.; Coltelli, M.
2003-12-01
Etna explosive activity has usually been considered subordinate with respect to the effusive eruptions. Nevertheless, in the last decade and overall after the 2001 and 2002 flank eruptions, explosive activity has drawn the attention of the scientific and politic communities owing to the damages that the long-lasting ash fall caused to Sicily's economy. We analyzed the eruptions from the 18th century to find some analogous behavior of Etna in the past. A study of the Etna historical record (Branca and Del Carlo, 2003) evidenced that after the 1727 eruption, there are no more errors in the attribution of the year of the eruption. Furthermore from this time on, the scientific quality of the chronicles allowed us to obtain volcanological information and to estimate the magnitude of the major explosive events. The main goal of this work was to characterize the different typologies of Etna eruptions in the last three centuries. Meanwhile, we have tried to find the possible relationship between the two kinds of activity (explosive and effusive) in order to understand the complexity of the eruptive phenomena and define the short-term behavior of Etna. On the base of the predominance of the eruptive typology (effusive or explosive) we have classified the flank eruptions in three classes: i) Type 1: almost purely effusive; ii) Type 2: the intensity of explosive activity comparable with the effusive; iii) Type 3: almost purely explosive with minor lava effusion (only the 1763 La Montagnola and 2002 eruptions belong to this class). Long-lasting explosive activity is produced by flank eruptions with continuous ash emission and prolonged fallout on the flanks (e.g. 1763, 1811, 1852-53, 1886, 1892, 2001 and 2002 eruptions). At summit craters continuous activity is weaker, whereas the strongest explosive eruptions are short-lived events. Furthermore, from the 18th to 20th century there were several years of intense and discontinuous summit explosive activity, from high strombolian to fire fountain. This activity produced abundant ash fall in the whole volcano area reaching the Calabria region and Malta Island. Generally, some of these periods preceded important flank eruptions. Concerning the occurrence of the higher magnitude explosive events, we observe that at least one subplinian eruption occurred both in the 18th and 19th centuries. In the 20th century the increased quality of the scientific reports has allowed to recognize 6 subplinian eruptions from summit craters.
NASA Astrophysics Data System (ADS)
Pappalardo, Lucia; Mastrolorenzo, Giuseppe
2010-05-01
Highly catastrophic explosive eruptions are supplied by Si-rich magmas, generated at shallower level in crust by the evolution of mantle liquids. The timescale of these evolution processes is a crucial factor, because of its control on the length of volcano repose interval leading to high explosive events. Campi Flegrei and Somma-Vesuvius alkaline volcanic systems, located respectively at few kilometers west and east of Neapolitan metropolitan area, produced a variety of eruptions ranging from not explosive lava flows and domes to highly destructive eruptions. Both these high risk volcanoes are in repose time since the last eruption occurred in the 1538 and 1944 BP, respectively. Since that time, the volcanoes experienced fumarolic activity, low level of seismicity with rare earthquakes swarms, as well as two bradyseismic crisis (1969-1972 and 1982-1984) localized in the center of Campi Flegrei caldera, that generated a net uplift of 3.5 m around the town of Pozzuoli. A wide low velocity layer interpreted as an extended magmatic body has been detected at 8-10 km depth beneath these volcanoes by seismic data. The capability of this reservoir to erupt explosively again strongly depends on magma differentiation degree, therefore the knowledge of the time lapse necessary at not explosive mafic liquids to differentiate toward explosive magmas is very crucial to predict the size of a possible short-term future eruption in Campanian area. Our petrologic data indicate that a multi-depth supply system was active under the Campanian Plain since 39 ka. Fractional crystallization during magma cooling associated with upward migration of less dense evolved liquids appears to be the prevalent differentiation process. Our results indicate that huge steam exolution occurred during the late stage of trachyte and phonolite crystallization thus accounting for the high Volcanic Explosivity Index (VEI) of eruptions supplied by these melts. Moreover our CSD data on phenocrysts reveal rapid crystallization and differentiation time for alkaline Campanian magmas (in the order of decades to few centuries). This evidence implies that the 400 km2 partial melting zone detected by tomography study at 8-10 km depth beneath Vesuvius and Campi Flegrei, should consist of differentiated magma already capable to produce also large scale (plinian) explosive events in case of renewal of the activity from the present closed-conduit state.
Explosive volcanism may not be an inevitable consequence of magma fragmentation.
Gonnermann, Helge M; Manga, Michael
2003-11-27
The fragmentation of magma, containing abundant gas bubbles, is thought to be the defining characteristic of explosive eruptions. When viscous stresses associated with the growth of bubbles and the flow of the ascending magma exceed the strength of the melt, the magma breaks into disconnected fragments suspended within an expanding gas phase. Although repeated effusive and explosive eruptions for individual volcanoes are common, the dynamics governing the transition between explosive and effusive eruptions remain unclear. Magmas for both types of eruptions originate from sources with similar volatile content, yet effusive lavas erupt considerably more degassed than their explosive counterparts. One mechanism for degassing during magma ascent, consistent with observations, is the generation of intermittent permeable fracture networks generated by non-explosive fragmentation near the conduit walls. Here we show that such fragmentation can occur by viscous shear in both effusive and explosive eruptions. Moreover, we suggest that such fragmentation may be important for magma degassing and the inhibition of explosive behaviour. This implies that, contrary to conventional views, explosive volcanism is not an inevitable consequence of magma fragmentation.
Phreatic and Hydrothermal Explosions: A Laboratory Approach
NASA Astrophysics Data System (ADS)
Scheu, B.; Dingwell, D. B.
2010-12-01
Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the fragmentation is less violent as its dry counterpart. The experimental conditions used it this study (varying degree of water saturation, moderate overpressure, 200- 300°C) applies e.g. to volcanic rocks as well as country rocks at depth of about 100-800 m in a conduit or dome bearing a fraction of ground water and being heated from magma rising beneath (150-400°C). The diversity of phreatic eruptions at a volcanic system (vent) arises from the variety of host rocks, ways to seal the conduit, and to alter this material depending on the composition of volcanic gases. Here, we assess the influence of rapid decompression of the supercritical water phase in the pore space of samples, on the fragmentation behaviour. This will enable us to elucidate the characteristics of the different “fuels” for explosive fragmentation (gas overpressure, steam flashing), as well as their interplay.
NASA Astrophysics Data System (ADS)
Delgado, F.; Kubanek, J.; Anderson, K. R.; Lundgren, P.; Pritchard, M. E.
2017-12-01
The 2011-2012 eruption of Cordón Caulle volcano in Chile is the best scientifically observed rhyodacitic eruption and is thus a key place to understand the dynamics of these rare but powerful explosive rhyodacitic eruptions. Because the volatile phase controls both the eruption temporal evolution and the eruptive style, either explosive or effusive, it is important to constrain the physical parameters that drive these eruptions. The eruption began explosively and after two weeks evolved into a hybrid explosive - lava flow effusion whose volume-time evolution we constrain with a series of TanDEM-X Digital Elevation Models. Our data shows the intrusion of a large volume laccolith or cryptodome during the first 2.5 months of the eruption and lava flow effusion only afterwards, with a total volume of 1.4 km3. InSAR data from the ENVISAT and TerraSAR-X missions shows more than 2 m of subsidence during the effusive eruption phase produced by deflation of a finite spheroidal source at a depth of 5 km. In order to constrain the magma total H2O content, crystal cargo, and reservoir pressure drop we numerically solve the coupled set of equations of a pressurized magma reservoir, magma conduit flow and time dependent density, volatile exsolution and viscosity that we use to invert the InSAR and topographic data time series. We compare the best-fit model parameters with independent estimates of magma viscosity and total gas content measured from lava samples. Preliminary modeling shows that although it is not possible to model both the InSAR and the topographic data during the onset of the laccolith emplacement, it is possible to constrain the magma H2O and crystal content, to 4% wt and 30% which agree well with published literature values.
Initiation of Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Sterling, Alphonse C.
2005-01-01
This paper is a synopsis of the initiation of the strong-field magnetic explosions that produce large, fast coronal mass ejections. Cartoons based on observations are used to describe the inferred basic physical processes and sequences that trigger and drive the explosion. The magnetic field that explodes is a sheared-core bipole that may or may not be embedded in surrounding strong magnetic field, and may or may not contain a flux rope before it starts to explode. We describe three different mechanisms that singly or in combination trigger the explosion: (1) runaway internal tether-cutting reconnection, (2) runaway external tether-cutting reconnection, and (3) ideal MHD instability or loss or equilibrium. For most eruptions, high-resolution, high-cadence magnetograms and chromospheric and coronal movies (such as from TRACE and/or Solar-B) of the pre-eruption region and of the onset of the eruption and flare are needed to tell which one or which combination of these mechanisms is the trigger. Whatever the trigger, it leads to the production of an erupting flux rope. Using a simple model flux rope, we demonstrate that the explosion can be driven by the magnetic pressure of the expanding flux rope, provided the shape of the expansion is "fat" enough.
NASA Astrophysics Data System (ADS)
Mothes, P. A.; Hall, M. L.; Samaniego, P.; Francou, B.; Castro, M.; Hidalgo, X.
2007-05-01
Andean alpine glaciers are in rapid retreat, as witnessed by actual measurements, comparative imagery and popular memory. Overall glacier losses will diminish future water availability for human consumption as well as for lahar generation, the product of mixing incandescent eruptive materials with glacial ice and snow. The field study and modeling of long-distance historical lahars from Cotopaxi volcano, Ecuador has shown them to be some of the most voluminous and longest reported. Based on back calculations, peak discharges were commonly between 45,000-60,000 m3/sec, velocities reached 70 km/hr, and run outs attained 325 km. The last "super" debris flow was produced at Cotopaxi in 1877. Observations made after the 1877 eruption reported that the glacier had suffered about 10 meters of ice stripped off the top and the incision of deep gullies from melting and erosion by the scoria block-rich pyroclastic flows. Average reductions of 45% and 60%, respectively, of the area and volume of Cotopaxi´s 19 alpine glaciers during the last 30 years have left an ice cap of only 13 km2 and a volume of 0.60 km3. Descriptions by astute 18th and 19th century observers lead us to conclude that Cotopaxi glaciers were much more robust then, surpassing a total area of about 30 km2, a fact which contributed to generating large volume lahars and high discharges, during the waning "Little Ice Age". If an eruption similar to that of 1877 occurs at Cotopaxi in the future, reduced glacier sizes and the glaciers´ preferential distribution upon the cone will likely attenuate volcano-ice interactions and will lower the probability of "super" lahars being produced during eruptive periods. However, in the last 2000 years of eruptive activity, explosive eruptions display a large size span-- from weakly explosive events (VEI= 2) to highly explosive eruptive cycles (VEI= 4-5). Given the uncertainty of the size of the next explosive eruption of Cotopaxi, several scenarios for lahar generation must be envisioned, which include the magnitude of the explosive event as well as the retreat of the glacier. These scenarios all have implications for the populations living in adjacent valleys, where future lahars may pass.
NASA Astrophysics Data System (ADS)
Caudron, Corentin; Donaldson, Clare; White, Robert
2016-04-01
The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of the explosive eruption.
A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans.
Hutchison, William; Fusillo, Raffaella; Pyle, David M; Mather, Tamsin A; Blundy, Jon D; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E; Brooker, Richard A; Barfod, Dan N; Calvert, Andrew T
2016-10-18
The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km 3 ) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations.
A pulse of mid-Pleistocene rift volcanism in Ethiopia at the dawn of modern humans
Hutchison, William; Fusillo, Raffaella; Pyle, David M.; Mather, Tamsin A.; Blundy, Jon D.; Biggs, Juliet; Yirgu, Gezahegn; Cohen, Benjamin E.; Brooker, Richard A.; Barfod, Dan N.; Calvert, Andrew T.
2016-01-01
The Ethiopian Rift Valley hosts the longest record of human co-existence with volcanoes on Earth, however, current understanding of the magnitude and timing of large explosive eruptions in this region is poor. Detailed records of volcanism are essential for interpreting the palaeoenvironments occupied by our hominin ancestors; and also for evaluating the volcanic hazards posed to the 10 million people currently living within this active rift zone. Here we use new geochronological evidence to suggest that a 200 km-long segment of rift experienced a major pulse of explosive volcanic activity between 320 and 170 ka. During this period, at least four distinct volcanic centres underwent large-volume (>10 km3) caldera-forming eruptions, and eruptive fluxes were elevated five times above the average eruption rate for the past 700 ka. We propose that such pulses of episodic silicic volcanism would have drastically remodelled landscapes and ecosystems occupied by early hominin populations. PMID:27754479
Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano
Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.
2011-01-01
We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.
Insights Into the Workings of Rhyolitic Explosive Eruptions and Their Magmatic Sources
NASA Astrophysics Data System (ADS)
Wilson, C. J.
2011-12-01
The nature, role and significance of rhyolitic volcanism and its associated crustal magmatism have been widely recognised and documented over the past ~50 years. The products of such volcanism include the largest Quaternary eruptions on Earth, and these 'supereruptions' represent the largest terrestrial long-term hazard to humanity as well as reflecting resource-rich magmatic systems. Only three rhyolitic eruptions of any size have occurred over the last 100 years (Novarupta, Tuluman, Chaiten) and so patterns of rhyolitic volcanism have been inferred almost entirely from the products of past events. Numerous models for the dynamics of explosive activity have been generated from the resulting deposits, but many questions remain about the eruptions and their parental magma bodies. Central to understanding how rhyolitic systems operate is two suites of questions. First, what are the timescales of large explosive eruptions? Are they short-lived catastrophic events ('hours or days') or can they be prolonged over years to decades? How and why do large eruptions stop and start? Prehistoric large eruptions seem to show a great variety of timings, varying from days (e.g. Bishop Tuff) through months (e.g. Oruanui) to a decade or more (e.g. Huckleberry Ridge Tuff), with periods of high output alternating with hiatuses of minutes to years. Eruption rates, where they can be assessed, do not necessarily scale with the volume of the deposit. Large eruptions may be internally modulated by external (tectonic) forces, implying that eruption styles and products may be influenced by something that leaves no geological presence. Tectonic processes may control whether the evacuation of more than one magma body occurs, or trigger pairings of independent eruptions. The second suite of questions centres on the time periods over which the bodies of erupted magma accumulate and how they are assembled. Do tens to hundreds to thousands of cubic kilometres of eruptible magma collect over a time period proportional to the size of the body, or do other factors play a role? How completely are chambers emptied during eruptions? The value of zircon crystallization ages in measuring the timescales of silicic magma generation and accumulation is not in doubt. There are many ambiguities, however, in how such data are treated and interpreted, in part depending on the detail of the geological record and in part related to the uncertainties associated with individual age estimates. Magma bodies can have very short accumulation times which are different from the timescales implied by crystallization ages. Large bodies of melt-dominant magma may be thoroughly mixed, have floors rigid enough to permit flow of mafic influxes across them, and then be effectively totally evacuated during eruption. I will present an overview of ideas and information from combined field and laboratory case studies which contribute towards addressing the nature and dynamics of large silicic systems.
NASA Astrophysics Data System (ADS)
de Moor, M. J.; Aiuppa, A.; Avard, G.; Diaz, J. A.; Corrales, E.; Rüdiger, J.; D´Arcy, F.; Fischer, T. P.; Stix, J.; Alan, A.
2017-12-01
In April 2017 Poás volcano entered its first magmatic eruption period of the 21st century. The initial explosive blasts produced eruption columns up to 4 km in height, destroyed the pre-existing dome that was emplaced during the last magmatic eruption in the 1950s, and showered the tourist observation deck with bombs. Over the following months, the hyperacid crater lake dried out and a transition from phreatomagmatic to strombolian activity was observed. Two vents now dominate the activity. The main vent (old dome site) produces gas, ash, and scoria. A second vent is located in the dried-out lake bed and produces a peculiar canary-yellow gas plume. A fixed MultiGAS instrument installed in the crater bottom recorded large changes in gas composition prior to the explosive eruptions. The station recorded a dramatic increase in SO2/CO2 from an average of 0.04 for March 2017 to an average of 7.4 the day before the first explosive eruption that occurred at 18:30 on 12 April. A simultaneous rapid decrease in H2S/SO2 from 2.7 to <0.01 was observed prior to the eruptions. The MultiGAS station stopped transmitting data after 2 days of explosive eruptions. We since developed new methods for measuring gas compositions and SO2 fluxes using drones, allowing continued gas monitoring despite dangerous conditions. Extremely high SO2/CO2 of 33 was measured with drone-based miniaturized MultiGAS ("miniGAS") in May 2017, and the ratio has since dropped to 3, which are more typical values of high temperature magmatic gases at Poás. The SO2 flux from Poás was at record low levels (< 5 T/d) in late 2016 and early 2017. Drone-based SO2 DOAS ("DROAS") measurements indicate high SO2 fluxes from Poas of >2000 T/d since the explosive eruptions, indicating a strong magmatic source and open conduits. We attribute the unusually S-rich gas compositions observed at Poás prior to and during the initial eruptions to combustion of previously deposited hydrothermal sulfur. The very low gas flux from the system prior to the explosive eruptions suggests that this sulfur may have played a role in hydrothermal sealing, leading to pressurization of the magmatic-hydrothermal system and ultimately triggering phreatomagmatic eruptions and "top down" remobilization of previously emplaced magma.
NASA Astrophysics Data System (ADS)
Rodgers, Mel; Smith, Patrick; Mather, Tamsin A.; Pyle, David M.
2017-04-01
During long-lived dome-forming eruptions volcanoes often transition between quiescent, effusive, and explosive behaviour. Soufrière Hills Volcano (SHV), Montserrat, has been erupting since 1995 and has repeatedly transitioned between these different phases of activity. At SHV many of the largest explosions have occurred either during periods of dome growth, or as major dome collapse events at the end of extrusion phases. However, on the 29th July 2008 a vulcanian explosion marked the transition from a quiescent phase (Pause 3) to explosion and then extrusion. This was one of the largest explosions by volume and the largest to occur outside a period of lava extrusion. The eruption was preceded by one of the most intense seismic swarms ever recorded at SHV. In this study we analysed precursory seismic data to investigate the subsurface volcanic processes that culminated in this eruption. We used spectral and multiplet analysis techniques, and applied a simple parameterization approach to relate monitoring observations (seismic, SO2, visual) to subsurface interpretations. These techniques would be available to most volcano observatories. Our study suggests that an initial VT swarm, coincident with ash-venting events, can be triggered by ascent of decoupled gas ahead of rising magma. A subsequent large LF swarm shows a coincident decrease in spectral content that we interpret as magma ascent through the upper conduit system. An ash-venting event on 27 July (a few hours before peak event rate) may have triggered rapid microlite growth. We observe an increase in the spectral content of the LF swarm that is concurrent with a decrease in event rates, suggesting pressurization of the magmatic system due to inhibited magmatic outgassing. Our results suggest that pressurization of the magmatic system may have occurred in the final 24 h before the vulcanian explosion. We also observe LP and Hybrid events within the same multiplet, suggesting that these events have very similar source processes and should be considered part of the same classification at SHV. Our study demonstrates the potential for using spectral and multiplet analysis to understand subsurface magmatic processes and for investigating the transition between quiescence and eruption.
Measuring the speed of magma ascent during explosive eruptions of Kilauea, Hawaii
NASA Astrophysics Data System (ADS)
Ferguson, D. J.; Ruprecht, P.; Plank, T. A.; Hauri, E. H.; Gonnermann, H. M.; Houghton, B. F.; Swanson, D. A.
2014-12-01
The size and intensity of volcanic eruptions is controlled by a combination of the physical properties of magmas and the conditions of magma ascent. At basaltic volcanoes, where relatively fluid magmas are erupted, sustained explosive eruptions vary widely in style, from Hawaiian fountains erupted 10s to 100s of meter high to large Plinian type events, involving >20 km high eruption plumes. Decompression of magmas leads to volatile saturation and bubble growth, however it remains disputed how the dynamics of shallow ascent and degassing might control this disparate eruptive behaviour, or whether factors such as the initial volatile content exert the primary control on eruption style. A key issue is that the physical conditions of magma ascent, which may significantly impact eruptive dynamics, remain largely unconstrained by observational data. Here we quantify two primary variables - decompression rates and volatile contents - for magmas from three contrasting eruptions of Kīlauea volcano, Hawaii, using microanalysis and modelling of volatile diffusion along small melt tubes or embayments found in olivine crystals carried by the ascending magmas. During ascent decreasing solubility causes dissolved volatiles to diffuse along the embayment towards growing bubbles at the crystal edge. By modelling the diffusion of H2O, CO2 and S we obtain decompression rates, and indirectly ascent velocities, for the rising magma. For Hawaiian style fountaining events we obtain ascent rates of 0.05-0.07 MPa s-1 (~1 m s-1), whereas for a more intense subplinian eruption we obtain a notably faster rate of 0.29 MPa s-1 (>10m s-1). The timescales of melt transport from the storage region during these eruptions varied from around 3 to 40 minutes. We find no link between pre-eruptive volatile contents and eruption intensity, rather our results suggest that the eventual size of sustained explosive basaltic eruptions is likely governed by factors affecting the ascent velocity of melts in the volcanic conduit. The observed decompression rates are consistent with measured discharge rates, and with models predicting greater magma chamber overpressure for larger eruptions. Ascent rates may also further modulate dynamic processes in the volcanic conduit, such as the flow regime and bubble expansion, and consequently eruptive intensity.
Ice Thickness, Melting Rates and Styles of Activity in Ice-Volcano Interaction
NASA Astrophysics Data System (ADS)
Gudmundsson, M. T.
2005-12-01
In most cases when eruptions occur within glaciers they lead to rapid ice melting, jokulhlaups and/or lahars. Many parameters influence the style of activity and its impact on the environment. These include ice thickness (size of glacier), bedrock geometry, magma flow rate and magma composition. The eruptions that have been observed can roughly be divided into: (1) eruptions under several hundred meters thick ice on a relatively flat bedrock, (2) eruptions on flat or sloping bed through relatively thin ice, and (3) volcanism where effects are limitied to confinement of lava flows or melting of ice by pyroclastic flows or surges. This last category (ice-contact volcanism) need not cause much ice melting. Many of the deposits formed by Pleistocene volcanism in Iceland, British Columbia and Antarctica belong to the first category. An important difference between this type of activity and submarine activity (where pressure is hydrostatic) is that pressure at vents may in many cases be much lower than glaciostatic due to partial support of ice cover over vents by the surrounding glacier. Reduced pressure favours explosive activity. Thus the effusive/explosive transition may occur several hundred metres underneath the ice surface. Explosive fragmentation of magma leads to much higher rates of heat transfer than does effusive eruption of pillow lavas, and hence much higher melting rates. This effect of reduced pressure at vents will be less pronounced in a large ice sheet than in a smaller glacier or ice cap, since the hydraulic gradient that drives water away from an eruption site will be lower in the large glacier. This may have implications for form and type of eruption deposits and their relationship with ice thickness and glacier size.
Eruptive Source Parameters from Near-Source Gravity Waves Induced by Large Vulcanian eruptions
NASA Astrophysics Data System (ADS)
Barfucci, Giulia; Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Marchetti, Emanuele
2016-04-01
The sudden ejection of hot material from volcanic vent perturbs the atmosphere generating a broad spectrum of pressure oscillations from acoustic infrasound (<10 Hz) to gravity waves (<0.03 Hz). However observations of gravity waves excited by volcanic eruptions are still rare, mostly limited to large sub-plinian eruptions and frequently at large distance from the source (>100 km). Atmospheric Gravity waves are induced by perturbations of the hydrostatic equilibrium of the atmosphere and propagate within a medium with internal density stratification. They are initiated by mechanisms that cause the atmosphere to be displaced as for the injection of volcanic ash plume during an eruption. We use gravity waves to infer eruptive source parameters, such as mass eruption rate (MER) and duration of the eruption, which may be used as inputs in the volcanic ash transport and dispersion models. We present the analysis of near-field observations (<7 km) of atmospheric gravity waves, with frequencies of 0.97 and 1.15 mHz, recorded by a pressure sensors network during two explosions in July and December 2008 at Soufrière Hills Volcano, Montserrat. We show that gravity waves at Soufrière Hills Volcano originate above the volcanic dome and propagate with an apparent horizontal velocities of 8-10 m/s. Assuming a single mass injection point source model, we constrain the source location at ~3.5 km a.s.l., above the vent, duration of the gas thrust < 140 s and MERs of 2.6 and 5.4 x10E7 kg/s, for the two eruptive events. Source duration and MER derived by modeling Gravity Waves are fully compatible with others independent estimates from field observations. Our work strongly supports the use of gravity waves to model eruption source parameters and can have a strong impact on our ability to monitor volcanic eruption at a large distance and may have future application in assessing the relative magnitude of volcanic explosions.
The 1902-3 eruptions of the Soufrière, St Vincent: Impacts, relief and response
NASA Astrophysics Data System (ADS)
Pyle, David M.; Barclay, Jenni; Armijos, Maria Teresa
2018-05-01
Retrospective analysis of the contemporary colonial and scientific records of a major explosive eruption of the Soufrière of St Vincent from 1902 to 1903 reveals how this significant and prolonged event presented challenges to the authorities charged with managing the crisis and its aftermath. In a small-island setting vulnerable to multiple hazards, the spatial footprint of the volcanic hazard and the nature and intensity of the hazard effects were rather different to those of other recurrent hazards such as hurricanes. The eruption affected the same parts of the island that had been impacted by prior explosive eruptions in 1718 and 1812, and hurricanes in 1831 and 1898, with consequences that disproportionately affected those working in and around the large sugar estates. The official response to the eruption, both in terms of short-term relief and remediation, was significantly accelerated by the existence of mature plans for land-reform following the collapse of the sugar market, and ongoing plans for rebuilding in the aftermath of the destructive hurricane of 1898. The picture that this analysis helps to illuminate provides insights both into the nature of the particular eruptive episode, and the human and social response to that episode. This not only informs discussion and planning for future explosive eruptions on St Vincent, but provides important empirical evidence for building effective responses in similar multihazard contexts.
Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, Supriyati; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.
2000-01-01
Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much larger than any of this century have occurred many times during Merapi's history, most recently during the 19th century. Are the relatively small eruptions of the 20th century a new style of open-vent, less hazardous activity that will persist for the foreseeable future? Or, alternatively, are they merely low-level "background" activity that could be interrupted upon relatively short notice by much larger explosive eruptions? The geologic record suggests the latter, which would place several hundred thousand people at risk. We know of no reliable method to forecast when an explosive eruption will interrupt the present interval of low-level activity. This conclusion has important implications for hazard evaluation.
NASA Astrophysics Data System (ADS)
di Vito, Mauro Antonio; Arienzo, Ilenia; Braia, Giuseppe; Civetta, Lucia; D'Antonio, Massimo; di Renzo, Valeria; Orsi, Giovanni
2011-04-01
The Averno 2 eruption (3,700 ± 50 a B.P.) was an explosive low-magnitude event characterized by magmatic and phreatomagmatic explosions, generating mainly fall and surge beds, respectively. It occurred in the Western sector of the Campi Flegrei caldera (Campanian Region, South Italy) at the intersection of two active fault systems, oriented NE and NW. The morphologically complex crater area, largely filled by the Averno lake, resulted from vent activation and migration along the NE-trending fault system. The eruption generated a complex sequence of pyroclastic deposits, including pumice fall deposits in the lower portion, and prevailing surge beds in the intermediate-upper portion. The pyroclastic sequence has been studied through stratigraphical, morphostructural and petrological investigations, and subdivided into three members named A through C. Member A was emplaced during the first phase of the eruption mainly by magmatic explosions which generated columns reaching a maximum height of 10 km. During this phase the eruption reached its climax with a mass discharge rate of 3.2 106 kg/s. Intense fracturing and fault activation favored entry of a significant amount of water into the system, which produced explosions driven by variably efficient water-magma interaction. These explosions generated wet to dry surge deposits that emplaced Member B and C, respectively. Isopachs and isopleths maps, as well as areal distribution of ballistic fragments and facies variation of surge deposits allow definition of four vents that opened along a NE oriented, 2 km long fissure. The total volume of magma extruded during the eruption has been estimated at about 0.07 km3 (DRE). The erupted products range in composition from initial, weakly peralkaline alkali-trachyte, to last-emplaced alkali-trachyte. Isotopic data and modeling suggest that mixing occurred during the Averno 2 eruption between a more evolved, less radiogenic stored magma, and a less evolved, more radiogenic magma that entered the shallow reservoir to trigger the eruption. The early phases of the eruption, during which the vent migrated from SW to the center of the present lake, were fed by the more evolved, uppermost magma, while the following phases extruded the less evolved, lowermost magma. Integration of the geological and petrological results suggests that the Averno 2 complex eruption was fed from a dyke-shaped shallow reservoir intruded into the NE-SW fault system bordering to the west the La Starza resurgent block, within the caldera floor.
Eruption of soufriere volcano on st. Vincent island, 1971-1972.
Aspinall, W P; Sigurdsson, H; Shepherd, J B
1973-07-13
The Soufrière volcano in St. Vincent erupted from October 1971 to March 1972, as 80 x 10(6) m(3) of basaltic andesite lava was quietly extruded inside the mile-wide crater. The eruption was largely subaqueous, taking place in the 180-m-deep crater lake, and resulted in the emergence of a steep-sided island. The mild character of the eruption and the absence of seismic activity stand in direct contrast to the highly explosive character of the eruption of 1902 to 1903.
Eruption of Alaska volcano breaks historic pattern
Larsen, Jessica; Neal, Christina A.; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick L.
2009-01-01
In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (~2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud "thunder," lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.
Eruption of Alaska Volcano Breaks Historic Pattern
NASA Astrophysics Data System (ADS)
Larsen, Jessica; Neal, Christina; Webley, Peter; Freymueller, Jeff; Haney, Matthew; McNutt, Stephen; Schneider, David; Prejean, Stephanie; Schaefer, Janet; Wessels, Rick
2009-05-01
In the late morning of 12 July 2008, the Alaska Volcano Observatory (AVO) received an unexpected call from the U.S. Coast Guard, reporting an explosive volcanic eruption in the central Aleutians in the vicinity of Okmok volcano, a relatively young (˜2000-year-old) caldera. The Coast Guard had received an emergency call requesting assistance from a family living at a cattle ranch on the flanks of the volcano, who reported loud “thunder,” lightning, and noontime darkness due to ashfall. AVO staff immediately confirmed the report by observing a strong eruption signal recorded on the Okmok seismic network and the presence of a large dark ash cloud above Okmok in satellite imagery. Within 5 minutes of the call, AVO declared the volcano at aviation code red, signifying that a highly explosive, ash-rich eruption was under way.
Explosive instability and erupting flux tubes in a magnetized plasma
Cowley, S. C.; Cowley, B.; Henneberg, S. A.; Wilson, H. R.
2015-01-01
The eruption of multiple flux tubes in a magnetized plasma is proposed as a mechanism for explosive release of energy in plasmas. A significant fraction of the linearly stable isolated flux tubes are shown to be metastable in a box model magnetized atmosphere in which ends of the field lines are embedded in conducting walls. The energy released by destabilizing such field lines can be a large proportion of the gravitational energy stored in the system. This energy can be released in a fast dynamical time. PMID:26339193
NASA Astrophysics Data System (ADS)
Neri, Augusto
2017-04-01
Understanding of explosive eruption dynamics and assessment of their hazards continue to represent challenging issues to the present-day volcanology community. This is largely due to the complex and diverse nature of the phenomena, and the variability and unpredictability of volcanic processes. Nevertheless, important and continuing progress has been made in the last few decades in understanding fundamental processes and in forecasting the occurrences of these phenomena, thanks to significant advances in field, experimental and theoretical modeling investigations. For over four decades, for example, volcanologists have made major progress in the description of the nature of explosive eruptions, considerably aided by the development, improvement, and application of physical-mathematical models. Integral steady-state homogeneous flow models were first used to investigate the different controlling mechanisms and to infer the genesis and evolution of the phenomena. Through continuous improvements and quantum-leap developments, a variety of transient, 3D, multiphase flow models of volcanic phenomena now can implement state-of-the-art formulations of the underlying physics, new-generation analytical and experimental data, as well as high-performance computational techniques. These numerical models have proved to be able to provide key insights in the understanding of the dynamics of explosive eruptions (e.g. convective plumes, collapsing columns, pyroclastic density currents, short-lived explosions, etc.), as well as to represent a valuable tool in the quantification of potential eruptive scenarios and associated hazards. Simplified models based on a reduction of the system complexity have been also proved useful, combined with Monte Carlo and statistical methods, to generate quantitative probabilistic hazard maps at different space and time scales, some including the quantification of important sources of uncertainty. Nevertheless, the development of physical models able to accurately replicate, within acceptable statistical uncertainty, the evolution of explosive eruptions remains a challenging goal still to be achieved. Testing of the developed models versus large-scale experimental data and well-measured real events, real-time assimilation of observational data to forecast the process nature and evolution, as well as the quantification of the uncertainties affecting our system and modelling representations appear key next steps to further progress volcanological research and its essential contribution to the mitigation of volcanic risk.
Comparing eruptions of varying intensity at Kilauea via melt inclusion analysis
NASA Astrophysics Data System (ADS)
Ferguson, D. J.; Plank, T. A.; Hauri, E. H.; Houghton, B. F.; Gonnermann, H. M.; Swanson, D. A.; Blaser, A. P.
2013-12-01
Over the past 500 years explosive summit eruptions from Kilauea volcano, Hawaii, have exhibited a range of eruption magnitudes, from large basaltic sub-plinian events to Hawaiian lava fountains of various intensity. Knowledge of the factors controlling such dramatic changes in explosivity and mass discharge rate is vital for understanding the dynamics of explosive basaltic magma systems, but these remain poorly constrained. At Kilauea this information also has important implications for hazard assessment, as future eruptions may be far larger than those observed historically. To investigate the processes associated with eruptions of varying magnitudes we have analyzed the composition and dissolved volatile contents (H2O-CO2-S-Cl-F) of olivine-hosted melt inclusions, sampled from tephra deposits associated with three eruptions of different sizes: a moderate lava-fountain (1959 Episode of Kilauea Iki); an exceptionally high lava-fountain (1500 CE Keanakāko'i reticulite) and a basaltic sub-plinian eruption (1650 CE Keanakāko'i layer 6 scoria). Over this time period (~500 years) we find no major shifts in the major element composition of primary melts feeding the Kilauea magmatic system, and melt inclusions from all eruptions record similar maximum water (~0.7 wt% H2O) and CO2 (~300 ppm) contents, regardless of eruption magnitude. Co-variations between other volatile species, such as CO2 and S, do not support a role for excess volatiles (i.e. CO2) in the larger eruptions via ';gas-fluxing'. Our data therefore suggests that major shifts in eruptive magnitude are unlikely to be linked to either changes in the primary volatile content of the melts or excess gas supplied by open-system degassing of deeper melts. Rather we find evidence for significant variations in the shallow degassing behavior of magmas associated with the larger Keanakāko'i eruptions (sub-plinian and strong lava-fountaining events) compared to that from less vigorous moderate Kilauea Iki lava-fountaining events. On plots of CO2 versus H2O, Kilauea Iki MI's record volatile contents consistent with equilibrium degassing of magma rising from a depth of ~3 km. In contrast, the volatile contents of melts from the more explosive eruptions appear to be strongly affected by degassing processes at shallow depths (< 300 m), indicating variations in the ascent and storage of melts over this time-period. These changes in storage conditions may be linked to variations in the depth of the summit caldera, which was significantly greater during the older more explosive eruptive phases.
A historical analysis of Plinian unrest and the key promoters of explosive activity.
NASA Astrophysics Data System (ADS)
Winson, A. E. G.; Newhall, C. G.; Costa, F.
2015-12-01
Plinian eruptions are the largest historically recorded volcanic phenomena, and have the potential to be widely destructive. Yet when a volcano becomes newly restless we are unable to anticipate whether or not a large eruption is imminent. We present the findings from a multi-parametric study of 42 large explosive eruptions (29 Plinian and 13 Sub-plinian) that form the basis for a new Bayesian Belief network that addresses this question. We combine the eruptive history of the volcanoes that have produced these large eruptions with petrological studies, and reported unrest phenomena to assess the probability of an eruption being plinian. We find that the 'plinian probability' is increased most strongly by the presence of an exsolved volatile phase in the reservoir prior to an eruption. In our survey 60% of the plinian eruptions, had an excess SO2 gas phase of more than double than it is calculated by petrologic studies alone. Probability is also increased by three related and more easily observable parameters: a high plinian Ratio (that is the ratio of VEI≥4 eruptions in a volcanoes history to the number of all VEI≥2 eruptions in the history), a repose time of more than 1000 years, and a Repose Ratio (the ratio of the average return of VEI≥4 eruptions in the volcanic record to the repose time since the last VEI≥4) of greater than 0.7. We looked for unrest signals that potentially are indicative of future plinian activity and report a few observations from case studies but cannot say if these will generally appear. Finally we present a retrospective analysis of the probabilities of eruptions in our study becoming plinian, using our Bayesian belief network. We find that these probabilities are up to about 4 times greater than those calculate from an a priori assessment of the global eruptive catalogue.
Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania
Kervyn, M.; Ernst, G.G.J.; Keller, J.; Vaughan, R. Greg; Klaudius, J.; Pradal, E.; Belton, F.; Mattsson, H.B.; Mbede, E.; Jacobs, P.M.
2010-01-01
On September 4, 2007, after 25 years of effusive natrocarbonatite eruptions, the eruptive activity of Oldoinyo Lengai (OL), N Tanzania, changed abruptly to episodic explosive eruptions. This transition was preceded by a voluminous lava eruption in March 2006, a year of quiescence, resumption of natrocarbonatite eruptions in June 2007, and a volcano-tectonic earthquake swarm in July 2007. Despite the lack of ground-based monitoring, the evolution in OL eruption dynamics is documented based on the available field observations, ASTER and MODIS satellite images, and almost-daily photos provided by local pilots. Satellite data enabled identification of a phase of voluminous lava effusion in the 2 weeks prior to the onset of explosive eruptions. After the onset, the activity varied from 100 m high ash jets to 2–15 km high violent, steady or unsteady, eruption columns dispersing ash to 100 km distance. The explosive eruptions built up a ∼400 m wide, ∼75 m high intra-crater pyroclastic cone. Time series data for eruption column height show distinct peaks at the end of September 2007 and February 2008, the latter being associated with the first pyroclastic flows to be documented at OL. Chemical analyses of the erupted products, presented in a companion paper (Keller et al.2010), show that the 2007–2008 explosive eruptions are associated with an undersaturated carbonated silicate melt. This new phase of explosive eruptions provides constraints on the factors causing the transition from natrocarbonatite effusive eruptions to explosive eruptions of carbonated nephelinite magma, observed repetitively in the last 100 years at OL.
Volcaniclastic stratigraphy of Gede Volcano, West Java, Indonesia: How it erupted and when
NASA Astrophysics Data System (ADS)
Belousov, A.; Belousova, M.; Krimer, D.; Costa, F.; Prambada, O.; Zaennudin, A.
2015-08-01
Gede Volcano, West Java (Indonesia), is located 60 km south of Jakarta within one of the regions with highest population density in the world. Therefore, knowledge of its eruption history is necessary for hazard evaluation, because even a small eruption would have major societal and economic consequences. Here we report the results of the investigation of the stratigraphy of Gede (with the focus on its volcaniclastic deposits of Holocene age) and include 23 new radiocarbon dates. We have found that a major part of the volcanic edifice was formed in the Pleistocene when effusions of lavas of high-silica basalt dominated. During this period the volcano experienced large-scale lateral gravitational failure followed by complete reconstruction of the edifice, formation of the summit subsidence caldera and its partial refilling. After a repose period of > 30,000 years the volcanic activity resumed at the Pleistocene/Holocene boundary. In the Holocene the eruptions were dominantly explosive with magma compositions ranging from basaltic andesite to rhyodacite; many deposits show heterogeneity at the macroscopic hand specimen scale and also in the minerals, which indicates interactions between mafic (basaltic andesite) and silicic (rhyodacite) magmas. Significant eruptions of the volcano were relatively rare and of moderate violence (the highest VEI was 3-4; the largest volume of erupted pyroclasts 0.15 km3). There were 4 major Holocene eruptive episodes ca. 10,000, 4000, 1200, and 1000 yr BP. The volcanic plumes of these eruptions were not buoyant and most of the erupted products were transported in the form of highly concentrated valley-channelized pyroclastic flows. Voluminous lahars were common in the periods between the eruptions. The recent eruptive period of the volcano started approximately 800 years ago. It is characterized by frequent and weak VEI 1-2 explosive eruptions of Vulcanian type and rare small-volume extrusions of viscous lava. We estimate that during last 10,000 years, Gede erupted less than 0.3 km3 DRE (Dense Rock Equivalent) of magma. Such small productivity suggests that the likelihood of future large-volume (VEI ≥ 5) eruptions of the volcano is low, although moderately strong (VEI 3-4) explosive eruptions capable of depositing pyroclastic flows and lahars onto the NE foot of the volcano are more likely.
Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick
2012-01-01
Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving more confidence in the estimate, and we use those data to calculate the annual probability of a large eruption in the next year at 1.4x10-5.
NASA Astrophysics Data System (ADS)
Kaneko, Takayuki; Maeno, Fukashi; Nakada, Setsuya
2016-05-01
The sudden eruption of Mount Ontake on September 27, 2014, led to a tragedy that caused more than 60 fatalities including missing persons. In order to mitigate the potential risks posed by similar volcano-related disasters, it is vital to have a clear understanding of the activity status and progression of eruptions. Because the erupted material was largely disturbed while access was strictly prohibited for a month, we analyzed the aerial photographs taken on September 28. The results showed that there were three large vents in the bottom of the Jigokudani valley on September 28. The vent in the center was considered to have been the main vent involved in the eruption, and the vents on either side were considered to have been formed by non-explosive processes. The pyroclastic flows extended approximately 2.5 km along the valley at an average speed of 32 km/h. The absence of burned or fallen trees in this area indicated that the temperatures and destructive forces associated with the pyroclastic flow were both low. The distribution of ballistics was categorized into four zones based on the number of impact craters per unit area, and the furthest impact crater was located 950 m from the vents. Based on ballistic models, the maximum initial velocity of the ejecta was estimated to be 111 m/s. Just after the beginning of the eruption, very few ballistic ejecta had arrived at the summit, even though the eruption plume had risen above the summit, which suggested that a large amount of ballistic ejecta was expelled from the volcano several tens-of-seconds after the beginning of the eruption. This initial period was characterized by the escape of a vapor phase from the vents, which then caused the explosive eruption phase that generated large amounts of ballistic ejecta via sudden decompression of a hydrothermal reservoir.
Tephra, trees, and trouble: forest dieback delays landslide response to pyroclastic eruption
NASA Astrophysics Data System (ADS)
Korup, Oliver; Seidemann, Jan; Mohr, Christian
2017-04-01
Large explosive eruptions may substantially transform landscapes by burying topography under thick layers of tephra. The excess pyroclastic sediment that is gradually washed into rivers following such eruptions is responsible for some of the highest specific sediment yields ever documented. The handful of detailed quantitative studies of such catastrophic fluvial response has hardly looked at how hillslopes respond to tephra loads, however. We studied whether three recent eruptions in Chile's Southern Volcanic Zone (SVZ) noticeably changed hillslope erosion rates, and found a strikingly delayed increase in shallow landslide activity. In the case of Chaitén volcano, which erupted in 2008, densely forested hillslopes nearby gained steadily in landslides abundance and area, and most rapidly some eight years after being covered by tephra. In 2016 alone, more than 75 per cent of the volume of all slope failures since the eruption (more than 2 million cubic metres) occurred in an area of 250 square kilometres around the volcano. Neighboring regions of comparable topography, forest cover, rainfall, and lithology have landslide rates at least ten times lower, so that we argue that successive loss of shear strength due to delayed tree-root decay and suppressed vegetation regrowth promotes slope failures near the volcano, especially where pristine rainforests were obliterated by tephra loads. These shallow landslides scrape sediment, soils, and dead wood from hillslopes, and reinforce the supply to rivers with high sediment and organic carbon loads nearly a decade after the eruption. We estimate that 0.1-0.2 Mt C were mobilized by these slope failures, and thus more than 25 per cent of the total post-eruptive organic carbon flux bound for the nearby north Patagonian fjords. Given that explosive eruptions in the SVZ have a mean return period of ca. 275 years, we propose that protracted landslide response of densely forested hillslopes to explosive eruptions plays an important, though largely ignored, part in long-term sediment and organic carbon budgets. Our results also indicate that monitoring of post-eruptive sediment and biogeochemical fluxes should account for lagged landslide response of tephra-covered forested hillslopes to avoid substantial underestimates.
Base surge in recent volcanic eruptions
Moore, J.G.
1967-01-01
A base surge, first identified at the Bikini thermonuclear undersea explosion, is a ring-shaped basal cloud that sweeps outward as a density flow from the base of a vertical explosion column. Base surges are also common in shallow underground test explosions and are formed by expanding gases which first vent vertically and then with continued expansion rush over the crater lip (represented by a large solitary wave in an underwater explosion), tear ejecta from it, and feed a gas-charged density flow, which is the surge cloud. This horizontally moving cloud commonly has an initial velocity of more than 50 meters per second and can carry clastic material many kilometers. Base surges are a common feature of many recent shallow, submarine and phreatic volcanic eruptions. They transport ash, mud, lapilli, and blocks with great velocity and commonly sandblast and knock down trees and houses, coat the blast side with mud, and deposit ejecta at distances beyond the limits of throw-out trajectories. Close to the eruption center, the base surge can erode radial channels and deposit material with dune-type bedding. ?? 1967 Stabilimento Tipografico Francesco Giannini & Figli.
Detecting and Cataloging Global Explosive Volcanism Using the IMS Infrasound Network
NASA Astrophysics Data System (ADS)
Matoza, R. S.; Green, D. N.; LE Pichon, A.; Fee, D.; Shearer, P. M.; Mialle, P.; Ceranna, L.
2015-12-01
Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. These eruptions can also inject large volumes of ash into heavily travelled aviation corridors, thus posing a significant societal and economic hazard. Detecting and counting the global occurrence of explosive volcanism helps with progress toward several goals in earth sciences and has direct applications in volcanic hazard mitigation. This project aims to build a quantitative catalog of global explosive volcanic activity using the International Monitoring System (IMS) infrasound network. We are developing methodologies to search systematically through IMS infrasound array detection bulletins to identify signals of volcanic origin. We combine infrasound signal association and source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent infrasound signals in a global grid. When volcanic signals are identified, we extract metrics such as location, origin time, acoustic intensity, signal duration, and frequency content, compiling the results into a catalog. We are testing and validating our method on several well-known case studies, including the 2009 eruption of Sarychev Peak, Kuriles, the 2010 eruption of Eyjafjallajökull, Iceland, and the 2015 eruption of Calbuco, Chile. This work represents a step toward the goal of integrating IMS data products into global volcanic eruption early warning and notification systems. Additionally, a better characterization of volcanic signal detection helps improve understanding of operational event detection, discrimination, and association capabilities of the IMS network.
Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa.
Khodri, Myriam; Izumo, Takeshi; Vialard, Jérôme; Janicot, Serge; Cassou, Christophe; Lengaigne, Matthieu; Mignot, Juliette; Gastineau, Guillaume; Guilyardi, Eric; Lebas, Nicolas; Robock, Alan; McPhaden, Michael J
2017-10-03
Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.
NASA Astrophysics Data System (ADS)
Curry, Adam; Caricchi, Luca; Lipman, Peter
2017-04-01
Large, explosive volcanic eruptions can have both immediate and long-term negative effects on human societies. Statistical analyses of volcanic eruptions show that the frequency of the largest eruptions on Earth (> ˜450 km3) differs from that observed for smaller eruptions, suggesting different physical processes leading to eruption. This project will characterize the petrography, whole-rock geochemistry, mineral chemistry, and zircon geochronology of four caldera-forming ignimbrites from the San Juan caldera cluster, Colorado, to determine the physical processes leading to eruption. We collected outflow samples along stratigraphy of the three caldera-forming ignimbrites of the San Luis caldera complex: the Nelson Mountain Tuff (>500 km3), Cebolla Creek Tuff (˜250 km3), and Rat Creek Tuff (˜150 km3); and we collected samples of both outflow and intracaldera facies of the Snowshoe Mountain Tuff (>500 km3), which formed the Creede caldera. Single-crystal sanidine 40Ar/39Ar ages show that these eruptions occurred in rapid succession between 26.91 ± 0.02 Ma (Rat Creek) and 26.87 ± 0.02 Ma (Snowshoe Mountain), providing a unique opportunity to investigate the physical processes leading to a rapid sequence of large, explosive volcanic eruptions. Recent studies show that the average flux of magma is an important parameter in determining the frequency and magnitude of volcanic eruptions. High-precision isotope-dilution thermal ionization mass spectrometry (ID-TIMS) zircon geochronology will be performed to determine magma fluxes, and cross-correlation of chemical profiles in minerals will be performed to determine the periodicity of magma recharge that preceded these eruptions. Our project intends to combine these findings with similar data from other volcanic regions around the world to identify physical processes controlling the regional and global frequency-magnitude relationships of volcanic eruptions.
Can North Korean Nuclear Explosions Stir Baekdu (Changbai) Volcano to be Erupted?
NASA Astrophysics Data System (ADS)
Hong, T. K.; Choi, E.; Park, S.; Shin, J. S.
2015-12-01
Potential volcanic eruption in Mt. Baekdu (Changbai) hasbeen a long-lasting concern in the far-eastern Asia.There were several explosive eruptions historically. Themost recent eruption was made in 1903. The eruption in969 is believed to be the most violent with volcanicexplosivity index of 7. The volcano is located in ~130 kmaway from the North Korean nuclear explosion test sitewhere three moderate-size nuclear explosions withmagnitudes of 4.3, 4.7 and 5.1 were conducted in 2006,2009 and 2013. There is increasing concern that a largenuclear explosion may trigger volcanic eruption. Seismicwaveforms are subtle to vary with the crustal structure.The strong ground motions generated by a potential largenuclear explosion are difficult to be simulated forvolcanic regions where complex crustal structures areexpected. We calculate the ground motions by hypotheticallarge nuclear explosions using a nuclear-explosion sourcemodel and the seismic waveforms of prior nuclearexplosions. The validity of the method is examined bycomparing the observed and quasi-synthetic seismicwaveforms of prior nuclear explosions. The peak groundaccelerations (PGA) around the volcano are estimated froma PGA attenuation equation that was determined based onseismic waveforms from natural earthquakes. Thehorizontal and vertical PGAs by an M7.0 undergroundnuclear explosion are expected to reach 0.14 and 0.11m/s2 at the volcano, inducing a dynamic stress in themagma chamber. The induced pressure change in the magmachamber is verified by numerical modeling of dynamicstress changes.
The Past 20,000 Years of Plinian Explosive Activity at Mt Pelée Volcano (Lesser Antilles)
NASA Astrophysics Data System (ADS)
Carazzo, G.; Michaud-Dubuy, A.; Kaminski, E. C.; Tait, S.
2017-12-01
Major volcanic hazards in the Lesser Antilles arc include powerful Plinian explosive eruptions that inject ash into the atmosphere and produce dangerous pyroclastic density currents (PDC) on the ground. Reconstructions of past eruptive activities based on stratigraphic records are crucial to assessing specific hazards in this region where large eruptions do not occur frequently. The present study focuses on the dynamics of the last Plinian eruptions of Mount Pelée volcano in Martinique. Previous field-based studies identified 6 major Plinian eruptions over the past 5,000 years but limited information on their dynamics exist, except for the most recent one dated at AD 1300. Based on a new comprehensive field study and physical models of volcanic plumes, we largely improve our knowledge of the number of Plinian eruptions that occurred in Martinique over the past 20,000 years. We also provide a detailed reconstruction of important eruptive parameters such as mass eruption rates, maximum column heights, volumes, and impacted areas. Among the 6 Plinian eruptions newly identified during our field campaign, one is found to have produced voluminous pyroclastic density currents that reached the sea and partially rose as a co-PDC plume above a region that is beyond the existing hazard map. The estimated mass eruption rates for the 12 Plinian eruptions identified over the last 20,000 years range from 107 to 108 kg/s, producing 15-30 km-high Plinian columns, initially stable but ultimately collapsing and forming PDC. Empirical models of deposit thinning suggest that the minimum volume of pyroclastic deposits systematically ranges between 0.1 and 1 km3, corresponding to VEI 4 to 5 events. Archaeological evidences suggest that the impact of several eruptions forced the first Caribbean inhabitants to flee to other islands for decades.
NASA Astrophysics Data System (ADS)
Degruyter, W.; Huber, C.; Bachmann, O.; Cooper, K. M.; Kent, A. J. R.
2017-11-01
The two most recent eruptions of Volcán Quizapu (southern Andes, Chile), only 85 years apart, were both triggered by magma recharge and extruded the same volume (about 5 km3) of the same volatile-rich dacitic magma, but showed a remarkable shift from effusive (1846-1847) to explosive (1932) behavior. We demonstrate, using a newly developed model, that the presence or absence of an exsolved volatile phase in the reservoir strongly influences its mechanical and thermal response to new inputs of magma. We propose that, prior to the 1846-1847 effusive eruption, gas bubbles damped the build-up of excess pressure and allowed recharge of a significant volume of magma before triggering the 1846-1847 eruption. The strong temperature increase that resulted enhanced syneruptive outgassing leading to an effusive eruption. In contrast, during the repose period between the 1847 and 1932 eruptions, new recharges found a much less compressible host reservoir as the exsolved gas phase was largely removed in response to the prior eruption, yielding rapid pressurization, minor reheating, and comparatively less syneruptive outgassing. The combination of these effects culminated in an explosive eruption.
NASA Astrophysics Data System (ADS)
Miwa, T.; Toramaru, A.; Iguchi, M.
2009-07-01
We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R.S.J., Carroll, M.R., 2003. The kinetics of degassing-induced crystallization at Soufriere Hills volcano, Montserrat. J. Petrol., 44, 1477-1502.] suggests that a plagioclase microlite texture of volcanic ash from eruptions without BL-Swarms could be generated by a decompression of 100-160 MPa. If the MND is controlled by the water exsolution rate from melt, the positive correlation between the MND and Aeq may suggest that Aeq becomes large when the effective decompression is large and the water exsolution rate is high (from 6.2 × 10 - 5 to 1.9 × 10 - 4 wt.%/s). The estimated magma ascent rate ranges from 0.11 to 0.35 m/s, which is one order of magnitude faster than that of an effusive eruption, and one to three orders slower than those for a (sub-) plinian eruption. This suggests that the ascent rate of magma plays an important role in the occurrence of vulcanian eruptions. We propose a simple model for vulcanian eruptions at Sakurajima volcano that takes into account the correlation between the S-fraction and Aeq.
NASA Astrophysics Data System (ADS)
Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.
2011-12-01
Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes <0.1km3 DRE, while the Sunset Crater deposit is at least 0.6km3 DRE [Amos (1986)]. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Due to its young age, the eruptive material is fresh and the deposit is well-preserved. We sampled the first five tephra units at 25 locations, ranging from 6 km to 20 km from the vent, concentrating our efforts in the downwind direction (E and SE of the vent) along the primary dispersal axes of several phases. Notable variations among the first five phases were found from evaluation of juvenile clast componentry, with each phase containing some proportion of red, grey, and glassy to iridescent clasts. The red and grey clasts are sub-rounded to rounded with high sphericity, while the other clasts are highly angular and slightly elongate, with blue-black to gold glassy and iridescent surfaces. The glassy and iridescent clasts likely represent fresh, juvenile ejecta, which were quenched rapidly, whereas the red and grey rounded clasts may be the result of recycling of the cone or vent-fill material. Alternatively, the differences among the populations may represent lateral variations in conduit flow conditions. In general, phases associated with large volumes and large dispersal areas tend to contain larger proportions of the glassy/iridescent clasts. Phase 1 has a large proportion of glassy clasts. Phase 2 has approximately half red and half grey clasts, as well as a small fraction of glassy material. Phase 3, which is the phase with the largest dispersal area, has a similar proportion of glassy clasts as phase 1. Phase 4, the largest by volume at ~0.11km3 DRE [Amos (1986)], has the highest proportion of glassy clasts. Phase 5 is comparable to phase 4 (similar fractions of each clast type), although the glassy surface changes from gold to black as clast size decreases. Each phase is well- to very well-sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.
NASA Astrophysics Data System (ADS)
Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia
2017-04-01
Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a depression of chlorine contents in CO2-fluxed (and less explosive) magmas with respect to those feeding Plinian events like 122 BC one. The opposite is seen for sulfur: low to mild-explosive fluxed magmas are S-enriched, whereas the 122 BC Plinian products are relatively S-poor, likely because of early sulfide separation accompanying magma crystallization. The proposed mechanism involving CO2 separation and fluxing may suggest a subordinate role for variable mixing of different sources having different degrees of K-enrichment. However, such a mechanism requires further experimental studies about the effects on S and Cl dissolution and does not exclude self-mixing between degassed and undegassed batches within the Etna plumbing system. Finally, our findings may represent a new interpretative tool for the geochemical and petrological monitoring of plume gas discharges and melt inclusions, and allow tracking the switch from mild-explosive to highly explosive or even Plinian events at Etna.
NASA Astrophysics Data System (ADS)
Mullet, B.; Segall, P.
2017-12-01
Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including cessation of eruption.
Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones
NASA Astrophysics Data System (ADS)
Caplan-Auerbach, J.; Dziak, R. P.; Haxel, J.; Bohnenstiehl, D. R.; Garcia, C.
2017-04-01
Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of the month-long 2015 event, was monitored continuously using autonomous ocean bottom hydrophones. Impulsive sounds associated with explosive lava-water interactions are identified within hydrophone records during both eruptions. Explosions within the caldera are acoustically distinguishable from those occurring in association with north rift lava flows erupting in 2015. Acoustic data also record a series of broadband diffuse events, occurring in the waning phase of the eruption, and are interpreted as submarine Hawaiian explosions. This transition from gas-poor to gas-rich eruptive activity coincides with an increase in water temperature within the caldera and with a decrease in the rate of deflation. The last recorded diffuse events coincide with the end of the eruption, represented by the onset of inflation. All the observed explosion signals couple strongly into the water column, and only weakly into the solid Earth, demonstrating the importance of hydroacoustic observations as a complement to seismic and geodetic studies of submarine eruptions.
NASA Astrophysics Data System (ADS)
Mason, R. M.; Starostin, A. B.; Melnik, O. E.; Sparks, R. S. J.
2006-05-01
Magmatic explosive eruptions are influenced by mass transfer processes of gas diffusion into bubbles caused by decompression. Melnik and Sparks [Melnik, O.E., Sparks, R.S.J. 2002, Modelling of conduit flow dynamic during explosive activity at Soufriere Hills Volcano, Montserrat. In: Druitt, T.H., Kokelaar, B.P. (eds). The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999. Geological Society, London, Memoirs, 21, 307-317] proposed two end member cases corresponding to complete equilibrium and complete disequilibrium. In the first case, diffusion is fast enough to maintain the system near equilibrium and a long-lived explosive eruption develops. In the latter case, pre-existing bubbles expand under conditions of explosive eruption and decompression, but diffusive gas transfer is negligible. This leads to a much shorter eruption. Here we develop this model to consider the role of mass transfer by investigating transient flows at the start of an explosive eruption triggered by a sudden decompression. The simulations reveal a spectrum of behaviours from sustained to short-lived highly non-equilibrium Vulcanian-style explosions lasting a few tens of seconds, through longer lasting eruptions that can be sustained for tens of minutes and finally to eruptions that can last hours or even days. Behaviour is controlled by a mass-transfer parameter, ω, which equals n*2/3D, where n* is the bubble number density and D is the diffusivity. The parameter ω is expected to vary between 10 - 5 and 1 s - 1 in nature and reflects a time-scale for efficient diffusion. The spectrum of model behaviours is consistent with variations in styles of explosive eruptions of silicic volcanoes. In the initial stages peak discharges occur over 10-20 s and then decline to low discharges. If a critical bubble overpressure is assumed to be the criterion for fragmentation then fragmentation may stop and start several times in the declining period causing several pulses of high-intensity discharge. For the cases of strong disequilibria, the fluxes can decrease to negligible values where other processes, such as gas escape through permeable magma, prevents explosive conditions becoming re-established so that explosive activity stops and dome growth can start. For cases closer to the equilibrium the eruption can evolve towards a quasi-steady sustained flow, never declining sufficiently for gas escape to become dominant.
May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations
NASA Astrophysics Data System (ADS)
Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.
2011-12-01
Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011 eruption. Temperature measurements taken on May 26 recorded a maximum of 539°C. Ten continuous GPS stations running on and close to the volcano showed little deformation, suggesting that substantial quantities of new magma were not displaced beneath the volcanic edifice.
Volcano Inflation prior to Gas Explosions at Semeru Volcano, Indonesia
NASA Astrophysics Data System (ADS)
Nishimura, T.; Iguchi, M.; Kawaguchi, R.; Surono, S.; Hendrasto, M.; Rosadi, U.
2010-12-01
Semeru volcano in east Java, Indonesia, is well known to exhibit small vulcanian eruptions at the summit crater. Such eruptive activity stopped on April 2009, but volcanic earthquakes started to occur in August and a lava dome was found in the summit crater on November. Since then, lava sometimes flows downward on the slope and small explosions emitting steams from active crater frequently occur every a few to a few tens of minutes. Since the explosions repeatedly occur with short intervals and the active crater is located close to the summit with an altitude of 3676m, the explosions are considered to originate from the gas (steams) from magma itself in the conduit and not to be caused by interactions of magma with the underground water. We installed a tiltmeter at the summit on March 2010 to study the volcanic eruption mechanisms. The tiltmeter (Pinnacle hybrid type, accuracy of measurement is 1 nrad ) was set at a depth of about 1 m around the summit about 500 m north from the active crater. The data stored every 1 s in the internal memory was uploaded every 6 hours by a small data logger with GPS time correction function. More than one thousand gas explosion events were observed for about 2 weeks. We analyze the tilt records as well as seismic signals recorded at stations of CVGHM, Indonesia. The tilt records clearly show uplift of the summit about 20 to 30 seconds before each explosion. Uplifts before large explosions reach to about 20 - 30 n rad, which is almost equivalent to the volume increase of about 100 m^3 beneath the crater. To examine the eruption magnitude dependence on the uplift, we classify the eruptions into five groups based on the amplitudes of seismograms associated with explosions. We stack the tilt records for these groups to reduce noises in the signals and to get general characteristics of the volcano inflations. The results show that the amplitudes of uplifts are almost proportional to the amplitudes of explosion earthquakes while the preceding time of uplift is almost constant (20 s - 30 s). This implies that the inflation rate controls the magnitude of gas explosions. The observed preceding time of inflation prior to gas explosions are much shorter than those for the inflations before magmatic explosions (Nishi et al., 2007; Iguchi et al., 2008), which suggests that the pressurization processes in shallow conduit for gas explosions are different from that for explosions emitting ashes.
Multiplets: Their behavior and utility at dacitic and andesitic volcanic centers
Thelen, W.; Malone, S.; West, M.
2011-01-01
Multiplets, or groups of earthquakes with similar waveforms, are commonly observed at volcanoes, particularly those exhibiting unrest. Using triggered seismic data from the 1980-1986 Mount St. Helens (MSH) eruption, we have constructed a catalog of multiplet occurrence. Our analysis reveals that the occurrence of multiplets is related, at least in part, to the viscosity of the magma. We also constructed catalogs of multiplet occurrence using continuous seismic data from the 2004 eruption at MSH and 2007 eruption at Bezymianny Volcano, Russia. Prior to explosions at MSH in 2004 and Bezymianny in 2007, the multiplet proportion of total seismicity (MPTS) declined, while the average amplitudes and standard deviations of the average amplitude increased. The life spans of multiplets (time between the first and last event) were also shorter prior to explosions than during passive lava extrusion. Dome-forming eruptions that include a partially solidified plug, like MSH (1983-1986 and 2004-2008), often possess multiplets with longer life spans and MPTS values exceeding 50%. Conceptually, the relatively unstable environment prior to explosions is characterized by large and variable stress gradients brought about by rapidly changing overpressures within the conduit. We infer that such complex stress fields affect the number of concurrent families, MPTS, average amplitude, and standard deviation of the amplitude of the multiplets. We also argue that multiplet detection may be an important new monitoring tool for determining the timing of explosions and in forecasting the type of eruption.
NASA Astrophysics Data System (ADS)
Somoza, L.; González, F. J.; Barker, S. J.; Madureira, P.; Medialdea, T.; de Ignacio, C.; Lourenço, N.; León, R.; Vázquez, J. T.; Palomino, D.
2017-08-01
Submarine volcanic eruptions are frequent and important events, yet they are rarely observed. Here we relate bathymetric and hydroacoustic images from the 2011 to 2012 El Hierro eruption with surface observations and deposits imaged and sampled by ROV. As a result of the shallow submarine eruption, a new volcano named Tagoro grew from 375 to 89 m depth. The eruption consisted of two main phases of edifice construction intercalated with collapse events. Hydroacoustic images show that the eruptions ranged from explosive to effusive with variable plume types and resulting deposits, even over short time intervals. At the base of the edifice, ROV observations show large accumulations of lava balloons changing in size and type downslope, coinciding with the area where floating lava balloon fallout was observed. Peaks in eruption intensity during explosive phases generated vigorous bubbling at the surface, extensive ash, vesicular lapilli and formed high-density currents, which together with periods of edifice gravitational collapse, produced extensive deep volcaniclastic aprons. Secondary cones developed in the last stages and show evidence for effusive activity with lava ponds and lava flows that cover deposits of stacked lava balloons. Chaotic masses of heterometric boulders around the summit of the principal cone are related to progressive sealing of the vent with decreasing or variable magma supply. Hornitos represent the final eruptive activity with hydrothermal alteration and bacterial mats at the summit. Our study documents the distinct evolution of a submarine volcano and highlights the range of deposit types that may form and be rapidly destroyed in such eruptions.
NASA Astrophysics Data System (ADS)
Peate, Ingrid Ukstins; Baker, Joel A.; Al-Kadasi, Mohamed; Al-Subbary, Abdulkarim; Knight, Kim B.; Riisager, Peter; Thirlwall, Matthew F.; Peate, David W.; Renne, Paul R.; Menzies, Martin A.
2005-12-01
A new stratigraphy for bimodal Oligocene flood volcanism that forms the volcanic plateau of northern Yemen is presented based on detailed field observations, petrography and geochemical correlations. The >1 km thick volcanic pile is divided into three phases of volcanism: a main basaltic stage (31 to 29.7 Ma), a main silicic stage (29.7 to 29.5 Ma), and a stage of upper bimodal volcanism (29.5 to 27.7 Ma). Eight large-volume silicic pyroclastic eruptive units are traceable throughout northern Yemen, and some units can be correlated with silicic eruptive units in the Ethiopian Traps and to tephra layers in the Indian Ocean. The silicic units comprise pyroclastic density current and fall deposits and a caldera-collapse breccia, and they display textures that unequivocally identify them as primary pyroclastic deposits: basal vitrophyres, eutaxitic fabrics, glass shards, vitroclastic ash matrices and accretionary lapilli. Individual pyroclastic eruptions have preserved on-land volumes of up to ˜850 km3. The largest units have associated co-ignimbrite plume ash fall deposits with dispersal areas >1×107 km2 and estimated maximum total volumes of up to 5,000 km3, which provide accurate and precisely dated marker horizons that can be used to link litho-, bio- and magnetostratigraphy studies. There is a marked change in eruption style of silicic units with time, from initial large-volume explosive pyroclastic eruptions producing ignimbrites and near-globally distributed tuffs, to smaller volume (<50 km3) mixed effusive-explosive eruptions emplacing silicic lavas intercalated with tuffs and ignimbrites. Although eruption volumes decrease by an order of magnitude from the first stage to the last, eruption intervals within each phase remain broadly similar. These changes may reflect the initiation of continental rifting and the transition from pre-break-up thick, stable crust supporting large-volume magma chambers, to syn-rift actively thinning crust hosting small-volume magma chambers.
Analysis of the seismic activity associated with the 2010 eruption of Merapi Volcano, Java
NASA Astrophysics Data System (ADS)
Budi-Santoso, Agus; Lesage, Philippe; Dwiyono, Sapari; Sumarti, Sri; Subandriyo; Surono; Jousset, Philippe; Metaxian, Jean-Philippe
2013-07-01
The 2010 eruption of Merapi is the first large explosive eruption of the volcano that has been instrumentally observed. The main characteristics of the seismic activity during the pre-eruptive period and the crisis are presented and interpreted in this paper. The first seismic precursors were a series of four shallow swarms during the period between 12 and 4 months before the eruption. These swarms are interpreted as the result of perturbations of the hydrothermal system by increasing heat flow. Shorter-term and more continuous precursory seismic activity started about 6 weeks before the initial explosion on 26 October 2010. During this period, the rate of seismicity increased almost constantly yielding a cumulative seismic energy release for volcano-tectonic (VT) and multiphase events (MP) of 7.5 × 1010 J. This value is 3 times the maximum energy release preceding previous effusive eruptions of Merapi. The high level reached and the accelerated behavior of both the deformation of the summit and the seismic activity are distinct features of the 2010 eruption. The hypocenters of VT events in 2010 occur in two clusters at of 2.5 to 5 km and less than 1.5 km depths below the summit. An aseismic zone was detected at 1.5-2.5 km depth, consistent with studies of previous eruptions, and indicating that this is a robust feature of Merapi's subsurface structure. Our analysis suggests that the aseismic zone is a poorly consolidated layer of altered material within the volcano. Deep VT events occurred mainly before 17 October 2010; subsequent to that time shallow activity strongly increased. The deep seismic activity is interpreted as associated with the enlargement of a narrow conduit by an unusually large volume of rapidly ascending magma. The shallow seismicity is interpreted as recording the final magma ascent and the rupture of a summit-dome plug, which triggered the eruption on 26 October 2010. Hindsight forecasting of the occurrence time of the eruption is performed by applying the Material Failure Forecast Method (FFM) using cumulative Real-time Seismic Amplitude (RSAM) calculated both from raw records and on signals classified according to their dominant frequency. Stable estimates of eruption time with errors as small as ± 4 h are obtained within a 6 day lapse time before the eruption. This approach could therefore be useful to support decision making in the case of future large explosive episodes at Merapi.
Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity
NASA Astrophysics Data System (ADS)
Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.
2013-12-01
VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a method for rapid detection of volcanic activity in real-time.
Bubble accumulation and its role in the evolution of magma reservoirs in the upper crust.
Parmigiani, A; Faroughi, S; Huber, C; Bachmann, O; Su, Y
2016-04-28
Volcanic eruptions transfer huge amounts of gas to the atmosphere. In particular, the sulfur released during large silicic explosive eruptions can induce global cooling. A fundamental goal in volcanology, therefore, is to assess the potential for eruption of the large volumes of crystal-poor, silicic magma that are stored at shallow depths in the crust, and to obtain theoretical bounds for the amount of volatiles that can be released during these eruptions. It is puzzling that highly evolved, crystal-poor silicic magmas are more likely to generate volcanic rocks than plutonic rocks. This observation suggests that such magmas are more prone to erupting than are their crystal-rich counterparts. Moreover, well studied examples of largely crystal-poor eruptions (for example, Katmai, Taupo and Minoan) often exhibit a release of sulfur that is 10 to 20 times higher than the amount of sulfur estimated to be stored in the melt. Here we argue that these two observations rest on how the magmatic volatile phase (MVP) behaves as it rises buoyantly in zoned magma reservoirs. By investigating the fluid dynamics that controls the transport of the MVP in crystal-rich and crystal-poor magmas, we show how the interplay between capillary stresses and the viscosity contrast between the MVP and the host melt results in a counterintuitive dynamics, whereby the MVP tends to migrate efficiently in crystal-rich parts of a magma reservoir and accumulate in crystal-poor regions. The accumulation of low-density bubbles of MVP in crystal-poor magmas has implications for the eruptive potential of such magmas, and is the likely source of the excess sulfur released during explosive eruptions.
Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.
2012-01-01
From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.
NASA Astrophysics Data System (ADS)
Vinkler, A.; Ort, M. H.; Giordano, G.
2009-12-01
The Villa Senni Eruption Unit (350ka) represents the youngest large caldera-forming eruption of the Colli Albani volcano near Rome (Italy). The Colli Albani magma is marked by very undersaturated chemistry (tephritic to K-foiditic) and low viscosity. The total volume of the Villa Senni Eruption Unit is estimated at > 50 km3 and 30 km3 DRE (Watkins et al., 2002). The unit includes a sequence of a basal fallout/surge deposit, two main ignimbrites emplaced during the same eruptive event, a series of breccia deposits positioned between the two ignimbrites, and a rarely preserved final fallout. The basal surge and fallout sequence may help answer questions regarding the beginning of a large mafic ignimbrite eruption. The entire surge and fallout deposit is 190 cm thick at the caldera wall, consisting of 19 individual, parallel to faintly cross-stratified layers. The deposit distally thins to 25 cm at 18 km east of the caldera and to 2.5 cm at 21 km NW of the caldera. The eruption started with fine ash surges showing cross-stratification at proximal locations and being vesicular distally. The deposit consists mainly of juvenile clasts, which are angular, poorly vesicular, and rich in leucite microlites (~80 µm). Clasts around 100-150 μm show signs of magma-water interaction: quench fracturing: conchoidal and step fractures, smooth surfaces, adhering clasts and melt film. These features are present in several thin alternating surge and fall sequences at the base of the deposit. The lithic clasts in these first deposits are concentrated in layers, indicating pulsatory behavior of the eruption. Upward, the deposit consists of thicker, coarse ash to lapilli fallout layers from more sustained columns. The juvenile clasts in these deposits are more irregular, with higher vesicularity (but less than 50%) and smaller leucite microlites (~60 μm). The uppermost part of the basal fallout/surge deposit shows features transitional to the first large ignimbrite: fallout deposits alternate with poorly sorted flow units, with an increase in free leucite crystals and lithic content, with more abundant deep lithic clasts and a further leucite microlite size decrease (~20 μm) , which could indicate an accelerating magma in the conduit. We think that external factors, such as magma-water interaction and consequent gas explosions, triggered the highly explosive Villa Senni Eruption. Low vesicularity of the early juvenile clasts suggests the magma was relatively low in volatiles at the outset and did not start as a gas-driven eruption. Later in the eruption, the high ascent rate and fast decompression of the magma sustained a large explosive eruption.
Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA
NASA Astrophysics Data System (ADS)
Lefebvre, Nathalie S.; White, James D. L.; Kjarsgaard, Bruce A.
2016-01-01
Maar-diatreme volcanoes, defined by their relatively large pyroclastic debris-filled subsurface structures and craters that cut into the pre-eruptive land surface, are typically found in small-volume mafic to ultramafic monogenetic volcanic fields. Diatremes are associated with strong explosions throughout most of their development, focused along feeder dikes and generally attributed to magma-water interaction, or high magmatic volatiles. Detailed mapping of the magnificently exposed Standing Rocks East (SRE) diatreme shows evidence of additional eruptive complexity, and offers new insights into how the plumbing and vent structures of small-volume volcanoes evolve during an eruption. SRE is part of a larger, basanitic volcanic complex that includes several diatremes formed along a series of irregular, offset NW-SE trending dikes exposed 300 m below the pre-eruptive land surface. Its similarly oriented elliptical-shaped diatreme structure comprises predominantly country rock lithic-rich breccia of coarse inhomogeneously mixed wall-rock blocks sourced from above and below the current surface, plus sparse juvenile material. Domains of pyroclastic deposits crosscut the country rock breccia deposits, and the best exposed is the NW massif rising 35 m above the current erosional surface. It represents a cross-section of an evolving crater floor, and comprises matrix-rich lapilli tuff and spatter deposits cut by irregularly distributed dikes, some with very complex textures. The most significant deposit, in terms of volume, is an unbedded lapilli tuff that is poorly sorted and has a well-mixed population of wall-rock and juvenile clast varieties, thus resembling deposits typical of diatremes. It is overlain by and locally intercalated with spatter deposits, and this irregular contact demarcates the base of what was during eruption an uneven, evolving crater floor. The generally massive, variably welded spatter deposits constitute mostly lapilli-sized juvenile clasts with fluidal, folded-over shapes and ropy surfaces, subordinate thermally altered wall-rock and variegated domains of lapilli tuff. SRE shows a progressive transition from fissure to diatreme, and overall evolution from more explosive to weakly explosive eruption styles recorded at the conduit-crater transition. Diatreme development was initiated by deep-quarrying explosive eruptions along a fissure to form the country rock-rich breccia. Only parts of the fissure remained active as magma feeding the highly explosive eruptions along the fissure localized into discrete point sources forming the matrix-rich lapilli tuff deposits. These superimposed deposits record the passage of multiple debris-jets and subvertical fallback from shallow cratering arising from explosions triggered by magma-water interaction at numerous, discrete sites. However, instead of continuing to build a well-formed diatreme, the system switched to weak spattering with intermittent explosive activity and near-surface dike emplacement into the unconsolidated anisotropic, pyroclastic debris of the crater floor. Dominant spatter from strombolian-style bursts accumulated on the topographically varied, evolving unstable syn-eruptive crater floor, and led to local failure and remobilization. This study demonstrates how the combination of fissure behavior and sensitivity of the shallow plumbing system to local conditions during an eruption can lead to a decrease in eruptive footprint within the diatreme structure, and an overall decrease in explosivity resulting in the arrested development of an immature diatreme.
Cole-Dai, Jihong; Peterson, Kari Marie; Kennedy, Joshua Andrew; Cox, Thomas S; Ferris, David G
2018-06-26
A 300-year (1700-2007) chronological record of environmental perchlorate, reconstructed from high-resolution analysis of a central Greenland ice core, shows that perchlorate levels in the post-1980 atmosphere were two-to-three times those of the pre-1980 environment. While this confirms recent reports of increased perchlorate in Arctic snow since 1980 compared with the levels for the prior decades (1930-1980), the longer Greenland record demonstrates that the Industrial Revolution and other human activities, which emitted large quantities of pollutants and contaminants, did not significantly impact environmental perchlorate, as perchlorate levels remained stable throughout the eighteenth, nineteenth, and much of the twentieth centuries. The increased levels since 1980 likely result from enhanced atmospheric perchlorate production, rather than from direct release from perchlorate manufacturing and applications. The enhancement is probably influenced by the emission of organic chlorine compounds in the last several decades. Prior to 1980, no significant long-term temporal trends in perchlorate concentration are observed. Brief (a few years) high concentration episodes appear frequently over an apparently stable and low background (~1 ng kg‒1). Several such episodes coincide in time with large explosive volcanic eruptions including the 1912 Novarupta/Katmai eruption in Alaska. It appears that atmospheric perchlorate production is impacted by large eruptions in both high and low latitudes, but not by small eruptions and non-explosive degassing.
NASA Astrophysics Data System (ADS)
Gertisser, R.; Handley, H. K.; Reagan, M. K.; Berlo, K.; Barclay, J.; Preece, K.; Herd, R.
2011-12-01
Merapi volcano (Central Java) is one of the most active and deadly volcanoes in Indonesia. The 2010 eruption was the volcano's largest eruption since 1872 and erupted much more violently than expected. Prior to 2010, volcanic activity at Merapi was characterised by several months of slow dome growth punctuated by gravitational dome failures, generating small-volume pyroclastic density currents (Merapi-type nuées ardentes). The unforeseen, large-magnitude events in 2010 were different in many respects: pyroclastic density currents travelled > 15 km beyond the summit causing widespread devastation in proximal areas on Merapi's south flank and ash emissions from sustained eruption columns resulted in ash fall tens of kilometres away from the volcano. The 2010 events have proved that Merapi's relatively small dome-forming activity can be interrupted at relatively short notice by larger explosive eruptions, which appear more common in the geological record. We present new geochemical and Uranium-series isotope data for the volcanic products of both the 2006 and 2010 eruptions at Merapi to investigate the driving forces behind this unusual explosive behaviour and their timescales. An improved knowledge of these processes and of changes in the pre-eruptive magma system has important implications for the assessment of hazards and risks from future eruptive activity at Merapi.
NASA Astrophysics Data System (ADS)
Popa, Razvan-Gabriel; Bachmann, Olivier; Ellis, Ben; Degruyter, Wim; Kyriakopoulos, Konstantinos
2017-04-01
Volcanoes erupting silicic, volatile-rich magmas can exhibit both effusive and explosive eruptions, even during closely spaced eruptive episodes. Understanding the effusive-explosive transition is fundamental in order to assess the hazards involved. Magma properties strongly influence the processes during magma ascent that determine the eruptive style. Here, we investigate the link between changing conditions in the magma reservoir and the eruptive style. The Quaternary Nisyros-Yali volcanic center, from the South Aegean Sea, provides an excellent natural laboratory to study this process. Over the last 60-100 kyrs, it produced a series of dacitic to rhyolitic eruptions that emplaced alternating effusive and explosive deposits (with explosive eruptions likely shortly following effusive ones). For this study, nine fresh and well-preserved units (five effusive and four explosive) were sampled and analyzed for whole-rock, groundmass glass and mineral compositions, in order to draw insights into the magma chamber processes and thermodynamic conditions that preceded both types of eruptions. Silicic magmas in Nisyros-Yali record a complex, open-system evolution, dominated by fractionation in mushy reservoirs at mid to upper crustal depths, frequently recharged by warmer input from below. Storage temperatures recorded by the amphibole-plagioclase thermometer span a wide range, and they are always cooler than the pre-eruptive temperatures yielded by Fe-Ti oxide thermometry for the same unit, whether it is effusive or explosive. However, magmas feeding effusive eruptions typically reached cooler conditions (expressed by the presence of low-Al, low-Ti amphiboles) than in the explosive cases. The difference between the pre-eruptive and the lowest storing temperatures in the Nisyros series are in the order of 10-30°C for explosive units, while the difference is of about 40-110°C for the effusive units. The Yali series does not perfectly fit this pattern, where explosive units have also been heated for 50-100°C. During crystallization and storage in subvolcanic magma reservoirs, relatively cold conditions and higher H2O contents would favor volatile saturation, allowing reservoirs to become more compressible. Hence, a higher fraction of magma recharge would be needed to reach the necessary chamber overpressure to trigger an eruption. In turn, this higher fraction of recharge would allow more mixing and heating of the resident silicic magma, lowering melt viscosity. This facilitates the formation of a permeable foam by growth and expansion of the already nucleated gas bubbles, inducing early syn-eruptive degassing in the conduit and favoring effusive outpouring of magma. In contrast, slightly warmer conditions (and/or slightly lower H2O concentrations) in the mush would lead to reservoirs with less exsolved volatiles, hence less compressible. Thus, eruptions would be triggered faster and pre-eruptive warming would be more limited, reducing magma viscosity less than in the previous case. Bubble nucleation would mostly be confined to the conduit with syn-eruptive degassing starting at shallower depths and being less efficient, thus favoring an explosive eruption.
Adams, N.K.; Houghton, Bruce F.; Fagents, S.A.; Hildreth, W.
2006-01-01
The shift from explosive to effusive silicic volcanism seen in many historical eruptions reflects a change in the style of degassing of erupted magma. This paper focuses on such a transition during the largest eruption of the twentieth century, the 1912 eruption of Novarupta. The transition is recorded in a dacite block bed, which covers an elliptical area of 4 km2 around the vent. Approximately 700 studied blocks fall into four main lithologic categories: (1) pumiceous, (2) dense, (3) flow-banded dacites, and (4) welded breccias. Textural analyses of the blocks indicate portions of the melt underwent highly variable degrees of outgassing. Vesicle populations show features characteristic of bubble coalescence and collapse. A decrease in measured vesicularity and increased evidence for bubble collapse compared with pumice from earlier Plinian episodes mark the transition from closed- to open-system degassing. Block morphology and textures strongly suggest the magma was first erupted as a relatively gas-rich lava dome/plug, but incomplete out-gassing led to explosive disruption. Heterogeneous degassing of ascending magma began in Plinian Episode III and resulted in instability during Episode IV dome growth and a (series of) Vulcanian explosion(s). Modeling of the dynamics of explosion initiation and ejecta dispersal indicates that a significant concentration in gas is required to produce the explosions responsible for the observed block field dispersal. The amount of gas available in the hot pumiceous dome material appears to have been inadequate to drive the explosion(s); therefore, external water most likely contributed to the destruction. ?? 2006 Geological Society of America.
NASA Astrophysics Data System (ADS)
Harmon, L.; Gualda, G. A. R.; Gravley, D. M.
2016-12-01
The Paraná Silicic Volcanics include some of the largest eruptive deposits known in the geological record. However, we know very little about the magma bodies that fed these eruptions. Combining physical volcanology, geochemistry, and geothermobarometry techniques, we aim to find the sources of extinct magma bodies to build a 3D view of the magma structure at the time by discovering storage conditions, eruption styles, and post-eruption alteration. The approach elucidates temporal and spatial eruption styles and sequences of the silicic units that make up the Palmas unit of the Serra Geral formation, Brazil. We use field investigations to determine the history of volcanic deposits, domes, and changes in eruptive style; we map and characterize volcanic deposits based on thickness (thicker is proximal to source) and distribution of effusive (proximal to source) and explosive deposits. We focus on several exposed canyons that exhibit either exclusively explosive or effusive, or a clear progression from explosive to effusive deposits. The progression from explosive to effusive indicates a system change from explosively energetic to effusively waning. Additionally, observation of pervasive flow banding in both effusive and explosive deposits indicates rheomorphic flow through many portions of the field area, an indicator of hot emplacement. Geochemical work focuses on the pre-eruptive magma conditions to determine the depth of magma bodies. We utilize glass bearing samples of both the explosively deposited juvenile blob-like structures and obsidian samples to determine crystallization depth. The glass is variably altered, via silicification and devitrification processes, with the blobs more greatly silicified than the obsidian. We use rhyolite-MELTS geothermobarometry when pristine glass can be found. Initial results indicate shallow ( 80 MPa) storage conditions for the explosively erupted blobs. The combination of techniques builds a 3D understanding of extinct super-eruptive systems, and has the potential to unravel both the pre-eruptive and deposition dynamics of the Paraná Silicic Volcanics.
Video and seismic observations of Strombolian eruptions at Erebus volcano, Antarctica
NASA Astrophysics Data System (ADS)
Dibble, R. R.; Kyle, P. R.; Rowe, C. A.
2008-11-01
Between 1986 and 1990 the eruptive activity of Erebus volcano was monitored by a video camera with on-screen time code and recorded on video tape. Corresponding seismic and acoustic signals were recorded from a network of 6 geophones and 2 infrasonic microphones. Two hundred Strombolian explosions and three lava flows which were erupted from 7 vents were captured on video. In December 1986 the Strombolian eruptions ejected bombs and ash. In November 1987 large bubble-bursting Strombolian eruptions were observed. The bubbles burst when the bubble walls thinned to ˜ 20 cm. Explosions with bomb flight-times up to 14.5 s were accompanied by seismic signals with our local size estimate, "unified magnitudes" ( mu), up to 2.3. Explosions in pools of lava formed by flows in the Inner Crater were comparatively weak. Changes in eruptive activity occurred in 1987 when the lava lake was buried by a landslide from the crater wall. Two new vents formed and seismic activity peaked as the landslide was ingested. Lava flows from a vent on the eastern side of the crater formed small lakes and a vent on the north began to flow in 1990. By December 1990 the entire floor of the Inner Crater was buried by up to 20 000 m 3 of new lava. Different families of nearly identical eruption earthquakes occurred each year, whose foci were contained within small, shallow volumes. Immediately after several bubble-bursting eruptions, clear views of the empty vent were recorded. The vent was seen to taper downwards to about half its diameter at the bottom. Our observations confirm models of Strombolian eruptions suggesting they arise from gas slugs rising through a conduit into a flared vent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cadle, R.D.
A previously published 2-D numerical model of the global dispersion of an eruption cloud in the stratosphere as a function of time assumed an instantaneous injection of the eruption cloud (the source function). New calculations show that the dispersion rate is quite insensitive to the manner of introducing the source function into the model, including spreading the eruption time over 10 days. Results obtained by flying through the eruption clouds from explosive volcanoes in Guatemala indicated that most of the sulfur in such clouds is SO/sub 2/. If, as is generally believed, SO/sub 2/ reacts with OH in the stratosphere,more » leading to the production of H/sub 2/SO/sub 4/ droplets, high explosive eruptions can deplete the stratosphere of OH for long time periods. The OH is thus controlled by the rate of O(/sup 1/D) formation from ozone. By using the results from the 2-D dispersion model referred to above applied to the eruption cloud from the 1953 Agung eruption, and chemical kinetic rate constants, the 'e folding' residence time for sulfur dioxide conversion to sulfuric acid was estimated to be about 300 days. The Guatemala studies showed that the eruption clouds from explosive volcanoes contain large amounts of HCl. Unless much of this HCl is removed by rain accompanying the eruption, this HCl might be expected to have a marked influence on stratospheric chemistry as a result of the reaction OH+HCl..-->..H/sub 2/O+Cl. The volcanic HCl will probably remove OH much less rapidly than will SO/sub 2/, and if the OH concentration is greatly decreased by the SO/sub 2/, the above reaction may be too slow to be important.« less
Houghton, Bruce F.; Swanson, Don; Rausch, J.; Carey, R.J.; Fagents, S.A.; Orr, Tim R.
2013-01-01
Estimating the mass, volume, and dispersal of the deposits of very small and/or extremely weak explosive eruptions is difficult, unless they can be sampled on eruption. During explosive eruptions of Halema‘uma‘u Crater (Kīlauea, Hawaii) in 2008, we constrained for the first time deposits of bulk volumes as small as 9–300 m3 (1 × 104 to 8 × 105 kg) and can demonstrate that they show simple exponential thinning with distance from the vent. There is no simple fit for such products within classifications such as the Volcanic Explosivity Index (VEI). The VEI is being increasingly used as the measure of magnitude of explosive eruptions, and as an input for both hazard modeling and forecasting of atmospheric dispersal of tephra. The 2008 deposits demonstrate a problem for the use of the VEI, as originally defined, which classifies small, yet ballistic-producing, explosive eruptions at Kīlauea and other basaltic volcanoes as nonexplosive. We suggest a simple change to extend the scale in a fashion inclusive of such very small deposits, and to make the VEI more consistent with other magnitude scales such as the Richter scale for earthquakes. Eruptions of this magnitude constitute a significant risk at Kīlauea and elsewhere because of their high frequency and the growing number of “volcano tourists” visiting basaltic volcanoes.
NASA Astrophysics Data System (ADS)
van Otterloo, Jozua; Cas, Raymond A. F.
2013-12-01
Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.
Breakin' up is hard to do: Fragmentation mechanisms of the 2012 submarine Havre eruption
NASA Astrophysics Data System (ADS)
Mitchell, S. J.; Manga, M.; Houghton, B. F.; Carey, R.
2017-12-01
The production of clastic or effusive material in volcanic eruptions is primarily controlled by if, when and where magma fragments. Assessing conditions for the fragmentation threshold is essential for eruptions with no direct observations, such as those within the deep submarine environment where hydrostatic pressure is considered to suppress bubble expansion and hence, explosive eruptions. The 2012 deep submarine eruption of Havre produced a series of rhyolitic lava flows and domes from vents between 1220 and 650 mbsl, and >1.3 km3 of pumiceous rhyolite clasts erupted at 900 mbsl. Calculated mass discharge rates (106 kg s-1) for the highest-intensity eruptive phase are comparable to subaerial silicic explosive eruptions. However, giant pumiceous clasts on the seafloor with curviplanar surfaces are more consistent with examples of effusive pumiceous lava-dome carapaces. These contradictory observations lead us to theoretically examine conflicting fragmentation mechanisms for Havre magma. Using equilibrium and disequilibrium degassing models, and Havre pre-eruptive conditions determined from geochemical and microtextural studies, we: 1) determine that an equilibrium degassing assumption is valid, as decompression rates are far below those that lead to disequilibrium degassing; and 2) calculate that Havre magma would not reach the critical strain rates sufficient to induce fragmentation within the conduit under hydrostatic vent pressure of 9 MPa. Equilibrium model results are consistent with measurements of modal vesicle diameters and magma vesicularity made on samples recovered by the 2015 MESH expedition. This further validates the equilibrium degassing assumption, but implies that Havre magma did not undergo magmatic fragmentation prior to eruption. We consider brittle fragmentation and the propagation of cracks through a vesicular pumiceous carapace as the mechanism required to fragment Havre magma. In line with calculated high mass discharge rates, we propose that rapidly-ascending, coherent magma quenched by seawater produced large pumiceous blocks above the eruptive vent, but the event was not, namely, an `explosive' eruption.
Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.
Hunt, James E; Cassidy, Michael; Talling, Peter J
2018-01-18
Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km 3 ) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.
NASA Astrophysics Data System (ADS)
Coltelli, Mauro; Biale, Emilio; Ciancitto, Francesco; Pecora, Emilio; Prestifilippo, Michele
2014-05-01
Since 1994 a video-surveillance camera located on a peak just above the active volcanic vents of Stromboli island records the explosive activity of one of the few volcanoes on the world performing a persistent eruptive activity. From 2003, after one of the larger lava flow eruption of the last century, the video-surveillance system was enhanced with more stations having both thermal and visual cameras. The video-surveillance helps volcanologists to characterize the mild explosive activity of Stromboli named Strombolian and to distinguish between the frequent "ordinary" Strombolian explosions and the occasional "extraordinary" strong Strombolian explosions that periodically occur. A new class of extraordinary explosions was discovered filling the gap between the ordinary activity and the strong explosions named major explosions when the tephra fallout covers large areas on the volcano summit and paroxysmal ones when the bombs fall down to the inhabited area along the coast of the island. In order to quantify the trend of the ordinary Strombolian explosions and to understand the occurring of the extraordinary strong Strombolian explosions a computer assisted image analysis was developed to process the huge amount of thermal and visual images recorded in several years. The results of this complex analysis allow us to clarify the processes occurring in the upper plumbing system where the pockets/trains of bubbles coalesce and move into the active vent conduits producing the ordinary Strombolian activity, and to infer the process into the deeper part of the plumbing system where new magma supply and its evolution lead to the formation of the extraordinary strong Strombolian explosions.
Stronger or longer: Discriminating between Hawaiian and Strombolian eruption styles
Houghton, Bruce F.; Taddeucci, Jacopo; Andronico, D.; Gonnerman, H; Pistolesi, M; Patrick, Matthew R.; Orr, Tim R.; Swanson, Don; Edmonds, M; Carey, Rebecca J.; Scarlato, P.
2016-01-01
The weakest explosive volcanic eruptions globally, Strombolian explosions and Hawaiian fountaining, are also the most common. Yet, despite over a hundred years of observations, no classifications have offered a convincing, quantitative way of demarcating these two styles. New observations show that the two styles are distinct in their eruptive timescale, with the duration of Hawaiian fountaining exceeding Strombolian explosions by about 300 to 10,000 seconds. This reflects the underlying process of whether shallow-exsolved gas remains trapped in the erupting magma or whether it is decoupled from it. We propose here a classification scheme based on the duration of events (brief explosions versus prolonged fountains) with a cutoff at 300 seconds that separates transient Strombolian explosions from sustained Hawaiian fountains.
Cashman, Katharine V.; Thornber, Carl R.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
Comparison of eruptive conditions during the 2004-6 activity at Mount St. Helens with those of other spine-forming eruptions suggests that magma ascent rates of about 10-4 m/s or less allow sufficient degassing and crystallization within the conduit to form large volcanic spines of intermediate composition (andesite to dacite). Solidification deep within the conduit, in turn, requires transport of the solid plug over long distances (hundreds of meters); resultant large strains are responsible for extensive brittle breakage and development of thick gouge zones. Moreover, similarities between gouge textures and those of ash emitted by explosions from spine margins indicate that fault gouge is the origin for the ash. As the comminution and generation of ash-sized particles was clearly a multistep process, this observation suggests that fragmentation preceded, rather than accompanied, these explosions.
Multiparametric Geophysical Signature of Vulcanian Explosions
NASA Astrophysics Data System (ADS)
Gottsmann, J.; de Angelis, S.; Fournier, N.; van Camp, M. J.; Sacks, S. I.; Linde, A. T.; Ripepe, M.
2010-12-01
Extrusion of viscous magma leading to lava dome-formation is a common phenomenon at arc volcanoes recently demonstrated at Mount St. Helens (USA), Chaiten (Chile), and SoufriËre Hills Volcano (British West Indies). The growth of lava domes is frequently accompanied by vigorous eruptions, commonly referred to as Vulcanian-style, characterized by sequences of short-lived (tens of seconds to tens of minutes) explosive pulses, reflecting the violent explosive nature of arc volcanism. Vulcanian eruptions represent a significant hazard, and an understanding of their dynamics is vital for risk mitigation. While eruption parameters have been mostly constrained from observational evidence, as well as from petrological, theoretical, and experimental studies, our understanding on the physics of the subsurface processes leading to Vulcanian eruptions is incomplete. We present and interpret a unique set of multi-parameter geophysical data gathered during two Vulcanian eruptions in July and December, 2008 at SoufriËre Hills Volcano from seismic, geodetic, infrasound, barometric, and gravimetric instrumentation. These events document the spectrum of Vulcanian eruptions in terms of their explosivity and nature of erupted products. Our analysis documents a pronounced difference in the geophysical signature of the two events associated with priming timescales and eruption triggering suggesting distinct differences in the mechanics involved. The July eruption has a signature related to shallow conduit dynamics including gradual system destabilisation, syn-eruptive decompression of the conduit by magma fragmentation, conduit emptying and expulsion of juvenile pumice. In contrast, sudden pressurisation of the entire plumbing system including the magma chambers resulted in dome carapace failure, a violent cannon-like explosion, propagation of a shock wave and pronounced ballistic ejection of dome fragments. We demonstrate that with lead times of between one and six minutes to the explosions the geophysical signature is indicative of the style of eruption priming, the dynamics of the ensuing eruption, and the nature of the erupted material. Our study conclusively demonstrates the extraordinary value of integrated multi-parameter systems for monitoring operations, in particular at volcanoes characterized by phases of continuous dome growth interspersed by vigorous, often unexpected, explosive activity.
Abstract volume for the 2016 biennial meeting of the Yellowstone Volcano Observatory
Lowenstern, Jacob B.
2016-10-20
IntroductionEvery two years, scientists, natural resource managers, outreach specialists, and a variety of other interested parties get together for the biennial meeting of the Yellowstone Volcano Observatory (YVO). Each time, the theme varies. In past years, we have focused the meeting around topics including monitoring plans, emergency response, geodesy, and outreach. This year, we spent the first half-day devoted to recent research results, plans for upcoming studies, and geothermal monitoring. On the second day, our focus switched to eruption precursors, particularly as they apply to large caldera systems.Very few large explosive eruptions from caldera systems have taken place in recorded history. Therefore, there are few empirical data with which to characterize the nature of volcanic unrest that might precede eruptions with volcano explosivity index (VEI) of six or greater. For this reason, we set up a series of talks that explore what we know and don’t know about large eruptions. We performed an informal expert elicitation (a frequently used method to characterize expert opinion) with a small number of our colleagues, which served as the basis for a productive discussion session.This short volume of abstracts and extended abstracts provides a summary of the presentations made at the YVO meeting held in Mammoth Hot Springs, Wyoming, on May 10–11, 2016.
Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets
NASA Astrophysics Data System (ADS)
Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep
2017-08-01
We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.
NASA Technical Reports Server (NTRS)
Moore, Ronald L.
1998-01-01
The prominence that erupts in a prominence eruption is a magnetic structure in the chromosphere and corona. It is visible in chromospheric images by virtue of chromospheric-temperature plasma suspended in the magnetic field, and belongs to that large class of magnetic structures appropriately called filaments because of their characteristic sinewy sigmoidal form. Hence, the term "filament eruption" is used interchangeably with the term "prominence eruption". The magnetic field holding a filament is prone to undergo explosive changes in configuration. In these upheavals, because the filament material is compelled by its high conductivity to ride with the magnetic field that threads it, this material is a visible tracer of the field motion. The part of the magnetic explosion displayed by the entrained filament material is the phenomenon known as a filament eruption, the topic of this article. This article begins with a description of basic observed characteristics of filament eruptions, with attention to the magnetic fields, flares, and coronal mass ejections in which erupting filaments are embedded. The present understanding of these characteristics in terms of the form and action of the magnetic field is then laid out by means of a rudimentary three-dimensional model of the field. The article ends with basic questions that this picture leaves unresolved and with remarks on the observations needed to probe these questions.
NASA Astrophysics Data System (ADS)
Mori, A.; Kumagai, H.
2016-12-01
It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.
A compositional tipping point governing the mobilization and eruption style of rhyolitic magma
NASA Astrophysics Data System (ADS)
di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.
2017-12-01
The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth’s largest volcanic systems, resulting in a better understanding of how the melt structure controls volcanic processes.
A compositional tipping point governing the mobilization and eruption style of rhyolitic magma.
Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B
2017-12-13
The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth's largest volcanic systems, resulting in a better understanding of how the melt structure controls volcanic processes.
NASA Astrophysics Data System (ADS)
Lirer, Lucio; Munno, Rosalba; Postiglione, Immacolata; Vinci, Anna; Vitelli, Livia
Due to the lack of an effective policy of planning and prevention, over the past decades the area around Mt. Vesuvio has undergone a steady increase in population and uncontrolled housing development. Consequently, it has become one of the most hazardous volcanic areas in the world. In order to mitigate the damage that the impact of an explosive event would cause in the area, the Department of Civil Defense has worked out an Emergency Management Plan using the A.D. 1631 subplinian eruption as the most probable short-term event. However, from 25 000 years B.P. to present, the activity of the Somma-Vesuvio volcano has shown a sequence of eight eruptive cycles, which always began with a strong plinian eruption. In this paper we utilize the A.D. 79 eruption as an example of a potential large explosive eruption that might occur again at Vesuvio. A detailed tephrostratigraphic analysis of the eruption products was processed by a multivariate statistical analysis. This analysis proved useful for identifying marker layers in the sequences, thus allowing the recognition of some major phases of synchronous deposition and hence the definition of the chronological and spatial evolution of the eruption. By combining this reconstruction with land-use maps, a scenario is proposed with time intervals in the eruptive sequence similar to those reported in Pliny's letter. Thus, it was calculated that, after 7h from the start of the eruption, a total area of approximately 300km2 would be covered with the eruption products. In the following 11h, a total area of approximately 500km2 would be involved. The third and last phase of deposition would not cause significant variation in the total area involved, but it would bring about an increase in the thickness of the pyroclastic deposits in the perivolcanic area.
Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong
2015-01-01
Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.
NASA Astrophysics Data System (ADS)
Aubry, Thomas J.; Jellinek, A. Mark
2018-05-01
The turbulent entrainment of atmosphere and the condensation of water vapor govern the heights of explosive volcanic plumes. These processes thus determine the delivery and the lifetime of volcanic ash and aerosols into the atmosphere. Predictions of plume heights using one-dimensional "integral" models of volcanic plumes, however, suffer from very large uncertainties, related to parameterizations for entrainment and condensation. In particular, the wind entrainment coefficient β, which governs the contribution of crosswinds to turbulent entrainment, is subject to uncertainties of one order of magnitude, leading to relative uncertainties of the order of 50% on plume height. In this study, we use a database of 94 eruptive phases with independent estimates of mass eruption rate and plume height to constrain and evaluate four popular 1D models. We employ re-sampling methods to account for observational uncertainties. We show that plume height predictions are significantly improved when: i) the contribution of water vapor condensation to the plume buoyancy flux is excluded; and ii) the wind entrainment coefficient β is held constant between 0.1 and 0.4. We explore implications of these results for predicting the climate impacts of explosive eruptions and the likelihood that eruptions will form stable umbrella clouds or devastating pyroclastic flows. Last, we discuss the sensitivity of our results to the definition of plume height in the model in light of a recent set of laboratory experiments and draw conclusions for improving future databases of eruption parameters.
NASA Astrophysics Data System (ADS)
Reichow, M. K.; Branney, M. J.; Knott, T.; Storey, M.; Finn, D. R.; Coe, R. S.; McCurry, M. O.; Bonnichsen, B.
2013-12-01
Although caldera-forming super-eruptions (≥450 km3) are amongst the most catastrophic events to affect the Earth's surface, we do not know how often they occur globally, and how large the individual eruptions are. This is because, with a few exceptions, the vast volcanic stratigraphies at many large igneous provinces have not yet been resolved in sufficient detail to isolate and quantify the individual events. Much progress is needed on this if we are to verify the past and potential environmental and climatic impact of these super-eruptions. We are reconstructing the history of catastrophic eruptions in the youngest and best-preserved large intra continental volcanic province worldwide, by resolving the vast Miocene rhyolitic volcanic stratigraphy of the central Snake River Plain, Idaho. Large explosive eruptions, several previously un-documented, generated an unusually hot (<1050°C) pyroclastic density current that inundated large (1000's km2) regions, which were sterilised as entire landscapes were abruptly enamelled with extensive sheets of searing-hot rhyolitic glass 5-100 m thick. The density currents also generated thermal atmospheric plumes (phoenix clouds) that dispersed 100's to 1000's of km3 rhyolitic ash 1000's of km across continental USA and beyond. High-precision chronology and quantification of the erupted volumes and the frequency of eruptions is needed to assess the likely significant wider impact of these events on climate and ecosystems. To determine the size of the individual events, we have been correlating each soil-bounded eruption-unit regionally. This is hindered by their abundance, and closely similar appearance within monotonous successions exposed in distant (50-200 km) mountain ranges. To tackle this we are employing a combination of tools to isolate and correlate individual layers: field logging coupled with characterization of the whole-rock, glass, and mineral chemistries, together with high-precision 40Ar/39Ar dating, U-Pb zircon dating, with detailed paleomagnetic characterisation of polarities and secular variations. This multidisciplinary approach is yielding robust ';fingerprints'; to distinguish individual eruptions, and facilitate robust correlations between sites spaced >100 km apart. The high-precision chronology, together with secular variations, should provide a much-needed basis for starting to assess the environmental impact of these awesome events. The study also should contribute to our understanding of the global frequency of large events.
Rapid laccolith intrusion driven by explosive volcanic eruption
NASA Astrophysics Data System (ADS)
Castro, Jonathan M.; Cordonnier, Benoit; Schipper, C. Ian; Tuffen, Hugh; Baumann, Tobias S.; Feisel, Yves
2016-11-01
Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ~0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ~20-200 m and overpressures (~1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.
Power, John A.; Stihler, Scott D.; Chouet, Bernard A.; Haney, Matthew M.; Ketner, D.M.
2013-01-01
Seismic activity at Redoubt Volcano, Alaska, has been closely monitored since 1989 by a network of five to ten seismometers within 22 km of the volcano's summit. Major eruptions occurred in 1989-1990 and 2009 and were characterized by large volcanic explosions, episodes of lava dome growth and failure, pyroclastic flows, and lahars. Seismic features of the 1989-1990 eruption were 1) weak precursory tremor and a short, 23-hour-long, intense swarm of repetitive shallow long-period (LP) events centered 1.4 km below the crater floor, 2) shallow volcano-tectonic (VT) and hybrid earthquakes that separated early episodes of dome growth, 3) 13 additional swarms of LP events at shallow depths precursory to many of the 25 explosions that occurred over the more than 128 day duration of eruptive activity, and 4) a persistent cluster of VT earthquakes at 6 to 9 km depth. In contrast the 2009 eruption was preceded by a pronounced increase in deep-LP (DLP) events at lower crustal depths (25 to 38 km) that began in mid-December 2008, two months of discontinuous shallow volcanic tremor that started on January 23, 2009, a strong phreatic explosion on March 15, and a 58-hour-long swarm of repetitive shallow LP events. The 2009 eruption consisted of at least 23 major explosions between March 23 and April 5, again accompanied by shallow VT earthquakes, several episodes of shallow repetitive LP events and dome growth continuing until mid July. Increased VT earthquakes at 4 to 9 km depth began slowly in early April, possibly defining a mid-crustal magma source zone. Magmatic processes associated with the 2009 eruption seismically activated the same portions of the Redoubt magmatic system as the 1989-1990 eruption, although the time scales and intensity vary considerably among the two eruptions. The occurrence of precursory DLP events suggests that the 2009 eruption may have involved the rise of magma from lower crustal depths. Based on the evolution of seismicity during the 1989-1990 and 2009 eruptions the Redoubt magmatic system is envisioned to consist of a shallow system of cracks extending 1 to 2 km below the crater floor, a magma storage or source region at roughly 3 to 9 km depth, and a diffuse magma source region at 25 to 38 km depth. Close tracking of seismic activity allowed the Alaska Volcano Observatory to successfully issue warnings prior to many of the hazardous explosive events that occurred in 2009.
Transient dynamics of vulcanian explosions and column collapse.
Clarke, A B; Voight, B; Neri, A; Macedonio, G
2002-02-21
Several analytical and numerical eruption models have provided insight into volcanic eruption behaviour, but most address plinian-type eruptions where vent conditions are quasi-steady. Only a few studies have explored the physics of short-duration vulcanian explosions with unsteady vent conditions and blast events. Here we present a technique that links unsteady vent flux of vulcanian explosions to the resulting dispersal of volcanic ejecta, using a numerical, axisymmetric model with multiple particle sizes. We use observational data from well documented explosions in 1997 at the Soufrière Hills volcano in Montserrat, West Indies, to constrain pre-eruptive subsurface initial conditions and to compare with our simulation results. The resulting simulations duplicate many features of the observed explosions, showing transitional behaviour where mass is divided between a buoyant plume and hazardous radial pyroclastic currents fed by a collapsing fountain. We find that leakage of volcanic gas from the conduit through surrounding rocks over a short period (of the order of 10 hours) or retarded exsolution can dictate the style of explosion. Our simulations also reveal the internal plume dynamics and particle-size segregation mechanisms that may occur in such eruptions.
NASA Astrophysics Data System (ADS)
Lorenzo-Merino, A.; Guilbaud, M.-N.; Roberge, J.
2018-03-01
Pelado volcano is a typical example of an andesitic Mexican shield with a summital scoria cone. It erupted ca. 10 ka in the central part of an elevated plateau in what is today the southern part of Mexico City. The volcano forms a roughly circular, 10-km wide lava shield with two summital cones, surrounded by up to 2.7-m thick tephra deposits preserved up to a distance of 3 km beyond the shield. New cartographic, stratigraphic, granulometric, and componentry data indicate that Pelado volcano was the product of a single, continuous eruption marked by three stages. In the early stage, a > 1.5-km long fissure opened and was active with mild explosive activity. Intermediate and late stages were mostly effusive and associated with the formation of a 250-m high lava shield. Nevertheless, during these stages, the emission of lava alternated and/or coexisted with highly explosive events that deposited a widespread tephra blanket. In the intermediate stage, multiple vents were active along the fissure, but activity was centered at the main cone during the late stage. The final activity was purely effusive. The volcano emitted > 0.9 km3 dense-rock equivalent (DRE) of tephra and up to 5.6 km3 DRE of lavas. Pelado shares various features with documented "violent Strombolian" eruptions, including a high fragmentation index, large dispersal area, occurrence of plate tephra, high eruptive column, and simultaneous explosive and effusive activity. Our results suggest that the associated hazards (mostly tephra fallout and emplacement of lava) would seriously affect areas located up to 25 km from the vent for fallout and 5 km from the vent for lava, an important issue for large cities built near or on potentially active zones, such as Mexico City.
Program for Volcanic Risk Reduction in the Americas: Translation of Science into Policy and Practice
NASA Astrophysics Data System (ADS)
Mangan, Margaret; Pierson, Thomas; Wilkinson, Stuart; Westby, Elizabeth; Driedger, Carolyn; Ewert, John
2016-04-01
In 2013, the United States Geological Survey (USGS) and the U.S. Agency for International Development/Office of Foreign Disaster Assistance (USAID/OFDA) inaugurated Volcanic Risk Reduction in the Americas, a program that brings together binational delegations of scientists, civil authorities, and emergency response managers to discuss the challenges of integrating volcano science into crisis response and risk reduction practices. During reciprocal visits, delegations tour areas impacted by volcanic unrest and/or eruption, meet with affected communities, and exchange insights and best practices. The 2013 exchange focused on hazards at Mount Rainier (Washington, USA) and Nevado del Ruiz (Caldas/Tolima, Colombia). Both of these volcanoes are highly susceptible to large volcanic mudflows (lahars). The Colombia-USA exchange allowed participants to share insights on lahar warning systems, self-evacuation planning, and effective education programs for at-risk communities. [See Driedger and Ewert (2015) Abstract 76171 presented at 2015 Fall AGU, San Francisco, Calif., Dec 14-18]. The second exchange, in 2015, took place between the USA and Chile, focusing on the Long Valley volcanic region (California, USA) and Chaitén volcano (Lagos, Chile) - both are centers of rhyolite volcanism. The high viscosity of rhyolite magma can cause explosive eruptions with widespread destruction. The rare but catastrophic "super eruptions" of the world have largely been the result of rhyolite volcanism. Chaitén produced the world's first explosive rhyolite eruption in the age of modern volcano monitoring in 2008-2009. Rhyolite eruptions of similar scale and style have occurred frequently in the Long Valley volcanic region, most recently about 600 years ago. The explosivity and relative rarity of rhyolite eruptions create unique challenges to risk reduction efforts. The recent Chaitén eruption was unexpected - little was known of Chaitén's eruptive history, and because of this, monitoring instrumentation and response protocols were nonexistent. Though devastating to the community, no lives were lost during the eruption - largely due to the impromptu, yet decisive, actions by local leaders. The situation at Long Valley is at the other end of the preparedness/response spectrum - the eruptive history is well known, and because of sporadic, intense volcanic unrest over the last three decades, sophisticated monitoring networks are in place to detect eruption precursors. The challenge for the Long Valley community is thus maintaining readiness in the face of waxing and waning unrest without eruption. Collectively, the stories heard by delegates visiting Chaitén and Long Valley confirm that communities are not prepared for natural disasters unless both risk awareness and risk reduction efforts become an integral and ongoing part of community life. Each delegate left with new perspectives on how best to achieve this.
A tectonic earthquake sequence preceding the April-May 1999 eruption of Shishaldin Volcano, Alaska
Moran, S.C.; Stihler, S.D.; Power, J.A.
2002-01-01
On 4 March 1999, a shallow ML 5.2 earthquake occurred beneath Unimak Island in the Aleutian Arc. This earthquake was located 10-15 km west of Shishaldin Volcano, a large, frequently active basaltic-andesite stratovolcano. A Strombolian eruption began at Shishaldin roughly 1 month after the mainshock, culminating in a large explosive eruption on 19 April. We address the question of whether or not the eruption caused the mainshock by computing the Coulomb stress change caused by an inflating dike on fault planes oriented parallel to the mainshock focal mechanism. We found Coulomb stress increases of ???0.1 MPa in the region of the mainshock, suggesting that magma intrusion prior to the eruption could have caused the mainshock. Satellite and seismic data indicate that magma was moving upwards beneath Shishaldin well before the mainshock. indicating that, in an overall sense, the mainshock cannot be said to have caused the eruption. However, observations of changes at the volcano following the mainshock and several large aftershocks suggest that the earthquakes may, in turn, have influenced the course of the eruption.
Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.
Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego
2017-12-04
We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.
NASA Astrophysics Data System (ADS)
Romero, Jorge Eduardo; Douillet, Guilhem Amin; Vallejo Vargas, Silvia; Bustillos, Jorge; Troncoso, Liliana; Díaz Alvarado, Juan; Ramón, Patricio
2017-06-01
The ongoing eruptive cycle of Tungurahua volcano (Ecuador) since 1999 has been characterised by over 15 paroxysmal phases interrupted by periods of relative calm. Those phases included one Subplinian as well as several Strombolian and Vulcanian eruptions and they generated tephra fallouts, pyroclastic density currents (PDCs) and lava flows. The 1 February 2014 eruption occurred after 75 days of quiescence and only 2 days of pre-eruptive seismic crisis. Two short-lived Vulcanian explosions marked the onset of the paroxysmal phase, characterised by a 13.4 km eruptive column and the trigger of PDCs. After 40 min of paroxysm, the activity evolved into sporadic Strombolian explosions with discrete ash emissions and continued for several weeks. Both tephra fall and PDCs were studied for their dispersal, sedimentology, volume and eruption source parameters. At large scale, the tephra cloud dispersed toward the SSW. Based on the field data, two dispersal scenarios were developed forming either elliptical isopachs or proximally PDC-influenced isopachs. The minimum bulk tephra volumes are estimated to 4.55 × 106 m3, for an eruption size estimated at volcanic explosivity index (VEI) 2-3. PDCs, although of small volume, descended by nine ravines of the NNW flanks down to the base of the edifice. The 1 February 2014 eruptions show a similar size to the late 1999 and August 2001 events, but with a higher intensity (I 9-10) and shorter duration. The Vulcanian eruptive mechanism is interpreted to be related to a steady magma ascent and the rise in over-pressure in a blocked conduit (plug) and/or a depressurised solidification front. The transition to Strombolian style is well documented from the tephra fall componentry. In any of the interpretative scenarios, the short-lived precursors for such a major event as well as the unusual tephra dispersion pattern urge for renewed hazard considerations at Tungurahua.
Grain size and shape analysis of the AD 1226 tephra layer, Reykjanes volcanic system
NASA Astrophysics Data System (ADS)
Ösp Magnúsdóttir, Agnes; Höskuldsson, Ármann; Larsen, Guðrún; Tumi Guðmunsson, Magnús; Sigurgeirsson, Magnús Á.
2014-05-01
Recent explosive eruptions in Iceland have drawn attention to long range tephra transport in the atmosphere. In Iceland tephra forming explosion eruptions are frequent, due to abundance of water. However, the volcanism on the island is principally basaltic. Volcanism along the Reykjanes Peninsula is divided into five distinct volcanic systems. Volcano-tectonic activity within these systems is periodic, with recurrence intervals in the range of 1 ka. Last volcano-tectonic sequence began around AD 940, shortly after settlement of Iceland, and lasted through AD 1340. During this period activity was characterized by basaltic fissure eruptions. Furthermore, this activity period on the Reykjanes peninsula began within the eastern most volcanic system and gradually moved towards the west across the peninsula. The 1226 eruption was a basaltic fissure eruption with in the Reykjanes volcanic system. The eruption began on land and gradually progressed towards the SW until the volcanic fissure extended into the sea. Water-magma interaction changed the eruption from effusive into explosive forming the largest tephra layer on the peninsula. Due to its close proximity to the Keflavik international airport and that of the capital of Iceland it is important to get an insight into, the characteristics, generation and distribution of such tephra deposits. In this eruption the tephra produced had an approximate volume of 0.1 km3 and covered an area of some 3500 km2 within the 0.5 cm isopach. Total grain size distribution of this tephra layer will be presented along with analysis of principal grain shapes of the finer portion of the tephra layer as a function of distance from the source. The tephra grain size is dominated by particles finer than 1 millimeter with an almost complete absence of large grains independent of distance from the source. Comprehensive understanding of the characteristics of tephra generated in this eruption can help us to understand hazards posed by future eruptions of similar nature in the area.
Kīlauea - An explosive volcano in Hawai‘i
Swanson, Donald A.; Fiske, Dick; Rose, Tim; Houghton, Bruce F.; Mastin, Larry
2011-01-01
Kīlauea Volcano on the Island of Hawai‘i, though best known for its frequent quiet eruptions of lava flows, has erupted explosively many times in its history - most recently in 2011. At least six such eruptions in the past 1,500 years sent ash into the jet stream, at the cruising altitudes for today's aircraft. The eruption of 1790 remains the most lethal eruption known from a U.S. volcano. However, the tendency of Kīlauea's 2 million annual visitors is to forget this dangerous potential. Cooperative research by scientists of the U.S. Geological Survey, Smithsonian Institution, and University of Hawai‘i is improving our understanding of Kīlauea's explosive past and its potential for future violent eruptions.
Preliminary volcano-hazard assessment for Aniakchak Volcano, Alaska
Neal, Christina A.; McGimsey, Robert G.; Miller, Thomas P.; Riehle, James R.; Waythomas, Christopher F.
2000-01-01
Aniakchak is an active volcano located on the Alaska Peninsula 670 kilometers southwest of Anchorage. The volcano consists of a dramatic, 10-kilometer-diameter, 0.5 to 1.0-kilometer-deep caldera that formed during a catastrophic eruption 3,500 years ago. Since then, at least a dozen separate vents within the caldera have erupted, often explosively, to produce lava flows and widespread tephra (ash) deposits. The most recent eruption at Aniakchak occurred in 1931 and was one of the largest explosive eruptions in Alaska in the last 100 years. Although Aniakchak volcano presently shows no signs of unrest, explosive and nonexplosive eruptions will occur in the future. Awareness of the hazards posed by future eruptions is a key factor in minimizing impact.
NASA Astrophysics Data System (ADS)
Siebert, L.; Simkin, T.; Kimberly, P.
2010-12-01
The 3rd edition of the Smithsonian Institution’s Volcanoes of the World incorporates data on the world’s volcanoes and their eruptions compiled since 1968 by the Institution’s Global Volcanism Program (GVP). Published this Fall jointly by the Smithsonian and the University of California Press, it supplements data from the 1994 2nd edition and includes new data on the number of people living in proximity to volcanoes, the dominant rock lithologies at each volcano, Holocene caldera-forming eruptions, and preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions. The 3rd edition contains data on nearly 1550 volcanoes of known or possible Holocene age, including chronologies, characteristics, and magnitudes for >10,400 Holocene eruptions. The standard 20 eruptive characteristics of the IAVCEI volcano catalog series have been modified to include dated vertical edifice collapse events due to magma chamber evacuation following large-volume explosive eruptions or mafic lava effusion, and lateral sector collapse. Data from previous editions of Volcanoes of the World are also supplemented by listings of up to the 5 most dominant lithologies at each volcano, along with data on population living within 5, 10, 30, and 100 km radii of each volcano or volcanic field. Population data indicate that the most populated regions also contain the most frequently active volcanoes. Eruption data document lava and tephra volumes and Volcanic Explosivity Index (VEI) assignments for >7800 eruptions. Interpretation of VRF data has led to documentation of global eruption rates and the power law relationship between magnitude and frequency of volcanic eruptions. Data with volcanic hazards implications include those on fatalities and evacuations and the rate at which eruptions reach their climax. In recognition of the hazards implications of potential resumption of activity at pre-Holocene volcanoes, the 3rd edition includes very preliminary lists of Pleistocene volcanoes and large-volume Pleistocene eruptions, the latter in collaboration with the VOGRIPA project of Steve Sparks and colleagues. The GVP volcano and eruption data derive both from the retrospective perspective of the volcanological and other literature and documentation of contemporary eruptions and volcanic unrest in the Smithsonian’s monthly bulletin and Weekly Volcanic Activity Reports compiled since 2000 in collaboration with the USGS.
Vidal, Céline M; Métrich, Nicole; Komorowski, Jean-Christophe; Pratomo, Indyo; Michel, Agnès; Kartadinata, Nugraha; Robert, Vincent; Lavigne, Franck
2016-10-10
Large explosive eruptions inject volcanic gases and fine ash to stratospheric altitudes, contributing to global cooling at the Earth's surface and occasionally to ozone depletion. The modelling of the climate response to these strong injections of volatiles commonly relies on ice-core records of volcanic sulphate aerosols. Here we use an independent geochemical approach which demonstrates that the great 1257 eruption of Samalas (Lombok, Indonesia) released enough sulphur and halogen gases into the stratosphere to produce the reported global cooling during the second half of the 13th century, as well as potential substantial ozone destruction. Major, trace and volatile element compositions of eruptive products recording the magmatic differentiation processes leading to the 1257 eruption indicate that Mt Samalas released 158 ± 12 Tg of sulphur dioxide, 227 ± 18 Tg of chlorine and a maximum of 1.3 ± 0.3 Tg of bromine. These emissions stand as the greatest volcanogenic gas injection of the Common Era. Our findings not only provide robust constraints for the modelling of the combined impact of sulphur and halogens on stratosphere chemistry of the largest eruption of the last millennium, but also develop a methodology to better quantify the degassing budgets of explosive eruptions of all magnitudes.
Volcano hazards in the Three Sisters region, Oregon
Scott, William E.; Iverson, R.M.; Schilling, S.P.; Fisher, B.J.
2001-01-01
Three Sisters is one of three potentially active volcanic centers that lie close to rapidly growing communities and resort areas in Central Oregon. Two types of volcanoes exist in the Three Sisters region and each poses distinct hazards to people and property. South Sister, Middle Sister, and Broken Top, major composite volcanoes clustered near the center of the region, have erupted repeatedly over tens of thousands of years and may erupt explosively in the future. In contrast, mafic volcanoes, which range from small cinder cones to large shield volcanoes like North Sister and Belknap Crater, are typically short-lived (weeks to centuries) and erupt less explosively than do composite volcanoes. Hundreds of mafic volcanoes scattered through the Three Sisters region are part of a much longer zone along the High Cascades of Oregon in which birth of new mafic volcanoes is possible. This report describes the types of hazardous events that can occur in the Three Sisters region and the accompanying volcano-hazard-zonation map outlines areas that could be at risk from such events. Hazardous events include landslides from the steep flanks of large volcanoes and floods, which need not be triggered by eruptions, as well as eruption-triggered events such as fallout of tephra (volcanic ash) and lava flows. A proximal hazard zone roughly 20 kilometers (12 miles) in diameter surrounding the Three Sisters and Broken Top could be affected within minutes of the onset of an eruption or large landslide. Distal hazard zones that follow river valleys downstream from the Three Sisters and Broken Top could be inundated by lahars (rapid flows of water-laden rock and mud) generated either by melting of snow and ice during eruptions or by large landslides. Slow-moving lava flows could issue from new mafic volcanoes almost anywhere within the region. Fallout of tephra from eruption clouds can affect areas hundreds of kilometers (miles) downwind, so eruptions at volcanoes elsewhere in the Cascade Range also contribute to volcano hazards in Central Oregon. This report is intended to aid scientists, government officials, and citizens as they work together to reduce the risk from volcano hazards through public education and emergency-response planning.
Schmitt, Axel K.; Danišík, Martin; Aydar, Erkan; Şen, Erdal; Ulusoy, İnan; Lovera, Oscar M.
2014-01-01
A mural excavated at the Neolithic Çatalhöyük site (Central Anatolia, Turkey) has been interpreted as the oldest known map. Dating to ∼6600 BCE, it putatively depicts an explosive summit eruption of the Hasan Dağı twin-peaks volcano located ∼130 km northeast of Çatalhöyük, and a birds-eye view of a town plan in the foreground. This interpretation, however, has remained controversial not least because independent evidence for a contemporaneous explosive volcanic eruption of Hasan Dağı has been lacking. Here, we document the presence of andesitic pumice veneer on the summit of Hasan Dağı, which we dated using (U-Th)/He zircon geochronology. The (U-Th)/He zircon eruption age of 8.97±0.64 ka (or 6960±640 BCE; uncertainties 2σ) overlaps closely with 14C ages for cultural strata at Çatalhöyük, including level VII containing the “map” mural. A second pumice sample from a surficial deposit near the base of Hasan Dağı records an older explosive eruption at 28.9±1.5 ka. U-Th zircon crystallization ages in both samples range from near-eruption to secular equilibrium (>380 ka). Collectively, our results reveal protracted intrusive activity at Hasan Dağı punctuated by explosive venting, and provide the first radiometric ages for a Holocene explosive eruption which was most likely witnessed by humans in the area. Geologic and geochronologic lines of evidence thus support previous interpretations that residents of Çatalhöyük artistically represented an explosive eruption of Hasan Dağı volcano. The magmatic longevity recorded by quasi-continuous zircon crystallization coupled with new evidence for late-Pleistocene and Holocene explosive eruptions implicates Hasan Dağı as a potential volcanic hazard. PMID:24416270
Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea
NASA Astrophysics Data System (ADS)
Fee, D.; Carn, S. A.; Prata, F.
2011-12-01
Nabro volcano, Eritrea erupted explosively on 12 June 2011 and produced near continuous emissions and infrasound until mid-July. The eruption disrupted air traffic and severely affected communities in the region. Although the eruption was relatively ash-poor, it produced significant SO2 emissions, including: 1) the highest SO2 column ever retrieved from space (3700 DU), 2) >1.3 Tg SO2 mass on 13 June, and 3) >2 Tg of SO2 for the entire eruption, one of the largest eruptive SO2 masses produced since the 1991 eruption of Mt. Pinatubo. Peak emissions reached well into the stratosphere (~19 km). Although the 12 June eruption was preceded by significant seismicity and clearly detected by satellite sensors, Nabro volcano is an understudied volcano that lies in a remote region with little ground-based monitoring. The Nabro eruption also produced significant infrasound signals that were recorded by two infrasound arrays: I19DJ (Djibouti, 264 km) and I32KE (Kenya, 1708 km). The I19DJ infrasound array detected the eruption with high signal-noise and provides the most detailed eruption chronology available, including eruption onset, duration, changes in intensity, etc. As seen in numerous other studies, sustained low frequency infrasound from Nabro is coincident with high-altitude emissions. Unexpectedly, the eruption also produced hundreds of short-duration, impulsive explosion signals, in addition to the sustained infrasonic jetting signals more typical of subplinian-plinian eruptions. These explosions are variable in amplitude, duration, and often cluster in groups. Here we present: 1) additional analyses, classification, and source estimation of the explosions, 2) infrasound propagation modeling to determine acoustic travel times and propagation paths, 3) detection and characterization of the SO2 emissions using the Ozone Monitoring Instrument (OMI) and Spin Enhanced Visible and Infra-Red Instrument (SEVIRI), and 4) a comparison between the relative infrasound energy and SO2 measurements to investigate the relationship between degassing and infrasound, and to speculate on possible eruption source mechanisms. This example, in addition to other recent work, demonstrates the utility of using regional and global infrasound arrays to characterize explosive volcanic eruptions, particularly in remote and poorly monitored regions. Further, comparison of SO2 emissions and infrasound lends insight into degassing processes and shows the potential to use infrasound as a real-time, remote means to detect hazardous emissions.
NASA Astrophysics Data System (ADS)
Geshi, Nobuo; Nemeth, Karoly; Noguchi, Rina; Oikawa, Teruki
2016-04-01
Combined analysis of the proximal deposit and exposed feeder-diatreme structure of the Suoana Crater of Miyakejima reveals the process of magma-water interaction controlled by the evolution of lateral fissure eruption in a stratovolcanic edifice. The Suoana Crater, an oval maar with 400 x 300 m across is one of the craters of the Suoana-Kazahaya crater chain which is formed during a fissure eruption in the 7th Century. The eruption fissure extends ~3 km from the summit area (~700 m asl) to the lower-flank area (~200m asl). The eruption fissure consists of upper maar-chain (>450 m asl) and lower scora-cone chain. As the wall of the 2000 AD caldera truncated at near the center of the Suoana Crater, the vertical section of the feeder dike - diatreme - maar system of the Suoana Crater is exposed in the caldera wall (Geshi et al., 2011). The ejected materials from the Suoana crater indicate the transition of eruption style from magmatic to phreatomagmatic. The juvenile clasts in the lower half of the deposit exhibit spatter-like shape, indicating the typical deposit from a vigorous fire fountain. Contrary, the juvenile clasts in the upper half are less vesiculated and exhibit cauliflower-shape, indicating the typical phreatomagmatic activity. This transition indicates that the magma-water interaction started at the middle of the eruption. Judging from the ratio of the thickness of the lower and upper parts, the contrast of the content of juvenile clasts, and bulk density of the deposit, the total ejected volume of magma is larger in the lower part compare to the upper part. The transition from magmatic to phreatomagmatic occurred only in the upper half of the eruption fissure, including the Suoana crater, whereas the lower half of the fissure continued dry magmatic eruption throughout their activity. The limited distribution of phreatomagmatic activity can be resulted by the magma extraction from the upper feeder dike system to the lower eruption fissure as it contributed to the general drop of magmatic pressure in the upper section of the fissure-fed conduit. The cross section of the Suoana diatreme indicates that the phreatomagmatic explosion occurred ~260 m below the original ground surface, corresponding to ~400 m above the present sea level. This elevation is clearly higher than that of the lower part of the eruption fissure which reached to the point ~ 200 m above sea level. The drop of magma flux and the general gravitational instability of the conduit resulted that ground water was able to access the still hot feeder dikes and initiate phreatomagmatic explosive eruptions (e.g., Geshi and Neri, 2014). The existence of buried summit caldera that can host large quantity of groundwater also contributes the limited distribution of phreatomagmatic activity in the summit area. We propose that this seemingly reversal trend from early magmatic to later phreatomagmatic explosive eruption style in top of large mafic caldera volcanoes in fissure fed volcanic islands is probably a far more common eruption mechanism and hence it needs to be considered in volcanic hazard scenario descriptions.
Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile
NASA Astrophysics Data System (ADS)
Weller, D. J.; Miranda, C. G.; Moreno, P. I.; Villa-Martínez, R.; Stern, C. R.
2015-12-01
Correlations among and identification of the source volcanoes for over 60 Late Glacial and Holocene tephras preserved in eight lacustrine sediment cores taken from small lakes near Coyhaique, Chile (46° S), were made based on the stratigraphic position of the tephra in the cores, lithostratigraphic data (tephra layer thickness and grain size), and tephra petrochemistry (glass color and morphology, phenocryst phases, and bulk-tephra trace element contents determined by ICP-MS). The cores preserve a record of explosive eruptions, since ˜17,800 calibrated years before present (cal years BP), of the volcanoes of the southernmost Andean Southern Volcanic Zone (SSVZ). The suggested source volcanoes for 55 of these tephras include Hudson (32 events), Mentolat (10 events), and either Macá or Cay or some of the many minor monogenetic eruptive centers (MECs; 13 events) in the area. Only four of these eruptions had been previously identified in tephra outcrops in the region, indicating the value of lake cores for identifying smaller eruptions in tephrochronologic studies. The tephra records preserved in these lake cores, combined with those in marine cores, which extend these records back to 20,000 cal years BP, prior to the Last Glacial Maximum, suggest that no significant temporal change in the frequency of explosive eruptions was associated with deglaciation. Over this time period, Hudson volcano, one of the largest and longest lived volcanoes in the Southern Andes, has had >55 eruptions (four of them were very large) and has produced >45 km3 of pyroclastic material, making it also one of the most active volcanoes in the SVZ in terms of both frequency and volume of explosive eruptions.
Seasonal variations of volcanic eruption frequencies
NASA Technical Reports Server (NTRS)
Stothers, Richard B.
1989-01-01
Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.
Rapid laccolith intrusion driven by explosive volcanic eruption
Castro, Jonathan M.; Cordonnier, Benoit; Schipper, C. Ian; Tuffen, Hugh; Baumann, Tobias S.; Feisel, Yves
2016-01-01
Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km3. Deformation and conduit flow models indicate laccolith depths of only ∼20–200 m and overpressures (∼1–10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards. PMID:27876800
Rapid laccolith intrusion driven by explosive volcanic eruption.
Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves
2016-11-23
Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.
The Plumbing System of a Highly Explosive Basaltic Volcano: Sunset Crater, AZ
NASA Astrophysics Data System (ADS)
Allison, C. M.; Roggensack, K.; Clarke, A. B.
2015-12-01
We seek to better understand highly explosive basaltic eruptions with specific focus on magmatic volatile solubility in alkali basalts and the magma plumbing system. Sunset Crater, an alkali basalt (~3.7 wt.% alkalis) scoria cone volcano, erupted explosively in 1085 AD. We analyzed 125 primary melt inclusions (MIs) from Sunset Crater tephra deposited by 2 subplinian phases and 1 Strombolian explosion to compare magma volatiles and storage conditions. We picked rapidly quenched free olivine crystals and selected large volume MIs (50-180 μm) located toward crystal cores. MIs are faceted and exhibit little major element composition variability with minor post entrapment crystallization (2-10%). MIs are relatively dry but CO2-rich. Water content varies from 0.4 wt.% to 1.5 wt.% while carbon dioxide abundance ranges between 1,150 ppm and 3,250 ppm. Most MIs contain >1 wt.% H2O and >2,150 ppm CO2. All observed MIs contain a vapor bubble, so we are evaluating MI vapor bubbles with Raman spectroscopy and re-homogenization experiments to determine the full volatile budget. Because knowledge of volatile solubility is critical to accurately interpret results from MI analyses, we measured H2O-CO2 solubility in the Sunset Crater bulk composition. Fluid-saturated experiments at 4 and 6 kbar indicate shallower entrapment pressures for these MIs than values calculated for this composition using existing models. Assuming fluid saturation, MIs record depths from 6 km to 14 km, including groupings suggesting two pauses for longer-term storage at ~6 km and ~10.5 km. We do not observe any significant differences in MIs from phases exhibiting different eruptive styles, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may govern the final eruptive character. To track shallow processes during magma ascent from depth of MI-entrapment up to the surface, we are examining MI re-entrants.
NASA Astrophysics Data System (ADS)
Arámbula-Mendoza, Raúl; Reyes-Dávila, Gabriel; Vargas-Bracamontes Dulce, M.; González-Amezcua, Miguel; Navarro-Ochoa, Carlos; Martínez-Fierros, Alejandro; Ramírez-Vázquez, Ariel
2018-02-01
Volcán de Colima, the most active volcano in Mexico, started a new eruptive cycle in January 2013. Since this date, the volcano has presented effusive and explosive activity. The beginning of the cycle was marked by a moderate Vulcanian explosion which had hyperbolical behavior in its precursory seismicity, possibly related to a shallow rupture process. Then, during the whole eruptive stage, the effusive activity was accompanied by low to moderate explosions. The explosions had energies mainly of 106 joules and were located between 0 and 1600 m below the crater, whereas the locations of tremor sources were found to be deeper, reaching up to 3800 m beneath the crater. Very-long-period signals (VLPs) have been observed with Vulcanian explosions that produce pyroclastic flows. A few number of volcano-tectonic events (VTs) were recognized during the studied period (2013-2015), indicating that the volcano is an open system. This was particularly evidenced in July 2015, when a new batch of magma rose rapidly without large precursors, only an accelerated increase in the number of rockfalls and associated RSEM. This event generated two large lava dome collapses with several pulses of material and pyroclastic flows that travelled up to 10.3 km from the summit. The seismic monitoring of Volcán de Colima is currently the only tool in real-time employed to assess the state of the volcanic activity. It is thus necessary to integrate new seismic methods as well as other geophysical monitoring techniques able to detect precursory signals of an impending hazardous event.
The 7-8 August 2008 eruption of Kasatochi Volcano, central Aleutian Islands, Alaska
NASA Astrophysics Data System (ADS)
Waythomas, Christopher F.; Scott, William E.; Prejean, Stephanie G.; Schneider, David J.; Izbekov, Pavel; Nye, Christopher J.
2010-12-01
Kasatochi volcano in the central Aleutian Islands erupted unexpectedly on 7-8 August 2008. Kasatochi has received little study by volcanologists and has had no confirmed historical eruptions. The island is an important nesting area for seabirds and a long-term biological study site of the U.S. Fish and Wildlife Service. After a notably energetic preeruptive earthquake swarm, the volcano erupted violently in a series of explosive events beginning in the early afternoon of 7 August. Each event produced ash-gas plumes that reached 14-18 km above sea level. The volcanic plume contained large amounts of SO2 and was tracked around the globe by satellite observations. The cumulative volcanic cloud interfered with air travel across the North Pacific, causing many flight cancelations that affected thousands of travelers. Visits to the volcano in 2008-2009 indicated that the eruption generated pyroclastic flows and surges that swept all flanks of the island, accumulated several tens of meters of pyroclastic debris, and increased the diameter of the island by about 800 m. Pyroclastic flow deposits contain abundant accidental lithic debris derived from the inner walls of the Kasatochi crater. Juvenile material is crystal-rich silicic andesite that ranges from slightly pumiceous to frothy pumice. Fine-grained pyroclastic surge and fall deposits with accretionary lapilli cover the lithic-rich pyroclastic flow deposits and mark a change in eruptive style from episodic explosive activity to more continuous ash emission with smaller intermittent explosions. Pyroclastic deposits completely cover the island, but wave erosion and gully development on the flanks have begun to modify the surface mantle of volcanic deposits.
Historical eruptions of Merapi Volcano, Central Java, Indonesia, 1768-1998
Voight, B.; Constantine, E.K.; Siswowidjoyo, S.; Torley, R.
2000-01-01
Information on Merapi eruptive activity is scattered and much is remotely located. A concise and well-documented summary of this activity has been long needed to assist researchers and hazard-mitigation efforts, and the aim of this paper is to synthesize information from the mid-1700s to the present. A descriptive chronology is given, with an abbreviated chronology in a table that summarizes events by year, assigns preliminary Volcanic Explosivity Index (VEI) ratings and Hartmann classifications, and provides key references. The history of volcano monitoring is also outlined. The study reveals that a major difference in eruption style exists between the twentieth and nineteenth centuries, although the periodicity between larger events seems about the same. During the twentieth century, activity has comprised mainly the effusive growth of viscous lava domes and lava tongues, with occasional gravitational collapses of parts of oversteepened domes to produce the nue??es ardentes - commonly defined as "Merapi-type". In the 1800s, however, explosive eruptions of relatively large size occurred (to VEI 4), and some associated "fountain-collapse" nue??es ardentes were larger and farther reaching than any produced in the twentieth century. These events may also be regarded as typical eruptions for Merapi. The nineteenth century activity is consistent with the long-term pattern of one relatively large event every one or two centuries, based on the long-term eruptive record deduced by others from volcanic stratigraphy. It is uncertain whether or not a "recurrence-time" model continues to apply to Merapi, but if so, Merapi could soon be due for another large event and its occurrence with only modest (or inadequately appreciated) precursors could lead to a disaster unprecedented in Merapi's history because the area around the volcano is now much more densely populated. ?? 2000 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Balcone-Boissard, H.; Boudon, G.; Poulain, P.
2017-12-01
Plinian eruptions are among the most threatening volcanic hazard responsible of gas and solid particles release into atmosphere leading to potential damages at various spatial and time scales. Such explosive activity generally involves differentiated magmas, silica-rich enough to behave as viscous media and volatile-rich enough to generate significant overpressure in ascending magma. In some rare cases, Plinian eruptions can occur with more basic magmas as basalts. Few eruptions are now recognized on Earth, on Etna (122 BC), Masaya (Fontana) or Tarawera (1886). On Ambrym volcano (Vanuatu), the caldera formation was the result of several large eruptions including some Plinian events dated around 2000 yr. BP. By applying joint textural and geochemical investigations of a representative stratigraphic section of one of these eruptions we present new arguments to discuss the origin of such explosivity for basic magma. To achieve this goal we establish a degassing budget (H2O, CO2, SO2, F, Cl) through the petrological investigation by comparing melt inclusion and residual glass. We compare these results to those of quantitative textural description of pumice clasts through SEM images treated using Image J software, thus linking textural and geochemical arguments. We thus highlight that a low volatile content is not responsible of the overpressure leading to explosivity. Textural characteristics evidence vesicle organisation and low microlite content close that described for Plinian eruption involving differentiated melt. Degassing processes occur following a closed-system degassing evolution well correlated with textural parameters. By comparison to deposits of other basaltic Plinian eruptions, we show that for 122 BC eruption of Mt Etna, textural signature is diverse although we also evidence closed-system degassing processes. This study also permits to confirm that Ambrym is a valuable contributor to halogen release into the atmosphere at a time of reflexion on volcanic halogen contribution to atmosphere budget.
Ionospheric "Volcanology": Ionospheric Detection of Volcano Eruptions
NASA Astrophysics Data System (ADS)
Astafyeva, E.; Shults, K.; Lognonne, P. H.; Rakoto, V.
2016-12-01
It is known that volcano eruptions and explosions can generate acoustic and gravity waves. These neutral waves further propagate into the atmosphere and ionosphere, where they are detectable by atmospheric and ionospheric sounding tools. So far, the features of co-volcanic ionospheric perturbations are not well understood yet. The development of the global and regional networks of ground-based GPS/GNSS receivers has opened a new era in the ionospheric detection of natural hazard events, including volcano eruptions. It is now known that eruptions with the volcanic explosivity index (VEI) of more than 2 can be detected in the ionosphere, especially in regions with dense GPS/GNSS-receiver coverage. The co-volcanic ionospheric disturbances are usually characterized as quasi-periodic oscillations. The Calbuco volcano, located in southern Chile, awoke in April 2015 after 43 years of inactivity. The first eruption began at 21:04UT on 22 April 2015, preceded by only an hour-long period of volcano-tectonic activity. This first eruption lasted 90 minutes and generated a sub-Plinian (i.e. medium to large explosive event), gray ash plume that rose 15 km above the main crater. A larger second event on 23 April began at 04:00UT (01:00LT), it lasted six hours, and also generated a sub-Plinian ash plume that rose higher than 15 km. The VEI was estimated to be 4 to 5 for these two events. In this work, we first study ionospheric TEC response to the Calbuco volcano eruptions of April 2015 by using ground-based GNSS-receivers located around the volcano. We analyze the spectral characteristics of the observed TEC variations and we estimate the propagation speed of the co-volcanic ionospheric perturbations. We further proceed with the normal mode summation technique based modeling of the ionospheric TEC variations due to the Calbuco volcano eruptions. Finally, we attempt to localize the position of the volcano from the ionospheric measurements, and we also estimate the time of the beginning of the eruption.
Shallow magma diversions during explosive diatreme-forming eruptions.
Le Corvec, Nicolas; Muirhead, James D; White, James D L
2018-04-13
The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.
Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka.
Paris, Raphaël; Bravo, Juan J Coello; González, María E Martín; Kelfoun, Karim; Nauret, François
2017-05-15
Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario.
Mt. Etna, Sicily as seen from STS-64
1994-09-19
STS064-71-037 (9-20 Sept. 1994) --- Mt. Etna on Sicily displays a steam plume from its summit. Geologists attribute the volcano's existence to the collision of tectonic plates. Unlike the sudden, explosive eruption at Rabaul, Mt. Etna's activity is ongoing and is generally not explosive - Etna's slopes have been settled with villages and cultivated land for centuries. Other Mediterranean volcanoes (like Santorini) have experienced large catastrophic eruptions. Etna recently finished a two-year eruption (ending in 1993), marked by relatively gentle lava flows down the eastern flank. It has been continually degassing since then, according to the geologists, producing an omnipresent steam plume, as seen here. The 1993 flow is difficult to identify in this image because it lies within shadows on the eastern flank, but small cinder cones on the western flank mark earlier episodes of volcanic activity. Photo credit: NASA or National Aeronautics and Space Administration
NASA Astrophysics Data System (ADS)
Jousset, Philippe; Budi-Santoso, Agus; Jolly, Arthur D.; Boichu, Marie; Surono; Dwiyono, S.; Sumarti, Sri; Hidayati, Sri; Thierry, Pierre
2013-07-01
The link between seismicity and degassing is investigated during the VEI 4 eruptions of Merapi volcano (Indonesia) in October and in early November 2010. Seismicity comprised a large number and variety of earthquakes including Volcano-Tectonic events, a sustained period of Long Period Seismicity (LPS), i.e., Long-Period events (LP), Very Long Period events (VLP) and tremor. LPS seismicity is ascribed to the excitation of fluid-filled cavity resonance and inertial displacement of fluids and magma. We investigate here LPS that occurred between 17 October and 4 November 2010 to obtain insights into the volcano eruption processes which preceded the paroxysmal phase of the eruption on 4-5 November. We proceed to the moment tensor inversion of a well-recorded large VLP event during the intrusion phase on 17 October 2010, i.e., before the first explosion on 26 October. By using two simplified models (crack and pipe), we find a shallow source for this VLP event at about 1 km to the south of the summit and less than 1 km below the surface. We analyze more than 90 LP events that occurred during the multi-phase eruption (29 October-4 November). We show that most of them have a dominant frequency in the range 0.2-4 Hz. We could locate 48 of those LP events; at least 3 clusters of LP events occurred successively. We interpret these observations as generated by different fluid-filled containers in the summit area that were excited while magma rose. We also observe significant variations of the complex frequency during the course of the eruption. We discuss these changes in terms of a variable ratio of fluid to solid densities and/or by possible conduit geometry change and/or permeability of the conduit or the edifice and/or by resonance of different fluid-containers during the release of more than 0.4 Tg of SO2 and large but unknown masses of other volcanic gases. Finally, we also discuss how the major explosions of the eruption were possibly triggered by passing waves resulting from regional tectonic earthquakes on 3 and 4 November.
Dynamics of gas-driven eruptions: Experimental simulations using CO2-H2O-polymer system
NASA Astrophysics Data System (ADS)
Zhang, Youxue; Sturtevant, B.; Stolper, E. M.
1997-02-01
We report exploratory experiments simulating gas-driven eruptions using the CO2-H2O system at room temperature as an analog of natural eruptive systems. The experimental apparatus consists of a test cell and a large tank. Initially, up to 1.0 wt% of CO2 is dissolved in liquid water under a pressure of up to 735 kPa in the test cell. The experiment is initiated by suddenly reducing the pressure of the test cell to a typical tank pressure of 10 kPa. The following are the main results: (1) The style of the process depends on the decompression ratio. There is a threshold decompression ratio above which rapid eruption occurs. (2) During rapid eruption, there is always fragmentation at the liquid-vapor interface. Fragmentation may also occur in the flow interior. (3) Initially, the top of the erupting column ascends at a constant acceleration (instead of constant velocity). (4) Average bubble radius grows as t2/3. (5) When viscosity is 20 times that of pure water or greater, a static foam may be stable after expansion to 97% vesicularity. The experiments provide several insights into natural gas-driven eruptions, including (1) the interplay between bubble growth and ascent of the erupting column must be considered for realistic modeling of bubble growth during gas-driven eruptions, (2) buoyant rise of the bubbly magma is not necessary during an explosive volcanic eruption, and (3) CO2-driven limnic eruptions can be explosive. The violence increases with the initial CO2 content dissolved in water.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.
Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E
2016-11-10
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.
Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves
Ripepe, M.; Barfucci, G.; De Angelis, S.; Delle Donne, D.; Lacanna, G.; Marchetti, E.
2016-01-01
Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models. PMID:27830768
Tephra from the 1979 soufriere explosive eruption.
Sigurdsson, H
1982-06-04
The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column.
An overview of the 2009 eruption of Redoubt Volcano, Alaska
NASA Astrophysics Data System (ADS)
Bull, Katharine F.; Buurman, Helena
2013-06-01
In March 2009, Redoubt Volcano, Alaska erupted for the first time since 1990. Explosions ejected plumes that disrupted international and domestic airspace, sent lahars more than 35 km down the Drift River to the coast, and resulted in tephra fall on communities over 100 km away. Geodetic data suggest that magma began to ascend slowly from deep in the crust and reached mid- to shallow-crustal levels as early as May, 2008. Heat flux at the volcano during the precursory phase melted ~ 4% of the Drift glacier atop Redoubt's summit. Petrologic data indicate the deeply sourced magma, low-silica andesite, temporarily arrested at 9-11 km and/or at 4-6 km depth, where it encountered and mixed with segregated stored high-silica andesite bodies. The two magma compositions mixed to form intermediate-silica andesite, and all three magma types erupted during the earliest 2009 events. Only intermediate- and high-silica andesites were produced throughout the explosive and effusive phases of the eruption. The explosive phase began with a phreatic explosion followed by a seismic swarm, which signaled the start of lava effusion on March 22, shortly prior to the first magmatic explosion early on March 23, 2009 (UTC). More than 19 explosions (or “Events”) were produced over 13 days from a single vent immediately south of the 1989-90 lava domes. During that period multiple small pyroclastic density currents flowed primarily to the north and into glacial ravines, three major lahars flooded the Drift River Terminal over 35 km down-river on the coast, tephra fall deposited on all aspects of the edifice and on several communities north and east of the volcano, and at least two, and possibly three lava domes were emplaced. Lightning accompanied almost all the explosions. A shift in the eruptive character took place following Event 9 on March 27 in terms of infrasound signal onsets, the character of repeating earthquakes, and the nature of tephra ejecta. More than nine additional explosions occurred in the next two days, followed by a hiatus in explosive activity between March 29 and April 4. During this hiatus effusion of a lava dome occurred, whose growth slowed on or around April 2. The final explosion pulverized the very poorly vesicular dome on April 4, and was immediately followed by the extrusion of the final dome that ceased growing by July 1, 2009, and reached 72 M m3 in bulk volume. The dome remains as of this writing. Effusion of the final dome in the first month produced blocky intermediate- to high-silica andesite lava, which then expanded by means of lava injection beneath a fracturing and annealing, cooling surface crust. In the first week of May, a seismic swarm accompanied extrusion of an intermediate- to high-silica andesite from the apex of the dome that was highly vesicular and characterized by lower P2O5 content. The dome remained stable throughout its growth period likely due to combined factors that include an emptied conduit system, steady degassing through coalesced vesicles in the effusing lava, and a large crater-pit created by the previous explosions. We estimate the total volume of erupted material from the 2009 eruption to be between ~ 80 M and 120 M m3 dense-rock equivalent (DRE). The aim of this report is to synthesize the results from various datasets gathered both during the eruption and retrospectively, and which are represented by the papers in this publication. We therefore provide an overall view of the 2009 eruption and an introduction to this special issue publication.
NASA Astrophysics Data System (ADS)
Jones, P. D.; Moberg, A.; Osborn, T. J.; Briffa, K. R.
Explosive volcanic eruptions are known to have an impact on surface temperatures in the two to three years after the eruption, but our ability to determine the impact is impeded by the paucity of eruptions (3-5 large events each century). We examine the response to large eruptions in instrumental temperature records for the whole Northern Hemisphere (NH) and longer European records using superposed epoch analysis. Despite the limited number of eruptions we separate the volcanoes into two groups: tropical and mid-to-high northern latitude (>40°N). The clearest response is after tropical eruptions, where the NH land temperature average cools significantly in the summer months up to three years after the eruptions, although the timing of the response differs markedly from eruption to eruption. Extending the analysis to three European regions (Fennoscandia, Central England and Central Europe) with longer temperature records shows weakly significant summer cooling after tropical eruptions over Fennoscandia, but no discernible impacts in the other two regions. The Fennoscandian series also indicates slight warming in the first, second and fourth winters (but not the third) following the eruptions, but the significance level is not reached. The lack of statistical significance (in the regional series for both summer and winter) is principally due to the greater variability of the regional series compared to the NH land temperature average, with the small number of eruptions being a contributory factor. After higher latitude eruptions significant cooling is restricted to the late summer in the NH during the eruption year, with little of significance in the longer European regional series. We also assess longer records of tree-ring density from the mid-to-high latitude regions of the NH. This analysis further highlights the dearth of major eruptions (about 20 in the last 600 years) and the differences in the spatial patterns of cooling after the eruptions. The response in the NH average of the exactlydated tree-ring density series, however, is of such a unique character, that extremely anomalous negative values can be used to determine when major eruptions occurred in the past, even though the location of the eruption remains unknown for some dates.
Volcano Hazards Assessment for Medicine Lake Volcano, Northern California
Donnelly-Nolan, Julie M.; Nathenson, Manuel; Champion, Duane E.; Ramsey, David W.; Lowenstern, Jacob B.; Ewert, John W.
2007-01-01
Medicine Lake volcano (MLV) is a very large shield-shaped volcano located in northern California where it forms part of the southern Cascade Range of volcanoes. It has erupted hundreds of times during its half-million-year history, including nine times during the past 5,200 years, most recently 950 years ago. This record represents one of the highest eruptive frequencies among Cascade volcanoes and includes a wide variety of different types of lava flows and at least two explosive eruptions that produced widespread fallout. Compared to those of a typical Cascade stratovolcano, eruptive vents at MLV are widely distributed, extending 55 km north-south and 40 km east-west. The total area covered by MLV lavas is >2,000 km2, about 10 times the area of Mount St. Helens, Washington. Judging from its long eruptive history and its frequent eruptions in recent geologic time, MLV will erupt again. Although the probability of an eruption is very small in the next year (one chance in 3,600), the consequences of some types of possible eruptions could be severe. Furthermore, the documented episodic behavior of the volcano indicates that once it becomes active, the volcano could continue to erupt for decades, or even erupt intermittently for centuries, and very likely from multiple vents scattered across the edifice. Owing to its frequent eruptions, explosive nature, and proximity to regional infrastructure, MLV has been designated a 'high threat volcano' by the U.S. Geological Survey (USGS) National Volcano Early Warning System assessment. Volcanic eruptions are typically preceded by seismic activity, but with only two seismometers located high on the volcano and no other USGS monitoring equipment in place, MLV is at present among the most poorly monitored Cascade volcanoes.
NASA Astrophysics Data System (ADS)
Ellis, B. S.; Mark, D. F.; Nix, C.; Rowe, M. C.; Wolff, J. A.; Kent, A. J.; Loewen, M. W.
2012-12-01
Yellowstone is commonly held up as the archetypal 'super-volcano', having had three major eruptive episodes at ~ 2 Ma, 1.3 Ma, and 0.6 Ma. However, given the importance of such large magnitude events on all scales from local to global, this idea has been held up to surprisingly little rigorous testing. Here we combine new high-precision Ar/Ar geochronology and mineral chemistry from multiple phases to shed new light on the explosive history of the Huckleberry Ridge and Lava Creek eruptions from the Yellowstone volcanic field. Recent high precision 40Ar/39Ar geochronology has shown that member C of the Huckleberry Ridge Tuff was erupted at least 6,000 years later than members A and B. This result is supported by significant differences in the compositions of fayalitic olivine, augite, and quartz between the different members. Mafic minerals are compositionally homogeneous with augites and fayalites of member C less magnesian than those found in members A and B. Quartz grains show a variety of textures in CL imaging and have within-grain variations in titanium (determined via EMPA and LA-ICPMS) reaching a factor of 2. Again, member C of the Huckleberry Ridge Tuff has distinct compositions of quartz (with higher Ti up to 242 ppm) than earlier erupted HRT. Quartz from Lava Creek Tuff shows differences in abundance of Ti between members A and B with member A having generally lower Ti (average 55 ppm) than member B (average 102 ppm). The mineral-scale chemistry presented here agrees with the pre-existing field evidence, radiogenic isotopic variation and high-precision geochronology to indicate that member C of Huckleberry Ridge Tuff represents a different magma to that which erupted and formed members A and B. Combining high-precision geochronology and detailed mineral-scale geochemistry from a number of different phases provides a robust method of distinguishing individual magma batches and clarifying the explosive history of a volcano. Our new data suggest that in some cases 'super-eruptions' might be better thought of as a series of large eruptions over a short timespan rather than a single gigantic event.
NASA Spacecraft Spots Large Eruption of Russian Volcano
2012-06-07
NASA Terra spacecraft acquired this image on June 2, 2012 of Sheveluch, one of the most active volcanoes on the Kamchatka peninsula, with frequent explosive events that can disrupt air traffic over the northern Pacific.
Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.
2012-01-01
The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanakākoʻi and the Uwēkahuna Tephra (Fiske et al., 2009), and both occurred when a deep caldera existed, probably with a floor at or below the water table, and external water could readily interact with the magmatic system. The next period of intense explosive activity will probably have to await the drastic deepening of the present caldera (or Halemaʻumaʻu Crater) or the formation of a new caldera.
Swanson, Donald A.; Rose, Timothy R.; Fiske, Richard S.; McGeehin, John P.
2012-01-01
The Keanakākoʻi Tephra at Kīlauea Volcano has previously been interpreted by some as the product of a caldera-forming eruption in 1790 CE. Our study, however, finds stratigraphic and 14C evidence that the tephra instead results from numerous eruptions throughout a 300-year period between about 1500 and 1800. The stratigraphic evidence includes: (1) as many as six pure lithic ash beds interleaved in sand dunes made of earlier Keanakākoʻi vitric ash, (2) three lava flows from Kīlauea and Mauna Loa interbedded with the tephra, (3) buried syneruptive cultural structures, (4) numerous intraformational water-cut gullies, and (5) abundant organic layers rich in charcoal within the tephra section. Interpretation of 97 new accelerator mass spectrometry (AMS) 14C ages and 4 previous conventional ages suggests that explosive eruptions began in 1470–1510 CE, and that explosive activity continued episodically until the early 1800s, probably with two periods of quiescence lasting several decades. Kīlauea's caldera, rather than forming in 1790, predates the first eruption of the Keanakākoʻi and collapsed in 1470–1510, immediately following, and perhaps causing, the end of the 60-year-long, 4–6 km3 ʻAilāʻau eruption from the east side of Kīlauea's summit area. The caldera was several hundred meters deep when the Keanakākoʻi began erupting, consistent with oral tradition, and probably had a volume of 4–6 km3. The caldera formed by collapse, but no eruption of lava coincided with its formation. A large volume of magma may have quickly drained from the summit reservoir and intruded into the east rift zone, perhaps in response to a major south-flank slip event, leading to summit collapse. Alternatively, magma may have slowly drained from the reservoir during the prolonged ʻAilāʻau eruption, causing episodic collapses before the final, largest downdrop took place. Two prolonged periods of episodic explosive eruptions are known at Kīlauea, the Keanakākoʻi and the Uwēkahuna Tephra (Fiske et al., 2009), and both occurred when a deep caldera existed, probably with a floor at or below the water table, and external water could readily interact with the magmatic system. The next period of intense explosive activity will probably have to await the drastic deepening of the present caldera (or Halemaʻumaʻu Crater) or the formation of a new caldera.
NASA Astrophysics Data System (ADS)
Lane, Christine; Asrat, Asfawossen; Cohen, Andy; Cullen, Victoria; Johnson, Thomas; Lamb, Henry; Martin-Jones, Catherine; Poppe, Sam; Schaebitz, Frank; Scholz, Christopher
2017-04-01
On-going research into the preservation of volcanic ash fall in stratified Holocene lake sediments in Eastern Africa reveals the level of incompleteness of our explosive eruption record. Only nine eruptions with VEI >4 are recorded in the LaMEVE database (Crosweller et al., 2012) and of the 188 Holocene eruptions listed for East African volcanoes in the Global Volcanism Programme database, only 24 are dated to > 2000 years ago (GVP, 2013). Tephrostratigraphic investigation of Holocene sediments from a number of lakes, including Lake Kivu (south of the Virunga volcanic field), Lake Victoria (west of the Kenyan Rift volcanism) and palaeolake Chew Bahir (southern Ethiopia), all reveal multiple tephra layers, which indicate vastly underestimated eruption histories. Whereas the tephra layers in Lake Kivu were all located macroscopically, no visible tephra layers were observed in the sediments from Lake Victoria and Chew Bahir. Instead, tephra are preserved as non-visible horizons (cryptotephra), revealed only after laboratory processing. These results indicate that even where we do have stratified visible tephra records, the number of past eruptions may still be a minimum. Cryptotephra studies therefore play a fundamental role in building comprehensive records of past volcanism. Challenges remain, in this understudied region, to identify the volcanic source of each of the tephra layers, which requires geochemical correlation to proximal volcanic deposits. Where correlations to source can be achieved, explosive eruption frequencies and recurrence rates may be assessed for individual volcanoes. Furthermore, if a tephra layer can be traced into multiple sedimentary sequences, the potential exists to evaluate eruption magnitude, providing a more useful criterion for risk assessment. Filling in the gaps in our understanding of East African Rift volcanism and the associated hazards is therefore critically dependent upon bringing together this important data from distal tephrostratigraphic records with the work of volcanologists studying more proximal deposits, and hazard modellers. Crosweller et al (2012) "Global database on large magnitude explosive volcanic eruptions (LaMEVE)" Journal of Applied Volcanology 1:4, doi:10.1186/2191-5040-1-4 Global Volcanism Program, 2013. Volcanoes of the World, v. 4.5.3. Venzke, E (ed.). Smithsonian Institution. Downloaded 06 Jan 2017. http://dx.doi.org/10.5479/si.GVP.VOTW4-2013
NASA Astrophysics Data System (ADS)
Karátson, Dávid; Wulf, Sabine; Veres, Daniel; Gertisser, Ralf; Telbisz, Tamás; Magyari, Enikö
2016-04-01
Ciomadul volcano is the youngest eruptive center of the Carpatho-Pannonian Region (CPR), located at the southernmost end of the Intra-Carpathian Volcanic Range, and within this, the Harghita Mountains in the East Carpathians. As a result of multi-disciplinary, ongoing studies (Karátson et al. 2013 and in review; Magyari et al. 2014; Veres et al. in prep.; Wulf et al. in review), we have obtained a number of constraints on the paleo-geomorphic evolution of the volcano. Our studies clarified that this volcano, a lava dome complex with a twin-crater (i.e. the older Mohos peat bog and the younger St. Ana lake), produced frequent explosive eruptions between 50 and 29 ky. As a result, a set of superimposed volcanic landforms were created, the chronology of which in some cases can be well constrained, in other cases further studies are required to infer their timing. Ciomadul evolved as a moderately explosive dacitic dome complex possibly for several hundred ka (see controversial chronology in Karátson et al. 2013, Harangi et al. 2015 and Szakács et al. 2015), resulting in a set of adjoining lava domes and a central complex. There is no evidence for crater-forming eruptions during that time, although the possibility of moderate explosions cannot be ruled out. Field relations show that the first exposive products are phreatomagmatic tuff series, called Turia type, dated at ca. 50 ka. These tephra units could be linked to the formation of a "Paleo-Mohos" crater, and possibly to the northern half-caldera rim which consists of massive lava dome rock and hosts Ciomadul Mare, the highest point of the volcano (1300 m). After this first explosive activity, volcanism seems to have migrated toward the W, at the site of the later St. Ana crater. Following plinian eruption(s) at ca. 47-43 ka, the explosive activity went dormant, and a lava dome might have grown up in a possibly small "Proto-St. Ana" crater. At 31-32 ka, a succession of violent magmatic explosive eruptions occurred, called "TGS" (Targu Seciuesc) eruptions. Noteworthy, these products can be pointed out from drilling in the Mohos crater, inactive by that time, the tuff units being intercalated between lacustrine deposits. The TGS eruptions, further shaping St. Ana crater, started with lava dome disruption and pumiceous block-and-ash flows, and possibly terminated by a plinian event distributing pumice fall to the SE. Finally, after some ka dormancy, the youngest eruption of Ciomadul, again of phreatomagmatic type, took place at ca. 29 ka ("Latest St. Ana" eruption). Its products can be also recovered from Mohos crater, and at the same time they drape the landscape to the S and E. That this eruption was a really violent, crater-forming event, accounting for the relatively large crater of present-day St. Ana (~1600 m), can be explained by the wide distribution of this latest tephra, identified as far as 350 km from vent near Odessa ('Roxolany tephra').
Three active volcanoes in China and their hazards
NASA Astrophysics Data System (ADS)
Wei, H.; Sparks, R. S. J.; Liu, R.; Fan, Q.; Wang, Y.; Hong, H.; Zhang, H.; Chen, H.; Jiang, C.; Dong, J.; Zheng, Y.; Pan, Y.
2003-02-01
The active volcanoes in China are located in the Changbaishan area, Jingbo Lake, Wudalianchi, Tengchong and Yutian. Several of these volcanoes have historical records of eruption and geochronological evidence of Holocene activity. Tianchi Volcano is a well-preserved Cenozoic polygenetic central volcano, and, due to its recent history of powerful explosive eruptions of felsic magmas, with over 100,000 people living on its flanks is a high-risk volcano. Explosive eruptions at 4000 and 1000 years BP involved plinian and ignimbrite phases. The Millennium eruption (1000 years BP) involved at least 20-30 km 3 of magma and was large enough to have a global impact. There are 14 Cenozoic monogenetic scoria cones and associated lavas with high-K basalt composition in the Wudalianchi volcanic field. The Laoheishan and Huoshaoshan cones and related lavas were formed in 1720-1721 and 1776 AD. There are three Holocene volcanoes, Dayingshan, Maanshan, and Heikongshan, among the 68 Quaternary volcanoes in the Tengchong volcanic province. Three of these volcanoes are identified as active, based on geothermal activity, geophysical evidence for magma, and dating of young volcanic rocks. Future eruptions of these Chinese volcanoes pose a significant threat to hundreds of thousands of people and are likely to cause substantial economic losses.
NASA Astrophysics Data System (ADS)
Barberi, F.; Coltelli, M.; Frullani, A.; Rosi, M.; Almeida, E.
1995-12-01
Cotopaxi, the highest active volcano on earth and one of the most dangerous of Ecuador is constituted by a composite cone made up of lava and tephra erupted from the summit crater. The activity of the present volcano begun with large-volume plinian eruptions followed by a succession of small-volume lava emissions and pyroclastic episodes which led to the edification of a symmetrical cone. The growth of the cone was broken by an episode of slope failure, the scar of which is now obliterated by recent and historical products. Volcanic history, eruptive frequency and characteristics of the activity were investigated by studying the stratigraphy of tephra and carrying out fifteen new 14C dating on paleosols and charcoals. The investigated period is comprised between the slope failure and the present. The deposit of the volcanic landside (dry debris avalanche of Rio Pita), previously believed to be between 13,000 and 25,000 yr B.P., is now considered to have an age slightly older than 5000 yr B.P. The stratigraphy of tephra of the last 2000 years reveals the existence of 22 fallout layers. Seven of them were dated with 14C whereas three were ascribed to the eruptions of 1534, 1768 and 1877 on the basis of comparison with historical information. Maximum clast size distribution (isopleths) of 9 tephra layers points out that the sustained explosive eruptions of Cotopaxi during the last 2000 years are characterized by very high dispersive power (plinian plumes with column heights between 28 and 39 km) and high intensity (peak mass discharges from 1.1 to 4.1 × 10 8kg/s). The magnitude (mass) of tephra fallout deposits calculated from distribution of thickness (isopaches) are, however, moderate (from 0.8 to 7.2 × 10 11 kg). The limited volume of magma erupted during each explosive episode is consistent with the lack of caldera collapses. Small-volume pyroclastic flows and surges virtually accompanied all identified tephra fallouts. During such an activity large scale snow/ice melting of the summit glacier produced devastating mudflows comparable in scale to those of 1877 eruption. By assuming a 1:1 correspondence between fallout episodes and generation of large-scale lahar, we have estimated an average recurrence of one explosive, lahartriggering event every 117 years over the last two millennia. This value compares well with that calculated by considering the period since Spanish Conquest. The probability of having an eruption like this in 100 or 200 years is respectively of 0.57 and 0.82. Such an high probability underscores the need for quick actions aimed at the mitigation of Cotopaxi lahar hazard along all the main valleys which originate from the volcano.
Pyroclast acceleration and energy partitioning in fake explosive eruptions
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Taddeucci, Jacopo; Scheu, Bettina; Valentine, Greg; Capponi, Antonio; Kueppers, Ulrich; Graettiger, Allison; Sonder, Ingo
2014-05-01
Explosive eruptions are characterized by the fast release of energy, with gas expansion playing a lead role. An excess of pressure may be generated either by the exsolution and accumulation of volatiles (e.g., vulcanian and strombolian explosions) or by in situ vaporization of water (e.g., phreato-magmatic explosions). The release of pressurized gas ejects magma and country rock pyroclasts at velocities that can reach several hundred of meters per second. The amount and velocity of pyroclasts is determined not only by the total released energy, but also by the system-specific dynamics of the energy transfer from gas to pyroclasts. In this context, analogue experiments are crucial, since the amount of available energy is determined. Here, we analyze three different experiments, designed to reproduce different aspects of explosive volcanism, focusing on the acceleration phase of the pyroclasts, in order to compare how the potential energy is transferred to the pyroclasts in different systems. In the first, shock-tube-type experiment, salt crystals resting in a pressurized Plexiglas cylinder are accelerated when a diaphragm set is suddenly opened, releasing the gas. In the second experiment, a pressurized air bubble is released in a water-filled Plexiglas pipe; diaphragm opening causes sudden expansion and bursting of the bubble and ejection of water droplets. In the last experiment, specifically focusing on phreatomagmatic eruptions, buried explosive charges accelerate the overlying loose material. All experiments were monitored by multiple high speed cameras and a variety of sensors. Despite the largely differing settings and processes, particle ejection velocity above the vent from the three experiments share a non-linear decay over time. Fitting this decay allows to estimate a characteristic depth that is related to the specific acceleration processes. Given that the initial available energy is experimentally controlled a priori, the information on the acceleration processes (and related kinetic energy) can be used to brings new constraints on the energy partition and general pyroclasts ejection mechanisms during eruptions.
Pre-eruptive storage conditions of the Holocene dacite erupted from Kizimen Volcano, Kamchatka
Browne, B.; Izbekov, P.; Eichelberger, J.; Churikova, T.
2010-01-01
This study describes an investigation of the pre-eruptive conditions (T, P and fO2) of dacite magma erupted during the KZI cycle (12,000-8400 years ago) of Kizimen Volcano, Kamchatka, the earliest, most voluminous and most explosive eruption cycle in the Kizimen record. Hydrothermal, water-saturated experiments on KZI dacite pumice coupled with titanomagnetite-ilmenite geothermometry calculations require that the KZI dacite existed at a temperature of 823 ?? 20??C and pressures of 125-150 MPa immediately prior to eruption. This estimate corresponds to a lithologic contact between Miocene volcaniclastic rocks and Pliocene-Pleistocene volcanic rocks located at a depth of 5-6 km beneath the Kizimen edifice, which may have facilitated the accumulation of atypically large volumes of gas-rich dacite during the KZI cycle.
Miller, C. Dan; Sushyar, R.; ,; Hamidi, S.
1983-01-01
The Dieng Mountains region consists of a complex of late Quaternary to recent volcanic stratocones, parasitic vents, and explosion craters. Six age groups of volcanic centers, eruptive products, and explosion craters are recognized in the region based on their morphology, degree of dissection, stratigraphic relationships, and degree of weathering. These features range in age from tens of thousands of years to events that have occurred this century. No magmatic eruptions have occurred in the Dieng Mountains region for at least several thousand years; volcanic activity during this time interval has consisted of phreatic eruptions and non-explosive hydrothermal activity. If future volcanic events are similar to those of the last few thousand years, they will consist of phreatic eruptions, associated small hot mudflows, emission of suffocating gases, and hydrothermal activity. Future phreatic eruptions may follow, or accompany, periods of increased earthquake activity; the epicenters for the seismicity may suggest where eruptive activity will occur. Under such circumstances, the populace within several kilometers of a potential eruption site should be warned of a possible eruption, given instructions about what to do in the event of an eruption, or temporarily evacuated to a safer location.
Air pressure waves from Mount St. Helens eruptions
NASA Astrophysics Data System (ADS)
Reed, Jack W.
1987-10-01
Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.
Vidal, Céline M.; Métrich, Nicole; Komorowski, Jean-Christophe; Pratomo, Indyo; Michel, Agnès; Kartadinata, Nugraha; Robert, Vincent; Lavigne, Franck
2016-01-01
Large explosive eruptions inject volcanic gases and fine ash to stratospheric altitudes, contributing to global cooling at the Earth’s surface and occasionally to ozone depletion. The modelling of the climate response to these strong injections of volatiles commonly relies on ice-core records of volcanic sulphate aerosols. Here we use an independent geochemical approach which demonstrates that the great 1257 eruption of Samalas (Lombok, Indonesia) released enough sulphur and halogen gases into the stratosphere to produce the reported global cooling during the second half of the 13th century, as well as potential substantial ozone destruction. Major, trace and volatile element compositions of eruptive products recording the magmatic differentiation processes leading to the 1257 eruption indicate that Mt Samalas released 158 ± 12 Tg of sulphur dioxide, 227 ± 18 Tg of chlorine and a maximum of 1.3 ± 0.3 Tg of bromine. These emissions stand as the greatest volcanogenic gas injection of the Common Era. Our findings not only provide robust constraints for the modelling of the combined impact of sulphur and halogens on stratosphere chemistry of the largest eruption of the last millennium, but also develop a methodology to better quantify the degassing budgets of explosive eruptions of all magnitudes. PMID:27721477
NASA Astrophysics Data System (ADS)
Liuzzo, Marco; Aiuppa, Alessandro; Salerno, Giuseppe; Burton, Mike; Federico, Cinzia; Caltabiano, Tommaso; Giudice, Gaetano; Giuffrida, Giovanni
2015-04-01
The recent effusive unrests of Stromboli occurred in 2002 and 2007 were both punctuated by short-lived, violent paroxysmal explosions generated from the volcano's summit craters. When effusive activity recently resumed on Stromboli, on 6 August 2014, much concern was raised therefore on whether or not a paroxysm would have occurred again. The occurrence of these potentially hazardous events has stimulated research toward understanding the mechanisms through which effusive eruptions can perturb the volcano's plumbing system, to eventually trigger a paroxysm. The anomalously large CO2 gas emissions measured prior to the 15 March 2007 paroxysmal explosion of Stromboli [1] have first demonstrated the chance to predict days in advance the effusive-to-explosive transition. Here 2007 and 2014 volcanic CO2 flux records have been compared for exploring causes/conditions that had not triggered any paroxysm event in the 2014 case. We show that the 2007 and 2014 datasets shared both similarities and remarkable differences. The pre-eruptive trends of CO2 and SO2 flux emissions were strikingly similar in both 2007 and 2014, indicating similar conditions within the plumbing system prior to onset of both effusive crises. In both events, the CO2 flux substantially accelerated (relative to the pre-eruptive mean flux) after onset of the effusion. However, this CO2 flux acceleration was a factor 3 lower in 2014 than in 2007, and the excess CO2 flux (the fraction of CO2 not associated with the shallowly emplaced/erupted magma, and therefore contributed by the deep magmatic system) never returned to the very high levels observed prior to the 15 March 2007 paroxysm. We conclude therefore that, although similar quantities of magma were effusively erupted in 2007 and 2014, the deep magmatic system was far less perturbed in the most recent case. We speculate that the rate at which the deep magmatic system is decompressed, rather than the level of de-compression itself, determine if the deep Stromboli's plumbing system is prone to erupt in a paroxysm, or not. [1] A. Aiuppa et al., Geophys Res Lett, 2010.
NASA Astrophysics Data System (ADS)
Woodcock, D. C.; Lane, S. J.; Gilbert, J. S.
2017-07-01
Subglacial explosive volcanism generates hazards that result from magma-ice interaction, including large flow rate meltwater flooding and fine-grained volcanic ash. We consider eruptions where subglacial cavities produced by ice melt during eruption establish a connection to the atmosphere along the base of the ice sheet that allows accumulated meltwater to drain. The resulting reduction of pressure initiates or enhances explosive phreatomagmatic volcanism within a steam-filled cavity with pyroclast impingement on the cavity roof. Heat transfer rates to melt ice in such a system have not, to our knowledge, been assessed previously. To study this system, we take an experimental approach to gain insight into the heat transfer processes and to quantify ice melt rates. We present the results of a series of analogue laboratory experiments in which a jet of steam, air, and sand at approximately 300°C impinged on the underside of an ice block. A key finding was that as the steam to sand ratio was increased, behavior ranged from predominantly horizontal ice melting to predominantly vertical melting by a mobile slurry of sand and water. For the steam to sand ratio that matches typical steam to pyroclast ratios during subglacial phreatomagmatic eruptions at 300°C, we observed predominantly vertical melting with upward ice melt rates of 1.5 mm s-1, which we argue is similar to that within the volcanic system. This makes pyroclast-ice heat transfer an important contributing ice melt mechanism under drained, low-pressure conditions that may precede subaerial explosive volcanism on sloping flanks of glaciated volcanoes.
Plinian vs. phreatomagmatic eruptions at Grímsvötn volcano, Iceland
NASA Astrophysics Data System (ADS)
Haddadi, Baptiste; Sigmarsson, Olgeir; Larsen, Guðrún
2016-04-01
Grímsvötn is a subglacial central volcano located under the Vatnajökull ice cap, above the assumed centre of the Iceland mantle plume. Historical explosive eruptions are mostly of phreatomagmatic character whereas pure magmatic behaviour may characterize the largest eruptions. What causes this different eruption behaviour is uncertain. Here, we report petrological estimates of crystallization depth and volatile degassing as recorded by sulfur concentrations in melt inclusions (MI) hosted by ferromagnesian minerals and the groundmass glass. Tephra from four eruptions, AD 1823, 1873, 2004 and 2011, were selected. The 2011 and 1873 are the largest known historical eruptions, whereas the 2004 eruption is probably amongst the smallest. The repose time preceding those eruptions is surprisingly similar, or 6 to 7 years, and the major-element compositions are uniform. Plagioclase, clinopyroxene (cpx) and olivine are the three coexisting phases at the liquidus in the quartz-tholeiites of Grímsvötn. The cpx-melt geothermobarometer (Putirka 2008) applied to the 2011 tephra reveals that cpx crystallized over a large range of P from 60 to 640 MPa (depth range: 1.7-18km) and T between 1060 and 1175°C before the Plinian eruption, therefore mobilizing the entire crustal magma system. In contrast, the phreatomagmatic tephra do not record the shallowest crystallization but interestingly all four tephra have identical median entrapment pressure of approximately 400 MPa. Therefore, the depth from which the magma bodies are derived, does not explain the difference in explosivity between those eruptions nor the variable magma volume (V) produced. Sulfur concentrations in MI are only slightly higher in the Plinian products, the difference (10%) being insufficient to explain the different eruption regimes. The ΔS, the difference between the maximum S concentrations in MI and the mean of the groundmass glass for a given eruption, is higher in the Plinian tephra. Based on literature data for the VDRE of 2004, 2011 and Laki eruptions, a semi-log correlation with R2 = 0.92 was obtained. From ΔS = 1094 + 262 log V, we calculate DRE volumes of 0.02 and 0.3 km3 for the 1823 and 1873 eruptions, respectively. The latter volume is similar to estimates from Thorarinsson (1974), whereas little is known about the relatively small 1823 eruption. This simple method allows volume assessments of older historical eruptions and, thus, the magma flux of Grímsvötn volcano over the centuries. Here, we apply the volume estimates for the five eruptions in question to evaluate the degassing efficiency of these explosive basaltic eruptions. An excellent correlation between residual S concentrations in the groundmass glass and the logarithm of the magma volume emitted (R2 = 0.98) reveals that tephra from the small phreatomagmatic eruptions in 2004 and 1823 are only partially outgassed whereas those of the Plinian 1873 and 2011 are largely outgassed, with the subaerial Laki products being almost completely outgassed. The efficiency of volatile degassing is thus correlated with the eruption size that in turn is most likely controlled by deeper-seated processes.
NASA Astrophysics Data System (ADS)
Rothery, David A.
2017-12-01
Mercury has no recognized tracts of intact primary crust analogous to lunar highland crust, probably because Mercury's iron-poor magma ocean was insufficiently dense to enable crystallized silicates to float. Its surface is accepted to consist mostly of multiple generations of lavas, rather like terrestrial "large igneous provinces" or LIPs, emplaced in greatest volumes prior to about 3.5 Ga. Subsequently, erupted volumes decreased, and became largely confined to impact craters. Plains younger than about 3.7 Ga are scarred by so few impact craters that they are mapped as "smooth plains." Older plains are termed "intercrater plains." There is no consensus on whether plains with characteristics intermediate between smooth and intercrater plains can be consistently mapped (as "intermediate plains"). The volcanic nature of Mercury's smooth plains was ambiguous on images returned by the first mission to Mercury, Mariner 10 (three flybys in 1974–1975. Better imaging by MESSENGER (in orbit 2011–2015) removed doubt by documenting innumerable ghost craters and wrinkle ridges. Vents are obscure, as is normal in LIPs, but there are good examples of streamlined islands showing the passage of fast-flowing, low-viscosity lava. The causes of mantle partial melting necessary to supply Mercury's eruptions are unclear, but secular cooling of a small, one-plate planet is expected to lead to the decrease in volcanic activity that we observe. Factors include loss of primordial heat and declining rate of radiogenic heat production, and closure of pathways by planetary thermal contraction. Lava compositions resemble komatiites but with low iron content. Regional variations may reflect lateral and vertical heterogeneities in the mantle, or different degrees of partial melting. The cessation of effusive volcanism on Mercury is hard to date because the youngest areas are small. However, it probably continued until about 1 Ga. That was not the end of volcanism on the planet. MESSENGER images show >100 "pits," which are noncircular holes up to tens of km across and up to about 4 km deep. Many are surrounded by spectrally red deposits, with faint outer edges many tens of km from the pit, interpreted as ejecta from explosive eruptions. Some pits have complex floors, suggesting vent migration. Explosive eruptions require violent gas expansion. This could be either a magmatic volatile expanding near the top of a magma conduit, or a result from heating of a crustal/near-surface volatile by approaching magma. Mercury's crust is surprisingly rich in volatiles, of which the one likely to be of most importance in driving the explosive eruptions is sulfur. We do not know when explosive volcanism began on Mercury. Cross-cutting relationships suggest that some explosion pits are considerably less than 1 Ga old, though most could easily be older than 3 Ga. They characteristically occur associated with structures inside impact craters, and while some pits have no discernible "red spot" surrounding them (perhaps because over time it has faded into the background), there is no known example of partial burial of a red spot by a smooth plains unit. Thus, there seems to have been a change in eruptive style, with (small volume) explosions supplanting (large volume) effusive events.
Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano.
Druitt, T H; Costa, F; Deloule, E; Dungan, M; Scaillet, B
2012-02-01
Caldera-forming volcanic eruptions are low-frequency, high-impact events capable of discharging tens to thousands of cubic kilometres of magma explosively on timescales of hours to days, with devastating effects on local and global scales. Because no such eruption has been monitored during its long build-up phase, the precursor phenomena are not well understood. Geophysical signals obtained during recent episodes of unrest at calderas such as Yellowstone, USA, and Campi Flegrei, Italy, are difficult to interpret, and the conditions necessary for large eruptions are poorly constrained. Here we present a study of pre-eruptive magmatic processes and their timescales using chemically zoned crystals from the 'Minoan' caldera-forming eruption of Santorini volcano, Greece, which occurred in the late 1600s BC. The results provide insights into how rapidly large silicic systems may pass from a quiescent state to one on the edge of eruption. Despite the large volume of erupted magma (40-60 cubic kilometres), and the 18,000-year gestation period between the Minoan eruption and the previous major eruption, most crystals in the Minoan magma record processes that occurred less than about 100 years before the eruption. Recharge of the magma reservoir by large volumes of silicic magma (and some mafic magma) occurred during the century before eruption, and mixing between different silicic magma batches was still taking place during the final months. Final assembly of large silicic magma reservoirs may occur on timescales that are geologically very short by comparison with the preceding repose period, with major growth phases immediately before eruption. These observations have implications for the monitoring of long-dormant, but potentially active, caldera systems.
What factors control superficial lava dome explosivity?
Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J
2015-09-30
Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.
What factors control superficial lava dome explosivity?
Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J.
2015-01-01
Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management. PMID:26420069
Impact of Future Volcanic Eruptions on Stratospheric Ozone
NASA Astrophysics Data System (ADS)
Wilmouth, D. M.; Klobas, J. E.; Weisenstein, D.; Anderson, J. G.; Salawitch, R. J.
2017-12-01
Due to the anthropogenic release of chlorine-containing chemicals such as chlorofluorocarbons into the atmosphere in the twentieth century, a large volcanic eruption occurring today would initiate chemical reactions that reduce the thickness of the ozone layer. In the future, when atmospheric levels of chlorine are reduced, large volcanic eruptions are instead expected to increase the thickness of the ozone layer, but important details relevant to this shift in volcanic impact are not well known. Here we use the AER-2D chemical transport model to simulate a Pinatubo-like volcanic eruption in contemporary and future atmospheres. In particular, we explore the sensitivity of column ozone to volcanic eruption for four different climate change scenarios over the remainder of this century and also establish the importance of bromine-containing very short-lived substances (VSLS) in determining whether future eruptions will lead to ozone depletion. We find that the ozone layer will be vulnerable to volcanic perturbation for considerably longer than previously believed. Finally, we consider the impact on column ozone of inorganic halogens being co-injected into the stratosphere following future explosive eruptions using realistic hydrogen halide to sulfur dioxide ratios.
Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin
NASA Astrophysics Data System (ADS)
Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.
2013-12-01
West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but with durations of only 20-30 ms. Interestingly, explosion activity increased at West Mata for several months, observed at more distant hydrophone stations, following the September 2009 8.1 Mw Samoan earthquake. The tephra and hydrophone data were only synchronously recorded from January to May 2010, but these data indicate a repeated record of summit explosions followed by down flank debris flows, an important process in the construction of the volcanic edifice. Bathymetric differencing between 2010 and 2011 shows two large negative anomalies at the summit and a broad positive anomaly on the east flank, interpreted as a major slump that removed part of the summit during the final magma withdrawal related to formation of the summit pit crater.
Calderas produced by hydromagmatic eruptions through permafrost in northwest Alaska
NASA Technical Reports Server (NTRS)
Beget, J. E.
1993-01-01
Most hydromagmatic eruptions on Earth are generated by interactions of lava and ground or surface water. This eruptive process typically produces craters 0.1-1 km in diameter, although a few as large as 1-2 km were described. In contrast, a series of Pleistocene hydromagmatic eruptions through 80-100-m-thick permafrost on the Seward Peninsula of Alaska produced four craters 3-8 km in diameter. These craters, called the Espenberg maars, are the four largest maars known on Earth. The thermodynamic properties of ground ice influence the rate and amount of water melted during the course of the eruption. Large quantities of water are present, but only small amounts can be melted at any time to interact with magma. This would tend to produce sustained and highly explosive low water/magma (fuel-coolant) ratios during the eruptions. An area of 400 km(sub 2) around the Alaskan maars shows strong reductions in the density of thaw lakes, ground ice, and other surface manifestations of permafrost because of deep burial by coeval tephra falls. The unusually large Espenberg maars are the first examples of calderas produced by hydromagmatic eruptions. These distinctive landforms can apparently be used as an indicator of the presence of permafrost at the time of eruption.
Explosive eruption of coal and basalt and the end-Permian mass extinction
Ogden, Darcy E.; Sleep, Norman H.
2012-01-01
The end-Permian extinction decimated up to 95% of carbonate shell-bearing marine species and 80% of land animals. Isotopic excursions, dissolution of shallow marine carbonates, and the demise of carbonate shell-bearing organisms suggest global warming and ocean acidification. The temporal association of the extinction with the Siberia flood basalts at approximately 250 Ma is well known, and recent evidence suggests these flood basalts may have mobilized carbon in thick deposits of organic-rich sediments. Large isotopic excursions recorded in this period are potentially explained by rapid venting of coal-derived methane, which has primarily been attributed to metamorphism of coal by basaltic intrusion. However, recently discovered contemporaneous deposits of fly ash in northern Canada suggest large-scale combustion of coal as an additional mechanism for rapid release of carbon. This massive coal combustion may have resulted from explosive interaction with basalt sills of the Siberian Traps. Here we present physical analysis of explosive eruption of coal and basalt, demonstrating that it is a viable mechanism for global extinction. We describe and constrain the physics of this process including necessary magnitudes of basaltic intrusion, mixing and mobilization of coal and basalt, ascent to the surface, explosive combustion, and the atmospheric rise necessary for global distribution. PMID:22184229
The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)
NASA Astrophysics Data System (ADS)
Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent
2016-09-01
We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato ( 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong vulcanian events, although its erupted volume remained low and only produced a local impact through ash fallout. We have identified at least 6 eruptions during the last 4-5 ka, including the historical AD 1750-1784 and 1987-1998 events. On the basis of this recurrent low-to-moderate explosive activity, Sabancaya must be considered active and a potentially threatening volcano.
Constraining the Energetics of Explosive Lava-Water Interactions
NASA Astrophysics Data System (ADS)
Fitch, E. P.; Fagents, S. A.
2017-12-01
During volcanic eruptions, water, such as groundwater or melted ice or snow, may interact with magma within the conduit during eruption, generating explosions when the heat of the magma causes the water to rapidly turn to steam and expand, resulting in what we call a "phreatomagmatic" eruption. In 2010, the eruption of Eyjafjallajökull volcano in Iceland produced a plume of fine ash, through the interaction between magma and glacial melt water, which resulted in the closure of substantial airspace, ultimately costing a total of almost 5 billion dollars. Although an important area of study, it is difficult to quantify the effect of eternal water on eruption intensity when the gas inside of magma is also expanding and fragmenting the magma. In an attempt to understand the energetics of magma-water interactions, small-scale laboratory experiments have been performed. Explosion energy is found to depend mostly on kinetic energy, which is proportional to dispersal distance, and fragmentation energy, which is proportional to the mean grain size of the ejecta, and the mass percent of ash-sized grains. It is thought that in order to generate heat transfer rates sufficiently rapid to cause explosive detonation, the source melt must be finely fragmented, producing ash-sized grains. Those grains undergo brittle fragmentation due to rapid cooling and weak shock waves generated by the vaporization of superheated water. We take the novel approach of studying explosive interactions between lava and water to obtain additional explosion energy constraints. We identified and analyzed numerous beds of lava-water explosion ejecta of varying explosion energy, and we analyzed the ash-sized grains of these beds in detail. We verified that the mass of ash-sized grains increases with increasing explosion energy, and can form at the interface between lava and water. We found that brittle fragmentation occurs to a greater degree as grain size decreases and that the ash of highly-energetic explosions undergoes the most brittle fragmentation. Therefore, our next steps will be to use these results to constrain the fragmentation and kinetic energy, in order to calculate the total energy and heat-transfer rate of lava-water explosions as important analogs for phreatomagmatic eruptions.
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Moore, R. L.
2003-01-01
We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from AR10030 on 2002 July 15. The TRACE CIV observations clearly show a flux tube that is helical and that is erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption starts 25 seconds after the peak of the flare s strongest impulsive spike of microwave gryosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double CME. The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection heats the two-ribbon flare and might or might not produce the helix. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is associated with rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. However, the observations are compatible with internal reconnection in a sheared magnetic arcade in the formation and eruption of the helix.
Eruptions of Lassen Peak, California, 1914 to 1917
Clynne, Michael A.; Christiansen, Robert L.; Felger, Tracey J.; Stauffer, Peter H.; Hendley, James W.
1999-01-01
On May 22, 1915, an explosive eruption at Lassen Peak, California, the southernmost active volcano in the Cascade Range, devastated nearby areas and rained volcanic ash as far away as 200 miles to the east. This explosion was the most powerful in a 1914–17 series of eruptions that were the last to occur in the Cascades before the 1980 eruption of Mount St. Helens, Washington. Recent work by scientists with the U.S. Geological Survey (USGS) in cooperation with the National Park Service is shedding new light on these eruptions.
Changes in long-term eruption dynamics at Santiaguito, Guatemala: Observations from seismic data
NASA Astrophysics Data System (ADS)
Lamb, O. D.; Lavallée, Y.; De Angelis, S.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Kendrick, J. E.; Chigna, G.; Rietbrock, A.
2016-12-01
Santiaguito (Guatemala) is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. Here we present seismic observations of ash-and-gas explosions recorded between November 2014 and June 2016 during a multi-disciplinary experiment by the University of Liverpool. The instruments, deployed around the active dome complex between 0.5 to 7 km from the vent, included 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. The geophysical data is complemented by thermal images, optical images from a UAV, and geochemical measurements of erupted material. Regular, small-to-moderate sized explosions from the El Caliente dome at Santiaguito have been common since at least the early 1970s. However, in 2015, a shift in character took place in terms of the regularity and magnitude of the explosions. Explosions became larger and less regular, and often accompanied by pyroclastic density currents. The larger explosions have caused a major morphological change at the vent, as a rubble-filled vent was replaced by a crater of 150 m depth. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath the Caliente vent, possibly triggered by processes at a greater depth in the volcanic system. This experiment represents a unique opportunity to use multi-disciplinary research to help understand the long-term eruptive dynamics of lava dome eruptions. Our observations may have implications for hazard assessment not only at Santiaguito, but at many other volcanic systems worldwide.
NASA Astrophysics Data System (ADS)
Nurfiani, D.; Bouvet de Maisonneuve, C.
2018-04-01
Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.
NASA Astrophysics Data System (ADS)
Edmonds, M.; Herd, R.; Strutt, M.; Mann, C.
2003-12-01
A large dome collapse took place on 12-13 July 2003 at Soufriere Hills Volcano. This event was the largest in magnitude during the 1995-2003 eruption and involved over 120 million m3 andesite dome and talus material. The collapse took place over 18 hours and culminated in an explosive phase that continued intermittently until 15 July 2003. Prior to the collapse, the total volume of the dome was 230 million m3 and was made up of remnants of lava erupted 1997-2001, talus material and fresh andesite dome lava erupted during the last two years. Talus made up around 50% of the total dome volume. This paper describes and interprets the pyroclastic flow and airfall deposits from this event, using other monitoring data and empirical evidence to reconstruct the dome collapse. The airfall and pyroclastic flow deposits were studied in detail over the weeks following the collapse. Airfall deposits were studied at 45 locations around the island and 75 samples were collected for analysis. The surge deposit stretched over 10 km2 on land and 35 pits were dug at intervals through it. The sections were described and sampled, yielding a further 60 samples for grain size analysis. Further sampling was carried out on the block and ash deposits in the Tar River Valley and on the Tar River Fan. Pumices from the post-collapse explosion sequence were collected and their densities measured and mass coverage estimated. Deposit maps for airfall, lithics and pumices were constructed for all of the individual events and a map to show the distribution of the main surge unit was generated. The collapse was monitored in real-time using the MVO seismic network and observations from the field. The sequence of events was as follows. From 09:00 to 18:00, low-energy pyroclastic flows took place, confined to the Tar River Valley, which reached the sea at the mouth of Tar River. These flows gradually increased in energy throughout the day but were not associated with energetic, large surges. By 18:00 the pyroclastic flows had increased in volume and were causing phreatic explosions as large, hot blocks hit the sea on the Tar River Fan. By 20:00 the pyroclastic flows had changed in character and were associated with a larger seismic signal and powerful surges that traveled up to 3 km off the coast over the surface of the sea. The most energetic phase of the eruption took place between 22:30 12 July and 01:30 13 July. The dome collapse of 12-13 July culminated in several very large individual pyroclastic flows, representing the collapse of the massive, hot, gas-rich interior of the lava dome. One very large flow was associated with a destructive and energetic surge that swept over topography to the north of the Tar River, killed 40-50 cows, removed trees at their bases and caused large clasts to become embedded in trees at a height of 1.5 m above the ground surface north of Irish Ghaut. The unloading of such large masses of lava dome from over the vent area caused large and powerful explosions. The mapping of the deposits from this event has shed light on the origins of the surge and the timing of large phreatic and magmatic explosions and has led to a new understanding of the hazard potential of large surges derived from the Tar River Valley during large dome collapses at Soufriere Hills Volcano.
NASA Astrophysics Data System (ADS)
Schindlbeck, J. C.; Kutterolf, S.; Hemming, S. R.; Wang, K. L.
2015-12-01
Including the recently drilled CRISP sites (IODP Exp. 334&344) the deep sea drilling programs have produced 69 drill holes at 29 Sites during 9 Legs at the Central American convergent margin, where the Cocos plate subducts beneath the Caribbean plate. The CAVA produced numerous plinian eruptions in the past. Although abundant in the marine sediments, information and data regarding large late Cenozoic explosive eruptions from Costa Rica, Nicaragua, Honduras, El Salvador, and Guatemala remain very sparse and discontinuous on land. We have established a tephrostratigraphy from recent through Miocene times from the unique archive of ODP/IODP sites offshore Central America in which we identify tephra source regions by geochemical fingerprinting using major and trace element glass shard compositions. Here we present first order correlations of ~500 tephra layers between multiple holes at a single site as well as between multiple sites. We identified ashes supporting Costa Rican (~130), Nicaraguan (17) and Guatemalan (27) sources as well as ~150 tephra layers from the Galápagos hotspot. Within our marine record we also identified well-known marker beds such as the Los Chocoyos tephra from Atitlán Caldera in Guatemala and the Tiribi Tuff from Costa Rica but also correlations to 15 distinct deposits from known Costa Rican and Nicaraguan eruptions within the last 4.1 Ma. These correlations, together with new radiometric age dates, provide the base for an improved tephrochronostratigraphy in this region. Finally, the new marine record of explosive volcanism offshore southern CAVA provides insights into the eruptive history of long-living volcanic complexes (e.g., Barva, Costa Rica) and into the distribution and frequency of large explosive eruptions from the Galápagos hotspot. The integrated approach of Ar/Ar age dating, correlations with on land deposits from CAVA, biostratigraphic ages and sediment accumulation rates improved the age models for the drilling sites.
NASA Technical Reports Server (NTRS)
Moore, Ron L.; Sterling, Alphonse C.
2000-01-01
We present three-dimensional sketches of die magnetic field before and during filament eruptions in flares and coronal mass ejections. Before the eruption, the overall magnetic field is a closed bipole in which the core field (the field rooted along the bipole's neutral line in the photospheric magnetic flux) is strongly sheared and has oppositely curved "elbows" that bulge out from the opposite ends of the neutral line. This core-field sigmoid runs under and is pressed down in the middle by the rest of the field in the bipole, the less-sheared envelope field rooted outside the core field (as in the model of Antiochos, Dahlburg, & Klimchuk. A filament of chromospheric-temperature plasma is often held in the core field over the neutral line. In a filament eruption, the core field undergoes an explosive eruption, the frozen-in filament plasma providing a visible tracer of the erupting field. The core-field explosion may be either confined (as in some flares) or ejective (as in CMEs that begin together with the onset of a long-duration two-ribbon flare). We present examples of each of these two kind of events as observed in sequences of coronal X-ray images from the Yohkoh SXT, and consider (1) how the explosion begins, and (2) whether confined eruptions begin in basically the same way as ejective eruptions.
Volcanic eruption volume flux estimations from very long period infrasound signals
NASA Astrophysics Data System (ADS)
Yamada, Taishi; Aoyama, Hiroshi; Nishimura, Takeshi; Iguchi, Masato; Hendrasto, Muhamad
2017-01-01
We examine very long period infrasonic signals accompanying volcanic eruptions near active vents at Lokon-Empung volcano in Indonesia, Aso, Kuchinoerabujima, and Kirishima volcanoes in Japan. The excitation of the very long period pulse is associated with an explosion, the emerging of an eruption column, and a pyroclastic density current. We model the excitation of the infrasound pulse, assuming a monopole source, to quantify the volume flux and cumulative volume of erupting material. The infrasound-derived volume flux and cumulative volume can be less than half of the video-derived results. A largely positive correlation can be seen between the infrasound-derived volume flux and the maximum eruption column height. Therefore, our result suggests that the analysis of very long period volcanic infrasound pulses can be helpful in estimating the maximum eruption column height.
Dzurisin, D.; Lockwood, J.P.; Casadevall, T.J.; Rubin, M.
1995-01-01
Kilauea volcano's reputation for relatively gentle effusive eruptions belies a violent geologic past, including several large phreatic and phreatomagmatic eruptions that are recorded by Holocene pyroclastic deposits which mantle Kilauea's summit area and the southeast flank of adjacent Mauna Loa volcano. The most widespread of these deposits is the Uwekahuna Ash Member, a basaltic surge and fall deposit emplaced during two or more eruptive episodes separated by a few decades to several centuries. It is infered that the eruptions which produced the Uwekahuna were driven by water interacting with a fluctuating magma column. The volume, extent and character of the Uwekahuna deposits underscore the hazards posed by relatively infrequent but potentially devastating explosive eruptions at Kilauea, as well as at other basaltic volcanoes. -from Authors
Lowenstern, Jacob B; Smith, Robert B; Hill, David P
2006-08-15
Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.
NASA Astrophysics Data System (ADS)
Ward, P. L.
2015-12-01
Active volcanoes of all sizes and eruptive styles, emit chlorine and bromine gases observed to deplete ozone. Effusive, basaltic volcanic eruptions, typical in Hawaii and Iceland, extrude large lava flows, depleting ozone and causing global warming. Major explosive volcanoes also deplete ozone with the same emissions, causing winter warming, but in addition eject megatons of water and sulfur dioxide into the lower stratosphere where they form sulfuric-acid aerosols whose particles grow large enough to reflect and scatter ultraviolet sunlight, causing net global cooling for a few years. The relative amounts of explosive and effusive volcanism are determined by the configuration of tectonic plates moving around Earth's surface. Detailed studies of climate change throughout geologic history, and since 1965, are not well explained by greenhouse-gas theory, but are explained quite clearly at OzoneDepletionTheory.info. Ozone concentrations vary substantially by the minute and show close relationships to weather system highs and lows (as pointed out by Dobson in the 1920s), to the height of the tropopause, and to the strength and location of polar vortices and jet streams. Integrating the effects of volcanism on ozone concentrations and the effects of ozone concentrations on synoptic weather patterns should improve weather forecasting. For example, the volcano Bárðarbunga, in central Iceland, extruded 85 km2 of basaltic lava between August 29, 2014, and February 28, 2015, having a profound effect on weather. Most surprising, more than a week before the March 4 eruption of Eyjafjallajökull in 2010, substantial amounts of ozone were released in the vicinity of the volcano precisely when surface deformation showed that magma first began moving up from sills below 4 km depth. Ozone similarly appears to have been emitted 3.5 months before the Pinatubo eruption in 1991. Readily available daily maps of ozone concentrations may allow early warning of an imminent volcanic eruption.
NASA Astrophysics Data System (ADS)
Mann, M. E.; Bohnenstiehl, D. R.; Weis, J.
2016-12-01
The submarine emplacement of new lava flows during the 2015 eruption of Axial Volcano generated a series of impulsive acoustic signals that were captured by seismic and hydrophone sensors deployed as part of the Ocean Observatories Initiative cabled array network. A catalog of >37,000 explosions was created using a four-channel waveform matching routine using 800 template arrivals. Most of the explosions are sourced from a set of lava mounds erupted along the volcano's northern rift; however, a subset of 400 explosions are located within the caldera and track the flow of lava from a vent near its eastern rim. The earliest explosion occurs at 08:00 UTC on April 24, approximately four hours after the seismicity rate began to increase and two hours after bottom pressure recorders indicate the caldera floor began to subside. Between April 24 and 28 event rates are sustained at 1000/day. The rate then decreases gradually with explosive activity ending on 21 May, coincident with the initial re-inflation of the caldera. The windowed coefficient of variation of the inter-event time is approximately 1 throughout the eruption, consistent with a random process. The size-frequency distribution shows a bimodal pattern, with the loudest explosions, having received levels up to 157 dB re 1 micro-Pa, being produced during the first few hours of the eruption.
NASA Technical Reports Server (NTRS)
Gary, G. Allen; Moore, R. L.
2004-01-01
We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.
NASA Astrophysics Data System (ADS)
Coussens, Maya; Cassidy, Michael; Watt, Sebastian F. L.; Jutzeler, Martin; Talling, Peter J.; Barfod, Dan; Gernon, Thomas M.; Taylor, Rex; Hatter, Stuart J.; Palmer, Martin R.; Montserrat Volcano Observatory
2017-03-01
Volcanism on Montserrat (Lesser Antilles arc) has migrated southwards since the formation of the Silver Hills 2.5 Ma, and has formed three successively active volcanic centres. The Centre Hills volcano was the focus of volcanism from 1-0.4 Ma, before activity commenced at the currently active Soufrière Hills volcano. The history of activity at these two volcanoes provides an opportunity to investigate the pattern of volcano behaviour on an andesitic arc island over the lifetime of individual volcanoes. Here, we describe the pyroclastic stratigraphy of subaerial exposures around central Montserrat; identifying 11 thick (> 1 m) pumiceous units derived from sustained explosive eruptions of Centre Hills from 0.8-0.4 Ma. Over 10 other, less well- exposed pumiceous units have also been identified. The pumice-rich units are interbedded with andesite lava breccias derived from effusive, dome-forming eruptions of Centre Hills. The stratigraphy indicates that large (up to magnitude 5) explosive eruptions occurred throughout the history of Centre Hills, alongside effusive activity. This behaviour at Centre Hills contrasts with Soufrière Hills, where deposits from sustained explosive eruptions are much less common and restricted to early stages of activity at the volcano, from 175-130 ka. Subsequent eruptions at Soufriere Hills have been dominated by andesitic effusive eruptions. The bulk composition, petrography and mineral chemistry of volcanic rocks from Centre Hills and Soufrière Hills are similar throughout the history of both volcanoes, except for occasional, transient departures to different magma compositions, which mark shifts in vent location or dominant eruption style. For example, the final recorded eruption of Centre Hills, before the initiation of activity at Soufrière Hills, was more silicic than any other identified eruption on Montserrat; and the basaltic South Soufrière Hills episode marked the transition to the current stage of predominantly effusive Soufrière Hills activity. The compositional stability observed throughout the history of Centre Hills and Soufrière Hills suggests that a predominance towards effusive or explosive eruption styles is not driven by major compositional shifts of magma, but may reflect local changes in long-term magma storage conditions that characterise individual episodes (on 105 year timescales) of volcanism on Montserrat. Supplementary Table 2: Complete XRF analyses for all analysed samples Supplementary Table 3: Complete ICP-MS analyses for all analysed samples. Supplementary Table 4: Plagioclase composition and precision data from SEM analysis Supplementary Table 5: Clinopyroxene composition and precision data from SEM analysis Supplementary Table 6: Orthopyroxene composition and precision data from SEM analysis Supplementary Table 7: Amphibole composition and precision data from SEM analysis Supplementary Table 8: Glass compositions from EMP analysis Supplementary Table 9: Standard Deviation of glass compositions from EMP analysis. Supplementary Table 10: Isotopic composition of argon from plagioclase crystals from select units. Data obtained using an ARGUS V multi-collector mass spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gisler, Galen R.; Weaver, R. P.; Mader, Charles L.
Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy), but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state formore » air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailuluu in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by subaerial and sub-aqueous landslides demonstrate this.« less
Systematic change in global patterns of streamflow following volcanic eruptions.
Iles, Carley E; Hegerl, Gabriele C
2015-11-01
Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (p<0.1) decrease in streamflow following eruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.
Systematic change in global patterns of streamflow following volcanic eruptions
Iles, Carley E.; Hegerl, Gabriele C.
2016-01-01
Following large explosive volcanic eruptions precipitation decreases over much of the globe1–6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8–10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20th and late 19th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions – a significant (p<0.1) decrease in streamflow following eruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability. PMID:27279897
NASA Astrophysics Data System (ADS)
Castro, Jonathan M.; Bindeman, Ilya N.; Tuffen, Hugh; Ian Schipper, C.
2014-11-01
A long-standing challenge in volcanology is to explain why explosive eruptions of silicic magma give way to lava. A widely cited idea is that the explosive-to-effusive transition manifests a two-stage degassing history whereby lava is the product of non-explosive, open-system gas release following initial explosive, closed-system degassing. Direct observations of rhyolite eruptions indicate that effusive rhyolites are in fact highly explosive, as they erupt simultaneously with violent volcanic blasts and pyroclastic fountains for months from a common vent. This explosive and effusive overlap suggests that pyroclastic processes play a key role in rendering silicic magma sufficiently degassed to generate lava. Here we use precise H-isotope and magmatic H2O measurements and textural evidence to demonstrate that effusion results from explosion(s)-lavas are the direct product of brittle deformation that fosters batched degassing into transient pyroclastic channels (tuffisites) that repetitively and explosively vent from effusing lava. Our measurements show, specifically that D/H ratios and H2O contents of a broad suite of explosive and effusive samples from Chaitén volcano (hydrous bombs, Plinian pyroclasts, tuffisite veins, and lava) define a single and continuous degassing trend that links wet explosive pyroclasts (∼ 1.6 wt.% H2O, δD = - 76.4 ‰) to dry obsidian lavas (∼ 0.13 wt.% H2O, δD = - 145.7 ‰). This geochemical pattern is best fit with batched degassing model that comprises small repeated closed-system degassing steps followed by pulses of vapour extraction. This degassing mechanism is made possible by the action of tuffisite veins, which, by tapping already vesicular or brecciated magma, allow batches of exsolved gas to rapidly and explosively escape from relatively isolated closed-system domains and large tracts of conduit magma by giving them long-range connectivity. Even though tuffisite veins render magma degassed and capable of effusing, they are nonetheless the avenues of violent gas and particle transport and thus have the potential to drive explosions when they become blocked or welded shut. Thus the effusion of silicic lava, traditionally thought to be relatively benign process, presents a particularly hazardous form of explosive volcanism.
Layered, massive and thin sediments on Mars: Possible Late Noachian to Late Amazonian tephra?
Chapman, M.G.
2002-01-01
Data from instruments on the currently orbiting Mars Global Surveyor (MGS) suggest that as an alternative interpretation to lacustrine deposits, widespread sediments on Mars may be tephra deposits of variable age, formed in part by volcano-ice interactions. The materials are often associated with outcrops of mapped geological units that have each been previously interpreted as volcanic ash deposits with identified, but unconfirmed possible volcanic vents. Spectral investigation indicates that although some outcrops are basaltic, many show moderate to high concentrations of andesite, a composition at which large explosive eruptions may be possible. In addition, many outcrops are in areas suspected to be water/ice rich. On Earth, magma and groundwater can react to create violent explosive eruptions. Observations from MGS support a pyroclastic mechanism of deposition and show some morphologies consistent with volcano-ice interactions, including subaqueous eruptions. Perhaps MGS data are finally producing more definitive evidence of the widespread tephra that were predicted to be likely in the reduced atmospheric pressure of Mars.
Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka
Paris, Raphaël; Bravo, Juan J. Coello; González, María E. Martín; Kelfoun, Karim; Nauret, François
2017-01-01
Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario. PMID:28504256
NASA Astrophysics Data System (ADS)
Battaglia, J.; Hidalgo, S.; Douchain, J. M.; Pacheco, D. A.; Cordova, J.; Alvarado, A. P.; Parra, R.
2017-12-01
Tungurahua (5023 m a.s.l.) is an andesitic volcano located in Central Ecuador. It has been erupting since September 1999. It's activity transitioned in late 2008 towards the occurrence of distinct eruptive phases separated by periods of quiescence. These phases display a great variability of eruptive patterns. In particular the onsets of these phases are quite variable, ranging from progressive increase of surface activity to violent paroxysmal explosions eventually generating pyroclastic flows and plumes up to 13.000 m elevation. The volcano is monitored by the Instituto Geofisico in Quito whose permanent monitoring network include 6 broadband and 6 short period stations. These instruments record various signals related to eruptive processes as well as Long Period and volcano-tectonique (VT) events. However, most of the VT events are scattered around the volcano at depths up to 5-10 km b.s.l.. Their relationship with eruptive activity and precursory aspect are unclear. Since October 2013, we operate a temporary network of 13 broadband stations located up to 4275 m a.s.l., including on the Eastern flank which is remote. We examined data from a reference station located near the summit (3900 m a.s.l.) with a detection and classification procedure, searching for families of similar events. This processing enlights the presence of several families of small VTs previously poorly identified. We located manually some of these events and proceeded with similarity picking using cross-correlation and waveform similarity for nearly 400 events. Finally we applied precise relocation techniques. These events are located 2-3 km below the summit and define vertically elongated streaks. Their temporal evolution shows that they occur in swarms during the days or hours preceding the paroxysmal vent opening explosions in February and April 2014. These short-term precursors could indicate the rupturing of a barrier prior to the large explosions of Tungurahua.
Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014
NASA Astrophysics Data System (ADS)
Shevtsov, Boris M.; Firstov, Pavel P.; Cherneva, Nina V.; Holzworth, Robert H.; Akbashev, Renat R.
2016-03-01
According to World Wide Lightning Location Network (WWLLN) data, a sequence of lightning discharges was detected which occurred in the area of the explosive eruption of Shiveluch volcano on 16 November 2014 in Kamchatka. Information on the ash cloud motion was confirmed by the measurements of atmospheric electricity, satellite observations and meteorological and seismic data. It was concluded that WWLLN resolution is enough to detect the earlier stage of volcanic explosive eruption when electrification processes develop the most intensively. The lightning method has the undeniable advantage for the fast remote sensing of volcanic electric activity anywhere in the world. There is a good opportunity for the development of WWLLN technology to observe explosive volcanic eruptions.
Bromine release during Plinian eruptions along the Central American Volcanic Arc
NASA Astrophysics Data System (ADS)
Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.
2010-12-01
Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb <5. Thus we observe the maximum magmatic Br-concentrations in the segements of the arc. where the input of sediment and water into the subduction system is largest and the melting column is longest. The largest eruptive emissions of Br into the atmosphere, however, occurred in Guatemala due to the large magnitude of eruptions. The most prominent example is the 84 ka Los Chocoyos eruption from Atitlán Caldera, which discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75ka) when up to four larger eruptions occurred within only several hundred years. The heavy halogen release of these eruptions may have had a cumulative effect on the atmosphere which is presently investigated by climate/atmosphere models based on our analyses as input data.
NASA Astrophysics Data System (ADS)
Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.
2011-03-01
Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (< 3.1 ka) is one of the best exposed and widely dispersed pyroclastic deposits, related to both fall and flow activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the arrival of new magma (represented in the deposit by P1 clasts) into a small, outgassed magma body which was accumulated at shallow level (mainly represented by P2 clasts). A new Chaimilla-type eruption could significantly affect the communities that have recently developed around Villarrica volcano and subsist mainly on tourism and forestry. As a result, a better understanding of the dynamics and evolution of the Chaimilla eruption is necessary for the identification of potential hazard scenarios at Villarrica volcano and, ultimately, for the risk mitigation of this populated area of Southern Chile.
NASA Astrophysics Data System (ADS)
Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn; Prata, Fred; Kazahaya, Ryunosuke; Nakamichi, Haruhisa; Iguchi, Masato
2017-12-01
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Here we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan. Six infrasound stations deployed from 12-20 February 2015 recorded the explosions. We compute numerical Green's functions using 3-D Finite Difference Time Domain modeling and a high-resolution digital elevation model. The inversion, assuming a simple acoustic monopole source, provides realistic eruption masses and excellent fit to the data for the majority of the explosions. The inversion results are compared to independent eruption masses derived from ground-based ash collection and volcanic gas measurements. Assuming realistic flow densities, our infrasound-derived eruption masses for ash-rich eruptions compare favorably to the ground-based estimates, with agreement ranging from within a factor of two to one order of magnitude. Uncertainties in the time-dependent flow density and acoustic propagation likely contribute to the mismatch between the methods. Our results suggest that realistic and accurate infrasound-based eruption mass and mass flow rate estimates can be computed using the method employed here. If accurate volcanic flow parameters are known, application of this technique could be broadly applied to enable near real-time calculation of eruption mass flow rates and total masses. These critical input parameters for volcanic eruption modeling and monitoring are not currently available.
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse
2010-01-01
Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.
Cycles of explosive and effusive eruptions at Kīlauea Volcano, Hawai‘i
Swanson, Don; Rose, Timothy R.; Mucek, Adonara E; Garcia, Michael O.; Fiske, Richard S.; Mastin, Larry G.
2014-01-01
The subaerial eruptive activity at Kīlauea Volcano (Hawai‘i) for the past 2500 yr can be divided into 3 dominantly effusive and 2 dominantly explosive periods, each lasting several centuries. The prevailing style of eruption for 60% of this time was explosive, manifested by repeated phreatic and phreatomagmatic activity in a deep summit caldera. During dominantly explosive periods, the magma supply rate to the shallow storage volume beneath the summit dropped to only a few percent of that during mainly effusive periods. The frequency and duration of explosive activity are contrary to the popular impression that Kīlauea is almost unceasingly effusive. Explosive activity apparently correlates with the presence of a caldera intersecting the water table. The decrease in magma supply rate may result in caldera collapse, because erupted or intruded magma is not replaced. Glasses with unusually high MgO, TiO2, and K2O compositions occur only in explosive tephra (and one related lava flow) and are consistent with disruption of the shallow reservoir complex during caldera formation. Kīlauea is a complex, modulated system in which melting rate, supply rate, conduit stability (in both mantle and crust), reservoir geometry, water table, and many other factors interact with one another. The hazards associated with explosive activity at Kīlauea’s summit would have major impact on local society if a future dominantly explosive period were to last several centuries. The association of lowered magma supply, caldera formation, and explosive activity might characterize other basaltic volcanoes, but has not been recognized.
MeMoVolc report on classification and dynamics of volcanic explosive eruptions
NASA Astrophysics Data System (ADS)
Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.
2016-11-01
Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.
NASA Astrophysics Data System (ADS)
Breard, E. C. P.; Lube, G.; Cronin, S. J.; Fitzgerald, R.; Kennedy, B.; Scheu, B.; Montanaro, C.; White, J. D. L.; Tost, M.; Procter, J. N.; Moebis, A.
2014-10-01
The ballistic ejection of blocks during explosive eruptions constitutes a major hazard near active volcanoes. Fields of ballistic clasts can provide important clues towards quantifying the energy, dynamics and directionality of explosive events, but detailed datasets are rare. During the 6 August 2012 hydrothermal eruption of Upper Te Maari (Tongariro), New Zealand, three explosions occurred in rapid succession within less than 20 s. The first two produced laterally-directed pyroclastic density currents (PDC), and the final vertical explosion generated an ash plume. Each of these explosions was associated with the ejection of ballistic blocks. We present detailed maps of the resulting 5.1 km2 block impact field and the distribution of the > 2200 impact craters with diameters > 2.5 m. There are two distinct regions of high crater concentration, where crater densities reach more than six times the average background density. These occur at distances of 500-700 m east and 1000-1350 west of a 430-m-long fissure that was created during the eruption. The high-density fields are characterized by a narrow radial spread of < 45° and are located along the proximal transport direction of the pyroclastic density currents. A provenance analysis of ballistic blocks allowed us to reconstruct two different eruptive vents for the explosions. The first two laterally-directed explosions were sourced from the fissure, while the third explosion occurred through the pre-existing Upper Te Maari Crater, generating a roughly axisymmetric shower of ballistics. Stratigraphic relationships between impact craters, PDC and fall deposits suggest that the ballistic blocks were initially coupled with the rapidly expanding gas-particle mixtures that produced the PDCs. Ballistic trajectory modeling, reproducing the lateral extent and main impact density pattern of the western impact field, allows estimation of the vertical expansion angle of the second and largest explosion. The calculations show that the largest proportion of the explosion energy was strongly focused as a narrow and extremely shallow (from - 3 to 15° from the horizontal) laterally expanding hydrothermal blast. The results presented here constitute an important data set for ballistic hazard assessment at Tongariro volcano and they can provide further clues towards better understanding highly energetic laterally directed volcanic explosions at similar hydrothermal fields.
The role of dyking and fault control in the rapid onset of eruption at Chaitén Volcano, Chile
Wicks, Charles; De La, Llera; Lara, L.E.; Lowenstern, J.
2011-01-01
Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile’s southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.
Do volcanic eruptions affect climate? Sulfur gases may cause cooling
NASA Technical Reports Server (NTRS)
Self, Stephen; Rampino, Michael R.
1988-01-01
The relationship between volcanic eruptions on earth and the observed climatic changes is investigated. The results of the comparison and analyses of volcanologic and climatologic data sets for the years between 1880 and 1980 indicate that changes in temperature caused by even of the largest eruptions recorded during this time were about the same as normal variations in temperature. However, when temperature records for several months or years preceding and following a given eruption were analyzed, a statistically significant temperature decrease of 0.2-0.5 C was found for the periods of one to two years immediately following some of the 19th and 20th century explosive events that prodiced large aerosol clouds (e.g., Krakatau and Agung eruptions). It is suggested that the content of sulfur in the erupted magma determines the size of aerosol cloud producing the cooling effect.
Volcanoes in the Classroom: Simulating an Eruption Column
NASA Astrophysics Data System (ADS)
Harpp, K. S.; Geist, D. J.; Koleszar, A. M.
2005-12-01
Few students have the opportunity to witness volcanic eruptions first hand. Analog models of eruptive processes provide ways for students to apply basic physical principles when field observations are not feasible. We describe a safe simulation of violent volcanic explosions, one that can be carried out simply and easily as a demonstration for specialized volcanology classes, introductory classes, and science outreach programs. Volcanic eruptions are fundamentally gas-driven phenomena. Depressurization of volatiles dissolved in magma during ascent is the driving force behind most explosive eruptions. We have developed a demonstration whereby the instructor can initiate a gas-driven eruption, which produces a dramatic but safe explosion and eruptive column. First, one pours liquid nitrogen into a weighted, plastic soda bottle, which is then sealed and placed into a trashcan filled with water. As the liquid nitrogen boils, the pressure inside the bottle increases until the seal fails, resulting in an explosion. The expansive force propels a column of water vertically, to 10 or more meters. Students can operate the demonstration themselves and carry out a sequence of self-designed variations, changing the vent size and viscosity of the "magma", for instance. They can also vary the material used as "tephra", studying the effects of projectile density, column height, and wind direction on tephra distribution. The physical measurements that students collect, such as column height and tephra radius, can be used as the basis for problem sets that explore the dynamics of eruption columns. Possible calculations include ejection velocity, the pressure needed to propel the water column, and average vesicularity of the "magma". Students can then compare their results to observations from real volcanic eruptions. We find this to be an exceedingly effective demonstration of gas-driven liquid explosions and one that is safe if done properly. [NOTE: Please do NOT attempt this demonstration without full, detailed instructions and safety precautions, see website resource below].
The 2009 eruption of Redoubt Volcano, Alaska
Bull, Katharine F.; Cameron, Cheryl; Coombs, Michelle L.; Diefenbach, Angie; Lopez, Taryn; McNutt, Steve; Neal, Christina; Payne, Allison; Power, John A.; Schneider, David J.; Scott, William E.; Snedigar, Seth; Thompson, Glenn; Wallace, Kristi; Waythomas, Christopher F.; Webley, Peter; Werner, Cynthia A.; Schaefer, Janet R.
2012-01-01
Redoubt Volcano, an ice-covered stratovolcano on the west side of Cook Inlet, erupted in March 2009 after several months of escalating unrest. The 2009 eruption of Redoubt Volcano shares many similarities with eruptions documented most recently at Redoubt in 1966–68 and 1989–90. In each case, the eruptive phase lasted several months, consisted of multiple ashproducing explosions, produced andesitic lava and tephra, removed significant amounts of ice from the summit crater and Drift glacier, generated lahars that inundated the Drift River valley, and culminated with the extrusion of a lava dome in the summit crater. Prior to the 2009 explosive phase of the eruption, precursory seismicity lasted approximately six months with the fi rst weak tremor recorded on September 23, 2008. The first phreatic explosion was recorded on March 15, and the first magmatic explosion occurred seven days later, at 22:34 on March 22. The onset of magmatic explosions was preceded by a strong, shallow swarm of repetitive earthquakes that began about 04:00 on March 20, 2009, less than three days before an explosion. Nineteen major ash-producing explosions generated ash clouds that reached heights between 17,000 ft and 62,000 ft (5.2 and 18.9 km) ASL. During ash fall in Anchorage, the Ted Stevens International Airport was shut down for 20 hours, from ~17:00 on March 28 until 13:00 on March 29. On March 23 and April 4, lahars with fl ow depths to 10 m in the upper Drift River valley inundated parts of the Drift River Terminal (DRT). The explosive phase ended on April 4 with a dome collapse at 05:58. The April 4 ash cloud reached 50,000 ft (15.2 km) and moved swiftly to the southeast, depositing up to 2 mm of ash fall in Homer, Anchor Point, and Seldovia. At least two and possibly three lava domes grew and were destroyed by explosions prior to the final lava dome extrusion that began after the April 4 event. The fi nal lava dome ceased growth by July 1, 2009, with an estimated volume of 72 Mm3
Infrasound as a Long Standing Tool for Monitoring Continental Ecuadorean Volcanoes
NASA Astrophysics Data System (ADS)
Ruiz, M. C.; Ortiz, H. D.; Hernandez, S.; Palacios, P.; Anzieta, J. C.
2017-12-01
In the last 10 years, infrasound and seismic methods have been successfully used in the continuous monitoring of eruptive activity at Tunguruhua, Reventador, Sangay and Cotopaxi volcanoes. After a dormant period of 81 years, Tungurahua woke up in 1999 and has since been characterized by vulcanian and strombolian eruptions. Beginning in July 2006, a permanent seismo-infrasonic network with 5 collocated seismic and infrasound sensors was installed through a cooperation with Japan International Cooperation Agency (JICA). It recorded more than 6,000 explosions at Tungurahua with reduced amplitudes larger than 270 Pa at 1 km from the active crater, including 3 explosions greater than 6000 Pa associated with short-lived explosions. Major and long sustained eruptions (July 14-15, 2006; August 16-17, 2006; February 6-8, 2008, May 28, 2010; December 4, 2010; December 3-4, 2011; August 18, 2012) generated seismic and infrasound tremors with complex waveforms. In 2002, Reventador volcano produced the largest eruption in Ecuador in the last century (VEI-4). Since September 2012, alternating periods of strombolian activity and short-lived vulcanian explosions are monitored by seismic and microbarometer sensors located on the south-east border of the caldera rim. Non-steady activity with fluctuations between quiescence and frequent explosions, tremor, and chugging events is recorded. Infrasound of explosions ranges from 75 to 6350 Pa in reduced peak-to-peak amplitudes. Sangay, a remote and very active volcano, is monitored by a broadband seismometer and microbarometer collocated at 8 km from the summit. Active periods during the last few months are characterized by explosion events followed by lava flows and small ash emissions. In March 2016, more than 100 explosions were recorded in a single day. Finally, in 2015 Cotopaxi volcano began its recent eruptive period after 138 years of quiescence. One month after the initiation of its eruptive activity, 76 harmonic infrasound signals with a characteristic 5 sec. period were recorded between September and December 2015 that have been related to outgassing or explosive bubble bursts that excite resonance modes in unfilled craters.
Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards
NASA Astrophysics Data System (ADS)
Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura
2016-04-01
The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess volcanic hazards for the region of Ararat valley based on numerical simulations. Our work is important as Ararat Valley host the capital city of Yerevan (population ˜ 1.4 million) and also the currently operating Armenian Nuclear Power Plant at Metsamor. References Keskin,2003. GRL 30, 1-4; Neill et al., 2015 Chemical Geology, 403, p. 24-41; Skolbeltsyn et al. 2014. Tectonics 33, 207-221.
Gas and ash emissions associated with the 2010–present activity of Sinabung Volcano, Indonesia
Primulyana, Sofyan; Kern, Christoph; Lerner, Allan; Saing, Ugan; Kunrat, Syegi; Alfianti, Hilma; Marlia, Mitha
2017-01-01
Sinabung Volcano (Sumatra, Indonesia) awoke from over 1200 years of dormancy with multiple phreatic explosions in 2010. After a period of quiescence, Sinabung activity resumed in 2013, producing frequent explosions, lava dome extrusion, and pyroclastic flows from dome collapses, becoming one of the world's most active volcanoes and displacing over 20,000 citizens. This study presents a compilation of the geochemical datasets collected by the Indonesian Center for Volcanology and Geological Hazard Mitigation (CVGHM) from 2010 - current (2016), which provides insights into the evolution of the eruption. Based on observations of SO2 emissions, ash componentry, leachate chemistry, and bulk ash geochemistry, the eruption can be split into five distinct phases. The initial stage of phreatic summit explosions occurred from August - October 2010, during which background SO2 emissions averaged ~550 ± 180 t/d (1 s.d.). An eruptive pause (phase two) starting in October 2010 abruptly ended in September 2013 with a resumption of conduit-clearing eruptions. This third phase had a relatively modest background SO2 emission rate (avg. ~410 ± 275 t/d) and produced ash consisting entirely of accidental ejecta with high S/Cl leachate ratios (up to 30), suggestive of deep-sourced magma and the incorporation of hydrothermal sulfur-bearing phases. The most intense phase of the eruption (phase four) occurred from December 2013 to February 2014, when juvenile magma first reached the surface. This period included dozens of large eruptions per day, high SO2 emission rates (average: 1,120 ± 1,030 t/d, peak: ~3,800 t/d), the onset of lava dome extrusion, and a dramatic drop in S/Cl ash leachates to ratios < 5, all reflecting increased degassing from shallow magma and the clearing out of sulfurous phases from the old hydrothermal system. From late February 2014 through the time of writing (September 2016), Sinabung settled into a relatively steady state of lower activity (phase five). Ash emissions now consist of dominantly juvenile material, and background SO2 emission rates have been progressively decreasing to an average of ~250 - 300 t/d. Starting August 2016, SO2 emissions started being measured in a continuous manner using a network of permanent scanning DOAS instruments. We find that long-term SO2 emission rates have been gradually declining at Sinabung since early 2014, consistent with an apparent decrease in magma supply. Our degassing model suggests that large explosions and pyroclastic flows could continue in the near-term owing to conduit plugging and dome collapses, remaining a major threat until the magma supply rate decreases further and the eruption ends.
Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?
NASA Astrophysics Data System (ADS)
Tartaglia, L.
2015-02-01
Violent eruptions, and consequently major mass loss, are a common feature of the so-called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8⊙) exploding in a dense H-rich circumstellar medium (CSM), produced by progenitor's mass loss prior to the SN explosion. Although the mechanisms triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ˜3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.
Interacting supernovae and supernova impostors: Evidence of incoming supernova explosions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartaglia, L.
2015-02-24
Violent eruptions, and consequently major mass loss, are a common feature of the so–called Luminous Blue Variable (LBV) stars. During major eruptive episodes LBVs mimic the behavior of real type IIn supernovae (SNe), showing comparable radiated energy and similar spectroscopic properties. For this reason these events are frequently labelled as SN impostors. Type IIn SN spectra are characterized by the presence of prominent narrow Balmer lines in emission. In most cases, SNe IIn arise from massive stars (M>8{sub ⊙}) exploding in a dense H–rich circumstellar medium (CSM), produced by progenitor’s mass loss prior to the SN explosion. Although the mechanismsmore » triggering these eruptions are still unknown, recently we had direct proofs of the connection between very massive stars, their eruptions and ejecta-CSM interacting SNe. SNe 2006jc, 2010mc, 2011ht and the controversial SN 2009ip are famous cases in which we observed the explosion of the star months to years after major outbursts. In this context, the case of a recent transient event, LSQ13zm, is extremely interesting since we observed an outburst just ∼3 weeks before the terminal SN explosion. All of this may suggest that SN impostors occasionally herald true SN explosions. Nonetheless, there are several cases where major eruptions are followed by a quiescent phase in the LBV life. The impostor SN 2007sv is one of these cases, since it showed a single outburst event. Its photometric (a relatively faint absolute magnitude at the maximum) and spectroscopic properties (low velocity and temperature of the ejecta, and the absence of the typical elements produced in the explosive nucleosynthesis) strongly suggest that SN 2007sv was the giant eruption of an LBV, which has then returned in a quiescent stage.« less
A kilohertz approach to Strombolian-style eruptions
NASA Astrophysics Data System (ADS)
Taddeucci, Jacopo; Scarlato, Piergiorgio; Del Bello, Elisabetta; Gaudin, Damien
2015-04-01
Accessible volcanoes characterized by persistent, relatively mild Strombolian-style explosive activity have historically hosted multidisciplinary studies of eruptions. These studies, focused on geophysical signals preceding, accompanying, and following the eruptions, have provided key insights on the physical processes driving the eruptions. However, the dynamic development of the single explosions that characterize this style of activity remained somewhat elusive, due to the timescales involved (order of 0.001 seconds). Recent technological advances now allow recording and synchronizing different data sources on time scales relevant to the short timescales involved in the explosions. In the last several years we developed and implemented a field setup that integrates visual and thermal imaging with acoustic and seismic recordings, all synchronized and acquired at timescales of 100-10000 Hz. This setup has been developed at several active volcanoes. On the one hand, the combination of these different techniques provides unique information on the dynamics and energetics of the explosions, including the parameterization of individual ejection pulses within the explosions, the ejection and emplacement of pyroclasts and their coupling-decoupling with the gas phases, the different stages of development of the eruption jets, and their reflection in the associated acoustic and seismic signals. On the other hand, the gained information provides foundation for better understanding and interpreting the signals acquired, at lower sampling rates but routinely, from volcano monitoring networks. Perhaps even more important, our approach allows parameterizing differences and commonalities in the explosions from different volcanoes and settings.
Experimental model of the role of cracks in the mechanism of explosive eruption of St. Helens-80
NASA Astrophysics Data System (ADS)
Kedrinskii, V. K.; Skulkin, A. A.
2017-07-01
A unique mini model of explosive volcano eruption through a formed system of cracks is developed. The process of crack formation and development is simulated by electric explosion of a conductor in a plate of optically transparent organic glass submerged into water. The explosion of a wire aligned with a through hole in the plate generates shock-wave loading along the plate and forms cracks. The fundamental role of high velocity flow in crack wedging by a high power hydrodynamic flow of a pulsating explosion cavity has been demonstrated.
Viscous plugging can enhance and modulate explosivity of strombolian eruptions
NASA Astrophysics Data System (ADS)
Del Bello, E.; Lane, S. J.; James, M. R.; Llewellin, E. W.; Taddeucci, J.; Scarlato, P.; Capponi, A.
2015-08-01
Strombolian activity is common in low-viscosity volcanism. It is characterised by quasi-periodic, short-lived explosions, which, whilst typically weak, may vary greatly in magnitude. The current paradigm for a strombolian volcanic eruption postulates a large gas bubble (slug) bursting explosively after ascending a conduit filled with low-viscosity magma. However, recent studies of pyroclast textures suggest the formation of a region of cooler, degassed, more-viscous magma at the top of the conduit is a common feature of strombolian eruptions. Following the hypothesis that such a rheological impedance could act as a 'viscous plug', which modifies and complicates gas escape processes, we conduct the first experimental investigation of this scenario. We find that: 1) the presence of a viscous plug enhances slug burst vigour; 2) experiments that include a viscous plug reproduce, and offer an explanation for, key phenomena observed in natural strombolian eruptions; 3) the presence and extent of the plug must be considered for the interpretation of infrasonic measurements of strombolian eruptions. Our scaled analogue experiments show that, as the gas slug expands on ascent, it forces the underlying low-viscosity liquid into the plug, creating a low-viscosity channel within a high-viscosity annulus. The slug's diameter and ascent rate change as it enters the channel, generating instabilities and increasing slug overpressure. When the slug reaches the surface, a more energetic burst process is observed than would be the case for a slug rising through the low-viscosity liquid alone. Fluid-dynamic instabilities cause low and high viscosity magma analogues to intermingle, and cause the burst to become pulsatory. The observed phenomena are reproduced by numerical fluid dynamic simulations at the volcanic scale, and provide a plausible explanation for pulsations, and the ejection of mingled pyroclasts, observed at Stromboli and elsewhere.
The 1793 eruption of San Martín Tuxtla volcano, Veracruz, Mexico
NASA Astrophysics Data System (ADS)
Espíndola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Schaaf, P.; Rodríguez, S. R.
2010-11-01
San Martín Tuxtla (N18.562°; W95.199°, 1659 masl) is a basaltic volcano located in southern Veracruz, a Mexican State bordering the Gulf of Mexico. It rises in a volcanic field strewn with monogenetic volcanic cones, maars and three other large volcanoes mostly dormant since the late Pliocene: Santa Marta, San Martín Pajapan and Cerro El Vigía. The latest eruptive event of San Martín occurred in 1793 and was described by Don José Mariano Moziño, a naturalist under the commission of the Viceroy of the then New Spain. In this work we present results of the study of this eruption based on historical accounts and field observations. We identified an ash deposit around the volcano related to the 1793 eruption, mapped its distribution and determined its granulometric, petrographic and geochemical characteristics. These studies suggest that the volcano began its activity with explosive phreatomagmatic explosions, which were followed by Strombolian activity; this period lasting from March to October 1793. The activity continued with an effusive phase that lasted probably 2 years. The eruption covered an area of about 480 km 2 with at least 1 cm of ash; the fines reaching distances greater than 300 km from the crater. A total mass of about 2.5 × 10 14 g was ejected and the volcanic columns probably reached altitudes of the order of 10 km during the most explosive phases. The lava emitted formed a coulee that descended the northern flank of the volcano and has an approximate volume of 2.0 × 10 7 m 3.
NASA Astrophysics Data System (ADS)
Alloway, Brent V.; Pearce, Nick J. G.; Moreno, Patricio I.; Villarosa, Gustavo; Jara, Ignacio; De Pol-Holz, Ricardo; Outes, Valeria
2017-07-01
The 2008 eruption of Volcán Chaitén (VCha) in northwestern Patagonia was the first explosive rhyolitic eruption to have occurred within a century and provided an unprecedented scientific opportunity to examine all facets of the eruption ranging from magma rheology/ascent rates to ash-fall effects on biota and infrastructure. Up to very recently it was thought that the latest eruption prior to the 2008 event occurred c. 9750 cal. a BP. Although a number of researchers have recognised additional eruptive products, but their stratigraphy, age, and geochemical attributes have not been systematically described and/or recorded. In this study, we provide a detailed examination of andic cover-beds and tephra-bearing lake sequences located both proximally and distally to VCha, which record a series of hitherto unknown rhyolitic eruptive products and place all previous observations firmly within a coherent stratigraphic framework. Through major- and trace-element glass shard geochemistry we are able to confidently verify eruptive source. A total of 20 discrete tephra beds are recognised, with at least 10 having widespread areal distributions and/or depositional imprints broadly comparable to, or greater than, the 2008-tephra event. This record indicates that VCha has been continuously but intermittently active as far back as the end of the Last Glacial Maximum (c. 18,000 cal a BP) with two dominant, genetically related magma types and an intermediary 'mixed' type. Before this the eruptive record has been largely obscured and/or erased by widespread Andean piedmont glaciation. However, based on the tempo of VCha activity over the last c. 18,000 years, older VCha eruptives can be anticipated to occur as well as future hazardous explosive events. The new eruptive inventory will ultimately be useful for correlating equivalent-aged sequences and refining long-term eruptive tempo as well as corresponding temporal changes in magmatic evolution.
Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii
Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.
2012-01-01
Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.
Late Holocene Andesitic Eruptions at Mount Rainier
NASA Astrophysics Data System (ADS)
Sisson, T. W.; Vallance, J. W.
2005-12-01
Holocene Mt. Rainier erupted much more frequently than is recorded by its 11 pumiceous tephras. In the 2.6-2.2 ka Summerland eruptive period, 6 groups of thin (1-5 mm) Sparsely Vesicular Glassy (SVG) ashes were deposited (S1-S6), followed by the 0.3 km3 C-tephra. Two groups of andesitic lava flows and one andesitic block-and-ash flow (2.45 ka) also erupted in the Summerland period (ice conceals any other products). Based on glass composition the pyroclastic flow correlates with S4 ashes that also contain pumiceous grains and rare pumice lapilli. The first of the lava groups, exposed in windows through the Emmons and Winthrop glaciers, is Sr-rich for Mt. Rainier eruptives and correlates with S5 & S6 ashes based on similar high-Sr plagioclase. The ensuing C-tephra formed by plinian eruption of mixed and mingled magma comprising 4 juvenile components: mixed porphyritic andesite pumice, crystal-poor andesite scoria, vesicular high-Sr dacite blebs in pumice and scoria, and poorly inflated crystal-rich high-Sr dacite. High-Sr components were probably entrained conduit linings and segregations from the preceding high-Sr eruptions. The youngest lava group, exposed at the summit, is normal-Sr andesite lacking mixing textures of the C-tephra, and represents eruption of another small batch of andesitic magma perhaps just after the C event. SVG ash grains have blocky-to-fluidal shapes, are rich in plagioclase microlites, and their glasses are high-SiO2 (66-78%) and low-Al2O3 (15-11%). Melting experiments yield apparent equilibration pressures <50MPa for SVG liquids. SVG ashes likely result from shallow hydromagmatic explosions as largely degassed magmas transited the upper-edifice hydrothermal system during effusive eruptions. Rare pumice lapilli codeposited with S1, S2, and S4 ashes have microlite-free dacitic glasses, one with nonreacted hbl phenocrysts. These pumice formed from magmas that ascended rapidly from reservoir depths, synchronous with or closely between effusive-hydromagmatic eruptions. Mt. Rainier's late Holocene activity was typified by repeated arrival and eruption of slightly different andesitic magmas. Most eruptions were effusions of largely degassed magma, accompanied by near-surface explosions that blanketed the proximal region with fine-grained glassy ash. Associated rapidly ascended magma led to sparse pumice, pyroclastic flows, or plinian tephra fall, depending on amount.
Tephra productivity and eruption flux of the subglacial Katla volcano, Iceland
NASA Astrophysics Data System (ADS)
Óladóttir, Bergrún Arna; Sigmarsson, Olgeir; Larsen, Guðrún
2018-07-01
The influence of the mode of magma ascent on eruption fluxes is uncertain beneath active volcanoes. To study this, the subglacial volcano Katla, Iceland, whichhas produced abundant tephra through the Holocene, has been investigated through volume estimations of the largest eruptions from the last 3500 years. Tephra volume measurements allow tephra productivity and their variation through time to be estimated. By adding the volume of lava from effusive eruptions, the total eruption flux is obtained. Tephra productivity shows variations with time, ranging from 2.0 km3/century, during the prehistoric period examined, to 0.7 km3/century, during historical time (after 939 CE). However, the average eruption flux remained unchanged ( 2.2 km3/century) during the studied 3500 years due to the large lava produced during the Eldgjá flood basalt eruption (939 CE). Following the Eldgjá event, tephra production declined and also eruption frequency, decreasing from 5.6-2.0 eruptions/century. Magma ascending vertically to the glacier -covered volcano results in explosive phreatomagmatic eruptions and tephra formation, whereas magma transferred in a laterally extended dyke leads to predominant fissural eruptions outside the glacier (e.g., Eldgjá). The mode of magma ascent thus exerts control on the eruption frequency and the volcanic style at Katla volcano without affecting the long-term eruption flux. A uniform increase in cumulative magma volume from Katla suggests a time-integrated steady-state behavior over the last 3500 years. Finally, although the large fissural eruption of Eldgjá lowered the following eruption frequency, it only temporarily affected the time averaged eruption flux of Katla.
Possible large-volume mafic explosive eruptions in the Izu arc recorded in IODP Site U1436
NASA Astrophysics Data System (ADS)
Tamura, Y.; Jutzeler, M.; Schindlbeck, J. C.; Nichols, A. R.; DeBari, S.; Gill, J.; Busby, C. J.; Blum, P.
2014-12-01
The Izu-Bonin-Mariana volcanic arc system is an excellent example of an intraoceanic convergent margin where the effects of crustal anatexis and assimilation are considered to be minimal. The Izu fore arc is a repository of ashes erupted in the Izu-Bonin frontal arc because the prevailing wind blows from west to east. IODP Site U1436 (proposed Site IBM-4GT), located at 32°23.88'N, 140°21.93'E, lies in the western part of the Izu fore arc basin, ~60 km east of the arc-front volcano Aogashima, ~170 km west of the axis of the Izu-Bonin Trench, 1.5 km west of ODP Site 792, and at 1776 mbsl. It was drilled in April-May 2014, during IODP Expedition 350, as a 150 m deep geotechnical test hole for potential future deep drilling at proposed Site IBM-4 using the D/V Chikyu. The stratigraphic record of Late Pleistocene mafic and silicic explosive volcanic products from the arc front consists of tuffaceous mud interstratified with mafic and evolved ash and lapilli, including distinctive black glassy mafic ash layers. These distinctive intervals are basaltic andesite and the most mafic deposits analyzed shipboard at Site U1436. The facies appeared to be unusually homogeneous in componentry and texture; the overwhelmingly glassy nature of the ash suggests subaqueous explosive eruption, and its good sorting suggests deposition by vertical settling through the water column from an ash plume that reached the atmosphere. An alterative hypothesis is that the ash layers have been redeposited in bathymetric lows by submarine density currents. These black glassy mafic ash layers attracted a great deal of interest among the science party because, if the first hypothesis is correct, they could record large-volume mafic explosive eruptions. As a result three more holes were drilled at Site U1436, in order to recover undisturbed examples of these layers. Samples from each hole are currently undergoing post-cruise geochemical (major, traces and volatiles) and componentry analysis to test these two hypotheses in more detail.
2500 pyroclast puzzle: probing eruptive scenarios at Volcán de Colima, Mexico
NASA Astrophysics Data System (ADS)
Kueppers, U.; Varley, N. R.; Alatorre-Ibarguengoitia, M. A.; Lavallee, Y.; Becker, S.; Berninger, N.; Goldstein, F.; Hanson, J. B.; Kolzenburg, S.; Dingwell, D. B.
2009-12-01
The Colima volcanic complex is comprised by two edifices, the extinct Nevado de Colima to the North and the active Fuego de Colima in the South. Since 1998, a dome-building phase has shown repeated shifts between lava effusion and short-lived explosive activity. Lava extrusion rates were usually low leading to the build-up of domes inside the crater but occasionally, lava spilled over the crater rim and flowed down the flanks. This effusive activity was usually associated with several ash explosions and gas exhalation events per day. In 2005, occasional block-and-ash flows from dome-collapse events travelled down the Western flanks and reached La Lumbre valley. Later that year, violent explosive eruptions destroyed the dome and sent pyroclastic flows to valleys in the South (Monte Grande) and South-East (La Arena). The transition from effusive to short-lived but highly explosive eruptive behaviour presents an interesting opportunity to study pyroclastic flow deposits from different generating mechanisms. Gas at overpressure in bubbly magma is one of the main driving forces of explosive eruptions. The change of the physical properties of evolved magmas after the fragmentation is minor. Therefore, a detailed characterisation of volcanic products reveals much information and is vital for a correct understanding of volcanic deposits. Comparing different units allows constraining the bandwidth of possible eruptive scenarios. Here, we thoroughly characterized the deposits of the above described events on site. In the field, we 1) measured the density distribution of 100 surficial juvenile and lithic clasts at 24 localities (1 * 1 m) across the length and width of the pyroclastic flow deposits; 2) sieved the matrix (approx. 30 * 30 * 30 cm) at each locality; and 3) created detailed stratigraphic logs. We observe a lower mean density and a greater variance for clasts generated by the explosive eruption. Our results highlight the different origin of the 2005 deposits on Colima. Ergo, the physical properties of eruptive products allow the constraining of eruptive scenarios and may help to better interpret volcanic deposits that have not been eye-witnessed.
NASA Astrophysics Data System (ADS)
Martin-Jones, Catherine M.; Lane, Christine S.; Pearce, Nicholas J. G.; Smith, Victoria C.; Lamb, Henry F.; Schaebitz, Frank; Viehberg, Finn; Brown, Maxwell C.; Frank, Ute; Asrat, Asfawossen
2017-04-01
A recent World Bank report found that 49 of Ethiopia's 65 known Holocene volcanoes pose a high-risk to the surrounding population. One of these volcanoes, Corbetti, located in the densely populated Main Ethiopian Rift (MER), has only one documented Holocene eruption. Any risk assessment for Corbetti is therefore highly uncertain. Reliable hazard forecasting is dependent on the completeness of volcanic records. In the case of Ethiopian Rift volcanoes complete records are hindered by frequently poorly exposed, buried and inaccessible proximal outcrops. Lake sediments can yield comprehensive, stratigraphically-resolved dossiers of past volcanism. Here we use volcanic ash (tephra) layers preserved in sediments from three MER lakes to provide the first record of Holocene volcanism for Corbetti. It shows that Corbetti has erupted explosively throughout the Holocene at an average return period of 800 years. Based on the thickness and dispersal of the tephras, at least six eruptions were of a large magnitude, and there were four eruptions in the past 2000 years. Future explosive eruptions are likely and these could have significant societal impacts, they could blanket nearby Awassa and Shashamene, home to 260,000 people, with pumice deposits. Our data indicate that the threat posed by Corbetti has been significantly underestimated. These data can be used to refine regional volcano monitoring and develop evacuation plans. This lake sediment-tephrostratigraphic approach shows significant potential for application throughout the East African Rift system, and is essential to understanding volcanic hazards in this rapidly developing region.
The 2011 eruption of Nabro volcano, Eritrea: perspectives on magmatic processes from melt inclusions
NASA Astrophysics Data System (ADS)
Donovan, Amy; Blundy, Jon; Oppenheimer, Clive; Buisman, Iris
2018-01-01
The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar.
3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions
Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.
2016-01-01
Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.
Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history
NASA Astrophysics Data System (ADS)
Thordarson, T.; Larsen, G.
2007-01-01
The large-scale volcanic lineaments in Iceland are an axial zone, which is delineated by the Reykjanes, West and North Volcanic Zones (RVZ, WVZ, NVZ) and the East Volcanic Zone (EVZ), which is growing in length by propagation to the southwest through pre-existing crust. These zones are connected across central Iceland by the Mid-Iceland Belt (MIB). Other volcanically active areas are the two intraplate belts of Öræfajökull (ÖVB) and Snæfellsnes (SVB). The principal structure of the volcanic zones are the 30 volcanic systems, where 12 are comprised of a fissure swarm and a central volcano, 7 of a central volcano, 9 of a fissure swarm and a central domain, and 2 are typified by a central domain alone. Volcanism in Iceland is unusually diverse for an oceanic island because of special geological and climatological circumstances. It features nearly all volcano types and eruption styles known on Earth. The first order grouping of volcanoes is in accordance with recurrence of eruptions on the same vent system and is divided into central volcanoes (polygenetic) and basalt volcanoes (monogenetic). The basalt volcanoes are categorized further in accordance with vent geometry (circular or linear), type of vent accumulation, characteristic style of eruption and volcanic environment (i.e. subaerial, subglacial, submarine). Eruptions are broadly grouped into effusive eruptions where >95% of the erupted magma is lava, explosive eruptions if >95% of the erupted magma is tephra (volume calculated as dense rock equivalent, DRE), and mixed eruptions if the ratio of lava to tephra occupy the range in between these two end-members. Although basaltic volcanism dominates, the activity in historical time (i.e. last 11 centuries) features expulsion of basalt, andesite, dacite and rhyolite magmas that have produced effusive eruptions of Hawaiian and flood lava magnitudes, mixed eruptions featuring phases of Strombolian to Plinian intensities, and explosive phreatomagmatic and magmatic eruptions spanning almost the entire intensity scale; from Surtseyan to Phreatoplinian in case of "wet" eruptions and Strombolian to Plinian in terms of "dry" eruptions. In historical time the magma volume extruded by individual eruptions ranges from ˜1 m 3 to ˜20 km 3 DRE, reflecting variable magma compositions, effusion rates and eruption durations. All together 205 eruptive events have been identified in historical time by detailed mapping and dating of events along with extensive research on documentation of eruptions in historical chronicles. Of these 205 events, 192 represent individual eruptions and 13 are classified as "Fires", which include two or more eruptions defining an episode of volcanic activity that lasts for months to years. Of the 159 eruptions verified by identification of their products 124 are explosive, effusive eruptions are 14 and mixed eruptions are 21. Eruptions listed as reported-only are 33. Eight of the Fires are predominantly effusive and the remaining five include explosive activity that produced extensive tephra layers. The record indicates an average of 20-25 eruptions per century in Iceland, but eruption frequency has varied on time scale of decades. An apparent stepwise increase in eruption frequency is observed over the last 1100 years that reflects improved documentation of eruptive events with time. About 80% of the verified eruptions took place on the EVZ where the four most active volcanic systems (Grímsvötn, Bárdarbunga-Veidivötn, Hekla and Katla) are located and 9%, 5%, 1% and 0.5% on the RVZ-WVZ, NVZ, ÖVB, and SVB, respectively. Source volcano for ˜4.5% of the eruptions is not known. Magma productivity over 1100 years equals about 87 km 3 DRE with basaltic magma accounting for about 79% and intermediate and acid magma accounting for 16% and 5%, respectively. Productivity is by far highest on the EVZ where 71 km 3 (˜82%) were erupted, with three flood lava eruptions accounting for more than one half of that volume. RVZ-WVZ accounts for 13% of the magma and the NWZ and the intraplate belts for 2.5% each. Collectively the axial zone (RVZ, WVZ, NVZ) has only erupted 15-16% of total magma volume in the last 1130 years.
Rapid ascent of rhyolitic magma at Chaitén volcano, Chile.
Castro, Jonathan M; Dingwell, Donald B
2009-10-08
Rhyolite magma has fuelled some of the Earth's largest explosive volcanic eruptions. Our understanding of these events is incomplete, however, owing to the previous lack of directly observed eruptions. Chaitén volcano, in Chile's northern Patagonia, erupted rhyolite magma unexpectedly and explosively on 1 May 2008 (ref. 2). Chaitén residents felt earthquakes about 24 hours before ash fell in their town and the eruption escalated into a Plinian column. Although such brief seismic forewarning of a major explosive basaltic eruption has been documented, it is unprecedented for silicic magmas. As precursory volcanic unrest relates to magma migration from the storage region to the surface, the very short pre-eruptive warning at Chaitén probably reflects very rapid magma ascent through the sub-volcanic system. Here we present petrological and experimental data that indicate that the hydrous rhyolite magma at Chaitén ascended very rapidly, with velocities of the order of one metre per second. Such rapid ascent implies a transit time from storage depths greater than five kilometres to the near surface in about four hours. This result has implications for hazard mitigation because the rapidity of ascending rhyolite means that future eruptions may provide little warning.
Bombs, flyin' high. In-flight dynamics of volcanic bombs from Strombolian to Vulcanian eruptions.
NASA Astrophysics Data System (ADS)
Taddeucci, Jacopo; Alatorre, Miguel; Cruz Vázquez, Omar; Del Bello, Elisabetta; Ricci, Tullio; Scarlato, Piergiorgio; Palladino, Danilo
2016-04-01
Bomb-sized (larger than 64 mm) pyroclasts are a common product of explosive eruptions and a considerable source of hazard, both from directly impacting on people and properties and from wildfires associated with their landing in vegetated areas. The dispersal of bombs is mostly modeled as purely ballistic trajectories controlled by gravity and drag forces associated with still air, and only recently other effects, such as the influence of eruption dynamics, the gas expansion, and in-flight collisions, are starting to be quantified both numerically and observationally. By using high-speed imaging of explosive volcanic eruptions here we attempt to calculate the drag coefficient of free-flying volcanic bombs during an eruption and at the same time we document a wide range of in-flight processes affecting bomb trajectories and introducing deviations from purely ballistic emplacement. High-speed (500 frames per second) videos of explosions at Stromboli and Etna (Italy), Fuego (Gatemala), Sakurajima (Japan), Yasur (Vanuatu), and Batu Tara (Indonesia) volcanoes provide a large assortment of free-flying bombs spanning Strombolian to Vulcanian source eruptions, basaltic to andesitic composition, centimeters to meters in size, and 10 to 300 m/s in fly velocity. By tracking the bombs during their flying trajectories we were able to: 1) measure their size, shape, and vertical component of velocity and related changes over time; and 2) measure the different interactions with the atmosphere and with other bombs. Quantitatively, these data allow us to provide the first direct measurement of the aerodynamic behavior and drag coefficient of volcanic bombs while settling, also including the effect of bomb rotation and changes in bomb shape and frontal section. We also show how our observations have the potential to parameterize a number of previously hypothesized and /or described but yet unquantified processes, including in-flight rotation, deformation, fragmentation, agglutination, and bouncing of volcanic bombs.
NASA Astrophysics Data System (ADS)
Raos, Alison M.; McPhie, Jocelyn
The Efaté Pumice Formation (EPF) is the record of a major explosive eruption that occurred in the Vanuatu arc, southwestern Pacific, at about 1 Ma. The EPF is the oldest stratigraphic unit of the Efaté Island Group and consists of a succession of non-welded, trachydacitic pumice breccia and shard-rich sand and silt beds with a minimum thickness of ˜500 m and a minimum bulk volume of approximately 85 km3. The lower part (Efaté Pumice Breccias) of the EPF comprises very thick beds composed almost exclusively of glassy, trachydacitic, pumice fragments with ragged terminations. In contrast, the upper part (Rentabau Tuffs) consists of up to 70 m of well-bedded and well-sorted shard-rich sand and silt. The clast population of this upper part comprises >95% glassy or formerly glassy shards, but fossil foraminifera are a ubiquitous and important non-volcanic component. Some glass shards have blocky, equant shapes and arcuate fracture surfaces, features typically associated with the influence of external water during fragmentation, but most are cuspate and platy bubble-wall shards. Pyroclast morphologies indicate that the Efaté Pumice Breccias were largely generated by magmatic-volatile-driven ("dry"), explosive fragmentation processes, and lithofacies characteristics indicate deposition in below-storm-wave-base environments, from eruption-sourced, water-supported density currents of waterlogged pumice. The Rentabau Tuffs are interpreted to represent a change to hydromagmatic activity in response to waning discharge that allowed ingress of water (presumably seawater) to the vent(s).
The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile.
Wicks, Charles; de la Llera, Juan Carlos; Lara, Luis E; Lowenstern, Jacob
2011-10-19
Rhyolite is the most viscous of liquid magmas, so it was surprising that on 2 May 2008 at Chaitén Volcano, located in Chile's southern Andean volcanic zone, rhyolitic magma migrated from more than 5 km depth in less than 4 hours (ref. 1) and erupted explosively with only two days of detected precursory seismic activity. The last major rhyolite eruption before that at Chaitén was the largest volcanic eruption in the twentieth century, at Novarupta volcano, Alaska, in 1912. Because of the historically rare and explosive nature of rhyolite eruptions and because of the surprisingly short warning before the eruption of the Chaitén volcano, any information about the workings of the magmatic system at Chaitén, and rhyolitic systems in general, is important from both the scientific and hazard perspectives. Here we present surface deformation data related to the Chaitén eruption based on radar interferometry observations from the Japan Aerospace Exploration Agency (JAXA) DAICHI (ALOS) satellite. The data on this explosive rhyolite eruption indicate that the rapid ascent of rhyolite occurred through dyking and that melt segregation and magma storage were controlled by existing faults.
NASA Astrophysics Data System (ADS)
Anderson, J. F.; Johnson, J. B.; Steele, A. L.; Ruiz, M. C.; Brand, B. D.
2018-04-01
During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously captured as interference. This explosion was one of Tungurahua's most powerful vulcanian eruptions since recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective method of recording lightning-related electromagnetic signals alongside infrasound. Detailed chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can elucidate them.
Earth Observation taken by the Expedition 33 crew
2012-11-09
ISS033-E-019822 (9 Nov. 2012) --- An eruption plume from the Karymsky volcano on the Kamchatka Peninsula in the Russian Federation is visible in this image photographed by an Expedition 33 crew member on the International Space Station. The Karymsky stratovolcano stands 1,536 meters above sea level, with most eruptions and occasional lava flows originating from the summit. Karymsky is the most active of Kamchatka’s eastern volcanoes, with almost constant (on a geologic time scale) volcanism occurring since at least the late 18th century when the historical record for the region begins. In light of the high levels of volcanic activity on the Kamchatka Peninsula, the Kamchatka Volcanic Eruption Response Team (KVERT) monitors the activity levels of several volcanoes and issues updates including aviation alerts and webcams. KVERT reported moderate seismic activity at Karymsky during 2-9 Nov. 2012; such activity can indicate movement of magma beneath or within a volcanic structure and can indicate that an eruption is imminent. The Tokyo Volcanic Ash Advisory Center (VAAC) subsequently reported an explosive eruption at Karymsky on Nov. 9, 2012 at 22:15 GMT. This photograph of the resulting ash plume was taken approximately one hour and 35 minutes after the eruption began. The plume extends from the summit of Karymsky (bottom center) to the southeast, with brown ash deposits darkening the snow cover below the plume. The Akademia Nauk caldera – now filled with water to form the present-day Karymsky Lake - is located to the south of Karymsky volcano. Calderas are formed by explosive eruption and emptying of a volcano’s magma chamber – leading to collapse of the structure to form a large crater-like depression. Akademia Nauk last erupted in 1996.
NASA Astrophysics Data System (ADS)
Morgan, K.; Ort, M. H.; Di Muro, A.; Parnell, R. A.; Huff, W. D.
2017-12-01
Piton de la Fournaise (PdF) is an active basaltic volcano on La Réunion island. The Bellecombe Tephra was deposited from at least three unusually explosive eruptions between 3000-5000 ka. The Bellecombe eruptions were interpreted recently to have been due to rapid depressurization of the hydrothermal system when a deep fracture opened after lateral, seaward-directed sliding of the eastern flank, late in a large effusive eruption. This project tests this hypothesis by physically, mineralogically, and chemically characterizing the Bellecombe Tephra to look for evidence of the involvement of the PdF hydrothermal system in the eruptions and understand where the eruptions initiated. The Bellecombe tephra consists of three units separated by incipient soils. Both the Upper and Lower Bellecombe deposits are mostly medium to very fine ash. Lower Bellecombe deposits, from the first two eruptions, are mostly beds of glassy ash containing minor lithic grains and olivine crystals. Hydrothermal minerals, mostly smectite, are present in a few Lower Bellecombe beds. Since these minerals are only present in some beds, the smectite formed before deposition rather than as a product of surficial alteration. The Upper Bellecombe deposits record a third eruption and vary between clast-supported crystal- and lithic-rich lapilli beds and ash beds with abundant ash pellets. The crystals are mostly olivine, with lesser pyroxene and plagioclase and sparse hydrothermal quartz. Gabbro and oceanite clasts are abundant and trachytic pumice rare in these deposits. Hydrothermal minerals are common in most Upper Bellecombe beds. The presence of smectite in some of the Lower Bellecombe beds suggests these deposits came from a system below 200 ºC. Clays in the Upper Bellecombe beds - smectite and mixed layer R0 illite/smectite - imply a system at 40-140 ºC. The hydrothermal system was involved, but might not have been the primary impetus for these eruptions, since hydrothermal minerals are not present in all of the beds, but we find no evidence of high temperatures. The lower Bellecombe vent was near the active summit whereas the Upper Bellecombe vent was from a previously more active area, and this may be reflected in the temperatures of the hydrothermal system. The abundant olivine crystals confirm a relation to a large effusive oceanite eruption.
Acoustic waves in the atmosphere and ground generated by volcanic activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichihara, Mie; Lyons, John; Oikawa, Jun
2012-09-04
This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted alsomore » to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.« less
NASA Astrophysics Data System (ADS)
Angelis, S. De; Lamb, O. D.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Chigna, G.; Lavallée, Y.; Rietbrock, A.
2016-06-01
The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.
Angelis, S De; Lamb, O D; Lamur, A; Hornby, A J; von Aulock, F W; Chigna, G; Lavallée, Y; Rietbrock, A
2016-06-28
The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.
Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska
Schneider, David J.; Hoblitt, Richard P.
2013-01-01
The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.
NASA Astrophysics Data System (ADS)
Hidalgo, Silvana; Battaglia, Jean; Bernard, Benjamin; Steele, Alexander; Arellano, Santiago; Galle, Bo
2014-05-01
Tungurahua is one of the most active volcanoes in Ecuador. It is located in Central Ecuador, 160 km South of Quito and 8 km South of the touristic town of Baños. Tungurahua had one eruption every century since 1500, with an activity characterized by ash fallouts and pyroclastic and lava flows. The current eruptive period of Tungurahua began in 1999 with multiple episodes of explosive activity that have threatened the local population. The monitoring network is constituted by 5 short period and 5 broadband seismic stations, 4 DOAS permanent instruments, 4 tiltmeters, 2 permanent high resolution GPS, 4 digital cameras and 10 acoustic flow monitors. The correct interpretation of the different data acquired by this network allows a better understanding of the eruptive behavior of Tungurahua in order to provide early warning to the local population. Tungurahua changed its behavior from a continuously erupting volcano, as it was until 2008, to a sporadically erupting one, showing clear quiescence phases lasting from 40 to 184 days, and intense activity phases lasting from 15 to 70 days. Activity phases are characterized by Strombolian and Vulcanian eruptive styles, producing ash fallouts and in a few occasions pyroclastic flows. In terms of hazard to the local population, one of the goals of monitoring Tungurahura is to forecast the onset and evolution of eruptive phases. In particular the occurrence of large Vulcanian explosions which occur when the conduit is closed is a major issue. Since 2010 we focused our study on the relation between SO2 gas emissions, the seismic and acoustic energies of explosions and the tremor amplitudes. The first observation of comparing these different datasets is that the correlation between seismic and SO2 degassing is not straightforward, and actually the relation reflects the conditions at the vent: open or closed. The onset of eruptive phases in open conduit conditions can be identified which leads to an effective eruption forecasting. An example of this behavior is the eruptive phase between December 2009 and March 2010 when SO2 measurements increased 4 days before the amplitude of tremor and 9 days before the occurrence of the first explosions. Conversely, if the vent is closed at the beginning of a phase and no evident seismic precursors are observed forecasting is hardly possible. During an ongoing eruptive phase, the relation between these parameters allows to identify periods when the conduit is totally open as degassing may occur almost without generating any seismicity. Therefore the forecasting of escalating open conduit activity or a partial closing of the system is possible. Such a case was observed and forecasted on December 2011. In this work, we present observational evidence of these mechanisms which are used to identify possible patterns of evolution of the activity, contributing to a more effective volcanic hazard assessment.
Multiphase flow modeling and simulation of explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Neri, Augusto
Recent worldwide volcanic activity, such as eruptions at Mt. St. Helens, Washington, in 1980, Mt. Pinatubo, Philippines, in 1991, as well as the ongoing eruption at Montserrat, West Indies, highlighted again the complex nature of explosive volcanic eruptions as well as the tremendous risk associated to them. In the year 2000, about 500 million people are expected to live under the shadow of an active volcano. The understanding of pyroclastic dispersion processes produced by explosive eruptions is, therefore, of primary interest, not only from the scientific point of view, but also for the huge worldwide risk associated with them. The thesis deals with an interdisciplinary research aimed at the modeling and simulation of explosive volcanic eruptions by using multiphase thermo-fluid-dynamic models. The first part of the work was dedicated to the understanding and validation of recently developed kinetic theory of two-phase flow. The hydrodynamics of fluid catalytic cracking particles in the IIT riser were simulated and compared with lab experiments. Simulation results confirm the validity of the kinetic theory approach. Transport of solids in the riser is due to dense clusters. On a time-average basis the bottom of the riser and the walls are dense, in agreement with IIT experimental data. The low frequency of oscillation (about 0.2 Hz) is also in agreement with data. The second part of the work was devoted to the development of transient two-dimensional multiphase and multicomponent flow models of pyroclastic dispersion processes. In particular, the dynamics of ground-hugging high-speed and high-temperature pyroclastic flows generated by the collapse of volcanic columns or by impulsive discrete explosions, was investigated. The model accounts for the mechanical and thermal non-equilibrium between a multicomponent gas phase and N different solid phases representative of pyroclastic particles of different sizes. Pyroclastic dispersion dynamics describes the formation of the initial vertical jet, the column collapse, and the building of the pyroclastic fountain, followed by the generation of radially spreading pyroclastic flows. The development of thermal convective instabilities in the flow lead to the formation of co-ignimbritic or phoenix clouds. Simulation results strongly highlight the importance of the multiphase flow formulation of the mixture. Large particles tend to segregate and sediment along the ground, whereas fine particles tend to form ascending buoyant plumes. Mixtures rich in fine grained particles produce larger runout of the flow and larger ascending plumes than mixtures rich in coarse particles. Simulation results appear to be qualitatively in agreement with field observations, but require to be fully validated by the simulation of well-known test cases.
Mastin, L.G.
1997-01-01
In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.
Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.
NASA Astrophysics Data System (ADS)
Bonaccorso, A.; Calvari, S.
2017-10-01
Explosive sequences are quite common at basaltic and andesitic volcanoes worldwide. Studies aimed at short-term forecasting are usually based on seismic and ground deformation measurements, which can be used to constrain the source region and quantify the magma volume involved in the eruptive process. However, during single episodes of explosive sequences, integration of camera remote sensing and geophysical data are scant in literature, and the total volume of pyroclastic products is not determined. In this study, we calculate eruption parameters for four powerful lava fountains occurring at the main and oldest Mt. Etna summit crater, Voragine, between 3 and 5 December 2015. These episodes produced impressive eruptive columns and plume clouds, causing lapilli and ash fallout to more than 100 km away. We analyse these paroxysmal events by integrating the images recorded by a network of monitoring cameras and the signals from three high-precision borehole strainmeters. From the camera images we calculated the total erupted volume of fluids (gas plus pyroclastics), inferring amounts from 1.9 ×109 m3 (first event) to 0.86 ×109 m3 (third event). Strain changes recorded during the first and most powerful event were used to constrain the depth of the source. The ratios of strain changes recorded at two stations during the four lava fountains were used to constrain the pyroclastic fraction for each eruptive event. The results revealed that the explosive sequence was characterized by a decreasing trend of erupted pyroclastics with time, going from 41% (first event) to 13% (fourth event) of the total erupted pyroclastic volume. Moreover, the volume ratio fluid/pyroclastic decreased markedly in the fourth and last event. To the best of our knowledge, this is the first time ever that erupted volumes of both fluid and pyroclastics have been estimated for an explosive sequence from a monitoring system using permanent cameras and high precision strainmeters. During future explosive paroxysmal sequences this new approach might help in monitoring their evolution also to understand when/if they are going to finish. Knowledge of the total gas and pyroclastic fractions erupted during each lava fountain episode would improve our understanding of their processes and eruptive behaviour.
Volcanic Eruption Forecasts From Accelerating Rates of Drumbeat Long-Period Earthquakes
NASA Astrophysics Data System (ADS)
Bell, Andrew F.; Naylor, Mark; Hernandez, Stephen; Main, Ian G.; Gaunt, H. Elizabeth; Mothes, Patricia; Ruiz, Mario
2018-02-01
Accelerating rates of quasiperiodic "drumbeat" long-period earthquakes (LPs) are commonly reported before eruptions at andesite and dacite volcanoes, and promise insights into the nature of fundamental preeruptive processes and improved eruption forecasts. Here we apply a new Bayesian Markov chain Monte Carlo gamma point process methodology to investigate an exceptionally well-developed sequence of drumbeat LPs preceding a recent large vulcanian explosion at Tungurahua volcano, Ecuador. For more than 24 hr, LP rates increased according to the inverse power law trend predicted by material failure theory, and with a retrospectively forecast failure time that agrees with the eruption onset within error. LPs resulted from repeated activation of a single characteristic source driven by accelerating loading, rather than a distributed failure process, showing that similar precursory trends can emerge from quite different underlying physics. Nevertheless, such sequences have clear potential for improving forecasts of eruptions at Tungurahua and analogous volcanoes.
Uplift, thermal unrest and magma intrusion at Yellowstone caldera
Wicks, Charles W.; Thatcher, Wayne; Dzurisin, Daniel; Svarc, Jerry
2006-01-01
The Yellowstone caldera, in the western United States, formed 640,000 years ago when an explosive eruption ejected 1,000 km3 of material1. It is the youngest of a series of large calderas that formed during sequential cataclysmic eruptions that began 16 million years ago in eastern Oregon and northern Nevada. The Yellowstone caldera was largely buried by rhyolite lava flows during eruptions that occurred from 150,000 to 70,000 years ago1. Since the last eruption, Yellowstone has remained restless, with high seismicity, continuing uplift/subsidence episodes with movements of 70 cm historically2 to several metres since the Pleistocene epoch3, and intense hydrothermal activity. Here we present observations of a new mode of surface deformation in Yellowstone, based on radar interferometry observations from the European Space Agency ERS-2 satellite. We infer that the observed pattern of uplift and subsidence results from variations in the movement of molten basalt into and out of the Yellowstone volcanic system.
Uplift, thermal unrest and magma intrusion at Yellowstone caldera.
Wicks, Charles W; Thatcher, Wayne; Dzurisin, Daniel; Svarc, Jerry
2006-03-02
The Yellowstone caldera, in the western United States, formed approximately 640,000 years ago when an explosive eruption ejected approximately 1,000 km3 of material. It is the youngest of a series of large calderas that formed during sequential cataclysmic eruptions that began approximately 16 million years ago in eastern Oregon and northern Nevada. The Yellowstone caldera was largely buried by rhyolite lava flows during eruptions that occurred from approximately 150,000 to approximately 70,000 years ago. Since the last eruption, Yellowstone has remained restless, with high seismicity, continuing uplift/subsidence episodes with movements of approximately 70 cm historically to several metres since the Pleistocene epoch, and intense hydrothermal activity. Here we present observations of a new mode of surface deformation in Yellowstone, based on radar interferometry observations from the European Space Agency ERS-2 satellite. We infer that the observed pattern of uplift and subsidence results from variations in the movement of molten basalt into and out of the Yellowstone volcanic system.
Contrasting eruption styles of the 147 Kimberlite, Fort à la Corne, Saskatchewan, Canada
NASA Astrophysics Data System (ADS)
Lefebvre, Nathalie; Kurszlaukis, Stephan
2008-06-01
The Cretaceous Fort à la Corne (FALC) kimberlite field was active over a time span of ~ 20 Ma with contemporaneous terrestrial (Mannville Group) to marine (Lower Colorado Group) background sedimentation. Steep-sided pipes, craters and positive landform volcanoes such as scoria or tuff cones are thought to have formed during that period. The 147 Kimberlite is located in the SE section of the field's main cluster and is part of the large (~ 377.5 ha) Orion North volcanic complex. Based on logging of 25 drill cores, the morphology of the country rock/kimberlite interface suggests excavation of a complex crater field down to the upper portion of the Mannville Group sedimentary deposits. At least two types of volcaniclastic deposits are identified: a main kimberlite unit that is typically characterized by crustal xenolith-poor (1-2%), normal graded beds possibly deposited as turbidites in a subaqueous environment, originating from the nearby 148 tephra cone and infilling the adjacent 147 crater, and a second unit, located on the NE margin of the 147 Kimberlite, that represents a thick (~ 60 m) sequence of large (up to 22 m) sedimentary country rock blocks located at least 60 m above their original stratigraphic position. We suggest the following time sequence of events: Crater excavation as a consequence of a shallow magma fragmentation level within the uppermost country rock sequences, together with several closely spaced eruptive centres initially formed the complex, intercalated crater field. Subsequently, ongoing eruptions with a fragmentation level above the country rock produced the lithic fragment poor main infill of the 148 Kimberlite. Resedimentation from the outer flanks of the 148 tephra cone resulted in the deposition of turbidites in the 147 area. A consolidation phase solidified the lowermost portion of the main infill in 147. A subsequent explosion(s) occurred within the Mannville Group in the 147 area, ejecting large blocks of sedimentary country rocks and fracturing the overlying volcaniclastic main infill. Finally, blocks of the main infill tilted and possibly slumped into the subsidence structure developed above the emptied explosion chamber of 147. The different volcanic deposits reflect a change in eruption style and fragmentation level from highly explosive to spatter activity with little fragmentation potential. Cap rocks to build up the volatile overpressure necessary to blast the craters were not present at the time of emplacement. No diatremes were observed in the study area. Assuming that the magma properties remained constant over time, the change in eruption style has to be attributed to external factors, such as water access to the rising magma. The volcanic behaviour of the kimberlite magma appears to be comparable to that of other magmatic systems, both in eruptive style and production rate. No evidence was found for a high, possibly Plinian production rate or dispersion.
Water, ice and mud: Lahars and lahar hazards at ice- and snow-clad volcanoes
Waythomas, Christopher F.
2014-01-01
Large-volume lahars are significant hazards at ice and snow covered volcanoes. Hot eruptive products produced during explosive eruptions can generate a substantial volume of melt water that quickly evolves into highly mobile flows of ice, sediment and water. At present it is difficult to predict the size of lahars that can form at ice and snow covered volcanoes due to their complex flow character and behaviour. However, advances in experiments and numerical approaches are producing new conceptual models and new methods for hazard assessment. Eruption triggered lahars that are ice-dominated leave behind thin, almost unrecognizable sedimentary deposits, making them likely to be under-represented in the geological record.
NASA Astrophysics Data System (ADS)
Cathey, Henrietta E.; Nash, Barbara P.
2009-11-01
The Bruneau-Jarbidge eruptive center of the central Snake River Plain in southern Idaho, USA produced multiple rhyolite lava flows with volumes of <10 km 3 to 200 km 3 each from ~11.2 to 8.1 Ma, most of which follow its climactic phase of large-volume explosive volcanism, represented by the Cougar Point Tuff, from 12.7 to 10.5 Ma. These lavas represent the waning stages of silicic volcanism at a major eruptive center of the Yellowstone hotspot track. Here we provide pyroxene compositions and thermometry results from several lavas that demonstrate that the demise of the silicic volcanic system was characterized by sustained, high pre-eruptive magma temperatures (mostly ≥950 °C) prior to the onset of exclusively basaltic volcanism at the eruptive center. Pyroxenes display a variety of textures in single samples, including solitary euhedral crystals as well as glomerocrysts, crystal clots and annealed microgranular inclusions of pyroxene ± magnetite ± plagioclase. Pigeonite and augite crystals are unzoned, and there are no detectable differences in major and minor element compositions according to textural variety — mineral compositions in the microgranular inclusions and crystal clots are identical to those of phenocrysts in the host lavas. In contrast to members of the preceding Cougar Point Tuff that host polymodal glass and mineral populations, pyroxene compositions in each of the lavas are characterized by single rather than multiple discrete compositional modes. Collectively, the lavas reproduce and extend the range of Fe-Mg pyroxene compositional modes observed in the Cougar Point Tuff to more Mg-rich varieties. The compositionally homogeneous populations of pyroxene in each of the lavas, as well as the lack of core-to-rim zonation in individual crystals suggest that individual eruptions each were fed by compositionally homogeneous magma reservoirs, and similarities with the Cougar Point Tuff suggest consanguinity of such reservoirs to those that supplied the polymodal Cougar Point Tuff. Pyroxene thermometry results obtained using QUILF equilibria yield pre-eruptive magma temperatures of 905 to 980 °C, and individual modes consistently record higher Ca content and higher temperatures than pyroxenes with equivalent Fe-Mg ratios in the preceding Cougar Point Tuff. As is the case with the Cougar Point Tuff, evidence for up-temperature zonation within single crystals that would be consistent with recycling of sub- or near-solidus material from antecedent magma reservoirs by rapid reheating is extremely rare. Also, the absence of intra-crystal zonation, particularly at crystal rims, is not easily reconciled with cannibalization of caldera fill that subsided into pre-eruptive reservoirs. The textural, compositional and thermometric results rather are consistent with minor re-equilibration to higher temperatures of the unerupted crystalline residue from the explosive phase of volcanism, or perhaps with newly generated magmas from source materials very similar to those for the Cougar Point Tuff. Collectively, the data suggest that most of the pyroxene compositional diversity that is represented by the tuffs and lavas was produced early in the history of the eruptive center and that compositions across this range were preserved or duplicated through much of its lifetime. Mineral compositions and thermometry of the multiple lavas suggest that unerupted magmas residual to the explosive phase of volcanism may have been stored at sustained, high temperatures subsequent to the explosive phase of volcanism. If so, such persistent high temperatures and large eruptive magma volumes likewise require an abundant and persistent supply of basalt magmas to the lower and/or mid-crust, consistent with the tectonic setting of a continental hotspot.
Numerical Modeling of Ejecta Dispersal from Transient Volcanic Explosions on Mars
NASA Astrophysics Data System (ADS)
Fagents, Sarah A.; Wilson, Lionel
1996-10-01
The dynamics of ejecta dispersal in transient volcanic eruptions on Mars are distinct from those on Earth and Venus because of the low atmospheric pressure and gravitational acceleration. Numerical modeling of the physical mechanisms of such activity, accounting for the different martian environmental conditions, can help constrain the style of emplacement of the eruptive products. The scenario envisaged is one of pressurized gas, contributed from either a magmatic or meteoric source, accumulating in the near-surface crust beneath a retaining medium. On failure of the confining material, the gas expands rapidly out of the vent, displacing both the “caprock” and a mass of atmospheric gas overlying the explosion site, in a discrete, transient event. Trajectories of large blocks of ejecta are computed subject to the complex aerodynamic interactions of atmospheric and volcanic gases which are set in motion by the initiation of the explosion. Reservoirs of crustal and surface water and carbon dioxide may have increased the chances of occurrence of transient explosive events on Mars in two ways: by supplying a source of volatiles for vaporization by the magma and by acting to slow the ascent of the magma by chilling it, providing conditions favorable for gas accumulation. Results of the modeling indicate that ejection velocities ranging up to ∼580 m sec-1were possible in martian H2O-driven explosions, with CO2-driven velocities typically a factor of ∼1.5 smaller. Travel distances of large blocks of ejecta lie within the range of a few kilometers to the order of 100 km from the vent. The low martian atmospheric pressure and gravity would thus have conspired to produce more vigorous explosions and more widely dispersed deposits than are associated with analogous events on Earth or Venus. Other phenomena likely to be associated with transient explosions include ashfall deposits from associated convecting clouds of fine material, pyroclastic flows, and ejecta impact crater fields. It is anticipated that the martian environment would have caused such features to be greater in size than would be the case in the terrestrial environment. Ash clouds associated with discrete explosions are expected to have risen to a maximum of ∼25 km on Mars, producing deposits having similar widths. Another indication of a volcanic explosion site might be found in areas of high regolith ice content, such as fretted terrains, where ice removal and mass-wasting may have modified the vent's initial morphology. The modeling results highlight the implications of the occurrence of transient explosive eruptions for the global crustal volatile distribution and provide some predictions of the likely manifestation of such activity for testing by upcoming spacecraft missions to Mars.
Volcanism, global catastrophe and mass mortality
NASA Technical Reports Server (NTRS)
Francis, P. W.; Burke, K.
1988-01-01
The effects of very large volcanic eruptions are well documented in many studies, mostly based on observations made on three historic eruptions, Laki 1783; Tambora 1815 and Krakatau 1883. Such eruptions have effects that are catastrophic locally and measurable globally, but it is not clear that even the largest volcanic eruptions have had global catastrophic effects, nor caused mass extinctions. Two different types of volcanic eruption were considered as likely to have the most serious widespread effects: large silicic explosive eruptions producing hundreds or thousands of cubic kilometers of pyroclastic materials, and effusive basaltic eruptions producing of approximately 100 cubic kilometers of lava. In both cases, the global effects are climatic, and attributable to production of stratospheric aerosols. Other possibilities need to be explored. Recent research on global change has emphasized the extreme sensitivity of the links between oceanic circulation, atmospheric circulation and climate. In particular, it was argued that the pattern of ocean current circulation (which strongly influences climate) is unstable; it may rapidly flip from one pattern to a different one, with global climatic consequences. If volcanism has been a factor in global environmental change and a cause of mass extinctions, it seems most likely that it has done so by providing a trigger to other processes, for example by driving oceanic circulation from one mode to another.
Alanis, Paul K B; Yamaya, Yusuke; Takeuchi, Akihiro; Sasai, Yoichi; Okada, Yoshihiro; Nagao, Toshiyasu
2013-01-01
Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km×3 km×3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano's activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions.
ALANIS, Paul K. B.; YAMAYA, Yusuke; TAKEUCHI, Akihiro; SASAI, Yoichi; OKADA, Yoshihiro; NAGAO, Toshiyasu
2013-01-01
Taal Volcano is one of the most active volcanoes in the Philippines. The magnetotelluric 3D forward analyses indicate the existence of a large high resistivity anomaly (∼100 Ω·m) with a volume of at least 3 km × 3 km × 3 km, which is capped by a conductive layer (∼10 Ω·m), beneath the Main Crater. This high resistivity anomaly is hypothesized to be a large hydrothermal reservoir, consisting of the aggregate of interconnected cracks in rigid and dense host rocks, which are filled with hydrothermal fluids coming from a magma batch below the reservoir. The hydrothermal fluids are considered partly in gas phase and liquid phase. The presence of such a large hydrothermal reservoir and the stagnant magma below may have influences on the volcano’s activity. Two possibilities are presented. First, the 30 January 1911 explosion event was a magmatic hydrothermal eruption rather than a base-surge associated with a phreato-magmatic eruption. Second, the earlier proposed four eruption series may be better interpreted by two cycles, each consisting of series of summit and flank eruptions. PMID:24126286
NASA Astrophysics Data System (ADS)
Cronin, S. J.; Smith, I. E.
2015-12-01
We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only <550 km2. Inspired by local mythology of gods flying overhead with baskets of ash, and an analysis of the high-level wind distribution patterns, lake and wetland sites were investigated along the Tongan chain. In most cases former lagoon basins lifted above sea-level by a combination of tectonic rise and the lowering of mean sea levels by around 2 m since the Mid-Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of <6500 cal. years B.P., including several very large and regionally significant tephras. Erupted compositions range from basaltic to dacitic, with some showing compositional change during eruption. In addition, some large eruptions appear to have generated regionally significant tsunami, represented by characteristically mixed sandy layers with lithologies including shell fragment, foraminifera and volcanic particles.
Strombolian explosive styles and source conditions
Patrick, Matthew R.; Harris, Andrew J. L.; Ripepe, Maurizio; Dehn, Jonathan; Rothery, David A.; Calvari, Sonia
2007-01-01
Forward Looking Infrared Radiometer (FLIR) cameras offer a unique view of explosive volcanism by providing an image of calibrated temperatures. In this study, 344 eruptive events at Stromboli volcano, Italy, were imaged in 2001–2004 with a FLIR camera operating at up to 30 Hz. The FLIR was effective at revealing both ash plumes and coarse ballistic scoria, and a wide range of eruption styles was recorded. Eruptions at Stromboli can generally be classified into two groups: Type 1 eruptions, which are dominated by coarse ballistic particles, and Type 2 eruptions, which consist of an optically-thick, ash-rich plume, with (Type 2a) or without (Type 2b) large numbers of ballistic particles. Furthermore, Type 2a plumes exhibited gas thrust velocities (>15 m s−1 ) while Type 2b plumes were limited to buoyant velocities (<15 m s−1 ) above the crater rim. A given vent would normally maintain a particular gross eruption style (Type 1 vs. 2) for days to weeks, indicating stability of the uppermost conduit on these timescales. Velocities at the crater rim had a range of 3–101 m s−1 , with an overall mean value of 24 m s−1. Mean crater rim velocities by eruption style were: Type 1= 34 m s−1 , Type 2a=31 m s−1 , Type 2b=7 m s−1 . Eruption durations had a range of 6–41 s, with a mean of 15 s, similar among eruption styles. The ash in Type 2 eruptions originates from either backfilled material (crater wall slumping or ejecta rollback) or rheological changes in the uppermost magma column. Type 2a and 2b behaviors are shown to be a function of the overpressure of the bursting slug. In general, our imaging data support a broadening of the current paradigm for strombolian behavior, incorporating an uppermost conduit that can be more variable than is commonly considered.
Sensitivity test and ensemble hazard assessment for tephra fallout at Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Selva, J.; Costa, A.; De Natale, G.; Di Vito, M. A.; Isaia, R.; Macedonio, G.
2018-02-01
We present the results of a statistical study on tephra dispersal in the case of a reactivation of the Campi Flegrei volcano. To represent the spectrum of possible eruptive sizes, four classes of eruptions were considered. Excluding the lava emission, three classes are explosive (Small, Medium, and Large) and can produce a significant quantity of volcanic ash. Hazard assessments were made through simulations of atmospheric dispersion of ash and lapilli, considering the full variability of winds and eruptive vents. The results are presented in form of conditional hazard curves given the occurrence of specific eruptive sizes, representative members of each size class, and then combined to quantify the conditional hazard given an eruption of any size. The main focus of this analysis was to constrain the epistemic uncertainty (i.e. associated with the level of scientific knowledge of phenomena), in order to provide unbiased hazard estimations. The epistemic uncertainty on the estimation of hazard curves was quantified, making use of scientifically acceptable alternatives to be aggregated in the final results. The choice of such alternative models was made after a comprehensive sensitivity analysis which considered different weather databases, alternative modelling of submarine eruptive vents and tephra total grain-size distributions (TGSD) with a different relative mass fraction of fine ash, and the effect of ash aggregation. The results showed that the dominant uncertainty is related to the combined effect of the uncertainty with regard to the fraction of fine particles with respect to the total mass and on how ash aggregation is modelled. The latter is particularly relevant in the case of magma-water interactions during explosive eruptive phases, when a large fraction of fine ash can form accretionary lapilli that might contribute significantly in increasing the tephra load in the proximal areas. The variability induced by the use of different meteorological databases and the selected approach to modelling offshore eruptions were relatively insignificant. The uncertainty arising from the alternative implementations, which would have been neglected in standard (Bayesian) quantifications, were finally quantified by ensemble modelling, and represented by hazard and probability maps produced at different confidence levels.
NASA Astrophysics Data System (ADS)
Bouvet de Maisonneuve, C.; Fiege, A.; Fabbro, G.; Kubo, A. I.
2016-12-01
Large explosive eruptions typically release orders of magnitude more S to the atmosphere than expected based on degassing of the erupted magma. To explain this, an excess, accumulated vapor phase is often proposed. Resolving the presence, composition, and source of such an exsolved volatile phase is essential, as it will drive eruptions towards increased explosivity. Integration of melt inclusion (MI) volatile contents (H, C, S, Cl, F) with S isotope data on melt inclusions, and sulfur-bearing minerals (anhydrite) can provide information on pre- and syn-eruptive degassing. The June 1991 eruption of Mt Pinatubo is an ideal candidate for such a study as it injected a >17 Mt of SO2 into the stratosphere, corresponding to a S excess release of a factor close to 100. The erupted magma was oxidized (QFM+3) and should therefore yield a clear isotopic trend. Volatile contents in glassy but vesicular quartz-hosted MIs were measured by SIMS and yield <3 wt% H2O and <100 ppm S but up to 1500 ppm CO2, in agreement with previous measurements. The MIs with few but large vapor bubbles (avoided during analysis) have lower H2O and CO2 contents and smaller standard deviations. The MIs with many small bubbles have higher volatile contents and standard deviations because the gas phase was not avoided during analysis. We observed scattered S contents and highly variable S isotope compositions for all MIs, which could be due to the presence of submicron S phases. Thus, we homogenized a batch of MIs under P-T-fO2 conditions that best correspond to pre-eruptive conditions. The δ34S for quartz-hosted MIs ranges from -1 to +14 ‰ and δ34S vs. S-H-C content trends are used to infer open or closed system degassing processes. In the near future, anhydrites and melt inclusions in other mineral hosts (amphibole and plagioclase) will be investigated in order to reconstruct the degassing history of the 1991 Pinatubo magma and to trace the S source.
NASA Astrophysics Data System (ADS)
Benage, M. C.; Andrews, B. J.
2016-12-01
Volcanic explosions eject turbulent, transient jets of hot volcanic gas and particles into the atmosphere. Though the jet of hot material is initially negatively buoyant, the jet can become buoyant through entrainment and subsequent thermal expansion of entrained air that allows the eruptive plume to rise several kilometers. Although basic plume structure is qualitatively well known, the velocity field and dynamic structure of volcanic plumes are not well quantified. An accurate and quantitative description of volcanic plumes is essential for hazard assessments, such as if the eruption will form a buoyant plume that will affect aviation or produce dangerous pyroclastic density currents. Santa Maria volcano, in Guatemala, provides the rare opportunity to safely capture video of Santiaguito lava dome explosions and small eruptive plumes. In January 2016, two small explosions (< 2 km) that lasted several minutes and with little cloud obstruction were recorded for image analysis. The volcanic plume structure is analyzed through sequential image frames from the video where specific features are tracked using a feature tracking velocimetry (FTV) algorithm. The FTV algorithm quantifies the 2D apparent velocity fields along the surface of the plume throughout the duration of the explosion. Image analysis of small volcanic explosions allows us to examine the maximum apparent velocities at two heights above the dome surface, 0-25 meters, where the explosions first appear, and 100-125 meters. Explosions begin with maximum apparent velocities of <15 m/s. We find at heights near the dome surface and 10 seconds after explosion initiation, the maximum apparent velocities transition to sustained velocities of 5-15 m/s. At heights 100-125 meters above the dome surface, the apparent velocities transition to sustained velocities of 5-15 m/s after 25 seconds. Throughout the explosion, transient velocity maximums can exceed 40 m/s at both heights. Here, we provide novel quantification and description of turbulent surface velocity fields of explosive volcanic eruptions at active lava domes.
Beyond baking soda: Demonstrating the link between volcanic eruptions and viscosity to all ages
NASA Astrophysics Data System (ADS)
Smithka, I. N.; Walters, R. L.; Harpp, K. S.
2014-12-01
Public interest in volcanic eruptions and societal relevance of volcanic hazards provide an excellent basis for successful earth science outreach. During a museum-based earth science outreach event free and open to the public, we used two new interactive experiments to illustrate the relationship between gas content, magma viscosity, and eruption style. Learning objectives for visitors are to understand: how gas drives volcanic eruptions, the differences between effusive and explosive eruption styles, viscosity's control on gas pressure within a magma reservoir, and the role of gas pressure on eruption style. Visitors apply the scientific method by asking research questions and testing hypotheses by conducting the experiments. The demonstrations are framed with real life examples of volcanic eruptions (e.g., Mt. St. Helens eruption in 1980), providing context for the scientific concepts. The first activity demonstrates the concept of fluid viscosity and how gas interacts with fluids of different viscosities. Visitors blow bubbles into water and corn syrup. The corn syrup is so viscous that bubbles are trapped, showing how a more viscous material builds up higher gas pressure. Visitors are asked which kind of magma (high or low viscosity) will produce an explosive eruption. To demonstrate an explosive eruption, visitors add an Alka-Seltzer tablet to water in a snap-top film canister. The reaction rapidly produces carbon dioxide gas, increasing pressure in the canister until the lid pops off and the canister launches a few meters into the air (tinyurl.com/nzsgfoe). Increasing gas pressure in the canister is analogous to gas pressure building within a magma reservoir beneath a volcano. The lid represents high-viscosity magma that prevents degassing, causing gas pressure to reach explosive levels. This interactive activity is combined with a display of an effusive eruption: add vinegar to baking soda in a model volcano to produce a quick-flowing eruption. These demonstrations were implemented in March 2014 at "Can You Dig It?", a popular annual collaborative outreach event hosted by the Florida Museum of Natural History and the University of Florida Department of Geological Sciences (>1,500 visitors). These experiments were also used to illustrate volcanic processes at the VGP Exploration Station, AGU 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archontis, V.; Hood, A. W.; Tsinganos, K., E-mail: va11@st-andrews.ac.uk
2014-05-10
We report on three-dimensional MHD simulations of recurrent mini coronal mass ejection (CME)-like eruptions in a small active region (AR), which is formed by the dynamical emergence of a twisted (not kink unstable) flux tube from the solar interior. The eruptions develop as a result of the repeated formation and expulsion of new flux ropes due to continuous emergence and reconnection of sheared field lines along the polarity inversion line of the AR. The acceleration of the eruptions is triggered by tether-cutting reconnection at the current sheet underneath the erupting field. We find that each explosive eruption is followed bymore » reformation of a sigmoidal structure and a subsequent ''sigmoid-to-flare arcade'' transformation in the AR. These results might have implications for recurrent CMEs and eruptive sigmoids/flares observations and theoretical studies.« less
Chlorine as a geobarometer tool: Application to the large explosive eruptions of Vesuvius
NASA Astrophysics Data System (ADS)
Balcone-Boissard, Hélène; Boudon, Georges; Cioni, Raffaello; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia
2015-04-01
One of the current stakes in modern volcanology is the definition of magma storage conditions which has direct implications on the eruptive style and thus on the associated risks and the management of likely related crisis. In alkaline differentiated magmas, chlorine (Cl), contrary to H2O, occurs as a minor volatile species but may be used as a geobarometer. Numerous experimental studies on Cl solubility have highlighted its saturation conditions in alkaline silicate melts. The NaCl-H2O system is characterized by immiscibility under wide ranges of pressure, temperature and NaCl content (< 200 MPa, < 1000°C). The addition of the silicate melt to the system does not rule out this property. These P-T conditions are very common for alkaline magmas evolving in shallow reservoirs, and they strongly affect the evolution of sin-eruptive magmatic melts and fluids. In H2O-bearing systems, the Cl concentration in the exsolved H2O vapour phase may increase with that of Cl in the silicate melt. Yet this system becomes strongly non-Henryan at high Cl concentration, depending on P-T conditions: the exsolved fluid phase unmixes to form a low-density, Cl-poor and H2O -rich vapour phase, and a dense hypersaline brine. In such a subcritical domain, as the composition of both vapour phase and brine is fixed, also the Cl concentration in the silicate melt is invariant, as expected from the Gibb's phase rule. The Cl buffer value will depend on the silicate melt composition, being higher in alkali-rich melts. The achievement of the Cl buffer value is so explained by the equilibrium of the silicate melt with a two-phase fluid in the reservoir. As this equilibrium is generally inherited from conditions established in the reservoir rather than during magma ascent, Cl buffering effect can be evidenced through the analysis of the residual glass. Here we applied systematically this methodology to the large explosive eruptions of Monte Somma-Vesuvius: We have analysed the products of 13 explosive eruptions of Monte Somma-Vesuvius, including four Plinian (Pomici di Base, Mercato, Avellino, Pompeii), five sub-Plinian (Verdoline, AP1, AP2, Pollena, 1631 AD) and four violent strombolian to ash emission events (AP3, 1822, 1906, 1944). We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, H2O-saturated portion of the reservoir. We highlighted two magma ponding zones, at ~170-200 MPa and ~105-115 MPa. We have also estimated maximum pre-eruptive H2O content for the different magma compositions, varying between 3.5 and 7 wt%. The results, in large agreement with literature, are very promising. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of outmost importance for the interpretation of the monitoring data and the identification of precursory signals.
NASA Astrophysics Data System (ADS)
Hidalgo, S.; Battaglia, J.
2017-12-01
Cotopaxi (5897 m) had an unrest and eruption between April and November 2015. Seismic signals and SO2 emissions were recorded by the monitoring network of the Instituto Geofísico. The network includes 11 seismic stations, 6 broad band and 5 short period; and 4 NOVAC-Type 1 DOAS permanent instruments.We reviewed the seismic records to better understand the link between seismicity and SO2 emissions. Transient events detected include Volcano-Tectonic (VT), Long-Period (LP) events and Explosion Quakes (EQ), but also Ice Quakes (IQ) with various spectral signatures related to the glacier covering the volcano summit. An event-per-event exhaustive identification is, however, impossible because of the very large number of events and the wide range of signals, with variable spectral characteristics. Therefore, to identify the different types of events activated previous and during the eruption, we choose an approach based on the search of families of repeating events. Looking at the temporal evolution of these families, we determined 4 characteristic types. The first and more frequent, Type 1, is mainly composed by IQ. Type 2, mainly LPs appeared only in April and May 2015. Interestingly, its rate of occurrence starts increasing the first days of April, is maximum about mid-May when SO2 appears and then progressively drops to totally stop on June 4, replaced by tremor. Since then, and until the hydromagmatic explosions opening the system, SO2 emissions between 3000 and 5000 t/day were directly linked to seismic tremor. Type 3 families, are dominated by VTs, and are only active on 13 and 14 August, before and during the hydromagmatic explosions. These events should be considered as short term seismic precursors. Type 4 families starts at the beginning of September and included only few VTs. Nevertheless, since September, most of the observed events belong to Type 1 families, mainly IQ, hence the seismicity related to volcanic activity after the hydromagmatic explosions was mostly tremor. The post-eruptive tremor was accompanied by ash and gas emissions with SO2 fluxes oscillating according to the median seismic amplitude of the signal. Magma volume estimated on the basis of the 470 kt of SO2 measured during unrest and eruption exceeds in more than 99% the total volume of erupted solid material.
Storage of Explosive versus Effusive Rhyolite Magma at the Yellowstone Volcanic Center
NASA Astrophysics Data System (ADS)
Gardner, J. E.
2007-12-01
The Yellowstone volcanic center has erupted more than 900 km3 of rhyolitic magma in the last 600,000 years (1). Most of that magma extruded as large lava flows, with only a few known explosive eruptions. Why have explosive eruptions been so rare in the recent history of the Yellowstone volcanic system? To explore that question, we focus on the Tuff of Bluff Point (TBP), about 50 km3 of magma that explosively erupted 173 ka, forming the West Thumb caldera (1). Like most other recent eruptions of Yellowstone, TBP is high silica rhyolite, with phenocrysts of quartz, sanidine, and minor ferro-pyroxenes and Fe-Ti oxides. Fe-Ti oxide and pyroxene compositions indicate that the magma had equilibrated at an oxygen fugacity equal to the QFM buffer. Rehomogenized glass inclusions (n=7) in quartz contain 2.2-3.1 wt.% water and between 400-650 ppm CO2. Those volatile contents indicate storage pressures of 90-160 MPa. Ubiquitous pyrrhotite shows that the magma was sulfur saturated, and most likely volatile saturated. The co-existing fluid would be only 42-47% water. Cathodoluminescence (CL) images of quartz phenocrysts reveal mainly concentric growth zones, with occasional dissolution boundaries present. Ti contents in quartz generally decrease from core to rim, indicating cooling of the magma, although the relative temperature changes recorded are only 10-15°, with only minor changes across dissolution boundaries. To put our observations in perspective of the recent Yellowstone magma system, we have begun examining some of the recent rhyolitic lavas, including the Pitchstone Plateau (PP), a single homogeneous lava flow of 70 km3 that erupted 79 ka (1). CL images also reveal mainly concentric quartz growth, with few dissolution boundaries obvious. Ti contents in quartz also generally decrease from core to rim, but are uniformly lower than in those in TBP, suggesting that PP magma was colder than TBP magma. Glass inclusions (n=20) in PP are generally water poor and rarely contain CO2. A few do have more than 2 wt.% water, but only100-200 ppm CO2, indicating storage pressure of 80-100 MPa. (1) Christiansen et al., USGS Open-file Report 2007-1071, 2007, 94 p.
NASA Astrophysics Data System (ADS)
Alfano, F.; Pioli, L.; Clarke, A. B.; Ort, M. H.; Roggensack, K.; Self, S.
2014-12-01
Sunset Crater volcano is the youngest scoria cone of the San Francisco Volcanic Field (SFVF). The >300-m-high Sunset Crater, located ~25 km northeast of Flagstaff, erupted about 1085 AD and is a remarkable example of a highly explosive basaltic eruption. The explosive activity produced a tephra sequence of at least eight main fall units associated with major explosive phases. The total cumulative volume is ~0.3 km3 DRE. The volume of individual fall units varies between 0.02 and 0.08 km3 DRE, and an associated column height was up to 20 km high. The products have uniform chemical composition (~47 wt.% SiO2), with phenocrysts of plagioclase, olivine and pyroxene that represent about the 6 vol% of the samples. Despite the uniform chemical and crystal-phase characteristics of the products, the textures are very heterogeneous. Two textural endmembers, intimately intermingled at the mm-scale within a single clast, were identified: one endmember (sideromelane) is characterized by higher vesicularity (~66%), with large regular sub-spherical vesicles (modal diameter 0.6 mm), a glass-rich groundmass (> 95 vol%) and evidence of post-fragmentation vesicle expansion; the second endmember texture (tachylite) is characterized by lower vesicularity (~32%), with small highly irregular vesicles (modal diameter 0.3 mm) that result in a higher vesicle number density than the sideromelane, and a groundmass rich in microcrysts (> 95 vol%), mainly Fe-oxides. Textural characteristics suggest interaction between magmas stored at different depths. The tachylitic texture is present in different proportions in the products of the different eruptive phases, while some small-scale variability seems to suggest variation in the crystallization conditions. However, given the uniform phenocryst composition, these small-scale variations are probably due to differences in the residence time rather than to different storage depths. As a result, our observations suggest the temporary storage of portions of the erupted magma in a complex fracture network or conduit system located at very shallow levels (and possibly within the cone) where the magma could degas and crystallize, producing the observed tachylitic texture. These processes also caused an increase in magma viscosity, likely enhancing eruption explosivity.
NASA Astrophysics Data System (ADS)
Stephens, K. J.; Ebmeier, S. K.; Young, N. K.; Biggs, J.
2017-09-01
Deformation caused by processes within a volcanic conduit are localised, transient, and therefore challenging to measure. However, observations of such deformation are important because they provide insight into conditions preceding explosive activity, and are important for hazard assessment. Here, we present measurements of low magnitude, transient deformation covering an area of ∼4 km2 at Masaya volcano spanning a period of explosive eruptions (30th April-17th May 2012). Radial uplift of duration 24 days and peak displacements of a few millimeters occurred in the month before the eruption, but switched to subsidence ∼27 days before the onset of the explosive eruption on 30th of April. Uplift resumed during, and continued for ∼16 days after the end of the explosive eruption period. We use a finite element modelling approach to investigate a range of possible source geometries for this deformation, and find that the changes in pressurisation of a conduit 450 m below the surface vent (radius 160 m and length 700 m), surrounded by a halo of brecciated material with a Young's modulus of 15 GPa, gave a good fit to the InSAR displacements. We propose that the pre-eruptive deformation sequence at Masaya is likely to have been caused by the movement of magma through a constriction within the shallow conduit system. Although measuring displacements associated with conduit processes remains challenging, new high resolution InSAR datasets will increasingly allow the measurement of transient and lower magnitude deformation signals, improving the method's applicability for observing transitions between volcanic activity characterised by an open and a closed conduit system.
Bacon, Charles R.; Neal, Christina A.; Miller, Thomas P.; McGimsey, Robert G.; Nye, Christopher J.
2014-01-01
Future volcanic activity of Aniakchak could include hydromagmatic explosions, possibly followed by effusion or strombolian eruption of basaltic andesite to Plinian eruption of dacite. Another voluminous eruption, such as Aniakchak II, is considered unlikely in the near future.
Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition
Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.
2014-01-01
Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.
NASA Astrophysics Data System (ADS)
Di Roberto, A.; Bertagnini, A.; Del Carlo, P.; Meletlidis, S.; Pompilio, M.
2016-12-01
The last eruption on Tenerife (Canary Islands, Spain) started on 18 November 1909 from the El Chinyero vent on the northwestern Santiago rift. This fissural eruption was well documented by scientists and eyewitnesses, but there is a lack of data on the high-energy phase that produced the most significant emissions of ash and lapilli at the onset of the eruption. Here, we review historical documents (e.g. newspapers, dispatches, telegrams); eyewitness accounts and scientific reports were reviewed from a volcanological perspective and integrated with data from the analysis of deposit features, allowing an accurate reconstruction of the eruption and its dynamics. The 1909 eruption of Chinyero was fed by a compositionally discrete magma batch that ascended rapidly within the crust, producing rather violent pulsating Strombolian explosive activity in the early phases of the eruption. This activity produced a ca. 80 m high scoria cone and heavy fallout of lapilli and ash over the entire northern sector of the island of Tenerife. The energy of explosive activity waned after 3 days, giving way to the weak Strombolian explosive activity that contributed to a lesser extent to the buildup of the pyroclastic pile. Eruptions such as those from the Chinyero vent in 1909 are representative of rift activity on Tenerife and constitute a volcanic hazard for present-day inhabitants.
Hydrothermal reservoir beneath Taal Volcano (Philippines): Implications to volcanic activity
NASA Astrophysics Data System (ADS)
Nagao, T.; Alanis, P. B.; Yamaya, Y.; Takeuchi, A.; Bornas, M. V.; Cordon, J. M.; Puertollano, J.; Clarito, C. J.; Hashimoto, T.; Mogi, T.; Sasai, Y.
2012-12-01
Taal Volcano is one of the most active volcanoes in the Philippines. The first recorded eruption was in 1573. Since then it has erupted 33 times resulting in thousands of casualties and large damages to property. In 1995, it was declared as one of the 15 Decade Volcanoes. Beginning in the early 1990s it has experienced several phases of abnormal activity, including seismic swarms, episodes of ground deformation, ground fissuring and hydrothermal activities, which continues up to the present. However, it has been noted that past historical eruptions of Taal Volcano may be divided into 2 distinct cycles, depending on the location of the eruption center, either at Main Crater or at the flanks. Between 1572-1645, eruptions occurred at the Main Crater, in 1707 to 1731, they occurred at the flanks. In 1749, eruptions moved back to the Main Crater until 1911. During the 1965 and until the end of the 1977 eruptions, eruptive activity once again shifted to the flanks. As part of the PHIVOLCS-JICA-SATREPS Project magnetotelluric and audio-magnetotelluric surveys were conducted on Volcano Island in March 2011 and March 2012. Two-dimensional (2-D) inversion and 3-D forward modeling reveals a prominent and large zone of relatively high resistivity between 1 to 4 kilometers beneath the volcano almost directly beneath the Main Crater, surrounded by zones of relatively low resistivity. This anomalous zone of high resistivity is hypothesized to be a large hydrothermal reservoir filled with volcanic fluids. The presence of this large hydrothermal reservoir could be related to past activities of Taal Volcano. In particular we believe that the catastrophic explosion described during the 1911 eruption was the result of the hydrothermal reservoir collapsing. During the cycle of Main Crater eruptions, this hydrothermal reservoir is depleted, while during a cycle of flank eruptions this reservoir is replenished with hydrothermal fluids.
Electrical activity during the 2006 Mount St. Augustine volcanic eruptions
Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.
2007-01-01
By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.
Long-term variations in explosion dynamics at Santiaguito volcano
NASA Astrophysics Data System (ADS)
Lamb, Oliver; De Angelis, Silvio; Lavallée, Yan; Lamur, Anthony; Hornby, Adrian; Von Aulock, Felix; Kendrick, Jackie; Chigna, Gustavo; Rietbrock, Andreas
2017-04-01
Here we present two years of seismic and infrasound observations of ash-and-gas explosions recorded during an ongoing multi-disciplinary experiment at the Santiaguito lava dome complex, Guatemala. Due to the occurrence of regular explosive activity since the early 1970's, the volcano is an ideal laboratory for the study of the eruption dynamics of long-lived silicic eruptions. The instrument network, deployed between 0.5 and 7 km from the active vent, includes 5 broadband and 6 short-period seismometers, as well as 5 infrasound sensors. Seismo-acoustic data are complemented by thermal infrared imagery, visual observations from an unmanned aerial vehicle, and geochemical measurements of eruptive products. In mid-2015, a major shift in activity took place at Santiaguito. Vulcanian explosions became more energetic and less regular, and were often accompanied by pyroclastic density currents. Important morphological changes were observed at the active El Caliente dome, as the lava-filled crater was excavated by a sequence of vigorous explosions to a depth of at least 150 m. Variations in the relative arrival times of seismic and infrasound signals suggest a significant deepening of the explosion initiation point inside the conduit. This shift in behaviour likely represents a change in the eruptive mechanism in the upper conduit beneath El Caliente, possibly triggered by disequilibrium at a greater depth in the volcanic system. Our observations suggest a reactivation of the deep magmatic system at Santiaguito, with little precursory activity. The results of this multi-parameteric monitoring experiment have specific implications for hazard assessment at Santiaguito, and contributes to understanding the processes that control changes in eruptive regime at lava dome volcanoes.
Hydroacoustic Recordings of Explosion-Induced Tremor at NW Rota-1 Volcano, Marianas
NASA Astrophysics Data System (ADS)
Caplan-Auerbach, J.; Dziak, R. P.; Lau, T. A.
2013-12-01
Hydroacoustic data recorded during the long-term eruption of NW Rota-1 submarine volcano (Marianas) reveal a wide variety of explosion and tremor signals. Data from a moored hydrophone deployed near the summit of NW Rota-1 from February 2009 to April 2010 confirm that NW Rota-1 was nearly continuously active during this time. Explosion acoustic signals have a wide range of frequencies: some carry energy that is bandlimited between 5-25 Hz while others show broadband signal strength between 5-200 Hz (even higher frequencies may be attenuated by the hydrophone's anti-aliasing filter at 220 Hz). The signal is observed to switch rapidly between low frequency and broadband explosion types. In many cases the explosion signals repeat at a high rate, with recurrence intervals between 0.1-0.5 seconds. In such instances the explosions blend into tremor, exhibiting a large number of spectral harmonics that we attribute to the Dirac comb effect. The presence of these harmonics indicates that explosion recurrence intervals are highly regular, although subtle gliding within the harmonic frequencies suggests that there is some variability in the timing between explosions. This suggests a strongly repeatable explosion source. The frequency of explosions at NW Rota-1 is confirmed by ROV observations of eruption plume dynamics (Chadwick et al., 2008; Deardorff et al., 2008). We also observe a strong low-frequency (< 5 Hz) tremor signal that does not correlate with the explosion tremor, as well as strongly harmonic tremor that is not obviously composed of repeating explosions. These signals may reflect processes deeper within the conduit, yet still capable of coupling into the water column. Video footage collected during ROV dives in 2009 shows multiple instances in which the ground is observed to move, but these signals do not clearly correlate with hydroacoustic pulses. Deeper study into the source of these signals requires seismic instrumentation on and around NW Rota-1.
Magmatic Ascent and Eruption Processes on Mercury
NASA Astrophysics Data System (ADS)
Head, J. W.; Wilson, L.
2018-05-01
MESSENGER volcanic landform data and information on crustal composition allow us to model the generation, ascent, and eruption of magma; Mercury explosive and effusive eruption processes differ significantly from other terrestrial planetary bodies.
Mount St. Helens erupts again: activity from September 2004 through March 2005
Major, Jon J.; Scott, William E.; Driedger, Carolyn; Dzurisin, Dan
2005-01-01
Eruptive activity at Mount St. Helens captured the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. Over the next 6 years, episodic extrusions of lava built a large dome in the crater. From 1987 to 2004, Mount St. Helens returned to a period of relative quiet, interrupted by occasional, short-lived seismic swarms that lasted minutes to days, by months-to-yearslong increases in background seismicity that probably reflected replenishment of magma deep underground, and by minor steam explosions as late as 1991. During this period a new glacier grew in the crater and wrapped around and partly buried the lava dome. Although the volcano was relatively quiet, scientists with the U.S. Geological Survey and University of Washington’s Pacific Northwest Seismograph Network continued to closely monitor it for signs of renewed activity.
The physics of large eruptions
NASA Astrophysics Data System (ADS)
Gudmundsson, Agust
2015-04-01
Based on eruptive volumes, eruptions can be classified as follows: small if the volumes are from less than 0.001 km3 to 0.1 km3, moderate if the volumes are from 0.1 to 10 km3, and large if the volumes are from 10 km3 to 1000 km3 or larger. The largest known explosive and effusive eruptions have eruptive volumes of 4000-5000 km3. The physics of small to moderate eruptions is reasonably well understood. For a typical mafic magma chamber in a crust that behaves as elastic, about 0.1% of the magma leaves the chamber (erupted and injected as a dyke) during rupture and eruption. Similarly, for a typical felsic magma chamber, the eruptive/injected volume during rupture and eruption is about 4%. To provide small to moderate eruptions, chamber volumes of the order of several tens to several hundred cubic kilometres would be needed. Shallow crustal chambers of these sizes are common, and deep-crustal and upper-mantle reservoirs of thousands of cubic kilometres exist. Thus, elastic and poro-elastic chambers of typical volumes can account for small to moderate eruptive volumes. When the eruptions become large, with volumes of tens or hundreds of cubic kilometres or more, an ordinary poro-elastic mechanism can no longer explain the eruptive volumes. The required sizes of the magma chambers and reservoirs to explain such volumes are simply too large to be plausible. Here I propose that the mechanics of large eruptions is fundamentally different from that of small to moderate eruptions. More specifically, I suggest that all large eruptions derive their magmas from chambers and reservoirs whose total cavity-volumes are mechanically reduced very much during the eruption. There are two mechanisms by which chamber/reservoir cavity-volumes can be reduced rapidly so as to squeeze out much of, or all, their magmas. One is piston-like caldera collapse. The other is graben subsidence. During large slip on the ring-faults/graben-faults the associated chamber/reservoir shrinks in volume, thereby maintaining the excess magmatic pressure much longer than is possible in the ordinary poro-elastic mechanism. Here the physics of caldera subsidence and graben subsidence is regarded as basically the same. The geometric difference in the surface expression is simply a reflection of the horizontal cross-sectional shape of the underlying magma body. In this new mechanism, the large eruption is the consequence -- not the cause -- of the caldera/graben subsidence. Thus, once the conditions for large-scale subsidence of a caldera/graben during an unrest period are established, then the likelihood of large to very large eruptions can be assessed and used in reliable forecasting. Gudmundsson, A., 2012. Strengths and strain energies of volcanic edifices: implications for eruptions, collapse calderas and landslides. Nat. Hazards Earth Syst. Sci., 12, 2241-2258. Gudmundsson, A., 2014. Energy release in great earthquakes and eruptions. Front. Earth Science 2:10. doi: 10.3389/feart.2014.00010 Gudmundsson, A., Acocella, V., 2015.Volcanotectonics: Understanding the Structure, Deformation, and Dynamics of Volcanoes. Cambridge University Press (published 2015).
Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption.
Sigmundsson, Freysteinn; Hreinsdóttir, Sigrún; Hooper, Andrew; Arnadóttir, Thóra; Pedersen, Rikke; Roberts, Matthew J; Oskarsson, Níels; Auriac, Amandine; Decriem, Judicael; Einarsson, Páll; Geirsson, Halldór; Hensch, Martin; Ofeigsson, Benedikt G; Sturkell, Erik; Sveinbjörnsson, Hjörleifur; Feigl, Kurt L
2010-11-18
Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During such eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic, closing airspace over much of Europe for days. This eruption was preceded by an effusive flank eruption of basalt from 20 March to 12 April 2010. The 2010 eruptions are the culmination of 18 years of intermittent volcanic unrest. Here we show that deformation associated with the eruptions was unusual because it did not relate to pressure changes within a single magma chamber. Deformation was rapid before the first eruption (>5 mm per day after 4 March), but negligible during it. Lack of distinct co-eruptive deflation indicates that the net volume of magma drained from shallow depth during this eruption was small; rather, magma flowed from considerable depth. Before the eruption, a ∼0.05 km(3) magmatic intrusion grew over a period of three months, in a temporally and spatially complex manner, as revealed by GPS (Global Positioning System) geodetic measurements and interferometric analysis of satellite radar images. The second eruption occurred within the ice-capped caldera of the volcano, with explosivity amplified by magma-ice interaction. Gradual contraction of a source, distinct from the pre-eruptive inflation sources, is evident from geodetic data. Eyjafjallajökull's behaviour can be attributed to its off-rift setting with a 'cold' subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes, whereas immediate short-term eruption precursors may be subtle and difficult to detect.
A Nanolite Record of Eruption Style Transition
NASA Astrophysics Data System (ADS)
Mujin, M.; Nakamura, M.
2014-12-01
Microlites in pyroclasts have been intensively studied to understand magma ascent processes. However, microlites do not record the explosive-effusive transitions in sub-Plinian eruptions when such transitions are governed by the shallow level degassing rather than by the magma ascent rate. To overcome this limitation, we studied the "nanolites" in the quenched products of the 2011 Shinmoedake, Kirishima Volcanic Group, Kyusyu Japan1. Nanolites are the nanometer-scale components of the groundmass minerals and exhibit a steeper slope of crystal size distribution than that of the microlites2. In the 2011 Shinmoedake eruption, the style of activity had undergone transformations from sub-Plinian eruption to Vulcanian explosion and intermittent effusion of lava3. We found that, although the products formed by different eruptive activities have similar microlite characteristics, such products can be distinguished clearly by their mineral assemblage of nanolites. The samples of pumices of sub-Plinian eruptions and Vulcanian explosions and the dense juvenile fragments of lava (in descending order of explosivity) contained, respectively, nanolites of low-Ca pyroxene, low-Ca pyroxene + plagioclase, and low-Ca pyroxene + plagioclase + Fe-Ti oxides. Nanolites are assumed to crystallize when undercooling of the magma due primarily to dehydration increases rapidly near the surface. The water contents of the interstitial glass indicate that the quenched depths did not differ greatly between eruption styles. Hence, the different nanolite assemblages of each eruption style are assumed to have resulted from differences in magma residence time near the surface. Thus, we propose that nanolites in pyroclasts have the potential to indicate the physicochemical conditions of magma at the transition points of eruption styles. References 1) Mujin and Nakamura, 2014, Geology, v.42, p.611-614 2) Sharp et al., 1996, Bull. Volcanol, v.57, p.631-640 3) Miyabuchi et al, 2013, J. Volcanol. Geotherm. Res, v.258, p.31-46
NASA Astrophysics Data System (ADS)
Green, David N.; Evers, Läslo G.; Fee, David; Matoza, Robin S.; Snellen, Mirjam; Smets, Pieter; Simons, Dick
2013-05-01
Explosive submarine volcanic processes are poorly understood, due to the difficulties associated with both direct observation and continuous monitoring. In this study hydroacoustic, infrasound, and seismic signals recorded during the May 2010 submarine eruption of South Sarigan seamount, Marianas Arc, are used to construct a detailed event chronology. The signals were recorded on stations of the International Monitoring System, which is a component of the verification measures for the Comprehensive Nuclear-Test-Ban Treaty. Numerical hydroacoustic and infrasound propagation modelling confirms that viable propagation paths from the source to receivers exist, and provide traveltimes allowing signals recorded on the different technologies to be associated. The eruption occurred in three stages, separated by three-hour periods of quiescence. 1) A 46 h period during which broadband impulsive hydroacoustic signals were generated in clusters lasting between 2 and 13 min. 95% of the 7602 identified events could be classified into 4 groups based on their waveform similarity. The time interval between clusters decreased steadily from 80 to 25 min during this period. 2) A five-hour period of 10 Hz hydroacoustic tremor, interspersed with large-amplitude, broadband signals. Associated infrasound signals were also recorded at this time. 3) An hour-long period of transient broadband events culminated in two large-amplitude hydroacoustic events and one broadband infrasound signal. A speculative interpretation, consistent with the data, suggests that during phase (1) transitions between endogenous dome growth and phreatomagmatic explosions occurred with the magma ascent rate accelerating throughout the period; during phase (2) continuous venting of fragmented magma occurred, and was powerful enough to breach the sea surface. During the climactic phase (3) discrete powerful explosions occurred, and sufficient seawater was vaporised to produce the contemporaneous 12 km altitude steam plume.
Presenting Numerical Modelling of Explosive Volcanic Eruption to a General Public
NASA Astrophysics Data System (ADS)
Demaria, C.; Todesco, M.; Neri, A.; Blasi, G.
2001-12-01
Numerical modeling of explosive volcanic eruptions has been widely applied, during the last decades, to study pyroclastic flows dispersion along volcano's flanks and to evaluate their impact on urban areas. Results from these transient multi-phase and multi-component simulations are often reproduced in form of computer animations, representing the spatial and temporal evolution of relevant flow variables (such as temperature, or particle concentration). Despite being a sophisticated, technical tool to analyze and share modeling results within the scientific community, these animations truly look like colorful cartoons showing an erupting volcano and are especially suited to be shown to a general public. Thanks to their particular appeal, and to the large interest usually risen by exploding volcanoes, these animations have been presented several times on television and magazines and are currently displayed in a permanent exposition, at the Vesuvius Observatory in Naples. This work represents an effort to produce an accompanying tool for these animations, capable of explaining to a large audience the scientific meaning of what can otherwise look as a graphical exercise. Dealing with research aimed at the study of dangerous, explosive volcanoes, improving the general understanding of these scientific results plays an important role as far as risk perception is concerned. An educated population has better chances to follow an appropriate behavior, i.e.: one that could lead, on the long period, to a reduction of the potential risk. In this sense, a correct divulgation of scientific results, while improving the confidence of the population in the scientific community, should belong to the strategies adopted to mitigate volcanic risk. Due to the relevance of the long term final goal of such divulgation experiment, this work represents an interdisciplinary effort, combining scientific expertise and specific competence from the modern communication science and risk perception studies.
NASA Astrophysics Data System (ADS)
Jenkins, S.; Komorowski, J.-C.; Baxter, P. J.; Spence, R.; Picquout, A.; Lavigne, F.; Surono
2013-07-01
The large explosive eruption of Merapi volcano, Indonesia, in 2010 presented a key, and rare, opportunity to study the impacts of a major explosive eruption in a densely populated area. Pyroclastic density currents (PDCs) produced throughout the 2010 eruption were unusually destructive, causing near complete devastation across a 22 km2 swath of the densely populated southern flanks and casualties to the end of their runout at 15.5 km from the volcano. The majority (> 120) of the more than 200 fatalities occurred more than 12 km from the volcano, where many people were caught in PDCs as they were evacuating. The 2010 eruption (VEI 4) exhibited a range of PDC behaviour in a complex multi-stage event that marked a change in eruption behaviour at Merapi, being the first eruption of this magnitude and style since 1872. This shift in style may mark a change in regime, and so understanding the potential impact of such large explosive eruptions is essential for future risk-assessment at Merapi. We describe a new impact assessment methodology that allowed us to collect important empirical geological, damage and casualty information and reconstruct impact dynamics associated with the PDCs. In contrast to previous PDC impact studies, we combined remote, field, laboratory and GIS assessments and were able to enter the affected areas safely and before their disturbance by rains or human activity. By integrating the results of our geological, damage and medical studies, we could reconstruct the spatial and temporal dynamics of the PDCs and their main hazard characteristics. Our interdisciplinary methods and preliminary findings are discussed here. In the areas damaged by PDCs, we used empirical damage data and calculations of material and structural resistance to lateral force to estimate approximate dynamic pressures. Dynamic pressures associated with the 5 November paroxysm exceeded 15 kPa more than 6 km from source and rapidly attenuated over a distance of less than 1 km at the end of the PDC runouts. Analysis of thermal indicators, such as deformed plastic, and correlation with information on burns injuries and fires provided estimates of ambient temperatures associated with the PDCs. Even at the relatively low temperatures estimated for the PDCs (200-300 °C) they were lethal to people inside as well as outside buildings, in part because of the building design that enabled the PDCs to rapidly infiltrate inside. Such detailed quantitative data can be used to support numerical PDC and impact modelling and risk assessment at dome-forming volcanoes, providing an improved understanding of the complexity of PDCs and their associated impacts on exposed populations.
Assessing eruption column height in ancient flood basalt eruptions
NASA Astrophysics Data System (ADS)
Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.
2017-01-01
A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at ∼ 45 ° N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the ∼ 180km of known Roza fissure length could have supported ∼36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (∼ 66Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced climate on time scales of decades to centuries but the location (i.e., latitude) of the province and relevant paleoclimate is important and must be considered.
Assessing Eruption Column Height in Ancient Flood Basalt Eruptions
NASA Technical Reports Server (NTRS)
Glaze, Lori S.; Self, Stephen; Schmidt, Anja; Hunter, Stephen J.
2015-01-01
A buoyant plume model is used to explore the ability of flood basalt eruptions to inject climate-relevant gases into the stratosphere. An example from the 1986 Izu-Oshima basaltic fissure eruption validates the model's ability to reproduce the observed maximum plume heights of 12-16 km above sea level, sustained above fire-fountains. The model predicts maximum plume heights of 13-17 km for source widths of between 4-16 m when 32% (by mass) of the erupted magma is fragmented and involved in the buoyant plume (effective volatile content of 6 wt%). Assuming that the Miocene-age Roza eruption (part of the Columbia River Basalt Group) sustained fire-fountains of similar height to Izu-Oshima (1.6 km above the vent), we show that the Roza eruption could have sustained buoyant ash and gas plumes that extended into the stratosphere at approximately 45 deg N. Assuming 5 km long active fissure segments and 9000 Mt of SO2 released during explosive phases over a 10-15 year duration, the approximately 180 km of known Roza fissure length could have supported approximately 36 explosive events/phases, each with a duration of 3-4 days. Each 5 km fissure segment could have emitted 62 Mt of SO2 per day into the stratosphere while actively fountaining, the equivalent of about three 1991 Mount Pinatubo eruptions per day. Each fissure segment could have had one to several vents, which subsequently produced lava without significant fountaining for a longer period within the decades-long eruption. Sensitivity of plume rise height to ancient atmospheric conditions is explored. Although eruptions in the Deccan Traps (approximately 66 Ma) may have generated buoyant plumes that rose to altitudes in excess of 18 km, they may not have reached the stratosphere because the tropopause was substantially higher in the late Cretaceous. Our results indicate that some flood basalt eruptions, such as Roza, were capable of repeatedly injecting large masses of SO2 into the stratosphere. Thus sustained flood basalt eruptions could have influenced climate on time scales of decades to centuries but the location (i.e., latitude) of the province and relevant paleoclimate is important and must be considered.
NASA Astrophysics Data System (ADS)
Santacroce, Roberto; Cioni, Raffaello; Marianelli, Paola; Sbrana, Alessandro; Sulpizio, Roberto; Zanchetta, Giovanni; Donahue, Douglas J.; Joron, Jean Louis
2008-10-01
A review of compositional data of the major explosive eruptions of Vesuvius is presented, comparing compositions (major elements) of whole rock with glass shards from the proximal deposits, hopefully useful for long-distance correlation. A critical review of published and new geochronological data is also provided. All available 14C ages are calibrated to give calendar ages useful for the reconstruction of the volcanological evolution of the volcanic complex. The pyroclastic deposits of the four major Plinian eruptions (22,000 yr cal BP "Pomici di Base", 8900 yr cal BP "Mercato Pumice", 4300 yr cal BP "Avellino Pumice", and A.D. 79 "Pompeii Pumice") are widely dispersed and allow a four-folded, Plinian to Plinian, stratigraphic division: 1. B-M (between Pomici di Base and Mercato); 2. M-A (between Mercato and Avellino); 3. A-P (between Avellino and Pompeii); 4. P-XX (from the Pompeii Pumice to the last erupted products of the XXth century). Within each interval, the age, lithologic and compositional features of pyroclastic deposits of major eruptions, potentially useful for tephrostratigraphic purposes on distal areas, are briefly discussed. The Vesuvius rocks are mostly high Potassic products, widely variable in terms of their silica saturation. They form three groups, different for both composition and age: 1. slightly undersaturated, older than Mercato eruption; 2. mildly undersaturated, from Mercato to Pompeii eruptions; 3. highly undersaturated, younger than Pompeii eruption. For whole rock analyses, the peculiar variations in contents of some major and trace elements as well as different trends in element/element ratios, allow a clear, unequivocal, easy diagnosis of the group they belong. Glass analyses show large compositional overlap between different groups, but selected element vs. element plots are distinctive for the three groups. The comparative analysis of glass and whole rock major element compositions provides reliable geochemical criteria helping in the recognition, frequently not obvious, of distal products from the different single eruptions.
Earth Observations taken by Expedition 38 crewmember
2014-01-21
ISS038-E-035123 (21 Jan. 2014) --- Apoyeque Volcano, Nicaragua is featured in this image photographed by an Expedition 38 crew member on the International Space Station. The Chiltepe Peninsula, highlighted in this photograph, extends into Lake Managua in west-central Nicaragua. The peninsula is formed from part of a large ignimbrite shield, a geologic structure created by deposition of primarily low density materials (such as pumice) ejected during violent, explosive eruptive activity. Ignimbrite deposits are most commonly emplaced during large pyroclastic flows - gravity-driven mixtures of rock, ash, and volcanic gases that can cover hundreds of kilometers at speeds of hundreds of kilometers per hour - with ignimbrite shields formed over geologic time by successive flows. The Apoyeque caldera, filled with a 2.8-kilometer-wide and 400-meter-deep lake, dominates the center of the peninsula. Geological evidence indicates that Apoyeque last erupted around 50 BCE (plus or minus 100 years). The Laguna Xiloa maar - a volcanic crater formed by the explosive interaction of magma and groundwater - is located immediately to the southeast of Apoyeque and is also filled with a lake. According to scientists, Laguna Xiloa last erupted approximately 6,100 years ago. More recently, a swarm of small earthquakes was detected near Apoyeque in 2012. These seismic swarms, when detected in volcanically active areas, may indicate movement of magma prior to an eruption. The capital city of Managua, not visible in the image, is located approximately 15 kilometers to the southeast of Apoyeque, while the town of Bosques de Xiloa is considerably closer (approximately four kilometers).
NASA Astrophysics Data System (ADS)
Zobin, Vyacheslav M.
2018-05-01
Understanding volcanic paroxysmal explosive activity requires the knowledge of many associated processes. An overview of the dynamics of paroxysmal explosive eruptions (PEEs) at andesitic and dacitic volcanoes occurring between 1960 and 2010 is presented here. This overview is based mainly on a description of the pre-eruptive and eruptive events, as well as on the related seismic measurements. The selected eruptions are grouped according to their Volcanic Explosivity Index (VEI). A first group includes three eruptions of VEI 5-6 (Mount St. Helens, 1980; El Chichón, 1982, and Pinatubo, 1991) and a second group includes three eruptions of VEI 3 (Usu volcano, 1977; Soufriere Hills Volcano (SHV), 1996, and Volcán de Colima, 2005). The PEEs of the first group have similarity in their developments that allows to propose a 5-stage scheme of their dynamics process. Between these stages are: long (more than 120 years) period of quiescence (stage 1), preliminary volcano-tectonic (VT) earthquake swarm (stage 2), period of phreatic explosions (stage 3) and then, PEE appearance (stage 4). It was shown also that the PEEs of this group during their Plinian stage "triggered" the earthquake sequences beneath the volcanic structures with the maximum magnitude of earthquakes proportional to the volume of ejecta of PEEs (stage 5). Three discussed PEEs of the second group with lower VEI developed in more individual styles, not keeping within any general scheme. Among these, one PEE (SHV) may be considered as partly following in development to the PEEs of the first group, having stages 1, 3 and 4. The PEEs of Usu volcano and of Volcán de Colima had no preliminary long-term stages of quiescence. The PEE at Usu volcano came just at the end of the preceding short swarm of VT earthquakes. At Volcán de Colima, no preceding swarm of VT occurred. This absence of any regularity in development of lower VEI eruptions may refer, among other reasons, to different conditions of opening of the magmatic conduit during these eruptions.
Ramsey, David W.; Driedger, Carolyn L.; Schilling, Steve P.
2008-01-01
Mount St. Helens has erupted more frequently than any other volcano in the Cascade Range during the past 4,000 years. The volcano has exhibited a variety of eruption styles?explosive eruptions of pumice and ash, slow but continuous extrusions of viscous lava, and eruptions of fluid lava. Evidence of the volcano?s older eruptions is recorded in the rocks that build and the deposits that flank the mountain. Eruptions at Mount St. Helens over the past three decades serve as reminders of the powerful geologic forces that are reshaping the landscape of the Pacific Northwest. On May 18, 1980, a massive landslide and catastrophic explosive eruption tore away 2.7 cubic kilometers of the mountain and opened a gaping, north-facing crater. Lahars flowed more than 120 kilometers downstream, destroying bridges, roads, and buildings. Ash from the eruption fell as far away as western South Dakota. Reconstruction of the volcano began almost immediately. Between 1980 and 1986, 80 million cubic meters of viscous lava extruded episodically onto the crater floor, sometimes accompanied by minor explosions and small lahars. A lava dome grew to a height of 267 meters, taller than the highest buildings in the nearby city of Portland, Oregon. Crater Glacier formed in the deeply shaded niche between the 1980-86 lava dome and the south crater wall. Its tongues of ice flowed around the east and west sides of the dome. Between 1989 and 1991, multiple explosions of steam and ash rocked the volcano, possibly a result of infiltrating rainfall being heated in the still-hot interior of the dome and underlying crater floor. In September 2004, rising magma caused earthquake swarms and deformation of the crater floor and glacier, which indicated that Mount St. Helens might erupt again soon. On October 1, 2004, a steam and ash explosion signaled the beginning of a new phase of eruptive activity at the volcano. On October 11, hot rock reached the surface and began building a new lava dome immediately south of the 1980-86 lava dome. The erupting lava cleaved Crater Glacier in half and bulldozed it aside, causing thickening, crevassing, and rapid northward advance of the glacier?s east and west arms. Intermittent steam and ash explosions, some generating plumes that rose up to 11 kilometers, preceded and accompanied extrusion of the new lava dome, but ceased by early 2005. As the new dome grew, a series of large fins or spines of hot lava rose, some more than 100 meters high, and then crumbled producing sometimes spectacular rock falls. The largest of these rock falls generated dust or steam plumes that rose high above the crater rim. By February 2006, the new dome had grown to a volume similar to that of the 1980-86 lava dome; and by July 2007, the new dome had grown to a volume of 93 million cubic meters, exceeding the volume of the 1980-86 lava dome. The height of the new dome also exceeded that of the 1980-86 lava dome, and at its highest point (before collapse in 2005) reached to within 2 meters of the lowest point on the south crater rim. At this height, the new dome was taller than the Empire State Building in New York City. The new lava dome initially grew very quickly, at rates of 2 to 3 cubic meters (one small dump truck load) per second. If it had continued to grow at these rates for about 100 years, it would have replaced the volume of rock removed from the volcano during the May 18, 1980, eruption. However, the lava extrusion rate slowed throughout the eruption, and, by July 2007, it was oozing at a rate of 0.1 cubic meters per second. At that rate, it would take over 700 years to replace the volume of rock lost in 1980. Lava dome extrusion has continued into early 2008.
A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios
NASA Astrophysics Data System (ADS)
González-Mellado, A. O.; de La Cruz-Reyna, S.
2010-11-01
The impact of ash-fall on people, buildings, crops, water resources, and infrastructure depends on several factors such as the thickness of the deposits, grain size distribution and others. Preparedness against tephra falls over large regions around an active volcano requires an understanding of all processes controlling those factors, and a working model capable of predicting at least some of them. However, the complexity of tephra dispersion and sedimentation makes the search of an integral solution an almost unapproachable problem in the absence of highly efficient computing facilities due to the large number of equations and unknown parameters that control the process. An alternative attempt is made here to address the problem of modeling the thickness of ash deposits as a primary impact factor that can be easily communicated to the public and decision-makers. We develop a semi-empirical inversion model to estimate the thickness of non-compacted deposits produced by an explosive eruption around a volcano in the distance range 4-150 km from the eruptive source. The model was elaborated from the analysis of the geometric distribution of deposit thickness of 14 world-wide well-documented eruptions. The model was initially developed to depict deposits of potential eruptions of Popocatépetl and Colima volcanoes in México, but it can be applied to any volcano. It has been designed to provide planners and Civil Protection authorities of an accurate perception of the ash-fall deposit thickness that may be expected for different eruption scenarios. The model needs to be fed with a few easy-to-obtain parameters, namely, height of the eruptive column, duration of the explosive phase, and wind speed and direction, and its simplicity allows it to run in any platform, including a personal computers and even a notebook. The results may be represented as tables, two dimensional thickness-distance plots, or isopach maps using any available graphic interface. The model has been tested, with available data from some recent eruptions in México, and permits to generate ash-fall deposit scenarios from new situations, or to recreate past situations, or to superimpose scenarios from eruptions of other volcanoes. The results may be displayed as thickness vs. distance plots, or as deposit-thickness scenarios superimposed on a regional map by means of a visual computer simulator based on a user-friendly built-in computer graphic interface.
NASA Astrophysics Data System (ADS)
Cimarelli, C.; Di Traglia, F.; Vona, A.,; Taddeucci, J.
2012-04-01
A broad range of low- to mid-intensity explosive activity is dominated by the emission of ash-sized pyroclasts. Among this activity, Violent Strombolian phases characterize the climax of many mafic explosive eruptions. Such phases last months to years, and produce ash-charged plumes several kilometers in height, posing severe threats to inhabited areas. To tackle the dominant processes leading to ash formation during Violent Strombolian eruptions, we investigated the magma rheology and the field and textural features of products from the 11 ka Croscat basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF). Field, grain-size, chemical (XRF, FE-SEM and electron microprobe) and textural analyses of the Croscat pyroclastic succession outlined the following eruption evolution: activity at Croscat began with fissural, Hawaiian-type fountaining that rapidly shifted towards Strombolian style from a central vent. Later, a Violent Strombolian explosion included several stages, with different emitted volumes and deposit features indicative of differences within the same eruptive style: at first, quasi-sustained fire-fountaining with ash jet and plume produced a massive, reverse to normal graded, scoria deposit; later, a long lasting series of ash-explosions produced a laminated scoria deposit. The eruption ended with a lava flow breaching the western-side of the volcano. Scoria clasts from the Croscat succession ubiquitously show micrometer- to centimeter-sized, microlite-rich domains (MRD) intermingled with volumetrically dominant, microlite-poor domains (MPD). MRD magmas resided longer in a relatively cooler, degassed zone lining the conduit walls, while MPD ones travelled faster along the central, hotter streamline, the two interminging along the interface between the two velocity zones. The preservation of two distinct domains in the short time-scale of the eruption was favoured by their rheological contrast related to the different microlite abundances. The proportion of MPD and MRD, in agreement with bubble-number density (BND), in different tephra layers reflects the extent of the fast- and slow-flowing zones, thus reflecting the ascent velocity profile of magma during the different phases. Recent works (Kueppers et al. 2006, "Explosive energy" during volcanic eruptions from fractal analysis of pyroclasts) indicate that fractal fragmentation theory may allow for quantifying fragmentation processes during explosive volcanic eruptions by calculating the fractal dimension (D) of the size distribution of pyroclasts. At Croscat, BND and MPD/MRD volume ratio decreased during the violent Strombolian activity while D increased, suggesting that the decrease in the magma flow rate was accompanied by the increase in fragmentation efficiency, i.e. by the increase in the ash production capability. This trend may be tentatively attributed to an increased rheological stiffness of the magma progressively enhancing its brittle, more efficient fragmentation.
NASA Astrophysics Data System (ADS)
Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.
2013-06-01
Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.
NASA Astrophysics Data System (ADS)
Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.
2013-12-01
Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with diameters of up to 20 cm, probably abraded by fluidization within the vent, that were laterally transported for hundreds of meters through water. In spite of the great depth, both edifices feature dense but highly fragmented volcanic deposits with an unexpected combination of large clast sizes and wide clast dispersal. This suggests an energetic eruptive environment, which may have similarities with that seen in pyroclastic eruptions on land.
Volcanic Thunder From Explosive Eruptions at Bogoslof Volcano, Alaska
NASA Astrophysics Data System (ADS)
Haney, Matthew M.; Van Eaton, Alexa R.; Lyons, John J.; Kramer, Rebecca L.; Fee, David; Iezzi, Alexandra M.
2018-04-01
Lightning often occurs during ash-producing eruptive activity, and its detection is now being used in volcano monitoring for rapid alerts. We report on infrasonic and sonic recordings of the related, but previously undocumented, phenomenon of volcanic thunder. We observe volcanic thunder during the waning stages of two explosive eruptions at Bogoslof volcano, Alaska, on a microphone array located 60 km away. Thunder signals arrive from a different direction than coeruptive infrasound generated at the vent following an eruption on 10 June 2017, consistent with locations from lightning networks. For the 8 March 2017 eruption, arrival times and amplitudes of high-frequency thunder signals correlate well with the timing and strength of lightning detections. In both cases, the thunder is associated with lightning that continues after significant eruptive activity has ended. Infrasonic and sonic observations of volcanic thunder offer a new avenue for studying electrification processes in volcanic plumes.
NASA Astrophysics Data System (ADS)
Nemeth, Karoly; Geshi, Nobuo
2017-04-01
On near summit flank eruptions on stratovolcanoes it is commonly inferred that external water to have little or no influence on the course of the eruptions. Hence eruptions are typicaly "dry" that form spatter-dominated fissures and scoria cones. This assumption is based on that in elevated regions - especially on steep slopes - the hydrogeological conditions are not favourable to store large volume of ground water that can have effect on the eruptions. However there is some controversial trend of eruption progression from an early dry eruption below the summit that later turn to be phreatomagmatic as the eruption locus migrates toward the summit. The Suoana Ccrater on top of Miyakejima Island's mafic stratovolcano is a fine example to demonstrate such process. Suona Crater is the topmost crater of the 3 km long fissure aligned chain of small-volume volcanoes that formed in the 7th century flank of the summit region of the Miyakejima mafic stratovolcano. The oval shape crater of Suona (400 x 300 m) is surrounded by a tuff ring that developed over lava flows and epiclastic deposits accumulated in an older caldera forming about a tuff ring that is about 25 m in its thickest section with a basal consistent lava spatter dominated unit gradually transforming into a more scoria-dominated middle unit. A caldera-forming eruption in AD 2000 half-sectioned the Suona Crater exposing of its internal diatreme - crater in-fill - tephra rim succession providing a unique opportunity to understand the 3D architecture of the volcano. Toward the top of the preserved and exposed tuff ring section a clear gradual transition can be seen toward more abundance of chilled dark juvenile particles providing a matrix of a coarse ash that commonly hold cauliflower lapilli and bomb. This transition indicates that the eruption progressed from an early dry explosive phase such as lava fountaining to be a more Strombolian style explosive eruption that later on turned to be heavily influenced by external water producing debris jet dominated phreatomagmatic tephra and radially expanding pyroclastic density currents to deposit their load around the growing crater. This 3D architecture can only be explained if we infer that the original lower fissure-fed eruptions gradually allow melt to move toward the summit region where they hit ground water accumulated in an older caldera infill that hosted a succession of lava flows intercalated with lava foot and top breccias as well as abundant pyroclastic and reworked porous deposits capable to harvest water from rain and let them ponded along aquitard horizons in the caldera structure. We infer that such eruption mechanism is probably a common eruption style especially associated with volcanic islands with mafic stratovoclanoes that contain some summit caldera structures and located in humic and/or tropical climate.
NASA Astrophysics Data System (ADS)
Yamaya, Y.; Alanis, P. K. B.; Takeuchi, A.; Cordon, J. M.; Mogi, T.; Hashimoto, T.; Sasai, Y.; Nagao, T.
2013-07-01
Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.
Rybin, A.; Chibisova, M.; Webley, P.; Steensen, T.; Izbekov, P.; Neal, C.; Realmuto, V.
2011-01-01
After 33 years of repose, one of the most active volcanoes of the Kurile island arc-Sarychev Peak on Matua Island in the Central Kuriles-erupted violently on June 11, 2009. The eruption lasted 9 days and stands among the largest of recent historical eruptions in the Kurile Island chain. Satellite monitoring of the eruption, using Moderate Resolution Imaging Spectroradiometer, Meteorological Agency Multifunctional Transport Satellite, and Advanced Very High Resolution Radiometer data, indicated at least 23 separate explosions between 11 and 16 June 2009. Eruptive clouds reached altitudes of generally 8-16 km above sea level (ASL) and in some cases up to 21 km asl. Clouds of volcanic ash and gas stretched to the north and northwest up to 1,500 km and to the southeast for more than 3,000 km. For the first time in recorded history, ash fall occurred on Sakhalin Island and in the northeast sector of the Khabarovsky Region, Russia. Based on satellite image analysis and reconnaissance field studies in the summer of 2009, the eruption produced explosive tephra deposits with an estimated bulk volume of 0. 4 km3. The eruption is considered to have a Volcanic Explosivity Index of 4. Because the volcano is remote, there was minimal risk to people or infrastructure on the ground. Aviation transport, however, was significantly disrupted because of the proximity of air routes to the volcano. ?? 2011 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Weber, Gregor; Castro, Jonathan M.
2017-05-01
Understanding the conditions that culminate in explosive eruptions of silicic magma is of great importance for volcanic hazard assessment and crisis mitigation. However, geological records of active volcanoes typically show a wide range of eruptive behavior and magnitude, which can vary dramatically for individual eruptive centers. In order to evaluate possible future scenarios of eruption precursors, magmatic system variables for different eruption types need to be constrained. Here we use petrological experiments and microanalysis of crystals to clarify the P-T-x state under which rhyodacitic melts accumulated prior to the H3 eruption; the largest Holocene Plinian eruption of Hekla volcano in Iceland. Cobalt-buffered, H2O-saturated phase equilibrium experiments reproduce the natural H3 pumice phenocryst assemblage (pl > fa + cpx > ilm + mt > ap + zrc) and glass chemistry, at 850 ± 15°C and PH2O of 130 to 175 MPa, implying shallow crustal magma storage between 5 and 6.6 km. The systematics of FeO and anorthite (CaAl2Si2O8) content in plagioclase reveal that thermal gradients were more important than compositional mixing or mingling within this magma reservoir. As these petrological findings indicate magma storage much shallower than is currently thought of Hekla's mafic system, we use the constrained storage depth in combination with deformation modeling to forecast permissible surface uplift patterns that could stem from pre-eruptive magma intrusion. Using forward modeling of surface deformation above various magma storage architectures, we show that vertical surface displacements caused by silicic magma accumulation at ∼6 km depth would be narrower than those observed in recent mafic events, which are fed from a lower crustal storage zone. Our results show how petrological reconstruction of magmatic system variables can help link signs of pre-eruptive geophysical unrest to magmatic processes occurring in reservoirs at shallow depths. This will enhance our abilities to couple deformation measurements (e.g. InSAR and GPS) to petrological studies to better constrain potential precursors to volcanic eruptions.
Characterization of fine volcanic ash from explosive eruption from Sakurajima volcano, South Japan
NASA Astrophysics Data System (ADS)
Nanayama, F.; Furukawa, R.; Ishizuka, Y.; Yamamoto, T.; Geshi, N.; Oishi, M.
2013-12-01
Explosive volcanic eruptions can affect infrastructure and ecosystem by their dispersion of the volcanic particle. Characterization of volcanic particle expelled by explosive eruption is crucial for evaluating for quantitative hazard assessment by future volcanic eruption. Especially for fine volcanic ash less than 64 micron in diameter, it can disperse vast area from the source volcano and be easily remobilized by surface wind and precipitation after the deposition. As fine volcanic ash is not preserved well at the earth surface and in strata except for enormously large scale volcanic eruption. In order to quantify quantitative characteristics of fine volcanic ash particle, we sampled volcanic ash directly falling from the eruption cloud from Showa crater, the most active vent of Sakurajima volcano, just before landing on ground. We newly adopted high precision digital microscope and particle grain size analyzer to develop hazard evaluation method of fine volcanic ash particle. Field survey was performed 5 sequential days in January, 2013 to take tamper-proof volcanic ash samples directly obtained from the eruption cloud of the Sakurajima volcano using disposable paper dishes and plastic pails. Samples were taken twice a day with time-stamp in 40 localities from 2.5 km to 43 km distant from the volcano. Japan Meteorological Agency reported 16 explosive eruptions of vulcanian style occurred during our survey and we took 140 samples of volcanic ash. Grain size distribution of volcanic ash was measured by particle grain size analyzer (Mophologi G3S) detecting each grain with parameters of particle diameter (0.3 micron - 1 mm), perimeter, length, area, circularity, convexity, solidity, and intensity. Component of volcanic ash was analyzed by CCD optical microscope (VHX-2000) which can take high resolution optical image with magnifying power of 100-2500. We discriminated each volcanic ash particle by color, texture of surface, and internal structure. Grain size distributions of volcanic ash from Sakurajima volcano have basically characteristics of unimodal and gaussian. Mode of distributions are 150 - 200 micron at 5 km and 70-80 micron at 20 km respectively from the Showa crater. Mode and deviation of the grain size distribution are function of distance from the source. Fine volcanic ash less than 1 micron in diameter is few and exists in every samples. Component of volcanic ash samples are dark-colored dense glass shard (ca. 50%), light-colored dense glass shard (10%), variously colored and vesiculated glass shard (10%), free crystal (20%), lithic fragment (10%), and altered fragment (less than 5%) which are mostly having similar ratio in every location suggesting single source process of the eruption. We also found fine volcanic ash samples less than 10 micron are frequently aggregated. The present study includes the result of "Research and Development of Margin Assessment Methodology of Decay Heat Removal Function against External Hazards" entrusted to Japan Atomic Energy Agency by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).
Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption
NASA Astrophysics Data System (ADS)
Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel
2018-03-01
The MESSENGER mission revealed, for the first time, conclusive evidence of explosive volcanism on Mercury. Several previous works have cataloged the appearance and location of explosive volcanism on the planet using a variety of identifying characteristics, including vent presence and deposit color as seen in multispectral image mosaics. We present here a comprehensive catalog of vents of likely volcanic origin; our classification scheme emphasizes vent morphology. We have analyzed the morphologies of all vents in our catalog, and recognize three main morphologies: "simple vent", "pit vent", and "vent-with-mound". The majority of vents we identify are located within impact craters. The spatial distribution of vents does not correlate with the locations of volcanic smooth plains deposits, in contrast to the Moon, nor do vents correlate with the locations of large impact basins (except for the Caloris and Tolstoj basins). Using the degradation state of the vent host crater as a proxy for maximum age, we suggest that vent formation has been active through the Mansurian and into the Kuiperian periods, although the majority of vents were likely formed much earlier in mercurian history. The morphologies and locations of vents are used to investigate a set of plausible formation geometries. We find that the most likely and most prevalent formation geometry is that of a dike, stalled at depth, which then explosively vents to the surface. We compare the vent and deposit size of mercurian pyroclastic deposits with localized and regional lunar pyroclastic deposits, and find a range of possible eruption energies and corresponding variations in eruption style. Localized lunar pyroclastic deposits and the majority of mercurian pyroclastic deposits show evidence for eruption that is consistent with the magmatic foam at the top of a dike reaching a critical gas volume fraction. A subset of mercurian vents, including the prominent Copland-Rachmaninoff vent to the northeast of the Rachmaninoff basin, indicates eruption at enhanced gas volume fractions. This subset of vents shows a similar eruptive behavior to the lunar Orientale dark mantle ring deposit, suggesting that the dikes that formed these vents and deposits on Mercury underwent some form of additional volatile build-up either through crustal volatile incorporation or magma convection within the dike. There also exists a population of mercurian vents that no longer retain a visible associated pyroclastic deposit; we hypothesize that the visible signature of the pyroclastic deposit has been lost through space weathering and regolith mixing processes. Together, these results provide a comprehensive analysis of explosive volcanism on Mercury, and inform continued research on the thermal history of Mercury and magma composition and evolution.
The location and timing of magma degassing during Plinian eruptions
NASA Astrophysics Data System (ADS)
Giachetti, T.; Gonnermann, H. M.
2014-12-01
Water is the most abundant volatile species in explosively erupting silicic magmas and significantly affects magma viscosity, magma fragmentation and the dynamics of the eruption column. The effect that water has on these eruption processes can be modulated by outgassing degassing from a permeable magma. The magnitude, rate and timing of outgassing during magma ascent, in particular in relation to fragmentation, remains a subject of debate. Here we constrain how much, how fast and where the erupting magma lost its water during the 1060 CE Plinian phase of the Glass Mountain eruption of Medicine Lake Volcano, California. Using thermogravimetric analysis coupled with numerical modeling, we show that the magma lost >90% of its initial water upon eruption. Textural analyses of natural pumices, together with numerical modeling of magma ascent and degassing, indicate that 65-90% of the water exsolved before fragmentation, but very little was able to outgas before fragmentation. The magma attained permeability only within about 1 to 10 seconds before fragmenting and during that time interval permeable gas flow resulted in only a modest amount of gas flux from the un-fragmented magma. Instead, most of the water is lost shortly after fragmentation, because gas can escape rapidly from lapilli-size pyroclasts. This results in an efficient rarefaction of the gas-pyroclast mixture above the fragmentation level, indicating that the development of magma permeability and ensuing permeable outgassing are a necessary condition for sustain explosive eruptions of silicic magma. Magma permeability is thus a double-edged sword, it facilitates both, the effusive and the explosive eruption of silicic magma.
What makes a primary tephra fall?
NASA Astrophysics Data System (ADS)
Hoskuldsson, A.; Gudmundsson, M.; Thordarsson, T.; Öladottir, B.; Sigmarsson, O.; Larsen, G.
2012-04-01
Two recent explosive eruptions in Iceland have raised the thought about what makes a primary tephra fall and how will that be presented in the geological record? Eyjafjallajökull erupted in 2010, an eruption lasting for about 2 months. Fall of tephra fell more or less around the volcano during that time. Grimsvötn erupted in 2011, an powerful eruption lasting for about 7 days, with a main tephra producing phase during the first 3 days. Not only where the two eruptions different in intensity, Eyjafjallajökull being much lower producing about half the volume of Grimsvötn in about 2 months time and a plume not reaching higher than about 10-12 km, Grimsvotn on the other hand needed only 3 days to double the production of Eyjafjallajökull, and sending the ash plume up to about 20 km in the atmosphere. During Eyjafjallajökull atmospheric winds where gentle, leading to tephra precipitation under ideal conditions, tephra blanketed the surrounding land and mountain slopes. During the spring 2011 on the other hand lower atmospheric winds where strong from north, while stratospheric winds where westerly carrying ash in two directions. During the Grímsvötn explosive phase, winds where strong, leading to a peculiar deposition of the tephra. While the Eyjafjallajökull tephra shows typical characteristics of volcanic material falling from the sky in gentle weather, like dogs-paw snow, leading to wide area equal layering, the Grimsvötn tephra came to a rest under high wind showing primary cross bedding, primary erosion surfaces and a complied depletion of fines. Further differences observed are that despite the difference in preservation potential of the tephra from the two eruptions, both have high preservation potential in the near vent field while the smaller eruption has higher preservation potential in the far field of the volcano, due to more favourable weather conditions. In this talk we shall also address the preservation potential of explosive eruption in the geological record and address possible indicators for a major explosive eruption when in a volcanic area.
Quantifying the condition of eruption column collapse during explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Koyaguchi, Takehiro; Suzuki, Yujiro
2016-04-01
During an explosive eruption, a mixture of pyroclasts and volcanic gas forms a buoyant eruption column or a pyroclastic flow. Generation of a pyroclastic flow caused by eruption column collapse is one of the most hazardous phenomena during explosive volcanic eruptions. The quantification of column collapse condition (CCC) is, therefore, highly desired for volcanic hazard assessment. Previously the CCC was roughly predicted by a simple relationship between magma discharge rate and water content (e.g., Carazzo et al., 2008). When a crater is present above the conduit, because of decompression/compression process inside/above the crater, the CCC based on this relationship can be strongly modified (Woods and Bower, 1995; Koyaguchi et al., 2010); however, the effects of the crater on CCC has not been fully understood in a quantitative fashion. Here, we have derived a semi-analytical expression of CCC, in which the effects of the crater is taken into account. The CCC depends on magma properties, crater shape (radius, depth and opening angle) as well as the flow rate at the base of crater. Our semi-analytical CCC expresses all these dependencies by a single surface in a parameter space of the dimensionless magma discharge rate, the dimensionless magma flow rate (per unit area) and the ratio of the cross-sectional areas at the top and the base of crater. We have performed a systematic parameter study of three-dimensional (3D) numerical simulations of eruption column dynamics to confirm the semi-analytical CCC. The results of the 3D simulations are consistent with the semi-analytical CCC, while they show some additional fluid dynamical features in the transitional state (e.g., partial column collapse). Because the CCC depends on such many parameters, the scenario towards the generation of pyroclastic flow during explosive eruptions is considered to be diverse. Nevertheless, our semi-analytical CCC together with the existing semi-analytical solution for the 1D conduit flow model (Koyaguchi, 2005) allows us to intuitively and quantitatively understand how the eruption column dynamics approaches to the CCC as the crater radius increases during the waxing stage of an eruption, or as the magma chamber pressure decreases during the waning stage.
Fee, David; Izbekov, Pavel; Kim, Keehoon; ...
2017-10-09
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fee, David; Izbekov, Pavel; Kim, Keehoon
Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been appliedmore » to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudron, Corentin; Taisne, Benoit; Garces, Milton
The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ~12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Keludmore » eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. As a result, we demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.« less
Understanding the plume dynamics of explosive super-eruptions.
Costa, Antonio; J Suzuki, Yujiro; Koyaguchi, Takehiro
2018-02-13
Explosive super-eruptions can erupt up to thousands of km 3 of magma with extremely high mass flow rates (MFR). The plume dynamics of these super-eruptions are still poorly understood. To understand the processes operating in these plumes we used a fluid-dynamical model to simulate what happens at a range of MFR, from values generating intense Plinian columns, as did the 1991 Pinatubo eruption, to upper end-members resulting in co-ignimbrite plumes like Toba super-eruption. Here, we show that simple extrapolations of integral models for Plinian columns to those of super-eruption plumes are not valid and their dynamics diverge from current ideas of how volcanic plumes operate. The different regimes of air entrainment lead to different shaped plumes. For the upper end-members can generate local up-lifts above the main plume (over-plumes). These over-plumes can extend up to the mesosphere. Injecting volatiles into such heights would amplify their impact on Earth climate and ecosystems.
Caudron, Corentin; Taisne, Benoit; Garces, Milton; ...
2015-07-14
The February 2014 eruption of Kelud volcano (Indonesia) destroyed most of the instruments near it. We use remote seismic and infrasound sensors to reconstruct the eruptive sequence. The first explosions were relatively weak seismic and infrasound events. A major stratospheric ash injection occurred a few minutes later and produced long-lasting atmospheric and ground-coupled acoustic waves that were detected as far as 11,000 km by infrasound sensors and up to 2300 km away on seismometers. A seismic event followed ~12 minutes later and was recorded 7000 km away by seismometers. We estimate a volcanic intensity around 10.9, placing the 2014 Keludmore » eruption between the 1980 Mount St. Helens and 1991 Pinatubo eruptions intensities. As a result, we demonstrate how remote infrasound and seismic sensors are critical for the early detection of volcanic explosions, and how they can help to constrain and understand eruptive sequences.« less
NASA Astrophysics Data System (ADS)
Hayer, C. S.; Wadge, G.; Edmonds, M.; Christopher, T.
2016-02-01
Since 2004, the satellite-borne Ozone Mapping Instrument (OMI) has observed sulphur dioxide (SO2) plumes during both quiescence and effusive eruptive activity at Soufrière Hills Volcano, Montserrat. On average, OMI detected a SO2 plume 4-6 times more frequently during effusive periods than during quiescence in the 2008-2010 period. The increased ability of OMI to detect SO2 during eruptive periods is mainly due to an increase in plume altitude rather than a higher SO2 emission rate. Three styles of eruptive activity cause thermal lofting of gases (Vulcanian explosions; pyroclastic flows; a hot lava dome) and the resultant plume altitudes are estimated from observations and models. Most lofting plumes from Soufrière Hills are derived from hot domes and pyroclastic flows. Although Vulcanian explosions produced the largest plumes, some produced only negligible SO2 signals detected by OMI. OMI is most valuable for monitoring purposes at this volcano during periods of lava dome growth and during explosive activity.
Water-magma interaction and plume processes in the 2008 Okmok eruption, Alaska
Unema, Joel; Ort, Michael H.; Larsen, Jessica D; Neal, Christina; Schaefer, Janet R.
2016-01-01
Eruptions of similar explosivity can have divergent effects on the surroundings due to differences in the behavior of the tephra in the eruption column and atmosphere. Okmok volcano, located on Umnak Island in the eastern Aleutian Islands, erupted explosively between 12 July and 19 August 2008. The basaltic andesitic eruption ejected ∼0.24 km3dense rock equivalent (DRE) of tephra, primarily directed to the northeast of the vent area. The first 4 h of the eruption produced dominantly coarse-grained tephra, but the following 5 wk of the eruption deposited almost exclusively ash, much of it very fine and deposited as ash pellets and ashy rain and mist. Meteorological storms combined with abundant plume water to efficiently scrub ash from the eruption column, with a rapid decrease in deposit thickness with distance from the vent. Grain-size analysis shows that the modes (although not their relative proportions) are very constant throughout the deposit, implying that the fragmentation mechanisms did not vary much. Grain-shape features consistent with molten fuel-coolant interaction are common. Surface and groundwater drainage into the vents provided the water for phreatomagmatic fragmentation. The available water (water that could reach the vent area during the eruption) was ∼2.8 × 1010 kg, and the erupted magma totaled ∼7 × 1011 kg, which yield an overall water:magma mass ratio of ∼0.04, but much of the water was not interactive. Although magma flux dropped from 1 × 107 kg/s during the initial 4 h to 1.8 × 105 kg/s for the remainder of the eruption, most of the erupted material was ejected during the lower-mass-flux period due to its much greater length, and this tephra was dominantly deposited within 10 km downwind of the vent. This highlights the importance of ash scrubbing in the evaluation of hazards from explosive eruptions.
The awakening of a classical nova from hibernation.
Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał
2016-09-29
Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.
The 1989-1990 eruptions of Redoubt Volcano: an introduction
Miller, T.P.; Chouet, B.A.
1994-01-01
Redoubt Volcano, located on the west side of Cook Inlet in south-central Alaska, erupted explosively on over 20 separate occasions between December 14, 1989 and April 21, 1990. Fourteen lava domes were emplaced in the summit area, thirteen of which were subsequently destroyed. The eruption caused economic losses estimated at over $160,000,000 making this the second most costly eruption in U.S. history. This economic impact provided the impetus for a integrated comprehensive account of an erupting volcano using both modern and classical research and modern techniques which in turn led to advances in eruption monitoring and interpretation. Research on such topics as dome formation and collapse and the resulting pyroclastic flows, elutriated ash, lightning, tephra, and flooding was blended with the rapid communication of associated hazards to a large user group. The seismology successes in predicting and monitoring eruption dynamics were due in part to (1) the recognition of long-period seismic events as indicators of the readiness of the volcano to erupt, and (2) to the development of new tools that allowed the seismicity to be assessed instantaneously. Integrated studies of the petrology of erupted products and volatile content over time gave clues as to the progress of the eruption towards completion. ?? 1994.
Legendary Mount Vesuvius is subject of intensive volcanological study
NASA Astrophysics Data System (ADS)
Spera, Frank
The Roman population centers of Pompeii and Herculaneum (circa 15,000 inhabitants) were destroyed when Mount Vesuvius erupted in 79 A.D. after centuries of repose. Many times since then its eruptions have claimed human lives; basaltic lava flows from an eruption in 1631 killed 3,000. Vesuvius' location, near the heart of the Roman empire—a center of learning in the ancient world—led it to become the site ofsome of the earliest volcanological studies on record.In letters to Tacitus, Pliny the Younger documented the sequence of events of the 79 A.D. plinian eruption. Geophysical studies of volcanoes were pioneered by Italian volcanologists who installed seismographs in an observatory on the flanks of Vesuvius to study volcano seismology and to forecast and monitor eruptions early this century. It is easy to understand why interest in Vesuvius has been so keen: it is accessible, persistently active, and a large population resides nearby. Today, around 1 million people live within the shadow of this potentially explosive and dangerous volcano.
Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption.
Roche, O; Buesch, D C; Valentine, G A
2016-03-07
Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ∼ 70-90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow's base had high-particle concentration and relatively modest speeds of ∼ 5-20 m s(-1), fed by an eruption discharging magma at rates up to ∼ 10(7)-10(8) m(3) s(-1) for a minimum of 2.5-10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.
NASA Astrophysics Data System (ADS)
Rison, W.; Krehbiel, P.; Thomas, R.; Edens, H.; Aulich, G.; O'Connor, N.; Kieft, S.; McNutt, S.; Tytgat, G.; Clark, E.
2006-12-01
Following the initial eruptions of Mt. Augustine on January 11-17 2006, we quickly prepared and deployed a first contingent of two portable mapping stations. This was our first use of the newly-developed portable stations, and we were able to deploy them in time to observe the second set of explosive eruptions during the night of January~27-28. The stations were located 17~km apart on the west coast of the Kenai Peninsula, 100~km distant from Augustine on the far western side of Cook Inlet. The stations comprised a minimal network capable of determining the azimuthal direction of VHF radiation sources from electrical discharges, and thus the transverse location of the electrical activity relative to the volcano. The time series data from the southern, Homer station for the initial, energetic explosion at 8:31 pm on January~27 revealed the occurrence of spectacular lightning, which from the two-station data drifted southward from Augustine with time, in the same direction as the plume from the eruption. About 300 distinct lightning discharges occurred over an 11-minute time interval, beginning 2-3~min after the main explosion. The lightning quickly became increasingly complex with time and developed large horizontal extents. One of the final discharges of the sequence lasted 600~ms and had a transverse extent of 15~km, extending to 22~km south of Augustine's summit. In addition to this more usual form of lightning, continuous bursts of radio frequency radiation occurred during the explosion itself, indicating that the tephra was highly charged upon being ejected from the volcano. A completely unplanned and initially missed but one of several fortuitous aspects of the observations was that the Homer station functioned as a 'sea-surface interferometer' whose interference pattern can be used to determine the altitude variation with time for some discharges. The station's VHF antenna was located on the edge of a bluff 210~m above Cook Inlet and received both the direct and reflected signals from the water surface. A clear pattern of interference fringes was observed for the strongest lightning event during the explosive phase and has shown that it was an upward-triggered discharge that propagated upward from Augustine's summit and into the downwind plume. The radiation sources were characteristic of negative polarity breakdown into inferred positive charge in the plume. None of the lightning activity from the January~27-28 eruptions was observed visually due to stormy weather conditions.
Alvarado, Guillermo E.; Carr, Michael J.; Turrin, Brent D.; Swisher, Carl C.; Schmincke, Hans-Ulrich; Hudnut, Kenneth W.
2006-01-01
40Ar/39Ar dates, field observations, and geochemical data are reported for Irazú volcano, Costa Rica. Volcanism dates back to at least 854 ka, but has been episodic with lava shield construction peaks at ca. 570 ka and 136–0 ka. The recent volcanic record on Irazú volcano comprises lava flows and a variety of Strombolian and phreatomagmatic deposits, with a long-term trend toward more hydrovolcanic deposits. Banded scorias and hybridized rocks reflect ubiquitous magma mixing and commingling. Two distinct magma batches have been identified. One magma type or batch, Haya, includes basalt with higher high field strength (HFS) and rare-earth element contents, suggesting a lower degree melt of a subduction modified mantle source. The second batch, Sapper, has greater enrichment of large ion lithophile elements (LILE) relative to HFS elements and rare-earth elements, suggesting a higher subduction signature. The recent volcanic history at Irazú records two and one half sequences of the following pattern: eruptions of the Haya batch; eruptions of the Sapper batch; and finally, an unusually clear unconformity, indicating a pause in eruptions. In the last two sequences, strongly hybridized magma erupted after the eruption of the Haya batch. The continuing presence of two distinct magma batches requires two active magma chambers. The common occurrence of hybrids is evidence for a small, nearer to the surface chamber for mixing the two batches. Estimated pre-eruptive temperatures based on two-pyroxene geothermometry range from ∼1000–1176 °C in basalts to 922 °C in hornblende andesites. Crystallization occurred mainly between 4.6 and 3 kb as measured by different geobarometers. Hybridized rocks show intermediate pressures and temperatures. High silica magma occurs in very small volumes as banded scorias but not as lava flows. Although eruptions at Irazú are not often very explosive, the pervasiveness of magma mixing presents the danger of larger, more explosive hybrid eruptions.
A Descriptive Genetic Classification for Glaciovolcanoes
NASA Astrophysics Data System (ADS)
Edwards, B. R.; Russell, K.; Porritt, L. A.
2014-12-01
We review the recently published descriptive genetic classification for glaciovolcanoes (Russell et al., Quat Sci Rv, 2014). The new classification uses 'tuya' as a root word for all glaciovolcanic edifices, and with modifiers that make the classification descriptive (e.g., andesitic, lava-dominated, flat topped tuya). Although tuyas can range in composition from basaltic to rhyolitic, many of the characteristics diagnostic of glaciovolcanic environments are largely independent of lava composition (e.g., edifice morphology, columnar jointing patterns, glass distributions, pyroclast shapes). Tuya subtypes are first classified on the basis of variations in edifice-scale morphologies (e.g., conical tuya) then, on the proportions of the essential lithofacies (e.g., tephra-dominated conical tuya), and lastly on magma composition (e.g., basaltic, tephra-dominated, conical tuya). The lithofacies associations within tuyas broadly record the interplay between magmatic and glaciohydraulic conditions extent during the active phases of the eruption, including the dominant style of eruption (e.g., explosive vs. effusive). We present nine distinct, endmember models for glaciovolcanic edifices that simultaneously record changes in eruption conditions (explosive, transitional, effusive) for different general glaciohydraulic conditions (closed/sealed, leaky/partly sealed, open/well-drained). To date we have identified potential examples for 7 of the 9 models. Use of a simplified, descriptive classification scheme for glaciovolcanoes will facilitate communications amongst volcanologists and planetary scientists and the use of tuyas for recovering critical paleo-environmental information, particularly the local glaciohydraulics extent during eruptions.
Controls on Explosive Eruptions along the Pacific-Antarctic Ridge
NASA Astrophysics Data System (ADS)
Lewis, M.; Asimow, P. D.; Lund, D. C.
2016-12-01
Sediment core OC170-26-159 was retrieved at 38.967°S, 111.35°W, a location that was 8-9km away from the Pacific-Antarctic Ridge (PAR) axis at the time of Glacial Termination II (T-II), 130ka, a period characterized by enhanced flux of hydrothermal metals to the near-ridge sediments on the East Pacific Rise (Lund et. al. 2016). An interval of enhanced Ti content in OC170-26-159 during T-II is rich in basaltic glass shards that we interpret to be the products of explosive submarine volcanic eruptions. Explosive eruptions of this scale are rare at mid-ocean ridges, so we studied the glass to evaluate whether sea level driven modulation in magmatic flux might be related to the frequency of such events though emplacement of distinct compositions or volatile contents. We report major element and volatile content data for the basaltic glasses and compare the results to literature data (PetDB) from on-axis sampling of the nearest ridge segment, to assess whether the glass was derived from the ridge axis and if it is unusual compared to the axial samples. Major element compositional data show that the glasses are a nearly homogenous population (MgO 5.8 to 6.5%). The heterogeneity is similar to that in single flows in Iceland (Maclennan et. al. 2003) and Hawaii (Garcia et. al. 2000), but the shards are dispersed across a gradient in δ18O, suggesting a closely spaced series of similar eruptions. The glasses are more evolved than any effusively erupted basalts on the PAR, yet are consistent with the same liquid line of descent, linking the explosive products to the axial magmatic system. The MELTS thermodynamic model allows us to calculate the changes in multiple variables along the liquid line of descent between the axial and explosive liquid compositions. Comparison of H2O and CO2 contents to those from axial flows will constrain whether variations in these components are related to eruption styles. These results will constrain the connection between sea level driven variations in magma supply rate, hydrothermal activity, thermal state of the axial magma chamber, volatile exsolution, and the potential for explosive submarine eruptions.
NASA Astrophysics Data System (ADS)
Goto, A.; Ripepe, M.; Lacanna, G.
2014-06-01
Wideband acoustic waves, both inaudible infrasound (<20 Hz) and audible component (>20 Hz), generated by strombolian eruptions were recorded at 5 kHz and correlated with video images. The high sample rate revealed that in addition to the known initial infrasound, the acoustic signal includes an energetic high-frequency (typically >100 Hz) coda. This audible signal starts before the positive infrasound onset goes negative. We suggest that the infrasonic onset is due to magma doming at the free surface, whereas the immediate high-frequency signal reflects the following explosive discharge flow. During strong gas-rich eruptions, positively skewed shockwave-like components with sharp compression and gradual depression appeared. We suggest that successive bursting of overpressurized small bubbles and the resultant volcanic jets sustain the highly gas-rich explosions and emit the audible sound. When the jet is supersonic, microexplosions of ambient air entrained in the hot jet emit the skewed waveforms.
NASA Astrophysics Data System (ADS)
Edwards, M. J.; Kennedy, B. M.; Jolly, A. D.; Scheu, B.; Jousset, P.
2017-02-01
White Island volcano, New Zealand was a host to multiple hydrothermal eruptive episodes within a mud-sulphur pool in 2013. Although hydrothermal activity is common at White Island, past events have largely gone undescribed in favour of the larger phreatomagmatic and magmatic eruptions. Here, we detail the first and longest hydrothermal episode of 2013, lasting from 15 January to 7 February using video and photo analysis from tour operators and staff responsible for monitoring the volcano. Differences in the dominant bubble burst style across this episode led to the classification of four distinct eruption regimes: (1) multiple irregular bursts on the pool surface, (2) larger distinct symmetric hemispheres with starbursts and/or followed by mud heaves, (3) no initial pool surface deformation but a vertical steam jet followed by a sometimes large directed mud heave and (4) no lake and continuous pulsating dry ash and block venting. The progression through these regimes is associated with a lowering lake level and a concomitantly increasing viscosity of the pool, which initially comprises a low viscosity muddy water, and partially evaporates to yield a shallow layer of high viscosity mud that ends with the complete drying up of the mud pool. Formation of primary mud hemispheres or gas jets is followed by heaves or secondary upheaval events. The heights of these heaves are used as a measure of explosivity. Heights increase from ˜8 m during regime 1 on 15 January to ˜102 m during regime 3 on 28 January. Venting of dry mud during regime 4 developed on 29 January before a regression back to regime 1 took place on 7 February as the pool re-established. Through observations of the shapes of ejected mud clots, we propose that the increasing explosivity of higher number regimes is primarily due to increasing slug bubble lengths teamed with increasing mud pool viscosity. We attribute a lesser control to the decreasing depth of the pool during its progressive desiccation, which may in turn influence the bubble burst depth. Occasionally, visible yellowing of the steam/gas plume led us to suggest that elemental sulphur may also be present in the conduit and may also play a role in regulating bubble release dynamics. Although, evidence for magmatic/phreatomagmatic eruptions was present during eruptions later in 2013, we found no evidence for juvenile magma in the January-February eruption episode described here. However, we concur with other investigators that magma was probably intruded to shallow levels and may have driven heat and gas flux. Our explanation for the correlation of pool depth, mud viscosity and eruption regime is based on a conceptual model in which a pool is perched above a two phase hydrothermal system and is sensitive to changes in the heat and gas flux from shallow magma. The variable release of gas and thermal perturbations in the course of the January-February eruptive episode impacted the pool level, the water to sediment ratio in the pool, and thus its viscosity, and in turn modulated the eruption regime. The varying degree of explosivity throughout this episode calls for a new consideration of pool properties in assessing eruption hazards at this frequently visited volcano. We additionally emphasise that ballistic hazards from small eruptions exist coupled with a range of seismic signals and that the hazard was greatest during infrasound tremor.
Eruptive mechanism at Volcán de Colima: Interpreting transitions between styles
NASA Astrophysics Data System (ADS)
Varley, N.; James, M. R.; Hutchison, W.; Arámbula, R.; Reyes, G.
2013-05-01
In January 2013 eruptions resumed at Volcán de Colima, the previous activity having ceased in June 2011. This period represented the quietest the volcano has been since before the previous episode commenced in 1998. The new eruptive episode is showing differences compared to the 1998-2011 period, which are presenting a challenge to interpret. Lower gases fluxes coupled with lower fumaroles temperatures are consistent with the decreasing trend of volatile-contents but the two larger Vulcanian eruptions in January produced pyroclastic density currents with a greater degree of fragmentation than previous events. A dome has been growing within the newly formed crater within the previous dome. The 1998-2011 eruption included five periods of effusive activity, with little variation in composition. Domes grew with effusion rates covering more than 2 orders of magnitude. Both explosive and effusive activity was centred at multiple locations within the summit crater. The SO2 flux showed a general declining trend throughout this period and 2005 included the largest pyroclastic flows witnessed since the last Plinian eruption in 1913. Swarms of small amplitude long period events were detected prior to each larger eruption, these have been again witnessed in 2013. The characteristics of the swarms is being compared, the generation of events being related to brittle fracturing along the conduit margin. The episode terminated in June 2011 with an explosion which removed the upper portion of the most recent and extended period of dome growth, which was at a very slow rate from January 2007. Automated 3D computer vision reconstruction techniques (structure-from-motion and multi-view stereo, SfM-MVS) have permitted the estimation of dome volumes from 1 m resolution digital elevation models. A small decrease in volume (0.4×105 m3) was detected prior to the explosion, which was related to the formation of steps in the dome surface, related to localized zones of weakness. For the explosion, the region of greatest volume loss was observed to be not coincident with the assumed location of the conduit, suggesting and that heterogeneity within the dome was important during the June explosion. Analysis of thermal images taken during flights has permitted the detailed modelling of the dome emplacement processes. The onset of rockfalls on the W side once it reached the crater rim provoked a change in emplacement style from endogenic to exogenic. Monitoring the activity during the recent eruption has produced a wealth of data making it an excellent case study for modelling transitions between different regimes and the generating mechanism for Vulcanian explosions.
Analysis of Distribution of Volcanoes around the Korean Peninsula and the Potential Effects on Korea
NASA Astrophysics Data System (ADS)
Choi, Eun-kyeong; Kim, Sung-wook
2017-04-01
Since the scale and disaster characteristics of volcanic eruptions are determined by their geological features, it is important not only to grasp the current states of the volcanoes in neighboring countries around the Korean Peninsula, but also to analyze the tectonic settings, tectonic regions, geological features, volcanic types, and eruption histories of these volcanoes. Volcanic data were based on the volcano information registered with the Global Volcanism Program at the Smithsonian Institute. We created a database of 289 volcanoes around Korea, Japan, China, Taiwan, and the Kamchatka area in Russia, and then identified a high-risk group of 29 volcanoes that are highly likely to affect the region, based on conditions such as volcanic activity, types of rock at risk of eruption, distance from Seoul, and volcanoes having Plinian eruption history with volcanic explosivity index (VEI) of 4 or more. We selected 29 hazardous volcanoes, including Baekdusan, Ulleungdo, and 27 Japanese volcanoes that can cause widespread ashfall on the Korean peninsula by potentially explosive eruptions. In addition, we identified ten volcanoes that should be given the highest priority, through an analysis of data available in literature, such as volcanic ash dispersion results from previous Japanese eruptions, the definition of a large-scale volcano used by Japan's Cabinet Office, and examination of cumulative magma layer volumes from Japan's quaternary volcanoes. We expect that predicting the extent of the spread of ash caused by this hazardous activity and analyzing its impact on the Korean peninsula will be help to predict volcanic ash damage as well as provide direction for hazard mitigation research. Acknowledgements This research was supported by a grant [MPSS-NH-2015-81] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
The volcanic explosivity index /VEI/ - An estimate of explosive magnitude for historical volcanism
NASA Technical Reports Server (NTRS)
Newhall, C. G.; Self, S.
1982-01-01
A composite estimate of the magnitude of past explosive eruptions, referred to as the Volcanic Explosivity Index (VEI), is proposed as a semiquantitative compromise between poor data and the need in various disciplines to evaluate the record of past volcanism. The VEI is assigned to more than 8000 historic and prehistoric eruptions. It is shown that the VEI can help detect incompleteness and reporting biases and can help in selecting subsets of the historical record suitable for each study. The VEI is a composite estimate of Walkers (1980) magnitude and/or intensity and/or destructiveness and/or (less frequently) dispersive power, violence, and energy release rate, depending on the data that are available.
Volcanic hazards from Bezymianny- and Bandai-type eruptions
Siebert, L.; Glicken, H.; Ui, T.
1987-01-01
Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of kilometers. When not confined by valley walls, avalanches can affect wide areas beyond the volcano's flanks. Tsunamis from debris avalanches at coastal volcanoes have caused more fatalities than have the landslides themselves or associated eruptions. The probable travel distance (L) of avalanches can be estimated by considering the potential vertical drop (H). Data from a catalog of around 200 debris avalanches indicates that the H/L rations for avalanches with volumes of 0.1-1 km3 average 0.13 and range 0.09-0.18; for avalanches exceeding 1 km3, H/L ratios average 0.09 and range 0.5-0.13. Large-scale deformation of the volcanic edefice and intense local seismicity precede many slope failures and can indicate the likely failure direction and orientation of potential lateral blasts. The nature and duration of precursory activity vary widely, and the timing of slope faliure greatly affects the type of associated eruption. Bandai-type eruptions are particularly difficult to anticipate because they typically climax suddenly without precursory eruptions and may be preceded by only short periods of seismicity. ?? 1987 Springer-Verlag.
Use of Larch Light Rings for an Evaluation of Volcanic Explosivity Index
NASA Astrophysics Data System (ADS)
Gurskaya, M. A.
2017-12-01
Volcanic eruptions lead to a global short-term drop in air temperature, including a shortening of the growing season. A reaction to these short-term climatic changes is the formation of light rings (LRs) in Siberian larches growing in the Siberian Subarctic area. The relationships between mass formation (and spatial spread) of LRs and the Volcanic Explosivity Index (VEI) are shown based on an analysis of larch cores collected at 18 points in the northern forest-tundra from 67°32' to 167°40' N. The eruptions with VEI = 6 and higher statistically differ from weaker eruptions by the number of LRs and their spatial distribution. The doubtful dates of several strong eruptions are discussed.
NASA Astrophysics Data System (ADS)
Andrews, Benjamin J.; Dufek, Josef; Ponomareva, Vera
2018-05-01
Deposits and pumice from the 1400 cal BP eruption of Opala volcano record activity that occurred at the explosive-effusive transition, resulting in intermittent, or stop-start, behavior, where explosive activity resumed following a pause. The eruption deposited distinctive, biotite-bearing rhyolite tephra across much of Kamchatka, and its stratigraphy consists of a lithic-rich pumice fall, overlain by pumice falls and pyroclastic density deposits, with the proportion of the latter increasing with height. This sequence repeats such that the middle of the total deposit is marked by a lithic-rich fall with abundant obsidian clasts. Notably, the eruptive pumice are poorly vesiculated, with vesicle textures that record fragmentation of a partially collapsed magmatic foam. The eruption vent, Baranii Amphitheater is filled with obsidian lavas of the same composition as the rhyolite tephra. Based upon the stratigraphic and compositional relations, we divide the eruption into four phases. Phase I initiated with eruption of a lithic-rich pumice fall, followed by eruption of Plinian falls and pyroclastic density currents. During Phase II, the eruption paused for at least 5-6 h; in this time, microlites nucleated and began to grow in the magma. Phase III essentially repeated the Phase I sequence. Obsidian lavas were emplaced during Phase IV. The pumice textures suggest that the magma ascended very near the threshold decompression rate for the transition between explosive (fast) and effusive (slow) behavior. The pause during Phase II likely occurred as decompression slowed enough for the magma to develop sufficient permeability for gas to escape resulting in collapse of the magmatic foam, stopping the eruption and temporarily sealing the conduit. After about 5-6 h, eruption resumed with, once again, magma decompressing very near the explosive-effusive transition. Phase III ended when the decompression rate slowed and lava dome emplacement began. Distributions of pumice and lithic clasts, and inclusion of data from previous workers, indicate minimum deposit volumes of 0.75 and 0.75-1.15 km3 (DRE) and eruption column heights of 18 and 20 km for Phases I and III, respectively. Phases I-III had a likely total duration of 60-80 h, including a pause in activity of 5-6 h during Phase II. This study demonstrates that analysis of vesicle textures from numerous pumice combined with stratigraphic data can reveal syn-eruptive changes in and links between magma permeability, decompression rate, and eruption style. OP-22-Pum is a typical Opala pumice. XRCT scans reveal that vesicles in pumice without obvious banding in hand sample are highly elongate and strongly aligned in different regions. The first half of the animation shows vesicles (white) and the second half shows the solid portions of the pumice (yellow). The field of view is 930 × 930 × 520 μm. OP-22-PumGlass is a pumice with alternating glassy and pumiceous domains. XRCT scans show that the glassy regions contain only small, sparse vesicles, whereas the pumiceous regions comprise elongate, aligned, and interconnected vesicles. The white domains are vesicles. The field of view is 1300 × 1950 × 520 μm.
Conduit stability effects on intensity and steadiness of explosive eruptions.
Aravena, Álvaro; Cioni, Raffaello; de'Michieli Vitturi, Mattia; Neri, Augusto
2018-03-07
Conduit geometry affects magma ascent dynamics and, consequently, the style and evolution of volcanic eruptions. However, despite geological evidences support the occurrence of conduit widening during most volcanic eruptions, the factors controlling conduit enlargement are still unclear, and the effects of syn-eruptive variations of conduit geometry have not been investigated in depth yet. Based on numerical modeling and the application of appropriate stability criteria, we found out a strong relationship between magma rheology and conduit stability, with significant effects on eruptive dynamics. Indeed, in order to be stable, conduits feeding dacitic/rhyolitic eruptions need larger diameters respect to their phonolitic/trachytic counterparts, resulting in the higher eruption rates commonly observed in dacitic/rhyolitic explosive events. Thus, in addition to magma source conditions and viscosity-dependent efficiency for outgassing, we suggest that typical eruption rates for different magma types are also controlled by conduit stability. Results are consistent with a compilation of volcanological data and selected case studies. As stability conditions are not uniform along the conduit, widening is expected to vary in depth, and three axisymmetric geometries with depth-dependent radii were investigated. They are able to produce major modifications in eruptive parameters, suggesting that eruptive dynamics is influenced by syn-eruptive changes in conduit geometry.
Newberry Volcano—Central Oregon's Sleeping Giant
Donnelly-Nolan, Julie M.; Stovall, Wendy K.; Ramsey, David W.; Ewert, John W.; Jensen, Robert A.
2011-01-01
Hidden in plain sight, Oregon's massive Newberry Volcano is the largest volcano in the Cascades volcanic arc and covers an area the size of Rhode Island. Unlike familiar cone-shaped Cascades volcanoes, Newberry was built into the shape of a broad shield by repeated eruptions over 400,000 years. About 75,000 years ago a major explosion and collapse event created a large volcanic depression (caldera) at its summit. Newberry last erupted about 1,300 years ago, and present-day hot springs and geologically young lava flows indicate that it could reawaken at any time. Because of its proximity to nearby communities, frequency and size of past eruptions, and geologic youthfulness, U.S. Geological Survey scientists are working to better understand volcanic activity at Newberry and closely monitor the volcano for signs of unrest.
A strategy for the observation of volcanism on Earth from space.
Wadge, G
2003-01-15
Heat, strain, topography and atmospheric emissions associated with volcanism are well observed by satellites orbiting the Earth. Gravity and electromagnetic transients from volcanoes may also prove to be measurable from space. The nature of eruptions means that the best strategy for measuring their dynamic properties remotely from space is to employ two modes with different spatial and temporal samplings: eruption mode and background mode. Such observational programmes are best carried out at local or regional volcano observatories by coupling them with numerical models of volcanic processes. Eventually, such models could become multi-process, operational forecast models that assimilate the remote and other observables to constrain their uncertainties. The threat posed by very large magnitude explosive eruptions is global and best addressed by a spaceborne observational programme with a global remit.
An Astronomical Time Machine: Light Echoes from Historic Supernovae and Stellar Eruptions
NASA Astrophysics Data System (ADS)
Rest, Armin
2014-01-01
Tycho Brahe's observations of a supernova in 1572 challenged the dogma that the celestial realm was unchanging. Now, 440 years later we have once again seen the light that Tycho saw as simple reflections from walls of Galactic dust. These light echoes, as well as ones detected from other historical events such as Cas A and Eta Carinae's Great Eruption, give us a rare opportunity in astronomy: the direct observation of the cause (the explosion/eruption) and the effect (the remnant) of the same astronomical event. But we can do more: the light echoes let us look at the explosion from different angles, and permit us to map the asymmetries in the explosion. I will discuss how the unprecedented three-dimensional view of these exciting events allows us to unravel some of their secrets.
NASA Astrophysics Data System (ADS)
Karátson, D.; Wulf, S.; Veres, D.; Magyari, E. K.; Gertisser, R.; Timar-Gabor, A.; Novothny, Á.; Telbisz, T.; Szalai, Z.; Anechitei-Deacu, V.; Appelt, O.; Bormann, M.; Jánosi, Cs.; Hubay, K.; Schäbitz, F.
2016-06-01
The most recent, mainly explosive eruptions of Ciomadul, the youngest volcano in the Carpatho-Pannonian Region, have been constrained by detailed field volcanological studies, major element pumice glass geochemistry, luminescence and radiocarbon dating, and a critical evaluation of available geochronological data. These investigations were complemented by the first tephrostratigraphic studies of the lacustrine infill of Ciomadul's twin craters (St. Ana and Mohoş) that received tephra deposition during the last eruptions of the volcano. Our analysis shows that significant explosive activity, collectively called EPPA (Early Phreatomagmatic and Plinian Activity), started at Ciomadul in or around the present-day Mohoş, the older crater, at ≥ 51 ka BP. These eruptions resulted in a thick succession of pyroclastic-fall deposits found in both proximal and medial/distal localities around the volcano, characterized by highly silicic (rhyolitic) glass chemical compositions (ca. 75.2-79.8 wt.% SiO2). The EPPA stage was terminated by a subplinian/plinian eruption at ≥ 43 ka BP, producing pumiceous pyroclastic-fall and -flow deposits of similar glass composition, probably from a "Proto-St. Ana" vent located at or around the younger crater hosting the present-day Lake St. Ana. After a quiescent period with a proposed lava dome growth in the St. Ana crater, a new explosive stage began, defined as MPA (Middle Plinian Activity). In particular, a significant two-phase eruption occurred at 31.5 ka BP, producing pyroclastic flows from vulcanian explosions disrupting the preexisting lava dome of Sf. Ana, and followed by pumiceous fallout from a plinian eruption column. Related pyroclastic deposits show a characteristic, less evolved rhyolitic glass composition (ca. 70.2-74.5 wt.% SiO2) and occur both in proximal and medial/distal localities up to 21 km from source. The MPA eruptions, that may have pre-shaped a crater similar to, but possibly smaller than, the present-day St. Ana crater, was followed by a so far unknown, but likewise violent last eruptive stage from the same vent, creating the final morphology of the crater. This stage, referred to as LSPA (Latest St. Ana Phreatomagmatic Activity), produced pyroclastic-fall deposits of more evolved rhyolitic glass composition (ca. 72.8-78.8 wt.% SiO2) compared to that of the previous MPA stage. According to radiocarbon age constraints on bulk sediment, charcoal and organic matter from lacustrine sediments recovered from both craters, the last of these phreatomagmatic eruptions - that draped the landscape toward the east and southeast of the volcano - occurred at 29.6 ka BP, some 2000 years later than the previously suggested last eruption of Ciomadul.
Multiphase flow modelling of explosive volcanic eruptions using adaptive unstructured meshes
NASA Astrophysics Data System (ADS)
Jacobs, Christian T.; Collins, Gareth S.; Piggott, Matthew D.; Kramer, Stephan C.
2014-05-01
Explosive volcanic eruptions generate highly energetic plumes of hot gas and ash particles that produce diagnostic deposits and pose an extreme environmental hazard. The formation, dispersion and collapse of these volcanic plumes are complex multiscale processes that are extremely challenging to simulate numerically. Accurate description of particle and droplet aggregation, movement and settling requires a model capable of capturing the dynamics on a range of scales (from cm to km) and a model that can correctly describe the important multiphase interactions that take place. However, even the most advanced models of eruption dynamics to date are restricted by the fixed mesh-based approaches that they employ. The research presented herein describes the development of a compressible multiphase flow model within Fluidity, a combined finite element / control volume computational fluid dynamics (CFD) code, for the study of explosive volcanic eruptions. Fluidity adopts a state-of-the-art adaptive unstructured mesh-based approach to discretise the domain and focus numerical resolution only in areas important to the dynamics, while decreasing resolution where it is not needed as a simulation progresses. This allows the accurate but economical representation of the flow dynamics throughout time, and potentially allows large multi-scale problems to become tractable in complex 3D domains. The multiphase flow model is verified with the method of manufactured solutions, and validated by simulating published gas-solid shock tube experiments and comparing the numerical results against pressure gauge data. The application of the model considers an idealised 7 km by 7 km domain in which the violent eruption of hot gas and volcanic ash high into the atmosphere is simulated. Although the simulations do not correspond to a particular eruption case study, the key flow features observed in a typical explosive eruption event are successfully captured. These include a shock wave resulting from the sudden high-velocity inflow of gas and ash; the formation of a particle-laden plume rising several hundred metres into the atmosphere; the eventual collapse of the plume which generates a volcanic ash fountain and a fast ground-hugging pyroclastic density current; and the growth of a dilute convective region that rises above the ash fountain as a result of buoyancy effects. The results from Fluidity are also compared with results from MFIX, a fixed structured mesh-based multiphase flow code, that uses the same set-up. The key flow features are also captured in MFIX, providing at least some confidence in the plausibility of the numerical results in the absence of quantitative field data. Finally, it is shown by a convergence analysis that Fluidity offers the same solution accuracy for reduced computational cost using an adaptive mesh, compared to the same simulation performed with a uniform fixed mesh.
Tephro- and chemo-stratigraphy of the Vulcanello Peninsula (Vulcano, Aeolian Islands)
NASA Astrophysics Data System (ADS)
Rosi, M.; Fusillo, R.; di Traglia, F.; Pistolesi, M.; Todman, A.; Menzies, M. A.
2009-12-01
New stratigraphic studies of the Vulcanello Peninsula have been used to better define the small-scale evolution of this young (1000 AD and 325±100 BP) volcanic center and to re-investigate the last 1000 years of volcanic history for the Island of Vulcano (Aeolian Islands, Southern Italy). Vulcanello Peninsula is the northern-most part of the Island of Vulcano. It comprises a shoshonitic lava platform and a volcanic edifice made up of three overlying cones, which are shoshonitic to trachytic in composition. Volcanic activity in this area was coeval with the recent eruptions of the La Fossa Cone, the present-day active center of the island. Our goal is to constrain the recent volcanic development of this mafic volcano and to focus on the historic eruptive activity of the two other recent or active centres in the southern Aeolian Islands, Mt. Pilato (Island of Lipari) and La Fossa Cone. In order to do so, we reconstructed the stratigraphical setting of the proximal deposits of the three Vulcanello cones, through the investigation of 25 outcrops. We analyzed the stratigraphy of the tephra blankets deposited on the lava platform, studying 10 trenches. Our intention is to integrate morphological, textural and chemical data in order to correlate these deposits with the Vulcanello, La Fossa Cone or Mt Pilato. LA-MC-ICPMS (RHUL) analysis of juvenile clasts is underway in order to investigate the evolution of the Vulcanello juvenile clasts. In addition 14C dating is planned on selected organic matter from the volcanostratigraphic sections. Our preliminary data for the Vulcanello proximal deposits suggest that each of the three cones experienced several eruptions, with a wide spectrum of eruptive styles and a diversity of chemistry. The oldest cone (Vulcanello I) is characterised by four different eruptions separated by minor unconformities or reworking material indicative of little or not time breaks in the eruptive cycle. The eruptions shift from Violent Strombolian to Hawaiian in style, testifying to a reduction in fragmentation and dispersal. The second cone (Vulcanello II), contains volcanic deposits from Strombolian eruptions only. The third cone (Vulcanello III), displays a complex evolution with an initial effusive episode of a trachytic lava flow, followed by phreatic explosions, evident as altered fine ash layers. These deposits are interbedded with scoriaceous fall deposits, attesting the occurrence of some mild explosive activity during this eruptive phase. This detailed study of the effusive and explosive products from Vulcanello reveals rapid evolution of Vulcanello during the initial phases (1000 AD to 1200 AD) with voluminous mafic eruptions, both effusive and explosive. A progressive reduction in emitted volume is apparent. The presence of abundant explosive deposits related to phreatic explosions during the Vulcanello III phase, is related to the presence of water, a reduction in magma volume and the presence of intense hydrothermal activity in the latter stage of the evolution of Vulcanello evolution until 1878. This may indicate the presence of a stable shallow thermal anomaly.
Engaging with the Public on Volcanic Risk through Hands-on Interaction with the London Volcano.
NASA Astrophysics Data System (ADS)
Rodgers, M.; Pyle, D. M.; Barclay, J.; Mather, T. A.; Hicks, A.; Ratner, J.; Leonard, H.; Woods, C.
2015-12-01
London Volcano is a major public engagement and outreach effort that emerged from a large-scale interdisciplinary research project on Strengthening Resilience in Volcanic Areas (STREVA). The activity was created for a 5-day public exhibition in London, in 2014, and brought together 3 elements to illustrate the timeline of a volcanic crisis: a 5m x 3m scale model of Soufrière St Vincent, an interactive 'monitoring station' to explore technology used in monitoring and an engaging 'bin bang' sequence to simulate a volcanic explosion. Having a large hands-on volcano as a centrepiece to the exhibit enabled interaction with primary-age school children through the use of creativity and imagination. They looked at seismic traces of 'bin bang' explosions; measured dispersal of projectile ducks; and decided where to place a model house on the island, on which the model volcano sat. Over the 5-days we evolved the activity of the volcano to re-create the 1902 eruption. During the first 3 days, 94 houses were placed around the volcano, but after the cataclysmic eruption mid-week, 12 of these houses were destroyed by simulated pyroclastic flows and lahars down the flanks of the volcano model. Light and sound were key parts of the London Volcano simulation. A sound track was created to mimic the sounds reported by eyewitnesses. Between eruptions, the volcano would intermittently rumble, adding excitement and unpredictability to the eruptions. Explosions were simulated with compressed-CO2 jets, and a G-flame; but these events were rare. Creative arts are an effective mechanism for transfer of knowledge from communities living with volcanic activity, so artwork from school children living near Tungurahua, Ecuador and poems from school children on Montserrat were on display. The London Volcano was a unique opportunity to engage with over 2,000 people on volcanic risk and what it means to live near a volcano. Encouraging school children to be creative and to use their imagination allowed the volcano to come alive in ways that would have otherwise been impossible.
Potential hazards from future volcanic eruptions in California
Miller, C. Dan
1989-01-01
More than 500 volcanic vents have been identified in the State of California. At least 76 of these vents have erupted, some repeatedly, during the last 10,000 years. Past volcanic activity has ranged in scale and type from small rhyolitic and basaltic eruptions through large catastrophic rhyolitic eruptions. Sooner or later, volcanoes in California will erupt again, and they could have serious impacts on the health and safety of the State\\'s citizens as well as on its economy. This report describes the nature and probable distribution of potentially hazardous volcanic phenomena and their threat to people and property. It includes hazard-zonation maps that show areas relatively likely to be affected by future eruptions in California. The potentially more hazardous eruptions in the State are those that involve explosive eruption of large volumes of silicic magma. Such eruptions could occur at vents in as many as four areas in California. They could eject pumice high into the atmosphere above the volcano, produce destructive blasts, avalanches, or pyroclastic flows that reach distances of tens of kilometers from a vent, and produce mudflows and floods that reach to distances of hundreds of kilometers. Smaller eruptions produce similar, but less severe and less extensive, phenomena. Hazards are greatest close to a volcanic vent; the slopes on or near a volcano, and valleys leading away from it, are affected most often and most severely by such eruptions. In general, risk from volcanic phenomena decreases with increasing distance from a vent and, for most flowage processes, with increasing height above valley floors or fan surfaces. Tephra (ash) from explosive eruptions can affect wide areas downwind from a vent. In California, prevailing winds cause the 180-degree sector east of the volcano to be affected most often and most severely. Risk to life from ashfall decreases rapidly with increasing distance from a vent, but thin deposits of ash could disrupt communication, transportation, and utility systems at great distances, and over wide regions, in eastern California and adjacent states. Volcanic eruptions are certain to occur in California in the future and an be neither prevented nor stopped, but actions can be taken to limit damage from them. Reduction of risk to life and property can be effected by avoiding threatened areas and by taking protective measures to reduce the effects when and where vulnerable areas cannot be avoided. Monitoring of volcanic precursors generally can identify the locality of impending volcanic activity, even though it often does not pinpoint the nature or timing of an eruption, or even its certainty. Hazard-zonation maps can then be used to guide decisions regarding evacuation and other response activities. Thus, effective monitoring of volcanoes in the State, combined with preparation of contingency plans to deal with future eruptions, can help reduce risk to lives and property.
Geochemistry of glass and olivine from Keanakako`i Tephra at Kilauea Volcano, Hawai`i
NASA Astrophysics Data System (ADS)
Garcia, M. O.; Mucek, A. E.; Swanson, D.
2011-12-01
Kilauea Volcano is well known for its frequent quiescent eruptions. However, it also has an underappreciated explosive past. Recent field work has documented many details of the Keanakako`i Tephra, which was generated during a period of explosive activity when few lava flows were erupted. The dominantly phreatomagmatic eruptions, which produced the Keanakako`i Tephra, began late in, or completely after, the formation of Kilauea Caldera (ca. 1500 CE) and continued sporadically until 1823. Thereafter, effusive eruptions outside the caldera resumed and have continued to the present.The Keanakako`i deposits provide an opportunity to examine the restoration of Kilauea's magmatic plumbing following caldera formation. Glassy products with variable amounts of olivine dominate from ca. 1500 A.D. to the late 1600 A.D., whereas lithic-rich deposits with sparse glass are common in the 1700 A.D. deposits, which include the deadly explosive activity of A.D. 1790. Glass compositions from tephra and basalt flows show remarkable MgO variations (4-11 wt percent), larger than those observed in glasses from subsequent eruptions. Some units have variable MgO indicating a zoned magma reservoir, whereas some others have variable incompatible element ratios suggesting magma mixing. The highest MgO values (>10 wt percent) are from 1500 A.D. and 1823 deposits. The range of parental magma compositions based on tephra glasses erupted over a 300 year period is comparable to those observed for the first 15 years of the Pu`u `O`o eruption and about half of the variation observed for summit eruptions from 1832 to 1982. The limited range in tephra parental magma compositions may be related to a lower magma production rate during the period the tephra was erupted.
Earth Observations taken by the Expedition 13 crew
2006-08-02
ISS013-E-62714 (2 Aug. 2006) --- Mt. Etna Summit Plumes, Sicily is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. One of the most consistently active volcanoes in the world is Sicily's Mt. Etna, which has a historical record of eruptions dating back to 1500 B.C. This image captures plumes of steam and possible minor ash originating from summit craters on the mountain -- the Northeast Crater and Central Crater, which includes two secondary craters (Voragine and Bocca Nuova). Explosions were heard from the rim of the Northeast Crater on July 26, and scientists suspect that these plumes are a continuation of that activity. The massive 3350 meter high volcano is located approximately 24 kilometers to the north of Catania, the second largest city in Sicily, and dominates the northern skyline. Much of Etna's surface is comprised of numerous generations of dark basaltic lava flows, as can be seen extended outwards from the summit craters. Fertile soils developed on older flows are marked by green vegetation. While the current explosive eruptions of Etna tend to occur at the summit, lava flows generally erupt through fissures lower down on the flanks of the volcano. Many of the lava flow vents are marked by cinder cones on the flanks of Mt. Etna. Scientists have noted evidence of larger eruptive events as well. The Valle Del Bove to the south-southeast of the summit is a caldera formed by the emptying of a subsurface magma chamber during a large eruptive event -- once the magma chamber was emptied, the overlaying roof material collapsed downwards.
Overview of the 1997 2000 activity of Volcán de Colima, México
NASA Astrophysics Data System (ADS)
Zobin, V. M.; Luhr, J. F.; Taran, Y. A.; Bretón, M.; Cortés, A.; De La Cruz-Reyna, S.; Domínguez, T.; Galindo, I.; Gavilanes, J. C.; Muñíz, J. J.; Navarro, C.; Ramírez, J. J.; Reyes, G. A.; Ursúa, M.; Velasco, J.; Alatorre, E.; Santiago, H.
2002-09-01
This overview of the 1997-2000 activity of Volcán de Colima is designed to serve as an introduction to the Special Issue and a summary of the detailed studies that follow. New andesitic block lava was first sighted from a helicopter on the morning of 20 November 1998, forming a rapidly growing dome in the summit crater. Numerous antecedents to the appearance of the dome were recognized, starting more than a year in advance, including: (1) pronounced increases in S/Cl and δD values at summit fumaroles in mid-1997; (2) five earthquake swarms between November-December 1997 and October-November 1998, with hypocenters that ranged down to 8 km beneath the summit and became shallower as the eruption approached; (3) steady inflation of the volcano reflected in shortening of geodetic survey line lengths beginning in November-December 1997 and continuing until the start of the eruption; (4) air-borne correlation spectrometer measurements of SO 2 that increased from the background values of <30 tons/day recorded since 1995 to reach 400 tons/day on 30 October 1998 and 1600 tons/day on 18 November 1998; and (5) small ash emissions detected by satellite-borne sensors beginning on 22 November 1997. The seismic and other trends were the basis of a short-term forecast of an eruption, announced on 13 November 1998, with a forecast window of 16-18 November. Although the lava dome actually appeared on 20 November, this forecast is considered to have been a major success, and the first of its kind at Volcán de Colima. Based in part on this forecast, orderly evacuations of Yerbabuena, Juan Barragan, and other small proximal communities took place on 18 November. The lava dome grew rapidly (˜4.4 m 3/s) on 20 November, and was spilling over the SW rim of the crater by the morning of 21 November to feed block-and-ash flows (pyroclastic flows) ahead of an advancing lobe of andesitic block lava. The pyroclastic flows were initially generated at intervals of 3-5 min, reached speeds of 80-90 km/h, and extended out to 4.5 km from the crater. The block lava flow was already ˜150 m long by the afternoon of 21 November. It ultimately split into three lobes that flowed down the three branches of Barranca el Cordobán on the SSW flank of Volcán de Colima; the lava advanced atop previously emplaced pyroclastic-flow deposits from the same eruptive event, whose total volume is estimated as 24×10 5 m 3. The three lava lobes ultimately reached 2.8-3.8 km from the crater, had flow fronts ˜30 m high, and an estimated total volume of 39×10 6 m 3. By early February 1999 the lava flows were no longer being fed from the summit crater, but the flow fronts continued their slow advance driven by gravitational draining of their partially molten interiors. The 1998-1999 andesites continued a compositional trend toward relatively higher SiO 2 and lower MgO that began with the 1991 lava eruption, completing the reversal of an excursion to more mafic compositions (lower SiO 2 and higher MgO) that occurred during 1976-1982. Accordingly, the 1998-1999 andesites show no signs of a transition toward the more mafic magmas that have characterized the major explosive eruptions of Volcán de Colima, such as those of 1818 and 1913. A large explosion on 10 February 1999 blasted a crater through the 1998-1999 lava dome and marked the beginning of a new explosive stage of activity at Volcán de Colima. Incandescent blocks showered the flanks out to 5 km distance, forming impact craters and triggering numerous forest fires. Similar large explosions occurred on 10 May and 17 July 1999, interspersed with numerous smaller explosions of white steam or darker ash-bearing steam. Intermittent minor explosive activity continued through the year 2000, and another large explosion took place on 22 February, 2001.
Eruptive history of Earth's largest Quaternary caldera (Toba, Indonesia) clarified
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesner, C.A.; Rose, W.I.; Drake, R.
1991-03-01
Single-grain laser-fusion {sup 40}Ar/{sup 39}Ar analyses of individual sanidine phenocrysts from the two youngest Toba (Indonesia) tuffs yield mean ages of 73{plus minus}4 and 501{plus minus}5 ka. In addition, glass shards from Toba ash deposited in Malaysia were dated at 68{plus minus}7 ka by the isothermal plateau fission-track technique. These new determinations, in conjunction with previous ages for the two oldest tuffs at Toba, establish the chronology of four eruptive events from the Toba caldera complex over the past 1.2 m.y. Ash-flow tuffs were erupted from the complex every 0.34 to 0.43 m.y., culminating with the enormous (2500-3000 km{sup 3})more » Youngest Toba tuff eruption, caldera formation, and subsequent resurgence of Samosir Island. Timing of this last eruption at Toba is coincident with the early Wisconsin glacial advance. The high-precision {sup 40}Ar/{sup 39}Ar age eruption of such magnitude may provide an important marker horizon useful as a baseline for research and modeling of the worldwide climatic impact of exceptionally large explosive eruptions.« less
Earth Observations taken by the Expedition 13 crew
2006-05-20
ISS013-E-23272 (8 June 2006) --- Tenerife Island, Spain is featured in this image photographed by an Expedition 13 crewmember on the International Space Station. Tenerife is the largest of the Canary Islands, a Spanish possession located off the northwestern coast of Africa. According to scientists, the islands in the chain could have been produced by eruptions of basaltic shield volcanoes as the African tectonic plate moved over a stationary "hot spot" much like the formation of the Hawaiian Islands. A different hypothesis relates the Canary Islands to magma rise along underwater faults during the uplift of the Atlas Mountains in northern Africa. The island of Tenerife exhibits many excellent volcanic features. The central feature of this image is the elliptical depression of the Las Ca?adas caldera that measures 170 square kilometers in area. A caldera is typically formed when the magma chamber underneath a volcano is completely emptied (usually following a massive eruptive event), and the overlying materials collapse into the newly formed void beneath the surface. A large landslide may have also contributed to (or been the primary cause of) formation of the caldera structure. In this model, part of the original shield volcano forming the bedrock of the island collapsed onto the adjacent sea floor, forming the large depression of the caldera. According to scientists, following formation of the caldera approximately 0.17 million years ago, the composite volcanoes of Mount Teide and Pico Viejo formed. Teide is the highest peak in the Atlantic Ocean with a summit elevation of 3,715 meters. This type of volcano is formed by alternating layers of dense lava flows and more fragmented explosive eruption products, and can build high cones. Many linear flow levees are visible along the flanks of Teide volcano extending from the summit to the base, while a large circular explosion crater marks the summit of Pico Viejo. The floor of the Las Ca?adas caldera is covered with tan, red-brown, and black irregularly-lobed lava flows, the eruptions of which have been observed by settlers and seamen since 1402. The most recent eruption occurred in 1909. The island of Tenerife is actively monitored for further activity.
NASA Astrophysics Data System (ADS)
Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.
2008-07-01
Tephra fall is a relevant hazard of Campi Flegrei caldera (Southern Italy), due to the high vulnerability of Naples metropolitan area to such an event. Here, tephra derive from magmatic as well as phreatomagmatic activity. On the basis of both new and literature data on known, past eruptions (Volcanic Explosivity Index (VEI), grain size parameters, velocity at the vent, column heights and erupted mass), and factors controlling tephra dispersion (wind velocity and direction), 2D numerical simulations of fallout dispersion and deposition have been performed for a large number of case events. A bayesian inversion has been applied to retrieve the best values of critical parameters (e.g., vertical mass distribution, diffusion coefficients, velocity at the vent), not directly inferable by volcanological study. Simulations are run in parallel on multiple processors to allow a fully probabilistic analysis, on a very large catalogue preserving the statistical proprieties of past eruptive history. Using simulation results, hazard maps have been computed for different scenarios: upper limit scenario (worst-expected scenario), eruption-range scenario, and whole-eruption scenario. Results indicate that although high hazard characterizes the Campi Flegrei caldera, the territory to the east of the caldera center, including the whole district of Naples, is exposed to high hazard values due to the dominant westerly winds. Consistently with the stratigraphic evidence of nature of past eruptions, our numerical simulations reveal that even in the case of a subplinian eruption (VEI = 3), Naples is exposed to tephra fall thicknesses of some decimeters, thereby exceeding the critical limit for roof collapse. Because of the total number of people living in Campi Flegrei and the city of Naples (ca. two million of inhabitants), the tephra fallout risk related to a plinian eruption of Campi Flegrei largely matches or exceeds the risk related to a similar eruption at Vesuvius.
Hail formation triggers rapid ash aggregation in volcanic plumes.
Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B
2015-08-03
During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.
Hail formation triggers rapid ash aggregation in volcanic plumes
Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, Michael; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi L.; Clarke, Amanda B.
2015-01-01
During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits. PMID:26235052
Predicting eruptions from precursory activity using remote sensing data hybridization
NASA Astrophysics Data System (ADS)
Reath, K. A.; Ramsey, M. S.; Dehn, J.; Webley, P. W.
2016-07-01
Many volcanoes produce some level of precursory activity prior to an eruption. This activity may or may not be detected depending on the available monitoring technology. In certain cases, precursors such as thermal output can be interpreted to make forecasts about the time and magnitude of the impending eruption. Kamchatka (Russia) provides an ideal natural laboratory to study a wide variety of eruption styles and precursory activity prior to an eruption. At Bezymianny volcano for example, a clear increase in thermal activity commonly occurs before an eruption, which has allowed predictions to be made months ahead of time. Conversely, the eruption of Tolbachik volcano in 2012 produced no discernable thermal precursors before the large scale effusive eruption. However, most volcanoes fall between the extremes of consistently behaved and completely undetectable, which is the case with neighboring Kliuchevskoi volcano. This study tests the effectiveness of using thermal infrared (TIR) remote sensing to track volcanic thermal precursors using data from both the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Advanced Very High Resolution Radiometer (AVHRR) sensors. It focuses on three large eruptions that produced different levels and durations of effusive and explosive behavior at Kliuchevskoi. Before each of these eruptions, TIR spaceborne sensors detected thermal anomalies (i.e., pixels with brightness temperatures > 2 °C above the background temperature). High-temporal, low-spatial resolution (i.e., hours and 1 km) AVHRR data are ideal for detecting large thermal events occurring over shorter time scales, such as the hot material ejected following strombolian eruptions. In contrast, high-spatial, low-temporal resolution (i.e., days to weeks and 90 m) ASTER data enables the detection of much lower thermal activity; however, activity with a shorter duration will commonly be missed. ASTER and AVHRR data are combined to track low-level anomalies months prior to an eruption and higher-energy events prior to large eruptions to develop a monitoring approach for this eruption style. Results show that strombolian eruptions produce enough energy in the pre-eruptive phase to trigger an AVHRR detection. Paired with ASTER data, the results can be extended back in time to develop a precursory timeline, which captures subtle changes in volcanic activity that would commonly go unnoticed in a single data set. Although these precursors may be volcano and eruption specific, the now sixteen-year-old database from ASTER allows this methodology to be repeatable at other volcanoes to establish a quantitative precursory baseline, which would be an improvement over current eruption classifications.
Analysis of dynamics of vulcanian activity of Ubinas volcano, using multicomponent seismic antennas
NASA Astrophysics Data System (ADS)
Inza, L. A.; Métaxian, J. P.; Mars, J. I.; Bean, C. J.; O'Brien, G. S.; Macedo, O.; Zandomeneghi, D.
2014-01-01
A series of 16 vulcanian explosions occurred at Ubinas volcano between May 24 and June 14, 2009. The intervals between explosions were from 2.1 h to more than 6 days (mean interval, 33 h). Considering only the first nine explosions, the average time interval was 7.8 h. Most of the explosions occurred after a short time interval (< 8 h) and had low energy, which suggests that the refilling time was not sufficient for large accumulation of gas. A tremor episode followed 75% of the explosions, which coincided with pulses of ash emission. The durations of the tremors following the explosions were longer for the two highest energy explosions. To better understand the physical processes associated with these eruptive events, we localized the sources of explosions using two seismic antennas that were composed of three-component 10 and 12 sensors. We used the high-resolution MUSIC-3C algorithm to estimate the slowness vector for the first waves that composed the explosion signals recorded by the two antennas assuming propagation in a homogeneous medium. The initial part of the explosions was dominated by two frequencies, at 1.1 Hz and 1.5 Hz, for which we identified two separated sources located at 4810 m and 3890 m +/- 390 altitude, respectively. The position of these two sources was the same for the full 16 explosions. This implies the reproduction of similar mechanisms in the conduit. Based on the eruptive mechanisms proposed for other volcanoes of the same type, we interpret the position of these two sources as the limits of the conduit portion that was involved in the fragmentation process. Seismic data and ground deformation recorded simultaneously less than 2 km from the crater showed a decompression movement 2 s prior to each explosion. This movement can be interpreted as gas leakage at the level of the cap before its destruction. The pressure drop generated in the conduit could be the cause of the fragmentation process that propagated deeper. Based on these observations, we interpret the position of the highest source as the part of the conduit under the cap, and the deeper source as the limit of the fragmentation zone.
Infrasonic component of volcano-seismic eruption tremor
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Fee, David
2014-03-01
Air-ground and ground-air elastic wave coupling are key processes in the rapidly developing field of seismoacoustics and are particularly relevant for volcanoes. During a sustained explosive volcanic eruption, it is typical to record a sustained broadband signal on seismometers, termed eruption tremor. Eruption tremor is usually attributed to a subsurface seismic source process, such as the upward migration of magma and gases through the shallow conduit and vent. However, it is now known that sustained explosive volcanic eruptions also generate powerful tremor signals in the atmosphere, termed infrasonic tremor. We investigate infrasonic tremor coupling down into the ground and its contribution to the observed seismic tremor. Our methodology builds on that proposed by Ichihara et al. (2012) and involves cross-correlation, coherence, and cross-phase spectra between waveforms from nearly collocated seismic and infrasonic sensors; we apply it to datasets from Mount St. Helens, Tungurahua, and Redoubt Volcanoes.
Integrated, multi-parameter, investigation of eruptive dynamics at Santiaguito lava dome, Guatemala
NASA Astrophysics Data System (ADS)
Lavallée, Yan; De Angelis, Silvio; Rietbrock, Andreas; Lamb, Oliver; Hornby, Adrian; Lamur, Anthony; Kendrick, Jackie E.; von Aulock, Felix W.; Chigna, Gustavo
2016-04-01
Understanding the nature of the signals generated at volcanoes is central to hazard mitigation efforts. Systematic identification and understanding of the processes responsible for the signals associated with volcanic activity are only possible when high-resolution data are available over relatively long periods of time. For this reason, in November 2014, the Liverpool Earth Observatory (LEO), UK, in collaboration with colleagues of the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, installed a large multi-parameter geophysical monitoring network at Santiaguito - the most active volcano in Guatemala. The network, which is to date the largest temporary deployment on Santiaguito, includes nine three-component broadband seismometers, three tiltmeters, and five infrasound microphones. Further, during the initial installation campaign we conducted visual and thermal infrared measurements of surface explosive activity and collected numerous rock samples for geochemical, geophysical and rheological characterisation. Activity at Santiaguito began in 1922, with the extrusion of a series of lava domes. In recent years, persistent dome extrusion has yielded spectacularly episodic piston-like motion displayed by characteristic tilt/seismic patterns (Johnson et al, 2014). This cyclicity episodically concludes with gas emissions or gas-and-ash explosions, observed to progress along a complex fault system in the dome. The explosive activity is associated with distinct geophysical signals characterised by the presence of very-long period earthquakes as well as more rapid inflation/deflation cycles; the erupted ash further evidences partial melting and thermal vesiculation resulting from fault processes (Lavallée et al., 2015). One year of data demonstrates the regularity of the periodicity and intensity of the explosions; analysis of infrasound data suggests that each explosion expulses on the order of 10,000-100,000 kg of gas and ash. We conclude that near-field monitoring of this volcanic system promises to greatly advance our understanding of shallow volcanic processes. This work was funded by the Liverpool Earth Observatory and by the European Research Council grant on Strain Localisation in Magma (SLiM, No. 306488) Reference Johnson J. B., Lyons J. J., Andrews B. J., Lees J. M., 2014. Explosive dome eruptions modulated by periodic gas-driven inflation. Geophysical Research Letters 41, 6689-6697. Lavallée Y., Dingwell D.B., Cimarelli C., Hornby A.J. Johnson J.B., Kendrick J.E., von Aulock F.W., Wadsworth F.W., Rhodes E., Kennedy B.M., Andrews B.J., Chigna G., 2015. Thermal vesiculation during volcanic eruptions. Nature 528, 544-547.
Catalog of Tephra Samples from Kilauea's Summit Eruption, March-December 2008
Wooten, Kelly M.; Thornber, Carl R.; Orr, Tim R.; Ellis, Jennifer F.; Trusdell, Frank A.
2009-01-01
The opening of a new vent within Halema'uma'u Crater in March 2008 ended a 26-year period of no eruptive activity at the summit of Kilauea Volcano. It also heralded the first explosive activity at Kilauea's summit since 1924 and the first of eight discrete explosive events in 2008. At the onset of the eruption, the Hawaiian Volcano Observatory (HVO) initiated a rigorous program of sample collection to provide a temporally constrained suite of tephra samples for petrographic, geochemical, and isotopic studies. Petrologic studies help us understand conditions of magma generation at depth; processes related to transport, storage, and mixing of magma within the shallow summit region; and specific circumstances leading to explosive eruptions. This report provides a catalog of tephra samples erupted at Kilauea's summit from March 19, 2008, through the end of 2008. The Kilauea 2008 Summit Sample Catalog is tabulated in the accompanying Microsoft Excel file, of2009-1134.xls (four file types linked on right). The worksheet in this file provides sampling information and sample descriptions. Contextual information for this catalog is provided below and includes (1) a narrative of 2008 summit eruptive activity, (2) a description of sample collection methods, (3) a scheme for characterizing a diverse range in tephra lithology, and (4) an explanation of each category of sample information (column headers) in the Microsoft Excel worksheet.
NASA Technical Reports Server (NTRS)
Toon, O. B.
1982-01-01
The evidence that volcanic eruptions affect climate is reviewed. Single explosive volcanic eruptions cool the surface by about 0.3 C and warm the stratosphere by several degrees. Although these changes are of small magnitude, there have been several years in which these hemispheric average temperature changes were accompanied by severely abnormal weather. An example is 1816, the "year without summer" which followed the 1815 eruption of Tambora. In addition to statistical correlations between volcanoes and climate, a good theoretical understanding exists. The magnitude of the climatic changes anticipated following volcanic explosions agrees well with the observations. Volcanoes affect climate because volcanic particles in the atmosphere upset the balance between solar energy absorbed by the Earth and infrared energy emitted by the Earth. These interactions can be observed. The most important ejecta from volcanoes is not volcanic ash but sulfur dioxide which converts into sulfuric acid droplets in the stratosphere. For an eruption with its explosive magnitude, Mount St. Helens injected surprisingly little sulfur into the stratosphere. The amount of sulfuric acid formed is much smaller than that observed following significant eruptions and is too small to create major climatic shifts. However, the Mount St. Helens eruption has provided an opportunity to measure many properties of volcanic debris not previously measured and has therefore been of significant value in improving our knowledge of the relations between volcanic activity and climate.
Darwin's triggering mechanism of volcano eruptions
NASA Astrophysics Data System (ADS)
Galiev, Shamil
2010-05-01
Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a severe earthquake. The volcano base obtains the great earthquake-induced vertical acceleration, and the compression wave begins to propagate through the volcano body. Since we are considering conic volcano, the interaction of this wave with the free surface of the volcano may be easily analysed. It is found that the reflection of the upward-going wave from the volcano slope produces tensile stresses within the volcano and bubbles in conduit magma. The conduit magma is held at high pressure by the weight and the strength of the vent fill. This fill may be collapsed and fly off , when the upward wave is reflected from the volcano crater as a decompression wave. After this collapse the pressure on the magma surface drops to atmospheric, and the decompression front begins to move downward in the conduit. In particular, large gas bubbles can begin to form in the magma within the conduit. The resulting bubble growth provides the driving force at the beginning of the eruption. Thus, the earthquake-induced nonlinear wave phenomena can qualitatively explain the spectacular simultaneity of large eruptions after large earthquakes. The pressure difference between a region of low pressure (atmosphere) and the magma chamber can cause the large-scale eruption. The beginning and the process of the eruption depend on many circumstances: conduit system and its dimension, chamber size and pressure, magma viscosity and gas concentration in it may be the main variables . The resonant free oscillations in the conduit may continue for a long time, since they are fed by the magma chamber pressure (Galiev, Sh. U., 2003. The theory of nonlinear trans-resonant wave phenomena and an examination of Charles Darwin's earthquake reports. Geophys. J. Inter., 154, 300-354.). The behaviour of the system strongly depends on the magma viscosity. The gas can escape from the bubbles more easily in the case of low viscous magma. However, if the magma is very viscous, so the gas cannot escape so easily, then the bubbles grow very quickly near the vent only. Effects of this growth can resemble an explosion.
Is the onset of the 6th century 'dark age' in Maya history related to explosive volcanism?
NASA Astrophysics Data System (ADS)
Nooren, Kees; Hoek, Wim Z.; Van der Plicht, Hans; Sigl, Michael; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans; Van Bergen, Manfred
2016-04-01
Maya societies in Southern Mexico, Guatemala and Belize experienced a 'dark age' during the second half of the 6th century. This period, also known as the 'Maya Hiatus', is characterized by cultural downturn, political instability and abandonment of many sites in the Central Maya Lowlands. Many theories have been postulated to explain the occurrence of this 'dark age' in Maya history. A possible key role of a large volcanic eruption in the onset of this 'dark age' will be discussed. Volcanic deposits recovered from the sedimentary archive of lake Tuspán and the Usumacinta-Grijalva delta were studied in detail and the combination of multiple dating techniques allowed the reconstruction of the timing of a large 6th century eruption. Volcanic glass shards were fingerprinted to indicate the source volcano and high resolution pollen records were constructed to indicate the environmental impact of the eruption. Results are compared with available archaeological data and causality with the disruption of Maya civilization will be evaluated.
Explosions of andesitic volcanoes in Kamchatka and danger of volcanic ash clouds to aviation
NASA Astrophysics Data System (ADS)
Gordeev, E. I.; Girina, O. A.; Neal, C. A.
2010-12-01
There are 30 active volcanoes in Kamchatka and 4 of them continuously active. The explosions of andesitic volcanoes (Bezymianny and Sheveluch) produce strong and fast ash plumes, which can rich high altitude (up to 15 km) in short time. Bezymianny and Sheveluch are the most active volcanoes of Kamchatka. A growth of the lava dome of Bezymianny into the explosive crater continues from 1956 till present. Nine strong explosive eruptions of the volcano associated with the dome-building activity occurred for last 5 years in: 2005, January 11 and November 30; 2006, May 09 and December 24; 2007, May 11 and October 14-15; 2008, August 19; 2009, December 16-17 and 2010, May 31. Since 1980, a lava dome of Sheveluch has being growing at the bottom of the explosive crater, which has formed as the result of the catastrophic eruption in 1964. Strong explosive eruptions of the volcano associated with the dome-building activity occurred in: 1993, April 22; 2001, May 19-21; 2004, May 09; 2005, February 27 and September 22; 2006, December 25-26; 2007, March 29 and December 19; 2009, April 26-28 and September 10-11. Strong explosive eruption of andesitic volcanoes is the most dangerous for aircraft because in a few hours or days in the atmosphere and the stratosphere can produce about several cubic kilometers of volcanic ash and aerosols. Volcanic ash is an extremely abrasive, as it consists of acute-angled rock fragments and volcanic glass. Due to the high specific surface of andesitic ash particles are capable of retaining an electrostatic charge and absorb droplets of water and corrosive acids. Ash plumes and the clouds, depending on the power of the eruption, the strength and wind speed, can travel thousands of kilometers from the volcano for several days, remaining hazardous to aircraft, as the melting temperature of small particles of ash below the operating temperature of jet engines. To reduce the risk of collision of aircraft with ash clouds of Kamchatkan volcanoes, was created the International KVERT Project, uniting scientists IVS FEB RAS, KB GS RAS and AVO USGS. To solve this problem and provide early warning of air services on the volcanic hazard, scientists analyze the data of seismic, video, visual and satellite monitoring of volcanoes of Kamchatka. In case of ash explosion, cloud or plume detection, information is sending via e-mail operatively to all interested users. Scientists collect all the information (research data, descriptions of eruptions from the literature, observations of tourists, etc.) of the active volcanoes. Based on analysis of historical activity Bezymianny, as well as its continuous monitoring data, scientists of KVERT Project repeatedly predicted the eruption of this volcano. It allowed notifying in time air services of the impending danger of aircraft. For example, in 2001-2010, were predicted 9 of its eruptions (December 16, 2001; December 25, 2002; January 11, 2005; May 9, 2006; May 11, 2007; October 14-15, 2007; August 19, 2008; December 16, 2009; May 31, 2010).
Introduction to Augustine Volcano and Overview of the 2006 Eruption
NASA Astrophysics Data System (ADS)
Nye, C. J.
2006-12-01
This overview represents the combined efforts of scores of people, including Alaska Volcano Observatory staff from the US Geological Survey, the University of Alaska Fairbanks Geophysical Institute, and the Alaska Division of Geological and Geophysical Surveys; additional members of those agencies outside of AVO; and volcanologists from elsewhere. Augustine is a young, and therefore small island volcano in the Cook Inlet region of the eastern Aleutian arc. It is among the most active volcanoes in the arc, with six major historic eruptions, and a vigorous eruptive history going back at least 2,500 years. Eruptions typically begin explosively, and finish with the extrusion of domes and sometimes short, steep lava flows. At least 14 times (most recently in 1883) the -summit has become over-steepened and failed, producing debris avalanches which reached tidewater. Magmas within each of the well-studied eruptions are crystal-rich andesite spanning up to seven weight percent silica. Mixing and mingling are ubiquitous and occur at scales from meters to microns. In general, magmagenesis at Augustine is open, messy, and transcrustal. The 2006 eruption was broadly similar to the 20th century eruptions. Unrest began midway through 2005, with steadily increasing numbers of microearthquakes and continuous inflation of the edifice. By mid-December there were obvious morphological and thermal changes at the summit, as well as phreatic explosions and more passive venting of S-rich gasses. In mid-January 2006 phreatomagmatic explosions gave way to magmatic explosions, producing pyroclastic flows dominated by low-silica andesite, as well as lahars, followed by a small summit dome. In late January the nature of seismicity, eruptive style, and type of erupted magma all changed, and block-and-ash flows of high-silica, crystal-rich andesite were emplaced as the edifice deflated. Re-inflation well below the edifice and low-level effusion continued through February. During the second week in March there was a marked increase in extrusion, resulting in two short, steep lava flows dominantly composed of low-silica andesite. Effusion slowly waned through March and deformation ceased. Previous eruptions have had months-long repose followed be renewed effusion, but this has not yet happened during this eruption. Our ability to describe this eruption is based on a richness of data. The volcano was well instrumented with AVO seismometers and Earthscope/PBO continuous GPS instruments. Additional instruments were added as unrest increased, and substitutes for stations destroyed during initial explosions were deployed. As many as two-dozen AVHRR satellite passes were analyzed each day, providing thermal monitoring and ash-plume tracking. Overflights collected both visual and quantitative IR imagery on a regular basis. Georeferenced imagery acquired by satellite (ASTER) and repeated conventional aerial photography permitted detailed, accurate, mapping of many deposits as an aid to (but not substitute for) field mapping. Web cameras (both visual and near-IR) and conventional time-lapse cameras aided understanding of ongoing processes. Data sets less common to volcano monitoring (infrasound, lightning detection) extended our understanding.
Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Rosen, J. M.
1983-01-01
The stratospheric sulfuric acid fraction and mass for the 1982 volcanic eruptions of El Chichon are investigated using data from balloon soundings at Laramie (41 deg N) and in southern Texas (27-29 deg N). The total stratospheric mass of these eruptions is estimated to be approximately 8 Tg about 6.5 months after the eruption with possibly as much as 20 Tg in the stratosphere about 45 days after the eruption. Observations of the aerosol in Texas revealed two primary layers, both highly volatile at 150 C. Aerosol in the upper layer at about 25 km was composed of an approximately 80 percent H2SO4 solution while the lower layer at approximately 18 km was composed of a 60-65 percent H2SO4 solution aerosol. It is calculated that an H2SO4 vapor concentration of at least 3 x 10 to the 7th molecules/cu cm is needed to sustain the large droplets in the upper layer. An early bi-modal nature in the size distribution indicates droplet nucleation from the gas phase during the first 3 months, while the similarity of the large particle profiles 2 months apart shows continued particle growth 6.5 months after the explosion.
McPhie, J.; Walker, G.P.L.; Christiansen, R.L.
1990-01-01
In or around 1790 a.d. an explosive eruption took place in the summit caldera of Kilauea shield volcano. A group of Hawaiian warriors close to the caldera at the time were killed by the effects of the explosions. The stratigraphy of pyroclastic deposits surrounding Kilauea (i.e., the Keanakakoi Ash Member) suggests that the explosions referred to in the historic record were the culmination of a prolonged hydrovolcanic eruption consisting of three main phases. The first phase was phreatomagmatic and generated well-bedded, fine fallout ash rich in glassy, variably vesiculated, juvenile magmatic and dense, lithic pyroclasts. The ash was mainly dispersed to the southwest of the caldera by the northeasterly trade winds. The second phase produced a Strombolian-style scoria fall deposit followed by phreatomagmatic ash similar to that of the first phase, though richer in accretionary lapilli and lithics. The third and culminating phase was phreatic and deposited lithic-rich lapilli and block fall layers, interbedded with cross-bedded surge deposits, and accretionary lapilli-rich, fine ash beds. These final explosions may have been responsible for the deaths of the warriors. The three phases were separated by quiescent spells during which the primary deposits were eroded and transported downwind in dunes migrating southwestward and locally excavated by fluvial runoff close to the rim. The entire hydrovolcanic eruption may have lasted for weeks or perhaps months. At around the same time, lava erupted from Kilauea's East Rift Zone and probably drained magma from the summit storage. The earliest descriptions of Kilauea (30 years after the Keanakakoi eruption) emphasize the great depth of the floor (300-500 m below the rim) and the presence of stepped ledges. It is therefore likely that the Keanakakoi explosions were deepseated within Kilauea, and that the vent rim was substantially lower than the caldera rim. The change from phreatomagmatic to phreatic phases may reflect the progressive degassing and cooling of the magma during deep withdrawal: throughout the phreatomagmatic phases magma vesiculation contributed to the explosive interaction with water by initiating the fragmentation process: thereafter, the principal role of the subsiding magma column was to supply heat for steam production that drove the phreatic explosions of the final phase. ?? 1990 Springer-Verlag.
Volcanism and associated hazards: the Andean perspective
NASA Astrophysics Data System (ADS)
Tilling, R. I.
2009-12-01
Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.
Volcanism and associated hazards: The Andean perspective
Tilling, R.I.
2009-01-01
Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene.
The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (<0.05 km 3) in 1985 of Nevado del Ruiz (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant improvements in reducing volcano risk in the Andean region. But much remains to be done.
The climatic effect of explosive volcanic activity: Analysis of the historical data
NASA Technical Reports Server (NTRS)
Bryson, R. A.; Goodman, B. M.
1982-01-01
By using the most complete available records of direct beam radiation and volcanic eruptions, an historical analysis of the role of the latter in modulating the former was made. A very simple fallout and dispersion model was applied to the historical chronology of explosive eruptions. The resulting time series explains about 77 percent of the radiation variance, as well as suggests that tropical and subpolar eruptions are more important than mid-latitude eruptions in their impact on the stratospheric aerosol optical depth. The simpler climatic models indicate that past hemispheric temperature can be stimulated very well with volcanic and CO2 inputs and suggest that climate forecasting will also require volcano forecasting. There is some evidence that this is possible some years in advance.
Lipman, Peter W.
2007-01-01
Plutons thus provide an integrated record of prolonged magmatic evolution, while volcanism offers snapshots of conditions at early stages. Growth of subvolcanic batholiths involved sustained multistage open-system processes. These commonly involved ignimbrite eruptions at times of peak power input, but assembly and consolidation processes continued at diminishing rates long after peak volcanism. Some evidence cited for early incremental pluton assembly more likely records late events during or after volcanism. Contrasts between relatively primitive arc systems dominated by andesitic compositions and small upper-crustal plutons versus more silicic volcanic fields and associated batholiths probably reflect intertwined contrasts in crustal thickness and magmatic power input. Lower power input would lead to a Cascade- or Aleutian-type arc system, where intermediate-composition magma erupts directly from middle- and lower-crustal storage without development of large shallow plutons. Andean and southern Rocky Mountain–type systems begin similarly with intermediate-composition volcanism, but increasing magma production, perhaps triggered by abrupt changes in plate boundaries, leads to development of larger upper-crustal reservoirs, more silicic compositions, large ignimbrites, and batholiths. Lack of geophysical evidence for voluminous eruptible magma beneath young calderas suggests that near-solidus plutons can be rejuvenated rapidly by high-temperature mafic recharge, potentially causing large explosive eruptions with only brief precursors.
Reconstructing an Explosive Basaltic Eruption in the Pinacate Volcanic Field, NW Sonora, Mexico
NASA Astrophysics Data System (ADS)
Zawacki, E. E.; Clarke, A. B.; Arrowsmith, R.; Lynch, D. J.
2017-12-01
Tephra deposits from explosive volcanic eruptions provide a means to reconstruct eruption characteristics, such as column height and erupted volume. Parameters like these are essential in assessing the explosivity of past eruptions and associated volcanic hazards. We applied such methods to a basaltic tephra deposit from one of the youngest eruptions in the Pinacate volcanic field (NW Sonora, Mexico). This roughly circular tephra blanket extends 13 km E-W and 13 km N-S, and covers an area of at least 135 km2. The source vent of this eruption is hypothesized to be the Tecolote volcano (lat 31.877, long -113.362), which is dated to 27 ± 6 ka (40Ar/39Ar). Fifty-three pits were dug across the extent of the tephra deposit to measure its thickness, record stratigraphy, characterize grain size distribution, and determine maximum clast size. Isopleth and isopach maps were created from these data to determine the column height (>9 km), estimate mass eruption rate (>2.1x106 kg/s), and calculate the erupted volume (>4.2x10-2 km3). Stratigraphic descriptions support two distinct episodes of tephra production. Unit A is dispersed in an approximately circular pattern ( 6.5 km radius) with its center shifted to the east of the vent. The distribution of Unit B is oblate ( 9.5 km major axis, 4.5 km minor axis) and trends to the southeast of the vent. Lava samples were collected from each of the seven Tecolote flows for XRF and ICP-MS geochemical analyses. These samples were compared to geochemical signatures from a Tecolote bomb, tephra from Units A and B, and cinder from the La Laja cone, which is the youngest dated cone in the field at 12 ± 4 ka (40Ar/39Ar). The La Laja sample is geochemically distinct from all Tecolote samples, confirming that it did not contribute to the two tephra units. Tephra from Unit A and Unit B have distinct signatures and fit within the geochemical evolution of the Tecolote lavas, supporting two explosive episodes from the Tecolote volcano, which has two cones. To provide a stronger age constraint on the eruption, samples for optically stimulated luminescence (OSL) dating were collected from the sandy silt unit below the tephra in two pits. Data for these dates are being analyzed.
NASA Astrophysics Data System (ADS)
Rose, Shellie; Ramsey, Michael
2009-07-01
Kliuchevskoi volcano, located on the Kamchatka peninsula of eastern Russia, is one of the largest and most active volcanoes in the world. Its location and diversity of eruption styles make satellite-based monitoring and characterization of its eruptive activity essential. In 2005, the Kamchatka Volcano Emergency Response Team (KVERT) first reported that seismic activity of Kliuchevskoi increased above background levels on 12 January (Kamchatka Volcanic Eruption Response Team (KVERT) Report, 2005. Kliuchevskoi Volcano, 14 January through 13 May 2005. ( http://www.avo.alaska.edu/activity/avoreport.php?view=kam info&id=&month=January&year=2005). Cited January 2007). By 15 January Kliuchevskoi entered an explosive-effusive phase, which lasted for five months and produced basaltic lava flows, lahar deposits, and phreatic explosions along its northwestern flank. We present a comparison between field observations and multispectral satellite image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument in order to characterize the eruptive behavior. The ASTER instrument was targeted in an automated urgent request mode throughout the eruption timeline in order to collect data at the highest observation frequency possible. Brightness temperatures were calculated in all three ASTER wavelength regions during lava flow emplacement. The maximum lava flow brightness temperatures, calculated from the 15 m/pixel visible near infrared (VNIR) data, were in excess of 800 °C. The shortwave infrared (SWIR) data were radiometrically and geometrically corrected, normalized to the same gain settings, and used to estimate an eruptive volume of 2.35 × 10 - 2 km 3 at the summit. These data were also used to better constrain errors arising in the thermal infrared (TIR) data due to sub-pixel thermal heterogeneities. Based on all the ASTER data, the eruption was separated into three phases: an initial explosive phase (20 January-31 January), an explosive-effusive phase (1 February-8 March), and a subsequent cooling phase. Decorrelation stretch (DCS) images of the TIR data also suggested the presence of silicate ash, SO 2, and water vapor plumes that extended up to 300 km from the summit. The ASTER rapid-response program provided important multispectral, moderate spatial resolution information that was used to detect and monitor the eruptive activity of this remote volcano which can be applied to other eruptions worldwide.
Matoza, Robin S.; Chouet, Bernard A.
2010-01-01
One of the most striking aspects of seismicity during the 2004–2008 eruption of Mount St. Helens (MSH) was the precise regularity in occurrence of repetitive long-period (LP) or “drumbeat” events over sustained time periods. However, this precise regularity was not always observed, and at times the temporal occurrence of LP events became more random. In addition, accompanying the dominant LP class of events during the 2004–2008 MSH eruption, there was a near-continuous, randomly occurring series of smaller seismic events. These subevents are not always simply small-amplitude versions of the dominant LP class of events but appear instead to result from a separate random process only loosely coupled to the main LP source mechanism. We present an analysis of the interevent time and amplitude distributions of the subevents, using waveform cross correlation to separate LP events from the subevents. We also discuss seismic tremor that accompanied the 8 March 2005 phreatic explosion event at MSH. This tremor consists of a rapid succession of LPs and subevents triggered during the explosion, in addition to broadband noise from the sustained degassing. Immediately afterward, seismicity returned to the pre-explosion occurrence pattern. This triggering in relation to the rapid ejection of steam from the system, and subsequent return to pre-explosion seismicity, suggests that both seismic event types originated in a region of the subsurface hydrothermal system that was (1) in contact with the reservoir feeding the 8 March 2005 phreatic explosion but (2) not destroyed or drained by the explosion event. Finally, we discuss possible thermodynamic conditions in a pressurized hydrothermal crack that could give rise to seismicity. Pressure drop estimates for typical LP events are not generally large enough to perturb pure water in a shallow hydrothermal crack into an unstable state. However, dissolved volatiles such as CO2 may lead to a more unstable system, increasing the seismogenic potential of a hydrothermal crack subject to rapid heat flux. The interaction of hydrothermal and magmatic systems beneath MSH in 2004–2008 thus appears able to explain a wide range of observed phenomena, including subevents, LP events, larger (Md > 2) events, and phreatic explosions.
The Tephra Layer From the Plinian Eruption in ™r‘faj”kull 1362, Southeast Iceland
NASA Astrophysics Data System (ADS)
Selbekk, R. S.
2002-12-01
Pyroclastic fallout from the 1362 eruption of ™r‘faj”kull forms one of the volcanic marker horizons of the North Atlantic. This contribution reports the mineralogical and geochemical characteristics of the ™r‘faj”kull 1362 fallout and its grain-size distribution. A non-rifting 120 km long volcanic lineament some 50 km east of the Eastern Rift-Zone of Iceland is defined by transitional and alkalic volcanic rocks resting unconformably on late Tertiary strata. ™r‘faj”kull which forms the southern termination of this off-rift liniment is an ice-covered stratovolcano (2200 masl) composed mostly of subglacially formed hyaloclastite ranging from basalts to rhyolites. The two historical (1100 yrs) eruptions of ™r‘faj”kull include a small explosive eruption in 1727 and a large devastating Plinian eruption associated with major lahars and a caldera collapse in 1362. Between 1 and 2 km3 dense rock equivalent or 5-10 km3 of rhyolitic pumice was erupted and the fallout was mainly towards ESE. Tentative modelling of the PT-conditions of the magma formation, based on glass/mineral equilibria, indicates that the source was a near-eutectic melt in equilibrium with fayalite, hedenbergite, oligoclase and hematite at some 0.2 GPa pressure. A profile through the fallout was sampled at elevation of about 1100 masl on the SE flank of the volcano. A deposit of 1.8 m thickness was collected in 14 units for examination of composition, mineralogy and grain-size distribution during the eruption. In the profile the fallout is fine grained vesicular glass (1-3% minerals, 3% lithic fragments) with bubble wall thickness in the low micron range. The high and even vesiculation of the glass indicates fast magma ascent and explains the extreme mechanical fragmentation within the eruptive column, yielding between 50 and 80 wt% of less than 0.25 mm grain size. A reconstruction of the Plinian phase, based on grain-size analysis and abundance of lithic fragments, reveals that the eruption proceeded in three successive phases. An initial explosion produced phreatomagmatic debris associated with up to 35% of lithic fragments. In distal facies of the fallout, the initial phase is recognised as pale brownish base of the otherwise white glassy layer. The material ejection proceeded in two largely similar phases. These phases are separated only by a transition in grain size distribution indicating a temporary lowering in the effusion rate.
New observations from Surtsey, the definitive surtseyan volcano
NASA Astrophysics Data System (ADS)
White, J. D.; Jakobsson, S. P.
2013-12-01
The eruption that formed Surtsey lasted from 1963 into 1967, and provides the name used for emergent eruptions from the seafloor, and sometimes even more generally for any eruption involving explosive interaction of magma with water. New work on Surtsey's eruption is allowing us to extend our understanding of many aspects of its evolution and the processes that took place both prior to emergence and after, when it was so well observed by Sigurdur Thorarinsson and others. In 1979, drilling through Surtsey was accomplished, and a core acquired that extends almost to the pre-eruption seafloor. Near the base of the hole, unlithified pyroclastic deposits were encountered, and sampled as drill cuttings. These are highly vesicular, and many show large populations of small, spherical to sub-spherical vesicles. Examination of the core and dozens of thin sections reveals strong palagonite rims on pyroclasts at many intervals in the core, developed particularly well on highly vesicular and originally glassy pyroclasts. In the uppermost several meters armoured lapilli are present, along with "vesiculated tuff". We see no evidence for deep subsidence of surficial deposits at the site cored, and our working hypothesis is that an eruption stratigraphy can be established from the drillsite. On the emergent cone, a notable feature not previously emphasized is an abundance of blocks from the pre-eruption seafloor. These blocks have been identified as lithified volcaniclastic material deposited as turbidites largely from the Vestmann Islands. It will be important to quantify the abundance of this seafloor sedimentary rock as clasts in Surtsey's deposits, because these lithic clasts imply excavation, perhaps substantial, of the pre-eruption seafloor. No fragments of pillow lava have been identified in Surtsey's ejecta, but there are abundant fragments of dikes characterized by parallel bands of vesicles and, on some fragments, paired chilled margins. Many of these exhibit strong cracking and a cauliflower-like appearance on one side, but they are not true cauliflower bombs. Juvenile bombs are also abundant, and display ubiquitous composite textures. Typical juvenile bombs have glassy weakly fractured surfaces and a contorted internal structure in which pyroclasts are entwined with stretched and bubbled coherent basalt. These textures are interpreted to have developed through strong 'recycling' processes that allowed capture of older pyroclasts within new ones through in-vent welding and agglutination, or in some cases by capture of particles within magma that was subsequently disrupted. Taken as a whole, these new observations challenge existing models for Surtsey's eruption. A new assessment of eruptive processes will take into account evidence for both ubiquitous hot-state particle recycling, and excavation and ejection of subvolcanic sedimentary strata at times in the eruption, including during the last explosive phase.
Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; ...
2013-12-10
The double explosion of SN 2009ip in 2012 raises questions about our understanding of the late stages of massive star evolution. We present a comprehensive study of SN 2009ip during its remarkable rebrightenings. High-cadence photometric and spectroscopic observations from the GeV to the radio band obtained from a variety of ground-based and space facilities (including the Very Large Array, Swift, Fermi, Hubble Space Telescope, and XMM) constrain SN 2009ip to be a low energy (E ~ 10 50 erg for an ejecta mass ~0.5 M⊙) and asymmetric explosion in a complex medium shaped by multiple eruptions of the restless progenitormore » star. Most of the energy is radiated as a result of the shock breaking out through a dense shell of material located at ~5 × 10 14 cm with M ~ 0.1 M⊙, ejected by the precursor outburst ~40 days before the major explosion. Here, we interpret the NIR excess of emission as signature of material located further out, the origin of which has to be connected with documented mass-loss episodes in the previous years. This modeling predicts bright neutrino emission associated with the shock break-out if the cosmic-ray energy is comparable to the radiated energy. We connect this phenomenology with the explosive ejection of the outer layers of the massive progenitor star, which later interacted with material deposited in the surroundings by previous eruptions. In future observations will reveal if the massive luminous progenitor star survived. Irrespective of whether the explosion was terminal, SN 2009ip brought to light the existence of new channels for sustained episodic mass loss, the physical origin of which has yet to be identified.« less
NASA Astrophysics Data System (ADS)
Perrotta, Annamaria; Scarpati, Claudio; Luongo, Giuseppe; Aoyagi, Masanori
2006-11-01
A new archaeological site of Roman Age has been recently found engulfed in the products of Vesuvius activity at Somma Vesuviana, on the northern flank of the Somma-Vesuvius, 5 km from the vent. A 9 m deep, 30 by 35 m trench has revealed a monumental edifice tentatively attributed to the Emperor Augustus. Different than Pompeii and Herculaneum sites which were completely buried in the catastrophic eruption of 79 AD, this huge roman villa survived the effects of the 79 AD plinian eruption as suggested by stratigraphic and geochronologic data. It was later completely engulfed in the products of numerous explosive volcanic eruptions ranging from 472 AD to 1631 AD, which were separated by reworked material and paleosols. The exposed burial sequence is comprised of seven stratigraphic units. Four units are composed exclusively of pyroclastic products each emplaced during a unique explosive event. Two units are composed of volcaniclastic material (stream flow and lahars) emplaced during quiescent periods of the volcano. Finally, one unit is composed of both pyroclastic and volcaniclastic deposits. One of the more relevant volcanological results of this study is the detailed reconstruction of the destructive events that buried the Emperor Augustus' villa. Stratigraphic evidence shows the absence of any deposit associated with the 79 AD eruption at this site and that the building was extensively damaged (sacked) before it was engulfed by the products of subsequent volcanic eruptions and lahars. The products of the 472 AD eruption lie directly on the roman structures. They consist of scoria fall layers intercalated with massive and stratified pyroclastic density current deposits that caused limited damage to the structure. The impact on the building of penecontemporaneous lahars was more important; these caused the collapse of some structures. The remaining part of the building was subsequently entombed by the products of explosive eruptions (e.g. 512/536 eruption, 1631 eruption) and mass flows.
New geochemical insights into volcanic degassing.
Edmonds, Marie
2008-12-28
Magma degassing plays a fundamental role in controlling the style of volcanic eruptions. Whether a volcanic eruption is explosive, or effusive, is of crucial importance to approximately 500 million people living in the shadow of hazardous volcanoes worldwide. Studies of how gases exsolve and separate from magma prior to and during eruptions have been given new impetus by the emergence of more accurate and automated methods to measure volatile species both as volcanic gases and dissolved in the glasses of erupted products. The composition of volcanic gases is dependent on a number of factors, the most important being magma composition and the depth of gas-melt segregation prior to eruption; this latter parameter has proved difficult to constrain in the past, yet is arguably the most critical for controlling eruptive style. Spectroscopic techniques operating in the infrared have proved to be of great value in measuring the composition of gases at high temporal resolution. Such methods, when used in tandem with microanalytical geochemical investigations of erupted products, are leading to better constraints on the depth at which gases are generated and separated from magma. A number of recent studies have focused on transitions between explosive and effusive activity and have led to a better understanding of gas-melt segregation at basaltic volcanoes. Other studies have focused on degassing during intermediate and silicic eruptions. Important new results include the recognition of fluxing by deep-derived gases, which buffer the amount of dissolved volatiles in the melt at shallow depths, and the observation of gas flow up permeable conduit wall shear zones, which may be the primary mechanism for gas loss at the cusp of the most explosive and unpredictable volcanic eruptions. In this paper, I review current and future directions in the field of geochemical studies of volcanic degassing processes and illustrate how the new insights are beginning to change the way in which we understand and classify volcanic eruptions.
Ash Features from Present-day Activity at Stromboli
NASA Astrophysics Data System (ADS)
Cannata, Chiara; Taddeucci, Jacopo; Lautze, Nicole; de Rosa, Rosanna; Donato, Paola; Scarlato, Piergiorgio
2010-05-01
The present-day explosive activity at Stromboli volcano (Aeolian Islands, Italy) is characterized by a relatively large variability of eruptive styles on a relatively small temporal and spatial scale. Despite volcanic ash is a common product of this explosive activity, few studies have been conducted so far on ash of Stromboli and in particular on the products of individual explosions. Here we focus on micro-scale textural observations of ash particles erupted from a number of different vents during three sampling campaigns. Component analysis under the binocular microscope reveal that ash from present-day activity at Stromboli is dominated by two main end-members of fragments with a wide variability of color and degree of surface alteration: blocky and dark, fragments (i.e. tachylite) and glassy, highly vesiculated and fluidal fragments (i.e. sideromelane). In addition, individual phenocrysts or composite fragments (crystals plus tachylite or sideromelane) and rare, highly altered accessory lithic fragments are also present. Thin section investigation show that tachylite has micro- to crypto-crystalline groundmass, while sideromelane is partially or totally glassy. Component and modal analyses reveal that, in the sampling period, sideromelane is the most abundant component only in one vent while the other vents erupted mainly tachylite-rich ash. The morphology, micro-textures and chemical composition of particles surface were also analyzed using a Field Emission SEM equipped with EDS. In general, particle morphology and surface chemistry poorly discriminates between the different samples, while tachylite particles show a higher compactness, lower elongation, and more extensive overgrowth of secondary phases (mainly gypsum, sulphate and halide salts) in respect with sideromelane ones.
Magmatic differentiation processes at Merapi Volcano: inclusion petrology and oxygen isotopes
NASA Astrophysics Data System (ADS)
Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Harris, Chris; Chadwick, Jane P.; Gertisser, Ralf; Schwarzkopf, Lothar M.; Borisova, Anastassia Y.; Bindeman, Ilya N.; Sumarti, Sri; Preece, Katie
2013-07-01
Indonesian volcano Merapi is one of the most hazardous volcanoes on the planet and is characterised by periods of active dome growth and intermittent explosive events. Merapi currently degasses continuously through high temperature fumaroles and erupts basaltic-andesite dome lavas and associated block-and-ash-flows that carry a large range of magmatic, coarsely crystalline plutonic, and meta-sedimentary inclusions. These inclusions are useful in order to evaluate magmatic processes that act within Merapi's plumbing system, and to help an assessment of which phenomena could trigger explosive eruptions. With the aid of petrological, textural, and oxygen isotope analysis we record a range of processes during crustal magma storage and transport, including mafic recharge, magma mixing, crystal fractionation, and country rock assimilation. Notably, abundant calc-silicate inclusions (true xenoliths) and elevated δ18O values in feldspar phenocrysts from 1994, 1998, 2006, and 2010 Merapi lavas suggest addition of limestone and calc-silicate materials to the Merapi magmas. Together with high δ13C values in fumarole gas, crustal additions to mantle and slab-derived magma and volatile sources are likely a steady state process at Merapi. This late crustal input could well represent an eruption trigger due to sudden over-pressurisation of the shallowest parts of the magma storage system independently of magmatic recharge and crystal fractionation. Limited seismic precursors may be associated with this type of eruption trigger, offering a potential explanation for the sometimes erratic behaviour of Merapi during volcanic crises.
Hydrogeomorphic responses to explosive volcanic eruptions-what have we learned?
NASA Astrophysics Data System (ADS)
Major, J. J.
2011-12-01
Explosive eruptions can greatly alter landscape hydrology and geomorphology. Analyses of hydrogeomorphic responses to four major eruptions, spanning two orders of magnitude in eruption volume, reveal patterns in the timing, pace, and style of landscape response to explosive eruptions. Tephra fall can blanket broad swaths of landscape with sediment having a low-permeability surface, and can cause significant tree damage. Volcanic blasts can also deposit many tens of cm of fines-capped sediment across the landscape, and can raze or completely remove vast tracts of forest. Debris avalanches, pyroclastic flows, and lahars can fill channels and valley floors with meters to tens of meters of gravelly sand for tens of kilometers from source; straighten, smooth or obliterate channel planforms; and remove, bury, or smother riparian vegetation. Such disturbances can radically alter runoff regimes and the manner in which water is routed along channels. Surface-infiltration capacities of landscapes denuded by volcanic blast and pyroclastic flows following eruptions of Mount St. Helens (MSH) and Unzen were reduced 1-2 orders of magnitude (from >100 mm/hr to as little as 2-5 mm/hr). Altered hydrologic processes promoted substantial overland flow in basins normally dominated by subsurface flow; measurements at Unzen showed overland flow 3-5 times greater from barren, tephra-covered ground compared to vegetated ground. Hydrological analysis at MSH showed that post-eruption wet-season peakflow discharges increased by a few to tens of percent in eruption-affected basins. Changes in hydrological processes alter sediment erosion and transport; extensive hillslope and channel erosion can lead to sediment yields that exceed preeruption yields by orders of magnitude. Indeed, sediment yields from volcanically disturbed watersheds rival those of great sediment-producing rivers worldwide. Short-term landscape-denudation rates following explosive eruptions are typically 10-104 times greater than estimated long-term denudation rates, reflecting great mobility of highly erodible sediment delivered by eruptions. Despite sometimes cataclysmic eruption-induced disturbance, landscapes are resilient. Owing to erosional, biogenic, and cryogenic modifications of tephra surfaces, eruption-induced changes in runoff and river discharge commonly relax substantially within a decade. Elevated sediment transport, however, can persist for decades. Observations following eruption of MSH show that magnitude and duration of enhanced sediment transport varied chiefly with the nature of disturbance-high yields from basins bearing significant channel disturbance persist far longer than those from basins bearing only hillslope disturbance. Observations from MSH and Mount Pinatubo show that excessive sediment yields from severely disturbed landscapes decay considerably within a decade of eruption, but appear to plateau at levels that can exceed preeruption yields by tens of percent for at least a few decades. Studies at Mount Hood show that distal aggraded channels can take up to a century to return to preeruption base level. Prolonged excessive sediment transport following eruptions can cause environmental and socioeconomic harm that equals or exceeds that caused directly by eruptions.
NASA Astrophysics Data System (ADS)
Handley, H. K.; Reagan, M.; Gertisser, R.; Preece, K.; Berlo, K.; McGee, L. E.; Barclay, J.; Herd, R.
2018-02-01
We present new 238U-230Th-226Ra-210Pb-210Po, 87Sr/86Sr and 143Nd/144Nd isotopic data of whole-rock samples and plagioclase separates from volcanic deposits of the 2006 and 2010 eruptions at Merapi volcano, Java, Indonesia. These data are combined with available eruption monitoring, petrographic, mineralogical and Pb isotopic data to assess current theories on the cause of a recent transition from effusive dome-building (2006) to explosive (2010) activity at the volcano, as well as to further investigate the petrogenetic components involved in magma genesis and evolution. Despite the significant difference in eruption style, the 2006 and 2010 volcanic rocks show no significant difference in (238U/232Th), (230Th/232Th) and (226Ra/230Th) activity ratios, with all samples displaying U and Ra excesses. The 226Ra and 210Pb excesses observed in plagioclase separates from the 2006 and 2010 eruptions indicate that a proportion of the plagioclase grew within the decades preceding eruption. The 2006 and 2010 samples were depleted in 210Po relative to 210Pb ((210Po/210Pb)i < 1) at the time of eruption but were variably degassed (69%-100%), with the degree of 210Pb degassing strongly related to sample texture and eruption phase. In good agreement with several activity monitoring parameters, 210Po ingrowth calculations suggest that initial intrusion into the shallow magma plumbing system occurred several weeks to a few months prior to the initial 2010 eruption. The 2006 and 2010 samples show a wide range in (210Pb/226Ra) activity ratio within a single eruption at Merapi and are largely characterised by 210Pb deficits ((210Pb/226Ra) < 1). Assuming a model of complete radon degassing, the 210Pb deficits in the 2006 volcanic rocks indicate relatively longer degassing timescales of ∼2-4 years than those given by the 2010 samples of ∼0-3 years. The uranium-series and radiogenic isotopic data do not support greater crustal assimilation of carbonate material as the explanation for the more explosive behaviour of Merapi in 2010 (as has been previously suggested) and instead indicate that relatively rapid ascent of a more undegassed magma was the primary difference responsible for the transition in explosive behaviour. This interpretation is in good agreement with gas monitoring data, previous petrological studies (mineral, microlite and melt inclusion work) and maximum calculated timescale estimates using Fe-Mg compositional gradients in clinopyroxene, that also suggest more rapid movement of relatively undegassed magma in 2010 relative to 2006.
The physical volcanology of Mars
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Wilson, Lionel; Zuber, Maria T.
1992-01-01
The physical volcanology of Mars is reviewed, with particular attention given to the diversity of volcanic landforms, the implied styles of eruption associated with the construction of these landforms, the inferred internal structure of the volcanoes, and the influence that the eruptions have had on the Martian environment (both local and global in scale). Volcanism in the central highlands appears to have been explosive in character, while most of the constructional activity in the northern plains was effusive. Highlands volcanism appears to be relatively old compared to that in the northern hemisphere. There is evidence for the existence of large magma chambers and very high effusion rate eruptions on Mars. Tectonic deformation associated with volcanic constructs is primarily a consequence of loading and magma transport, while deformation in the volcanic plains reflects stresses associated with Tharsis and major impact basins.
NASA Astrophysics Data System (ADS)
Connor, C.; Connor, L.; White, J.
2015-12-01
Explosive volcanic eruptions are often classified by deposit mass and eruption column height. How well are these eruption parameters determined in older deposits, and how well can we reduce uncertainty using robust numerical and statistical methods? We describe an efficient and effective inversion and uncertainty quantification approach for estimating eruption parameters given a dataset of tephra deposit thickness and granulometry. The inversion and uncertainty quantification is implemented using the open-source PEST++ code. Inversion with PEST++ can be used with a variety of forward models and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg-Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind-field parameterization. The combined inversion/uncertainty-quantification approach is applied to the 1992 eruption of Cerro Negro (Nicaragua), the 2011 Kirishima-Shinmoedake (Japan), and the 1913 Colima (Mexico) eruptions. These examples show that although eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind-field parameters, such as eruption column height. Supplementing the inversion dataset with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind-field parameters. We think the use of such robust models provides a better understanding of uncertainty in eruption parameters, and hence eruption classification, than is possible with more qualitative methods that are widely used.
Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption
Roche, Olivier; Buesch, David C.; Valentine, Greg A.
2016-01-01
Explosive volcanic super-eruptions of several hundred cubic kilometres or more generate long run-out pyroclastic density currents the dynamics of which are poorly understood and controversial. Deposits of one such event in the southwestern USA, the 18.8 Ma Peach Spring Tuff, were formed by pyroclastic flows that travelled >170 km from the eruptive centre and entrained blocks up to ~70–90 cm diameter from the substrates along the flow paths. Here we combine these data with new experimental results to show that the flow’s base had high-particle concentration and relatively modest speeds of ~5–20 m s−1, fed by an eruption discharging magma at rates up to ~107–108 m3 s−1 for a minimum of 2.5–10 h. We conclude that sustained high-eruption discharge and long-lived high-pore pressure in dense granular dispersion can be more important than large initial velocity and turbulent transport with dilute suspension in promoting long pyroclastic flow distance.
The Sulfur Dioxide Plume from the February 26, 2000 Eruption of Mt. Hekla, Iceland
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Krotkov, N. A.; Einaudi, Franco (Technical Monitor)
2000-01-01
The February 2000 fissure eruption of Mt. Hekla, Iceland was captured in sulfur dioxide data from the Earth Probe TOMS. A special algorithm is used to discriminate sulfur dioxide from ozone. The eruption began at 18:19 GMT on February 26, 2000 and was first viewed by TOMS at 09:55 GMT on February 27. The volcanic cloud at that time appeared as a very long and narrow arc extending west from the volcano in southern Iceland, then north across Greenland, and finally east towards Norway. The cloud altitude was reported from aircraft sightings and data to be above 10 km. The circulation of a ridge located north of Iceland produced the large arc shaped cloud. As the eruption is non-explosive the high altitude cloud contains little ash. Almost all the ash from the eruption fell out locally across Iceland. By February 29, the sulfur dioxide cloud had drifted eastward in a band along the Barents Sea coast of Norway and Russia. The analysis includes an assessment of the initial sulfur dioxide content and its rate of conversion to sulfate.
Mini-filament Eruption as the Initiation of a Jet along Coronal Loops
NASA Astrophysics Data System (ADS)
Hong, Junchao; Jiang, Yunchun; Yang, Jiayan; Yang, Bo; Xu, Zhe; Xiang, Yongyuan
2016-10-01
Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST Hα images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loops during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.
The explosive origin of obsidian lava (Invited)
NASA Astrophysics Data System (ADS)
Castro, J. M.; Bindeman, I. N.; Tuffen, H.; Schipper, C.
2013-12-01
A long-standing challenge in volcanology has been to explain why explosive eruptions of rhyolite magma transition into outpourings of lava. Many studies suggest that lava is the product of non-explosive processes that allow magmatic vapour to escape in an open-system manner without wholesale fragmentation. Recent eruptions at Chaitén and Cordón Caulle volcanoes have shown that effusive rhyolites are anything but 'non-explosive' and may erupt simultaneously with vigourous pyroclastic fountains for months from a common vent. This behaviour implies that pyroclastic processes play a critical if not dominant role in degassing magma sufficiently such that it erupts effusively. Here we use H-isotope and bulk H2O measurements paired with textural evidence from the 2008 Chaitén and 2011 Cordón Caulle eruptions to demonstrate that effusion requires explosion(s)--lavas are the direct product of brittle deformation that fosters batched degassing into transient pyroclastic channels that repetitively and explosively vent from effusing lava. Evidence for cyclical brecciation and collapse of porous and permeable magmatic foams is abundant in the textures and structures of tuffisites--ash and lapilli-filled pyroclastic channels--found in volcanic bombs at both Chaitén and Cordón Caulle. We have used FTIR and a TCEA-MAT 253 system to precisely measure total water and D/H in erupted glass. Bulk H2O measurements on tuffisite and adjacent bomb obsidian indicate significantly lower H2O (~0.2-1.0 wt.%) in the tuffisite veins. These depletions imply effective local degassing and rapid advective transport of exsolved vapour through the veins. The H-isotopic signatures of tuffisites are also different from the hosting material insofar as being enriched in deuterium (up to -20‰). Such deuterium enrichments are inconsistent with isotope fractionation during both closed- and open-system degassing, but can be explained if an abundant and more primitive volatile phase from less degassed melt (higher D/H) deeper in the conduit fluxed through the tuffisite veins. The D/H ratios and bulk H2O contents of bomb glasses define a continuous array that terminates in the lavas at D/H of about -145 ‰ and <0.2 wt.% H2O. This degassing trend is well fit by a mixed closed-and-open system process, whereby 'batches' of exsolved vapour are repetitively formed and rapidly extracted in explosive pulses. The episodic and frequent release of gas from fragmental magma domains in otherwise coherently rising magma is shown to be time effective and consistent with observed timelines of explosive-effusive activity at Chaitén and Cordón Caulle.
Assessment of eruption intensity using infrasound waveform inversion at Mt. Etna, Italy.
NASA Astrophysics Data System (ADS)
Diaz Moreno, A.; Iezzi, A. M.; Lamb, O. D.; Zuccarello, L.; Fee, D.; De Angelis, S.
2017-12-01
Mt. Etna, Italy, a 3,330 m stratovolcano, is one of the most active volcanoes in the world. It is topped by five craters: Voragine, Bocca Nuova, the North-East, South-East, and New South-East Crater. Its activity during the past decade can be separated into two main types: i) nearly-continuous degassing interspersed by mild-to-vigorous Strombolian activity within the summit craters, and ii) effusive flank eruptions. In June 2017, we deployed a large temporary network of 14 infrasound sensors (Chaparral UHP60) and 12 broadband seismometers (Guralp EX-120s). We also recorded Thermal Infrared (TIR) and Unmanned Aerial Vehicle images of activity at the summit vents. Our primary objective is to quantify the intensity and mechanisms of infrasound sources at Mt. Etna, and use these results to improve models of volcanic plumes. From June 2017 until the time of writing, the infrasound network detected signals associated with nearly-continuous degassing and discrete small-to-moderate explosions originating at two distinct locations within the Voragine Crater and the New South-East Crater, respectively. During periods of increased explosive activity, we recorded 20-30 discrete events/day with infrasonic amplitudes of up to 7.5 Pa at 1 km distance from the active vent. The explosions exhibited sinusoidal acoustic waveforms, often with similar characteristics, durations of 1-3 s, and a 2 Hz peak frequency. Due to the relatively dense station coverage and the azimuthal distribution of the network, our deployment offers an opportunity to characterize, with unprecedented resolution, infrasound sources at Mt. Etna. Here we present preliminary results of 3D acoustic wave-field simulations, using a Finite Difference Time Domain modelling scheme, and a preliminary assessment of volumetric eruption rates through acoustic waveform inversion. We investigate the effects of local topography and atmospheric winds on the propagation of the acoustic wavefield, and discuss the implications for infrasound-based assessments of eruption intensity. Our network will be deployed through August 2017, with the hopes of catching larger and more diverse eruptions as well.
Preliminary insights into a model for mafic magma fragmentation
NASA Astrophysics Data System (ADS)
Edwards, Matt; Pioli, Laura; Andronico, Daniele; Cristaldi, Antonio; Scollo, Simona
2017-04-01
Fragmentation of mafic magmas remains a poorly understood process despite the common occurrence of low viscosity explosive eruptions. In fact, it has been commonly overlooked based on the assumption that low viscosity magmas have very limited explosivity and low potential to undergo brittle fragmentation. However, it is now known that highly explosive, ash forming eruptions can be relatively frequent at several mafic volcanoes. Three questions arise due to this - What is the specific fragmentation mechanism occuring in these eruptions? What are the primary factors controlling fragmentation efficiency? Can a link between eruption style and fragmentation efficiency be quantified? We addressed these questions by coupling theoretical observations and field analysis of the recent May 2016 eruption at Mount Etna volcano. Within this complex 10-day event three paroxysmal episodes of pulsating basaltic lava jets alternating with small lava flows were recorded from a vent within the Voragine crater. The associated plumes which were produced deposited tephra along narrow axes to the east and south east. Sampling was done on the deposits associated with the first two plumes and the third one. We briefly characterise the May 2016 eruption by assessing plume height, eruption phases, total erupted masses and fallout boundaries and comparing them to previous eruptions. We also analyse the total grainsize distribution (TGSD) of the scoria particles formed in the jets. Conventional methods for obtaining grainsize and total distributions of an eruption are based on mass and provide limited information on fragmentation though. For this reason, the TGSD was assessed by coupling particle analyser data and conventional sieving data to assess both particle size and number of particle distributions with better precision. This allowed for more accurate testing of several existing models describing the shape of the TGSD. Coupled further with observations on eruption dynamics and eruption phase durations obtained from the network of fixed INGV cameras, early insight into possible links between fragmentation and eruption conditions are identified. A link between fragmentation and magma properties is also examined. We discuss the relationship between the conventional and new analytical methods and their potential in unraveling key information on the fragmentation process and analyse how the dataset on the May eruption can be modelled with the current fragmentation theories. Finally, we suggest the systematic use of a comprehensive TGSD dataset to develop a fragmentation model for mafic eruptions.
Magmatic and Volcanic Processes Interpreted from Recent Ash Emissions from Nevado del Ruiz, Colombia
NASA Astrophysics Data System (ADS)
Wall, K. T.; Harpel, C. J.; Martinez, L. M.; Ceballos, J. A.; Cortés, G. P.
2017-12-01
Nevado del Ruiz is a composite volcano located in the Colombian Central Cordillera. It is the modern edifice of the Nevado del Ruiz Volcanic Complex that has been active since 1.8 Ma. Through historic times, Ruiz has exhibited decades-long eruptive stages that include minor explosions and fumarolic activity bracketing one major magmatic event. Modern eruptive activity began with seismic unrest in 1984, a small explosive eruption on September 11, 1985, and the catastrophic lahar-generating eruption of November 13, 1985. Since then, Ruiz has periodically erupted plumes up to a few kilometers above the crater, including a phreatomagmatic eruption on September 1, 1989, eruptions on May 29 (1 km plume) and June 30 (8 km plume) 2012, and frequent minor ash emissions from 2015 through the present. We have examined a suite of samples from the 1985, 1989, 2012, and 2015 eruptions to assess the origin of erupted materials (juvenile vs. non-juvenile) and nature of eruptive and subvolcanic processes (e.g. fresh intrusion, phreatic explosion). The November 1985 ash is dominated by beige to light gray pumice and free crystals, while samples from September 1985 and the 1989 through 2015 eruptions contain other fresh looking angular to subangular particles, including dense glassy to microcrystalline chips and vesicular glass shards. If juvenile, as we suspect, these components indicate phreatomagmatic to magmatic eruptive processes. Vesicular glass ranges from colorless to brown, often within the same sample, suggesting that bimodal magmatic sources, as recorded by mingled pumices of November 1985, have continued to play a role in eruptions at Ruiz. In particular, ash from 1989 contains vesicular glass that is 65% colorless to beige and 35% brown. Sparse, very dark brown vesicular glass appears in ash from June 2012—a larger eruption than that of May 2012—and is also observed in some 2015 samples, suggesting a more prominent mafic component. In addition to our observations from binocular microscopy, we will present results from SEM and electron microprobe analyses that further clarify the magmatic conditions that produced these dense and vesicular glassy components, and that test our hypothesis that these particles represent juvenile material from continued phreatomagmatic to magmatic eruptions at Ruiz.
NASA Astrophysics Data System (ADS)
Ko, Bokyun; Yun, Sung-Hyo
2016-04-01
Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS-NH-2015-81] through the Natural Hazard Mitigation Research Group funded by Ministry of Public Safety and Security of Korean government.
NASA Astrophysics Data System (ADS)
Davies, A. G.; Davies, R. L.; Veeder, G. J.; de Kleer, K.; de Pater, I.; Matson, D. L.; Johnson, T. V.; Wilson, L.
2018-04-01
Analysis of Galileo Near-Infrared Mapping Spectrometer observations of Marduk Fluctus, a volcano on the Jovian moon Io, reveals a style of volcanic activity not previously seen there—a powerful thermal event lasting only a few minutes in 1996. The thermal emission rapidly fades, suggesting extremely rapid cooling of small clasts. The duration and evolution of the explosive eruption are akin to what might be expected from a strombolian or vulcanian explosion. The presence of such events provides an additional volcanic process that can be imaged by future missions with the intent of determining lava composition from eruption temperature, an important constraint on the internal composition of Io. These data promise to be of particular use in understanding the mechanics of explosive volcanic processes on Io.
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars
2017-04-01
We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.
Crystal-rich lava dome extrusion during vesiculation: An experimental study
NASA Astrophysics Data System (ADS)
Pistone, Mattia; Whittington, Alan G.; Andrews, Benjamin J.; Cottrell, Elizabeth
2017-11-01
Lava dome-forming eruptions represent a common eruptive style and a major hazard at numerous active volcanoes worldwide. The extrusion mechanics of crystal-rich lava domes and the influence of volatiles on the transition from viscous to brittle behaviour during lava dome extrusion remain unclear. Understanding how gas exsolution and crystallinity control effusive versus explosive eruption behaviour is essential. Here, we present new experimental results on the rheology of synthesised, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacite samples, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (from glass transition temperature to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.63-0.64 MPa, and variable strain-rates ranging from 8.32·10- 8 to 3.58·10- 5 s- 1). The experiments reproduce certain aspects of lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution (i.e. nucleation and growth of gas-pressurised bubbles) and volume inflation, we find that the rheological lubrication of the system during deformation is strongly dictated by the initial crystallinity. At crystal contents < 60 vol%, gas bubbles form and coalesce during expansion and viscous deformation, favouring strain localisation and gas permeability within shear bands, which control the overall sample rheology. At crystallinities of 60 to 70 vol%, gas exsolution generates pressurisation (i.e. pore pressure increase) within the bubbles trapped in the solid crystal clusters, and embryonic formation of microscopic fractures through melt and crystals drives the system to a brittle behaviour. At higher crystallinity (80 vol%) vesiculation leads to large pressurisation, which then triggers extensive brittle fragmentation. Through macroscopic fractures, outgassing determines the rheological stalling of the system. In the light of these results we propose a rheological description of crystal-rich lava dome mechanics. The contrasting experimental behaviours at different crystallinities have implications for the style of slow-ascending dome-forming eruptions. All other factors being equal, our experiments suggest that crystal-poor magmas will undergo efficient outgassing, reducing the potential for an explosive eruption. Conversely, crystal-rich magmas may experience limited outgassing and larger gas overpressures during vesiculation, therefore increasing the potential for an explosive eruption.
Adams, N.K.; Houghton, Bruce F.; Hildreth, W.
2006-01-01
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 ??m vesicle diameter and cumulative number densities ranging from 107-109 cm-3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h. ?? Springer-Verlag 2006.
Ground Deformation from Chilean Volcanic Eruption Shown by Satellite Radar Image
2015-04-29
This satellite interferometric synthetic aperture radar image-pair shows relative deformation of the Earth surface when nn April 22-23, 2015, significant explosive eruptions occurred at Calbuco volcano, Chile.
NASA Astrophysics Data System (ADS)
Fontijn, Karen; Rawson, Harriet; Van Daele, Maarten; Moernaut, Jasper; Abarzúa, Ana M.; Heirman, Katrien; Bertrand, Sébastien; Pyle, David M.; Mather, Tamsin A.; De Batist, Marc; Naranjo, Jose-Antonio; Moreno, Hugo
2016-04-01
Well-characterised tephra horizons deposited in various sedimentary environments provide a means of synchronising sedimentary archives. The use of tephra as a chronological tool is however still widely underutilised in southern Chile and Argentina. In this study we develop a postglacial tephrochronological model for the Chilean Lake District (ca. 38 to 42°S) by integrating terrestrial and lacustrine records. Tephra deposits preserved in lake sediments record discrete events even if they do not correspond to primary fallout. By combining terrestrial with lacustrine records we obtain the most complete tephrostratigraphic record for the area to date. We present glass geochemical and chronological data for key marker horizons that may be used to synchronise sedimentary archives used for palaeoenvironmental, palaeoclimatological and palaeoseismological purposes. Most volcanoes in the studied segment of the Southern Volcanic Zone, between Llaima and Calbuco, have produced at least one regional marker deposit resulting from a large explosive eruption (magnitude ≥ 4), some of which now have a significantly improved age estimate (e.g., the 10.5 ka Llaima Pumice eruption from Llaima volcano). Others, including several units from Puyehue-Cordón Caulle, are newly described here. We also find tephra related to the Cha1 eruption from Chaitén volcano in lake sediments up to 400 km north from source. Several clear marker horizons are now identified that should help refine age model reconstructions for various sedimentary archives. Our chronological model suggests three distinct phases of eruptive activity impacting the area, with an early-to-mid-Holocene period of relative quiescence. Extending our tephrochronological framework further south into Patagonia will allow a more detailed evaluation of the controls on the occurrence and magnitude of explosive eruptions throughout the postglacial.
NASA Astrophysics Data System (ADS)
Sigmundsson, F.; Hreinsdottir, S.; Hooper, A. J.; Arnadottir, T.; Pedersen, R.; Roberts, M. J.; Oskarsson, N.; Auriac, A.; Decriem, J.; Einarsson, P.; Geirsson, H.; Hensch, M.; Ofeigsson, B. G.; Sturkell, E. C.; Sveinbjornsson, H.; Feigl, K.
2010-12-01
Gradual inflation of magma chambers often precedes eruptions at highly active volcanoes. During eruptions, rapid deflation occurs as magma flows out and pressure is reduced. Less is known about the deformation style at moderately active volcanoes, such as Eyjafjallajökull, Iceland, where an explosive summit eruption of trachyandesite beginning on 14 April 2010 caused exceptional disruption to air traffic. This eruption was preceded by an effusive flank eruption of olivine basalt from 20 March - 12 April 2010. Geodetic and seismic observations revealed the growth of an intrusive complex in the roots of the volcano during three months prior to eruptions. After initial horizontal growth, modelling indicates both horizontal and sub-vertical growth in three weeks prior the first eruption. The behaviour is attributed to subsurface variations in crustal stress and strength originating from complicated volcano foundations. A low-density layer may capture magma allowing pressure to build before an intrusion can ascend towards higher levels. The intrusive complex was formed by olivine basalt as erupted on the volcano flank 20 March - 12 April; the intrusive growth halted at the onset of this eruption. Deformation associated with the eruption onset was minor as the dike had reached close to the surface in the days before. Isolated eruptive vents opening on long-dormant volcanoes may represent magma leaking upwards from extensive pre-eruptive intrusions formed at depth. A deflation source activated during the summit eruption of trachyandesite is distinct from, and adjacent to, all documented sources of inflation in the volcano roots. Olivine basalt magma which recharged the volcano appears to have triggered the summit eruption, although the exact mode of triggering is uncertain. Scenarios include stress triggering or propagation of olivine basalt into more evolved magma. The trachyandesite includes crystals that can be remnants of minor recent intrusion of olivine basalt. Alternatively, mixing of larger portion of olivine basalt with more evolved magma may have occurred. Intrusions may lead to eruptions not only when they find their way to the surface; at Eyjafjallajökull our observation show how primitive melts in an intrusive complex active since 1992 catalyzed an explosive eruption of trachyandesite. Eyjafjallajökull’s behaviour can be attributed to its off-rift setting with a relatively cold subsurface structure and limited magma at shallow depth, as may be typical for moderately active volcanoes. Clear signs of volcanic unrest signals over years to weeks may indicate reawakening of such volcanoes whereas immediate short-term precursors may be subtle and difficult to detect.
Volcanic ash: a potential hazard for aviation in Southeast Asia
NASA Astrophysics Data System (ADS)
Whelley, P. L.; Newhall, C. G.
2012-12-01
There are more than 400 volcanoes in Southeast Asia. Ash from eruptions of Volcanic Explosivity Index 3 (VEI 3) and larger pose local hazards and eruptions of VEI 4 or greater could disrupt trade, travel, and daily life in large parts of the region. To better manage and understand the risk volcanic ash poses to Southeast Asia, this study quantifies the long-term probability of a large eruption sending ash into the Singapore Flight Information Region (FIR), which is a 1,700 km long, quasi-rectangular zone from the Strait of Malacca to the South China Sea. Southeast Asian volcanoes are classified into 6 groups, using satellite data, by their morphology, and where known, their eruptive history. 'Laguna' type are fields of maars, cinder cones and spatter cones, named for the Laguna Volcanic Field, Philippines (13.204, 123.525). 'Kembar' type are broad, gently sloping shield volcanoes with extensive lava flows (Kembar Volcano, Indonesia: 3.850, 097.664). 'Mayon' type volcanoes are open-vent, frequently active, steep sided stratocones with small summit craters, spatter ramparts, small pyroclastic fans (typically < 3 km but up to 5 km) and lava flows (Mayon Volcano, Philippines: 13.257, 123.685). 'Kelut' type are semi-plugged composite cones with dome complexes, pyroclastic fans, and/or debris avalanche deposits (Kelut Volcano, Indonesia: -7.933, 112.308). 'Pinatubo' type are large plugged stratovolcanoes with extensive (tens of km) pyroclastic fans and large summit craters or calderas up to 5 km in diameter (Pinatubo Volcano, Philippines: 15.133, 120.350). 'Toba' type are calderas with long axes > 5 km and surrounded by ignimbrite sheets (Toba Caldera, Indonesia: 02.583, 098.833). In addition silicic dome complexes that might eventually produce large caldera-forming eruptions are also classified as Toba type. The eruptive histories of most volcanoes in Southeast Asia are poorly constrained. Assuming that volcanoes with similar morphologies have had similar eruption histories, we use eruption histories of well-studied examples of each morphologic category as proxy histories for all volcanoes in the class. Results from this work will be used to model volcanic ash contamination scenarios for the Singapore FIR.
NASA Astrophysics Data System (ADS)
Novelo-Casanova, D. A.; Valdés-González, C.
2008-10-01
Using pattern recognition techniques, we formulate a simple prediction rule for a retrospective prediction of the three last largest eruptions of the Popocatépetl, Mexico, volcano that occurred on 23 April-30 June 1997 (Eruption 1; VEI ~ 2-3); 11 December 2000-23 January 2001 (Eruption 2; VEI ~ 3-4) and 7 June-4 September 2002 (Eruption 3; explosive dome extrusion and destruction phase). Times of Increased Probability (TIP) were estimated from the seismicity recorded by the local seismic network from 1 January 1995 to 31 December 2005. A TIP is issued when a cluster of seismic events occurs under our algorithm considerations in a temporal window several days (or weeks) prior to large volcanic activity providing sufficient time to organize an effective alert strategy. The best predictions of the three analyzed eruptions were obtained when averaging seismicity rate over a 5-day window with a threshold value of 12 events and declaring an alarm for 45 days. A TIP was issued about six weeks before Eruption 1. TIPs were detected about one and four weeks before Eruptions 2 and 3, respectively. According to our objectives, in all cases, the observed TIPs would have allowed the development of an effective civil protection strategy. Although, under our model considerations the three eruptive events were successfully predicted, one false alarm was also issued by our algorithm. An analysis of the epicentral and depth distribution of the local seismicity used by our prediction rule reveals that successful TIPs were issued from microearthquakes that took place below and towards SE of the crater. On the contrary, the seismicity that issued the observed false alarm was concentrated below the summit of the volcano. We conclude that recording of precursory seismicity below and SE of the crater together with detection of TIPs as described here, could become an important tool to predict future large eruptions at Popocatépetl. Although our model worked well for events that occurred in the past, it is necessary to verify the real capability of the model for future eruptive events.
Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes, Chile
Singer, Brad S.; Andersen, Nathan L.; Le Mével, Hélène; Feigl, Kurt L.; DeMets, Charles; Tikoff, Basil; Thurber, Clifford H.; Jicha, Brian R.; Cardonna, Carlos; Córdova, Loreto; Gil, Fernando; Unsworth, Martyn J.; Williams-Jones, Glyn; Miller, Craig W.; Fierstein, Judith; Hildreth, Edward; Vazquez, Jorge A.
2014-01-01
Explosive eruptions of large-volume rhyolitic magma systems are common in the geologic record and pose a major potential threat to society. Unlike other natural hazards, such as earthquakes and tsunamis, a large rhyolitic volcano may provide warning signs long before a caldera-forming eruption occurs. Yet, these signs—and what they imply about magma-crust dynamics—are not well known. This is because we have learned how these systems form, grow, and erupt mainly from the study of ash flow tuffs deposited tens to hundreds of thousands of years ago or more, or from the geophysical imaging of the unerupted portions of the reservoirs beneath the associated calderas. The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007, the crust there has been inflating at an astonishing rate of at least 25 cm/yr. This unique opportunity to investigate the dynamics of a large rhyolitic system while magma migration, reservoir growth, and crustal deformation are actively under way is stimulating a new international collaboration. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ca. 20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. The next phase of this investigation seeks to enlarge the sets of geophysical and geochemical data and to use these observations in numerical models of system dynamics.
Onset of the Magnetic Explosion in Solar Flames and Coronal Mass Ejections
NASA Technical Reports Server (NTRS)
Moore, Ronald L.; Sterling, Alphonse C.; Hudson, Hugh S.; Lemen, James R.
2001-01-01
We present observations of the magnetic field configuration and its transformation in six solar eruptive events that show good agreement with the standard bipolar model for eruptive flares. The observations are X-ray images from the Yohkoh soft X-ray telescope (SXT) and magnetograms from Kitt Peak National Solar Observatory, interpreted together with the 1-8 Angstrom X-ray flux observed by Geostationary Operational Environmental Satellites (GOES). The observations yield the following interpretations: (1) Each event is a magnetic explosion that occurs in an initially closed single bipole in which the core field is sheared and twisted in the shape of a sigmoid, having an oppositely curved elbow on each end. The arms of the opposite elbows are sheared past each other so that they overlap and are crossed low above the neutral line in the middle of the bipole. The elbows and arms seen in the SXT images are illuminated strands of the sigmoidal core field, which is a continuum of sheared/twisted field that fills these strands as well as the space between and around them; (2) Although four of the explosions are ejective (appearing to blow open the bipole) and two are confined (appearing to be arrested within the closed bipole), all six begin the same way. In the SXT images, the explosion begins with brightening and expansion of the two elbows together with the appearance of short bright sheared loops low over the neutral line under the crossed arms and, rising up from the crossed arms, long strands connecting the far ends of the elbows; and (3) All six events are single-bipole events in that during the onset and early development of the explosion they show no evidence for reconnection between the exploding bipole and any surrounding magnetic fields. We conclude that in each of our events the magnetic explosion was unleashed by runaway tether-cutting via implosive/explosive reconnection in the middle of the sigmoid, as in the standard model. The similarity of the onsets of the two confined explosions to the onsets of the four ejective explosions and their agreement with the model indicate that runaway reconnection inside a sheared core field can begin whether or not a separate system of overlying fields, or the structure of the bipole itself, allows the explosion to be ejective. Because this internal reconnection apparently begins at the very start of the sigmoid eruption and grows in step with the explosion, we infer that this reconnection is essential for the onset and growth of the magnetic explosion in eruptive flares and coronal mass ejections.
Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions
NASA Astrophysics Data System (ADS)
White, Randall; McCausland, Wendy
2016-01-01
We present data on 136 high-frequency earthquakes and swarms, termed volcano-tectonic (VT) seismicity, which preceded 111 eruptions at 83 volcanoes, plus data on VT swarms that preceded intrusions at 21 other volcanoes. We find that VT seismicity is usually the earliest reported seismic precursor for eruptions at volcanoes that have been dormant for decades or more, and precedes eruptions of all magma types from basaltic to rhyolitic and all explosivities from VEI 0 to ultraplinian VEI 6 at such previously long-dormant volcanoes. Because large eruptions occur most commonly during resumption of activity at long-dormant volcanoes, VT seismicity is an important precursor for the Earth's most dangerous eruptions. VT seismicity precedes all explosive eruptions of VEI ≥ 5 and most if not all VEI 4 eruptions in our data set. Surprisingly we find that the VT seismicity originates at distal locations on tectonic fault structures at distances of one or two to tens of kilometers laterally from the site of the eventual eruption, and rarely if ever starts beneath the eruption site itself. The distal VT swarms generally occur at depths almost equal to the horizontal distance of the swarm from the summit out to about 15 km distance, beyond which hypocenter depths level out. We summarize several important characteristics of this distal VT seismicity including: swarm-like nature, onset days to years prior to the beginning of magmatic eruptions, peaking of activity at the time of the initial eruption whether phreatic or magmatic, and large non-double couple component to focal mechanisms. Most importantly we show that the intruded magma volume can be simply estimated from the cumulative seismic moment of the VT seismicity from: Log10 V = 0.77 Log ΣMoment - 5.32, with volume, V, in cubic meters and seismic moment in Newton meters. Because the cumulative seismic moment can be approximated from the size of just the few largest events, and is quite insensitive to precise locations, the intruded magma volume can be quickly and easily estimated with few short-period seismic stations. Notable cases in which distal VT events preceded eruptions at long-dormant volcanoes include: Nevado del Ruiz (1984-1985), Pinatubo (1991), Unzen (1989-1995), Soufriere Hills (1995), Shishaldin (1989-1999), Tacana' (1985-1986), Pacaya (1980-1984), Rabaul (1994), and Cotopaxi (2001). Additional cases are recognized at frequently active volcanoes including Popocateptl (2001-2003) and Mauna Loa (1984). We present four case studies (Pinatubo, Soufriere Hills, Unzen, and Tacana') in which we demonstrate the above mentioned VT characteristics prior to eruptions. Using regional data recorded by NEIC, we recognized in near-real time that a huge distal VT swarm was occurring, deduced that a proportionately huge magmatic intrusion was taking place beneath the long dormant Sulu Range, New Britain Island, Papua New Guinea, that it was likely to lead to eruptive activity, and warned Rabaul Volcano Observatory days before a phreatic eruption occurred. This confirms the value of this technique for eruption forecasting. We also present a counter-example where we deduced that a VT swarm at Volcan Cosiguina, Nicaragua, indicated a small intrusion, insufficient to reach the surface and erupt. Finally, we discuss limitations of the method and propose a mechanism by which this distal VT seismicity is triggered by magmatic intrusion.
Preliminary Volcano-Hazard Assessment for Redoubt Volcano, Alaska
Waythomas, Christopher F.; Dorava, Joseph M.; Miller, Thomas P.; Neal, Christina A.; McGimsey, Robert G.
1997-01-01
Redoubt Volcano is a stratovolcano located within a few hundred kilometers of more than half of the population of Alaska. This volcano has erupted explosively at least six times since historical observations began in 1778. The most recent eruption occurred in 1989-90 and similar eruptions can be expected in the future. The early part of the 1989-90 eruption was characterized by explosive emission of substantial volumes of volcanic ash to altitudes greater than 12 kilometers above sea level and widespread flooding of the Drift River valley. Later, the eruption became less violent, as developing lava domes collapsed, forming short-lived pyroclastic flows associated with low-level ash emission. Clouds of volcanic ash had significant effects on air travel as they drifted across Alaska, over Canada, and over parts of the conterminous United States causing damage to jet aircraft. Economic hardships were encountered by the people of south-central Alaska as a result of ash fallout. Based on new information gained from studies of the 1989-90 eruption, an updated assessment of the principal volcanic hazards is now possible. Volcanic hazards from a future eruption of Redoubt Volcano require public awareness and planning so that risks to life and property are reduced as much as possible.
Preliminary volcano-hazard assessment for Augustine Volcano, Alaska
Waythomas, Christopher F.; Waitt, Richard B.
1998-01-01
Augustine Volcano is a 1250-meter high stratovolcano in southwestern Cook Inlet about 280 kilometers southwest of Anchorage and within about 300 kilometers of more than half of the population of Alaska. Explosive eruptions have occurred six times since the early 1800s (1812, 1883, 1935, 1964-65, 1976, and 1986). The 1976 and 1986 eruptions began with an initial series of vent-clearing explosions and high vertical plumes of volcanic ash followed by pyroclastic flows, surges, and lahars on the volcano flanks. Unlike some prehistoric eruptions, a summit edifice collapse and debris avalanche did not occur in 1812, 1935, 1964-65, 1976, or 1986. However, early in the 1883 eruption, a portion of the volcano summit broke loose forming a debris avalanche that flowed to the sea. The avalanche initiated a small tsunami reported on the Kenai Peninsula at English Bay, 90 kilometers east of the volcano. Plumes of volcanic ash are a major hazard to jet aircraft using Anchorage International and other local airports. Ashfall from future eruptions could disrupt oil and gas operations and shipping activities in Cook Inlet. Eruptions similar to the historical and prehistoric eruptions are likely in Augustine's future.
Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i
Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.
2014-01-01
A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.
Hail formation triggers rapid ash aggregation in volcanic plumes
Van Eaton, Alexa R.; Mastin, Larry G.; Herzog, M.; Schwaiger, Hans F.; Schneider, David J.; Wallace, Kristi; Clarke, Amanda B
2015-01-01
During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized ‘wet’ eruption. The 2009 eruption of Redoubt Volcano in Alaska incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits, and numerical modeling demonstrate that volcanic hail formed rapidly in the eruption plume, leading to mixed-phase aggregation of ~95% of the fine ash and stripping much of the cloud out of the atmosphere within 30 minutes. Based on these findings, we propose a mechanism of hail-like aggregation that contributes to the anomalously rapid fallout of fine ash and the occurrence of concentrically-layered aggregates in volcanic deposits.
The formulation of Lamb's Dust Veil Index
NASA Technical Reports Server (NTRS)
Kelly, P. M.; Sear, C. B.
1982-01-01
A catalog of the major explosive volcanic eruptions since 1500 AD and formulated the Dust Veil Index (DVI) is presented. The DVI quantifies the impact on the Earth's energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI for a particular eruption quantifies the climatic impact of the dust and aerosol injection from the eruption integrated over the years following the event. The formulation of the DVI is described. All references are to Lamb (1970). A distinction is made between the catalog of volcanic activity, and the tabulation of the northern hemisphere DVI apportioned over the years. The DVI data are updated to 1975 for any particular eruption, the catalog gives three DVI values: global, Southern Hemisphere, and Northern Hemisphere. The global DVI given in the catalog is considered. The other two DVIs relate to the impact on the hemispheres considered separately and their estimation involves an additional factor apportioning the dust veil between the hemispheres on the basis of the latitude of injection.
Lipman, P.W.; McIntosh, W.C.
2008-01-01
The northeastern San Juan Mountains, the least studied portion of this well-known segment of the Southern Rocky Mountains Volcanic Field are the site of several newly identified and reinterpreted ignimbrite calderas. These calderas document some unique eruptive features not described before from large volcanic systems elsewhere, as based on recent mapping, petrologic data, and a large array of newly determined high-precision, laser-fusion 40Ar/39Ar ages (140 samples). Tightly grouped sanidine ages document exceptionally brief durations of 50-100 k.y. or less for individual Oligocene caldera cycles; biotite ages are more variable and commonly as much as several hundred k.y. older than sanidine from the same volcanic unit. A previously unknown ignimbrite caldera at North Pass, along the Continental Divide in the Cochetopa Hills, was the source of the newly distinguished 32.25-Ma Saguache Creek Tuff (???400-500 km3). This regionally, distinctive crystal-poor alkalic rhyolite helps fill an apparent gap in the southwestward migration from older explosive activity, from calderas along the N-S Sawatch locus in central Colorado (youngest, Bonanza Tuff at 33.2 Ma), to the culmination of Tertiary volcanism in the San Juan region, where large-volume ignimbrite eruptions started at ca. 29.5 Ma and peaked with the enormous Fish Canyon Tuff (5000 km3) at 28.0 Ma. The entire North Pass cycle, including caldera-forming Saguache Creek Tuff, thick caldera-filling lavas, and a smaller volume late tuff sheet, is tightly bracketed at 32.25-32.17 Ma. No large ignimbrites were erupted in the interval 32-29 Ma, but a previously unmapped cluster of dacite-rhyolite lava flows and small tuffs, areally associated with a newly recognized intermediate-composition intrusion 5 ?? 10 km across (largest subvolcanic intrusion in San Juan region) centered 15 km north of the North Pass caldera, marks a near-caldera-size silicic system active at 29.8 Ma. In contrast to the completely filled North Pass caldera that has little surviving topographic expression, no voluminous tuffs vented directly from the adjacent Cochetopa Park caldera, which is morphologically beautifully preserved. Instead, Cochetopa Park subsided passively as the >500 km3 Nelson Mountain Tuff vented at 26.9 Ma from an "underfit" caldera (youngest of the San Luis complex) 30 km to the SW. Three separate regional ignimbrites were erupted sequentially from San Luis calderas within an interval of less than 50-100 k.y., a more rapid recurrence rate for large explosive eruptions than previously documented elsewhere. In eruptive processes, volcanic compositions, areal extent, duration of activity, and magmatic production rates and volumes, the Southern Rocky Mountains Volcanic Field represents present-day erosional remnants of a composite volcanic field, comparable to younger ignimbrite terranes of the Central Andes. ?? 2008 Geological Society of America.
Modeling Explosive Eruptions at Kīlauea, Hawai'i
NASA Astrophysics Data System (ADS)
Gonnermann, H. M.; Ferguson, D. J.; Blaser, A. P.; Houghton, B. F.; Plank, T. A.; Hauri, E. H.; Swanson, D. A.
2014-12-01
We have modeled eruptive magma ascent during two explosive eruptions of Kīlauea volcano, Hawai'i. They are the Hawaiian style Kīlauea Iki eruption, 1959, and the subplinian Keanakāko'i eruption, 1650 CE. We have modeled combined magma ascent in the volcanic conduit and exsolution of H2O and CO2 from the erupting magma. To better assess the relative roles of conduit processes and magma chamber, we also coupled conduit flow and magma chamber through mass balance and pressure. We predict magma discharge rates, superficial gas velocities, H2O and CO2 concentrations of the melt, magma chamber pressure, surface deformation, and height of the volcanic jet. Models are in part constrained by H2O and CO2 measured in olivine-hosted melt inclusions and by decompression rates recorded in melt embayment diffusion profiles. We present a parametric analysis, indicating that the pressure within the chamber that fed the subplinian Keanakāko'i eruption was significantly higher than lithostatic pressure. In contrast, chamber pressure for the Hawaiian Kīlauea Iki eruption was close to lithostatic. In both cases the superficial gas velocity, which affects the geometrical distribution of gas-liquid mixtures during upward flow in conduits, may have exceeded values at which bubble coalescence did not affect the flow.
Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions
NASA Astrophysics Data System (ADS)
Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie; Dunham, Eric M.
2013-08-01
Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5-5Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5-1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession--up to 30 events per second--that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.
Hammer, J.E.; Cashman, K.V.; Hoblitt, R.P.; Newman, S.
1999-01-01
Dacite tephras produced by the 1991 pre-climactic eruptive sequence at Mt. Pinatubo display extreme heterogeneity in vesicularity, ranging in clast density from 700 to 2580 kg m-3. Observations of the 13 surge-producing blasts that preceded the climactic plinian event include radar-defined estimates of column heights and seismically defined eruptive and intra-eruptive durations. A comparison of the characteristics of erupted material, including microlite textures, chemical compositions, and H2O contents, with eruptive parameters suggests that devolatilization-induced crystallization of the magma occurred to a varying extent prior to at least nine of the explosive events. Although volatile loss progressed to the same approximate level in all of the clasts analyzed (weight percent H2O=1.26-1.73), microlite crystallization was extremely variable (0-22%). We infer that syn-eruptive volatile exsolution from magma in the conduit and intra-eruptive separation of the gas phase was facilitated by the development of permeability within magma residing in the conduit. Correlation of maximum microlite crystallinity with repose interval duration (28-262 min) suggests that crystallization occurred primarily intra-eruptively, in response to the reduction in dissolved H2O content that occurred during the preceding event. Detailed textural characterization, including determination of three-dimensional shapes and crystal size distributions (CSD), was conducted on a subset of clasts in order to determine rates of crystal nucleation and growth using repose interval as the time available for crystallization. Shape and size analysis suggests that crystallization proceeded in response to lessening degrees of feldspar supersaturation as repose interval durations increased. We thus propose that during repose intervals, a plug of highly viscous magma formed due to the collapse of vesicular magma that had exsolved volatiles during the previous explosive event. If plug thickness grew proportionally to the square root of time, and if magma pressurization increased during the eruptive sequence, the frequency of eruptive pulses may have been modulated by degassing of magma within the conduit. Dense clasts in surge deposits probably represent plug material entrained by each subsequent explosive event.
McChesney, Patrick J.; Couchman, Marvin R.; Moran, Seth C.; Lockhart, Andrew B.; Swinford, Kelly J.; LaHusen, Richard G.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
The instruments in place at the start of volcanic unrest at Mount St. Helens in 2004 were inadequate to record the large earthquakes and monitor the explosions that occurred as the eruption developed. To remedy this, new instruments were deployed and the short-period seismic network was modified. A new method of establishing near-field seismic monitoring was developed, using remote deployment by helicopter. The remotely deployed seismic sensor was a piezoelectric accelerometer mounted on a surface-coupled platform. Remote deployment enabled placement of stations within 250 m of the active vent.
Global microphysical simulation of stratospheric sulfate aerosol after the Mt. Pinatubo eruption
NASA Astrophysics Data System (ADS)
Sekiya, T.; Sudo, K.
2014-12-01
An explosive volcanic eruption can inject a large amount of SO2 into the stratosphere, which is oxidized to form sulfate aerosol. Such aerosol has an impact on the Earth's radiative budget by enhancing back-scattering of the solar radiation. Changes in the size distribution of the aerosol were observed after large volcanic eruptions. Representing the changes in size distribution is important for climate simulation, because the changes affect climate responses to large volcanic eruptions. This study newly developed an aerosol microphysics module and investigated changes in stratospheric sulfate aerosol after the Mt. Pinatubo eruption in the framework of a chemistry-aerosol coupled climate model MIROC-CHASER/SPRINTARS. The module represents aerosol size distribution with three lognormal modes (nucleation, Aitken, and accumulation modes) and includes nucleation, condensation growth/evaporation, and coagulation processes. As a model evaluation, we tested reproducibility of the impacts of the Mt. Pinatubo eruption. We carried out a simulation, in which 20 Mt of SO2 and 100 Mt of volcanic ash were injected respectively into 25 km and 16—22 km altitudes over Mt. Pinatubo (120.4°E, 15.1°N) on June 15th 1991. We compared the model results with space-borne and balloon-borne observations. Although our model overestimated a near-global mean (60°N—60°S) of stratospheric aerosol optical depth (SAOD) observed by SAGE II instrument until one year after the eruption, it reproduced the observed SAOD in the subsequent period. The model well captured the observed increase of effective radius at 20 km altitude in the northern midlatitudes. In addition, we analyzed the pathway of volcanic sulfur from SO2 to sulfate aerosol. The most amount of the volcanic sulfur was converted from SO2 to accumulation mode aerosol by 100 days after the eruption. The conversion into the accumulation mode aerosol is attributable to coagulation until the first 14 days and to condensation growth after that.
The timing and intensity of column collapse during explosive volcanic eruptions
NASA Astrophysics Data System (ADS)
Carazzo, Guillaume; Kaminski, Edouard; Tait, Stephen
2015-02-01
Volcanic columns produced by explosive eruptions commonly reach, at some stage, a collapse regime with associated pyroclastic density currents propagating on the ground. The threshold conditions for the entrance into this regime are mainly controlled by the mass flux and exsolved gas content at the source. However, column collapse is often partial and the controls on the fraction of total mass flux that feeds the pyroclastic density currents, defined here as the intensity of collapse, are unknown. To better understand this regime, we use a new experimental apparatus reproducing at laboratory scale the convecting and collapsing behavior of hot particle-laden air jets. We validate the predictions of a 1D theoretical model for the entrance into the regime of partial collapse. Furthermore, we show that where a buoyant plume and a collapsing fountain coexist, the intensity of collapse can be predicted by a universal scaling relationship. We find that the intensity of collapse in the partial collapse regime is controlled by magma gas content and temperature, and always exceeds 40%, independent of peak mass flux and total erupted volume. The comparison between our theoretical predictions and a set of geological data on historic and pre-historic explosive eruptions shows that the model can be used to predict both the onset and intensity of column collapse, hence it can be used for rapid assessment of volcanic hazards notably ash dispersal during eruptive crises.
Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico)
NASA Astrophysics Data System (ADS)
Alatorre-Ibargüengoitia, Miguel A.; Delgado-Granados, Hugo; Dingwell, Donald B.
2012-11-01
During volcanic explosions, volcanic ballistic projectiles (VBP) are frequently ejected. These projectiles represent a threat to people, infrastructure, vegetation, and aircraft due to their high temperatures and impact velocities. In order to protect people adequately, it is necessary to delimit the projectiles' maximum range within well-defined explosion scenarios likely to occur in a particular volcano. In this study, a general methodology to delimit the hazard zones for VBP during volcanic eruptions is applied to Popocatépetl volcano. Three explosion scenarios with different intensities have been defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with VBP ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of VBP observed in the field. In the case of Vulcanian eruptions, the most common type of activity at Popocatépetl, the ballistic model was used in concert with an eruptive model to correlate ballistic range with initial pressure and gas content, parameters that can be estimated by monitoring techniques. The results are validated with field data and video observations of different Vulcanian eruptions at Popocatépetl. For each scenario, the ballistic model is used to calculate the maximum range of VBP under optimum "launching" conditions: ballistic diameter, ejection angle, topography, and wind velocity. Our results are presented in the form of a VBP hazard map with topographic profiles that depict the likely maximum ranges of VBP under explosion scenarios defined specifically for Popocatépetl volcano. The hazard zones shown on the map allow the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.
Analysis of Spattering Activity at Halema'uma'u in 2015
NASA Astrophysics Data System (ADS)
Mintz, Bianca G.
The classical explosive basaltic eruption spectrum is traditionally defined by the following end member eruption styles: Hawaiian and Strombolian. The field use of high-speed cameras has enabled volcanologists to make improved quantifications and more accurate descriptions of these classical eruptions styles and to quantify previously undecipherable activity (including activity on the basaltic eruption spectrum between the two defined end members). Explosive activity in 2015 at the free surface of the Halema'uma'u lava lake at Kilauea exhibited features of both sustained (Hawaiian) fountaining and transient (Strombolian) explosivity. Most of this activity is internally triggered by the internal rise of decoupled gas bubbles from below the lake's surface, but external triggering via rock falls, was also observed. Here I identify three styles of bubble bursting and spattering eruptive activity (isolated events, clusters of events, and prolonged episodes) at the lava lake, and distinguished them based on their temporal and spatial distributions. Isolated events are discrete single bubble bursts that persist for a few tenths of seconds to seconds and are separated by repose periods of similar or longer time scales. Cluster of events are closely spaced, repeated events grouped around a narrow point source, which persist for seconds to minutes. Prolonged episodes are groupings of numerous events closely linked in space and time that persist for tens of minutes to hours. Analysis of individual events from high-speed camera images indicates that they are made up of up to three phases: the bubble ascent phase, the bursting and pyroclast ejection phase, and the drain back (and rebound) phase. Based on the numerical parameters established in this study, the 2015 activity was relatively weak (i.e., of low intensity) but still falls in a region between those of continuous Hawaiian fountains and impulsive, short-lived Strombolian explosions, in terms of duration.
Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú
2015-01-01
After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.
NASA Astrophysics Data System (ADS)
Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.
2008-12-01
From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are <50. A period of quiescence began in mid-October 2007, and a maximum of 6 cm of deflation was observed in the interferometry results from 19 October 2007 to 19 January 2008. A clustering of at least 25 earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Le Pichon, Alexis; Vergoz, Julien; Herry, Pascal; Lalande, Jean-Marie; Lee, Hee-il; Che, Il-Young; Rybin, Alexander
2011-02-01
Sarychev Peak (SP), located on Ostrov Matua, Kurils, erupted explosively during 11-16 June 2009. Whereas remote seismic stations did not record the eruption, we report atmospheric infrasound (acoustic wave ~ 0.01-20 Hz) observations of the eruption at seven infrasound arrays located at ranges of ~ 640-6400 km from SP. The infrasound arrays consist of stations of the International Monitoring System global infrasound network and additional stations operated by the Korea Institute of Geoscience and Mineral Resources. Signals at the three closest recording stations IS44 (643 km, Petropavlovsk-Kamchatskiy, Kamchatka Krai, Russia), IS45 (1690 km, Ussuriysk, Russia), and IS30 (1774 km, Isumi, Japan) represent a detailed record of the explosion chronology that correlates well with an eruption chronology based on satellite data (TERRA, NOAA, MTSAT). The eruption chronology inferred from infrasound data has a higher temporal resolution than that obtained with satellite data. Atmosphere-corrected infrasonic source locations determined from backazimuth cross-bearings of first-arrivals have a mean centroid ~ 15 km from the true location of SP. Scatter in source locations of up to ~ 100 km result from currently unresolved details of atmospheric propagation and source complexity. We observe systematic time-variations in trace-velocity, backazimuth deviation, and signal frequency content at IS44. Preliminary investigation of atmospheric propagation from SP to IS44 indicates that these variations can be attributed to solar tide variability in the thermosphere. It is well known that additional information about active volcanic processes can be learned by deploying infrasonic sensors with seismometers at erupting volcanoes. This study further highlights the significant potential of infrasound arrays for monitoring volcanic regions such as the Kurils that have only sparse seismic network coverage.
NASA Astrophysics Data System (ADS)
Darmawan, Herlan; Walter, Thomas; Nikkhoo, Mehdi; Richter, Nicole
2015-04-01
After the 2010 Merapi eruption, the lava dome in the summit of the volcano was firstly growing and then subject to gradual cooling and contraction. In November 2013, a major phreatomagmatic explosion occurred, which caused an eruption column rising over 2 km high and destroyed a number of monitoring instruments in the near field. Bombs were thrown out over 1 km distance. The eruption produced volcanic ash and very fine materials. Deformation data from tilt or EDM showed no wide inflation or deflation associated with this eruption. In addition, high resolution TerraSAR-X data analysis also showed no edifice-wide deformation (Walter et al., 2015). Here we further examine two datasets to determine the morphologic and structural effects of this eruption. First we exploit fixed installed monitoring cameras and use a digital image correlation method to investigate geometric changes before and after the eruption. Second we acquired a high resolution terrestrial Lidar data set after the explosion and compared this another lidar data set acquired before. The result shows details on the splitted dome, the volume of the eruption and thickness of the deposits, and suggests that a new block at the front of the dome is inherently unstable and might break off to form a block and ash flow in the near future. Reference: TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 12 January 2015, Pages 23-33. doi:10.1016/j.tecto.2014.11.007
Observations of eruption clouds from Sakura-zima volcano, Kyushu, Japan from Skylab 4
Friedman, J.D.; Heiken, G.; Randerson, D.; McKay, D.S.
1976-01-01
Hasselblad and Nikon stereographic photographs taken from Skylab between 9 June 1973 and 1 February 1974 give synoptic plan views of several entire eruption clouds emanating from Sakura-zima volcano in Kagoshima Bay, Kyushu, Japan. Analytical plots of these stereographic pairs, studied in combination with meteorological data, indicate that the eruption clouds did not penetrate the tropopause and thus did not create a stratospheric dust veil of long residence time. A horizontal eddy diffusivity of the order of 106 cm2 s-1 and a vertical eddy diffusivity of the order of 105 cm2 s-1 were calculated from the observed plume dimensions and from available meteorological data. These observations are the first, direct evidence that explosive eruption at an estimated energy level of about 1018 ergs per paroxysm may be too small under atmospheric conditions similar to those prevailing over Sakura-zima for volcanic effluents to penetrate low-level tropospheric temperature inversions and, consequently, the tropopause over northern middle latitudes. Maximum elevation of the volcanic clouds was determined to be 3.4 km. The cumulative thermal energy release in the rise of volcanic plumes for 385 observed explosive eruptions was estimated to be 1020 to 1021 ergs (1013 to 1014 J), but the entire thermal energy release associated with pyroclastic activity may be of the order of 2.5 ?? 1022 ergs (2.5 ?? 1015 J). Estimation of the kinetic energy component of explosive eruptions via satellite observation and meteorological consideration of eruption clouds is thus useful in volcanology as an alternative technique to confirm the kinetic energy estimates made by ground-based geological and geophysical methods, and to aid in construction of physical models of potential and historical tephra-fallout sectors with implications for volcano-hazard prediction. ?? 1976.
How Did Ca. 300 Years of Explosive Activity at Kilauea End?
NASA Astrophysics Data System (ADS)
Swanson, D. A.
2013-12-01
Kilauea experienced ~300 years of frequent explosive eruptions following caldera collapse in about 1500 CE, producing the Keanakāko';i Tephra. The first 200 years were dominated by juvenile-rich phreatomagmatic eruptions, and the next 100 years by lithic-rich phreatomagmatic and phreatic explosive events. For most of this time, the caldera was deep enough (≥600 m) to allow magma and hot rock to interact with external water at and below the water table. This situation changed after the deadly 1790 eruption. The first eruption was magmatic, involving high fountaining that deposited pumice across >25 km2 south of the caldera. The pumice is hard to find today; it was mostly eroded away soon after deposition and is found only in protected areas along drainages and next to obstacles. The deposit has a consistent internal stratigraphy regardless of its thickness (maximum of 12 cm): lower third mostly achneliths (Pele's hair and tears), upper two- thirds pumice bombs and lapilli. The fountaining, the first purely magmatic event since reticulite erupted in ca. 1500, probably signifies a rising magma column and early filling of the caldera. The next eruption was phreatic, depositing fine lithic ash a few millimeters thick across >45 km2 south of the caldera. It may record withdrawal of the magma column and collapse of part of the caldera floor to or below the water table. The magma column rose soon thereafter, and its free surface was above the water table for some time. This event is recorded by Pele's hair deposited on the lithic ash across >30 km2 south of the caldera. The hair forms a jackstraw mat <1 mm thick. Nothing coarser than hair is present, so it is probably not a product of tall fountains. An analog might be the open-vent activity at Halema';uma';u today, where spatter from the magma free-surface (a lava lake) produces Pele's hair that blows kilometers downwind, forming a paper-thin deposit that glistens in the sun like golden grain. Phreatic activity followed, depositing small lapilli now embedded in the hair and lithic ash. This was perhaps a vent-opening event for a dominantly phreatomagmatic eruption. The deposit of this eruption, mostly lithic but with scattered fluidal lapilli, is 0.5-2 cm thick and inversely graded across a depositional area of >40 km2 south of the caldera. Mean grain size along the dispersal axis decreases from 7 mm on the rim of the caldera to 2 mm 7 km south of the caldera, where the deposit disappears into forest. This subplinian eruption records interaction of groundwater with both conduit wallrock and magma, probably during renewed collapse. A few ballistic blocks fell near the caldera soon thereafter, recording separate explosive events after the main eruption. The last Keanakāko';i eruption, erupted some time before 1823, was a lava fountain that deposited golden pumice up to 3 m thick west of the caldera. The eruption clearly indicates that the caldera was filling and on its way to its present status. Thus the ca. 300 years of explosive activity ended with a bumpy transition from a deep to a relatively full caldera. The duration of the transition is unknown but shorter than about 30 years. During that time, at least two small collapses interrupted a generally rising magma column, which finally gained the upper hand and culminated in the mostly effusive activity of Kilauea ever since.
Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.
2017-01-01
Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The ~7,700 calendar year B.P. climactic eruption of Mount Mazama, USA vented ~50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Mazama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ±1 m lateral and ±4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow- parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of pit craters caused by phreatic explosions, fractures and cracks caused by extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.
NASA Astrophysics Data System (ADS)
Robinson, Joel E.; Bacon, Charles R.; Major, Jon J.; Wright, Heather M.; Vallance, James W.
2017-08-01
Large explosive eruptions of silicic magma can produce widespread pumice fall, extensive ignimbrite sheets, and collapse calderas. The surfaces of voluminous ignimbrites are rarely preserved or documented because most terrestrial examples are heavily vegetated, or severely modified by post-depositional processes. Much research addresses the internal sedimentary characteristics, flow processes, and depositional mechanisms of ignimbrites, however, surface features of ignimbrites are less well documented and understood, except for comparatively small-volume deposits of historical eruptions. The 7700 calendar year B.P. climactic eruption of Mount Manama, USA, vented 50 km3 of magma, deposited first as rhyodacite pumice fall and then as a zoned rhyodacite-to-andesite ignimbrite as Crater Lake caldera collapsed. Lidar collected during summer 2010 reveals the remarkably well-preserved surface of the Manama ignimbrite and related deposits surrounding Crater Lake caldera in unprecedented detail despite forest cover. The ± 1 m lateral and ± 4 cm vertical resolution lidar allows surface morphologies to be classified. Surface morphologies are created by internal depositional processes and can point to the processes at work when pyroclastic flows come to rest. We describe nine surface features including furrow-ridge sets and wedge-shaped mounds in pumice fall eroded by high-energy pyroclastic surges, flow-parallel ridges that record the passage of multiple pyroclastic flows, perched benches of marginal deposits stranded by more-mobile pyroclastic-flow cores, hummocks of dense clasts interpreted as lag deposit, transverse ridges that mark the compression and imbrication of flows as they came to rest, scarps indicating ignimbrite remobilization, fields of closely spaced pits caused by phreatic explosions, fractures and cracks due to extensional processes resulting from ignimbrite volume loss, and stream channels eroded in the newly formed surface. The nine morphologies presented here illustrate a dynamic depositional environment that varied spatially and with time during the eruption, and show that multiple processes modified the ignimbrite after deposition, both during and after the eruption.
Complex explosive volcanic activity on the Moon within Oppenheimer crater, Icarus
Bennett, Kristen A; Horgan, Briony H N; Gaddis, Lisa R.; Greenhagen, Benjamin T; Allen, Carlton C.; Hayne, Paul O; Bell, James F III; Paige, David A.
2016-01-01
Oppenheimer Crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/Visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire fountaining eruption, and in some cases may have included an effusive component. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.
Complex explosive volcanic activity on the Moon within Oppenheimer crater
NASA Astrophysics Data System (ADS)
Bennett, Kristen A.; Horgan, Briony H. N.; Gaddis, Lisa R.; Greenhagen, Benjamin T.; Allen, Carlton C.; Hayne, Paul O.; Bell, James F.; Paige, David A.
2016-07-01
Oppenheimer crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire fountaining eruption, and in some cases may have included an effusive component. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.
Crystal-rich lava dome extrusion during vesiculation: an experimental study
NASA Astrophysics Data System (ADS)
Pistone, M.; Whittington, A. G.; Andrews, B. J.; Cottrell, E.
2016-12-01
Lava dome-forming eruptions represent a common eruptive style and a major hazard on numerous active volcanoes worldwide. The influence of volatiles on the rheological mechanics of lava dome extrusion remains unclear. Here we present new experimental results on the rheology of synthesized, crystal-rich (50 to 80 vol% quartz crystals), hydrous (4.2 wt% H2O in the glass) dacites, which vesiculate from 5 to 27 vol% gas bubbles at high temperatures (483 to 797 °C) during deformation conducted in a parallel plate viscometer (constant stress at 0.64 MPa, and variable strain-rates ranging from 8.32•10-8 to 3.58•10-5 s-1). The experiments replicated lava dome deformation in volcanic conduits during vesiculation of the residual melt, instigated in the experiments by increasing temperature. During gas exsolution we find that the rheological lubrication of the system during deformation is strongly dictated by the imposed initial crystallinity. At low crystal content (< 60 vol%) strain localization within shear bands, composed of melt and gas bubbles that likely interconnect, controls the overall sample rheology. At high crystallinity (60 to 70 vol%) gas pressurization (i.e. pore pressure increase) within crystal clusters and embryonic formation of microscopic fractures drive the system to a brittle behavior. At higher crystallinity (80 vol%) gas pressurization triggers brittle fragmentation through macroscopic fractures, which sustain outgassing and determines the viscous death of the system. The contrasting behaviors at different crystallinities have direct impact on the style of volcanic eruptions. Outgassing induced by deformation and bubble coalescence reduces the system pressurization and the potential for an explosive eruption. Conversely, high crystallinity lava domes experience limited loss of exsolved gas during deformation, permitting the achievement of large overpressures prior to fragmentation, favoring likely explosive eruptions. These findings provide a dataset that might be used to constrain the physical properties of natural lava domes at active volcanoes and show how crystallinity and corresponding gas pressurization control dome growth rate and consequent eruption style.
Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis
NASA Astrophysics Data System (ADS)
Rahimi, K. E.; Bursik, M. I.
2016-12-01
Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.
Active submarine eruption of boninite in the northeastern Lau Basin
NASA Astrophysics Data System (ADS)
Resing, Joseph A.; Rubin, Kenneth H.; Embley, Robert W.; Lupton, John E.; Baker, Edward T.; Dziak, Robert P.; Baumberger, Tamara; Lilley, Marvin D.; Huber, Julie A.; Shank, Timothy M.; Butterfield, David A.; Clague, David A.; Keller, Nicole S.; Merle, Susan G.; Buck, Nathaniel J.; Michael, Peter J.; Soule, Adam; Caress, David W.; Walker, Sharon L.; Davis, Richard; Cowen, James P.; Reysenbach, Anna-Louise; Thomas, Hans
2011-11-01
Subduction of oceanic crust and the formation of volcanic arcs above the subduction zone are important components in Earth's geological and geochemical cycles. Subduction consumes and recycles material from the oceanic plates, releasing fluids and gases that enhance magmatic activity, feed hydrothermal systems, generate ore deposits and nurture chemosynthetic biological communities. Among the first lavas to erupt at the surface from a nascent subduction zone are a type classified as boninites. These lavas contain information about the early stages of subduction, yet because most subduction systems on Earth are old and well-established, boninite lavas have previously only been observed in the ancient geological record. Here we observe and sample an active boninite eruption occurring at 1,200m depth at the West Mata submarine volcano in the northeast Lau Basin, southwest Pacific Ocean. We find that large volumes of H2O, CO2 and sulphur are emitted, which we suggest are derived from the subducting slab. These volatiles drive explosive eruptions that fragment rocks and generate abundant incandescent magma-skinned bubbles and pillow lavas. The eruption has been ongoing for at least 2.5 years and we conclude that this boninite eruption is a multi-year, low-mass-transfer-rate eruption. Thus the Lau Basin may provide an important site for the long-term study of submarine volcanic eruptions related to the early stages of subduction.
NASA Astrophysics Data System (ADS)
Rolandi, G.; Maraffi, S.; Petrosino, P.; Lirer, L.
1993-11-01
The Ottaviano eruption occurred in the late neolithic (8000 y B.P.). 2.40 km 3 of phonolitic pyroclastic material (0.61 km 3 DRE) were emplaced as pyroclastic flow, surge and fall deposits. The eruption began with a fall phase, with a model column height of 14 km, producing a pumice fall deposit (LA). This phase ended with short-lived weak explosive activity, giving rise to a fine-grained deposit (L1), passing to pumice fall deposits as the result of an increasing column height and mass discharge rate. The subsequent two fall phases (producing LB and LC deposits), had model column heights of 20 and 22 km with eruption rates of 2.5 × 10 7 and 2.81 × 10 7 kg/s, respectively. These phases ended with the deposition of ash layers (L2 and L3), related to a decreasing, pulsing explosive activity. The values of dynamic parameters calculated for the eruption classify it as a sub-plinian event. Each fall phase was characterized by variations in the eruptive intensity, and several pyroclastic flows were emplaced (F1 to F3). Alternating pumice and ash fall beds record the waning of the eruption. Finally, owing to the collapse of a eruptive column of low gas content, the last pyroclastic flow (F4) was emplaced.
Satellite Remote Sensing of the 2008 Chaitén Eruption (Invited)
NASA Astrophysics Data System (ADS)
Carn, S. A.; Prata, F.; Durant, A.; Rose, W. I.
2010-12-01
Prior to its first recorded explosive eruption in May 2008, Chaitén volcano was unmonitored. The former obscurity of Chaitén was such that the eruption was initially attributed to its larger, glaciated neighbor Minchinmávida upon sighting of the eruption column. Satellite remote sensing assets therefore played a crucial role in monitoring the early stages of the Chaitén eruption, revealing many unusual characteristics of the emissions [Carn et al., EOS, 90(24):205-206]. Although somewhat overshadowed by the major eruptions of Okmok and Kasatochi later the same year, the Chaitén eruption remains enigmatic for several reasons. It was the first explosive rhyolitic eruption since Novarupta (Alaska) in 1912, and the first to be observed from space. It generated eruption columns suffused with spectacular lightning. It also emplaced an extensive ash blanket on land over Chile and Argentina, which was mapped using satellite data (e.g., MODIS), permitting detailed analysis of the tephra deposits and assessments of eruption magnitude and the environmental impacts of ashfall [Watt et al., JGR, 2009]. The eruption serves as a prime example of the science benefits of coordinated satellite measurements from NASA’s A-Train spacecraft constellation, flying in formation since 2006. We focus on observations of the explosive eruption clouds generated in the 1-8 May, 2008 period. Measurements of SO2 emissions by several instruments, including the Ozone Monitoring Instrument (OMI) on the Aura satellite and the Atmospheric Infrared Sounder (AIRS) on Aqua, showed the Chaitén emissions to be remarkably SO2-poor, later corroborated by petrological analysis of melt inclusions in the erupted rhyolite [Lowenstern et al., this session]. Hyperspectral infrared (IR) measurements of the rhyolitic ash cloud from AIRS revealed that ash composition could be retrieved from IR spectra for the first time [Gangale et al., Remote Sens. Environ., 2009]. Ash mass loading measurements from AIRS can be combined with coincident aerosol vertical profiles from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument aboard CALIPSO to derive ash concentrations in the Chaitén eruption clouds. We find notable differences in vertical extent between the volcanic clouds produced on 2, 6, and 8 May, which we compare to sedimentological characteristics of the deposit (e.g., spatial variation in mass deposition and particle size). Such a comparison is uniquely possible at Chaitén and may elucidate particle aggregation processes in volcanic clouds. We also show evidence for long-range transport of fine ash from Chaitén. Passive limb emission measurements by the Microwave Limb Sounder (MLS), also on the Aura satellite in the A-Train, provide some evidence for volcanic HCl emissions in the explosive eruption phase, which contributes to an evaluation of the Cl budget of the eruption [Lowenstern et al., this session]. MODIS thermal IR data collected since 2008 show a progressive reduction in IR radiance from the Chaitén lava dome, indicative of ongoing but declining activity at the volcano.
Evidence for Gradual External Reconnection Before Explosive Eruption of a Solar Filament
NASA Technical Reports Server (NTRS)
Sterling, Alphonse C.; Moore, Ronald L.
2004-01-01
We observe a slowly evolving quiet-region solar eruption of 1999 April 18, using extreme-ultraviolet (EUV) images from the EUV Imaging Telescope (EIT) on the Solar and Heliospheric Observatory (SOHO) and soft X-ray images from the Soft X-ray Telescope (SXT) on Yohkoh. Using difference images, in which an early image is subtracted from later images, we examine dimmings and brightenings in the region for evidence of the eruption mechanism. A filament rose slowly at about 1 km/s for 6 hours before being rapidly ejected at about 16 km/s leaving flare brightenings and postflare loops in its wake. Magnetograms from the Michelson Doppler Imager (MDI) on SOHO show that the eruption occurred in a large quadrupolar magnetic region with the filament located on the neutral line of the quadrupole s central inner lobe between the inner two of the four polarity domains. In step with the slow rise, subtle EIT dimmings commence and gradually increase over the two polarity domains on one side of the filament, i.e., in some of the loops of one of the two sidelobes of the quadrupole. Concurrently, soft X-ray brightenings gradually increase in both sidelobes. Both of these effects suggest heating in the sidelobe magnetic arcades. which gradually increase over several hours before the fast eruption. Also, during the slow pre- eruption phase, SXT dimmings gradually increase in the feet and legs of the central lobe, indicating expansion of the central-lobe magnetic arcade enveloping the filament. During the rapid ejection. these dimmings rapidly grow in darkness and in area, especially in the ends of the sigmoid field that erupts with the filament. and flare brightenings begin underneath the fast-moving but still low-altitude filament. We consider two models for explaining the eruption: "breakout. which says that reconnection occurs high above the filament prior to eruption, and tether cutting, which says that the eruption is unleashed by reconnection beneath the filament. The pre-eruption evolution is consistent with gradual breakout that led to (and perhaps caused) the fast eruption. Tether-cutting reconnection below the filament begins early in the rapid ejection. but our data are not complete enough to determine whether this reconnection began early enough to be the cause of the fast-phase onset. Thus, our observations are consistent with gradual breakout reconnection causing the long slow rise of the filament, but allow the cause of the sudden onset of the explosive fast phase to be either a jump in the breakout reconnection rate or the onset of runaway tether-cutting reconnection. or both.
The 1991 eruptions of Mount Pinatubo, Philippines
Wolfe, Edward W.
1992-01-01
Recognition of the volcanic unrest at Mount Pinatubo in the Philippines began when steam explosions occurred on April 2, 1991. The unrest culminated ten weeks later in the world's largest eruption in more than half a century.
The reawakening of Alaska's Augustine volcano
Power, John A.; Nye, Christopher J.; Coombs, Michelle L.; Wessels, Rick L.; Cervelli, Peter F.; Dehn, Jon; Wallace, Kristi L.; Freymueller, Jeffrey T.; Doukas, Michael P.
2006-01-01
The eruption was heralded by eight months of increasing seismicity, deformation, gas emission, and small phreatic eruptions, the latter consisting of explosions of steam and debris caused by heating and expansion of groundwater due to an underlying heat source.
An approach to source characterization of tremor signals associated with eruptions and lahars
NASA Astrophysics Data System (ADS)
Kumagai, Hiroyuki; Mothes, Patricia; Ruiz, Mario; Maeda, Yuta
2015-11-01
Tremor signals are observed in association with eruption activity and lahar descents. Reduced displacement ( D R) derived from tremor signals has been used to quantify tremor sources. However, tremor duration is not considered in D R, which makes it difficult to compare D R values estimated for different tremor episodes. We propose application of the amplitude source location (ASL) method to characterize the sources of tremor signals. We used this method to estimate the tremor source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We considered the source amplitude to be the maximum value during tremor. We estimated the cumulative source amplitude ( I s) as the offset value of the time-integrated envelope of the vertical seismogram of tremor corrected for geometrical spreading and medium attenuation in the 5-10-Hz band. For eruption tremor signals, we also estimated the cumulative source pressure ( I p) from an infrasonic envelope waveform corrected for geometrical spreading. We studied these parameters of tremor signals associated with eruptions and lahars and explosion events at Tungurahua volcano, Ecuador. We identified two types of eruption tremor at Tungurahua: noise-like inharmonic waveforms and harmonic oscillatory signals. We found that I s increased linearly with increasing source amplitude for lahar tremor signals and explosion events, but I s increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. We found a linear relation between I s and I p for both explosion events and eruption tremor. Because I p may be proportional to the total mass involved during an eruption episode, this linear relation suggests that I s may be useful to quantify eruption size. The I s values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The scaling relations among source parameters that we identified will contribute to our understanding of the dynamic processes associated with eruptions and lahars. This new approach is applicable in analyzing tremor sources in real time and may contribute to early assessment of the size of eruptions and lahars.
Geochemical and petrological indicators of volcanic behavior: Merapi volcano, Java, Indonesia
NASA Astrophysics Data System (ADS)
Troll, V. R.; Deegan, F. M.; Jolis, E. M.; Chadwick, J.; Blythe, L. S.; Freda, C.; Hilton, D. R.; Schwarzkopf, L. M.; Gertisser, R.; Zimmer, M.
2011-12-01
Gunung Merapi, one of Indonesia's most active volcanoes, is characterized by long periods of dome growth and intermittent explosive pyroclastic events. Merapi currently degasses continuously through high-T fumaroles (>200°C), and erupts crystal-rich basaltic-andesite that contains a large range of igneous and calc-silicate crustal inclusions. To evaluate mechanisms that trigger explosive eruptions, we sampled lavas, inclusions (xenoliths), and gas from active fumaroles. Additionally, we established a time-integrated experiment reaction series mimicking crustal assimilation at Merapi under magmatic conditions. Merapi lava contains abundant plagioclase crystals which show complex zoning and vary in anorthite (An) content between 40 and 95 mol% across resorption surfaces. A negative correlation between An mol% and other indicators of magmatic fractionation, such as MgO and FeO, has been observed. Moreover, Sr isotope analyses of discrete zones in plagioclase yields 87Sr/86Sr values that notably exceed those of the host lavas. Zones with the highest An content also tend to show the highest radiogenic Sr values, consistent with a Ca-rich, high-87Sr/86Sr crustal contaminant. Abundant metamorphosed limestone xenoliths contain compositionally identical feldspar to the high-An population in the lavas, demonstrating that magma-crust interaction is a significant process at Merapi. Carbon isotope ratios of fumarole CO2 sampled during quiescent degassing periods form a baseline of δ13C2001-2008 = -4.1%. The notable exceptions are the 2006 values, obtained immediately after the eruption and the 6.4 magnitude Yogyakarta earthquake, which show elevated δ13C values up to -2.4%. Notably, the rise in δ13C values coincided with an increase in eruptive intensity and volcano seismicity by a factor of 3 to 5 for several weeks after the earthquake. This is consistent with addition of a late-stage, crustal volatile component added to purely mantle and slab-derived volatile sources. This observation argues for extensive and ongoing magma-crust interaction beneath the volcano, especially during eruptive and/or seismic events. Our high P-T experiments show that interaction between Merapi magma and limestone can rapidly liberate crustal CO2 on a timescale of only seconds to minutes. We therefore expect vigorous CO2 bubble nucleation and growth on a scale of perhaps hours to days in nature. Late volatile input could therefore accelerate or trigger explosive eruptions independently of magmatic recharge and fractionation by sudden over-pressurization of the upper parts of the magma system. Such an event would provide shallow seismic warning signals immediately prior to an erratic, CO2-driven, eruption crisis. Thus we conclude that crust-mantle interaction processes have serious implications for eruptive behavior, volatile emission, and hazard management at Merapi and similar systems elsewhere.
NASA Astrophysics Data System (ADS)
Shea, T.; Leonhardi, T. C.; Giachetti, T.; Larsen, J. F.; Lindoo, A. N.
2014-12-01
Associations of tephra and lava flow/domes produced by eruptions involving evolved magmas are a common occurrence in various types of volcanic settings (e.g. Pu'u Wa'awa'a ~114ka, Hawaii; South Mono ~AD625, California; Newberry Big Obsidian flow ~AD700, Oregon; Big Glass Mountain ~AD1100, California; Inyo ~AD1350, California, Chaitén AD2008-2009, Chile; Cordón Caulle AD2011-2012, Chile), ejecting up to a few cubic km of material (tephra+flow/dome). Most, if not all, of these eruptions have in common the paradoxical coexistence of (1) eruptive styles which are inferred to be sustained in nature (subplinian and plinian), with (2) a pulsatory behavior displayed by the resulting fall deposits, and (3) the coeval ejection of vesicular tephra and pyroclastic obsidian. Through two case studies, we explore this apparent set of paradoxes, and their significance in understanding transitions from explosive to effusive behavior. In this second case study (also cf. Shea et al., same session), we present new field, textural and geochemical data pertaining to the 114ka Pu'u Wa'awa'a trachyte eruption in Hawai'i. This large volume (>5 km3) event produced both a tephra cone (~1.6 km in diameter) and a thick (>250 m) lava flow, which have been largely covered by the more recent basaltic Mauna Loa and Hualalai lava flows. The trachyte tephra contains juvenile material displaying a large textural variety (pumice, scoria, obsidian, microcrystalline trachyte and banded-clasts), which can be linked with the extent of degassing and the formation of feldspar microlites. Notably, the abundance of microlites can be used to reconstruct an ascent and devolatilization history that accounts for all the seemingly contradictory observations.
The longevity of lava dome eruptions: analysis of the global DomeHaz database
NASA Astrophysics Data System (ADS)
Ogburn, S. E.; Wolpert, R.; Calder, E.; Pallister, J. S.; Wright, H. M. N.
2015-12-01
The likely duration of ongoing volcanic eruptions is a topic of great interest to volcanologists, volcano observatories, and communities near volcanoes. Lava dome forming eruptions can last from days to centuries, and can produce violent, difficult-to-forecast activity including vulcanian to plinian explosions and pyroclastic density currents. Periods of active dome extrusion are often interspersed with periods of relative quiescence, during which extrusion may slow or pause altogether, but persistent volcanic unrest continues. This contribution focuses on the durations of these longer-term unrest phases, hereafter eruptions, that include periods of both lava extrusion and quiescence. A new database of lava dome eruptions, DomeHaz, provides characteristics of 228 eruptions at 127 volcanoes; for which 177 have duration information. We find that while 78% of dome-forming eruptions do not continue for more than 5 years, the remainder can be very long-lived. The probability distributions of eruption durations are shown to be heavy-tailed and vary by magma composition. For this reason, eruption durations are modeled with generalized Pareto distributions whose governing parameters depend on each volcano's composition and eruption duration to date. Bayesian predictive distributions and associated uncertainties are presented for the remaining duration of ongoing eruptions of specified composition and duration to date. Forecasts of such natural events will always have large uncertainties, but the ability to quantify such uncertainty is key to effective communication with stakeholders and to mitigation of hazards. Projections are made for the remaining eruption durations of ongoing eruptions, including those at Soufrière Hills Volcano, Montserrat and Sinabung, Indonesia. This work provides a quantitative, transferable method and rationale on which to base long-term planning decisions for dome forming volcanoes of different compositions, regardless of the quality of an individual volcano's eruptive record, by leveraging a global database.
The ionospheric disturbances caused by the explosion of the Mount Tongariro volcano in 2012
NASA Astrophysics Data System (ADS)
Po Cheng, C.; Lin, C.; Chang, L. C.; Chen, C.
2013-12-01
Volcanic explosions are known to trigger acoustic waves that propagate in the atmosphere at infrasonic speeds. At ionospheric heights, coupling between neutral particles and free electrons induces variations of electron density detectable by dual-frequency Global Positioning System (GPS) measurements. In November 21 2012, the explosion of the Mount Tongariro volcano in New Zealand occurred at UT 0:20, when there were active synoptic waves passing over north New Zealand. The New Zealand dense array of Global Positioning System recorded ionospheric disturbances reflected in total electron content (TEC) ~10 minutes after the eruption, and the concentric spread of disturbances also can be observed this day. The velocity of disturbances varies from 130m/s to 700m/s. A spectral analysis of the rTEC time series shows two peaks. The larger amplitudes are centered at 800 and 1500 seconds, in the frequency range of acoustic waves and gravity waves. On the other hand, to model the rTEC perturbation created by the acoustic wave caused by the explosive eruption of the Mount Tongariro, we perform acoustic ray tracing and obtain sound speed at subionospheric height in a horizontally stratified atmosphere model (MSIS-E-90). The result show that the velocity of the disturbances is slower than sound speed range. Through using the MSIS-E-90 Atmosphere Model and Horizontal Wind Model(HWM), we obtain the vertical wave number and indicate that the gravity waves could propagate at subionospheric height for this event, suggesting that the ionospheric disturbances caused by the explosive eruption is gravity-wave type. This work demonstrates that GPS are useful for near real-time ionospheric disturbances monitoring, and help to understand the mechanism of the gravity wave caused by volcano eruption in the future.
Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.
2016-01-01
The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.
NASA Astrophysics Data System (ADS)
Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.
2016-10-01
The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.
Evaluation of Redoubt Volcano's sulfur dioxide emissions by the Ozone Monitoring Instrument
Lopez, Taryn; Carn, Simon A.; Werner, Cynthia A.; Fee, David; Kelly, Peter; Doukas, Michael P.; Pfeffer, Melissa; Webley, Peter; Cahill, Catherine F.; Schneider, David
2013-01-01
The 2009 eruption of Redoubt Volcano, Alaska, provided a rare opportunity to compare satellite measurements of sulfur dioxide (SO2) by the Ozone Monitoring Instrument (OMI) with airborne SO2 measurements by the Alaska Volcano Observatory (AVO). Herein we: (1) compare OMI and airborne SO2 column density values for Redoubt's tropospheric plume, (2) calculate daily SO2 masses from Mount Redoubt for the first three months of the eruption, (3) develop simple methods to convert daily measured SO2 masses into emission rates to allow satellite data to be directly integrated with the airborne SO2 emissions dataset, (4) calculate cumulative SO2 emissions from the eruption, and (5) evaluate OMI as a monitoring tool for high-latitude degassing volcanoes. A linear correlation (R2 ~ 0.75) is observed between OMI and airborne SO2 column densities. OMI daily SO2 masses for the sample period ranged from ~ 60.1 kt on 24 March to below detection limit, with an average daily SO2 mass of ~ 6.7 kt. The highest SO2 emissions were observed during the initial part of the explosive phase and the emissions exhibited an overall decreasing trend with time. OMI SO2 emission rates were derived using three methods and compared to airborne measurements. This comparison yields a linear correlation (R2 ~ 0.82) with OMI-derived emission rates consistently lower than airborne measurements. The comparison results suggest that OMI's detection limit for high latitude, springtime conditions varies from ~ 2000 to 4000 t/d. Cumulative SO2 masses calculated from daily OMI data for the sample period are estimated to range from 542 to 615 kt, with approximately half of this SO2 produced during the explosive phase of the eruption. These cumulative masses are similar in magnitude to those estimated for the 1989–90 Redoubt eruption. Strong correlations between daily OMI SO2 mass and both tephra mass and acoustic energy during the explosive phase of the eruption suggest that OMI data may be used to infer relative eruption size and explosivity. Further, when used in conjunction with complementary datasets, OMI daily SO2 masses may be used to help distinguish explosive from effusive activity and identify changes in lava extrusion rates. The results of this study suggest that OMI is a useful volcano monitoring tool to complement airborne measurements, capture explosive SO2 emissions, and provide high temporal resolution SO2 emissions data that can be used with interdisciplinary datasets to illuminate volcanic processes.
NASA Astrophysics Data System (ADS)
Yun, S. H.; Chang, C.
2015-12-01
It is the numerical simulation using a VolcFlow model to determine the runout range of pyroclastic density currents where an eruption column had been formed by the explosive Plinian eruption and the collapse of the column had caused to occur on Mt. Baekdu. We assumed that the most realistic way for the simulation of a sustained volcanic column is to modify the topography with a cone above the crater to follow expert advice from Dr. Karim Kelfoun, the developer of VolcFlow. Then we set the radius and height of the cone, the volume of pyroclastic flow, and the duration and simulation time accoding to the volcanic explosivity index (VEI). Also we set the yield stress as 5,000 Pa, 10,000 Pa, 15,000 Pa, the basal friction angle as 3°, 5°, 10°, respectively. As the simulation results, the longest runout range was 2.3 km, 9.1 km, 14.4 km, 18.6 km, 23.4 km from VEI 3 to VEI 7, respectively. It can be used as a very important material to predict the impact range of pyroclastic density currents and to minimize human and material damages caused by pyroclastic density currents derived from the future explosive eruption of Mt. Baekdu. This research was supported by a grant 'Development of Advanced Volcanic Disaster Response System considering Potential Volcanic Risk around Korea' [MPSS-NH-2015-81] from the Natural Hazard Mitigation Research Group, National Emergency Management Agency of Korea.
NASA Astrophysics Data System (ADS)
Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn
2015-04-01
Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node (location) is split into four sub-ETs corresponding to: caldera, ice-covered fissure, ice-free fissure toward the North and ice-free fissure toward the South. This subdivision is needed because different hazards will impact different parts of the country, e.g. eruption sources located in parts of the system belonging to different water catchments will trigger glacial outbursts that will inundate different areas in the lowland. Once the source location has been identified, defining outcome, phenomena, size, duration and sectors are then the following steps. The outcomes include effusive lava flows, pure sub-glacial eruptions (with no aerial component), phreatomagmatic basaltic explosive eruptions, to mixed eruptions. Once the phenomena are listed, the sizes are identified as functions of the hazards themselves, for example the sizes may refer to the extrusion rate in case of lava flow and to the volume in case of flood. This way to proceed is mostly due to the need to include a wide range of phenomena that might occur at the same time and that need to be treated separately. A tentative estimation of likelihoods at each branch has been done mostly based on past eruptive events and historical evidence. This is the first step towards the setup of a long-range hazard assessment tool.
2013-06-11
ISS036-E-007165 (11 June 2013) --- Nevados de Chillan, Chile is featured in this image photographed by an Expedition 36 crew member on the International Space Station. This photograph highlights a large volcanic area located near the Chile-Argentina border. Like other historically active volcanoes in the central Andes ranges, the Nevados de Chillan were created by upwelling magma generated by eastward subduction of the dense oceanic crust of the Pacific basin beneath the less dense continental crust of South America. Rising magmas associated with this type of tectonic environment frequently erupt explosively, forming widespread ash and ignimbrite layers. They can also produce less explosive eruptions that form voluminous lava flows – layering together with explosively erupted deposits to build the classic cone-shaped edifice of a stratovolcano over geologic time. The Nevados de Chillan includes three distinct volcanic structures, built within three overlapping calderas that extend along a north-northwest to south-southeast line. The snow-capped volcanic complex sits within the glaciated terrain of the central Andes – glacial valleys are visible at upper left, upper right, and lower right. The northwestern end of the chain is occupied by the 3,212-meter-high Cerro Blanco (also known as Volcan Nevado). The 3,089-meter-high Volcan Viejo (also known as Volcan Chillan) sits at the southeastern end; this volcano was active during the 17th-19th centuries. A group of lava domes known as Volcan Nuevo formed to the northwest of Volcan Viejo between 1906-1945, followed by an even younger dome complex that formed between 1973-1986 (Volcan Arrau; not indicated on the image). The last reported volcanic activity at Nevados de Chillan took place in 2009 (according to the Smithsonian Institution’s Global Volcanism Network).
Seismic tremors and magma wagging during explosive volcanism.
Jellinek, A Mark; Bercovici, David
2011-02-24
Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.
NASA Astrophysics Data System (ADS)
Konstantinou, Konstantinos; Glynn, Chagnon
2017-04-01
Redoubt volcano is a stratovolcano in the Cook Inlet, south-central Alaska, that has erupted several times in the last fifty years. Its latest eruption in March 2009 was preceded first by volcanic tremor, which was immediately followed by a swarm of low-frequency earthquakes. Due to its proximity to sensitive infrastructure (oil platforms and storage facilities) and the fact that it lies in the way of air traffic routes, Redoubt has been closely monitored by permanent and temporary seismic stations. One of these stations (REF) equipped with a short-period, vertical component sensor was located very near the summit and was continuously recording before, during and after the 2009 eruption. Here we quantify the randomness levels of the continuous seismic signal at REF by calculating Permutation Entropy (PE), which is a nonlinear statistical measure of the amount of randomness in a time series. The time window for this calculation starts 1 January 2009 about two months before the first earthquake swarm, and ends 2 May 2009 when the main explosive activity ceased. The temporal variation of PE during this period shows two significant features: (1) a large decrease about 20 days prior to the onset of the earthquake swarm of 26 February, and (2) smaller decreases that occur shortly (few hours to a day) before phreatic/magmatic explosions. These decreases in PE also coincide with depletion of higher frequencies (> 6 Hz) in the seismic signal, confirming previous findings where reduced randomness in seismic noise may indicate increased absorption losses as hot magmatic fluids reach shallow levels within the volcano edifice.
Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska
Miller, Thomas P.
2004-01-01
The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U.S. and Europe to Asia. Activity of the type described could produce eruption columns to heights of 15 km and result in significant amounts of ash 250-300 km downwind.
The origin of the 1883 Krakatau tsunamis
NASA Technical Reports Server (NTRS)
Francis, P. W.
1985-01-01
Three hypotheses proposed to explain possible causes of the Aug. 27, 1883 Krakatau tsunamis were analyzed: (1) large-scale collapse of the northern part of Krakatau island (Verbeek, 1884), (2) submarine explosion (Yokoyama, 1981), and (3) emplacement of pyroclastic flows (Latter, 1981). A study of timings of the air and sea waves between Krakatau and Batavia, showing that no precise sea wave travel times can be obtained, and a study of the tide and pressure gage records made on August 27, indicating that the air and sea waves were propagated from the focus of eruption on Krakatau island, suggest that neither hypothesis 2 or 3 are sufficiently substantiated. In addition, the event that caused the major air and sea wave was preceded (by 40 min) by a similar, smaller event which generated the second largest tsunami and an air wave. It is concluded that the most likely mechanism for the eruption is a Mt. St. Helens scenario, close to the hypothesis of Verbeek, in which collapse of part of the original volcanic edifice propagated a major explosion.
Explosive eruptive record in the Katmai region, Alaska Peninsula: an overview
Fierstein, Judy
2007-01-01
At least 15 explosive eruptions from the Katmai cluster of volcanoes and another nine from other volcanoes on the Alaska Peninsula are preserved as tephra layers in syn- and post-glacial (Last Glacial Maximum) loess and soil sections in Katmai National Park, AK. About 400 tephra samples from 150 measured sections have been collected between Kaguyak volcano and Mount Martin and from Shelikof Strait to Bristol Bay (∼8,500 km2 ). Five tephra layers are distinctive and widespread enough to be used as marker horizons in the Valley of Ten Thousand Smokes area, and 140 radiocarbon dates on enclosing soils have established a time framework for entire soil–tephra sections to 10 ka; the white rhyolitic ash from the 1912 plinian eruption of Novarupta caps almost all sections. Stratigraphy, distribution and tephra characteristics have been combined with microprobe analyses of glass and Fe– Ti oxide minerals to correlate ash layers with their source vents. Microprobe analyses (typically 20–50 analyses per glass or oxide sample) commonly show oxide compositions to be more definitive than glass in distinguishing one tephra from another; oxides from the Kaguyak caldera-forming event are so compositionally coherent that they have been used as internal standards throughout this study. Other than the Novarupta and Trident eruptions of the last century, the youngest locally derived tephra is associated with emplacement of the Snowy Mountain summit dome (<250 14C years B.P.). East Mageik has erupted most frequently during Holocene time with seven explosive events (9,400 to 2,400 14C years B.P.) preserved as tephra layers. Mount Martin erupted entirely during the Holocene, with lava coulees (>6 ka), two tephras (∼3,700 and ∼2,700 14C years B.P.), and a summit scoria cone with a crater still steaming today. Mount Katmai has three times produced very large explosive plinian to sub-plinian events (in 1912; 12– 16 ka; and 23 ka) and many smaller pyroclastic deposits show that explosive activity has long been common there. Mount Griggs, fumarolically active and moderately productive during postglacial time (mostly andesitic lavas), has three nested summit craters, two of which are on top of a Holocene central cone. Only one ash has been found that is (tentatively) correlated with the most recent eruptive activity on Griggs (<3,460 14C years B.P.). Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.>(<3,460 14C years B.P.). Eruptions from other volcanoes NE and SW beyond the Katmai cluster represented in this area include: (1) coignimbrite ash from Kaguyak’s caldera-forming event (5,800 14C years B.P.); (2) the climactic event from Fisher caldera (∼9,100 14C years B.P.—tentatively correlated); (3) at least three eruptions most likely from Mount Peulik (∼700, ∼7,700 and ∼8,500 14C years B.P.); and (4) a phreatic fallout most likely from the Gas Rocks (∼2,300 14C years B.P.). Most of the radiocarbon dating has been done on loess, soil and peat enclosing this tephra. Ash correlations supported by stratigraphy and microprobe data are combined with radiocarbon dating to show that variably organics-bearing substrates can provide reliable limiting ages for ash layers, especially when data for several sites is available.
NASA Astrophysics Data System (ADS)
Smith, V.; Mark, D.; Blockley, S.; Weh, A.
2010-12-01
Evolved melts that fuel large explosive eruptions encounter, and are often generated through melting, crystal-rich parts of the magmatic system that fed previous eruptions. This results in many antecrysts being incorporated into the magma prior to eruption. In addition, many xenocrysts are entrained during eruption through conduit excavation. Combining all these crystal populations produces 40Ar/39Ar dates with wide-ranges, such as those that are often reported in the literature. In order to gain very precise dates of volcanic events it is thus necessary to assess whether antecrysts and xenocrysts effect the precision of the dates, and establish ways to reduce these components. Here we use the deposits of the ~11 ka Ulleung-Oki eruption from the alkaline volcanic island of Ulleung, situated 130 km east of the Korean peninsula. The eruption deposits are widely dispersed and found in the Suigetsu lake sequence from central Japan. A precise date of the tephra would help with construction of the terrestrial radiocarbon calibration curve that spans back to the limit of radiocarbon dating (~50 ka). The new calibration model is currently being constructed using varve chronology (annual layer counting) and >600 14C determinations of terrestrial macrofossils*. However, the annual layers stop shortly after the 2 cm-thick Ulleung-Oki tephra. Precise dates of this volcanic event using a method that is independent of radiocarbon dating, would help validate the chronology of the core, and test the validity of the radiocarbon calibration curve. The tephra in the core has been correlated to proximal deposits using major and trace element composition (determined using an electron microprobe and LA-ICPMS) of the glass shards that comprise the distal ash. The proximal Ulleung-Oki eruption deposits are sandine-rich with crystals that range from ~80 microns to a few millimetres in size. These are likely to be a mixture of phenocrysts, antecrysts and xenocrysts. In order to get a very precise age on a relatively young eruption (~11 ka) we carried out >70 40Ar/39Ar dates of crystals. The sanidines were extracted from individual large pumices that were fragmented using selFrag so that the crystals remained intact. The crystals were then split into different size ranges prior to analysis on a high-sensitivity multicollector noble gas mass spectrometer (ARGUS). This approach allows us to assess how the incorporation of antecrysts and xenocrysts effect 40Ar/39Ar dates. Here we present the age ranges and discuss the results. *Research being carried out by members of the NERC funded Suigetsu 2006 Project led by Takeshi Nakagawa, Newcastle University, UK (http://www.suigetsu.org/)
The role of unsteady buoyancy flux on transient eruption plume velocity structure and evolution
NASA Astrophysics Data System (ADS)
Chojnicki, K. N.; Clarke, A. B.; Phillips, J. C.
2010-12-01
Volcanic vent exit velocities, eruption column velocity profiles, and atmospheric entrainment are important parameters that control the evolution of explosive volcanic eruption plumes. New data sets tracking short-term variability in such parameters are becoming more abundant in volcanology and are being used to indirectly estimate eruption source conditions such vent flux, material properties of the plume, and source mechanisms. However, inadequate theory describing the relationships between time-varying source fluxes and evolution of unsteady turbulent flows such as eruption plumes, limits the interpretation potential of these data sets. In particular, the relative roles of gas-thrust and buoyancy in volcanic explosions is known to generate distinct differences in the ascent dynamics. Here we investigate the role of initial buoyancy in unsteady, short-duration eruption dynamics through scaled laboratory experiments and provide an empirical description of the relationship between unsteady source flux and plume evolution. The experiments involved source fluids of various densities (960-1000 kg/m3) injected, with a range of initial momentum and buoyancy, into a tank of fresh water through a range of vent diameters (3-15 mm). A scaled analysis was used to determine the fundamental parameters governing the evolution of the laboratory plumes as a function of unsteady source conditions. The subsequent model can be applied to predict flow front propagation speeds, and maximum flow height and width of transient volcanic eruption plumes which can not be adequately described by existing steady approximations. In addition, the model describes the relative roles of momentum or gas-thrust and buoyancy in plume motion which is suspected to be a key parameter in quantitatively defining explosive eruption style. The velocity structure of the resulting flows was measured using the Particle Image Velocimetry (PIV) technique in which velocity vector fields were generated from displacements in time-resolved video images of particles in the flow interior. Cross-sectional profiles of vertical velocity and entrainment of ambient fluid were characterized using the resulting velocity vector maps. These data elucidate the relationship between flow front velocity and internal velocity structure which may improve interpretations of field measurements of volcanic explosions. The velocity maps also demonstrate the role of buoyancy in enhancing ambient entrainment and converting vertical velocity to horizontal velocity, which may explain why buoyancy at the vent leads to faster deceleration of the flow.
NASA Astrophysics Data System (ADS)
Jones, K. R.; Aster, R. C.; Johnson, J. B.; Kyle, P. R.; McIntosh, W. C.
2007-05-01
Infrasound monitoring at Erebus volcano has enabled us to quantify eruption energetics and precisely determine the source location of Strombolian eruptions. Since January 2006 we have operated a three-element network of identical infrasound pressure transducers, to track explosive eruptions, triangulate source locations of the eruptions, and distinguish activity from several vents with diverse activities. In December 2006 the network was expanded to six identical pressure transducers with improved azimuthal distribution sited ~300 m to 700 m from the erupting vents. These sensors have a dynamic range of +/-125 Pa and are able to record non-distorted waveforms for almost all eruptive events. Since January 2006, eruptions have been identified from locations within the ~40 m diameter phonolitic lava lake, an adjacent smaller "active vent", and a vent ~80 m distant from the lava lake known as "Werner's". Since late 2005 until the end of 2006, activity was considerably elevated at the "lava lake", from which frequent (up to six per day) explosions were noted. These events entailed gas bubble bursts, some of which were capable of ejecting bombs more than 1 km distant and producing infrasonic transients in excess of 100 Pa at a distance of 700 m. Activity from "Werner's" vent was much more subdued in terms of eruptive frequency and the radiated acoustic energy, with all signals less than about 5 Pa at 700 m. Activity from the "active vent" was also observed, though notably, these acoustic transients were extended in duration in terms of time (> 5 s to more than 30 s), which reflects extended duration ash-venting source mechanisms, corroborated by video records. The updated infrasound network has operated through a relative lull in eruptive intensity (November - December 2006 - January 2007). Since January 2007 more frequent and larger explosions from the lava lake have been observed and recorded with infrasound and video. We quantify this recent upsurge in lava lake activity and present speculative mechanisms to account for the variable eruptive behavior of Erebus lava lake.
NASA Astrophysics Data System (ADS)
Houghton, B. F.; Wilson, C. J. N.; Del Carlo, P.; Coltelli, M.; Sable, J. E.; Carey, R.
2004-09-01
Basaltic volcanism is most typically thought to produce effusion of lava, with the most explosive manifestations ranging from mild Strombolian activity to more energetic fire fountain eruptions. However, some basaltic eruptions are now recognized as extremely violent, i.e., generating widespread phreatomagmatic, subplinian and Plinian fall deposits. We focus here on the influence of conduit processes, especially partial open-system degassing, in triggering abrupt changes in style and intensity that occurred during two examples of basaltic Plinian volcanism. We use the 1886 eruption of Tarawera, New Zealand, the youngest known basaltic Plinian eruption and the only one for which there are detailed written eyewitness accounts, and the well-documented 122 BC eruption of Mount Etna, Italy, and present new grain size and vesicularity data from the proximal deposits. These data show that even during extremely powerful basaltic eruptions, conduit processes play a critical role in modifying the form of the eruptions. Even with very high discharge, and presumably ascent, rates, partial open-system behaviour of basaltic melts becomes a critical factor that leads to development of domains of largely stagnant and outgassed melt that restricts the effective radius of the conduit. The exact path taken in the waning stages of the eruptions varied, in response to factors which included conduit geometry, efficiency and extent of outgassing and availability of ground water, but a relatively abrupt cessation to sustained high-intensity discharge was an inevitable consequence of the degassing processes.
Hazards from the Detonation of Buried Explosive Ordnance: Literature Survey
1993-09-01
Quantification of Particle Motion 4.9.1. Kuzmina , et al. provided a rather massive data base for describing peak particle velocity versus reduced...explosives present in an area, not just that present in one bay. Kuzmina , N. V., et al.; "Seismic Effect of Eruptive Explosions in Nonrock Coherent Ground
NASA Astrophysics Data System (ADS)
Saubin, Elodie; Tuffen, Hugh; Gurioli, Lucia; Owen, Jacqueline; Castro, Jonathan; Berlo, Kim; McGowan, Ellen; Schipper, C.; Wehbe, Katia
2016-05-01
The mechanisms of hazardous silicic eruptions are controlled by complex, poorly-understood conduit processes. Observations of recent Chilean rhyolite eruptions have revealed the importance of hybrid activity, involving simultaneous explosive and effusive emissions from a common vent. Such behaviour hinges upon the ability of gas to decouple from magma in the shallow conduit. Tuffisite veins are increasingly suspected to be a key facilitator of outgassing, as they repeatedly provide a transient permeable escape route for volcanic gases. Intersection of foam domains by tuffisite veins appears critical to efficient outgassing. However, knowledge is currently lacking into textural heterogeneities within shallow conduits, their relationship with tuffisite vein propagation, and the implications for fragmentation and degassing processes. Similarly, the magmatic vesiculation response to upper conduit pressure perturbations, such as those related to the slip of dense magma plugs, remains largely undefined. Here we provide a detailed characterization of an exceptionally large tuffisite vein within a rhyolitic obsidian bomb ejected during transitional explosive-effusive activity at Chaitén, Chile in May 2008. Vein textures and chemistry provide a time-integrated record of the invasion of a dense upper conduit plug by deeper fragmented magma. Quantitative textural analysis reveals diverse vesiculation histories of various juvenile clast types. Using vesicle size distributions, bubble number densities, zones of diffusive water depletion, and glass H2O concentrations, we propose a multi-step degassing/fragmentation history, spanning deep degassing to explosive bomb ejection. Rapid decompression events of ~3-4 MPa are associated with fragmentation of foam and dense magma at ~200-350 metres depth in the conduit, permitting vertical gas and pyroclast mobility over hundreds of metres. Permeable pathway occlusion in the dense conduit plug by pyroclast accumulation and sintering preceded ultimate bomb ejection, which then triggered a final bubble nucleation event. Our results highlight how the vesiculation response of magma to decompression events is highly sensitive to the local melt volatile concentration, which is strongly spatially heterogeneous. Repeated opening of pervasive tuffisite vein networks promotes this heterogeneity, allowing juxtaposition of variably volatile-rich magma fragments that are derived from a wide range of depths in the conduit. This process enables efficient but explosive removal of gas from rhyolitic
A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns
NASA Astrophysics Data System (ADS)
Michaud-Dubuy, Audrey; Carazzo, Guillaume; Kaminski, Edouard; Girault, Frédéric
2018-05-01
Explosive volcanic eruptions produce high-velocity turbulent jets that can form either a stable buoyant Plinian column or a collapsing fountain producing pyroclastic density currents (PDC). Determining the source conditions leading to these extreme regimes is a major goal in physical volcanology. Classically, the regime boundary is defined as the critical eruptive mass discharge rate (MDR) before collapse for a given amount of free gas in the eruptive mixture (free gas + pyroclasts) at the vent. Previous studies have shown that an agreement between theory and field data can be achieved in two different frameworks: (i) by accounting for the effect of gas entrapment in large pumice fragments, which lowers the effective gas content, depending on the total grain-size distribution (TGSD) of pyroclastic fragments, or (ii) by accounting for the reduction of turbulent entrainment at the base of the volcanic column due to its negative buoyancy. Here, we aim at combining these two using a 1D model of volcanic column that includes sedimentation to follow the evolution of the TGSD. In powerful (≥ 107 kg s-1) Plinian eruptions, the loss of particles by sedimentation acts as to decrease the load of particles during the plume rise, which favors the formation of a stable column. In this case, we obtain that coarse TGSD promote the formation of stable plumes, a result at odds with the predictions of models considering gas entrapment in large pyroclastic fragments. To interpret this conclusion, we reconsider the effect of gas entrapment and show that in general, it has a dominant role on column collapse compared to particle sedimentation, and hinders the formation of buoyant columns. This drastic effect is reduced when incorporating open porosity, e.g. by considering that some bubbles inside a fragment are connected to the exterior. The characteristics of the PDC produced by column collapse are then predicted as a function of the TGSD and MDR at the source. We further test the model using two well-documented historical events, the ≈186 CE Taupo and 79 CE Vesuvius eruptions. Our model predictions are consistent with the Taupo eruption record, but not with the Vesuvius one. In this latter case, we suggest that the characteristics of the TGSD imply to take into account the thermal disequilibrium between gas and pyroclasts.
Sensitivity tests and ensemble hazard assessment for tephra fallout at Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Selva, Jacopo; Costa, Antonio; De Natale, Giuseppe; Di Vito, Mauro; Isaia, Roberto; Macedonio, Giovanni
2017-04-01
We present the results of a statistical study on tephra dispersion in the case of reactivation of the Campi Flegrei volcano. We considered the full spectrum of possible eruptions, in terms of size and position of eruptive vents. To represent the spectrum of possible eruptive sizes, four classes of eruptions were considered. Of those only three are explosive (small, medium, and large) and can produce a significant quantity of volcanic ash. Hazard assessments are made through dispersion simulations of ash and lapilli, considering the full variability of winds, eruptive vents, and eruptive sizes. The results are presented in form of four families of hazard curves conditioned to the occurrence of an eruption: 1) small eruptive size from any vent; 2) medium eruptive size from any vent; 3) large eruptive size from any vent; 4) any size from any vent. The epistemic uncertainty (i.e. associated with the level of scientific knowledge of phenomena) on the estimation of hazard curves was quantified making use of alternative scientifically acceptable approaches. The choice of such alternative models is made after a comprehensive sensitivity analysis which considered different weather databases, alternative modelling of the possible opening of eruptive vents, tephra total grain-size distributions (TGSD), relative mass of fine particles, and the effect of aggregation. The results of this sensitivity analyses show that the dominant uncertainty is related to the choice of TGSD, mass of fine ash, and potential effects of ash aggregation. The latter is particularly relevant in case of magma-water interaction during an eruptive phase, when most of the fine ash can form accretionary lapilli that could contribute significantly in increasing the tephra load in the proximal region. Relatively insignificant is the variability induced by the use of different weather databases. The hazard curves, together with the quantification of epistemic uncertainty, were finally calculated through a statistical model based on ensemble mixing of selected alternative models, e.g. different choices on the estimate of the total erupted mass, mass of fine ash, effects of aggregation, etc. Hazard and probability maps were produced at different confidence levels compared to the epistemic uncertainty (mean, median, 16th percentile, and 84th percentile).
Constraining explosive volcanism: subjective choices during estimates of eruption magnitude
Klawonn, Malin; Houghton, Bruce F.; Swanson, Don; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.
2014-01-01
When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals’ choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals “smooth” the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.
Constraining explosive volcanism: subjective choices during estimates of eruption magnitude
NASA Astrophysics Data System (ADS)
Klawonn, Malin; Houghton, Bruce F.; Swanson, Donald A.; Fagents, Sarah A.; Wessel, Paul; Wolfe, Cecily J.
2014-02-01
When estimating the magnitude of explosive eruptions from their deposits, individuals make three sets of critical choices with respect to input data: the spacing of sampling sites, the selection of contour intervals to constrain the field measurements, and the hand contouring of thickness/isomass data, respectively. Volcanologists make subjective calls, as there are no accepted published protocols and few accounts of how these choices will impact estimates of eruption magnitude. Here, for the first time, we took a set of unpublished thickness measurements from the 1959 Kīlauea Iki pyroclastic fall deposit and asked 101 volcanologists worldwide to hand contour the data. First, there were surprisingly consistent volume estimates across maps with three different sampling densities. Second, the variability in volume calculations imparted by individuals' choices of contours is also surprisingly low and lies between s = 5 and 8 %. Third, volume estimation is insensitive to the extent to which different individuals "smooth" the raw data in constructing contour lines. Finally, large uncertainty is associated with the construction of the thinnest isopachs, which is likely to underestimate the actual trend of deposit thinning. The net result is that researchers can have considerable confidence in using volume or dispersal data from multiple authors and different deposits for comparative studies. These insights should help volcanologists around the world to optimize design and execution of field-based studies to characterize accurately the volume of pyroclastic deposits.
Earth Observations taken by the Expedition 18 Crew
2008-12-03
ISS018-E-010206 (3 Dec. 2008) --- Mount Nemrut in Turkey is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. This detailed view centers on the summit caldera of Mount Nemrut (Nemrut Dagi in Turkish), a stratovolcano located in the eastern Anatolia region of Turkey along the shoreline of Lake Van. Winter snow blankets the 2,948 meter elevation summit of the mountain, highlighting the brown caldera rim (a caldera is a large, usually circular or elliptical, collapse feature caused by the rapid emptying of an underlying magma chamber). The snow also highlights the irregular shape and wrinkled surfaces of several lava flows present in the eastern portion of the caldera. Lava flows associated with Mt. Nemrut range in composition from thin, fluid basalt to thick, glassy obsidian. A coldwater caldera lake occupies the western half of the summit. The geologic record at Mt. Nemrut indicates numerous prehistoric explosive eruptions during the Holocene Epoch ?which, according to scientists, began approximately 10,000 years ago and extends to the present day ? with eruption of lava last observed during 1441. The last well-documented explosive eruption occurred during 1650. Volcanism at Mt. Nemrut is the result of tectonic activity associated with the collision of the Arabian and Eurasian Plates; this collision is ongoing, and the presence of a warm water lake in the caldera suggests that the volcano is merely quiescent at present.
Volatiles of Mount St. Helens and their origins
Barnes, I.
1984-01-01
Analyses have been made of gases in clouds apparently emanating from Mount St. Helens. Despite appearances, most of the water in these clouds does not issue from the volcano. Even directly above a large fumarole ??D and ?? 18O data indicate that only half the water can come from the volcano. Isotopic and chemical evidence also shows the steam in the volcano (-33.0 per mol ??D) from which a condensate of 0.2 N HCI was obtained is not a major cause of the explosions. The steam in the volcano is derived from a metamorphic brine in the underlying Tertiary meta andesite. The gas that caused the explosive eruptions is carbon dioxide. ?? 1984.
Concentration variance decay during magma mixing: a volcanic chronometer.
Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B
2015-09-21
The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.
2014-12-01
We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside infrasonic radiation, our multiparametric dataset also allowed us to investigate other acoustic processes relevant for explosive eruptions, including shock-wave generation and audible sound radiation, and to link them to the starting conditions and evolution of the blasts.
NASA Astrophysics Data System (ADS)
Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.
2010-12-01
Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow unit, depositional features can vary from massive, diffusely-stratified to stratified, and cross stratified. We interpret this variability as a result of interaction with nearby topography, rapid sedimentation of large blocks, or a combination of the two; this implies rapid spatial and temporal instabilities in the current. For each flow unit we measure deposit thickness, bedding style, clast size, density and sorting, and degree of pumice rounding with distance from source. We use this data to better understand and interpret flow dynamics from depositional characteristics. The data we collect will be used to refine and validate numerical models of PDCs, ultimately providing a more accurate hazard assessment for explosive eruptions.
MINI-FILAMENT ERUPTION AS THE INITIATION OF A JET ALONG CORONAL LOOPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Junchao; Jiang, Yunchun; Yang, Jiayan
Minifilament eruptions (MFEs) and coronal jets are different types of solar small-scale explosive events. We report an MFE observed at the New Vacuum Solar Telescope (NVST). As seen in the NVST H α images, during the rising phase, the minifilament erupts outward orthogonally to its length, accompanied with a flare-like brightening at the bottom. Afterward, dark materials are found to possibly extend along the axis of the expanded filament body. The MFE is analogous to large filament eruptions. However, a simultaneous observation of the Solar Dynamics Observatory shows that a jet is initiated and flows out along nearby coronal loopsmore » during the rising phase of the MFE. Meanwhile, small hot loops, which connect the original eruptive site of the minifilament to the footpoints of the coronal loops, are formed successively. A differential emission measure analysis demonstrates that, on the top of the new small loops, a hot cusp structure exists. We conjecture that the magnetic fields of the MFE interact with magnetic fields of the coronal loops. This interaction is interpreted as magnetic reconnection that produces the jet and the small hot loops.« less
Multiple melt bodies fed the AD 2011 eruption of Puyehue-Cordón Caulle, Chile.
Alloway, B V; Pearce, N J G; Villarosa, G; Outes, V; Moreno, P I
2015-12-02
Within the volcanological community there is a growing awareness that many large- to small-scale, point-source eruptive events can be fed by multiple melt bodies rather than from a single magma reservoir. In this study, glass shard major- and trace-element compositions were determined from tephra systematically sampled from the outset of the Puyehue-Cordón Caulle (PCC) eruption (~1 km(3)) in southern Chile which commenced on June 4(th), 2011. Three distinct but cogenetic magma bodies were simultaneously tapped during the paroxysmal phase of this eruption. These are readily identified by clear compositional gaps in CaO, and by Sr/Zr and Sr/Y ratios, resulting from dominantly plagioclase extraction at slightly different pressures, with incompatible elements controlled by zircon crystallisation. Our results clearly demonstrate the utility of glass shard major- and trace-element data in defining the contribution of multiple magma bodies to an explosive eruption. The complex spatial association of the PCC fissure zone with the Liquiñe-Ofqui Fault zone was likely an influential factor that impeded the ascent of the parent magma and allowed the formation of discrete melt bodies within the sub-volcanic system that continued to independently fractionate.
Updates to concepts on phreatomagmatic maar-diatremes and their pyroclastic deposits
NASA Astrophysics Data System (ADS)
Valentine, Greg A.; White, James D. L.; Ross, Pierre-Simon; Graettinger, Alison H.; Sonder, Ingo
2017-08-01
Recent work is changing our understanding of phreatomagmatic maar-diatreme eruptions and resulting deposits. In previous models, explosions were often inferred to take place only at the base of a diatreme, with progressive downward migration due to a cone of depression in the host aquifer. However, diatremes themselves contain much water that is heterogeneously distributed, and field evidence supports the existence of explosion sites at many vertical and lateral locations within them. Crater sizes have been used to estimate explosion energies, but this only works for single-explosion craters where the depth of explosion is independently known, and has limited value for multi-explosion maar-diatremes. Deep-seated lithic clasts in tephra ring beds have been taken to indicate the depth of the explosion that produced that bed. However, only relatively shallow explosions actually vent to the surface, and deep-seated lithics are gradually brought to shallow depths through step-wise mixing of multiple subsurface explosions. Grain-size of tephra-ring deposits is often inferred to indicate fragmentation efficiency. However, other factors strongly influence deposit grain size, including the scaled depth of an explosion and the interaction of an erupting jet with topography around a vent (e.g., crater), along with long recognized effects of mechanical properties of host rocks and recycling within the vent/diatreme. These insights provide a foundation for future research into this important volcano type.
NASA Astrophysics Data System (ADS)
Pitcher, Bradley W.; Kent, Adam J. R.; Grunder, Anita L.; Duncan, Robert A.
2017-06-01
The late Neogene Deschutes Formation of central Oregon preserves a remarkable volcanic and sedimentary record of the initial stages of High Cascades activity following an eastward shift in the locus of volcanism at 7.5 Ma. Numerous ignimbrite and tephra-fall units are contained within the formation, and since equivalent deposits are relatively rare for the Quaternary Cascades, the eruptions of the earliest High Cascade volcanoes were likely more explosive than those of the Quaternary arc. In this study, the timing and frequency of eruptions which produced 14 laterally extensive marker ignimbrites within the Deschutes Formation are established using 40Ar/39Ar geochronology. Plagioclase 40Ar/39Ar ages for the lowermost (6.25 ± 0.07 Ma) and uppermost (5.45 ± 0.04 Ma) marker ignimbrites indicate that all major explosive eruptions within the Deschutes Formation occurred within a period of 800 ± 54 k.y. (95% confidence interval). Minimum estimates for the volumes of the 14 ignimbrites, using an ArcGIS-based method, range from 1.0 to 9.4 km3 and have a total volume of 62.5 km3. Taken over the 50 km of arc length, the explosive volcanic production rate of the central Oregon High Cascades during Deschutes Formation time was a minimum of 1.8 km3/m.y./km of arc length. By including estimates of the volumes of tephra-fall components, as well as ignimbrites that may have traveled west, we estimate a total volume range, for these 14 eruptions alone, of 188 to 363 km3 ( 121 to 227 km3 DRE), a rate of 4.7-9.1 km3/m.y./km arc length. This explosive volcanic production rate is much higher than the average Quaternary eruption rates, of all compositions, estimated for the entire Cascade arc (1.5-2.5), Alaska Peninsula segment of the Aleutian arc (0.6-1.0), and the Andean southern volcanic zone (1.1-2.0). We suggest that this atypical explosive pulse may result from the onset of regional extension and migration of the magmatic arc, which had the combined effect of increasing magmatic flux and temporarily enhancing melting of more fusible crust.
NASA Astrophysics Data System (ADS)
Belousov, Alexander; Belousova, Marina; Edwards, Benjamin; Volynets, Anna; Melnikov, Dmitry
2015-12-01
We present a broad overview of the 2012-13 flank fissure eruption of Plosky Tolbachik Volcano in the central Kamchatka Peninsula. The eruption lasted more than nine months and produced approximately 0.55 km3 DRE (volume recalculated to a density of 2.8 g/cm3) of basaltic trachyandesite magma. The 2012-13 eruption of Tolbachik is one of the most voluminous historical eruptions of mafic magma at subduction related volcanoes globally, and it is the second largest at Kamchatka. The eruption was preceded by five months of elevated seismicity and ground inflation, both of which peaked a day before the eruption commenced on 27 November 2012. The batch of high-Al magma ascended from depths of 5-10 km; its apical part contained 54-55 wt.% SiO2, and the main body 52-53 wt.% SiO2. The eruption started by the opening of a 6 km-long radial fissure on the southwestern slope of the volcano that fed multi-vent phreatomagmatic and magmatic explosive activity, as well as intensive effusion of lava with an initial discharge of > 440 m3/s. After 10 days the eruption continued only at the lower part of the fissure, where explosive and effusive activity of Hawaiian-Strombolian type occurred from a lava pond in the crater of the main growing scoria cone. The discharge rate for the nine month long, effusion-dominated eruption gradually declined from 140 to 18 m3/s and formed a compound lava field with a total area of 36 km2; the effusive activity evolved from high-discharge channel-fed 'a'a lavas to dominantly low-discharge tube-fed pahoehoe lavas. On 23 August, the effusion of lava ceased and the intra-crater lava pond drained. Weak Strombolian-type explosions continued for several more days on the crater bottom until the end of the eruption around 5 September 2013. Based on a broad array of new data collected during this eruption, we develop a model for the magma storage and transport system of Plosky Tolbachik that links the storage zones of the two main genetically related magma types of the volcano (high-Al and high-Mg basalts) with the clusters of local seismicity. The model explains why precursory seismicity and dynamics of the 2012-13 eruption was drastically different from those of the previous eruption of the volcano in 1975-76.
Forecasting Effusive Dynamics and Decompression Rates by Magmastatic Model at Open-vent Volcanoes.
Ripepe, Maurizio; Pistolesi, Marco; Coppola, Diego; Delle Donne, Dario; Genco, Riccardo; Lacanna, Giorgio; Laiolo, Marco; Marchetti, Emanuele; Ulivieri, Giacomo; Valade, Sébastien
2017-06-20
Effusive eruptions at open-conduit volcanoes are interpreted as reactions to a disequilibrium induced by the increase in magma supply. By comparing four of the most recent effusive eruptions at Stromboli volcano (Italy), we show how the volumes of lava discharged during each eruption are linearly correlated to the topographic positions of the effusive vents. This correlation cannot be explained by an excess of pressure within a deep magma chamber and raises questions about the actual contributions of deep magma dynamics. We derive a general model based on the discharge of a shallow reservoir and the magmastatic crustal load above the vent, to explain the linear link. In addition, we show how the drastic transition from effusive to violent explosions can be related to different decompression rates. We suggest that a gravity-driven model can shed light on similar cases of lateral effusive eruptions in other volcanic systems and can provide evidence of the roles of slow decompression rates in triggering violent paroxysmal explosive eruptions, which occasionally punctuate the effusive phases at basaltic volcanoes.
NASA Astrophysics Data System (ADS)
Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.
2012-04-01
Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.
NASA Astrophysics Data System (ADS)
Balcone-Boissard, Hélène; Boudon, Georges; Zdanowicz, Géraldine; Orsi, Giovanni; Civetta, Lucia; Webster, Jim D.; Cioni, Raffaello; D'Antonio, Massimo
2016-04-01
One of the current stakes in modern volcanology is the definition of magma storage conditions which has direct implications on the eruptive style and thus on the associated risks and the management of likely related crisis. In alkaline differentiated magmas, chlorine (Cl), contrary to H2O, occurs as a minor volatile species but may be used as a geobarometer. Numerous experimental studies on Cl solubility have highlighted its saturation conditions in silicate melts. The NaCl-H2O system is characterized by immiscibility under wide ranges of pressure, temperature and NaCl content (< 200 MPa, < 1000°C). The addition of the silicate melt to the system does not rule out this property. These P-T conditions are very common for alkaline magmas evolving in shallow reservoirs, and they strongly affect the evolution of sin-eruptive magmatic melts and fluids. In alkali magmas, the Cl concentration in the exsolved fluid phase may increase with that of Cl in the silicate melt. Yet this system becomes strongly non-Henryan at high Cl concentration, depending on P-T conditions: the exsolved fluid phase unmixes to form a low-density, Cl-poor and H2O-rich vapour phase, and a dense hypersaline brine. In such a subcritical domain, as the composition of both vapour phase and brine is fixed, also the Cl concentration in the silicate melt is invariant, as expected from the Gibb's phase rule. The Cl buffer value will depend on the silicate melt composition, being higher in alkali-rich melts. In addition, we also underline the importance of considering the general HCOSClF system to well decipher pressure information from Cl buffering effect. As the equilibrium between the silicate melt and the fluid phase is generally inherited from conditions established in the reservoir rather than during magma ascent, Cl buffering effect can be evidenced through the analysis of the residual glass. Here we applied systematically this methodology to the explosive eruptions of the three threatening volcanoes of the Neapolitan area: Mount Somma-Vesuvius, Phlegrean Fields and Ischia. We have analysed the products of the representative explosive eruptions of each volcano, including Plinian, sub-Plinian and strombolian events. We have focussed our research on the earliest emitted, most evolved products of each eruption, likely representing the shallower, fluid-saturated portion of the reservoir. As the studied eruptions cover the entire eruptive history of each volcanic system, the results allow better constraining the evolution through time of the shallow plumbing system. We highlighted for Mount Somma - Vesuvius two magma ponding zones, at ~170-200 MPa and ~105-115 MPa, alternatively active in time. For Phlegrean Fields, we evidence a progressive deepening of the shallow reservoirs, from the Campanian Ignimbrite (30-50 MPa) to the Monte Nuovo eruption (115 MPa). Only one eruption was studied for Ischia, the Cretaio eruption, that shows a reservoir at 140 MPa. The results on pressure are in large agreement with literature. The Cl geobarometer may help scientists to define the reservoir dynamics through time and provide strong constraints on pre-eruptive conditions, of utmost importance for the interpretation of the monitoring data and the identification of precursory signals.
NASA Astrophysics Data System (ADS)
Smith, Cassandra M.; Van Eaton, Alexa R.; Charbonnier, Sylvain; McNutt, Stephen R.; Behnke, Sonja A.; Thomas, Ronald J.; Edens, Harald E.; Thompson, Glenn
2018-06-01
Volcanic lightning detection has become a useful resource for monitoring remote, under-instrumented volcanoes. Previous studies have shown that the behavior of volcanic plume electrification responds to changes in the eruptive processes and products. However, there has not yet been a study to quantify the links between ash textures and plume electrification during an actively monitored eruption. In this study, we examine a sequence of vulcanian eruptions from Sakurajima Volcano in Japan to compare ash textural properties (grain size, shape, componentry, and groundmass crystallinity) to plume electrification using a lightning mapping array and other monitoring data. We show that the presence of the continual radio frequency (CRF) signal is more likely to occur during eruptions that produce large seismic amplitudes (>7 μm) and glass-rich volcanic ash with more equant particle shapes. We show that CRF is generated during energetic, impulsive eruptions, where charge buildup is enhanced by secondary fragmentation (milling) as particles travel out of the conduit and into the gas-thrust region of the plume. We show that the CRF signal is influenced by a different electrification process than later volcanic lightning. By using volcanic CRF and lightning to better understand the eruptive event and its products these key observations will help the monitoring community better utilize volcanic electrification as a method for monitoring and understanding ongoing explosive eruptions.
The largest volcanic eruptions on Earth
NASA Astrophysics Data System (ADS)
Bryan, Scott E.; Peate, Ingrid Ukstins; Peate, David W.; Self, Stephen; Jerram, Dougal A.; Mawby, Michael R.; Marsh, J. S. (Goonie); Miller, Jodie A.
2010-10-01
Large igneous provinces (LIPs) are sites of the most frequently recurring, largest volume basaltic and silicic eruptions in Earth history. These large-volume (> 1000 km 3 dense rock equivalent) and large-magnitude (> M8) eruptions produce areally extensive (10 4-10 5 km 2) basaltic lava flow fields and silicic ignimbrites that are the main building blocks of LIPs. Available information on the largest eruptive units are primarily from the Columbia River and Deccan provinces for the dimensions of flood basalt eruptions, and the Paraná-Etendeka and Afro-Arabian provinces for the silicic ignimbrite eruptions. In addition, three large-volume (675-2000 km 3) silicic lava flows have also been mapped out in the Proterozoic Gawler Range province (Australia), an interpreted LIP remnant. Magma volumes of > 1000 km 3 have also been emplaced as high-level basaltic and rhyolitic sills in LIPs. The data sets indicate comparable eruption magnitudes between the basaltic and silicic eruptions, but due to considerable volumes residing as co-ignimbrite ash deposits, the current volume constraints for the silicic ignimbrite eruptions may be considerably underestimated. Magma composition thus appears to be no barrier to the volume of magma emitted during an individual eruption. Despite this general similarity in magnitude, flood basaltic and silicic eruptions are very different in terms of eruption style, duration, intensity, vent configuration, and emplacement style. Flood basaltic eruptions are dominantly effusive and Hawaiian-Strombolian in style, with magma discharge rates of ~ 10 6-10 8 kg s -1 and eruption durations estimated at years to tens of years that emplace dominantly compound pahoehoe lava flow fields. Effusive and fissural eruptions have also emplaced some large-volume silicic lavas, but discharge rates are unknown, and may be up to an order of magnitude greater than those of flood basalt lava eruptions for emplacement to be on realistic time scales (< 10 years). Most silicic eruptions, however, are moderately to highly explosive, producing co-current pyroclastic fountains (rarely Plinian) with discharge rates of 10 9-10 11 kg s -1 that emplace welded to rheomorphic ignimbrites. At present, durations for the large-magnitude silicic eruptions are unconstrained; at discharge rates of 10 9 kg s -1, equivalent to the peak of the 1991 Mt Pinatubo eruption, the largest silicic eruptions would take many months to evacuate > 5000 km 3 of magma. The generally simple deposit structure is more suggestive of short-duration (hours to days) and high intensity (~ 10 11 kg s -1) eruptions, perhaps with hiatuses in some cases. These extreme discharge rates would be facilitated by multiple point, fissure and/or ring fracture venting of magma. Eruption frequencies are much elevated for large-magnitude eruptions of both magma types during LIP-forming episodes. However, in basalt-dominated provinces (continental and ocean basin flood basalt provinces, oceanic plateaus, volcanic rifted margins), large magnitude (> M8) basaltic eruptions have much shorter recurrence intervals of 10 3-10 4 years, whereas similar magnitude silicic eruptions may have recurrence intervals of up to 10 5 years. The Paraná-Etendeka province was the site of at least nine > M8 silicic eruptions over an ~ 1 Myr period at ~ 132 Ma; a similar eruption frequency, although with a fewer number of silicic eruptions is also observed for the Afro-Arabian Province. The huge volumes of basaltic and silicic magma erupted in quick succession during LIP events raises several unresolved issues in terms of locus of magma generation and storage (if any) in the crust prior to eruption, and paths and rates of ascent from magma reservoirs to the surface. Available data indicate four end-member magma petrogenetic pathways in LIPs: 1) flood basalt magmas with primitive, mantle-dominated geochemical signatures (often high-Ti basalt magma types) that were either transferred directly from melting regions in the upper mantle to fissure vents at surface, or resided temporarily in reservoirs in the upper mantle or in mafic underplate thereby preventing extensive crustal contamination or crystallisation; 2) flood basalt magmas (often low-Ti types) that have undergone storage at lower ± upper crustal depths resulting in crustal assimilation, crystallisation, and degassing; 3) generation of high-temperature anhydrous, crystal-poor silicic magmas (e.g., Paraná-Etendeka quartz latites) by large-scale AFC processes involving lower crustal granulite melting and/or basaltic underplate remelting; and 4) rejuvenation of upper-crustal batholiths (mainly near-solidus crystal mush) by shallow intrusion and underplating by mafic magma providing thermal and volatile input to produce large volumes of crystal-rich (30-50%) dacitic to rhyolitic magma and for ignimbrite-producing eruptions, well-defined calderas up to 80 km diameter (e.g., Fish Canyon Tuff model), and which characterise of some silicic eruptions in silicic LIPs.
Self-healing volcanoes: mechanical response of magma failure, sealing and healing on outgassing
NASA Astrophysics Data System (ADS)
Lamur, A.; Lavallée, Y.; Kendrick, J. E.; Wadsworth, F. B.; Vasseur, J.
2016-12-01
Cyclic patterns of eruptive activity and quiescent periods are commonly observed at silicic volcanoes (e.g. Santiaguito, Guatemala). Quiescence, characterised by outgassing and no magmatic emissions, can last from several minutes to several years. Eruptive activity is, by comparison, expressed as the extrusion of lava/ pyroclasts, lasting minutes to years, and the onset can be extremely sudden, especially during explosive eruptions. Previous studies have shown that the overpressure leading to explosive activity can be achieved through gas accumulation following the processes of pore collapse or fracture infill and healing, which act to obliterate permeable outgassing; subsequently, magma may fragment and erupt explosively once the pressure exceeds the tensile strength. Here, we build on these studies by systematically testing the effects of fracture opening and (mechanical) sealing as well as (physico-chemical) healing. The experimental data is used to model the kinetics of fracture healing and tensile strength recovery as well as to constrain the permeability of fractured media as a function of pressure in the system. We discuss how these fracture and healing processes may operate in the timescale of pressure build-up and outgassing observed at volcanoes, without a need to invoke the input of a new magma recharge in the upper conduit.
Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions
Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie G.; Dunham, Eric M.
2013-01-01
Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5–5 Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5–1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession—up to 30 events per second—that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.
NASA Astrophysics Data System (ADS)
Swarr, G. J.; Garman, K. A.; Harpp, K. S.; Dufek, J.; Geist, D.
2009-12-01
Late-stage conduit dynamics can strongly influence the explosivity and eruption mechanisms of volatile rich magmas. Magmatic viscosity can affect bubble coalescence, differential magma-gas flow, and fragmentation style. We have examined the products of recent eruptions of an intermediate style of volcanism that produces pyroclastic density currents (PDCs) fed from low eruption columns. These boiling-over style eruptions were observed during the 2006 eruption of Tungurahua and were inferred from the deposits of the 1877 eruption of Cotopaxi. In the 2006 eruption of Tungurahua at least 56 PDCs were recorded; on the basis of observations during the eruptions, all the PDCs were attributed to the boiling over process. In eruptions from both volcanoes, juvenile bombs appear throughout the deposit, often concentrated in levees and in flow lobes. These bombs can be large (5 to 15 decimeters in diameter) and have a fragile bread-crust exterior. The majority of the smaller bombs from the Tungurahua deposits (1 to 5 decimeters in diameter) are flattened and highly vesicular with large vesicles up to 15 mm in diameter. The centers of the largest bombs (up to 1.8 meters across), however, are denser, lacking vesicles larger than 2 mm. At Cotopaxi the juvenile bombs have a similar size and density to those at Tungurahua, but lack large vesicles, instead having a relatively high abundance of vesicles less than 1 mm in diameter. Larger vesicles (up to 3 mm in diameter) are concentrated in frothy, brown to green regions in Cotopaxi deposits. Viscosity calculated using major element contents of the juvenile bombs suggests that those from Tungurahua may be more viscous than those at Cotopaxi by as much as 20 percent. We will examine the differences in bomb color, density, and crystal content at the microscopic level using LA-ICP-MS to determine small scale chemical variations. We propose that these differences at Tungurahua and Cotopaxi reflect subtle differences in magma viscosity and conduit dynamics, and that they have the potential to provide insight into the boiling-over PDC generation mechanism.
Magnetic Braids in Eruptions of a Spiral Structure in the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Huang, Zhenghua; Xia, Lidong; Nelson, Chris J.; Liu, Jiajia; Wiegelmann, Thomas; Tian, Hui; Klimchuk, James A.; Chen, Yao; Li, Bo
2018-02-01
We report on high-resolution imaging and spectral observations of eruptions of a spiral structure in the transition region, which were taken with the Interface Region Imaging Spectrograph, and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The eruption coincided with the appearance of two series of jets, with velocities comparable to the Alfvén speeds in their footpoints. Several pieces of evidence of magnetic braiding in the eruption are revealed, including localized bright knots, multiple well-separated jet threads, transition region explosive events, and the fact that all three of these are falling into the same locations within the eruptive structures. Through analysis of the extrapolated 3D magnetic field in the region, we found that the eruptive spiral structure corresponded well to locations of twisted magnetic flux tubes with varying curl values along their lengths. The eruption occurred where strong parallel currents, high squashing factors, and large twist numbers were obtained. The electron number density of the eruptive structure is found to be ∼3 × 1012 cm‑3, indicating that a significant amount of mass could be pumped into the corona by the jets. Following the eruption, the extrapolations revealed a set of seemingly relaxed loops, which were visible in the AIA 94 Å channel, indicating temperatures of around 6.3 MK. With these observations, we suggest that magnetic braiding could be part of the mechanisms explaining the formation of solar eruption and the mass and energy supplement to the corona.
Lead isotope constraints on the origin of andesite and dacite magmas at Tungurahua volcano (Ecuador)
NASA Astrophysics Data System (ADS)
Nauret, Francois; Ancellin, Marie-Anne; Vlastelic, Ivan; Tournigand, Pierre-Yves; Samaniego, Pablo; Le Pennec, Jean Luc; Gannoun, Mouhcine; Hidalgo, Silvana; Schiano, Pierre
2016-04-01
Understanding the occurrence of large explosive eruptions involving silica-rich magmas at mostly andesitic volcanoes is crucial for volcanic hazard assessment Here we focus on the well-known active Tungurahua volcano (Ecuador), specifically its eruptive sequence for the last 3000 years BP, which are characterized by VEI 3 explosive events involving mostly homogeneous andesitic compositions (56-59 wt.% SiO2). However, some large eruptions (VEI ≥ 4) involving andesitic and dacitic magmas (up to 66 wt.% SiO2) also occur at 3000 BP, 1250 BP and 1886 AD. An additional outburst of siliceous magmas occurred during the last eruptive eruption of this volcano in 2006 [1]. Volcanic products at Tungurahua are described as been generated by a binary mixing between a silica-rich and a silica-poor end-member, but the origin of these components was not discussed [2]. Major, trace elements and Sr-Nd-Pb isotopes were used to investigate the genesis of the andesites and dacites. Andesites are heterogeneous in terms of Pb isotopes (206Pb/204Pb: 18.189-19.154, 207Pb/204Pb:15.658-15.696, 208Pb/204Pb: 38.752-38.918, 207Pb/206Pb: 0.8240-0.8275) but homogeneous in terms of major-trace element. Dacite are characterized by homogenous and low 207Pb/206Pb (0.8235±0.0001), very low Nb/U (1.97 to 4.49) and Ce/Pb (2.52-2.99) and high Th/La ratios (0.24 to 0.49). Triangular distribution of data in major element or trace element ratio vs. Pb isotopes plots suggests that at least three components control geochemical variability at Tungurahua. We interpret andesite compositions as reflecting mainly a deep mixture of two mantle components, with small addition of crustal material. We suggest that dacite results from a mixing between various andesite compositions and a larger amount of a contaminant derived from the volcanic basement of the Tungurahua made of late Cretaceous to Palaeogene oceanic plateau basalts and volcano-sedimentary rocks volcanic. Since andesite and dacite occur during the same eruption, we suggest that crustal contaminated magmas are stored into the crust and are sporadically sampled by andesite magmas ascending from greater depths.. As a result, the amount of assimilated crust (and thus the amount of silica-rich magma) may be used as a proxy of the magnitude of the eruption. [1] Samaniego et al. JVGR (2011) [2] Schiano, P., et al. Contrib. Mineral. Petrol. 160(2010) 297-312.
From Emergence to Eruption: The Physics and Diagnostics of Solar Active Regions
NASA Astrophysics Data System (ADS)
Cheung, Mark
2017-08-01
The solar photosphere is continuously seeded by the emergence of magnetic fields from the solar interior. In turn, photospheric evolution shapes the magnetic terrain in the overlying corona. Magnetic fields in the corona store the energy needed to power coronal mass ejections (CMEs) and solar flares. In this talk, we recount a physics-based narrative of solar eruptive events from cradle to grave, from emergence to eruption, from evaporation to condensation. We review the physical processes which are understood to transport magnetic flux from the interior to the surface, inject free energy and twist into the corona, disentangle the coronal field to permit explosive energy release, and subsequently convert the released energy into observable signatures. Along the way, we review observational diagnostics used to constrain theories of active region evolution and eruption. Finally, we discuss the opportunities and challenges enabled by the large existing repository of solar observations. We argue that the synthesis of physics and diagnostics embodied in (1) data-driven modeling and (2) machine learning efforts will be an accelerating agent for scientific discovery.
The role of H2O in controlling the eruptive behavior observed during 2008 Chaitén eruption
NASA Astrophysics Data System (ADS)
Forte, Pablo; Castro, Jonathan
2016-04-01
Although highly explosive and with the capacity of producing impacts in a world-wide scale, the underlying mechanisms driving rhyolitic eruptions are not yet fully understood. The lower frequency of these events in comparison to intermediate composition and mafic magmatic eruptions has hampered observation-based studies of rhyolite activity in last century. But in 2008, the eruption of Chaitén volcano (Southern Chile), gave us the first view of a rhyolitic eruptive cycle, start to finish. After an initial explosive phase that lasted for 10 days, the vigour of the eruption decreased and gave way to an effusive phase that was characterized by the emplacement of a dome complex. Surprisingly, a transitional phase between them was identified, with the simultaneous occurrence of explosive and effusive activity (Pallister et al. 2013). During the eruption, vast amounts of glassy rhyolite bombs with H2O contents ranging from 0.1 to 1.58 wt. % H2O were produced (Castro et al. 2012). It is already well known that H2O is one of the main players involved in the evolution of rhyolitic systems and in the occurrence of explosive volcanic eruptions (eg. Zhang et al. 2007). In this study, we conducted 90 high-temperature, 1 atm experiments in order to constrain degassing systematics and resultant foaming/fragmentation behavior of magma residing in the last hundred meters of Chaitén's volcanic conduit. By using cylindrical cores (4 x 10 mm) drilled from obsidian bombs and lava dome samples, isothermal experiments were performed at temperatures between 740° and 1030°C among the whole range of H2O contents measured in the deposits. Due to the experimental design developed, the complete evolution of the experiments was possible to monitor through a sapphire window with high-speed and conventional video cameras. Post-experiment video analysis has revealed 3 types of behaviors of the samples: a) expansion followed by equilibrium (constant volume), b) expansion followed by shrinking and c) expansion followed by explosive fragmentation. This last behavior was identified exclusively in samples with H2O ≥ 1.2 wt.%, and at temperatures higher than 880°C. For samples with H2O < 1.2 wt.%, no fragmentation was observed, even at higher temperatures (up to 1030°C), well above the estimated pre-eruptive temperature (~825°C) of the 2008 Chaitén rhyolite (see Castro and Dingwell, 2009). In samples that did not experience fragmentation, porosities of up to 85% were measured. Experimental results show that foaming and fragmentation behaviors reflect the efficiency of degassing of the system and this in turn depends on H2O content and temperature. We show that diverse vesiculation and fragmentation behaviors are the result of a complex interplay between H2O exsolution, diffusion rates and consequent changes in viscosity. Ultimately foaming versus fragmentation behavior depends on variations in the Peclet number, which balances viscous and diffusion-controlled bubble-growth regimes.
Field-based high-speed imaging of explosive eruptions
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.
2012-12-01
Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian explosion, with ejection velocities twice as high as previously recorded. Video-derived information on ejection velocity and ejecta mass can be combined with analytical and experimental models to constrain the physical parameters of the gas driving individual pulses. 2) Jet development. The ejection trajectory of pyroclasts can also be used to outline the spatial and temporal development of the eruptive jet and the dynamics of gas-pyroclast coupling within the jet, while high-speed thermal images add information on the temperature evolution in the jet itself as a function of the pyroclast size and content. 2) Pyroclasts settling. High-speed videos can be used to investigate the aerodynamic settling behavior of pyroclasts from bomb to ash in size and including ash aggregates, providing key parameters such as drag coefficient as a function of Re, and particle density. 3) The generation and propagation of acoustic and shock waves. Phase condensation in volcanic and atmospheric aerosol is triggered by the transit of pressure waves and can be recorded in high-speed videos, allowing the speed and wavelength of the waves to be measured and compared with the corresponding infrasonic signals and theoretical predictions.
ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu
2013-02-10
A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motionmore » (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.« less
Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat
NASA Astrophysics Data System (ADS)
Ripepe, Maurizio; De Angelis, Silvio; Lacanna, Giorgio; Voight, Barry
2010-04-01
The sudden ejection of material during an explosive eruption generates a broad spectrum of pressure oscillations, from infrasonic to gravity waves. An infrasonic array, installed at 3.5 km from the Soufriere Hills Volcano has successfully detected and located, in real-time, the infrasound generated by several pyroclastic flows (PF) estimating mean flow speeds of 30-75 m/s. On July 29 and December 3, 2008, two differential pressure transducers, co-located with the array, recorded ultra long-period (ULP) oscillations at frequencies of 0.97 and 3.5 mHz, typical of atmospheric gravity waves, associated with explosive eruptions. The observation of gravity waves in the near-field (<6 km) at frequencies as low as about 1 mHz is unprecedented during volcanic eruptions.