Sample records for large fire occurrence

  1. Human and biophysical influences on fire occurrence in the United States

    USGS Publications Warehouse

    Hawbaker, Todd J.; Radeloff, Volker C.; Stewart, Susan I.; Hammer, Roger B.; Keuler, Nicholas S.; Clayton, Murray K.

    2013-01-01

    National-scale analyses of fire occurrence are needed to prioritize fire policy and management activities across the United States. However, the drivers of national-scale patterns of fire occurrence are not well understood, and how the relative importance of human or biophysical factors varies across the country is unclear. Our research goal was to model the drivers of fire occurrence within ecoregions across the conterminous United States. We used generalized linear models to compare the relative influence of human, vegetation, climate, and topographic variables on fire occurrence in the United States, as measured by MODIS active fire detections collected between 2000 and 2006. We constructed models for all fires and for large fires only and generated predictive maps to quantify fire occurrence probabilities. Areas with high fire occurrence probabilities were widespread in the Southeast, and localized in the Mountain West, particularly in southern California, Arizona, and New Mexico. Probabilities for large-fire occurrence were generally lower, but hot spots existed in the western and south-central United States The probability of fire occurrence is a critical component of fire risk assessments, in addition to vegetation type, fire behavior, and the values at risk. Many of the hot spots we identified have extensive development in the wildland–urban interface and are near large metropolitan areas. Our results demonstrated that human variables were important predictors of both all fires and large fires and frequently exhibited nonlinear relationships. However, vegetation, climate, and topography were also significant variables in most ecoregions. If recent housing growth trends and fire occurrence patterns continue, these areas will continue to challenge policies and management efforts seeking to balance the risks generated by wildfires with the ecological benefits of fire.

  2. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: The role of temporal scale

    Treesearch

    Karin L. Riley; John T. Abatzoglou; Isaac C. Grenfell; Anna E. Klene; Faith Ann Heinsch

    2013-01-01

    The relationship between large fire occurrence and drought has important implications for fire prediction under current and future climates. This study’s primary objective was to evaluate correlations between drought and fire-danger- rating indices representing short- and long-term drought, to determine which had the strongest relationships with large fire occurrence...

  3. Large-Scale Controls and Characteristics of Fire Activity in Central Chile, 2001-2015

    NASA Astrophysics Data System (ADS)

    McWethy, D. B.; Pauchard, A.; García, R.; Holz, A.; González, M.; Veblen, T. T.; Stahl, J.

    2016-12-01

    In recent decades, fire activity has increased in many ecosystems worldwide, even where fuel conditions and natural ignitions historically limited fire activity, and this increase begs questions of whether climate change, land-use change, and/or altered vegetation are responsible. Increased frequency of large fires in these settings has been attributed to drier-than-average summers and longer fire seasons as well as fuel accumulation related to ENSO events, raising concerns about the trajectory of post-fire vegetation dynamics and future fire regimes. In temperate and Mediterranean forests of central Chile, recent large fires associated with altered ecosystems, climate variability and land-use change highlight the risk and hazard of increasing fire activity yet the causes and consequences are poorly understood. To better understand characteristics of recent fire activity, key drivers of fire occurrence and the spatial probability of wildfire we examined the relationship between fire activity derived from MODIS satellite imagery and biophysical, land-cover and land-use variables. The probability of fire occurrence and annual area burned was best predicted by seasonal precipitation, annual temperature and land cover type. The likelihood of fire occurrence was greatest in Matorral shrublands, agricultural lands (including pasture lands) and Pinus and Eucalyptus plantations, highlighting the importance of vegetation type and fuel flammability as a critical control on fire activity. Our results suggest that land-use change responsible for the widespread presence of highly flammable vegetation and projections for continued warming and drying will likely combine to promote the occurrence of large fires in central Chile in the future.

  4. Forecasting distribution of numbers of large fires

    Treesearch

    Haiganoush K. Preisler; Jeff Eidenshink; Stephen Howard; Robert E. Burgan

    2015-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the...

  5. Using the Large Fire Simulator System to map wildland fire potential for the conterminous United States

    Treesearch

    LaWen Hollingsworth; James Menakis

    2010-01-01

    This project mapped wildland fire potential (WFP) for the conterminous United States by using the large fire simulation system developed for Fire Program Analysis (FPA) System. The large fire simulation system, referred to here as LFSim, consists of modules for weather generation, fire occurrence, fire suppression, and fire growth modeling. Weather was generated with...

  6. Using the NASA NEESPI Portal Data to Study Land, Climate, and Socio-Economic Changes in Northern Eurasia

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Shen, Suhung; Csiszar, Ivan; Romanov, Peter; Loboda, Tatiana; Gerasimov, Irina

    2008-01-01

    A large number of fires detected in July of 2003 - a nearly 200-time increase in fire detections compared to other years during 2001-2006. despite the summer monsoon suppression of large fire occurrence. Traditional vegetation indices (NDVI and EVI) included in operational fire danger assessment provide little information on the fuel state in this ecosystem pre- or post-fire. No considerable differences in surface temperature and soil moisture in July were observed between the catastrophic year of 2003 and the two subsequent years of low summer fire occurrence of 2004 and 2005. However, the temporal analysis indicates that dry spring conditions in 2003 (detected through low soil moisture measurements in April and May) may have led to a stressed vegetative state and created conditions conducive to catastrophic fire occurrence.

  7. Fire weather and likelihood: characterizing climate space for fire occurrence and extent in Puerto Rico

    Treesearch

    Ashley E. Van Beusekom; William A. Gould; A. Carolina Monmany; Azad Henareh Khalyani; Maya Quiñones; Stephen J. Fain; Maria José Andrade-Núñez; Grizelle González

    2018-01-01

    Abstract Assessing the relationships between weather patterns and the likelihood of fire occurrence in the Caribbean has not been as central to climate change research as in temperate regions, due in part to the smaller extent of individual fires. However, the cumulative effect of small frequent fires can shape large landscapes, and fire-prone ecosystems are abundant...

  8. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  9. Near-term probabilistic forecast of significant wildfire events for the Western United States

    Treesearch

    Haiganoush K. Preisler; Karin L. Riley; Crystal S. Stonesifer; Dave E. Calkin; Matt Jolly

    2016-01-01

    Fire danger and potential for large fires in the United States (US) is currently indicated via several forecasted qualitative indices. However, landscape-level quantitative forecasts of the probability of a large fire are currently lacking. In this study, we present a framework for forecasting large fire occurrence - an extreme value event - and evaluating...

  10. Wildfire risk estimation in the Mediterranean area

    Treesearch

    A.A. Ager; H.K. Preisler; B. Arca; D Spano; M. Salis

    2014-01-01

    We analyzed wildland fire occurrence and size data from Sardinia, Italy, and Corsica, France, to examine spatiotemporal patterns of fire occurrence in relation to weather, land use, anthropogenic features, and time of year. Fires on these islands are largely human caused and can be attributed to negligence, agro-pastoral land use, and arson. Of particular interest was...

  11. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States

    NASA Astrophysics Data System (ADS)

    Keyser, Alisa; Westerling, Anthony LeRoy

    2017-05-01

    A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.

  12. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  13. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    PubMed Central

    Westerling, Anthony L.; Turner, Monica G.; Smithwick, Erica A. H.; Romme, William H.; Ryan, Michael G.

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated by conifer forests and characterized by infrequent, high-severity fire. We developed a suite of statistical models that related monthly climate data (1972–1999) to the occurrence and size of fires >200 ha in the northern Rocky Mountains; these models were cross-validated and then used with downscaled (∼12 km × 12 km) climate projections from three global climate models to predict fire occurrence and area burned in the GYE through 2099. All models predicted substantial increases in fire by midcentury, with fire rotation (the time to burn an area equal to the landscape area) reduced to <30 y from the historical 100–300 y for most of the GYE. Years without large fires were common historically but are expected to become rare as annual area burned and the frequency of regionally synchronous fires increase. Our findings suggest a shift to novel fire–climate–vegetation relationships in Greater Yellowstone by midcentury because fire frequency and extent would be inconsistent with persistence of the current suite of conifer species. The predicted new fire regime would transform the flora, fauna, and ecosystem processes in this landscape and may indicate similar changes for other subalpine forests. PMID:21788495

  14. Long-term temporal changes in the occurrence of a high forest fire danger in Finland

    NASA Astrophysics Data System (ADS)

    Mäkelä, H. M.; Laapas, M.; Venäläinen, A.

    2012-08-01

    Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June-August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908-2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.

  15. Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.

    2014-12-01

    An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency of high fire weather danger. While the Alaska Large Fire Database represents the best data available for the Alaskan Arctic, and is superior to many other regions around the world, particularly Arctic regions, these fire records need to be used with some caution due to the mixed origin and minimal validation of the data; this is reviewed in the presentation.

  16. Probability based models for estimation of wildfire risk

    Treesearch

    Haiganoush Preisler; D. R. Brillinger; R. E. Burgan; John Benoit

    2004-01-01

    We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km²-day cell level. We fit a spatially and temporally explicit non-...

  17. Climatic and weather factors affecting fire occurrence and behavior

    Treesearch

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  18. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    Treesearch

    R Barbero; J T Abatzoglou; E A Steel

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ¡­60 km spatial and weekly temporal resolutions using solely atmospheric...

  19. Comparison of Available Technologies for Fire Spots Detection via Linear Heat Detector

    NASA Astrophysics Data System (ADS)

    Miksa, František; Nemlaha, Eduard

    2016-12-01

    It is very demanding to detect fire spots under difficult conditions with high occurrence of interfering external factors such as large distances, airflow difficultly, high dustiness, high humidity, etc. Spot fire sensors do not meet the requirements due to the aforementioned conditions as well as large distances. Therefore, the detection of a fire spot via linear heat sensing cables is utilized.

  20. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    PubMed

    Avitabile, Sarah C; Nimmo, Dale G; Bennett, Andrew F; Clarke, Michael F

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  1. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales

    PubMed Central

    Avitabile, Sarah C.; Nimmo, Dale G.; Bennett, Andrew F.; Clarke, Michael F.

    2015-01-01

    Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales. PMID:26571383

  2. Regionally synchronous fires in interior British Columbia, Canada, driven by interannual climate variability and weakly associated with large-scale climate patterns between AD 1600-1900

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Smith, D. J.

    2016-12-01

    We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.

  3. Continental-scale simulation of burn probabilities, flame lengths, and fire size distribution for the United States

    Treesearch

    Mark A. Finney; Charles W. McHugh; Isaac Grenfell; Karin L. Riley

    2010-01-01

    Components of a quantitative risk assessment were produced by simulation of burn probabilities and fire behavior variation for 134 fire planning units (FPUs) across the continental U.S. The system uses fire growth simulation of ignitions modeled from relationships between large fire occurrence and the fire danger index Energy Release Component (ERC). Simulations of 10,...

  4. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    Treesearch

    Anthony L. Westerling; Monica G. Turner; Erica A. H. Smithwick; William H. Romme; Michael G. Ryan

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated...

  5. Early forest dynamics in stand-replacing fire patches in the northern Sierra Nevada, California, USA

    Treesearch

    Brandon M. Collins; Gary B. Roller

    2013-01-01

    There is considerable concern over the occurrence of stand-replacing fire in forest types historically associated with low- to moderate-severity fire. The concern is largely over whether contemporary levels of stand-replacing fire are outside the historical range of variability, and what natural forest recovery is in these forest types following stand-replacing fire....

  6. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.

    PubMed

    Tarimo, Beatrice; Dick, Øystein B; Gobakken, Terje; Totland, Ørjan

    2015-12-01

    Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.

  7. Mid-21st-century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    USGS Publications Warehouse

    Riley, Karin L.; Loehman, Rachel A.

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st-century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains. Although large fires are rare they account for most of the area burned in western North America, burn under extreme weather conditions, and exhibit behaviors that preclude methods of direct control. Allocation of resources, development of management plans, and assessment of fire effects on ecosystems all require an understanding of when and where fires are likely to burn, particularly under altered climate regimes that may increase large fire occurrence. We used the large fire simulation model FSim to model ignition, growth, and containment of wildfires under two climate scenarios: contemporary (based on instrumental weather) and mid-century (based on an ensemble average of global climate models driven by the A1B SRES emissions scenario). Modeled changes in fire patterns include increased annual burn probability, particularly in areas of the study region with relatively short contemporary fire return intervals; increased individual fire size and annual area burned; and fewer years without large fires. High fire danger days, represented by threshold values of Energy Release Component (ERC), are projected to increase in number, especially in spring and fall, lengthening the climatic fire season. For fire managers, ERC is an indicator of fire intensity potential and fire economics, with higher ERC thresholds often associated with larger, more expensive fires. Longer periods of elevated ERC may significantly increase the cost and complexity of fire management activities, requiring new strategies to maintain desired ecological conditions and limit fire risk. Increased fire activity (within the historical range of frequency and severity, and depending on the extent to which ecosystems are adapted) may maintain or restore ecosystem functionality; however, in areas that are highly departed from historical fire regimes or where there is disequilibrium between climate and vegetation, ecosystems may be rapidly and persistently altered by wildfires, especially those that burn under extreme conditions.

  8. Mid-21st- century climate changes increase predicted fire occurrence and fire season length, Northern Rocky Mountains, United States

    Treesearch

    Karin L. Riley; Rachel A. Loehman

    2016-01-01

    Climate changes are expected to increase fire frequency, fire season length, and cumulative area burned in the western United States. We focus on the potential impact of mid-21st- century climate changes on annual burn probability, fire season length, and large fire characteristics including number and size for a study area in the Northern Rocky Mountains....

  9. Predicting wildfire ignitions, escapes, and large fire activity using Predictive Service’s 7-Day Fire Potential Outlook in the western USA

    Treesearch

    Karin L. Riley; Crystal Stonesifer; Haiganoush Preisler; Dave Calkin

    2014-01-01

    Can fire potential forecasts assist with pre-positioning of fire suppression resources, which could result in a cost savings to the United States government? Here, we present a preliminary assessment of the 7-Day Fire Potential Outlook forecasts made by the Predictive Services program. We utilized historical fire occurrence data and archived forecasts to assess how...

  10. Seasonal predictions for wildland fire severity

    Treesearch

    Shyh-Chin Chen; Haiganoush Preisler; Francis Fujioka; John W. Benoit; John O. Roads

    2009-01-01

    The National Fire Danger Rating System (NFDRS) indices deduced from the monthly to seasonal predictions of a meteorological climate model at 50-km grid space from January 1998 through December 2003 were used in conjunction with a probability model to predict the expected number of fire occurrences and large fires over the U.S. West. The short-term climate forecasts are...

  11. Forest fire spatial pattern analysis in Galicia (NW Spain).

    PubMed

    Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W

    2013-10-15

    Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, Elizabeth H.; Pedentchouk, Nikolai; Schouten, Stefan; Pagani, Mark; Freeman, Katherine H.

    2017-06-01

    Fire has been an important component of ecosystems on a range of spatial and temporal scales. Fire can affect vegetation distribution, the carbon cycle, and climate. The relationship between climate and fire is complex, in large part because of a key role of vegetation type. Here, we evaluate regional scale fire-climate relationships during a past global warming event, the Paleocene-Eocene Thermal Maximum (PETM), in order to understand how vegetation influenced the links between climate and fire occurrence in the Arctic region. To document concurrent changes in climate, vegetation, and fire occurrence, we evaluated biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes, from the PETM interval at a marine depositional site (IODP site 302, the Lomonosov Ridge) in the Arctic Ocean. Biomarker, fossil, and isotope evidence from site 302 indicates that terrestrial vegetation changed during the PETM. The abundance of the C29n-alkanes, pollen, and the ratio of leaf-wax n-alkanes relative to diterpenoids all indicate that proportional contributions from angiosperm vegetation increased relative to that from gymnosperms. These changes accompanied increased moisture transport to the Arctic and higher temperatures, as recorded by previously published proxy records. We find that PAH abundances were elevated relative to total plant biomarkers throughout the PETM, and suggest that fire occurrence increased relative to plant productivity. The fact that fire frequency or prevalence may have increased during wetter Arctic conditions suggests that changes in fire occurrence were not a simple function of aridity, as is commonly conceived. Instead, we suggest that the climate-driven ecological shift to angiosperm-dominated vegetation was what led to increased fire occurrence. Potential increases in terrestrial plant biomass that arose from warm, wet, and high CO2 conditions were possibly attenuated by biomass burning associated with compositional changes in the plant community.

  13. Forecasting distribution of numbers of large fires

    USGS Publications Warehouse

    Eidenshink, Jeffery C.; Preisler, Haiganoush K.; Howard, Stephen; Burgan, Robert E.

    2014-01-01

    Systems to estimate forest fire potential commonly utilize one or more indexes that relate to expected fire behavior; however they indicate neither the chance that a large fire will occur, nor the expected number of large fires. That is, they do not quantify the probabilistic nature of fire danger. In this work we use large fire occurrence information from the Monitoring Trends in Burn Severity project, and satellite and surface observations of fuel conditions in the form of the Fire Potential Index, to estimate two aspects of fire danger: 1) the probability that a 1 acre ignition will result in a 100+ acre fire, and 2) the probabilities of having at least 1, 2, 3, or 4 large fires within a Predictive Services Area in the forthcoming week. These statistical processes are the main thrust of the paper and are used to produce two daily national forecasts that are available from the U.S. Geological Survey, Earth Resources Observation and Science Center and via the Wildland Fire Assessment System. A validation study of our forecasts for the 2013 fire season demonstrated good agreement between observed and forecasted values.

  14. Multi-scalar influence of weather and climate on very large-fires in the Eastern United States

    Treesearch

    John T. Abatzoglou; Renaud Barbero; Crystal A. Kolden; Katherine C. Hegewisch; Narasimhan K. Larkin; Harry Podschwit

    2014-01-01

    A majority of area burned in the Eastern United States (EUS) results from a limited number of exceptionally large wildfires. Relationships between climatic conditions and the occurrence of very large-fires (VLF) in the EUS were examined using composite and climate-niche analyses that consider atmospheric factors across inter-annual, sub-seasonal and synoptic temporal...

  15. Large-scale patterns of forest fire occurrence in the Conterminous United States and Alaska, 2001-08

    Treesearch

    Kevin M. Potter

    2012-01-01

    Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...

  16. Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2009

    Treesearch

    Kevin M. Potter

    2013-01-01

    Wildland fire represents an important ecological mechanism in many forest ecosystems. It shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant evolutionary force (Bond and Keeley 2005). At the same time, fire outside the historic range of frequency and intensity can have extensive economic and...

  17. Chapter 3 - Large-scale patterns of forest fire occurrence in the conterminous United States, Alaska and Hawaii, 2016

    Treesearch

    Kevin M. Potter

    2018-01-01

    As a pervasive disturbance agent operating at many spatial and temporal scales, wildland fire is a key abiotic factor affecting forest health both positively and negatively. In some ecosystems, for example, wildland fires have been essential for regulating processes that maintain forest health (Lundquist and others 2011). Wildland fire is an important ecological...

  18. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA.

    PubMed

    Mietkiewicz, Nathan; Kulakowski, Dominik

    2016-12-01

    Extensive outbreaks of bark beetles have killed trees across millions of hectares of forests and woodlands in western North America. These outbreaks have led to spirited scientific, public, and policy debates about consequential increases in fire risk, especially in the wildland-urban interface (WUI), where homes and communities are at particular risk from wildfires. At the same time, large wildfires have become more frequent across this region. Widespread expectations that outbreaks increase extent, severity, and/or frequency of wildfires are based partly on visible and dramatic changes in foliar moisture content and other fuel properties following outbreaks, as well as associated modeling projections. A competing explanation is that increasing wildfires are driven primarily by climatic extremes, which are becoming more common with climate change. However, the relative importance of bark beetle outbreaks vs. climate on fire occurrence has not been empirically examined across very large areas and remains poorly understood. The most extensive outbreaks of tree-killing insects across the western United States have been of mountain pine beetle (MPB; Dendroctonus ponderosae), which have killed trees over >650,000 km 2 , mostly in forests dominated by lodgepole pine (Pinus contorta). We show that outbreaks of MPB in lodgepole pine forests of the western United States have been less important than climatic variability for the occurrence of large fires over the past 29 years. In lodgepole pine forests in general, as well as those in the WUI, occurrence of large fires was determined primarily by current and antecedent high temperatures and low precipitation but was unaffected by preceding outbreaks. Trends of increasing co-occurrence of wildfires and outbreaks are due to a common climatic driver rather than interactions between these disturbances. Reducing wildfire risk hinges on addressing the underlying climatic drivers rather than treating beetle-affected forests. © 2016 by the Ecological Society of America.

  19. Influence of fire on dead woody material in forests of California and southwestern Oregon

    Treesearch

    Carl N. Skinner

    2002-01-01

    The frequent occurrence of fire in most forested areas of California and southwestern Oregon before this century has been well established. Likewise, the importance of dead woody material to various wildlife species as snags and downed logs has been well documented. It is unlikely that much large woody material survived fire long enough to decompose fully in fire...

  20. Frequency of dry east winds over northwest Oregon and southwest Washington.

    Treesearch

    Owen P. Cramer

    1957-01-01

    There is a close relation between occurrences of severe easterly winds and large forest fires in northwest Oregon and southwest Washington. With the east winds comes the dreaded combination of low humidity and high wind that in the past has whipped small fires into conflagrations such as the Tillamook fire of 1933 and the fire that burned Bandon in 1936. These easterly...

  1. Effects of Climate and Fuels Management on Wildfire Occurrence, Size, Severity and Emissions in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Fites, J. A.; Keyser, A.

    2015-12-01

    Annual wildfire burned area in federally managed Sierra Nevada forests has increased by more than 10,000 ha per decade since the early 1970s. At the same time, recent years have seen some extremely large fires compared to the historical record, with significant areas of moderate to high severity fire (e.g., McNally 2002, Rim 2013, King 2014 fires). Changes to fuels and fire regimes due to fire suppression and land use, as well as warming temperatures and the occurrence of drought, are thought to be significant factors contributing to increased risks of large, severe fires in Sierra Nevada forests. Over 70% of the vegetated area in federally managed forests in the Sierra Nevada is classified as having altered fuels and fire regimes, while average annual temperature in the Sierra Nevada has been above the long term mean for all but four years in the past two decades. As climate is expected to continue warming for decades to come, we explored fuels management scenarios as the primary tools available to modify risks of large, severe wildfires. We developed experimental statistical models of fire occurrence, fire size, and high severity burned area, to explore the interaction between climate and altered fuels conditions. These models were applied to historical climate conditions, a sample of future climate projections, and to both current fuels conditions and a range of scenarios for fuels treatments. Emissions from wildfires were estimated using the Fire Inventory from the National Center for Atmospheric Research. Our models project that average annual burned area in the Sierra Nevada will more than double by mid-century. Similarly, particulate and other pollution emissions from Sierra Nevada wildfires are projected to more than double, even if future fire severity does not change. Fuels treatment scenarios significantly reduced simulated future burned area and emissions below untreated projections. High severity burned area responded to both climate and fuels treatments. A sensitivity analysis indicated that in areas where the fraction of highly altered fuels is high, successfully restoring fuels to prehistoric conditions could more than compensate for expected climate change effects on fire severity by mid-century.

  2. Regional variation in fire weather controls the reported occurrence of Scottish wildfires

    PubMed Central

    Legg, Colin J.

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2. PMID:27833814

  3. Regional variation in fire weather controls the reported occurrence of Scottish wildfires.

    PubMed

    Davies, G Matt; Legg, Colin J

    2016-01-01

    Fire is widely used as a traditional habitat management tool in Scotland, but wildfires pose a significant and growing threat. The financial costs of fighting wildfires are significant and severe wildfires can have substantial environmental impacts. Due to the intermittent occurrence of severe fire seasons, Scotland, and the UK as a whole, remain somewhat unprepared. Scotland currently lacks any form of Fire Danger Rating system that could inform managers and the Fire and Rescue Services (FRS) of periods when there is a risk of increased of fire activity. We aimed evaluate the potential to use outputs from the Canadian Fire Weather Index system (FWI system) to forecast periods of increased fire risk and the potential for ignitions to turn into large wildfires. We collated four and a half years of wildfire data from the Scottish FRS and examined patterns in wildfire occurrence within different regions, seasons, between urban and rural locations and according to FWI system outputs. We used a variety of techniques, including Mahalanobis distances, percentile analysis and Thiel-Sen regression, to scope the best performing FWI system codes and indices. Logistic regression showed significant differences in fire activity between regions, seasons and between urban and rural locations. The Fine Fuel Moisture Code and the Initial Spread Index did a tolerable job of modelling the probability of fire occurrence but further research on fuel moisture dynamics may provide substantial improvements. Overall our results suggest it would be prudent to ready resources and avoid managed burning when FFMC > 75 and/or ISI > 2.

  4. Assessing fire emissions from tropical savanna and forests of central Brazil

    Treesearch

    Philip J. Riggan; James A. Brass; Robert N. Lockwood

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the...

  5. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. He; Stephen R. Shifley

    2008-01-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of...

  6. Drought, multi-seasonal climate, and wildfire in northern New Mexico

    USGS Publications Warehouse

    Margolis, Ellis; Woodhouse, Connie A.; Swetnam, Thomas W.

    2017-01-01

    Wildfire is increasingly a concern in the USA, where 10 million acres burned in 2015. Climate is a primary driver of wildfire, and understanding fire-climate relationships is crucial for informing fire management and modeling the effects of climate change on fire. In the southwestern USA, fire-climate relationships have been informed by tree-ring data that extend centuries prior to the onset of fire exclusion in the late 1800s. Variability in cool-season precipitation has been linked to fire occurrence, but the effects of the summer North American monsoon on fire are less understood, as are the effects of climate on fire seasonality. We use a new set of reconstructions for cool-season (October–April) and monsoon-season (July–August) moisture conditions along with a large new fire scar dataset to examine relationships between multi-seasonal climate variability, fire extent, and fire seasonality in the Jemez Mountains, New Mexico (1599–1899 CE). Results suggest that large fires burning in all seasons are strongly influenced by the current year cool-season moisture, but fires burning mid-summer to fall are also influenced by monsoon moisture. Wet conditions several years prior to the fire year during the cool season, and to a lesser extent during the monsoon season, are also important for spring through late-summer fires. Persistent cool-season drought longer than 3 years may inhibit fires due to the lack of moisture to replenish surface fuels. This suggests that fuels may become increasingly limiting for fire occurrence in semi-arid regions that are projected to become drier with climate change.

  7. Mapping fire probability and severity in a Mediterranean area using different weather and fuel moisture scenarios

    NASA Astrophysics Data System (ADS)

    Arca, B.; Salis, M.; Bacciu, V.; Duce, P.; Pellizzaro, G.; Ventura, A.; Spano, D.

    2009-04-01

    Although in many countries lightning is the main cause of ignition, in the Mediterranean Basin the forest fires are predominantly ignited by arson, or by human negligence. The fire season peaks coincide with extreme weather conditions (mainly strong winds, hot temperatures, low atmospheric water vapour content) and high tourist presence. Many works reported that in the Mediterranean Basin the projected impacts of climate change will cause greater weather variability and extreme weather conditions, with drier and hotter summers and heat waves. At long-term scale, climate changes could affect the fuel load and the dead/live fuel ratio, and therefore could change the vegetation flammability. At short-time scale, the increase of extreme weather events could directly affect fuel water status, and it could increase large fire occurrence. In this context, detecting the areas characterized by both high probability of large fire occurrence and high fire severity could represent an important component of the fire management planning. In this work we compared several fire probability and severity maps (fire occurrence, rate of spread, fireline intensity, flame length) obtained for a study area located in North Sardinia, Italy, using FlamMap simulator (USDA Forest Service, Missoula). FlamMap computes the potential fire behaviour characteristics over a defined landscape for given weather, wind and fuel moisture data. Different weather and fuel moisture scenarios were tested to predict the potential impact of climate changes on fire parameters. The study area, characterized by a mosaic of urban areas, protected areas, and other areas subject to anthropogenic disturbances, is mainly composed by fire-prone Mediterranean maquis. The input themes needed to run FlamMap were input as grid of 10 meters; the wind data, obtained using a computational fluid-dynamic model, were inserted as gridded file, with a resolution of 50 m. The analysis revealed high fire probability and severity in most of the areas, and therefore a high potential danger. The FlamMap outputs and the derived fire probability maps can be used in decision support systems for fire spread and behaviour and for fire danger assessment with actual and future fire regimes.

  8. Assessment of multi-wildfire occurrence data for machine learning based risk modelling

    NASA Astrophysics Data System (ADS)

    Lim, C. H.; Kim, M.; Kim, S. J.; Yoo, S.; Lee, W. K.

    2017-12-01

    The occurrence of East Asian wildfires is mainly caused by human-activities, but the extreme drought increased due to the climate change caused wildfires and they spread to large-scale fires. Accurate occurrence location data is required for modelling wildfire probability and risk. In South Korea, occurrence data surveyed through KFS (Korea Forest Service) and MODIS (MODerate-resolution Imaging Spectroradiometer) satellite-based active fire data can be utilized. In this study, two sorts of wildfire occurrence data were applied to select suitable occurrence data for machine learning based wildfire risk modelling. MaxEnt (Maximum Entropy) model based on machine learning is used for wildfire risk modelling, and two types of occurrence data and socio-economic and climate-environment data are applied to modelling. In the results with KFS survey based data, the low relationship was shown with climate-environmental factors, and the uncertainty of coordinate information appeared. The MODIS-based active fire data were found outside the forests, and there were a lot of spots that did not match the actual wildfires. In order to utilize MODIS-based active fire data, it was necessary to extract forest area and utilize only high-confidence level data. In KFS data, it was necessary to separate the analysis according to the damage scale to improve the modelling accuracy. Ultimately, it is considered to be the best way to simulate the wildfire risk by constructing more accurate information by combining two sorts of wildfire occurrence data.

  9. Large-Scale Patterns of Forest Fire Occurrence in the Conterminous United States and Alaska, 2010

    Treesearch

    Kevin M. Potter

    2013-01-01

    Free-burning fire has been a constant ecological presence on the American landscape, the expression of which has changed as new climates, peoples and land uses have become predominant (Pyne 2010). It is an important ecological mechanism that shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant...

  10. Fire ecology and bird populations in eastern deciduous forests

    Treesearch

    Vanessa L. Artman; Todd F. Hutchinson; Jeffrey D. Brawn; Jeffrey D. Brawn

    2005-01-01

    Eastern deciduous forests are located across the central portion of eastern North America and provide habitat for a wide diversity of bird species. The occurrence of fi re in the region has been associated with the presence of humans for over 10,000 yr. While pre-European fire regimes are poorly understood, fire is widely thought to have promoted and maintained large...

  11. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].

    PubMed

    Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi

    2017-01-01

    The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.

  12. Normalized burn ratios link fire severity with patterns of avian occurrence

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.; Klein, Rob; McKerrow, Alexa

    2016-01-01

    ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.MethodsWe identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat™ imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.ResultsAgreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.ConclusionsDNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.

  13. Chapter 3 - Large-scale patterns of forest fire occurrence in the conterminous United States and Alaska, 2011.

    Treesearch

    Kevin M. Potter

    2014-01-01

    Free-burning fire has been a constant ecological presence on the American landscape, the expression of which has changed as new climates, peoples, and land uses have become predominant (Pyne 2010). It is an important ecological mechanism that shapes the distributions of species, maintains the structure and function of fire-prone communities, and is a significant...

  14. Fire occurrence and tussock size modulate facilitation by Ampelodesmos mauritanicus

    NASA Astrophysics Data System (ADS)

    Incerti, Guido; Giordano, Daniele; Stinca, Adriano; Senatore, Mauro; Termolino, Pasquale; Mazzoleni, Stefano; Bonanomi, Giuliano

    2013-05-01

    Facilitation has been reported for a wide range of plant communities, with evidence of interactions between protégé and nurse plants shifting during their ontogenetic cycles. This study showed that large Ampelodesmos mauritanicus tussocks can act as nurse for different species, but only after fire occurrence. Large tussocks are typically composed by an external belt of living tillers surrounding dead standing tillers in the inner area, thus being arranged as a “ring” shape. A low plant diversity in unburned sites, dominated by intact Ampelodesmos tussocks, was related to the intense aboveground competition due to space physical limitation by standing tillers, as well as to the reduction of light availability at ground level. In contrast, after burning, tussocks resprouted only in their external belts, leaving empty inner areas. During post-fire recovery, several species (e.g. Plantago spp., Trifolium spp., Carlina spp.) recolonize the bare soil among different tussocks. On the other hand, a moss (Funaria hygrometrica) and several herbaceous and woody plants (e.g. Spartium junceum, Calicotome villosa, Quercus pubescens subsp. pubescens) were selectively distributed within the ash-full central areas of burned Ampelodesmos tussocks. In summary, the study reported evidence of changing prevalence in the interplay of competition and facilitation effects between small and large Ampelodesmos tussocks, respectively. These results suggest a broad significance of the interactions between fire occurrence and ontogenetic phases of the dominant species in affecting the restoration dynamics of natural plant communities.

  15. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery

    Treesearch

    Michael C. Wimberly; Matthew J. Reilly

    2007-01-01

    Relatively little is known about the disturbance ecology of large wildfires in the southern Appalachians. The occurrence of a 4000-ha wildfire in the Linville Gorge Wilderness area in western North Carolina has provided a rare opportunity to study a large fire with a range of severities. The objectives of this study were to 1) assess the potential for using multi-...

  16. Assessing the risk of ignition in the Russian far east within a modeling framework of fire threat.

    PubMed

    Loboda, Tatiana V; Csiszar, Ivan A

    2007-04-01

    The forests of high biological importance in the Russian Far East (RFE) have been experiencing increasing pressure from growing demands for natural resources under the changing economy of post-Soviet Russia. This pressure is further amplified by the rising threat of large and catastrophic fire occurrence, which threatens both the resources and the economic potential of the region. In this paper we introduce a conceptual Fire Threat Model (FTM) and use it to provide quantitative assessment of the risk of ignition in the Russian Far East. The remotely sensed data driven FTM is aimed at evaluating potential wildland fire occurrence and its impact and recovery potential for a given resource. This model is intended for use by resource managers to assist in assessing current levels of fire threat to a given resource, projecting the changes in fire threat under changing climate and land use, and evaluating the efficiency of various management approaches aimed at minimizing the fire impact. Risk of ignition (one of the major uncertainties within fire threat modeling) was analyzed using the MODIS active fire product. The risk of ignition in the RFE is shown to be highly variable in spatial and temporal domains. However, the number of ignition points is not directly proportional to the amount of fire occurrence in the area. Fire ignitions in the RFE are strongly linked to anthropogenic activity (transportation routes, settlements, and land use). An increase in the number of fire ignitions during summer months could be attributed to (1) disruption of the summer monsoons and subsequent changes in fire weather and (2) an increase in natural sources of fire ignitions.

  17. Modeling fire occurrence as a function of landscape

    NASA Astrophysics Data System (ADS)

    Loboda, T. V.; Carroll, M.; DiMiceli, C.

    2011-12-01

    Wildland fire is a prominent component of ecosystem functioning worldwide. Nearly all ecosystems experience the impact of naturally occurring or anthropogenically driven fire. Here, we present a spatially explicit and regionally parameterized Fire Occurrence Model (FOM) aimed at developing fire occurrence estimates at landscape and regional scales. The model provides spatially explicit scenarios of fire occurrence based on the available records from fire management agencies, satellite observations, and auxiliary geospatial data sets. Fire occurrence is modeled as a function of the risk of ignition, potential fire behavior, and fire weather using internal regression tree-driven algorithms and empirically established, regionally derived relationships between fire occurrence, fire behavior, and fire weather. The FOM presents a flexible modeling structure with a set of internal globally available default geospatial independent and dependent variables. However, the flexible modeling environment adapts to ingest a variable number, resolution, and content of inputs provided by the user to supplement or replace the default parameters to improve the model's predictive capability. A Southern California FOM instance (SC FOM) was developed using satellite assessments of fire activity from a suite of Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data, Monitoring Trends in Burn Severity fire perimeters, and auxiliary geospatial information including land use and ownership, utilities, transportation routes, and the Remote Automated Weather Station data records. The model was parameterized based on satellite data acquired between 2001 and 2009 and fire management fire perimeters available prior to 2009. SC FOM predictive capabilities were assessed using observed fire occurrence available from the MODIS active fire product during 2010. The results show that SC FOM provides a realistic estimate of fire occurrence at the landscape level: the fraction of area impacted by fire from the total available area within a given value of the Fire Occurrence Index (FOI) increased from 9.e-06 at FOI < 3 to 28.e-06 at 25 < FOI <= 28. Additionally, the model has revealed a new important relationship between fire occurrence, anthropogenic activity, and fire weather. Data analysis has demonstrated that human activity can alter the expected weather/fire occurrence relationships and result in considerable modifications of fire regimes contrary to the assumed ecological parameters. Specifically, between 2001 and 2009 over 50% of total fire impacted area burned during the low fire danger conditions (Canadian Fire Weather Index < 5). These findings and the FOM capabilities offer a new theoretical construct and an advanced tool for assessing the potential impacts of climate changes on fire regimes, particularly within landscapes which are impacted strongly by human activities. Future development of the FOM will focus on ingesting and internal downscaling of climate variables produced by General or Regional Circulation Models to develop scenarios of potential future change in fire occurrence under the influence of projected climate change at the appropriate regional or landscape scales.

  18. Risk for large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2015-08-01

    The target of this work was to assess the impact of projected climate change on the number of large forest fires (over 10 ha fires) and burned area in Finland. For this purpose, we utilized a strong relationship between fire occurrence and the Canadian fire weather index (FWI) during 1996-2014. We used daily data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. Our results also reveal substantial inter-model variability in the rate of the projected increase in forest-fire danger. We moreover showed that the majority of large fires occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is more important cause of fires.

  19. Climate-Driven Risk of Large Fire Occurrence in the Western United States, 1500 to 2003

    NASA Astrophysics Data System (ADS)

    Crockett, J.; Westerling, A. L.

    2017-12-01

    Spatially comprehensive fire climatology has provided managers with tools to understand thecauses and consequences of large forest wildfires, but a paleoclimate context is necessary foranticipating the trajectory of future climate-fire relationships. Although accumulated charcoalrecords and tree scars have been utilized in high resolution, regional fire reconstructions, there isuncertainty as to how current climate-fire relationships of the western United States (WUS) fitwithin the natural long-term variability. While contemporary PDSI falls within the naturalvariability of the past, contemporary temperatures skew higher. Here, we develop a WUSfire reconstruction by applying climate-fire-topography model built on the 1972 to 2003 periodto the past 500 years, validated by recently updated fire-scar histories from WUS forests. Theresultant narrative provides insight into changing climate-fire relationships during extendedperiods of high aridity and temperature, providing land managers with historical precedent toeffectively anticipate disturbances during future climate change.

  20. Wildfire patterns and landscape changes in Mediterranean oak woodlands.

    PubMed

    Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P

    2015-12-01

    Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Contribution of human, climate and biophysical drivers to the spatial distribution of wildfires in a French Mediterranean area: where do wildfires start and spread?

    NASA Astrophysics Data System (ADS)

    Ruffault, Julien; Mouillot, Florent; Moebius, Flavia

    2013-04-01

    Understanding the contribution of biophysical and human drivers to the spatial distribution of fires at regional scale has many ecological and economical implications in a context of on-going global changes. However these fire drivers often interact in complex ways, such that disentangling and assessing the relative contribution of human vs. biophysical factors remains a major challenge. Indeed, the identification of biophysical conditions that promote fires are confused by the inherent stochasticity in fire occurrences and fire spread on the one hand and, by the influence of human factors -through both fire ignition and suppression - on the other. Moreover, different factors may drive fire ignition and fire spread, in such a way that the areas with the highest density of ignitions may not coincide with those where large fires occur. In the present study, we investigated the drivers of fires ignition and spread in a Mediterranean area of southern France. We used a 17 years fire database (the PROMETHEE database from 1989-2006) combined with a set of 8 explanatory variables describing the spatial pattern in ignitions, vegetation and fire weather. We first isolated the weather conditions affecting the fire occurrence and their spread using a statistical model of the weather/fuel water status for each fire event.. The results of these statistical models were used to map the fire weather in terms of average number of days with suitable conditions for burning. Then, we used Boosted regression trees (BRT) models to assess the relative importance of the different variables on the distribution of wildfire with different sizes and to assess the relationship between each variables and fire occurrence and spread probabilities. We found that human activities explained up to 50 % of the spatial distribution of fire ignitions (SDI). The distribution of large fire was chiefly explained by fuel characteristics (about 40%). Surprisingly, the weather indices explained only 20 % of the SDI and its contribution does no vary according to the size of considered fire events. These results suggest that changes in fuel characteristics and human settlements/ activities, rather than weather conditions are the most likely to modify the future distribution of fires in this Mediterranean area. These conclusions provide useful information on the scenarios that could arise from the interaction of changes in climate and land cover for the Mediterranean area in the near future.

  2. [Prediction model of human-caused fire occurrence in the boreal forest of northern China].

    PubMed

    Guo, Fu-tao; Su, Zhang-wen; Wang, Guang-yu; Wang, Qiang; Sun, Long; Yang, Ting-ting

    2015-07-01

    The Chinese boreal forest is an important forest resource in China. However, it has been suffering serious disturbances of forest fires, which were caused equally by natural disasters (e.g., lightning) and human activities. The literature on human-caused fires indicates that climate, topography, vegetation, and human infrastructure are significant factors that impact the occurrence and spread of human-caused fires. But the studies on human-caused fires in the boreal forest of northern China are limited and less comprehensive. This paper applied the spatial analysis tools in ArcGIS 10.0 and Logistic regression model to investigate the driving factors of human-caused fires. Our data included the geographic coordinates of human-caused fires, climate factors during year 1974-2009, topographic information, and forest map. The results indicated that distance to railway (x1) and average relative humidity (x2) significantly impacted the occurrence of human-caused fire in the study area. The logistic model for predicting the fire occurrence probability was formulated as P= 1/[11+e-(3.026-0.00011x1-0.047x2)] with an accuracy rate of 80%. The above model was used to predict the monthly fire occurrence during the fire season of 2015 based on the HADCM2 future weather data. The prediction results showed that the high risk of human-caused fire occurrence concentrated in the months of April, May, June and August, while April and May had higher risk of fire occurrence than other months. According to the spatial distribution of possibility of fire occurrence, the high fire risk zones were mainly in the west and southwest of Tahe, where the major railways were located.

  3. Modeling forest fire occurrences using count-data mixed models in Qiannan autonomous prefecture of Guizhou province in China.

    PubMed

    Xiao, Yundan; Zhang, Xiongqing; Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence.

  4. Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China

    PubMed Central

    Ji, Ping

    2015-01-01

    Forest fires can cause catastrophic damage on natural resources. In the meantime, it can also bring serious economic and social impacts. Meteorological factors play a critical role in establishing conditions favorable for a forest fire. Effective prediction of forest fire occurrences could prevent or minimize losses. This paper uses count data models to analyze fire occurrence data which is likely to be dispersed and frequently contain an excess of zero counts (no fire occurrence). Such data have commonly been analyzed using count data models such as a Poisson model, negative binomial model (NB), zero-inflated models, and hurdle models. Data we used in this paper is collected from Qiannan autonomous prefecture of Guizhou province in China. Using the fire occurrence data from January to April (spring fire season) for the years 1996 through 2007, we introduced random effects to the count data models. In this study, the results indicated that the prediction achieved through NB model provided a more compelling and credible inferential basis for fitting actual forest fire occurrence, and mixed-effects model performed better than corresponding fixed-effects model in forest fire forecasting. Besides, among all meteorological factors, we found that relative humidity and wind speed is highly correlated with fire occurrence. PMID:25790309

  5. Estimation of wildfire size and risk changes due to fuels treatments

    USGS Publications Warehouse

    Cochrane, M.A.; Moran, C.J.; Wimberly, M.C.; Baer, A.D.; Finney, M.A.; Beckendorf, K.L.; Eidenshink, J.; Zhu, Z.

    2012-01-01

    Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of more than a million hectares of land, quantitative assessments of the effectiveness of existing fuel treatments at reducing the size of actual wildfires or how they might alter the risk of burning across landscapes are currently lacking. Here, we present a method for estimating spatial probabilities of burning as a function of extant fuels treatments for any wildland fire-affected landscape. We examined the landscape effects of more than 72 000 ha of wildland fuel treatments involved in 14 large wildfires that burned 314 000 ha of forests in nine US states between 2002 and 2010. Fuels treatments altered the probability of fire occurrence both positively and negatively across landscapes, effectively redistributing fire risk by changing surface fire spread rates and reducing the likelihood of crowning behaviour. Trade offs are created between formation of large areas with low probabilities of increased burning and smaller, well-defined regions with reduced fire risk.

  6. Vegetation clearance distances to prevent wildland fire caused damage to telecommunication and power transmission infrastructure (2)

    Treesearch

    B. W. Butler; T. Wallace; J. Hogge

    2015-01-01

    Towers and poles supporting power transmission and telecommunication lines have collapsed due to heating from wildland fires. Such occurrences have led to interruptions in power or communication in large municipal areas with associated social and political implications as well as increased immediate danger to humans. Vegetation clearance standards for overhead...

  7. Vegetation clearance distances to prevent wildland fire caused damage to telecommunication and power transmission infrastructure

    Treesearch

    B. W. Butler; J. Webb; J. Hogge; T. Wallace

    2015-01-01

    Towers and poles supporting power transmission and telecommunication lines have collapsed due to heating from wildland fires. Such occurrences have led to interruptions in power or communication in large municipal areas with associated social and political implications as well as increased immediate danger to humans. Unfortunately, no studies address the question of...

  8. Forest Fire Occurrence in Southern Counties, 1966-1975

    Treesearch

    M.L. Doolittle

    1977-01-01

    Forest fire occurrence data for individual protection units generally are unavailable outside particular state organization. Number of fires, area protected and fire occurrence rate (fires per 1,000,000 acres) from 1966 to 1975, are presented in tables for the 993 counties under protection in 13 southern states. These data are compared with data for the preceeding...

  9. Using satellite fire detection to calibrate components of the fire weather index system in Malaysia and Indonesia.

    PubMed

    Dymond, Caren C; Field, Robert D; Roswintiarti, Orbita; Guswanto

    2005-04-01

    Vegetation fires have become an increasing problem in tropical environments as a consequence of socioeconomic pressures and subsequent land-use change. In response, fire management systems are being developed. This study set out to determine the relationships between two aspects of the fire problems in western Indonesia and Malaysia, and two components of the Canadian Forest Fire Weather Index System. The study resulted in a new method for calibrating components of fire danger rating systems based on satellite fire detection (hotspot) data. Once the climate was accounted for, a problematic number of fires were related to high levels of the Fine Fuel Moisture Code. The relationship between climate, Fine Fuel Moisture Code, and hotspot occurrence was used to calibrate Fire Occurrence Potential classes where low accounted for 3% of the fires from 1994 to 2000, moderate accounted for 25%, high 26%, and extreme 38%. Further problems arise when there are large clusters of fires burning that may consume valuable land or produce local smoke pollution. Once the climate was taken into account, the hotspot load (number and size of clusters of hotspots) was related to the Fire Weather Index. The relationship between climate, Fire Weather Index, and hotspot load was used to calibrate Fire Load Potential classes. Low Fire Load Potential conditions (75% of an average year) corresponded with 24% of the hotspot clusters, which had an average size of 30% of the largest cluster. In contrast, extreme Fire Load Potential conditions (1% of an average year) corresponded with 30% of the hotspot clusters, which had an average size of 58% of the maximum. Both Fire Occurrence Potential and Fire Load Potential calibrations were successfully validated with data from 2001. This study showed that when ground measurements are not available, fire statistics derived from satellite fire detection archives can be reliably used for calibration. More importantly, as a result of this work, Malaysia and Indonesia have two new sources of information to initiate fire prevention and suppression activities.

  10. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liu, Zhihua; Liang, Yu

    2014-09-15

    Fire significantly affects species composition, structure, and ecosystem processes in boreal forests. Our study objective was to identify the relative effects of climate, vegetation, topography, and human activity on fire occurrence in Chinese boreal forest landscapes. We used historical fire ignition for 1966-2005 and the statistical method of Kernel Density Estimation to derive fire-occurrence density (number of fires/km(2)). The Random Forest models were used to quantify the relative effects of climate, vegetation, topography, and human activity on fire-occurrence density. Our results showed that fire-occurrence density tended to be spatially clustered. Human-caused fire occurrence was highly clustered at the southern part of the region, where human population density is high (comprising about 75% of the area's population). In the north-central areas where elevations are the highest in the region and less densely populated, lightning-caused fires were clustered. Climate factors (e.g., fine fuel and duff moisture content) were important at both regional and landscape scales. Human activity factors (e.g., distance to nearest settlement and road) were secondary to climate as the primary fire occurrence factors. Predictions of fire regimes often assume a strong linkage between climate and fire but usually with less emphasis placed on the effects of local factors such as human activity. We therefore suggest that accurate forecasting of fire regime should include human influences such as those measured by forest proximity to roads and human settlements. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Modeling the disturbance of vegetation by fire in the boreal forest

    NASA Astrophysics Data System (ADS)

    Crevoisier, C.; Shevliakova, E.; Gloor, M.; Wirth, C.

    2006-12-01

    Boreal regions are important for the global carbon cycle because it is the largest forested area on earth and there are large belowground carbon pools (~1000 PgC). It is also a region where largest warming trends on the globe over the last decades have been observed and changes of the land ecosystems have already started. A major factor that determines the structure and carbon dynamics of the boreal forest is fire. As fire frequency depends strongly on climate, increased fire occurrence and related losses to the atmosphere are likely, and have already been reported. In order to predict with more confidence the occurrence and effect of fire on forest ecosystems in the boreal region, we have developed a fire model that takes advantage of the large on-ground, remote sensing and climate data from Canada, Alaska and Siberia. This prognostic model estimates the monthly burned area in a grid cell of 2 by 2.5 degrees, from four climate (air temperature, air relative humidity, precipitation and soil water content) and one human-related (road density) variables. Parameters are estimated using a Markov Chain Monte Carlo method applied to a dataset of observed burned area for Canada. The model is able to reproduce the seasonality of fire, the interannual variability, as well as the location of fire events, not only for Canada (on which data the model is based), but also for Siberia and Alaska, for which the results compare well with remote sensing observation, and are in the range of various current estimations of burned area. The fire model is being implemented in LM3V, the new vegetation model of GFDL earth system model, in order to make prediction of future fire behavior in boreal regions, and the related disturbance of the vegetation and carbon emissions.

  12. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Treesearch

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  13. AmeriFlux US-Ced Cedar Bridge

    DOE Data Explorer

    Clark, Ken [USDA Forest Service

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Ced Cedar Bridge. Site Description - Wildfires and prescribed fires are a common occurrence in the NJ Pinelands. Prior to a 1995 nonstand replacing wildfire, the stand was last burned in the very large wildfire in 1963. Plow lines were installed for fire control in December of 2007, followed by a prescribed burns in 2008 and 2013, conducted by the New Jersey Forest Fire Service. Pine looper defoliated the stand in 1998, and Gypsy moth defoliated the understory and deciduos oaks in 2007. Pitch Pines are largely unaffected by defoliation by Gypsy moth.

  14. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  15. The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing

    USGS Publications Warehouse

    Rocha, Adrian V.; Loranty, Michael M.; Higuera, Phil E.; Mack, Michelle C.; Hu, Feng Sheng; Jones, Benjamin M.; Breen, Amy L.; Rastetter, Edward B.; Goetz, Scott J.; Shaver, Gus R.

    2012-01-01

    Recent large and frequent fires above the Alaskan arctic circle have forced a reassessment of the ecological and climatological importance of fire in arctic tundra ecosystems. Here we provide a general overview of the occurrence, distribution, and ecological and climate implications of Alaskan tundra fires over the past half-century using spatially explicit climate, fire, vegetation and remote sensing datasets for Alaska. Our analyses highlight the importance of vegetation biomass and environmental conditions in regulating tundra burning, and demonstrate that most tundra ecosystems are susceptible to burn, providing the environmental conditions are right. Over the past two decades, fire perimeters above the arctic circle have increased in size and importance, especially on the North Slope, indicating that future wildfire projections should account for fire regime changes in these regions. Remote sensing data and a literature review of thaw depths indicate that tundra fires have both positive and negative implications for climatic feedbacks including a decadal increase in albedo radiative forcing immediately after a fire, a stimulation of surface greenness and a persistent long-term (>10 year) increase in thaw depth. In order to address the future impact of tundra fires on climate, a better understanding of the control of tundra fire occurrence as well as the long-term impacts on ecosystem carbon cycling will be required.

  16. Western Spruce Budworm Outbreaks Did Not Increase Fire Risk over the Last Three Centuries: A Dendrochronological Analysis of Inter-Disturbance Synergism

    PubMed Central

    Flower, Aquila; G. Gavin, Daniel; Heyerdahl, Emily K.; Parsons, Russell A.; Cohn, Gregory M.

    2014-01-01

    Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk. PMID:25526633

  17. Western spruce budworm outbreaks did not increase fire risk over the last three centuries: a dendrochronological analysis of inter-disturbance synergism.

    PubMed

    Flower, Aquila; Gavin, Daniel G; Heyerdahl, Emily K; Parsons, Russell A; Cohn, Gregory M

    2014-01-01

    Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used dendrochronological methods to reconstruct defoliator outbreaks and fire occurrence at ten sites along a longitudinal transect running from central Oregon to western Montana. We assessed synergism between disturbance types, analyzed long-term changes in disturbance dynamics, and compared these disturbance histories with dendroclimatological moisture availability records to quantify the influence of moisture availability on disturbances. After approximately 1890, fires were largely absent and defoliator outbreaks became longer-lasting, more frequent, and more synchronous at our sites. Fires were more likely to occur during warm-dry years, while outbreaks were most likely to begin near the end of warm-dry periods. Our results show no discernible impact of defoliation events on subsequent fire risk. Any effect from the addition of fuels during defoliation events appears to be too small to detect given the overriding influence of climatic variability. We therefore propose that if there is any relationship between the two disturbances, it is a subtle synergistic relationship wherein climate determines the probability of occurrence of each disturbance type, and each disturbance type damps the severity, but does not alter the probability of occurrence, of the other disturbance type over long time scales. Although both disturbance types may increase in frequency or extent in response to future warming, our records show no precedent that western spruce budworm outbreaks will increase future fire risk.

  18. Predicting the occurrence of wildfires with binary structured additive regression models.

    PubMed

    Ríos-Pena, Laura; Kneib, Thomas; Cadarso-Suárez, Carmen; Marey-Pérez, Manuel

    2017-02-01

    Wildfires are one of the main environmental problems facing societies today, and in the case of Galicia (north-west Spain), they are the main cause of forest destruction. This paper used binary structured additive regression (STAR) for modelling the occurrence of wildfires in Galicia. Binary STAR models are a recent contribution to the classical logistic regression and binary generalized additive models. Their main advantage lies in their flexibility for modelling non-linear effects, while simultaneously incorporating spatial and temporal variables directly, thereby making it possible to reveal possible relationships among the variables considered. The results showed that the occurrence of wildfires depends on many covariates which display variable behaviour across space and time, and which largely determine the likelihood of ignition of a fire. The joint possibility of working on spatial scales with a resolution of 1 × 1 km cells and mapping predictions in a colour range makes STAR models a useful tool for plotting and predicting wildfire occurrence. Lastly, it will facilitate the development of fire behaviour models, which can be invaluable when it comes to drawing up fire-prevention and firefighting plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Modelling long-term fire occurrence factors in Spain by accounting for local variations with geographically weighted regression

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; Chuvieco, E.; Koutsias, N.

    2013-02-01

    Humans are responsible for most forest fires in Europe, but anthropogenic factors behind these events are still poorly understood. We tried to identify the driving factors of human-caused fire occurrence in Spain by applying two different statistical approaches. Firstly, assuming stationary processes for the whole country, we created models based on multiple linear regression and binary logistic regression to find factors associated with fire density and fire presence, respectively. Secondly, we used geographically weighted regression (GWR) to better understand and explore the local and regional variations of those factors behind human-caused fire occurrence. The number of human-caused fires occurring within a 25-yr period (1983-2007) was computed for each of the 7638 Spanish mainland municipalities, creating a binary variable (fire/no fire) to develop logistic models, and a continuous variable (fire density) to build standard linear regression models. A total of 383 657 fires were registered in the study dataset. The binary logistic model, which estimates the probability of having/not having a fire, successfully classified 76.4% of the total observations, while the ordinary least squares (OLS) regression model explained 53% of the variation of the fire density patterns (adjusted R2 = 0.53). Both approaches confirmed, in addition to forest and climatic variables, the importance of variables related with agrarian activities, land abandonment, rural population exodus and developmental processes as underlying factors of fire occurrence. For the GWR approach, the explanatory power of the GW linear model for fire density using an adaptive bandwidth increased from 53% to 67%, while for the GW logistic model the correctly classified observations improved only slightly, from 76.4% to 78.4%, but significantly according to the corrected Akaike Information Criterion (AICc), from 3451.19 to 3321.19. The results from GWR indicated a significant spatial variation in the local parameter estimates for all the variables and an important reduction of the autocorrelation in the residuals of the GW linear model. Despite the fitting improvement of local models, GW regression, more than an alternative to "global" or traditional regression modelling, seems to be a valuable complement to explore the non-stationary relationships between the response variable and the explanatory variables. The synergy of global and local modelling provides insights into fire management and policy and helps further our understanding of the fire problem over large areas while at the same time recognizing its local character.

  20. Effects of Lightning and Other Meteorological Factors on Fire Activity in the North American Boreal Forest: Implications for Fire Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.

    2010-01-01

    The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts-

  1. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006

    Treesearch

    Gregory K. Dillon; Zachery A. Holden; Penelope Morgan; Michael A. Crimmins; Emily K. Heyerdahl; Charles H. Luce

    2011-01-01

    Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn...

  2. Towards the dynamic prediction of wildfire danger. Modeling temporal scenarios of fire-occurrence in Northeast Spain

    NASA Astrophysics Data System (ADS)

    Martín, Yago; Rodrigues, Marcos

    2017-04-01

    Up to date models of human-caused ignition probability have commonly been developed from a static or structural point of view, regardless of the time cycles that drive human behavior or environmental conditions. However, human drivers mostly have a temporal dimension, and fuel conditions are subjected to temporal changes as well, which is why a historical/temporal perspective is often required. Previous studies in the region suggest that human driving factors of wildfires have undergone significant shifts in inter-annual occurrence probability models, thus varying over time. On the other hand, an increasing role of environmental conditions has also been reported. This research comprehensively analyzes the intra-annual dimension of fire occurrence and fire-triggering factors using NW Spain as a test area, moving one-step forward towards achieving more accurate predictions, to ultimately develop dynamic predictive models. To this end, several intra-annual presence-only models have been calibrated, exploring seasonal variations of environmental conditions and short-term cycles of human activity (working- vs non-working days). Models were developed from accurately geolocated fire data in the 2008-2012 period, and GIS and remote sensing (MOD1A2 and MOD16) information . Specifically, 8 occurrence data subsets (scenarios) were constructed by splitting fire records into 4 seasons (winter, spring, summer and autumn) then separating each season into 2 new categories (working and non-working days). This allows analyzing the temporal variation of socioeconomic (urban- and agricultural-interfaces, transport and road networks, and human settlements) and environmental (fuel conditions) factors associated with occurrence. Models were calibrated applying the Maximum Entropy algorithm (MaxEnt). The MaxEnt algorithm was selected as it is the most widespread approach to deal with presence-only data, as may be the case of fire occurrence. The dependent variable for each scenario was created on a conceptual framework which assumed that there were no true cases of fire absence. Model accuracy was assessed using a cross-validation k-fold procedure, whereas variable importance was addressed using a jacknife approach combined with AUC estimation. Results reported model performances around 0.8 AUC in all temporal scenarios. In addition, large variability was observed in the contribution of explanatory factors, with accessibility variables and fuel conditions as key factors along models. Overall, we believe our approach is reliable enough to derive dynamic predictions of human-caused fire occurrence probability. To our knowledge, this is the first attempt to combine presence-only models based on XY located fire data, with remote sensing information and intra-annual scenarios also including cycles of human activity.

  3. The tragic fire event of June 17, 2017 in Portugal: the meteorological perspective

    NASA Astrophysics Data System (ADS)

    DaCamara, C.; Trigo, R. M.; Pinto, M. M.; Nunes, S. A.; Trigo, I. F.

    2017-12-01

    Like Mediterranean Europe, Portugal is prone to the occurrence of large and destructive wildfires that have serious impacts at the socio-economic and ecological levels. A tragic example is the episode of June 17, 2017 at Pedrógão Grande-Góis, with an official death toll of 64 people, almost 500 buildings destroyed and a continuous patch of more than 42 thousand hectares burned in one week. Climate and meteorology play a determinant role in the onset and spreading of large wildfire events in the Mediterranean basin. Two main kinds of atmospheric mechanisms may be identified. At the regional and the seasonal levels, a wetter-than usual winter followed by a warmer and drier than average spring makes the landscape prone to the occurrence of large fires. At the local and the daily scales, extreme weather conditions favor the ignition and spread of wildfires. This dual role may be assessed by means of indices of meteorological fire danger like FWI and DSR. We show that the severity of the 2017 fire season was correctly anticipated by means of a statistical model based on cumulated values of DSR starting on April 1. We then show that extreme danger of fire on June 17 was correctly forecasted for the area of Pedrógão Grande-Góis, based on values of estimated probability of exceedance of daily released energy by active fires. These two statistical approaches are on the basis of a website developed at Instituto Dom Luiz (IDL) at the Faculty of Sciences of the University of Lisbon. With more than 400 registered users, the website relies on products disseminated by the Land Surface Analysis Satellite Application Facility (LSA SAF), coordinated by IPMA, the Portuguese Weather Service.

  4. Burned areas for the conterminous U.S. from 1984 through 2015, an automated approach using dense time-series of Landsat data

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Vanderhoof, M.; Beal, Y. J. G.; Takacs, J. D.; Schmidt, G.; Falgout, J.; Brunner, N. M.; Caldwell, M. K.; Picotte, J. J.; Howard, S. M.; Stitt, S.; Dwyer, J. L.

    2016-12-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, many existing fire datasets in the United States are known to be incomplete and that complicates efforts to understand burned area patterns and introduces a large amount of uncertainty in efforts to identify their driving processes and impacts. Because of this, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables. To help meet this need, we developed a novel algorithm that automatically identifies burned areas in temporally-dense time series of Landsat image stacks to produce Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Outputs of the BAECV algorithm, generated for the conterminous United States for 1984 through 2015, consist of burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability, burn classification, and the Julian date of the first Landsat scene a burn was observed. The BAECV products document patterns of fire occurrence that are not well characterized by existing fire datasets in the United States. We anticipate that these data could help to better understand past patterns of fire occurrence, the drivers that created them, and the impacts fires had on natural and human systems.

  5. Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest

    USGS Publications Warehouse

    Barrett, Kirsten; Loboda, Tatiana; McGuire, A. David; Genet, Hélène; Hoy, Elizabeth; Kasischke, Eric

    2016-01-01

    Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we employ some of these new data to analyze variations in fire activity by developing three explanatory models to examine the occurrence of (1) seasonal periods of elevated fire activity using the number of MODIS active fire detections data set (MCD14DL) within an 11-day moving window, (2) unburned patches within a burned area using the Monitoring Trends in Burn Severity fire severity product, and (3) short-to-moderate interval (<60 yr) fires using areas of burned area overlap in the Alaska Large Fire Database. Explanatory variables for these three models included dynamic variables that can change over the course of the fire season, such as weather and burn date, as well as static variables that remain constant over a fire season, such as topography, drainage, vegetation cover, and fire history. We found that seasonal periods of high fire activity are associated with both seasonal timing and aggregated weather conditions, as well as the landscape composition of areas that are burning. Important static inputs to the model of seasonal fire activity indicate that when fire weather conditions are suitable, areas that typically resist fire (e.g., deciduous stands) may become more vulnerable to burning and therefore less effective as fire breaks. The occurrence of short-to-moderate interval fires appears to be primarily driven by weather conditions, as these were the only relevant explanatory variables in the model. The unique importance of weather in explaining short-to-moderate interval fires implies that fire return intervals (FRIs) will be sensitive to projected climate changes in the region. Unburned patches occur most often in younger stands, which may be related to a greater deciduous fraction of vegetation as well as lower fuel loads compared with mature stands. The fraction of unburned patches may therefore increase in response to decreasing FRIs and increased deciduousness in the region, or these may decrease if fire weather conditions become more severe.

  6. Assessing the Impact of Fires on Air Quality in the Southeastern U.S. with a Unified Prescribed Burning Database

    NASA Astrophysics Data System (ADS)

    Garcia Menendez, F.; Afrin, S.

    2017-12-01

    Prescribed fires are used extensively across the Southeastern United States and are a major source of air pollutant emissions in the region. These land management projects can adversely impact local and regional air quality. However, the emissions and air pollution impacts of prescribed fires remain largely uncertain. Satellite data, commonly used to estimate fire emissions, is often unable to detect the low-intensity, short-lived prescribed fires characteristic of the region. Additionally, existing ground-based prescribed burn records are incomplete, inconsistent and scattered. Here we present a new unified database of prescribed fire occurrence and characteristics developed from systemized digital burn permit records collected from public and private land management organizations in the Southeast. This bottom-up fire database is used to analyze the correlation between high PM2.5 concentrations measured by monitoring networks in southern states and prescribed fire occurrence at varying spatial and temporal scales. We show significant associations between ground-based records of prescribed fire activity and the observational air quality record at numerous sites by applying regression analysis and controlling confounding effects of meteorology. Furthermore, we demonstrate that the response of measured PM2.5 concentrations to prescribed fire estimates based on burning permits is significantly stronger than their response to satellite fire observations from MODIS (moderate-resolution imaging spectroradiometer) and geostationary satellites or prescribed fire emissions data in the National Emissions Inventory. These results show the importance of bottom-up smoke emissions estimates and reflect the need for improved ground-based fire data to advance air quality impacts assessments focused on prescribed burning.

  7. A neutral model of low-severity fire regimes

    Treesearch

    Don McKenzie; Amy E. Hessl

    2008-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire occurrence is a stochastic process, an understanding of baseline variability is necessary in order to identify constraints on surface fire regimes. With a suitable null, or neutral, model, characteristics of natural fire regimes estimated...

  8. Self-extinguishing behavior of kerosene spray fire in a completely enclosed compartment

    NASA Astrophysics Data System (ADS)

    Wang, Changjian; Guo, Jin; Yan, Weigang; Lu, Shouxiang

    2013-10-01

    The self-extinguishing behavior of kerosene spray fire was investigated in a completely enclosed compartment with the size of 3 m × 3 m × 3.4 m. The spray was generated by locating one BETE nozzle at the center of the bottom wall. A series of spray fire videos were obtained by changing BETE nozzle type and injecting pressure. The results show that spray fire undergoes four stages: the growth stage, the quasi-steady stage, the stretch stage and the self-extinguishing stage. Consumption of large quantities of oxygen causes spray fire to first be stretched and then quench. In this process, fire base migrates away from spray region and leads to the emergence of ghosting fire. Ghosting fire promotes the instability of spray fire and large fluctuation of its height, which provides help to its self-extinguishing. With increasing the injecting pressure or the nozzle diameter, the self-extinguishing time decreases. It is found that the self-extinguishing time is approximately in inverse relation with injecting flow rate. Additionally, we also observed the occurrence of two-phase deflagration just after ignition, and it accelerates the spray fire growth and induces a larger fire height than the following quasi-steady spray fire. The deflagration turns stronger with increasing the injecting pressure.

  9. Occurrence of select perfluoroalkyl substances at U.S. Air Force aqueous film-forming foam release sites other than fire-training areas: Field-validation of critical fate and transport properties.

    PubMed

    Anderson, R Hunter; Long, G Cornell; Porter, Ronald C; Anderson, Janet K

    2016-05-01

    The use of aqueous film-forming foam (AFFF) to extinguish hydrocarbon-based fires is recognized as a significant source of environmental poly- and perfluoroalkyl substances (PFASs). Although the occurrence of select PFASs in soil and groundwater at former fire-training areas (FTAs) at military installations operable since 1970 has been consistently confirmed, studies reporting the occurrence of PFASs at other AFFF-impacted sites (e.g. emergency response locations, AFFF lagoons, hangar-related AFFF storage tanks and pipelines, and fire station testing and maintenance areas) are largely missing from the literature. Further, studies have mostly focused on a single site (i.e., FTAs at military installations) and, thus, lack a comparison of sites with diverse AFFF release history. Therefore, the purpose of this investigation was to evaluate select PFAS occurrence at non-FTA sites on active U.S. Air Force installations with historic AFFF use of varying magnitude. Concentrations of fifteen perfluoroalkyl acids (PFAAs) and perfluorooctane sulfonamide (PFOSA), an important PFOS precursor, were measured from several hundred samples among multiple media (i.e., surface soil, subsurface soil, sediment, surface water, and groundwater) collected from forty AFFF-impacted sites across ten installations between March and September 2014, representing one of the most comprehensive datasets on environmental PFAS occurrence to date. Differences in detection frequencies and observed concentrations due to AFFF release volume are presented along with rigorous data analyses that quantitatively demonstrate phase-dependent (i.e., solid-phase vs aqueous-phase) differences in the chemical signature as a function of carbon chain-length and in situ PFOS (and to a slightly lesser extent PFHxS) formation, presumably due to precursor biotransformation. Published by Elsevier Ltd.

  10. Santa Ana Winds and Fire Regimes of Southern California National Forests

    NASA Astrophysics Data System (ADS)

    Bendix, J.

    2015-12-01

    In Southern California, it has long been understood that foehn-type Santa Ana winds are an important factor in the occurrence of large wildfires. Although a variety of anecdotal observations and statistical analyses have confirmed the importance of these winds to wildfire, particularly in the Fall months when Santa Ana winds overlap with dry fuels from summer drought, many of the details of those winds' impacts on fire remain obscure. This paper uses data regarding individual fires from California's Fire and Resource Assessment Program database and a compilation of Santa Ana Wind days (SAW days) published by Abatzoglou et al. in 2013 to assess the relationship of Santa Ana winds to fire occurrence and size in Southern California. The analysis included 474 fires larger than 20 ha (~50 acres).that burned on the four Southern California national forests (Angeles, Cleveland, Los Padres and San Bernardino) between 1948 and 2010. Overall, just 10.3% of the fires started on SAW days, and 14.4% experienced at least one SAW day between start and containment dates. The impact of Santa Ana winds is greater, however, with increasing fire size. For fires > 4000 ha, 18.4% began on SAW days, with 30.4% experiencing at least one SAW day before containment. And 20% of fires > 20000 ha started on SAW days, with 50% including one or more SAW days. Fires beginning on SAW days were larger, with a mean of 6239 ha compared to 2150 ha for fires that began on non-SAW days. Only 2% of the fires that began on SAW days were started by lightning, suggesting that the impact of Santa Ana winds on Southern California fire regimes may be enhanced by humans' role in ignitions.

  11. Characterization of fire regime in Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.

    2012-12-01

    In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and a set of parametric and not parametric statistical tests were used to analyze the fire-weather relationships. Results showed a high inter- and intra-annual variability, also considering the different type of affected vegetation. As for other Mediterranean areas, a smaller number of large fires caused a high proportion of burned area. Land cover greatly influenced fire occurrence and fire size distribution across the landscape. Furthermore, fire activity (number of fires and area burned) showed significant correlations with weather variables, especially summer precipitation and wind, which seemed to drive the fire seasons and the fire propagation, respectively.

  12. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China.

    PubMed

    Ye, Tao; Wang, Yao; Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990-2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management.

  13. Fire mosaics and reptile conservation in a fire-prone region.

    PubMed

    Nimmo, D G; Kelly, L T; Spence-Bailey, L M; Watson, S J; Taylor, R S; Clarke, M F; Bennett, A F

    2013-04-01

    Fire influences the distribution of fauna in terrestrial biomes throughout the world. Use of fire to achieve a mosaic of vegetation in different stages of succession after burning (i.e., patch-mosaic burning) is a dominant conservation practice in many regions. Despite this, knowledge of how the spatial attributes of vegetation mosaics created by fire affect fauna is extremely scarce, and it is unclear what kind of mosaic land managers should aim to achieve. We selected 28 landscapes (each 12.6 km(2) ) that varied in the spatial extent and diversity of vegetation succession after fire in a 104,000 km(2) area in the semiarid region of southeastern Australia. We surveyed for reptiles at 280 sites nested within the 28 landscapes. The landscape-level occurrence of 9 of the 22 species modeled was associated with the spatial extent of vegetation age classes created by fire. Biogeographic context and the extent of a vegetation type influenced 7 and 4 species, respectively. No species were associated with the diversity of vegetation ages within a landscape. Negative relations between reptile occurrence and both extent of recently burned vegetation (≤10 years postfire, n = 6) and long unburned vegetation (>35 years postfire, n = 4) suggested that a coarse-grained mosaic of areas (e.g. >1000 ha) of midsuccessional vegetation (11-35 years postfire) may support the fire-sensitive reptile species we modeled. This age class coincides with a peak in spinifex cover, a keystone structure for reptiles in semiarid and arid Australia. Maintaining over the long term a coarse-grained mosaic of large areas of midsuccessional vegetation in mallee ecosystems will need to be balanced against the short-term negative effects of large fires on many reptile species and a documented preference by species from other taxonomic groups, particularly birds, for older vegetation. © 2012 Society for Conservation Biology.

  14. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    NASA Astrophysics Data System (ADS)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  15. 36 CFR 294.21 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Has a geographic feature that aids in creating an effective fire break, such as a road or a ridge top; or (3) Is in condition class 3 as defined by HFRA. Fire hazard and risk: The fuel conditions on the landscape. Fire occurrence: The probability of wildfire ignition based on historic fire occurrence records...

  16. 36 CFR 294.21 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Has a geographic feature that aids in creating an effective fire break, such as a road or a ridge top; or (3) Is in condition class 3 as defined by HFRA. Fire hazard and risk: The fuel conditions on the landscape. Fire occurrence: The probability of wildfire ignition based on historic fire occurrence records...

  17. 36 CFR 294.21 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Has a geographic feature that aids in creating an effective fire break, such as a road or a ridge top; or (3) Is in condition class 3 as defined by HFRA. Fire hazard and risk: The fuel conditions on the landscape. Fire occurrence: The probability of wildfire ignition based on historic fire occurrence records...

  18. Late Holocene influence of societies on the fire regime in southern Québec temperate forests

    NASA Astrophysics Data System (ADS)

    Blarquez, Olivier; Talbot, Julie; Paillard, Jordan; Lapointe-Elmrabti, Lyna; Pelletier, Nicolas; Gates St-Pierre, Christian

    2018-01-01

    Climatic change that occurred during the Holocene is often recognized as the main factor for explaining fire dynamics, while the influence of human societies is less apparent. In eastern North America, human influence on fire regime before European settlement has been debated, mainly because of a paucity of sites and paleoecological techniques that can distinguish human influences unequivocally from climate. We applied a multiproxy analysis to a 12 000-year-old paleoecological sequence from a site in the vicinity of known settlement areas that were occupied over more than 7000 years. From this analysis, we were able detect the human influence on the fire regime before and after European colonization. Fire occurrence and fire return intervals (FRI) were based on analysis of sedimentary charcoals at a high temporal and spatial resolution. Fire occurrence was then compared to vegetation that was reconstructed from pollen analysis, from population densities deduced from archeological site dating, from demographic and technological models, and from climate reconstructed using general circulation models and ice-core isotopes. Holocene mean FRI was short (164 ± 134 years) and associated with small charcoal peaks that were likely indicative of surface fires affecting small areas. After 1500 BP, large vegetation changes and human demographic growth that was demonstrated through increased settlement evidence likely caused the observed FRI lengthening (301 ± 201 years), which occurred without significant changes in climate. Permanent settlement by Europeans in the area around 1800 AD was followed by a substantial demographic increase, leading to the establishment of Gatineau, Hull and Ottawa. This trend was accompanied by a shift in the charcoal record toward anthropogenic particles that were reflective of fossil fuel burning and an apparent absence of wood charcoal that would be indicative of complete fire suppression. An anthropogenic fire regime that was characterized by severe and large fires and long fire-return intervals occurred more than 1000 years ago, concomitant with the spread of native agriculture, which intensified with European colonization over the past two centuries.

  19. Anthropogenic and Climatic Influence on Vegetation Fires in Peatland of Insular Southeast Asia

    NASA Astrophysics Data System (ADS)

    Liew, S.; Miettinen, J.; Salinas Cortijo, S. V.

    2011-12-01

    Fire is traditionally used as a tool in land clearing by farmers and shifting cultivators in Southeast Asia. However, the small scale clearing of land is increasingly being replaced by modern large-scale conversion of forests into plantations/agricultural land, usually also by fires. Fires get out of control in periods of extreme drought, especially during the El Nino periods, resulting in severe episodes of transboundary air pollution in the form of smoke haze. We use the MODIS active fires product (hotspots) to establish correlations between the temporal and spatial patterns of vegetation fires with climatic variables, land cover change and soil type (peat or non-peat) in the western part of Insular Southeast Asia for a decade from 2001 to 2010. Fire occurrence exhibits a negative correlation with rainfall, and is more severe overall during the El-Nino periods. However, not all regions are equally affected by El-Nino. In Southern Sumatra and Southern Borneo the correlation with El-Nino is high. However, fires in some regions such as the peatland in Riau, Jambi and Sarawak do not appear to be influenced by El-Nino. These regions are also experiencing rapid conversion of forest to large scale plantations.

  20. Historical, observed, and modeled wildfire severity in montane forests of the Colorado Front Range.

    PubMed

    Sherriff, Rosemary L; Platt, Rutherford V; Veblen, Thomas T; Schoennagel, Tania L; Gartner, Meredith H

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions.

  1. Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range

    PubMed Central

    Sherriff, Rosemary L.; Platt, Rutherford V.; Veblen, Thomas T.; Schoennagel, Tania L.; Gartner, Meredith H.

    2014-01-01

    Large recent fires in the western U.S. have contributed to a perception that fire exclusion has caused an unprecedented occurrence of uncharacteristically severe fires, particularly in lower elevation dry pine forests. In the absence of long-term fire severity records, it is unknown how short-term trends compare to fire severity prior to 20th century fire exclusion. This study compares historical (i.e. pre-1920) fire severity with observed modern fire severity and modeled potential fire behavior across 564,413 ha of montane forests of the Colorado Front Range. We used forest structure and tree-ring fire history to characterize fire severity at 232 sites and then modeled historical fire-severity across the entire study area using biophysical variables. Eighteen (7.8%) sites were characterized by low-severity fires and 214 (92.2%) by mixed-severity fires (i.e. including moderate- or high-severity fires). Difference in area of historical versus observed low-severity fire within nine recent (post-1999) large fire perimeters was greatest in lower montane forests. Only 16% of the study area recorded a shift from historical low severity to a higher potential for crown fire today. An historical fire regime of more frequent and low-severity fires at low elevations (<2260 m) supports a convergence of management goals of ecological restoration and fire hazard mitigation in those habitats. In contrast, at higher elevations mixed-severity fires were predominant historically and continue to be so today. Thinning treatments at higher elevations of the montane zone will not return the fire regime to an historic low-severity regime, and are of questionable effectiveness in preventing severe wildfires. Based on present-day fuels, predicted fire behavior under extreme fire weather continues to indicate a mixed-severity fire regime throughout most of the montane forest zone. Recent large wildfires in the Front Range are not fundamentally different from similar events that occurred historically under extreme weather conditions. PMID:25251103

  2. Identifying the location of fire refuges in wet forest ecosystems.

    PubMed

    Berry, Laurence E; Driscoll, Don A; Stein, John A; Blanchard, Wade; Banks, Sam C; Bradstock, Ross A; Lindenmayer, David B

    2015-12-01

    The increasing frequency of large, high-severity fires threatens the survival of old-growth specialist fauna in fire-prone forests. Within topographically diverse montane forests, areas that experience less severe or fewer fires compared with those prevailing in the landscape may present unique resource opportunities enabling old-growth specialist fauna to survive. Statistical landscape models that identify the extent and distribution of potential fire refuges may assist land managers to incorporate these areas into relevant biodiversity conservation strategies. We used a case study in an Australian wet montane forest to establish how predictive fire simulation models can be interpreted as management tools to identify potential fire refuges. We examined the relationship between the probability of fire refuge occurrence as predicted by an existing fire refuge model and fire severity experienced during a large wildfire. We also examined the extent to which local fire severity was influenced by fire severity in the surrounding landscape. We used a combination of statistical approaches, including generalized linear modeling, variogram analysis, and receiver operating characteristics and area under the curve analysis (ROC AUC). We found that the amount of unburned habitat and the factors influencing the retention and location of fire refuges varied with fire conditions. Under extreme fire conditions, the distribution of fire refuges was limited to only extremely sheltered, fire-resistant regions of the landscape. During extreme fire conditions, fire severity patterns were largely determined by stochastic factors that could not be predicted by the model. When fire conditions were moderate, physical landscape properties appeared to mediate fire severity distribution. Our study demonstrates that land managers can employ predictive landscape fire models to identify the broader climatic and spatial domain within which fire refuges are likely to be present. It is essential that within these envelopes, forest is protected from logging, roads, and other developments so that the ecological processes related to the establishment and subsequent use of fire refuges are maintained.

  3. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China.

    PubMed

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-02-23

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R² values of 0.686, 0.716, 0.633, respectively ( p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention.

  4. The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China

    PubMed Central

    Li, Yiping; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-01-01

    Grassland, as one of the most important ecosystems on Earth, experiences fires that affect the local ecology, economy and society. Notably, grassland fires occur frequently each year in northeastern China. Fire occurrence is a complex problem with multiple causes, such as natural factors, human activities and land use. This paper investigates the disruptive effects of grassland fire in the northeastern Inner Mongolia Autonomous Region of China. In this study, we relied on thermal anomaly detection from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to identify fire occurrences, and land use data were acquired by Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM). We discussed the relationship between land use and the spatial distribution of grassland fires. The results showed that the impact of land use on grassland fires was significant. Spatially, approximately 80% of grassland fires were clustered within 10 km of cultivated land, and grassland fires generally occurred in areas of intense human activity. The correlation between the spatial distribution of grassland fires and the land use degree in 2000, 2005 and 2010 was high, with R2 values of 0.686, 0.716, 0.633, respectively (p < 0.01). These results highlight the importance of the relationship between land use and grassland fire occurrence in the northeastern Inner Mongolia Autonomous Region. This study provides significance for local fire management and prevention. PMID:28241476

  5. Factor contribution to fire occurrence, size, and burn probability in a subtropical coniferous forest in East China

    PubMed Central

    Guo, Zhixing; Li, Yijia

    2017-01-01

    The contribution of factors including fuel type, fire-weather conditions, topography and human activity to fire regime attributes (e.g. fire occurrence, size distribution and severity) has been intensively discussed. The relative importance of those factors in explaining the burn probability (BP), which is critical in terms of fire risk management, has been insufficiently addressed. Focusing on a subtropical coniferous forest with strong human disturbance in East China, our main objective was to evaluate and compare the relative importance of fuel composition, topography, and human activity for fire occurrence, size and BP. Local BP distribution was derived with stochastic fire simulation approach using detailed historical fire data (1990–2010) and forest-resource survey results, based on which our factor contribution analysis was carried out. Our results indicated that fuel composition had the greatest relative importance in explaining fire occurrence and size, but human activity explained most of the variance in BP. This implies that the influence of human activity is amplified through the process of overlapping repeated ignition and spreading events. This result emphasizes the status of strong human disturbance in local fire processes. It further confirms the need for a holistic perspective on factor contribution to fire likelihood, rather than focusing on individual fire regime attributes, for the purpose of fire risk management. PMID:28207837

  6. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Science of Prescribed Fire: to Enable a Different Kind of Control

    Treesearch

    Timothy E. Paysen; Marcia G. Narog; Jack D. Cohen

    1998-01-01

    A paradigm shift from fire suppression to fire suppression and prescription requires a shift in emphasis from simply controlling wildfire occurrence and spread to one that includes controlling characteristics of prescribed fire. Suppression focuses on preventing unwanted effects that might result from wildfire occurrence. Prescription promotes desired effects by...

  8. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  9. Deriving forest fire ignition risk with biogeochemical process modelling.

    PubMed

    Eastaugh, C S; Hasenauer, H

    2014-05-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's 'soil water' and 'labile litter carbon' variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness.

  10. Deriving forest fire ignition risk with biogeochemical process modelling☆

    PubMed Central

    Eastaugh, C.S.; Hasenauer, H.

    2014-01-01

    Climate impacts the growth of trees and also affects disturbance regimes such as wildfire frequency. The European Alps have warmed considerably over the past half-century, but incomplete records make it difficult to definitively link alpine wildfire to climate change. Complicating this is the influence of forest composition and fuel loading on fire ignition risk, which is not considered by purely meteorological risk indices. Biogeochemical forest growth models track several variables that may be used as proxies for fire ignition risk. This study assesses the usefulness of the ecophysiological model BIOME-BGC's ‘soil water’ and ‘labile litter carbon’ variables in predicting fire ignition. A brief application case examines historic fire occurrence trends over pre-defined regions of Austria from 1960 to 2008. Results show that summer fire ignition risk is largely a function of low soil moisture, while winter fire ignitions are linked to the mass of volatile litter and atmospheric dryness. PMID:26109905

  11. Spatial and temporal variability in fire occurrence within the Las Bayas Forestry Reserve, Durango, Mexico

    Treesearch

    S. A. Drury; T. T. Veblen

    2008-01-01

    Patterns of fire occurrence within the Las Bayas Forestry Reserve, Mexico are analyzed in relation to variability in climate, topography, and human land-use. Significantly more fires with shorter fire return intervals occurred from 1900 to 1950 than from 1950 to 2001. However, the frequency of widespread fire years (25% filter) was unchanged over time, as widespread...

  12. Avian response to fire in pine–oak forests of Great Smoky Mountains National Park following decades of fire suppression

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.

  13. Utilizing multi-sensor fire detections to map fires in the United States

    USGS Publications Warehouse

    Howard, Stephen M.; Picotte, Joshua J.; Coan, Michael

    2014-01-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 “unknown” or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  14. Utilizing Multi-Sensor Fire Detections to Map Fires in the United States

    NASA Astrophysics Data System (ADS)

    Howard, S. M.; Picotte, J. J.; Coan, M. J.

    2014-11-01

    In 2006, the Monitoring Trends in Burn Severity (MTBS) project began a cooperative effort between the US Forest Service (USFS) and the U.S.Geological Survey (USGS) to map and assess burn severity all large fires that have occurred in the United States since 1984. Using Landsat imagery, MTBS is mandated to map wildfire and prescribed fire that meet specific size criteria: greater than 1000 acres in the west and 500 acres in the east, regardless of ownership. Relying mostly on federal and state fire occurrence records, over 15,300 individual fires have been mapped. While mapping recorded fires, an additional 2,700 "unknown" or undocumented fires were discovered and assessed. It has become apparent that there are perhaps thousands of undocumented fires in the US that are yet to be mapped. Fire occurrence records alone are inadequate if MTBS is to provide a comprehensive accounting of fire across the US. Additionally, the sheer number of fires to assess has overwhelmed current manual procedures. To address these problems, the National Aeronautics and Space Administration (NASA) Applied Sciences Program is helping to fund the efforts of the USGS and its MTBS partners (USFS, National Park Service) to develop, and implement a system to automatically identify fires using satellite data. In near real time, USGS will combine active fire satellite detections from MODIS, AVHRR and GOES satellites with Landsat acquisitions. Newly acquired Landsat imagery will be routinely scanned to identify freshly burned area pixels, derive an initial perimeter and tag the burned area with the satellite date and time of detection. Landsat imagery from the early archive will be scanned to identify undocumented fires. Additional automated fire assessment processes will be developed. The USGS will develop these processes using open source software packages in order to provide freely available tools to local land managers providing them with the capability to assess fires at the local level.

  15. Effects of a large wildfire on vegetation structure in a variable fire mosaic.

    PubMed

    Foster, C N; Barton, P S; Robinson, N M; MacGregor, C I; Lindenmayer, D B

    2017-12-01

    Management guidelines for many fire-prone ecosystems highlight the importance of maintaining a variable mosaic of fire histories for biodiversity conservation. Managers are encouraged to aim for fire mosaics that are temporally and spatially dynamic, include all successional states of vegetation, and also include variation in the underlying "invisible mosaic" of past fire frequencies, severities, and fire return intervals. However, establishing and maintaining variable mosaics in contemporary landscapes is subject to many challenges, one of which is deciding how the fire mosaic should be managed following the occurrence of large, unplanned wildfires. A key consideration for this decision is the extent to which the effects of previous fire history on vegetation and habitats persist after major wildfires, but this topic has rarely been investigated empirically. In this study, we tested to what extent a large wildfire interacted with previous fire history to affect the structure of forest, woodland, and heath vegetation in Booderee National Park in southeastern Australia. In 2003, a summer wildfire burned 49.5% of the park, increasing the extent of recently burned vegetation (<10 yr post-fire) to more than 72% of the park area. We tracked the recovery of vegetation structure for nine years following the wildfire and found that the strength and persistence of fire effects differed substantially between vegetation types. Vegetation structure was modified by wildfire in forest, woodland, and heath vegetation, but among-site variability in vegetation structure was reduced only by severe fire in woodland vegetation. There also were persistent legacy effects of the previous fire regime on some attributes of vegetation structure including forest ground and understorey cover, and woodland midstorey and overstorey cover. For example, woodland midstorey cover was greater on sites with higher fire frequency, irrespective of the severity of the 2003 wildfire. Our results show that even after a large, severe wildfire, underlying fire histories can contribute substantially to variation in vegetation structure. This highlights the importance of ensuring that efforts to reinstate variation in vegetation fire age after large wildfires do not inadvertently reduce variation in vegetation structure generated by the underlying invisible mosaic. © 2017 by the Ecological Society of America.

  16. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems.

    PubMed

    Jensen, Daniel; Reager, John T; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA's Gravity Recovery and Climate Experiment (GRACE) mission with the US Forest Service's historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25-degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This result is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship's utility for the future development of national-scale predictive capability.

  17. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems

    NASA Astrophysics Data System (ADS)

    Jensen, Daniel; Reager, John T.; Zajic, Brittany; Rousseau, Nick; Rodell, Matthew; Hinkley, Everett

    2018-01-01

    It is generally accepted that year-to-year variability in moisture conditions and drought are linked with increased wildfire occurrence. However, quantifying the sensitivity of wildfire to surface moisture state at seasonal lead-times has been challenging due to the absence of a long soil moisture record with the appropriate coverage and spatial resolution for continental-scale analysis. Here we apply model simulations of surface soil moisture that numerically assimilate observations from NASA’s Gravity Recovery and Climate Experiment (GRACE) mission with the USDA Forest Service’s historical Fire-Occurrence Database over the contiguous United States. We quantify the relationships between pre-fire-season soil moisture and subsequent-year wildfire occurrence by land-cover type and produce annual probable wildfire occurrence and burned area maps at 0.25 degree resolution. Cross-validated results generally indicate a higher occurrence of smaller fires when months preceding fire season are wet, while larger fires are more frequent when soils are dry. This is consistent with the concept of increased fuel accumulation under wet conditions in the pre-season. These results demonstrate the fundamental strength of the relationship between soil moisture and fire activity at long lead-times and are indicative of that relationship’s utility for the future development of national-scale predictive capability.

  18. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the Amazon rainforest.

    PubMed

    Nolte, Christoph; Agrawal, Arun

    2013-02-01

    Management-effectiveness scores are used widely by donors and implementers of conservation projects to prioritize, track, and evaluate investments in protected areas. However, there is little evidence that these scores actually reflect the capacity of protected areas to deliver conservation outcomes. We examined the relation between indicators of management effectiveness in protected areas and the effectiveness of protected areas in reducing fire occurrence in the Amazon rainforest. We used data collected with the Management Effectiveness Tracking Tool (METT) scorecard, adopted by some of the world's largest conservation organizations to track management characteristics believed to be crucial for protected-area effectiveness. We used the occurrence of forest fires from 2000 through 2010 as a measure of the effect of protected areas on undesired land-cover change in the Amazon basin. We used matching to compare the estimated effect of protected areas with low versus high METT scores on fire occurrence. We also estimated effects of individual protected areas on fire occurrence and explored the relation between these effects and METT scores. The relations between METT scores and effects of protected areas on fire occurrence were weak. Protected areas with higher METT scores in 2005 did not seem to have performed better than protected areas with lower METT scores at reducing fire occurrence over the last 10 years. Further research into the relations between management-effectiveness indicators and conservation outcomes in protected areas seems necessary, and our results show that the careful application of matching methods can be a suitable method for that purpose. ©2012 Society for Conservation Biology.

  19. [Research progress in post-fire debris flow].

    PubMed

    Di, Xue-ying; Tao, Yu-zhu

    2013-08-01

    The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.

  20. Trends in fire risk and burned area in Brazil in the 20th century

    NASA Astrophysics Data System (ADS)

    Silva, P.; Bastos, A.; DaCamara, C.; Libonati, R.

    2016-12-01

    Fire has a significant contribution to the global greenhouse gas emissions and vast ecological and climatic impacts. Worldwide, Brazil is one of the areas most affected by fire, which highly influences the state of the vegetation cover, the ecological diversity of the region and has significant consequences to the global CO2 balance [1]. Hence, with the increasing evidence of human induced climate change, it becomes essential to understand the present and future trends of fire risk in Brazil. Although a large number of fires in Brazil are anthropogenic, it has been shown that the burned area is mainly controlled by meteorological conditions [2], therefore being partially determined by fire risk. In this study we use a fire danger index specifically tailored for the Brazilian climate and biome characteristics, the MFDI developed by INPE, to assess the patterns and trends of fire risk in Brazil. The index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We test the sensitivity of the index to different climate reanalyses and evaluate the trends in fire risk in Brazil during the past four decades for different biomes. We further assess the link between the calculated fire risk and observed fire occurrence and burned area. Finally, we compare the results with fire risk simulated by a regional climate model (RCA4 forced by EC-Earth from CORDEX) in order to evaluate its suitability for future projections of fire risk and burned area. [1] Bowman, D. M. et al. Fire in the earth system. Science, v. 324, p. 481-484, 24 apr. 2009. [2] Libonati, R. et al. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 μm MODIS Imagery. Remote Sensing, v. 7, p. 15782-15803, 2015.

  1. Climate change projected fire weather sensitivity: CaliforniaSanta Ana wind occurrence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Norman L.; Schlegel, Nicole J.

    2006-01-01

    A new methodbased on global climate model pressuregradients was developed for identifying coastal high-wind fire weatherconditions, such as the Santa Ana Occurrence (SAO). Application of thismethod for determining southern California Santa Ana wind occurrenceresulted in a good correlation between derived large-scale SAOs andobserved offshore winds during periods of low humidity. The projectedchange in the number of SAOs was analyzed using two global climatemodels, one a low temperature sensitivity and the other amiddle-temperature sensitivity, both forced with low and high emissionscenarios, for three future time periods. This initial analysis showsconsistent shifts in SAO events from earlier (September-October) to later(November-December) in themore » season, suggesting that SAOs may significantlyincrease the extent of California coastal areas burned by wildfires, lossof life, and property.« less

  2. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. Healy; Stephen R. Shifley; Eric J. Gustafson

    2007-01-01

    The spatial pattern of forest fire locations is important in the study of the dynamics of fire disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported between 1970 and 2002 in the Missouri Ozark...

  3. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes

    NASA Astrophysics Data System (ADS)

    Williamson, G. J.; Bowman, D. M. J. S.; Price, O. F.; Henderson, S. B.; Johnston, F. H.

    2016-12-01

    Prescribed burning is used to reduce the occurrence, extent and severity of uncontrolled fires in many flammable landscapes. However, epidemiologic evidence of the human health impacts of landscape fire smoke emissions is shaping fire management practice through increasingly stringent environmental regulation and public health policy. An unresolved question, critical for sustainable fire management, concerns the comparative human health effects of smoke from wild and prescribed fires. Here we review current knowledge of the health effects of landscape fire emissions and consider the similarities and differences in smoke from wild and prescribed fires with respect to the typical combustion conditions and fuel properties, the quality and magnitude of air pollution emissions, and the potential for dispersion to large populations. We further examine the interactions between these considerations, and how they may shape the longer term smoke regimes to which populations are exposed. We identify numerous knowledge gaps and propose a conceptual framework that describes pathways to better understanding of the health trade-offs of prescribed and wildfire smoke regimes.

  4. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997.

    PubMed

    Huijnen, V; Wooster, M J; Kaiser, J W; Gaveau, D L A; Flemming, J; Parrington, M; Inness, A; Murdiyarso, D; Main, B; van Weele, M

    2016-05-31

    In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from these fires exceeded the fossil fuel CO2 release rate of the European Union (EU28) (8.9 Tg CO2 per day). Although seasonal fires are a frequent occurrence in the human modified landscapes found in Indonesia, the extent of the 2015 fires was greatly inflated by an extended drought period associated with a strong El Niño. We estimate carbon emissions from the 2015 fires to be the largest seen in maritime southeast Asia since those associated with the record breaking El Niño of 1997. Compared to that event, a much better constrained regional total carbon emission estimate can be made for the 2015 fires through the use of present-day satellite observations of the fire's radiative power output and atmospheric CO concentrations, processed using the modelling and assimilation framework of the Copernicus Atmosphere Monitoring Service (CAMS) and combined with unique in situ smoke measurements made on Kalimantan.

  5. Economic susceptibility of fire-prone landscapes in natural protected areas of the southern Andean Range.

    PubMed

    Molina, Juan Ramón; Moreno, Roberto; Castillo, Miguel; Rodríguez Y Silva, Francisco

    2018-04-01

    Large fires are the most important disturbances at landscape-level due to their ecological and socioeconomic impacts. This study aimed to develop an approach for the assessment of the socio-economic landscape susceptibility to fire. Our methodology focuses on the integration of economic components of landscape management based on contingent valuation method (CVM) and net-value change (NVC). This former component has been estimated using depreciation rates or changes on the number of arrivals to different natural protected areas after a large fire occurrence. Landscape susceptibility concept has been motivated by the need to assist fire prevention programs and environmental management. There was a remarkable variation in annual economic value attributed to each protected area based on the CVM scenario, ranging from 40,189-46,887$/year ("Tolhuaca National Park") to 241,000-341,953$/year ("Conguillio National Park"). We added landscape susceptibility using depreciation rates or tourist arrival decrease which varied from 2.04% (low fire intensity in "Tolhuaca National Park") to 76.67% (high fire intensity in "Conguillio National Park"). The integration of this approach and future studies about vegetation resilience should seek management strategies to increase economic efficiency in the fire prevention activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. PREDICTING RISKS OF UNCHARACTERISTIC WILDFIRES: APPLICATION OF THE RISK ASSESSMENT PROCESS

    EPA Science Inventory

    The U.S. Forest Service is struggling with a legacy of over 100 years of fire suppression on the country's national forest lands and an increasing occurrence of uncharacteristically large, intense wildfires. This paper reviews the risk assessment process and describes how it can...

  7. Assessing fire emissions from tropical savanna and forests of central Brazil

    NASA Technical Reports Server (NTRS)

    Riggan, Philip J.; Brass, James A.; Lockwood, Robert N.

    1993-01-01

    Wildfires in tropical forest and savanna are a strong source of trace gas and particulate emissions to the atmosphere, but estimates of the continental-scale impacts are limited by large uncertainties in the rates of fire occurrence and biomass combustion. Satellite-based remote sensing offers promise for characterizing fire physical properties and impacts on the environment, but currently available sensors saturate over high-radiance targets and provide only indications of regions and times at which fires are extensive and their areal rate of growing as recorded in ash layers. Here we describe an approach combining satellite- and aircraft-based remote sensing with in situ measurements of smoke to estimate emissions from central Brazil. These estimates will improve global accounting of radiation-absorbing gases and particulates that may be contributing to climate change and will provide strategic data for fire management.

  8. Quantitative assessment of building fire risk to life safety.

    PubMed

    Guanquan, Chu; Jinhua, Sun

    2008-06-01

    This article presents a quantitative risk assessment framework for evaluating fire risk to life safety. Fire risk is divided into two parts: probability and corresponding consequence of every fire scenario. The time-dependent event tree technique is used to analyze probable fire scenarios based on the effect of fire protection systems on fire spread and smoke movement. To obtain the variation of occurrence probability with time, Markov chain is combined with a time-dependent event tree for stochastic analysis on the occurrence probability of fire scenarios. To obtain consequences of every fire scenario, some uncertainties are considered in the risk analysis process. When calculating the onset time to untenable conditions, a range of fires are designed based on different fire growth rates, after which uncertainty of onset time to untenable conditions can be characterized by probability distribution. When calculating occupant evacuation time, occupant premovement time is considered as a probability distribution. Consequences of a fire scenario can be evaluated according to probability distribution of evacuation time and onset time of untenable conditions. Then, fire risk to life safety can be evaluated based on occurrence probability and consequences of every fire scenario. To express the risk assessment method in detail, a commercial building is presented as a case study. A discussion compares the assessment result of the case study with fire statistics.

  9. The influence of lightning activity and anthropogenic factors on large-scale characteristics of natural fires

    NASA Astrophysics Data System (ADS)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2017-01-01

    A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of lightning activity and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of lightning flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on lightning activity and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.

  10. An Evaluation of Historical Fire Occurrence, Drought and the El Niño Southern Oscillation in the Southcentral United States

    NASA Astrophysics Data System (ADS)

    Rooney, M.; Stambaugh, M. C.

    2016-12-01

    Wildfire occurrence in the forested ecosystems of the southcentral United States is driven by conditions of drought. Historically, fire intervals varied temporally and spatially - forced by climate, humans, and environmental conditions. Thus, proxy records are required to assess the relationships between fire occurrence, drought, and the El Niño Southern Oscillation (ENSO). Fire scar data from tree-rings are well-suited to assess historical fire regimes in this region, paired with reconstructions of drought and ENSO that have been developed from networks of ring-width chronologies across the United States. This study combines fire-scar data from twelve different sites in the southcentral United States, including two new fire-history reconstructions. Fire data incorporates 665 fires across Eastern Oklahoma and Northern Texas from 1637-2014. These robust reconstructions of post oak (Quercus stellata) evaluate the variability in fire activity and its association to drought and ENSO. Climate-explained growth variance in post-oak chronologies is strong in this region, providing powerful proxy information in the derived chronologies. In general, most fires occur during the La Niña portion of the ENSO cycle. Many severe fires correspond with drought, and results from super-posed epoch analysis suggest a significant relationship between fire event years and drought conditions in the full period of record. Analysis reveals differences in the relationships of fire, drought and ENSO through time, corresponding to changes in human settlement in the region. Understanding the spatial and temporal relationships that exist between fire occurrence, drought, and ENSO aid in quantifying disturbance characteristics and their associations to climate in the forested ecosystems of the southcentral United States.

  11. Past and future changes in Canadian boreal wildfire activity.

    PubMed

    Girardin, Martin P; Mudelsee, Manfred

    2008-03-01

    Climate change in Canadian boreal forests is usually associated with increased drought severity and fire activity. However, future fire activity could well be within the range of values experienced during the preindustrial period. In this study, we contrast 21st century forecasts of fire occurrence (FireOcc, number of large forest fires per year) in the southern part of the Boreal Shield, Canada, with the historical range of the past 240 years statistically reconstructed from tree-ring width data. First, a historical relationship between drought indices and FireOcc is developed over the calibration period 1959-1998. Next, together with seven tree-ring based drought reconstructions covering the last 240 years and simulations from the CGCM3 and ECHAM4 global climate models, the calibration model is used to estimate past (prior to 1959) and future (post 1999) FireOcc. Last, time-dependent changes in mean FireOcc and in the occurrence rate of extreme fire years are evaluated with the aid of advanced methods of statistical time series analysis. Results suggest that the increase in precipitation projected toward the end of the 21st century will be insufficient to compensate for increasing temperatures and will be insufficient to maintain potential evapotranspiration at current levels. Limited moisture availability would cause FireOcc to increase as well. But will future FireOcc exceed its historical range? The results obtained from our approach suggest high probabilities of seeing future FireOcc reach the upper limit of the historical range. Predictions, which are essentially weighed on northwestern Ontario and eastern boreal Manitoba, indicate that, by 2061-2100, typical FireOcc could increase by more than 34% when compared with the past two centuries. Increases in fire activity as projected by this study could negatively affect the implementation in the next century of forest management inspired by historical or natural disturbance dynamics. This approach is indeed feasible only if current and future fire activities are sufficiently low compared with the preindustrial fire activity, so a substitution of fire by forest management could occur without elevating the overall frequency of disturbance. Conceivable management options will likely have to be directed toward minimizing the adverse impacts of the increasing fire activity.

  12. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Wooster, M. J.; Kaiser, J. W.; Gaveau, D. L. A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van Weele, M.

    2016-05-01

    In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from these fires exceeded the fossil fuel CO2 release rate of the European Union (EU28) (8.9 Tg CO2 per day). Although seasonal fires are a frequent occurrence in the human modified landscapes found in Indonesia, the extent of the 2015 fires was greatly inflated by an extended drought period associated with a strong El Niño. We estimate carbon emissions from the 2015 fires to be the largest seen in maritime southeast Asia since those associated with the record breaking El Niño of 1997. Compared to that event, a much better constrained regional total carbon emission estimate can be made for the 2015 fires through the use of present-day satellite observations of the fire’s radiative power output and atmospheric CO concentrations, processed using the modelling and assimilation framework of the Copernicus Atmosphere Monitoring Service (CAMS) and combined with unique in situ smoke measurements made on Kalimantan.

  13. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997

    PubMed Central

    Huijnen, V.; Wooster, M. J.; Kaiser, J. W.; Gaveau, D. L. A.; Flemming, J.; Parrington, M.; Inness, A.; Murdiyarso, D.; Main, B.; van Weele, M.

    2016-01-01

    In September and October 2015 widespread forest and peatland fires burned over large parts of maritime southeast Asia, most notably Indonesia, releasing large amounts of terrestrially-stored carbon into the atmosphere, primarily in the form of CO2, CO and CH4. With a mean emission rate of 11.3 Tg CO2 per day during Sept-Oct 2015, emissions from these fires exceeded the fossil fuel CO2 release rate of the European Union (EU28) (8.9 Tg CO2 per day). Although seasonal fires are a frequent occurrence in the human modified landscapes found in Indonesia, the extent of the 2015 fires was greatly inflated by an extended drought period associated with a strong El Niño. We estimate carbon emissions from the 2015 fires to be the largest seen in maritime southeast Asia since those associated with the record breaking El Niño of 1997. Compared to that event, a much better constrained regional total carbon emission estimate can be made for the 2015 fires through the use of present-day satellite observations of the fire’s radiative power output and atmospheric CO concentrations, processed using the modelling and assimilation framework of the Copernicus Atmosphere Monitoring Service (CAMS) and combined with unique in situ smoke measurements made on Kalimantan. PMID:27241616

  14. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa

    PubMed Central

    Archibald, Sally

    2016-01-01

    Fire and herbivory are the two consumers of above-ground biomass globally. They have contrasting impacts as they differ in terms of selectivity and temporal occurrence. Here, we integrate continental-scale data on fire and herbivory in Africa to explore (i) how environmental drivers constrain these two consumers and (ii) the degree to which each consumer affects the other. Environments conducive to mammalian herbivory are not necessarily the same as those conducive to fire, although their spheres of influence do overlap—especially in grassy ecosystems which are known for their frequent fires and abundance of large mammalian herbivores. Interactions between fire and herbivory can be competitive, facultative or antagonistic, and we explore this with reference to the potential for alternative ecosystem states. Although fire removes orders of magnitude more biomass than herbivory their methane emissions are very similar, and in the past, herbivores probably emitted more methane than fire. We contrast the type of herbivory and fire in different ecosystems to define ‘consumer-realms’. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502374

  15. Analysis of causal factors of fire regimes in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Palumbo, I.; Lehsten, V.; Balzter, H.

    2009-04-01

    Wildfires are a wide spread global phenomenon. Their activity peaks in the tropical savannas, especially in the African continent, where fires are a key component of ecosystem dynamics. Fires affect the ecological balance between trees and grasses in savannas with concomitant effects on biodiversity, soil fertility and biogeochemical cycles. Large amounts of trace greenhouse gases and aerosols from wildfires are emitted each year in Africa, but the underlying dynamics of such wildfires and what drives them remain poorly understood. In general terms, the magnitude and the inter-annual variability of fire activity depend on fire frequency and its spatial distribution, also referred to as fire regimes. These are, in turn, determined by the environmental conditions at the time of burning, ignition sources, fuel type, fuel availability, and its moisture content. This study analysed the driving factors of fire regimes at continental level for a period of 5 years (2002-2007). We considered the following variables: climate (rainfall, temperature, humidity), population density, land cover and the burned areas derived from the MODIS MCD45A1 product at 500m resolution. GIS and multi-variate regression techniques were used to analyse the data. Understanding fire driving factors is fundamentally important for developing process-based simulation models of fire occurrence under future climate and environmental change scenarios. This is particularly relevant if we consider that the IPCC 4th Assessment report indicates that a change in the rainfall patterns has been observed in the last 40 years over most of Africa with a decrease of precipitation around 20-40% in West Africa and more intense and widespread droughts in Southern Africa. The simultaneous increase of temperatures can potentially lead to higher fire occurrence and modify the current fire regimes. This work contributes to climate change research with new insights and understanding about how fires are controlled by bioclimatic and demographic factors in African ecosystems.

  16. Land cover change interacts with drought severity to change fire regimes in Western Amazonia.

    PubMed

    Gutiérrez-Vélez, Víctor H; Uriarte, María; DeFries, Ruth; Pinedo-Vásquez, Miguel; Fernandes, Katia; Ceccato, Pietro; Baethgen, Walter; Padoch, Christine

    Fire is becoming a pervasive driver of environmental change in Amazonia and is expected to intensify, given projected reductions in precipitation and forest cover. Understanding of the influence of post-deforestation land cover change on fires in Amazonia is limited, even though fires in cleared lands constitute a threat for ecosystems, agriculture, and human health. We used MODIS satellite data to map burned areas annually between 2001 and 2010. We then combined these maps with land cover and climate information to understand the influence of land cover change in cleared lands and dry-season severity on fire occurrence and spread in a focus area in the Peruvian Amazon. Fire occurrence, quantified as the probability of burning of individual 232-m spatial resolution MODIS pixels, was modeled as a function of the area of land cover types within each pixel, drought severity, and distance to roads. Fire spread, quantified as the number of pixels burned in 3 × 3 pixel windows around each focal burned pixel, was modeled as a function of land cover configuration and area, dry-season severity, and distance to roads. We found that vegetation regrowth and oil palm expansion are significantly correlated with fire occurrence, but that the magnitude and sign of the correlation depend on drought severity, successional stage of regrowing vegetation, and oil palm age. Burning probability increased with the area of nondegraded pastures, fallow, and young oil palm and decreased with larger extents of degraded pastures, secondary forests, and adult oil palm plantations. Drought severity had the strongest influence on fire occurrence, overriding the effectiveness of secondary forests, but not of adult plantations, to reduce fire occurrence in severely dry years. Overall, irregular and scattered land cover patches reduced fire spread but irregular and dispersed fallows and secondary forests increased fire spread during dry years. Results underscore the importance of land cover management for reducing fire proliferation in this landscape. Incentives for promoting natural regeneration and perennial crops in cleared lands might help to reduce fire risk if those areas are protected against burning in early stages of development and during severely dry years.

  17. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.

  18. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

    USGS Publications Warehouse

    Swetnam, Thomas W.; Farella, Joshua; Roos, Christopher I.; Liebmann, Matthew J.; Falk, Donald A.; Allen, Craig D.

    2016-01-01

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.

  19. A multivariate decision tree analysis of biophysical factors in tropical forest fire occurrence

    Treesearch

    Rey S. Ofren; Edward Harvey

    2000-01-01

    A multivariate decision tree model was used to quantify the relative importance of complex hierarchical relationships between biophysical variables and the occurrence of tropical forest fires. The study site is the Huai Kha Kbaeng wildlife sanctuary, a World Heritage Site in northwestern Thailand where annual fires are common and particularly destructive. Thematic...

  20. Future projections of fire danger in Brazilian biomes in the 21st century

    NASA Astrophysics Data System (ADS)

    Libonati, Renata; Silva, Patrícia; DaCamara, Carlos; Bastos, Ana

    2016-04-01

    In the global context, Brazil is one of the regions more severely affected by fire occurrences, with important consequences in the global CO2 balance, the state of the Amazon forest and the ecological diversity of the region. Brazil is also one of the few regions experiencing a raise in annual mean temperature above 2.5o during the 20th century, which may further increase between 2o and 7o until 2100 and, likely, be accompanied by a decrease in precipitation [1]. As the fire occurrence and severity largely depends on these two variables, it is worth assessing the evolution of fire danger for the coming decades. In order to obtain a detailed characterization of the future fire patterns in the different biomes of Brazil, we use outputs from a regional-downscaling of the EC-Earth climate model at 0.44 degrees spatial resolution for two future scenarios, an intermediate (RCP4.5) and a more severe (RCP8.5) one. We use a fire danger index specifically developed for the Brazilian climate and biome characteristics, the IFR from INPE. This index relies on values of maximum temperature, accumulated precipitation over different periods, minimum relative humidity and vegetation cover to estimate the likelihood of fire occurrence. We find a systematic increase of the days with critical fire risk, which is more pronounced in RCP8.5 and mostly affects months when fire activity takes place. Temperature increase is the most determinant factor for the increase in fire danger in the dry regions of savannah and shrubland, a result to be expected as fuel is already very dry. [1] Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

  1. Large-Scale Simulation of the Effects of Climate Change on Runoff Erosion Following Extreme Wildfire Events Authors: Gould, Adam, Warren, Barber, Wagenbrenner, Robichaud, Wang, Cherkauer

    NASA Astrophysics Data System (ADS)

    Gould, G.; Adam, J. C.; Barber, M. E.; Wagenbrenner, J. W.; Robichaud, P. R.; Wang, L.; Cherkauer, K. A.

    2012-12-01

    Across the western U.S., there is clear concern for increases in wildfire occurrence, severity, and post-fire runoff erosion due to projected climate changes. The aim of this study was to advance our capability to simulate post-fire runoff erosion at scales larger than a single hillslope to examine the relative contribution of sediment being released to larger streams and rivers in response to wildfire. We applied the Variable Capacity Infiltration-Water Erosion Prediction Project (VIC-WEPP), a newly-developed physically-based modeling framework that combines large-scale hydrology with hillslope-scale runoff erosion, over the Salmon River basin (SRB) in central Idaho. We selected the SRB for this study because of recent research that suggested that forest wildfires are likely contributing the majority of coarser sands that settle in downstream navigation channels and in reservoirs, causing adverse impacts to aquatic life, navigation, and flood storage. Using the Normalized Burn Ratio (NBR), burn intensity and severity maps show the regularity of wildfire occurrence in the SRB. These maps compare pre-fire images to next growing season images from the Landsat Thematic Mapper multispectral scanning sensor. Rather than implementing WEPP over all hillslopes within the SRB, we applied a representative hillslope approach. A monofractal scaling method downscales globally available 30 arc second digital elevation model (DEM) data to a 30 m resolution for simulations. This information determined the distribution of slope gradients within each VIC grid cell. This study applied VIC-WEPP over the 1979-2010 period and compared an ensemble of future climate simulations for the period of 2041-2070. For future scenarios, we only considered meteorological impacts on post-fire erosion and did not incorporate changes in future fire occurrence or severity. We ran scenarios for a variety of land cover and soil parameter sets, particularly those that relate to pre and post-fire characteristics, such as vegetative cover, interrill and rill erodibility factors, and saturated hydraulic conductivity. Evaluation of runoff erosion at experimental sites, observed by the U.S. Forest Service, involved using Disturbed WEPP which showed reasonable first post-fire year annual erosion predictions. We evaluated VIC-WEPP by comparing sediment observations downstream of the SRB with simulated yields for both pre and post-fire conditions. Generation of maps showing erosion over the SRB for each of the scenarios show specific areas within the SRB to be high, moderate, or low runoff-induced post-fire erosion regions. Our methodology will enable forest managers in the region to incorporate the impacts of changes in meteorological events on runoff erosion into their strategic management plans.

  2. Determining critical groundwater level to prevent degraded peatland from severe peat fire

    NASA Astrophysics Data System (ADS)

    Putra, E. I.; Cochrane, M. A.; Vetrita, Y.; Graham, L.; Saharjo, B. H.

    2018-05-01

    Peat fires have been a severe recurrent problem for Indonesia, but droughts due to prolonged dry season aggravate burning conditions. To get a better understanding of this issue, we studied fire conditions in a portion of the ex-Mega Rice Project (MRP) area, Central Kalimantan. To examine fire season and hydrology factors affecting peat fires we analyzed daily TRMM data, Nino 3.4 SST Anomalies, and changing groundwater levels (GWL) from 300 dipwells. Our results quantify time-lags between the period of lowest precipitation and the lowest GWL; providing some ability to predict fire risk in advance of the lowest GWL. The rise of Nino 3.4 SST anomalies is significant risk factors for peat fire as they signify dry months which may yield large fire occurrences. GWL in 2011 was lower than in 2012, but fires were more frequent in 2012, indicating that low precipitation amounts in the wet season of 2011/2012 left the peat in a dry condition early in 2012. Most of the fires occurred in areas with GWL less than -30 cm, powerfully illustrating the importance of maintaining GWL at more than -10 cm, to prevent degraded peatlands from experiencing surface and deep peat fires.

  3. Assessing the predictability of fire occurrence and area burned across phytoclimatic regions in Spain

    NASA Astrophysics Data System (ADS)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2014-01-01

    Most fire protection agencies throughout the world have developed forest fire risk forecast systems, usually building upon existing fire danger indices and meteorological forecast data. In this context, the daily predictability of wildfires is of utmost importance in order to allow the fire protection agencies to issue timely fire hazard alerts. In this study, we address the predictability of daily fire occurrence using the components of the Canadian Fire Weather Index (FWI) System and related variables calculated from the latest ECMWF (European Centre for Medium Range Weather Forecasts) reanalysis, ERA-Interim. We develop daily fire occurrence models in peninsular Spain for the period 1990-2008 and, considering different minimum burned area thresholds for fire definition, assess their ability to reproduce the inter-annual fire frequency variability. We based the analysis on a phytoclimatic classification aiming the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climate/fuel conditions. We then extend the analysis in order to assess the predictability of monthly burned areas. The sensitivity of the models to the level of spatial aggregation of the data is also evaluated. Additionally, we investigate the gain in model performance with the inclusion of socioeconomic and land use/land cover (LULC) covariates in model formulation. Fire occurrence models have attained good performance in most of the phytoclimatic zones considered, being able to faithfully reproduce the inter-annual variability of fire frequency. Total area burned has exhibited some dependence on the meteorological drivers, although model performance was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, highlighting the adequacy of the FWI system for fire occurrence prediction in the study area. The results were improved when using aggregated data across regions compared to when data were sampled at the grid-box level. The inclusion of socioeconomic and LULC covariates contributed marginally to the improvement of the models, and in most cases attained no relevant contribution to total explained variance - excepting northern Spain, where anthropogenic factors are known to be the major driver of fires. Models of monthly fire counts performed better in the case of fires larger than 0.1 ha, and for the rest of the thresholds (1, 10 and 100 ha) the daily occurrence models improved the predicted inter-annual variability, indicating the added value of daily models. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as a response variable. Our results leave the door open to the development a more complex modelling framework based on daily data from numerical climate model outputs based on the FWI system.

  4. Modelling pollutants dispersion and plume rise from large hydrocarbon tank fires in neutrally stratified atmosphere

    NASA Astrophysics Data System (ADS)

    Argyropoulos, C. D.; Sideris, G. M.; Christolis, M. N.; Nivolianitou, Z.; Markatos, N. C.

    2010-02-01

    Petrochemical industries normally use storage tanks containing large amounts of flammable and hazardous substances. Therefore, the occurrence of a tank fire, such as the large industrial accident on 11th December 2005 at Buncefield Oil Storage Depots, is possible and usually leads to fire and explosions. Experience has shown that the continuous production of black smoke from these fires due to the toxic gases from the combustion process, presents a potential environmental and health problem that is difficult to assess. The goals of the present effort are to estimate the height of the smoke plume, the ground-level concentrations of the toxic pollutants (smoke, SO 2, CO, PAHs, VOCs) and to characterize risk zones by comparing the ground-level concentrations with existing safety limits. For the application of the numerical procedure developed, an external floating-roof tank has been selected with dimensions of 85 m diameter and 20 m height. Results are presented and discussed. It is concluded that for all scenarios considered, the ground-level concentrations of smoke, SO 2, CO, PAHs and VOCs do not exceed the safety limit of IDLH and there are no "death zones" due to the pollutant concentrations.

  5. Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?

    DOE PAGES

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    2014-11-01

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  6. Characterizing dichotomous fire regimes of southern California: climate, vegetation and topography

    NASA Astrophysics Data System (ADS)

    Kolden, C.; Abatzoglou, J. T.

    2013-12-01

    Southern California Mediterranean ecosystems have long been a subject of wildfire research, in part because of the extensive Wildland Urban Interface in the region. This mix of homes and vegetation at the edge of wildlands has resulted in several of the costliest wildfire events in US history due to the number of homes burned, and its extent is projected to increase significantly over the next 50 years. As such, there has been considerable investment is identifying fire regime characteristics and potential mitigation measures in the region. However, all previous wildfire research in the region has initiated from the assumption that the dominant fire regime is associated with autumn katabatic winds, known locally as Santa Ana winds or Sundowners. To-date, there has been no effort to determine whether this is an accurate assumption, or whether the fire regime is more complex. Here, we utilize a dataset of large wildfires (>40ha) from 1948-2010 and a chronology of Santa Ana (SA) wind occurrence to disaggregate two distinct fire regimes in southwestern California: wildfires associated with SA wind occurrence events, and those not associated with Santa Ana conditions (NSA) that are fuel- and topography-driven instead. By decomposing burned area into SA and NSA fires, significant differences in seasonal, biogeographic and topographic characteristics were found, as well as distinct and significantly stronger climate-fire relationships than previously reported. NSA area burned was associated with summer fires, peaking in July, and significantly higher elevation, greater forested area, steeper slopes, and broadly across all aspects. SA area burned was associated with autumn fires, peaking in October, and significantly lower elevation, greater shrubland area, lower slopes, and more southeastern aspects. Annual burned area in NSA fires was associated with low spring precipitation, high vapor pressure deficit and low fuel moistures during the summer months that increase the seasonal window for fuel flammability. Furthermore, annual burned area in forested lands was correlated to concurrent long-term drought, whereas annual burned area in shrublands was correlated with pluvial conditions during the prior growing season. By contrast, annual area burned in SA fires did not show any robust relationship to climate anomalies in preceding months. Rather, large annual area burned in SA fires was associated with a delay in the onset of cool season precipitation that enables persistent low fuel moisture into a time of the year when SA events become more frequent. A significant increase in NSA annual burned area, the number of large fires in early summer (May-Jul) and the timing of fuel-driven wildfires was observed over the 60-year record, potentially due to increased early summer vegetation stress in recent decades. Such changes are consistent with projected climate change for southern California suggesting that NSA wildfires may play a more dominant role in landscape disturbances and hazards. These findings suggest that previous research aggregating SA and NSA wildfires may produce considerably different results if these two distinct fire regimes are uncoupled and addressed individually.

  7. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA.

    PubMed

    Swetnam, Thomas W; Farella, Joshua; Roos, Christopher I; Liebmann, Matthew J; Falk, Donald A; Allen, Craig D

    2016-06-05

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Authors.

  8. Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

    PubMed Central

    Farella, Joshua; Liebmann, Matthew J.; Falk, Donald A.; Allen, Craig D.

    2016-01-01

    Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216525

  9. [Ground-clearing fires in the amazon and respiratory disease].

    PubMed

    Gonçalves, Karen dos Santos; de Castro, Hermano Albuquerque; Hacon, Sandra de Souza

    2012-06-01

    The intentional burning of forest biomass commonly known as "ground-clearing fires" is an age-old and widespread practice in the country and is seen as a major contributor to global emissions of greenhouse gases. However, global awareness of their potential impact is relatively recent. The occurrence of large ground-clearing fires in the Brazilian and international scenarios drew attention to the problem, but the measures taken to prevent and/or control the fires are still insufficient. In the Amazon region, with distinct geographical and environmental features from the rest of the country, with its historic process of land occupation, every year the ground-clearing fires expose larger portions of the population making them vulnerable to its effects. In this context, this non-systematic review presents the papers written over the past five years about the fires in the Brazilian Amazon and respiratory illness. The main objective is to provide information for managers and leaders on environmental issues about the problems related to biomass burning in the Amazon region.

  10. A Survey of Rural Population Density and Forest Fire Occurrence in the South, 1956-1970

    Treesearch

    A.T. Altobellis

    1983-01-01

    Rural residents comprise a high risk potential population regarding person-caused wildfire incidence in the South. However, rural population density (RPD=numker of people per square mile) was found to be indeterminately associated with fire occurrence rate (FOR=number of fires per million acres protected) in protected lands in 13 Southern states. Thus, changes in...

  11. On the association between synoptic circulation and wildfires in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Papadopoulos, A.; Paschalidou, A. K.; Kassomenos, P. A.; McGregor, G.

    2014-02-01

    In the present paper cluster analysis of 2-month air mass back-trajectories for three contrasting fire and non-fire events is conducted (high, low, and zero burnt area). The large fire event displays an air mass history dissimilar to other events whereby a 39-day period of warm and dry chiefly northerly anticyclonic conditions is evident, before a week of warmer predominantly southwesterly cyclonic activity, immediately prior to ignition. The pressure level of these anticyclonic air masses is above 800 hPa for more than 75 % of the trajectory length; this region is above the principal moisture transport regime of 800 hPa altitude. Analysis of variance on the mean rate of change of potential temperature identified weak statistically significant differences between two air mass pairs regarding the large fire: anticyclonic and cyclonic air masses in both cases ( p = 0.038 and p = 0.020). Such regularity of type and occurrence, approach pressure levels and statistically significant differences are not evident for the small and non-fire event air masses. Such understanding is expected to permit appropriate steps to be undertaken including superior prediction and improved suppression strategy.

  12. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA.

    PubMed

    Johnson, Lane B; Kipfmueller, Kurt F

    2016-06-01

    We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.

  13. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    NASA Astrophysics Data System (ADS)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the fire suppression system. This project proposes to explore an innovative combination of remote sensing and fire spread models in order to 1) better understand the interactions of fire spread drivers that lead to large wildfires; 2) identify the spatio-temporal frames in which large wildfires can be suppressed more efficiently, and 3) explore the essential steps towards an operational use of both tools to assist fire suppression decisions. Preliminary results combine MODIS active-fire data and burn scar perimeters, to derive the main fire spread paths for the 10 largest wildfires that occurred in Portugal between 2001 and 2012. Fire growth and behavior simulations of some of those wildfires are assessed using the active fires data. Results are also compared with the major fire paths to understand the main drivers of fire propagation, through their interactions with topography, vegetation and meteorology. These combined results are also used for spatial and temporal identification of opportunity windows for a more efficient suppression intervention for each fire event. The approach shows promising results, providing a valuable reconstruction of the fire events and retrieval of important parameters related to the complex spread patterns of individual fire events.

  14. Gaps in Data and Modeling Tools for Understanding Fire and Fire Effects in Tundra Ecosystems

    NASA Astrophysics Data System (ADS)

    French, N. H.; Miller, M. E.; Loboda, T. V.; Jenkins, L. K.; Bourgeau-Chavez, L. L.; Suiter, A.; Hawkins, S. M.

    2013-12-01

    As the ecosystem science community learns more about tundra ecosystems and disturbance in tundra, a review of base data sets and ecological field data for the region shows there are many gaps that need to be filled. In this paper we will review efforts to improve our knowledge of the occurrence and impacts of fire in the North American tundra region completed under a NASA Terrestrial Ecology grant. Our main source of information is remote sensing data from satellite sensors and ecological data from past and recent field data collections by our team, collaborators, and others. Past fire occurrence is not well known for this region compared with other North American biomes. In this presentation we review an effort to use a semi-automated detection algorithm to identify past fire occurrence using the Landsat TM/ETM+ archives, pointing out some of the still-unaddressed issues for a full understanding of fire regime for the region. For this task, fires in Landsat scenes were mapped using the Random Forest classifier (Breiman 2001) to automatically detect potential burn scars. Random Forests is an ensemble classifier that employs machine learning to build a large collection of decision trees that are grown from a random selection of user supplied training data. A pixel's classification is then determined by which class receives the most 'votes' from each tree. We also review the use fire location records and existing modeling methods to quantify emissions from these fires. Based on existing maps of vegetation fuels, we used the approach developed for the Wildland Fire Emissions Information System (WFEIS; French et al. 2011) to estimate emissions across the tundra region. WFEIS employs the Consume model (http://www.fs.fed.us/pnw/fera/research/smoke/consume/index.shtml) to estimate emissions by applying empirically developed relationships between fuels, fire conditions (weather-based fire indexes), and emissions. Here again, we will review the gaps in data and modeling capability for accurate estimation of fire emissions in this region. Initial evaluation of Landsat for tundra fire characterization (Loboda et al. 2013) and successful use of the rich archive of Synthetic Aperture Radar imagery for many fire-disturbed sites in the region will be additional topics covered in this poster presentation. References: Breiman, L. 2001. Random forests. Machine Learning, 45:5-32. French, N.H.F., W.J. de Groot, L.K. Jenkins, B.. Rogers, et al. 2011. Model comparisons for estimating carbon emissions from North American wildland fire. J. Geophys. Res. 116:G00K05, doi:10.1029/2010JG001469. Loboda, T L, N H F French, C. Hight-Harf, L. Jenkins, M.E. Miller. 2013. Mapping fire extent and burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation to wildland fire. Remote Sens. Enviro. 134:194-209.

  15. Wildland fire limits subsequent fire occurrence

    Treesearch

    Sean A. Parks; Carol Miller; Lisa M. Holsinger; Scott Baggett; Benjamin J. Bird

    2016-01-01

    Several aspects of wildland fire are moderated by site- and landscape-level vegetation changes caused by previous fire, thereby creating a dynamic where one fire exerts a regulatory control on subsequent fire. For example, wildland fire has been shown to regulate the size and severity of subsequent fire. However, wildland fire has the potential to influence...

  16. Probability model for analyzing fire management alternatives: theory and structure

    Treesearch

    Frederick W. Bratten

    1982-01-01

    A theoretical probability model has been developed for analyzing program alternatives in fire management. It includes submodels or modules for predicting probabilities of fire behavior, fire occurrence, fire suppression, effects of fire on land resources, and financial effects of fire. Generalized "fire management situations" are used to represent actual fire...

  17. Utilization of geoinformation tools for the development of forest fire hazard mapping system: example of Pekan fire, Malaysia

    NASA Astrophysics Data System (ADS)

    Mahmud, Ahmad Rodzi; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul Rashid Mohamed; Pradhan, Biswajeet; Nuruddin, Ahmed

    2009-12-01

    A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.

  18. Israel wildfires: future trends, impacts and mitigation strategies

    NASA Astrophysics Data System (ADS)

    Wittenberg, Lea

    2017-04-01

    Forest fires in the Euro-Mediterranean region burn about 450,000 ha each year. In Israel, the frequency and extent of wildfires have been steadily increasing over the past decades, culminating in several large and costly fires in 2010, 2012 and 2016. The extensive development of forest areas since the 1950's and the accumulation of fuel in the forests, has led to increased occurrences of high intensity fires. Land-use changes and human population growth are the most prevailing and common determinant of wildfire occurrence and impacts. Climate extremes, possibly already a sign of regional climate change, are another frequent determinant of increasing wildfire risk. Therefore, the combination of extreme dry spells, high fuel loads and increased anthropogenic pressure on the open spaces result in an overall amplified wildfire risk. These fires not only cause loss of life and damage to properties but also carry serious environmental repercussions. Combustion of standing vegetation and the leaf litter leave the soil bare and vulnerable to runoff and erosion, thereby increasing risks of flooding. Today, all of Israel's open spaces, forests, natural parks, major metropolitan centers, towns and villages are embedded within the wildland urban interface (WUI). Typically, wildfires near or in the WUI occur on uplands and runoff generated from the burned area poses flooding risks in urban and agricultural zones located downstream. Post-fire management aims at reducing associated hazards as collapsing trees and erosion risk. Often the time interval between a major fire and the definition of priority sites is in the order of days-to-weeks since administrative procedures, financial estimates and implementation of post-fire salvage logging operations require time. Defining the magnitude of the burn scar and estimating its potential impact on runoff and erosion must therefore be done quickly. A post-fire burn severity, runoff and erosion model is a useful tool in estimating potential risks and management strategic. Moreover, national agencies and local authorities must decide on a range of post-fire measures to mitigate risks quickly since most large fires occur late in summer shortly before the winter season. Possible climate changes, socio-economic trends, and intense land use pressures are contributing factors in a national challenge to deal with forest fires along the WUI. However, in order to support integrated fire preparedness, response, management and recovery at the national, regional and local scales, stronger research and planning effort are required. This includes long-term monitoring programs and a systematic, standardized data acquisition scheme, compiling fire history, landscape-fire spread, mitigation and assessment of the immediate fire effects, land use changes and weather data. Knowledge of both short and long-term impacts of wildfire is essential for effective risk assessment, policy formulation and wildfire management.

  19. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon

    NASA Astrophysics Data System (ADS)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  20. The roles of fire in Holocene ecosystem changes of West Africa

    NASA Astrophysics Data System (ADS)

    Dupont, L. M.; Schefuß, E.

    2018-01-01

    The climate changes associated with the Holocene wet phase in the Sahara, the African Humid Period, are subject to ongoing debate discussing interactions between climate and vegetation and possible feedbacks between vegetation, albedo, desertification, and dust. However, very little attention has been given to the role of fire in shaping the land cover, although it is known that fires are important in the formation and consolidation of the African savanna. To fill this gap, we investigated the interaction between precipitation changes, vegetation shifts, and fire occurrence in West Africa by combining stable isotope measurements on plant waxes with pollen and micro-charcoal counts of marine sediments retrieved offshore of Cape Blanc. Our study focuses on the roles of fire at the dry limit of savanna during the Holocene evolution of precipitation changes indicating that the impact of fire during a relative wet climate differs from that during aridification. During the humid early Holocene, increased savanna extension and diversification ran parallel to increased fire occurrence. In contrast, after aridification of northern Africa started at the end of the African Humid Period, a maximum in fire occurrence correlated with a deterioration of the vegetation promoting desertification.

  1. Spectral analysis of charcoal on soils: Implications for wildland fire severity mapping methods

    Treesearch

    Alistair M. S. Smith; Jan U. H. Eitel; Andrew T. Hudak

    2010-01-01

    Recent studies in the Western United States have supported climate scenarios that predict a higher occurrence of large and severe wildfires. Knowledge of the severity is important to infer long-term biogeochemical, ecological, and societal impacts, but understanding the sensitivity of any severity mapping method to variations in soil type and increasing charcoal (char...

  2. The role of fire in deep time ecosystems

    NASA Astrophysics Data System (ADS)

    Scott, Andrew C.; Bond, William J.; Collinson, Margaret E.; Glasspool, Ian J.; Brown, Sarah; Braman, Dennis R.

    2010-05-01

    Fires are very widespread in the world today and fire has also been common in the deep past. Fire is important in structuring contemporary World vegetation maintaining extensive open vegetation where the climate has the potential to support closed forests. The influence of fire on the structure of vegetation and plant traits present in a community vary depending on the fire regime. The fire regime is the characteristic pattern of fire frequency, severity (amount of biomass removed) and spatial extent. Fire regimes depend on the synergy between external physical factors and the properties of vegetation. Changes in the fire regime can be brought about by changes in external conditions such as climate, but also by changes in vegetation such as changes in flammability or productivity that influence the amount of fuel. For example, invasion of grasses into closed wooded habitats has initiated a ‘grass fire cycle' in many parts of the world triggering cascading changes in vegetation structure and composition from forest to open grassland or savanna woodland. The spread of flammable invasive species, especially grasses, has even altered fire regimes of fire-dependent flammable communities causing catastrophic ecosystem changes. We suggest that the spread of angiosperms in the Cretaceous was promoted by the development of novel fire regimes linked to the evolution of novel, highly productive (and flammable) plants. Within the limits of physical constraints on fire occurrence, Cretaceous angiosperms would have initiated a positive feedback analogous to the grass-fire cycle rapidly accumulating fuel that promoted more frequent fires, which maintained open habitats in which rapid growth-traits of angiosperms would be most favoured promoting rapid fuel accumulation etc. Frequent fires would have altered vegetation structure and composition both by increasing mortality rates of fire-damaged trees and reducing recruitment rates of seedlings and saplings where fires recurred before juveniles had reached "fire-proof" sizes. The effect would be to create more open conditions favouring plants with the angiosperm innovations of high photosynthetic rates, rapid maturation and rapid reproduction relative to gymnosperms. Fire has some analogies to large vertebrate herbivory, particularly in the potential to open forests and create habitat for low-growing sun-loving plants over extensive areas. The role of fire in favouring low-growing ‘ruderal', plants of open habitats is similar to that proposed for dinosaurs. A switch from high-browsing dinosaurs in the Jurassic to low-browsing dinosaurs in the Cretaceous has been noted and it has been argued that the switch in browse height would favour fast-growing angiosperms. The dinosaur hypothesis has recently been tested and found wanting, for example in the timing and coincidence of angiosperm abundance and low vs. high-browsing dinosaurs. Our research of the co-occurrence of dinosaur remains and charcoal assemblages in Dinosaur Provincial Park, Alberta, has suggested that it was a dominance of gymnospermous, woody vegetation that was ravaged by fire. In addition, the co-occurrence of dinosaur remains and charcoal is significant in demonstrating that the some dinosaur bone beds may have formed as a result of extensive post-fire erosion/rapid deposition cycles. In this paper we consider the evidence for and against fire as a major factor promoting vegetation change and angiosperm spread in the Cretaceous.

  3. Observational evidence on the effects of mega-fires on the frequency of hydrogeomorphic hazards. The case of the Peloponnese fires of 2007 in Greece.

    PubMed

    Diakakis, M; Nikolopoulos, E I; Mavroulis, S; Vassilakis, E; Korakaki, E

    2017-08-15

    Even though rare, mega-fires raging during very dry and windy conditions, record catastrophic impacts on infrastructure, the environment and human life, as well as extremely high suppression and rehabilitation costs. Apart from the direct consequences, mega-fires induce long-term effects in the geomorphological and hydrological processes, influencing environmental factors that in turn can affect the occurrence of other natural hazards, such as floods and mass movement phenomena. This work focuses on the forest fire of 2007 in Peloponnese, Greece that to date corresponds to the largest fire in the country's record that burnt 1773km 2 , causing 78 fatalities and very significant damages in property and infrastructure. Specifically, this work examines the occurrence of flood and mass movement phenomena, before and after this mega-fire and analyses different influencing factors to investigate the degree to which the 2007 fire and/or other parameters have affected their frequency. Observational evidence based on several data sources collected during the period 1989-2016 show that the 2007 fire has contributed to an increase of average flood and mass movement events frequency by approximately 3.3 and 5.6 times respectively. Fire affected areas record a substantial increase in the occurrence of both phenomena, presenting a noticeably stronger increase compared to neighbouring areas that have not been affected. Examination of the monthly occurrence of events showed an increase even in months of the year were rainfall intensity presented decreasing trends. Although no major land use changes has been identified and chlorophyll is shown to recover 2years after the fire incident, differences on the type of vegetation as tall forest has been substituted with lower vegetation are considered significant drivers for the observed increase in flood and mass movement frequency in the fire affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    PubMed

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change and deforestation would boost fire occurrence outside PAs by half during this period. Our modeling results, therefore, confirm the synergy between the two Ds of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries).

  5. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  6. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Treesearch

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  7. Fire management in central America

    Treesearch

    Andrea L. Koonce; Armando González-Cabán

    1992-01-01

    Information on fire management operations in Central America is scant. To evaluate the known level of fire occurrence in seven countries in that area, fire management officers were asked to provide information on their fire control organizations and on any available fire statistics. The seven countries surveyed were Guatemala, Belize, Honduras, El Salvador, Nicaragua,...

  8. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon.

    PubMed

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  9. Understanding fire drivers and relative impacts in different Chinese forest ecosystems.

    PubMed

    Guo, Futao; Su, Zhangwen; Wang, Guangyu; Sun, Long; Tigabu, Mulualem; Yang, Xiajie; Hu, Haiqing

    2017-12-15

    In this study, spatial patterns and driving factors of fires were identified from 2000 to 2010 using Ripley's K (d) function and logistic regression (LR) model in two different forest ecosystems of China: the boreal forest (Daxing'an Mountains) and sub-tropical forest (Fujian province). Relative effects of each driving factor on fire occurrence were identified based on standardized coefficients in the LR model. Results revealed that fires were spatially clustered and that fire drivers vary amongst differing forest ecosystems in China. Fires in the Daxing'an Mountains respond primarily to human factors, of which infrastructure is recognized as the most influential. In contrast, climate factors played a critical role in fire occurrence in Fujian, of which the temperature of fire season was found to be of greater importance than other climate factors. Selected factors can predict nearly 80% of the total fire occurrence in the Daxing'an Mountains and 66% in Fujian, wherein human and climate factors contributed the greatest impact in the two study areas, respectively. This study suggests that different fire prevention and management strategies are required in the areas of study, as significant variations of the main fire-driving exist. Rapid socio-economic development has produced similar effects in different forest ecosystems within China, implying a strong correlation between socio-economic development and fire regimes. It can be concluded that the influence of human factors will increase in the future as China's economy continues to grow - an issue of concern that should be further addressed in future national fire management. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Study on Climate and Grassland Fire in HulunBuir, Inner Mongolia Autonomous Region, China

    PubMed Central

    Liu, Meifang; Zhao, Jianjun; Guo, Xiaoyi; Zhang, Zhengxiang; Tan, Gang; Yang, Jihong

    2017-01-01

    Grassland fire is one of the most important disturbance factors of the natural ecosystem. Climate factors influence the occurrence and development of grassland fire. An analysis of the climate conditions of fire occurrence can form the basis for a study of the temporal and spatial variability of grassland fire. The purpose of this paper is to study the effects of monthly time scale climate factors on the occurrence of grassland fire in HulunBuir, located in the northeast of the Inner Mongolia Autonomous Region in China. Based on the logistic regression method, we used the moderate-resolution imaging spectroradiometer (MODIS) active fire data products named thermal anomalies/fire daily L3 Global 1km (MOD14A1 (Terra) and MYD14A1 (Aqua)) and associated climate data for HulunBuir from 2000 to 2010, and established the model of grassland fire climate index. The results showed that monthly maximum temperature, monthly sunshine hours and monthly average wind speed were all positively correlated with the fire climate index; monthly precipitation, monthly average temperature, monthly average relative humidity, monthly minimum relative humidity and the number of days with monthly precipitation greater than or equal to 5 mm were all negatively correlated with the fire climate index. We used the active fire data from 2011 to 2014 to validate the fire climate index during this time period, and the validation result was good (Pearson’s correlation coefficient was 0.578), which showed that the fire climate index model was suitable for analyzing the occurrence of grassland fire in HulunBuir. Analyses were conducted on the temporal and spatial distribution of the fire climate index from January to December in the years 2011–2014; it could be seen that from March to May and from September to October, the fire climate index was higher, and that the fire climate index of the other months is relatively low. The zones with higher fire climate index are mainly distributed in Xin Barag Youqi, Xin Barag Zuoqi, Zalantun Shi, Oroqen Zizhiqi, and Molidawa Zizhiqi; the zones with medium fire climate index are mainly distributed in Chen Barag Qi, Ewenkizu Zizhiqi, Manzhouli Shi, and Arun Qi; and the zones with lower fire climate index are mainly distributed in Genhe Shi, Ergun city, Yakeshi Shi, and Hailar Shi. The results of this study will contribute to the quantitative assessment and management of early warning and forecasting for mid-to long-term grassland fire risk in HulunBuir. PMID:28304336

  11. Assessing Lebanon's wildfire potential in association with current and future climatic conditions

    Treesearch

    George H. Mitri; Mireille G. Jazi; David McWethy

    2015-01-01

    The increasing occurrence and extent of large-scale wildfires in the Mediterranean have been linked to extended periods of warm and dry weather. We set out to assess Lebanon's wildfire potential in association with current and future climatic conditions. The Keetch-Byram Drought Index (KBDI) was the primary climate variable used in our evaluation of climate/fire...

  12. Potentials and limitations of remote fire monitoring in protected areas.

    PubMed

    Dos Santos, João Flávio Costa; Romeiro, Joyce Machado Nunes; de Assis, José Batuíra; Torres, Fillipe Tamiozzo Pereira; Gleriani, José Marinaldo

    2018-03-01

    Protected areas (PAs) play an important role in maintaining the biodiversity and ecological processes of the site. One of the greatest challenges for the PA management in several biomes in the world is wildfires. The objective of this work was to evaluate the potentialities and limitations of the use of data obtained by orbital remote sensing in the monitoring fire occurrence in PAs. Fire Occurrence Records (FORs) were analyzed in Serra do Brigadeiro State Park, Minas Gerais, Brazil, from 2007 to 2015, using photo interpreted data from TM, ETM + and OLI sensors of the Landsat series and the Hot Spot Database (HSD) from the Brazilian Institute of Space Research - INPE. It was also observed the time of permanence of the scar left by fire on the landscape, through the multitemporal analysis of the behavior of NDVI (Normalized Difference Vegetation Index) and NBR (Normalized Burn Ratio) indexes, before and after the occurrence. The greatest limitation found for the orbital remote monitoring was the presence of clouds in the passage of the sensor in dates close to the occurrence of the fires. The burned area identified by photo interpretation was 54.9% less than the area contained in the FOR. Although the HSD reported fire occurrences in the buffer zone (up to 10km from the Park), no FORs were found at a distance greater than 1100m from the boundaries of the PA. As the main potential of remote sensing, the possibility of identifying burned areas throughout the park and surroundings is highlighted, with low costs and greater accuracy. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Fire patterns in the Amazonian biome

    NASA Astrophysics Data System (ADS)

    Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan

    2010-05-01

    This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).

  14. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest

    Treesearch

    Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam

    2010-01-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarnoch, Stanley J.; Blake, John I.; Parresol, Bernard R.

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive forest inventory within an 80,000 ha landscape for four major forest types to support the hypotheses that routine low-intensity prescribed fire would increase, and thinning would decrease, snag occurrence. We employed path analysis to define a priori causal relationships to determine the directmore » and indirect effects of site quality, age, relative stand density index and fire for all forest types and thinning effects for loblolly pine and longleaf pine. Stand age was an important direct effect for loblolly pine, mixed pine-hardwoods and hardwoods, but not for longleaf pine. Snag occurrence in loblolly pine was increased by prescribed fire and decreased by thinning which confirmed our initial hypotheses. Although fire was not important in mixed pine-hardwoods, it was for hardwoods but the relationship depended on site quality. For longleaf pine the relative stand density index was the dominant variable affecting snag occurrence, which increased as the density index decreased. Site quality, age and thinning had significant indirect effects on snag occurrence in longleaf pine through their effects on the density index. Although age is an important condition affecting snag occurrence for most forest types, path analysis revealed that fire and density management practices within certain forest types can also have major beneficial effects, particularly in stands less than 60 years old.« less

  16. Wildfire seasonality and land use: when do wildfires prefer to burn?

    PubMed

    Bajocco, Sofia; Pezzatti, Gianni Boris; Mazzoleni, Stefano; Ricotta, Carlo

    2010-05-01

    Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.

  17. Fire and drought [Chapter 7

    Treesearch

    Jeremy S. Littell; David L. Peterson; Karin L. Riley; Yongqiang Liu; Charles H. Luce

    2016-01-01

    Historical and presettlement relationships between drought and wildfire have been well documented in much of North America, with forest fire occurrence and area burned clearly increasing in response to drought. Drought interacts with other controls (forest productivity, topography, and fire weather) to affect fire intensity and severity. Fire regime characteristics (...

  18. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Treesearch

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  19. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado

    Treesearch

    Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd

    1999-01-01

    Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...

  20. Climatic and anthropogenic drivers of northern Amazon fires during the 2015-2016 El Niño event.

    PubMed

    Fonseca, Marisa G; Anderson, Liana O; Arai, Egidio; Shimabukuro, Yosio E; Xaud, Haron A M; Xaud, Maristela R; Madani, Nima; Wagner, Fabien H; Aragão, Luiz E O C

    2017-12-01

    The strong El Niño Southern Oscillation (ENSO) event that occurred in 2015-2016 caused extreme drought in the northern Brazilian Amazon, especially in the state of Roraima, increasing fire occurrence. Here we map the extent of precipitation and fire anomalies and quantify the effects of climatic and anthropogenic drivers on fire occurrence during the 2015-2016 dry season (from December 2015 to March 2016) in the state of Roraima. To achieve these objectives we first estimated the spatial pattern of precipitation anomalies, based on long-term data from the TRMM (Tropical Rainfall Measuring Mission), and the fire anomaly, based on MODIS (Moderate Resolution Imaging Spectroradiometer) active fire detections during the referred period. Then, we integrated climatic and anthropogenic drivers in a Maximum Entropy (MaxEnt) model to quantify fire probability, assessing (1) the model accuracy during the 2015-2016 and the 2016-2017 dry seasons; (2) the relative importance of each predictor variable on the model predictive performance; and (3) the response curves, showing how each environmental variable affects the fire probability. Approximately 59% (132,900 km 2 ) of the study area was exposed to precipitation anomalies ≤-1 standard deviation (SD) in January and ~48% (~106,800 km 2 ) in March. About 38% (86,200 km 2 ) of the study area experienced fire anomalies ≥1 SD in at least one month between December 2015 and March 2016. The distance to roads and the direct ENSO effect on fire occurrence were the two most influential variables on model predictive performance. Despite the improvement of governmental actions of fire prevention and firefighting in Roraima since the last intense ENSO event (1997-1998), we show that fire still gets out of control in the state during extreme drought events. Our results indicate that if no prevention actions are undertaken, future road network expansion and a climate-induced increase in water stress will amplify fire occurrence in the northern Amazon, even in its humid dense forests. As an additional outcome of our analysis, we conclude that the model and the data we used may help to guide on-the-ground fire-prevention actions and firefighting planning and therefore minimize fire-related ecosystems degradation, economic losses and carbon emissions in Roraima. © 2017 by the Ecological Society of America.

  1. Effects of Mountain Pine Beetle on Fuels and Expected Fire Behavior in Lodgepole Pine Forests, Colorado, USA

    PubMed Central

    Schoennagel, Tania; Veblen, Thomas T.; Negron, José F.; Smith, Jeremy M.

    2012-01-01

    In Colorado and southern Wyoming, mountain pine beetle (MPB) has affected over 1.6 million ha of predominantly lodgepole pine forests, raising concerns about effects of MPB-caused mortality on subsequent wildfire risk and behavior. Using empirical data we modeled potential fire behavior across a gradient of wind speeds and moisture scenarios in Green stands compared three stages since MPB attack (Red [1–3 yrs], Grey [4–10 yrs], and Old-MPB [∼30 yrs]). MPB killed 50% of the trees and 70% of the basal area in Red and Grey stages. Across moisture scenarios, canopy fuel moisture was one-third lower in Red and Grey stages compared to the Green stage, making active crown fire possible at lower wind speeds and less extreme moisture conditions. More-open canopies and high loads of large surface fuels due to treefall in Grey and Old-MPB stages significantly increased surface fireline intensities, facilitating active crown fire at lower wind speeds (>30–55 km/hr) across all moisture scenarios. Not accounting for low foliar moistures in Red and Grey stages, and large surface fuels in Grey and Old-MPB stages, underestimates the occurrence of active crown fire. Under extreme burning conditions, minimum wind speeds for active crown fire were 25–35 km/hr lower for Red, Grey and Old-MPB stands compared to Green. However, if transition to crown fire occurs (outside the stand, or within the stand via ladder fuels or wind gusts >65 km/hr), active crown fire would be sustained at similar wind speeds, suggesting observed fire behavior may not be qualitatively different among MPB stages under extreme burning conditions. Overall, the risk (probability) of active crown fire appears elevated in MPB-affected stands, but the predominant fire hazard (crown fire) is similar across MPB stages and is characteristic of lodgepole pine forests where extremely dry, gusty weather conditions are key factors in determining fire behavior. PMID:22272268

  2. Fire in the Pliocene: a Record from the Southwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Rosell-Melé, A.; Moraleda, N.; Peterson, L.; Lawrence, K. T.

    2015-12-01

    There is a growing recognition of the importance of wildfires in the Earth system. The IPCC 5AR concluded that extensive areas of the world will increase substantially their probability to fire in the near future. This issue is of difficult evaluation given the multiplicity drivers of fire, including anthropogenic factors, and because fire was impossible to observe and analyse as a global phenomenon until well into the satellite era. The study of the Pliocene may however afford some glimpses to this issue as one of the best ancient-climate analogues of present-day and future greenhouse-warming conditions. The incidence of fire in the Pliocene has not been assessed in much detail. In fact, fossil evidence for fire activity over the last 50+ Ma from the Eocene through to the present day is scant, and is chiefly based on the presence of charred materials, or charcoal, which provides a partial perspective of fire occurrence, and the development of pyrophytic biomes such as savannahs and shrublands. Marine charcoal records, from widely separated geographic regions (North Pacific, Eastern south Atlantic, South China Sea), indicate low but significant fire activity throughout the Cenozoic until the late Miocene or Pliocene, when it increased, sometimes together with the rise of pyrophytic biomes. An alternative to the study of charcoal records is the analysis of polyaromatic hydrocarbons (PAHs), which are also generated in biomass combustion processes but are associated to soot and integrate the occurrence of fire over large regional provinces. One of the most abundant is retene, formed from the thermal degradation of resins. We have quantified PAHs in Site ODP 1125 which spans the Pliocene-Pleistocene, on the north slope of Chatham Rise, 600 km east of New Zealand's South Island. PAHs have been identified throughout the record, and namely during colder climatic episodes. Their abundance appears tightly linked to that of other terrigenous biomarkers like the n-alkanes, which are likely to result from changes in fluvial and aeolian inputs. Overall, they appear to increase from the Pliocene to present indicating a shift in fire regimes, although the role of transport processes in modulating fluxes of terrigenous biomarkers need to be investigated further.

  3. The demise of fire and "mesophication" of forests in the eastern United States

    Treesearch

    Gregory J. Nowacki; Marc D. Abrams

    2008-01-01

    A diverse array of fire-adapted plant communities once covered the eastern United States. European settlement greatly altered fire regimes, often increasing fire occurrence (e.g., in northern hardwoods) or substantially decreasing it (e.g., in tallgrass prairies). Notwithstanding these changes, fire suppression policies, beginning around the 1920s, greatly reduced fire...

  4. Fire suppression effectiveness for simultaneous fires: an examination of fire histories

    Treesearch

    Larry F. Bednar; Romain Mees; David Strauss

    1990-01-01

    We examined fire and weather records for areas of the western United States for the period 1970-1984 to determine the effects of simultaneous wildfire occurrence on fire suppression efforts. Burning conditions were accounted for by use of short strings of fires which involved simultaneous suppression efforts. These strings were matched with closely preceding isolated...

  5. Shift in fire-ecosystems and weather changes

    Treesearch

    Bongani Finiza

    2013-01-01

    During recent decades too much focus fell on fire suppression and fire engineering methods. Little attention has been given to understanding the shift in the changing fire weather resulting from the global change in weather patterns. Weather change have gradually changed the way vegetation cover respond to fire occurrence and brought about changes in fire behavior and...

  6. Comparison of fire scars, fire atlases, and satellite data in the northwestern United States

    Treesearch

    Lauren B. Shapiro-Miller; Emily K. Heyerdahl; Penelope Morgan

    2007-01-01

    We evaluated agreement in the location and occurrence of 20th century fires recorded in digital fire atlases with those inferred from fire scars that we collected systematically at one site in Idaho and from existing fire-scar reconstructions at four sites in Washington. Fire perimeters were similar for two of three 20th century fires in Idaho (1924 and 1986). Overall...

  7. Fire Regime and Ecosystem Effects of Climate-driven Changes in Rocky Mountains Hydrology

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Das, T.; Lubetkin, K.; Romme, W.; Ryan, M. G.; Smithwick, E. A.; Turner, M.

    2009-12-01

    Western US Forest managers face more wildfires than ever before, and it is increasingly imperative to anticipate the consequences of this trend. Large fires in the northern Rocky Mountains have increased in association with warmer temperatures, earlier snowmelt, and longer fire seasons (1), and this trend is likely to continue with global warming (2). Increased wildfire occurrence is already a concern shared by managers from many federal land-management agencies (3). However, new analyses for the western US suggest that future climate could diverge even more rapidly from past climate than previously suggested. Current model projections suggest end-of-century hydroclimatic conditions like those of 1988 (the year of the well-known Yellowstone Fires) may represent close to the average year rather than an extreme year. The consequences of a shift of this magnitude for the fire regime, post-fire succession and carbon (C) balance of western forest ecosystems are well beyond what scientists have explored to date, and may fundamentally change the potential of western forests to sequester atmospheric C. We link hydroclimatic extremes (spring and summer temperature and cumulative water-year moisture deficit) to extreme fire years in northern Rockies forests, using large forest fire histories and 1/8-degree gridded historical hydrologic simulations (1950 - 2005) (4) forced with historical gridded temperature and precipitation (5). The frequency of extremes in hydroclimate associated with historic severe fire years in the northern Rocky Mountains is compared to those projected under a range of climate change projections, using global climate model runs for the A2 and B1 emissions pathways for three global climate models (NCAR PCM1, GFDL CM2.1, CNRM CM3). Coarse-scale climatic variables are downscaled to a 1/8 degree grid and used to force hydrologic simulations (6, 7). We will present preliminary results using these hydrologic simulations to model spatially explicit annual wildfire occurrence historically and under the above-cited future climate scenarios, and discuss how these results are being integrated with process-based ecosystem models and field data to model changes in carbon flux across the Greater Yellowstone Ecosystem landscape (8). 1. Westerling, Hidalgo, Cayan, Swetnam, Science 313, 940 (2006). 2. Tymstra, Flannigan, Armitage, Logan, Int’l J. Wildland Fire 16, 153 (2007). 3. U. S. G. A. O. GAO. (2007). 4. Liang, Lettenmaier, Wood, Burges. J. Geophys. Res. 99(D7), 14,415 (1994). 5. Maurer, Wood, Adam, Lettenmaier, Nijssen. J. Climate 15:3237 (2002). 6. Cayan, Maurer, Dettinger, Tyree, Hayhoe. Climatic Change 87(Suppl. 1) 21 (2008). 7. Hidalgo, Dettinger Cayan, CEC Report CEC-500-2007-123 (2008). 8. We acknowledge support from the Joint Fire Science Program (Project ID 09-3-01-47), the NOAA RISA program for California, and the US Forest Service.

  8. Using neutral models to identify constraints on low-severity fire regimes.

    Treesearch

    Donald McKenzie; Amy E. Hessl; Lara-Karena B. Kellogg

    2006-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire is modeled as a stochastic process, for which each fire history is only one realization, a simulation approach is necessary to understand baseline variability, thereby identifying constraints, or forcing functions, that affect fire regimes...

  9. In the line of fire: the peatlands of Southeast Asia

    PubMed Central

    Hooijer, A.

    2016-01-01

    Peatlands are a significant component of the global carbon (C) cycle, yet despite their role as a long-term C sink throughout the Holocene, they are increasingly vulnerable to destabilization. Nowhere is this shift from sink to source happening more rapidly than in Southeast Asia, and nowhere else are the combined pressures of land-use change and fire on peatland ecosystem C dynamics more evident nor the consequences more apparent. This review focuses on the peatlands of this region, tracing the link between deforestation and drainage and accelerating C emissions arising from peat mineralization and fire. It focuses on the implications of the recent increase in fire occurrence for air quality, human health, ecosystem resilience and the global C cycle. The scale and controls on peat-driven C emissions are addressed, noting that although fires cause large, temporary peaks in C flux to the atmosphere, year-round emissions from peat mineralization are of a similar magnitude. The review concludes by advocating land management options to reduce future fire risk as part of wider peatland management strategies, while also proposing that this region's peat fire dynamic could become increasingly relevant to northern peatlands in a warming world. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216508

  10. Simulation of air quality impacts from prescribed fires on an urban area.

    PubMed

    Hu, Yongtao; Odman, M Talat; Chang, Michael E; Jackson, William; Lee, Sangil; Edgerton, Eric S; Baumann, Karsten; Russell, Armistead G

    2008-05-15

    On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future.

  11. Use of regionalisation approach to develop fire frequency curves for Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Khastagir, Anirban; Jayasuriya, Niranjali; Bhuyian, Muhammed A.

    2017-11-01

    It is important to perform fire frequency analysis to obtain fire frequency curves (FFC) based on fire intensity at different parts of Victoria. In this paper fire frequency curves (FFCs) were derived based on forest fire danger index (FFDI). FFDI is a measure related to fire initiation, spreading speed and containment difficulty. The mean temperature (T), relative humidity (RH) and areal extent of open water (LC2) during summer months (Dec-Feb) were identified as the most important parameters for assessing the risk of occurrence of bushfire. Based on these parameters, Andrews' curve equation was applied to 40 selected meteorological stations to identify homogenous stations to form unique clusters. A methodology using peak FFDI from cluster averaged FFDIs was developed by applying Log Pearson Type III (LPIII) distribution to generate FFCs. A total of nine homogeneous clusters across Victoria were identified, and subsequently their FFC's were developed in order to estimate the regionalised fire occurrence characteristics.

  12. Quantifying the historic and future distribution of fire in Alaskan tundra ecosystems

    NASA Astrophysics Data System (ADS)

    Young, A. M.; Higuera, P. E.; Duffy, P. A.

    2012-12-01

    During the past 60 years fire has been relatively rare and small in size within tundra ecosystems. However, historical observations and paleoecological evidence indicates that fire regimes vary widely across Alaskan tundra, in both space and time. These lines of evidence suggest that fire occupies a highly specified niche or ecological space in Alaskan tundra, which may change significantly with future climate warming. The objective of this research was to quantify the relationships between fire occurrence and different seasonal climate variables, and to begin to make inferences about future distributions of fire across the tundra landscape. The results of this research will ultimately contribute to the goal of summarizing the linkages that exist among climate, vegetation, and fire in the historical record, and for making predictions concerning fire disturbance in tundra ecosystems throughout the next century. Historic tundra fires occurred non-randomly across space, and a relationship exists between fire occurrence and warm, dry climates. We quantified this relationship with generalized boosting models (GBM) using datasets of downscaled temperature and precipitation (2 km, 1971-2000), and historic records of tundra area burned (1950-2010). The GBM used six seasonal climate variables, focused on growing season temperature and precipitation, to predict the probability of fire occurrence over the 1950-2010 time period. To understand implications of these historic relationships given ongoing climate warming, we constructed future climatologies of temperature and precipitation for the five GCMs which performed best in Alaska under the IPCC AR4 A1B (middle-of-the-road) emissions scenario for the time period 2021-2050. The GBM performed well predicting the observed spatial distribution of tundra area burned, capturing key regions which experienced the most fire activity from 1950-2010. The mean temperature of the warmest month (MeanMaxTemp) was the most influential variable in the GBM, and partial dependence plots revealed a strong non-linear relationship between the probability of fire and MeanMaxTemp, with a distinct temperature threshold of approximately 12.0 oC. Climate projections in Alaskan tundra (2021-2050) from the five GCMs was on average 2.1 oC warmer (SD = 0.3 oC) than the 1971-2000 mean. During the 1971-2000 period, 62% of tundra existed above the 12.0 oC threshold. In contrast, four of the five GCMs predicted more tundra area will exist above this same temperature threshold during the 2021-2050 period (mean=77%, min=48%, max=93%), with large increases occurring on the North Slope. Ongoing work includes applying this GBM to future climate conditions to provide quantitative estimates of future tundra burning. Our results suggest that the ecological space that currently supports tundra burning will become more common during the next century. A more flammable tundra landscape could contribute to increased land surface temperatures through feedbacks between fire, increased carbon flux from the soil to atmosphere, and decreased albedo through vegetation succession. Given the rapid environmental changes projected for the Arctic throughout the next century, it is imperative that we understand when and where fire regimes are changing, not only across Alaskan tundra but across the global tundra biome as well.

  13. Federal fire managers' perceptions of the importance, scarcity and substitutability of suppression resources

    Treesearch

    Crystal S. Stonesifer; David E. Calkin; Michael S. Hand

    2017-01-01

    Wildland firefighting in the United States is a complex and costly enterprise. While there are strong seasonal signatures for fire occurrence in specific regions of the United States, spatiotemporal occurrence of wildfire activity can have high inter-annual variability. Suppression resources come from a variety of jurisdictions and provide a wide range of skills,...

  14. Fire-climate interactions in the Selway-Bitterroot Wilderness area

    Treesearch

    Kurt F. Kipfmueller; Thomas W. Swetnam

    2000-01-01

    Tree-ring reconstructed summer drought was examined in relation to the occurrence of 15 fires in the Selway-Bitterroot Wilderness Area (SBW). The ten largest fire years between 1880 and 1995 were selected from historical fire atlas data; five additional fire years were selected from a fire history completed in a subalpine forest within the SBW. Results of the analysis...

  15. Comparing effects of fire modeling methods on simulated fire patterns and succession: a case study in the Missouri Ozarks

    Treesearch

    Jian Yang; Hong S. He; Brian R. Sturtevant; Brian R. Miranda; Eric J. Gustafson

    2008-01-01

    We compared four fire spread simulation methods (completely random, dynamic percolation. size-based minimum travel time algorithm. and duration-based minimum travel time algorithm) and two fire occurrence simulation methods (Poisson fire frequency model and hierarchical fire frequency model) using a two-way factorial design. We examined these treatment effects on...

  16. Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia.

    PubMed

    Davis, Hayley; Ritchie, Euan G; Avitabile, Sarah; Doherty, Tim; Nimmo, Dale G

    2018-04-01

    Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species' occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species' probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary.

  17. Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia

    PubMed Central

    Davis, Hayley; Ritchie, Euan G.; Avitabile, Sarah; Doherty, Tim

    2018-01-01

    Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species' occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species’ probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary. PMID:29765661

  18. Simulating high spatial resolution high severity burned area in Sierra Nevada forests for California Spotted Owl habitat climate change risk assessment and management.

    NASA Astrophysics Data System (ADS)

    Keyser, A.; Westerling, A. L.; Jones, G.; Peery, M. Z.

    2017-12-01

    Sierra Nevada forests have experienced an increase in very large fires with significant areas of high burn severity, such as the Rim (2013) and King (2014) fires, that have impacted habitat of endangered species such as the California spotted owl. In order to support land manager forest management planning and risk assessment activities, we used historical wildfire histories from the Monitoring Trends in Burn Severity project and gridded hydroclimate and land surface characteristics data to develope statistical models to simulate the frequency, location and extent of high severity burned area in Sierra Nevada forest wildfires as functions of climate and land surface characteristics. We define high severity here as BA90 area: the area comprising patches with ninety percent or more basal area killed within a larger fire. We developed a system of statistical models to characterize the probability of large fire occurrence, the probability of significant BA90 area present given a large fire, and the total extent of BA90 area in a fire on a 1/16 degree lat/lon grid over the Sierra Nevada. Repeated draws from binomial and generalized pareto distributions using these probabilities generated a library of simulated histories of high severity fire for a range of near (50 yr) future climate and fuels management scenarios. Fuels management scenarios were provided by USFS Region 5. Simulated BA90 area was then downscaled to 30 m resolution using a statistical model we developed using Random Forest techniques to estimate the probability of adjacent 30m pixels burning with ninety percent basal kill as a function of fire size and vegetation and topographic features. The result is a library of simulated high resolution maps of BA90 burned areas for a range of climate and fuels management scenarios with which we estimated conditional probabilities of owl nesting sites being impacted by high severity wildfire.

  19. Ecological effects of the Hayman Fire - Part 1: Historical (pre-1860) and current (1860-2002) fire regimes

    Treesearch

    William H. Romme; Thomas T. Veblen; Merrill R. Kaufmann; Rosemary Sherriff; Claudia M. Regan

    2003-01-01

    To address historical and current fire regimes in the Hayman landscape, we first present the concepts of “historical range of variability” and ”fire regime” to provide the necessary conceptual tools for evaluating fire occurrence, fire behavior, and fire effects. Next we summarize historical (pre-1860) fire frequency and fire effects for the major forest types of the...

  20. Development and fire trends in oak woodlands of the northwestern Sierra Nevada foothills

    Treesearch

    James G. Spero

    2002-01-01

    Human development appears to present a larger threat to the long-term persistence of California's hardwood rangelands than fire in terms of likely ecological significance. This paper describes of the California Department of Forestry and Fire Protection's Fire and Resource Assessment Program (FRAP) projections of human development and fire occurrence and...

  1. Natural and social factors influencing forest fire occurrence at a local spatial scale

    Treesearch

    Maria Luisa Chas-Amil; Julia M. Touza; Jeffrey P. Prestemon; Colin J. McClean

    2012-01-01

    Development of efficient forest fire policies requires an understanding of the underlying reasons behind forest fire ignitions. Globally, there is a close relationship between forest fires and human activities, i.e., fires understood as human events due to negligence (e.g., agricultural burning escapes), and deliberate actions (e.g., pyromania, revenge, land use change...

  2. Avian community responses to post-fire forest structure: Implications for fire management in mixed conifer forests

    USGS Publications Warehouse

    White, Angela M.; Manley, Patricia N.; Tarbill, Gina; Richardson, T.L.; Russell, Robin E.; Safford, Hugh D.; Dobrowski, Solomon Z.

    2015-01-01

    Fire is a natural process and the dominant disturbance shaping plant and animal communities in many coniferous forests of the western US. Given that fire size and severity are predicted to increase in the future, it has become increasingly important to understand how wildlife responds to fire and post-fire management. The Angora Fire burned 1243 hectares of mixed conifer forest in South Lake Tahoe, California. We conducted avian point counts for the first 3 years following the fire in burned and unburned areas to investigate which habitat characteristics are most important for re-establishing or maintaining the native avian community in post-fire landscapes. We used a multi-species occurrence model to estimate how avian species are influenced by the density of live and dead trees and shrub cover. While accounting for variations in the detectability of species, our approach estimated the occurrence probabilities of all species detected including those that were rare or observed infrequently. Although all species encountered in this study were detected in burned areas, species-specific modeling results predicted that some species were strongly associated with specific post-fire conditions, such as a high density of dead trees, open-canopy conditions or high levels of shrub cover that occur at particular burn severities or at a particular time following fire. These results indicate that prescribed fire or managed wildfire which burns at low to moderate severity without at least some high-severity effects is both unlikely to result in the species assemblages that are unique to post-fire areas or to provide habitat for burn specialists. Additionally, the probability of occurrence for many species was associated with high levels of standing dead trees indicating that intensive post-fire harvest of these structures could negatively impact habitat of a considerable proportion of the avian community.

  3. Mexican forest fires and their decadal variations

    NASA Astrophysics Data System (ADS)

    Velasco Herrera, Graciela

    2016-11-01

    A high forest fire season of two to three years is regularly observed each decade in Mexican forests. This seems to be related to the presence of the El Niño phenomenon and to the amount of total solar irradiance. In this study, the results of a multi-cross wavelet analysis are reported based on the occurrence of Mexican forest fires, El Niño and the total solar irradiance for the period 1970-2014. The analysis shows that Mexican forest fires and the strongest El Niño phenomena occur mostly around the minima of the solar cycle. This suggests that the total solar irradiance minima provide the appropriate climatological conditions for the occurrence of these forest fires. The next high season for Mexican forest fires could start in the next solar minimum, which will take place between the years 2017 and 2019. A complementary space analysis based on MODIS active fire data for Mexican forest fires from 2005 to 2014 shows that most of these fires occur in cedar and pine forests, on savannas and pasturelands, and in the central jungles of the Atlantic and Pacific coasts.

  4. The Howling Prescribed Natural Fire - long-term effects on the modernization of planning and implementation of wildland fire management

    Treesearch

    Tom Zimmerman; Laurie Kurth; Mitchell Burgard

    2011-01-01

    Wildland fire management policy and practices have long been driven by the occurrence of significant events. The Howling Prescribed Natural Fire in Glacier National Park in 1994 is a prime example of a significant historical fire event that provided the impetus for program changes and modifications that modernized wildland fire management at the local, regional, and...

  5. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes

    Treesearch

    Maureen C. Kennedy; Donald McKenzie

    2010-01-01

    Fire-scarred trees provide a deep temporal record of historical fire activity, but identifying the mechanisms therein that controlled landscape fire patterns is not straightforward. We use a spatially correlated metric for fire co-occurrence between pairs of trees (the Sørensen distance variogram), with output from a neutral model for fire history, to infer the...

  6. Climate effects on historical fires (1630-1900) in Utah

    Treesearch

    Peter M. Brown; Emily K. Heyerdahl; Stanley G. Kitchen; Marc H. Weber

    2008-01-01

    We inferred climate effects on fire occurrence from 1630 to 1900 for a new set of crossdated fire-scar chronologies from 18 forested sites in Utah and one site in eastern Nevada. Years with regionally synchronous fires (31 years with fire at ≥20% of sites) occurred during drier than average summers and years with no fires at any site (100 years) were wetter...

  7. Application of wildfire spread and behavior models to assess fire probability and severity in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Salis, Michele; Arca, Bachisio; Bacciu, Valentina; Spano, Donatella; Duce, Pierpaolo; Santoni, Paul; Ager, Alan; Finney, Mark

    2010-05-01

    Characterizing the spatial pattern of large fire occurrence and severity is an important feature of the fire management planning in the Mediterranean region. The spatial characterization of fire probabilities, fire behavior distributions and value changes are key components for quantitative risk assessment and for prioritizing fire suppression resources, fuel treatments and law enforcement. Because of the growing wildfire severity and frequency in recent years (e.g.: Portugal, 2003 and 2005; Italy and Greece, 2007 and 2009), there is an increasing demand for models and tools that can aid in wildfire prediction and prevention. Newer wildfire simulation systems offer promise in this regard, and allow for fine scale modeling of wildfire severity and probability. Several new applications has resulted from the development of a minimum travel time (MTT) fire spread algorithm (Finney, 2002), that models the fire growth searching for the minimum time for fire to travel among nodes in a 2D network. The MTT approach makes computationally feasible to simulate thousands of fires and generate burn probability and fire severity maps over large areas. The MTT algorithm is imbedded in a number of research and fire modeling applications. High performance computers are typically used for MTT simulations, although the algorithm is also implemented in the FlamMap program (www.fire.org). In this work, we described the application of the MTT algorithm to estimate spatial patterns of burn probability and to analyze wildfire severity in three fire prone areas of the Mediterranean Basin, specifically Sardinia (Italy), Sicily (Italy) and Corsica (France) islands. We assembled fuels and topographic data for the simulations in 500 x 500 m grids for the study areas. The simulations were run using 100,000 ignitions under weather conditions that replicated severe and moderate weather conditions (97th and 70th percentile, July and August weather, 1995-2007). We used both random ignition locations and ignition probability grids (1000 x 1000 m) built from historical fire data (1995-2007). The simulation outputs were then examined to understand relationships between burn probability and specific vegetation types and ignition sources. Wildfire threats to specific values of human interest were quantified to map landscape patterns of wildfire risk. The simulation outputs also allowed us to differentiate between areas of the landscape that were progenitors of fires versus "victims" of large fires. The results provided spatially explicit data on wildfire likelihood and intensity that can be used in a variety of strategic and tactical planning forums to mitigate wildfire threats to human and other values in the Mediterranean Basin.

  8. Review of methods for developing probabilistic risk assessments

    Treesearch

    D. A. Weinstein; P.B. Woodbury

    2010-01-01

    We describe methodologies currently in use or those under development containing features for estimating fire occurrence risk assessment. We describe two major categories of fire risk assessment tools: those that predict fire under current conditions, assuming that vegetation, climate, and the interactions between them and fire remain relatively similar to their...

  9. Fire occurrence prediction in the Mediterranean: Application to Southern France

    NASA Astrophysics Data System (ADS)

    Papakosta, Panagiota; Öster, Jan; Scherb, Anke; Straub, Daniel

    2013-04-01

    The areas that extend in the Mediterranean basin have a long fire history. The climatic conditions of wet winters and long hot drying summers support seasonal fire events, mainly ignited by humans. Extended land fragmentation hinders fire spread, but seasonal winds (e.g. Mistral in South France or Meltemia in Greece) can drive fire events to become uncontrollable fires with severe impacts to humans and the environment [1]. Prediction models in these areas should incorporate both natural and anthropogenic factors. Several indices have been developed worldwide to express fire weather conditions. The Canadian Fire Weather Index (FWI) is currently adapted by many countries in Europe due to the easily observable input weather parameters (temperature, wind speed, relative humidity, precipitation) and the easy-to-implement algorithms of the Canadian formulation describing fuel moisture relations [2],[3]. Human influence can be expressed directly by human presence (e.g. population density) or indirectly by proxy indicators (e.g. street density [4], land cover type). The random nature of fire occurrences and the uncertainties associated with the influencing factors motivate probabilistic prediction models. The aim of this study is to develop a prediction model of fire occurrence probability under natural and anthropogenic influence in Southern France and to compare it with earlier developed predictions in other Mediterranean areas [5]. Fire occurrence is modeled as a Poisson process. Two interpolation methods (Kriging and Inverse Distance Weighting) are used to interpolate daily weather observations from weather stations to a 1 km² spatial grid and their results are compared. Poisson regression estimates the parameters of the model and the resulting daily predictions are provided in terms of maps displaying fire occurrence rates. The model is applied to the regions Provence-Alpes-Côtes D'Azur und Languedoc-Roussillon in the South of France. Weather data are obtained from the German and French Weather Services (Deutscher Wetterdienst and Météo-France). Historical fire events are taken from Prométhée database. Time series 2000-2010 are used as learning data and data from 2011 is used as the validation data. The resulting model can support real-time fire risk estimation for improved allocation of firefighting resources and planning of other mitigation actions. [1] Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. (2012): Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, New York, USA, pp.515 [2] Lawson, B.D.; Armitage, O.B. (2008): Weather Guide for the Canadian Forest Fire Danger Rating System. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada. [3] Van Wagner, C.E.; Pickett, T.L. (1985): Equations and FORTRAN Program for the Canadian Forest Fire Weather Index System. Forestry Technical Report 33. Canadian Forestry Service, Government of Canada, Ottawa, Ontario, Canada [4] Syphard, A.D.; Radeloff, V.C.; Keuler, N.S.; Taylor, R.S.; Hawbaker, T.J.; Stewart, S.I.; Clayton, M.K. (2008): Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17, pp.602-613 [5] Papakosta, P.; Klein, F.; König, S.; Straub, D. (2012): Linking spatio-temporal data to the Fire Weather Index to estimate the probability of wildfire in the Mediterranean. Geophysical Research Abstracts, Vol.14, EGU2012-12737, EGU General Assembly 2012

  10. Occurrence of fire in longleaf pine stands in the Southeastern United States

    Treesearch

    Kenneth W. Outcalt

    2000-01-01

    A healthy understory commmunity is a key factor in maintaining the biodiversity of longleaf pine (Pinus palustris) stands, and there appears to be a strong relationship between the occurrence of fire and the condition of the understory vegetauon. Generally, the understory is healthier in burned areas than in those not burned. TO assess the USC of...

  11. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration

    PubMed Central

    Scott, Andrew C.; Glasspool, Ian J.

    2006-01-01

    By comparing Silurian through end Permian [≈250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (≈420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the “fire window”). Herein, we observe that, as predicted, atmospheric oxygen levels rise from ≈13% in the Late Devonian to ≈30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence. PMID:16832054

  12. Who's driving?: Separating Fire, CO2, and Climate Change Influences on Vegetation and Carbon Dynamics on MC2 Results for Western Oregon and Washington, United States

    NASA Astrophysics Data System (ADS)

    Sheehan, T.; Bachelet, D. M.; Ferschweiler, K.

    2016-12-01

    For Oregon and Washington west of the Cascade Mountain crest, results from the MC2 global dynamic vegetation model have projected a shift in potential vegetation type from predominantly conifer to predominantly mixed forest over the 21st century, with a shift from mixed to conifer in some areas. Carbon stocks have been projected to fall over this period. We ran MC2 using the CCSM4 RCP 8.5 climate future downscaled to 2.5 arc minute resolution with 5 different configurations: no fire; assumed ignitions without fire suppression; assumed ignitions with fire suppression; assumed ignitions with fire suppression and with CO2 concentration held at the preindustrial level; and stochastic ignitions without fire suppression. Results show that vegetation change is the result of climate change alone, while carbon is influenced by both fire occurrence and CO2-induced increased water use efficiency. While model results do not indicate a large change in carbon dynamics concomitant with the shift in vegetation, it is reasonable to expect that a change in conditions resulting in such a change in vegetation type would stress the existing vegetation resulting in some mortality and loss of live carbon.

  13. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    PubMed

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  14. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression

    PubMed Central

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-01-01

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale. PMID:28397745

  15. The rise of fire: Fossil charcoal in late Devonian marine shales as an indicator of expanding terrestrial ecosystems, fire, and atmospheric change

    USGS Publications Warehouse

    Rimmer, Susan M.; Hawkins, Sarah J.; Scott, Andrew C.; Cressler, Walter L.

    2015-01-01

    Fossil charcoal provides direct evidence for fire events that, in turn, have implications for the evolution of both terrestrial ecosystems and the atmosphere. Most of the ancient charcoal record is known from terrestrial or nearshore environments and indicates the earliest occurrences of fire in the Late Silurian. However, despite the rise in available fuel through the Devonian as vascular land plants became larger and trees and forests evolved, charcoal occurrences are very sparse until the Early Mississippian where extensive charcoal suggests well-established fire systems. We present data from the latest Devonian and Early Mississippian of North America from terrestrial and marine rocks indicating that fire became more widespread and significant at this time. This increase may be a function of rising O2 levels and the occurrence of fire itself may have contributed to this rise through positive feedback. Recent atmospheric modeling suggests an O2 low during the Middle Devonian (around 17.5%), with O2 rising steadily through the Late Devonian and Early Mississippian (to 21–22%) that allowed for widespread burning for the first time. In Devonian-Mississippian marine black shales, fossil charcoal (inertinite) steadily increases up-section suggesting the rise of widespread fire systems. There is a concomitant increase in the amount of vitrinite (preserved woody and other plant tissues) that also suggests increased sources of terrestrial organic matter. Even as end Devonian glaciation was experienced, fossil charcoal continued to be a source of organic matter being introduced into the Devonian oceans. Scanning electron and reflectance microscopy of charcoal from Late Devonian terrestrial sites indicate that the fires were moderately hot (typically 500–600 °C) and burnt mainly surface vegetation dominated by herbaceous zygopterid ferns and lycopsids, rather than being produced by forest crown fires. The occurrence and relative abundance of fossil charcoal in marine black shales are significant in that these shales may provide a more continuous record of fire than is preserved in terrestrial environments. Our data support the idea that major fires are not seen in the fossil record until there is both sufficient and connected fuel and a high enough atmospheric O2 content for it to burn.

  16. A statistical procedure for fire risk mapping in Italy

    NASA Astrophysics Data System (ADS)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko

    2015-04-01

    The high topographic and vegetation heterogeneity makes Italy vulnerable to forest fires both in the summer and in winter. In particular, northern regions are predominantly characterized by a winter fire regime, mainly due to frequent extremely dry winds from the north, while southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions, which is expected to make a significant contribution to the problem in a few years' time. Given the availability of fire perimeters mapped over a period spanning from 5 to 10 years, depending by the region, a statistical procedure was defined in order to assess areas at risk based on objective criteria by observing past fire events. The availability of fire perimeters combined with a detailed knowledge of topography and land cover allowed to understand which are the main features involved in forest fire occurrences and their behavior. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November-April and May- October). In addition, the total precipitation obtained from the interpolation of 30 years-long time series from 460 raingauges and the average air temperature obtained downscaling 30 years ERA-INTERIM data series were considered. The analysis consists on the subdivision of the territory in classes based on the named information layers (elevation, slope, rainfall height, temperature, etc.) with a recursive algorithm that ensures the equal numerosity of each class. The number of fires occurred in each class is then assessed basing on time series in the last decade, in order to have an estimation of the fire hazard with a contant statistical confidence. The analysis was carried out at a spatial resolution of 500 m on the whole Italian territory by using a dataset of fires occurrences that spans from 2007 to 2013.

  17. Examining Atmospheric and Ecological Drivers of Wildfires, Modeling Wildfire Occurrence in the Southwest United States, and Using Atmospheric Sounding Observations to Verify National Weather Service Spot Forecasts

    NASA Astrophysics Data System (ADS)

    Nauslar, Nicholas J.

    This dissertation is comprised of three different papers that all pertain to wildland fire applications. The first paper performs a verification analysis on mixing height, transport winds, and Haines Index from National Weather Service spot forecasts across the United States. The final two papers, which are closely related, examine atmospheric and ecological drivers of wildfire for the Southwest Area (SWA) (Arizona, New Mexico, west Texas, and Oklahoma panhandle) to better equip operational fire meteorologists and managers to make informed decisions on wildfire potential in this region. The verification analysis here utilizes NWS spot forecasts of mixing height, transport winds and Haines Index from 2009-2013 issued for a location within 50 km of an upper sounding location and valid for the day of the fire event. Mixing height was calculated from the 0000 UTC sounding via the Stull, Holzworth, and Richardson methods. Transport wind speeds were determined by averaging the wind speed through the boundary layer as determined by the three mixing height methods from the 0000 UTC sounding. Haines Index was calculated at low, mid, and high elevation based on the elevation of the sounding and spot forecast locations. Mixing height forecasts exhibited large mean absolute errors and biased towards over forecasting. Forecasts of transport wind speeds and Haines Index outperformed mixing height forecasts with smaller errors relative to their respective means. The rainfall and lightning associated with the North American Monsoon (NAM) can vary greatly intra- and inter-annually and has a large impact on wildfire activity across the SWA by igniting or suppressing wildfires. NAM onset thresholds and subsequent dates are determined for the SWA and each Predictive Service Area (PSA), which are sub-regions used by operational fire meteorologists to predict wildfire potential within the SWA, April through September from 1995-2013. Various wildfire activity thresholds using the number of wildfires and large wildfires identified days or time periods with increased wildfire activity for each PSA and the SWA. Self-organizing maps utilizing 500 and 700 hPa geopotential heights and precipitable water were implemented to identify atmospheric patterns contributing to the NAM onset and busy days/periods for each PSA and the SWA. Resulting SOM map types also showed the transition to, during, and from the NAM. Northward and eastward displacements of the subtropical ridge (i.e., four-corners high) over the SWA were associated with NAM onset, and a suppressed subtropical ridge and breakdown of the subtropical ridge map types over the SWA were associated with increased wildfire activity. We implemented boosted regression trees (BRT) to model wildfire occurrence for all and large wildfires for different wildfire types (i.e., lightning, human) across the SWA by PSA. BRT models for all wildfires demonstrated relatively small mean and mean absolute errors and showed better predictability on days with wildfires. Cross-validated accuracy assessments for large wildfires demonstrated the ability to discriminate between large wildfire and non-large wildfire days across all wildfire types. Measurements describing fuel conditions (i.e., 100 and 1000-hour dead fuel moisture, energy release component) were the most important predictors when considering all wildfire types and sizes. However, a combination of fuels and atmospheric predictors (i.e., lightning, temperature) proved most predictive for large wildfire occurrence, and the number of relevant predictors increases for large wildfires indicating more conditions need to align to support large wildfires.

  18. Climate change and wildfires

    Treesearch

    William J. De Groot; Michael D. Flannigan; Brian J. Stocks

    2013-01-01

    Wildland fire regimes are primarily driven by climate/weather, fuels and people. All of these factors are dynamic and their variable interactions create a mosaic of fire regimes around the world. Climate change will have a substantial impact on future fire regimes in many global regions. Current research suggests a general increase in area burned and fire occurrence...

  19. A review of the relationships between drought and forest fire in the United States

    Treesearch

    Jeremy S. Littell; David L. Peterson; Karin L. Riley; Yongqiang Liu; Charlie H. Luce

    2016-01-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity,...

  20. Steppe plant response to seasonal fire

    Treesearch

    Paulette L. Ford

    2003-01-01

    Fire is a natural grassland disturbance that affects a variety of ecosystem factors including nutrient cycling, species diversity, and population and community dynamics. Caution is warranted when interpreting the effects of fire on grasslands due to the variety of fire types (e.g. wildfire vs prescribed burn), season of occurrence, weather conditions, grassland uses (e...

  1. Estimating fire properties by remote sensing

    Treesearch

    P. Riggan; J. Hoffman; J. Brass

    2009-01-01

    Contemporary knowledge of the role of fire in the global environment is limited by inadequate measurements of the extent and impact of individual fires. Observations by operational polar-orbiting and geostationary satellites provide an indication of fire occurrence but are ill-suited for estimating the temperature, area, or radiant emissions of active wildland and...

  2. Understanding interaction effects of climate change and fire management on bird distributions through combined process and habitat models

    USGS Publications Warehouse

    White, Joseph D.; Gutzwiller, Kevin J.; Barrow, Wylie C.; Johnson-Randall, Lori; Zygo, Lisa; Swint, Pamela

    2011-01-01

    Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process-based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf-area index values were lower in shrubland. This high probability of occurrence likely is related to the species' use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.

  3. Understanding interaction effects of climate change and fire management on bird distributions through combined process and habitat models

    USGS Publications Warehouse

    White, Joseph D.; Gutzwiller, Kevin J.; Barrow, Wylie C.; Johnson-Randall, Lori; Zygo, Lisa; Swint, Pamela

    2011-01-01

    Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process-based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf-area index values were lower in shrubland. This high probability of occurrence likely is related to the species' use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes. ??2011 Society for Conservation Biology.

  4. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    Time series can fruitfully support fire monitoring and management from statistical analysis of fire occurrence (Tuia et al. 2008) to danger estimation (lasaponara 2005), damage evaluation (Lanorte et al 2014) and post fire recovery (Lanorte et al. 2014). In this paper, the time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers. Reference Lanorte A, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbanceInternational Journal of Applied Earth Observation and Geoinformation 26 441-446 Lanorte A, M Danese, R Lasaponara, B Murgante 2014 Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis International Journal of Applied Earth Observation and Geoinformation 20, 42-51 Tuia D, F Ratle, R Lasaponara, L Telesca, M Kanevski 2008 Scan statistics analysis of forest fire clusters Communications in Nonlinear Science and Numerical Simulation 13 (8), 1689-1694 Telesca L, R Lasaponara 2006 Pre and post fire behavioral trends revealed in satellite NDVI time series Geophysical Research Letters 33 (14) Lasaponara R 2005 Intercomparison of AVHRR based fire susceptibility indicators for the Mediterranean ecosystems of southern Italy International Journal of Remote Sensing 26 (5), 853-870

  5. Timing fire to minimize damage in managing oak ecosystems

    Treesearch

    Daniel C. Dey; Callie Jo Schweitzer

    2015-01-01

    The long history of fire in North America spans millennia and is recognized as an important driver in the widespread and long-term dominance of oak species. Early European settlers intensified the occurrence of fire from about 1850 to 1950, with dates varying by region. This resulted in much forest damage and gained fire a negative reputation. The lack of fire for the...

  6. Characterizing Predictability of Fire Occurrence in Tropical Forests and Grasslands: The Case of Puerto Rico

    Treesearch

    Ana Carolina Monmany; William Gould; Maria Jose Andrade-Nunez; Grizelle Gonzalez; Maya Quinones

    2017-01-01

    Global estimates of fire frequency indicate that over 70% of active fires occur in the tropics, and the size and frequency of fires are increasing every year. The majority of fires in the tropics are an unintended consequence of current land-use practices that promotes the establishment of grass and shrubland communities, which are more flammable and more adapted to...

  7. Modeling Forest Understory Fires in an Eastern Amazonian Landscape

    NASA Technical Reports Server (NTRS)

    Alencar, A. A. C.; Solorzano, L. A.; Nepstad, D. C.

    2004-01-01

    Forest understory fires are an increasingly important cause of forest impoverishment in Ammonia, but little is known of the landscape characteristics and climatic phenomena that determine their occurrence. We developed empirical functions relating the occurrence of understory fires to landscape features near Paragominas, a 35- yr-old ranching and logging center in eastern Ammonia. An historical sequence of maps of forest understory fire was created based on field interviews With local farmers and Landsat TM images. Several landscape features that might explain spatial variations in the occurrence of understory fires were also mapped and co-registered for each of the sample dates, including: forest fragment size and shape, forest impoverishment through logging and understory fires, source of ignition (settlements and charcoal pits), roads, forest edges, and others. The spatial relationship between forest understory fire and each landscape characteristic was tested by regression analyses. Fire probability models were then developed for various combinations of landscape characteristics. The analyses were conducted separately for years of the El Nino Southern Oscillation (ENSO), which are associated with severe drought in eastern Amazonia, and non-ENS0 years. Most (91 %) of the forest area that burned during the 10-yr sequence caught fire during ENSO years, when severe drought may have increased both forest flammability and the escape of agricultural management fires. Forest understory fires were associated with forest edges, as reported in previous studies from Ammonia. But the strongest predictor of forest fire was the percentage of the forest fragment that had been previously logged or burned. Forest fragment size, distance to charcoal pits, distance to agricultural settlement, proximity to forest edge, and distance to roads were also correlated with forest understory fire. Logistic regression models using information on fragment degradation and distance to ignition sources accurately predicted the location of lss than 80% of the forest fires observed during the ENSO event of 1997- 1998. In this Amazon landscape, forest understory fire is a complex function of several variables that influence both the flammability and ignition exposure of the forest.

  8. Weak climatic control of stand-scale fire history during the late holocene.

    PubMed

    Gavin, Daniel G; Hu, Feng Sheng; Lertzman, Kenneth; Corbett, Peter

    2006-07-01

    Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g., stochastic ignitions, topography, and fuel loads), but the long-term role of such local controls is poorly understood. We report here stand-scale (<100 ha) fire histories of the past 5000 years based on the analysis of sediment charcoal at two lakes 11 km apart in southeastern British Columbia. The two lakes are today located in similar subalpine forests, and they likely have experienced the same late-Holocene climatic changes because of their close proximity. We evaluated two independent properties of fire history: (1) fire-interval distribution, a measure of the overall incidence of fire, and (2) fire synchroneity, a measure of the co-occurrence of fire (here, assessed at centennial to millennial time scales due to the resolution of sediment records). Fire-interval distributions differed between the sites prior to, but not after, 2500 yr before present. When the entire 5000-yr period is considered, no statistical synchrony between fire-episode dates existed between the two sites at any temporal scale, but for the last 2500 yr marginal levels of synchrony occurred at centennial scales. Each individual fire record exhibited little coherency with regional climate changes. In contrast, variations in the composite record (average of both sites) matched variations in climate evidenced by late-Holocene glacial advances. This was probably due to the increased sample size and spatial extent represented by the composite record (up to 200 ha) plus increased regional climatic variability over the last several millennia, which may have partially overridden local, non-climatic controls. We conclude that (1) over past millennia, neighboring stands with similar modern conditions may have experienced different fire intervals and asynchronous patterns in fire episodes, likely because local controls outweighed the synchronizing effect of climate; (2) the influence of climate on fire occurrence is more strongly expressed when climatic variability is relatively great; and (3) multiple records from a region are essential if climate-fire relations are to be reliably described.

  9. Analysis of climate and topographic effect on wildfire regime in Liguria, Italy

    NASA Astrophysics Data System (ADS)

    Fiorucci, Paolo; Biondi, Guido; Campo, Lorenzo; D'Andrea, Mirko; Degli Esposti, Silvia

    2016-04-01

    Wildfire risk is particularly significant in Italy, both in summer and winter season due to the high topographic and vegetation heterogeneity of the territory. Liguria is one of the few regions in Italy affected by wildfires both in summer and winter. Most of the fires in Italy occur in summer season and the burned area is largely greater than in winter season. In Liguria, the number of wildfires and the burned area is higher in winter than in summer. Winter fire regime is mainly due to frequent extremely dry winds from the north in condition of curing for most of the herbaceous species. Southern and central regions and the large islands are characterized by a severe summer fire regime, because of the higher temperatures and prolonged lack of precipitation. The threat of wildfires in Italy is not confined to wooded areas as they extend to agricultural areas and urban-forest interface areas. In view of the limited availability of fire risk management resources, most of which are used in the management of national and regional air services, it is necessary to precisely identify the areas most vulnerable to fire risk. The few resources available can thus be used on a yearly basis to mitigate problems in the areas at highest risk by defining a program of forest management interventions. The availability of a mapping of fire perimeters spans almost 20 years (1996-2013), and this, combined with a detailed knowledge of topography, climate and land cover allowed to understand which are the main features involved in forest fire occurrences and their behavior. The seasonality of the fire regime was also considered, partitioning the analysis in two macro season (November-April and May- October). Total precipitation and average air temperature obtained from the interpolation of 30 years-long time series from 164 raingauges and 127 thermometers series were considered. The analysis was based on a recursive-quantiles subdivision of the territory in classes based on the different available information layers: elevation, slope, aspect, rainfall height, temperature (the latter subdivided in winter and summer periods). The algorithm is designed in order to assure the equal representation of each class, in which the number of fires occurred in the period of analysis is considered, in order to have an estimation of the fire hazard with a constant statistical confidence. The analysis was carried out at a spatial resolution of 20 m on the Liguria region territory (5400 km2) by using a dataset of fires occurrences that spans from 1996 to 2013. The results show a very high correlation with the topographic aspects both in winter and summer. Rainfall is almost uncorrelated in both season. Air temperature is high correlated with the burned area but it is strictly related with elevation. Independently by the season and the vegetation cover, elevation and slope show a very high correlation with the burned area determining almost completely the wildfire regime in Liguria.

  10. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Pedentchouk, N.; Schouten, S.; Pagani, M.; Freeman, K. H.

    2016-12-01

    Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. In turn, climate influences fuel composition (e.g., amount and type of vegetation), fuel availability (e.g., vegetation that can burn based on precipitation and temperature), and ignition sources (e.g., lightning). Climate studies predict increased wildfire activity in future decades, but mechanisms that control the relationship between climate and fire are complex. Reconstructing environmental conditions during past warming events (e.g., the Paleocene-Eocene Thermal Maximum (PETM)) will help elucidate climate-vegetation-fire relationships that are expressed over long durations (1,000 - 10,000 yrs). The abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, possibly, fire occurrence. To investigate coincident changes in climate, vegetation, and fire occurrence, we studied biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes from the PETM interval at IODP site 302 (the Lomonosov Ridge) in the Arctic Ocean. Both pollen and biomarker records indicate angiosperms abundance increased during the PETM relative to gymnosperms, reflecting a significant ecological shift to angiosperm-dominated vegetation. PAH abundances increased relative to plant biomarkers throughout the PETM, which suggests PAH production increased relative to plant productivity. Increased PAH production associated with the angiosperm vegetation shift indicates a greater prevalence of more fire-prone species. A time lag between increased moisture transport (based on published δD of n-alkanes data) to the Arctic and increased angiosperms and PAH production suggests wetter conditions, followed by increased air temperatures, favored angiosperms and combined to enhance fire occurrence.

  11. Evaluating Fire Risk in the Northeastern United States in the Past, Present, and Future

    NASA Astrophysics Data System (ADS)

    Miller, D.; Bradley, R. S.

    2017-12-01

    One poorly understood consequence of climate change is its effects on extreme events such as wildfires. Robust associations between wildfire frequency and climatic variability have been shown to exist, indicating that future climate change may continue to have a significant effect on wildfire activity. The Northeastern United States (NEUS) has seen some of the most infamous and largest historic fires in North America, such as the Miramichi Fire of 1825 and the fires of 1947. Although return intervals for large fires in the NEUS are long (hundreds of years), wildfires have played a critical role in ecosystem development and forest structure in the region. Understanding and predicting fire occurrence and vulnerability in the NEUS, especially in a changing climate, is economically and culturally important yet remains difficult due to human impacts (i.e. fire suppression activities and human disturbance). Thus, an alternative method for investigating fire risk in the NEUS is needed. Here, we present a compilation of meteorological data collected from Automated Surface Observing Systems (ASOS) from the NEUS throughout the 20th century through present day. We use these data to compute fifteen common "fire danger indices" employed in the USA and Canada to investigate changes in the region's fire risk over time, as well as the skill of each of these indices at predicting wildfire activity relative to the historical record of fires in the NEUS. We use dynamically-downscaled regional climate model output for the 21st century to project future wildfire activity based on the fire danger indices capable of capturing historical fire activity in the NEUS. These projections will aid in predicting how fire risk in the NEUS will evolve with anticipated climate change.

  12. A probabilistic view of chaparral and forest fire regimes in southern California and northern Baja California

    Treesearch

    Richard A. Minnich; Ernesto Franco-Vizcaíno

    2009-01-01

    Fire suppression in industrialized countries encourages massive smoke emissions from high-intensity fires as a result of two inextricably related processes under current suppression policies: the nonrandom occurrence of vegetation fires in extreme weather states and the anomalous accumulation of spatially homogenous fuels. We propose as an organizing idea that the...

  13. Human and biophysical factors influencing modern fire disturbance in northern Wisconsin

    Treesearch

    Brian R. Sturtevant; David T. Cleland

    2007-01-01

    Humans cause most wildfires in northern Wisconsin, but interactions between human and biophysical variables affecting fire starts and size are not well understood. We applied classification tree analyses to a 16-year fire database from northern Wisconsin to evaluate the relative importance of human v. biophysical variables affecting fire occurrence within (1) all cover...

  14. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia

    NASA Astrophysics Data System (ADS)

    Nolan, R. H.; Boer, M. M.; Resco de Dios, V.; Caccamo, G.; Bradstock, R. A.

    2016-05-01

    The occurrence of large, high-intensity wildfires requires plant biomass, or fuel, that is sufficiently dry to burn. This poses the question, what is "sufficiently dry"? Until recently, the ability to address this question has been constrained by the spatiotemporal scale of available methods to monitor the moisture contents of both dead and live fuels. Here we take advantage of recent developments in macroscale monitoring of fuel moisture through a combination of remote sensing and climatic modeling. We show there are clear thresholds of fuel moisture content associated with the occurrence of wildfires in forests and woodlands. Furthermore, we show that transformations in fuel moisture conditions across these thresholds can occur rapidly, within a month. Both the approach presented here, and our findings, can be immediately applied and may greatly improve fire risk assessments in forests and woodlands globally.

  15. DETERMINATION OF PERFLUOROCARBOXYLATES IN GROUNDWATER IMPACTED BY FIRE-FIGHTING ACTIVITY. (R821195)

    EPA Science Inventory

    Perfluorinated surfactants are used in aqueous film forming foam (AFFF)
    formulations, which are used to extinguish hydrocarbon-fuel fires. Virtually
    nothing is known about the occurrence of perfluorinated surfactants in the
    environment, in particular, at fire-train...

  16. Using GRACE-Derived Water and Moisture Products as a Predictive Tool for Fire Response in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Rousseau, N. J.; Jensen, D.; Zajic, B.; Rodell, M.; Reager, J. T., II

    2015-12-01

    Understanding the relationship between wildfire activity and soil moisture in the United States has been difficult to assess, with limited ability to determine areas that are at high risk. This limitation is largely due to complex environmental factors at play, especially as they relate to alternating periods of wet and dry conditions, and the lack of remotely-sensed products. Recent drought conditions and accompanying low Fuel Moisture Content (FMC) have led to disastrous wildfire outbreaks causing economic loss, property damage, and environmental degradation. Thus, developing a programmed toolset to assess the relationship between soil moisture, which contributes greatly to FMC and fire severity, can establish the framework for determining overall wildfire risk. To properly evaluate these parameters, we used data assimilated from the Gravity Recovery and Climate Experiment (GRACE) and data from the Fire Program Analysis fire-occurrence database (FPA FOD) to determine the extent soil moisture affects fire activity. Through these datasets, we produced correlation and regression maps at a coarse resolution of 0.25 degrees for the contiguous United States. These fire-risk products and toolsets proved the viability of this methodology, allowing for the future incorporation of more GRACE-derived water parameters, MODIS vegetation indices, and other environmental datasets to refine the model for fire risk. Additionally, they will allow assessment to national-scale early fire management and provide responders with a predictive tool to better employ early decision-support to areas of high risk during regions' respective fire season(s).

  17. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.

  18. Predicting large wildfires across western North America by modeling seasonal variation in soil water balance.

    PubMed

    Waring, Richard H; Coops, Nicholas C

    A lengthening of the fire season, coupled with higher temperatures, increases the probability of fires throughout much of western North America. Although regional variation in the frequency of fires is well established, attempts to predict the occurrence of fire at a spatial resolution <10 km 2 have generally been unsuccessful. We hypothesized that predictions of fires might be improved if depletion of soil water reserves were coupled more directly to maximum leaf area index (LAI max ) and stomatal behavior. In an earlier publication, we used LAI max and a process-based forest growth model to derive and map the maximum available soil water storage capacity (ASW max ) of forested lands in western North America at l km resolution. To map large fires, we used data products acquired from NASA's Moderate Resolution Imaging Spectroradiometers (MODIS) over the period 2000-2009. To establish general relationships that incorporate the major biophysical processes that control evaporation and transpiration as well as the flammability of live and dead trees, we constructed a decision tree model (DT). We analyzed seasonal variation in the relative availability of soil water ( fASW ) for the years 2001, 2004, and 2007, representing respectively, low, moderate, and high rankings of areas burned. For these selected years, the DT predicted where forest fires >1 km occurred and did not occur at ~100,000 randomly located pixels with an average accuracy of 69 %. Extended over the decade, the area predicted burnt varied by as much as 50 %. The DT identified four seasonal combinations, most of which included exhaustion of ASW during the summer as critical; two combinations involving antecedent conditions the previous spring or fall accounted for 86 % of the predicted fires. The approach introduced in this paper can help identify forested areas where management efforts to reduce fire hazards might prove most beneficial.

  19. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    PubMed

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.

  20. Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs.

    PubMed

    Kelly, Erin N; Schindler, David W; St Louis, Vincent L; Donald, David B; Vladicka, Katherine E

    2006-12-19

    Recent findings indicate that fishes from lakes in partially burned catchments contain greater mercury (Hg) concentrations than fishes from reference catchments. Increased methyl Hg (MeHg) concentrations in fishes can result in serious health problems for consumers. Here we show that a forest fire caused a 5-fold increase in whole-body Hg accumulation by rainbow trout (Oncorhynchus mykiss) and smaller Hg increases in muscle of several fish species in a mountain lake. The enhanced Hg accumulation was caused primarily by increased nutrient concentrations in the lake, which enhanced productivity and restructured the food web through increased piscivory and consumption of Mysis. This restructuring resulted in increases to the trophic positions and Hg concentrations of fishes. Forest fire also caused a large short-term release of total Hg (THg) and MeHg to streams and the lake. This release initiated a small pulse of MeHg in invertebrates that contributed to enhanced Hg accumulation by fishes. Climate change and prescribed burning to compensate for past fire suppression are predicted to increase future forest fire occurrence in North America, and increased Hg accumulation by fishes may be an unexpected consequence.

  1. Forest fire increases mercury accumulation by fishes via food web restructuring and increased mercury inputs

    PubMed Central

    Kelly, Erin N.; Schindler, David W.; St. Louis, Vincent L.; Donald, David B.; Vladicka, Katherine E.

    2006-01-01

    Recent findings indicate that fishes from lakes in partially burned catchments contain greater mercury (Hg) concentrations than fishes from reference catchments. Increased methyl Hg (MeHg) concentrations in fishes can result in serious health problems for consumers. Here we show that a forest fire caused a 5-fold increase in whole-body Hg accumulation by rainbow trout (Oncorhynchus mykiss) and smaller Hg increases in muscle of several fish species in a mountain lake. The enhanced Hg accumulation was caused primarily by increased nutrient concentrations in the lake, which enhanced productivity and restructured the food web through increased piscivory and consumption of Mysis. This restructuring resulted in increases to the trophic positions and Hg concentrations of fishes. Forest fire also caused a large short-term release of total Hg (THg) and MeHg to streams and the lake. This release initiated a small pulse of MeHg in invertebrates that contributed to enhanced Hg accumulation by fishes. Climate change and prescribed burning to compensate for past fire suppression are predicted to increase future forest fire occurrence in North America, and increased Hg accumulation by fishes may be an unexpected consequence. PMID:17158215

  2. Forest fire weather and computed fire occurrence in western Oregon and western Washington in 1960.

    Treesearch

    Owen P. Cramer

    1960-01-01

    Fire season severity in 1960 was about average in western Washington but was very high in western Oregon. Severity of the entire season in both States was slightly greater than in 1959. Although spring was less severe, both summer and fall were slightly more severe than comparable parts of the previous fire season. Spring fire danger in western Washington was as low as...

  3. Wildland Fire Prevention: Today, Intuition--Tomorrow, Management

    Treesearch

    Albert J. Simard; Linda R. Donoghue

    1987-01-01

    Describes, from a historical perspective, methods used to characterize fire prevention problems and evaluate prevention programs and discusses past research efforts to bolster these analytical and management efforts. Highlights research on the sociological perspectives of the wildfire problem and on quantitative fire occurrence prediction and program evaluation systems...

  4. Human and climatic influences on fire occurrence in California's north coast range

    Treesearch

    Carl Skinner; Celeste Abbott; Danny Fry; Scott Stephens; Alan Taylor; Valerie Trouet

    2009-01-01

    Outside of the immediate coastal environments, little is known of fire history in the North Coast Range of California. Fire scar specimens were collected from ponderosa pine (Pinus ponderosa C. Lawson), sugar pine (Pinus lambertiana Douglas), incense cedar (Calocedrus decurrens [Torr] Florin), and...

  5. Using weather forecasts for predicting forest-fire danger

    Treesearch

    H. T. Gisborne

    1925-01-01

    Three kinds of weather control the fluctuations of forest-fire danger-wet weather, dry weather, and windy weather. Two other conditions also contribute to the fluctuation of fire danger. These are the occurrence of lightning and the activities of man. But neither of these fire-starting agencies is fully effective unless the weather has dried out the forest materials so...

  6. Forest Fire History... A Computer Method of Data Analysis

    Treesearch

    Romain M. Meese

    1973-01-01

    A series of computer programs is available to extract information from the individual Fire Reports (U.S. Forest Service Form 5100-29). The programs use a statistical technique to fit a continuous distribution to a set of sampled data. The goodness-of-fit program is applicable to data other than the fire history. Data summaries illustrate analysis of fire occurrence,...

  7. Forest fire weather and computed fire occurrence in western Oregon and western Washington.

    Treesearch

    Owen P. Cramer

    1959-01-01

    Severity of the 1959 fire season varied from well below normal in western Washington to a record-setting high in southwestern Oregon. The season was characterized by well-distributed, short rainy periods separated by comparatively short dry spells that frequently included days of high fire danger. July was the only month with markedly above-normal temperatures, and...

  8. Post-fire vegetation dynamics in Portugal

    NASA Astrophysics Data System (ADS)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2009-04-01

    The number of fires and the extent of the burned surface in Mediterranean Europe have increased significantly during the last three decades. This may be due either to modifications in land-use (e.g. land abandonment and fuel accumulation) or to climatic changes (e.g. reduction of fuel humidity), both factors leading to an increase of fire risk and fire spread. As in the Mediterranean ecosystems, fires in Portugal have an intricate effect on vegetation regeneration due to the complexity of landscape structures as well as to the different responses of vegetation to the variety of fire regimes. A thorough evaluation of vegetation recovery after fire events becomes therefore crucial in land management. In the above mentioned context remote sensing plays an important role because of its ability to monitor and characterise post-fire vegetation dynamics. A number of fire recovery studies, based on remote sensing, have been conducted in regions characterised by Mediterranean climates and the use of NDVI to monitor plant regeneration after fire events was successfully tested (Díaz-Delgado et al., 1998). In particular, several studies have shown that rapid regeneration occurs within the first 2 years after the fire occurrences, with distinct recovery rates according to the geographical facing of the slopes (Pausas and Vallejo, 1999). In 2003 Portugal was hit by the most devastating sequence of large fires, responsible by a total burnt area of 450 000 ha (including 280 000 ha of forest), representing about 5% of the Portuguese mainland (Trigo et al., 2006). The aim of the present work is to assess and monitor the vegetation behaviour over Portugal following the 2003 fire episodes. For this purpose we have used the regional fields of the Normalized Difference Vegetation Index (NDVI) as obtained from the VEGETATION-SPOT5 instrument, from 1999 to 2008. We developed a methodology to identify large burnt scars in Portugal for the 2003 fire season. The vegetation dynamics was then analysed for some selected areas and a regression model of post-fire recovery was fitted to the recorded values of NDVI. The model allowed characterising the dynamics of the regeneration process. It was found that recovery rates depend on geographical location, fire intensity/severity and type of vegetation cover. Díaz-Delgado, R., Salvador, R. and Pons, X., 1998: Monitoring of plant community regeneration after fire by remote sensing. In L. Traboud (Ed.), Fire management and landscape ecology (pp. 315-324). International Association of Wildland Fire, Fairfield, WA. Pausas, G.J. and Vallejo, V.R., 1999: The role of fire in European Mediterranean Ecosystems. In: E. Chuvieco (Ed.), Remote sensing of large wildfires in the European Mediterranean basin (pp. 3-16). Springer-Verlag. Trigo R.M., Pereira J.M.C., Pereira M.G., Mota B., Calado M.T., DaCamara C.C., Santo F.E., 2006: Atmospheric conditions associated with the exceptional fire season of 2003 in Portugal. International Journal of Climatology 26 (13): 1741-1757 NOV 15 2006.

  9. Spatial and temporal selectivity patterns of fires in Attika, Greece from 1984 to 2015 delineated from Landsat time series satellite images

    NASA Astrophysics Data System (ADS)

    Stamos, Zoi; Koutsias, Nikos

    2017-04-01

    The aim of this study is to assess spatial and temporalfire selectivity patterns in the region of Attica - Greece from 1984 to 2015. Our work is implemented in two distinct phases: the first consists of the accurate delineation of the fire perimeter using satellite remote sensing technology, and the second consists of the application of suitable GIS supported analyses to develop thematic layers that optimally summarised the spatial and temporal information of fire occurrence. Fire perimeters of wildland fires occurred within the time window 1984-2015 were delineated from freely available Landsat images from USGS and ESA sources.More than three thousands satellite images were processed in order to extract fire perimeters and create maps of fire frequency and fire return interval. In total one thousand and one hundred twenty fire perimeters were recorded during this thirty years' period. Fire perimeters within each year of fire occurrence were compared against the available to burn under complete random processes to identify selectivity patterns over (i) CORINE land use/land cover, (ii) fire frequency and (iii) time since last firemaps. For example, non- irrigated arable lands, complex cultivation patterns and discontinuous urban fabrics are negative related with fires, while coniferous forests, sclerophyllous vegetation and transitional woodlands seem to be preferable by the fires. Additionally, it seems that fires prefer their old burnings (two and three times burned) and also places with different patterns of time since last fire depending on the time needed by the type of vegetation to recover and thus to re-burn.

  10. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  11. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires.

    PubMed

    Terrier, Aurélie; Girardin, Martin P; Périé, Catherine; Legendre, Pierre; Bergeron, Yves

    2013-01-01

    There is general consensus that wildfires in boreal forests will increase throughout this century in response to more severe and frequent drought conditions induced by climate change. However, prediction models generally assume that the vegetation component will remain static over the next few decades. As deciduous species are less flammable than conifer species, it is reasonable to believe that a potential expansion of deciduous species in boreal forests, either occurring naturally or through landscape management, could offset some of the impacts of climate change on the occurrence of boreal wildfires. The objective of this study was to determine the potential of this offsetting effect through a simulation experiment conducted in eastern boreal North America. Predictions of future fire activity were made using multivariate adaptive regression splines (MARS) with fire behavior indices and ecological niche models as predictor variables so as to take into account the effects of changing climate and tree distribution on fire activity. A regional climate model (RCM) was used for predictions of future fire risk conditions. The experiment was conducted under two tree dispersal scenarios: the status quo scenario, in which the distribution of forest types does not differ from the present one, and the unlimited dispersal scenario, which allows forest types to expand their range to fully occupy their climatic niche. Our results show that future warming will create climate conditions that are more prone to fire occurrence. However, unlimited dispersal of southern restricted deciduous species could reduce the impact of climate change on future fire occurrence. Hence, the use of deciduous species could be a good option for an efficient strategic fire mitigation strategy aimed at reducing fire Propagation in coniferous landscapes and increasing public safety in remote populated areas of eastern boreal Canada under climate change.

  12. Estimation of the Forest Fire Risk in Indonesia based on Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Takahashi, Y.; Hashimoto, A.; Akita, M.; Hasegawa, Y.; Ogino, Y.; Naruse, N.; Takahashi, Y.

    2016-12-01

    To minimize forest fires in tropical area is extremely important, because the fire has a large impact on global warming, biodiversity, and human society. In the previous study, Shimada and Ishibashi monitored the ground-water lever from the value of Normalized Difference Vegetation Index (NDVI) obtained in Kalimantan Island to predict where the forest fires will happen. We have developed a method to map the forest fire risk by calculating the value of Modified Soil Adjusted Vegetation Index 2 (MSAVI2). Moreover, we investigated the relation between the distance from a road as an artificial factor and the occurrence of the fire.First, calculating the MSAVI2 from Landsat 7 and 8 images of August, 2015 around Martapura in South Sumatra, Indonesia, we mapped the area where the plants were stressed. Next, we checked the degrees of matching between the area of low MSAVI2 and the forest fire points.As a result, half of the fires happened in the area having the MSAVI2 values of 0.20 to 0.35. When we focused on only the area which is over 5 kilometers far from a road, the degrees of matching became higher; it rose up to 62 percent.Those results indicate that the fire risks relate to the dry area calculated as low MSAVI2 in the case with less human activities. We need to consider an effect of artificial factors to estimate the whole risk of forest fire.In conclusion, the map of forest fire risk by calculating the value of MSAVI2 is applicable to an area with less artificial factor, while we have to take the effect of artificial fire factor into the consideration.

  13. 14 CFR 33.17 - Fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: AIRCRAFT ENGINES Design and Construction; General § 33.17 Fire protection. (a) The design and... addition, the design and construction of turbine engines must minimize the probability of the occurrence of...

  14. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The human dimension of fire regimes on Earth.

    PubMed

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-12-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.

  16. The human dimension of fire regimes on Earth

    PubMed Central

    Bowman, David M J S; Balch, Jennifer; Artaxo, Paulo; Bond, William J; Cochrane, Mark A; D'Antonio, Carla M; DeFries, Ruth; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Mack, Michelle; Moritz, Max A; Pyne, Stephen; Roos, Christopher I; Scott, Andrew C; Sodhi, Navjot S; Swetnam, Thomas W; Whittaker, Robert

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but ‘natural’ (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from ‘natural’ background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research. PMID:22279247

  17. The human dimension of fire regimes on Earth

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Michelle, Mack; Moritz, Max A.; Pyne, Stephen; Roos, Christopher I.; Scott, Andrew C.; Sodhi, Navjot S.; Swetnam, Thomas W.

    2011-01-01

    Humans and their ancestors are unique in being a fire-making species, but 'natural' (i.e. independent of humans) fires have an ancient, geological history on Earth. Natural fires have influenced biological evolution and global biogeochemical cycles, making fire integral to the functioning of some biomes. Globally, debate rages about the impact on ecosystems of prehistoric human-set fires, with views ranging from catastrophic to negligible. Understanding of the diversity of human fire regimes on Earth in the past, present and future remains rudimentary. It remains uncertain how humans have caused a departure from 'natural' background levels that vary with climate change. Available evidence shows that modern humans can increase or decrease background levels of natural fire activity by clearing forests, promoting grazing, dispersing plants, altering ignition patterns and actively suppressing fires, thereby causing substantial ecosystem changes and loss of biodiversity. Some of these contemporary fire regimes cause substantial economic disruptions owing to the destruction of infrastructure, degradation of ecosystem services, loss of life, and smoke-related health effects. These episodic disasters help frame negative public attitudes towards landscape fires, despite the need for burning to sustain some ecosystems. Greenhouse gas-induced warming and changes in the hydrological cycle may increase the occurrence of large, severe fires, with potentially significant feedbacks to the Earth system. Improved understanding of human fire regimes demands: (1) better data on past and current human influences on fire regimes to enable global comparative analyses, (2) a greater understanding of different cultural traditions of landscape burning and their positive and negative social, economic and ecological effects, and (3) more realistic representations of anthropogenic fire in global vegetation and climate change models. We provide an historical framework to promote understanding of the development and diversification of fire regimes, covering the pre-human period, human domestication of fire, and the subsequent transition from subsistence agriculture to industrial economies. All of these phases still occur on Earth, providing opportunities for comparative research.

  18. Fire's importance in South Central U.S. forests: distribution of fire evidence

    Treesearch

    Victor A. Rudis; Thomas V. Skinner

    1991-01-01

    Evidence of past fire occurrence is estimated to occur on 26 percent of the 87.2 million acres of forests in Alabama, Arkansas, southeast Louisiana, Mississippi, east Oklahoma, Tennessee, and east Texas.Data are drawn from a systematic survey of fire evidence conducted in conjunction with recent inventories of private and public forested areas in the South Central U.S....

  19. Predicting hydrological and erosional risks in fire-affected watersheds: recent advances and research gaps

    NASA Astrophysics Data System (ADS)

    Nunes, João Pedro; Keizer, Jan Jacob

    2017-04-01

    Models can be invaluable tools to assess and manage the impacts of forest fires on hydrological and erosion processes. Immediately after fires, models can be used to identify priority areas for post-fire interventions or assess the risks of flooding and downstream contamination. In the long term, models can be used to evaluate the long-term implications of a fire regime for soil protection, surface water quality and potential management risks, or determine how changes to fire regimes, caused e.g. by climate change, can impact soil and water quality. However, several challenges make post-fire modelling particularly difficult: • Fires change vegetation cover and properties, such as by changing soil water repellency or by adding an ash layer over the soil; these processes, however are not described in currently used models, so that existing models need to be modified and tested. • Vegetation and soils recover with time since fire, changing important model parameters, so that the recovery processes themselves also need to be simulated, including the role of post-fire interventions. • During the window of vegetation and soil disturbance, particular weather conditions, such as the occurrence of severe droughts or extreme rainfall events, can have a large impact on the amount of runoff and erosion produced in burnt areas, so that models that smooth out these peak responses and rather simulate "long-term" average processes are less useful. • While existing models can simulate reasonable well slope-scale runoff generation and associated sediment losses and their catchment-scale routing, few models can accommodate the role of the ash layer or its transport by overland flow, in spite of its importance for soil fertility losses and downstream contamination. This presentation will provide an overview of the importance of post-fire hydrological and erosion modelling as well as of the challenges it faces and of recent efforts made to overcome these challenges. It will illustrate these challenges with two examples: probabilistic approaches to simulate the impact of different vegetation regrowth and post-fire climate combinations on runoff and erosion; and model developments for post-fire soil water repellency with different levels of complexity. It will also present an inventory of the current state-of-the-art and propose future research directions, both on post-fire models themselves and on their integration with other models in large-scale water resource assessment management.

  20. Response and legislative changes after the Kiss nightclub tragedy in Santa Maria/RS/Brazil: Learning from a large-scale burn disaster.

    PubMed

    Gragnani, Alfredo; de Oliveira, Andrea Fernandes; Boro, Daniel; Pham, Tam N; Ferreira, Lydia Masako

    2017-03-01

    A major fire occurred on January 27, 2013, at 02:30 at Kiss nightclub in the city of Santa Maria, State of Rio Grande do Sul, in Southern Brazil. In this retrospective report, we aimed to describe the nightclub fire event, its immediate consequences, and evaluated its impact on legislation. Our objective was to disseminate the lessons we learned from this large-scale nightclub fire disaster. We conducted a literature review in PubMed and Lilacs database from 2013 to 2015 related to the nightclub Kiss, Santa Maria, fire, burns, and similar events worldwide over the past 15 years. We searched in the general press and online media information sites, and seeking legislation about this topic at the federal level in Brazil. We reported on the legislation changes that resulted from this nightclub fire. Current federal legislation on fire prevention and the scope of public safety, including night clubs and discos, states is the duty of the state and everyone's responsibility, pursuant to Article 144 of the Federal Constitution of Brazil. Thus, the federal union, individual states and municipalities have the power to legislate on fire prevention, and especially to ensure the security of the population. A state law called "Law Kiss", was passed in 2014, establishing standards on safety, prevention and protection against fire in buildings and areas of fire risk in the state of Rio Grande do Sul. On a national level, a law of prevention and fire fighting in Brazil was also drafted after the Santa Maria disaster (Law project no. 4923, 2013). Currently, this bill is still awaiting sanction before it can take effect. As we push for enactment of the national law of prevention and fire fighting in Brazil, we will continue emphasizing fire prevention, fire protection, fire fighting, means of escape and proper management. All similar events in this and other countries remind us that similar tragedies may occur anywhere, and that the analysis of facts, previous mistakes, during and after the incident are crucial to our understanding, and will help us lessen the chance of future occurrences. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  1. Examining the strength and possible causes of the relationship between fire history and Sudden Oak Death.

    PubMed

    Moritz, Max A; Odion, Dennis C

    2005-06-01

    Fire can be a dominant process in the ecology of forest vegetation and can also affect forest disease dynamics. Little is known about the relationship between fire and an emerging disease epidemic called Sudden Oak Death, which is caused by a new pathogen, Phytophthora ramorum. This disease has spread across a large, fire-prone portion of California, killing great numbers of oaks and tanoaks and infecting most associated woody plants. Suitable hosts cover a much broader geographic range, raising concern over where the disease may spread. To understand the strength and potential sensitivities of a fire-disease relationship, we examined geographic patterns of confirmed P. ramorum infections in relation to past fire history. We found these infections to be extremely rare within the perimeter of any area burned since 1950. This finding is not caused by spatial bias in sampling for the disease, and is robust to variation in host abundance scenarios and to aggregation of closely spaced sampling locations. We therefore investigated known fire-related factors that could result in significantly lower incidence of the disease in relatively recently burned landscapes. Chemical trends in post-fire environments can influence the success of pathogens like P. ramorum, either by increasing plant nutrient stress or by reducing the occurrence of chemicals antagonistic to Phytophthoras. Succession in the absence of fire leads to greater abundance of host species, which will provide increased habitat for P. ramorum; this will also increase intraspecific competition where these trees are abundant, and other density-dependent effects (e.g. shading) can reduce resource allocation to defenses. Despite these findings about a fire-disease relationship, a much deeper understanding is necessary before fire can be actively used as a tool in slowing the epidemic.

  2. Impact of air quality in Mexico City due to particles smaller than ten microns (PM10) by wildland fire in "Cumbres del Ajusco Park" for the year 2013

    NASA Astrophysics Data System (ADS)

    Mendoza, A.; Garcia-Reynoso, J. A.; Ruiz-Suárez, L. G.; Torres, R.; Castro, T.; Peralta, O.; Padilla Barrera, Z. V.; Mar, B.; Carbajal, J. N.

    2014-12-01

    A forest fire is a natural process of combustion in a specific geographical area, its occurrence depends on meteorological variables, topography and vegetation type, the wildland fires are potential sources of large amounts of pollutants. The main air pollutants are in a wildland fires particles (PM10 and PM2.5) Carbon Monoxide (CO), nitrogen oxides (NOx), volatile organic compounds (VOC's) and a negligible amount of sulfur dioxide (SO2) (Chow 1995), Was performed a study of the environmental impact on air quality in Mexico city for a wildland fire. The fire was presented in Cumbres del Ajusco Park on April 14 for the year 2013, with a duration of 26 hours and consuming an extension 150 ha of pasture, WRF-Chem and WRF-fire model were used to conduct the study, two modeling scenarios were made, one including emissions from wildfire and other without emission-fire, comparison is made between the two modeling scenarios in order to calculate on air quality in Mexico cityPM10 concentrations have a larger impact on the air quality of Mexico city, when fire emission were included, a plume of PM10 coming from fire increase ambient concentration up to 350ug/m3 and it was obtained by modeling similar to the concentration measured by a monitoring station (320ug/m3).The current limit is 120ug/m3 24 hours average. (Mexican standard NOM-025-SSA1-1993)This system for setting emissions from fire is working properly whoever further development is required.

  3. Investigating the effect of fire dynamics on aboveground carbon storage in the Bateke landscape, Republic of Congo

    NASA Astrophysics Data System (ADS)

    Nieto Quintano, P.; Mitchard, E. T.; Ryan, C.; Tim, R.

    2016-12-01

    It is estimated that 68% of Africa's surface area burns every year (Roy et al. 2008), being the savanna biome the most continuously affected by burning with strong environmental and social impacts (Romero-Ruiz et al., 2010). Most fires in Africa are anthropogenic and occur during the Late Dry Season, but their dynamics and effects remain understudied. Sankaran et al. (2005) suggested that if disturbances by fire, browsers and humans were absent, then large areas of Africa would become forests. The main objective of this research is to understand the woody cover, productivity, carbon storage and fire regime of the complex forest/savanna system of the Bateke Plateau. The Bateke Plateau is a landscape composed of frequently burned grassland savanna surrounded by tropical forest, situated in the centre of the Republic of Congo. This study combines two approaches: firstly experimental, with long term field experiments where the fire regime is manipulated, and then observational, using remote sensing to study the past history of fire regime in the region. Field experiments suggest that late dry season fires are more intense and have higher mortality rates. We also investigated aboveground biomass, fire occurrence and intensity, using Landsat, ALOS PALSAR and the fire products of MODIS. We found that most savanna areas burnt at least once every 4 years, with more frequent fires occurring in the late dry season and around roads and settlements. This two approaches will be then combined to create a novel model of vegetation-fire-climate interactions in order to predict the vegetation response to different future scenarios. The results will be used to promote better management of this area to enhance carbon storage, as well as increase our understanding of vegetation dynamics in this understudied ecosystem and help orient policy and conservation.

  4. Implications of fire management on cultural resources [Chapter 9

    Treesearch

    Rebecca S. Timmons; Leonard deBano; Kevin C. Ryan

    2012-01-01

    Previous chapters in this synthesis have identified the important fuel, weather, and fire relationships associated with damage to cultural resources (CR). They have also identified the types of effects commonly encountered in various fire situations and provided some guidance on how to recognize damages and minimize their occurrence. This chapter describes planning...

  5. Improving Freight Fire Safety: Analysis and Testing of Real Engine Conditions to Progress Development of Mist-controlling Additives for Fire Mitigation

    DOT National Transportation Integrated Search

    2009-12-01

    The formation of a fuel mist resulting from high shear stresses acting on the fuel during violent sloshing and tank rupture under the energy of a crash severely increases the occurrence and intensity of fires in transportation related accidents. In o...

  6. Progress towards a lightning ignition model for the Northern Rockies

    Treesearch

    Paul Sopko; Don Latham

    2010-01-01

    We are in the process of constructing a lightning ignition model specific to the Northern Rockies using fire occurrence, lightning strike, ecoregion, and historical weather, NFDRS (National Fire Danger Rating System), lightning efficiency and lightning "possibility" data. Daily grids for each of these categories were reconstructed for the 2003 fire season (...

  7. Wildland fire emissions, carbon and climate: Characterizing wildland fuels

    Treesearch

    David R. Weise; Clinton S. Wright

    2013-01-01

    Smoke from biomass fires makes up a substantial portion of global greenhouse gas, aerosol, and black carbon (GHG/A/BC) emissions. Understanding how fuel characteristics and conditions affect fire occurrence and extent, combustion dynamics, and fuel consumption is critical for making accurate, reliable estimates of emissions production at local, regional, national, and...

  8. Assessing fire risk in Portugal during the summer fire season

    NASA Astrophysics Data System (ADS)

    Dacamara, C. C.; Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Since 1998, Instituto de Meteorologia, the Portuguese Weather Service has relied on the Canadian Fire Weather Index (FWI) System (van Wagner, 1987) to produce daily forecasts of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behavior. The first three components, i.e. the Fine Fuel Moisture Code (FFMC), the Duff Moisture Code (DMC) and the Drought Code (DC) respectively rate the average moisture content of surface litter, decomposing litter, and organic (humus) layers of the soil. Wind effects are then added to FFMC leading to the Initial Spread Index (ISI) that rates fire spread. The remaining two fuel moisture codes (DMC and DC) are in turn combined to produce the Buildup Index (BUI) that is a rating of the total amount of fuel available for combustion. BUI is finally combined with ISI to produce the Fire Weather Index (FWI) that represents the rate of fire intensity. Classes of fire danger and levels of preparedness are commonly defined on an empirical way for a given region by calibrating the FWI System against wildfire activity as defined by the recorded number of events and by the observed burned area over a given period of time (Bovio and Camia, 1998). It is also a well established fact that distributions of burned areas are heavily skewed to the right and tend to follow distributions of the exponential-type (Cumming, 2001). Based on the described context, a new procedure is presented for calibrating the FWI System during the summer fire season in Portugal. Two datasets were used covering a 28-year period (1980-2007); i) the official Portuguese wildfire database which contains detailed information on fire events occurred in the 18 districts of Continental Portugal and ii) daily values of the six components of the FWI System as derived from reanalyses (Uppala et al., 2005) of the European Centre for Medium-Range Weather Forecasts (ECMWF). Calibration of the FWI System is then performed in two steps; 1) a truncated Weibull distribution is fitted to the sample of burned areas and 2) the quality of the fitted statistical model is improved by incorporating components of the FWI System as covariates. Obtained model allows estimating on a daily basis the probability of occurrence of fires larger than a given threshold as well as producing maps of fire risk. Results as obtained from a prototype currently being developed will be presented and discussed. In particular, it will be shown that results provide additional evidence of the known fact that the extent of burned area in Portugal is controlled by two main atmospheric factors (Pereira et al. 2005): i) a long-term control related to the regime of temperature and precipitation in spring and ii) a short-term control exerted by the occurrence of very intense dry spells in days of extreme synoptic situations. Bovio, G., and A. Camia. 1998. An analysis of large forest fire danger conditions in Europe. In Proc. 3rd Int. Conf. on Forest Fire Research & 14th Conf. on Fire and Forest Meteorology, Viegas, D.X. (Ed.), Luso, 16-20 Nov., ADAI, 975-994. Cumming, S.G., 2001. Parametric models of the fire size distribution. Can J. For. Res., 31, 1297-1303. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C. and Leite, S.M., 2005. Synoptic patterns associated with large summer forest fires in Portugal. Agr. and For. Meteorol., 129 (1-2), 11-25. Uppala, S.M. et al., 2005: The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc., 131, 2961-3012. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.

  9. Vector-borne diseases on Fire Island, New York (Fire Island National Seashore Science Synthesis Paper)

    USGS Publications Warehouse

    Ginsberg, H.S.

    2005-01-01

    This paper discusses eleven tick-borne and five mosquito-borne pathogens that are known to occur at FIlS, or could potentially occur. The potential for future occurrence, and ecological factors that influence occurrence, are assessed for each disease. Lyme disease is the most common vector-borne disease on Fire Island. The Lyme spirochete, Borrelia burgdorferi, is endemic in local tick and wildlife populations. Public education, personal precautions against tick bite, and prompt treatment of early-stage infections can help manage the risk of Lyme disease on Fire Island. The pathogens that cause Human Monocytic Ehrlichiosis and Tularemia have been isolated from ticks or wildlife on Fire Island, and conditions suggest that other tickborne diseases (including Babesiosis, Rocky Mountain Spotted Fever, and Human Granulocytic Ehrlichiosis) might also occur, but these are far less common than Lyme disease, if present. West Nile Virus (WNV) is the primary mosquito- borne human pathogen that is known to occur on Fire Island. Ecological conditions and recent epizootiological events suggest that WNV occurs in foci that can shift from year to year. Therefore, a surveillance program with appropriate responses to increasing epizootic activity can help manage the risk of WNV transmission on Fire Island.

  10. Breakdowns in coordinated decision making at and above the incident management team level: an analysis of three large scale Australian wildfires.

    PubMed

    Bearman, Chris; Grunwald, Jared A; Brooks, Benjamin P; Owen, Christine

    2015-03-01

    Emergency situations are by their nature difficult to manage and success in such situations is often highly dependent on effective team coordination. Breakdowns in team coordination can lead to significant disruption to an operational response. Breakdowns in coordination were explored in three large-scale bushfires in Australia: the Kilmore East fire, the Wangary fire, and the Canberra Firestorm. Data from these fires were analysed using a top-down and bottom-up qualitative analysis technique. Forty-four breakdowns in coordinated decision making were identified, which yielded 83 disconnects grouped into three main categories: operational, informational and evaluative. Disconnects were specific instances where differences in understanding existed between team members. The reasons why disconnects occurred were largely consistent across the three sets of data. In some cases multiple disconnects occurred in a temporal manner, which suggested some evidence of disconnects creating states that were conducive to the occurrence of further disconnects. In terms of resolution, evaluative disconnects were nearly always resolved however operational and informational disconnects were rarely resolved effectively. The exploratory data analysis and discussion presented here represents the first systematic research to provide information about the reasons why breakdowns occur in emergency management and presents an account of how team processes can act to disrupt coordination and the operational response. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Temporal and spatial patterns in fire occurrence during the establishment of mixed-oak forests in eastern North America

    Treesearch

    Ryan W. McEwan; Todd F. Hutchinson; Robert P. Long; Robert D. Ford; Brian C. McCarthy

    2007-01-01

    What was the role of fire during the establishment of the current overstory (ca. 1870-1940) in mixed-oak forests of eastern North America? Nine sites representing a 240-km latitudinal gradient on the Allegheny and Cumberland Plateaus of eastern North America. Basal cross-sections were collected from 225 trees. Samples were surfaced, and fire scars were dated. Fire...

  12. Holocene fire occurrence and alluvial responses at the leading edge of pinyon–juniper migration in the Northern Great Basin, USA

    USGS Publications Warehouse

    Weppner, Kerrie N.; Pierce, Jennifer L.; Betancourt, Julio L.

    2013-01-01

    Fire and vegetation records at the City of Rocks National Reserve (CIRO), south-central Idaho, display the interaction of changing climate, fire and vegetation along the migrating front of single-leaf pinyon (Pinus monophylla) and Utah juniper (Juniperus osteosperma). Radiocarbon dating of alluvial charcoal reconstructed local fire occurrence and geomorphic response, and fossil woodrat (Neotoma) middens revealed pinyon and juniper arrivals. Fire peaks occurred ~ 10,700–9500, 7200–6700, 2400–2000, 850–700, and 550–400 cal yr BP, whereas ~ 9500–7200, 6700–4700 and ~ 1500–1000 cal yr BP are fire-free. Wetter climates and denser vegetation fueled episodic fires and debris flows during the early and late Holocene, whereas drier climates and reduced vegetation caused frequent sheetflooding during the mid-Holocene. Increased fires during the wetter and more variable late Holocene suggest variable climate and adequate fuels augment fires at CIRO. Utah juniper and single-leaf pinyon colonized CIRO by 3800 and 2800 cal yr BP, respectively, though pinyon did not expand broadly until ~ 700 cal yr BP. Increased fire-related deposition coincided with regional droughts and pinyon infilling ~ 850–700 and 550–400 cal yr BP. Early and late Holocene vegetation change probably played a major role in accelerated fire activity, which may be sustained into the future due to pinyon–juniper densification and cheatgrass invasion.

  13. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.

  14. Spatial patterns in vegetation fires in the Indian region.

    PubMed

    Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu

    2008-12-01

    In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.

  15. The dynamics of fire regimes in tropical peatlands in Central Kalimantan, Borneo

    NASA Astrophysics Data System (ADS)

    Hoscilo, Agata; Page, Susan; Tansey, Kevin

    2010-05-01

    As a carbon-rich ecosystem, tropical peatland contributes significantly to terrestrial carbon storage and stability of the global carbon cycle. Vast areas of tropical peatland in SE Asia are degraded by the increasingly intensive scale of human activities, illustrated by high rates of deforestation, poor land-use management, selective illegal logging, and frequently repeated fires. Analysis of time-series satellite images performed in this study confirmed that fire regimes have dramatically changed in tropical peatlands over the last three decades (1973-2005). The study was conducted in the southern part of Central Kalimantan (Indonesian Borneo). We found that there was an evident increase in fire frequency and a decline in the fire return interval after implementation of the Mega Rice Project (1997-2005). Up until 1997, fires had affected a relatively small area, in total 23% of the study area, and were largely related to land clearance. This situation changed significantly during the last decade (1997-2005), when the widespread, intensive fires of 1997 affected a much larger area. Five years later, in 2002, extensive fires returned, affecting again 22% of the study area. Then, in 2004 and 2005, a further large area of peatland was on fire. Fire frequency analysis showed that during the period 1997-2005, around 45% of the study area was subject to multiple fires, with 37% burnt twice and 8% burnt three or more times. Near-annual occurrence of fire events reduces the rate and nature of vegetation regrowth. Hence, we observed a shift in the fire fuel type and amount over the period of investigation. After 1997, the fire fuel shifted from mainly peat swamp forest biomass towards non-woody biomass, dominated by regenerating vegetation, mainly ferns and a few trees. This secondary vegetation has been shown to be fire prone, although fire propagation is slower than in forest and restricted by both low fuel quality and load. Furthermore, we investigated the interaction between human impacts and presence and extent of fires. We found that the majority of fire events were directly or indirectly associated with human activities (i.e. selective logging, land clearance, intensive drainage and transmigration re-settlement). The intensive drainage infrastructure associated with the Mega Rice Project initiative greatly impaired the peatland hydrological system, increasing the risk of fire. In addition, the network of canals allowed easy access for people whose activities provided ignition sources. Hence, multiple fires were located within close proximity to canals and declined with distance away from canals. These results emphasise the vulnerability of degraded tropical peatlands to fire and confirm that widespread and intensive fires have become an integral part of tropical peatland ecosystem and are now associated with most dry seasons.

  16. Redirecting fire-prone Mediterranean ecosystems toward more resilient and less flammable communities.

    PubMed

    Santana, Victor M; Baeza, M Jaime; Valdecantos, Alejandro; Vallejo, V Ramón

    2018-06-01

    The extensive abandonment of agricultural lands in the Mediterranean basin has led to large landscapes being dominated by early-successional species, characterized by high flammability and an increasing fire risk. This fact promotes fire occurrence and places ecosystems in a state of arrested succession. In this work, we assessed the effectiveness of several restoration actions in redirecting these ecosystems toward more resilient communities dominated by resprouting species. These actions included the mechanical clearing of early-successional species, the plantation of resprouting species, and the combination of both treatments. For 13 years, we assessed shifts in the successional trajectory and ecosystem flammability by changes in: species composition, species richness, ecosystem evenness, the natural colonization of resprouting species, total biomass and proportion of dead biomass. We observed that the plantation and clearing combination was a suitable strategy to promote resilience. Species richness increased as well as the presence of the resprouting species introduced by planting. The natural colonization of the resprouting species was also enhanced. These changes in the successional trajectory were accompanied by a possible reduction of fire risk by reducing dead fuel proportion. These findings are relevant for the management of Mediterranean basin areas, but also suggest new tools for redirecting systems in fire-prone areas worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Does Fire Influence the Landscape-Scale Distribution of an Invasive Mesopredator?

    PubMed Central

    Payne, Catherine J.; Ritchie, Euan G.; Kelly, Luke T.; Nimmo, Dale G.

    2014-01-01

    Predation and fire shape the structure and function of ecosystems globally. However, studies exploring interactions between these two processes are rare, especially at large spatial scales. This knowledge gap is significant not only for ecological theory, but also in an applied context, because it limits the ability of landscape managers to predict the outcomes of manipulating fire and predators. We examined the influence of fire on the occurrence of an introduced and widespread mesopredator, the red fox (Vulpes vulpes), in semi-arid Australia. We used two extensive and complimentary datasets collected at two spatial scales. At the landscape-scale, we surveyed red foxes using sand-plots within 28 study landscapes – which incorporated variation in the diversity and proportional extent of fire-age classes – located across a 104 000 km2 study area. At the site-scale, we surveyed red foxes using camera traps at 108 sites stratified along a century-long post-fire chronosequence (0–105 years) within a 6630 km2 study area. Red foxes were widespread both at the landscape and site-scale. Fire did not influence fox distribution at either spatial scale, nor did other environmental variables that we measured. Our results show that red foxes exploit a broad range of environmental conditions within semi-arid Australia. The presence of red foxes throughout much of the landscape is likely to have significant implications for native fauna, particularly in recently burnt habitats where reduced cover may increase prey species’ predation risk. PMID:25291186

  18. The role of fire in management of watershed responses

    Treesearch

    Malcolm J. Zwolinski

    2000-01-01

    Hydrologic responses of watersheds are strongly related to vegetation and soil disturbances. Many of the storage and transfer components of the global hydrologic cycle are altered by the occurrence of fire. The major effect of fire on the hydrologic functioning of watersheds is the removal of vegetation and litter materials that protect the soil surface. Reductions in...

  19. Factors Related to Communication of Forest Fire Prevention Messages, a Study of Selected Rural Communities.

    ERIC Educational Resources Information Center

    Griessman, B. Eugene; Bertrand, Alvin L.

    Two rural Louisiana communities were selected to evaluate the effectiveness of certain types of communication in preventing man-caused forest fires. The communities were selected on the basis of differences in fire occurrence rates and other factors related to conservation. Questionnaires and personal interviews were utilized to determine views of…

  20. Black-tailed prairie dog (Cynomys ludovicianus) response to seasonality and frequency of fire

    Treesearch

    Felicia D. Archuleta

    2014-01-01

    Fragmentation of the landscape, habitat loss, and fire suppression, all a result of European settlement and activities, have precipitated both the decline of Black-tailed prairie dog (Cynomys ludovicianus) populations and the occurrence of fire throughout the Great Plains, including the Shortgrass steppe of northeastern New Mexico. The presence of Black-tailed prairie...

  1. Fire in the Amazon: impact of experimental fuel addition on responses of ants and their interactions with myrmecochorous seeds.

    PubMed

    Paolucci, Lucas N; Maia, Maria L B; Solar, Ricardo R C; Campos, Ricardo I; Schoereder, José H; Andersen, Alan N

    2016-10-01

    The widespread clearing of tropical forests causes lower tree cover, drier microclimate, and higher and drier fuel loads of forest edges, increasing the risk of fire occurrence and its intensity. We used a manipulative field experiment to investigate the influence of fire and fuel loads on ant communities and their interactions with myrmecochorous seeds in the southern Amazon, a region currently undergoing extreme land-use intensification. Experimental fires and fuel addition were applied to 40 × 40-m plots in six replicated blocks, and ants were sampled between 15 and 30 days after fires in four strata: subterranean, litter, epigaeic, and arboreal. Fire had extensive negative effects on ant communities. Highly specialized cryptobiotic and predator species of the litter layer and epigaeic specialist predators were among the most sensitive, but we did not find evidence of overall biotic homogenization following fire. Fire reduced rates of location and transport of myrmecochorous seeds, and therefore the effectiveness of a key ecosystem service provided by ants, which we attribute to lower ant abundance and increased thermal stress. Experimental fuel addition had only minor effects on attributes of fire severity, and limited effects on ant responses to fire. Our findings indicate that enhanced fuel loads will not decrease ant diversity and ecosystem services through increased fire severity, at least in wetter years. However, higher fuel loads can still have a significant effect on ants from Amazonian rainforests because they increase the risk of fire occurrence, which has a detrimental impact on ant communities and a key ecosystem service they provide.

  2. Cyclic occurrence of fire and its role in carbon dynamics along an edaphic moisture gradient in longleaf pine ecosystems.

    PubMed

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = -2.48 tonnes C ha(-1)), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha(-1), respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha(-1) at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1-2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30-60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems.

  3. Cyclic Occurrence of Fire and Its Role in Carbon Dynamics along an Edaphic Moisture Gradient in Longleaf Pine Ecosystems

    PubMed Central

    Whelan, Andrew; Mitchell, Robert; Staudhammer, Christina; Starr, Gregory

    2013-01-01

    Fire regulates the structure and function of savanna ecosystems, yet we lack understanding of how cyclic fire affects savanna carbon dynamics. Furthermore, it is largely unknown how predicted changes in climate may impact the interaction between fire and carbon cycling in these ecosystems. This study utilizes a novel combination of prescribed fire, eddy covariance (EC) and statistical techniques to investigate carbon dynamics in frequently burned longleaf pine savannas along a gradient of soil moisture availability (mesic, intermediate and xeric). This research approach allowed us to investigate the complex interactions between carbon exchange and cyclic fire along the ecological amplitude of longleaf pine. Over three years of EC measurement of net ecosystem exchange (NEE) show that the mesic site was a net carbon sink (NEE = −2.48 tonnes C ha−1), while intermediate and xeric sites were net carbon sources (NEE = 1.57 and 1.46 tonnes C ha−1, respectively), but when carbon losses due to fuel consumption were taken into account, all three sites were carbon sources (10.78, 7.95 and 9.69 tonnes C ha−1 at the mesic, intermediate and xeric sites, respectively). Nonetheless, rates of NEE returned to pre-fire levels 1–2 months following fire. Consumption of leaf area by prescribed fire was associated with reduction in NEE post-fire, and the system quickly recovered its carbon uptake capacity 30–60 days post fire. While losses due to fire affected carbon balances on short time scales (instantaneous to a few months), drought conditions over the final two years of the study were a more important driver of net carbon loss on yearly to multi-year time scales. However, longer-term observations over greater environmental variability and additional fire cycles would help to more precisely examine interactions between fire and climate and make future predictions about carbon dynamics in these systems. PMID:23335986

  4. Cerebellar output controls generalized spike‐and‐wave discharge occurrence

    PubMed Central

    Kros, Lieke; Eelkman Rooda, Oscar H. J.; Spanke, Jochen K.; Alva, Parimala; van Dongen, Marijn N.; Karapatis, Athanasios; Tolner, Else A.; Strydis, Christos; Davey, Neil; Winkelman, Beerend H. J.; Negrello, Mario; Serdijn, Wouter A.; Steuber, Volker; van den Maagdenberg, Arn M. J. M.; De Zeeuw, Chris I.

    2015-01-01

    Objective Disrupting thalamocortical activity patterns has proven to be a promising approach to stop generalized spike‐and‐wave discharges (GSWDs) characteristic of absence seizures. Here, we investigated to what extent modulation of neuronal firing in cerebellar nuclei (CN), which are anatomically in an advantageous position to disrupt cortical oscillations through their innervation of a wide variety of thalamic nuclei, is effective in controlling absence seizures. Methods Two unrelated mouse models of generalized absence seizures were used: the natural mutant tottering, which is characterized by a missense mutation in Cacna1a, and inbred C3H/HeOuJ. While simultaneously recording single CN neuron activity and electrocorticogram in awake animals, we investigated to what extent pharmacologically increased or decreased CN neuron activity could modulate GSWD occurrence as well as short‐lasting, on‐demand CN stimulation could disrupt epileptic seizures. Results We found that a subset of CN neurons show phase‐locked oscillatory firing during GSWDs and that manipulating this activity modulates GSWD occurrence. Inhibiting CN neuron action potential firing by local application of the γ‐aminobutyric acid type A (GABA‐A) agonist muscimol increased GSWD occurrence up to 37‐fold, whereas increasing the frequency and regularity of CN neuron firing with the use of GABA‐A antagonist gabazine decimated its occurrence. A single short‐lasting (30–300 milliseconds) optogenetic stimulation of CN neuron activity abruptly stopped GSWDs, even when applied unilaterally. Using a closed‐loop system, GSWDs were detected and stopped within 500 milliseconds. Interpretation CN neurons are potent modulators of pathological oscillations in thalamocortical network activity during absence seizures, and their potential therapeutic benefit for controlling other types of generalized epilepsies should be evaluated. Ann Neurol 2015;77:1027–1049 PMID:25762286

  5. Climate Change and Mountain Community Fire Management in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    All, J.; Medler, M.; Cole, R. J.; Arques, S.; Schmitt, C. G.

    2014-12-01

    In the central Andes of Peru, climate change is altering fire risk through changes in local meteorology and fuel loading. Greater moisture and favorable growing conditions are increasing vegetative productivity, which in turn increases fuel loads. This process is accentuated during El Nino events and potentially results in increased fire occurrence and frequency during relatively dry La Nina events. Park officials are concerned about the ramification of the changes on local ecology and tourist use of the resources. However, using a time-series of two different products from the MODIS Terra and Aqua platforms (Active Fire and Burned Area), TRMM 3B43 precipitation data, and Multivariate ENSO Index data we document fire occurrence and extent from 2000 to 2010 and our analysis indicates that fires are burning exclusively during winter months when there are no natural ignition sources. Globally, fire is used in conjunction with grazing to improve the regeneration and yield of grasses. During our interviews, locals claimed to only set fires in the buffer zone outside of the park, but our analysis indicates that the buffer zone rarely burns and that most fires begin within the park and only occasionally move into the buffer zones. Additionally, we determined that although this is small-scale fire activity every year, overall fire is having a very minor effect on local systems. The park service must develop programs to work with local grazing stakeholders to better limit the impacts of fire, while also address the negative perceptions from tourists in the future. In this instance, fire perception and fire reality are not the same and the challenge for resource managers is how to reconcile these two factors in order to more effectively manage the parklands.

  6. Exploring fire dynamics with BFAST approach: case studies in Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; di Mauro, Biagio; Colombo, Roberto; Verbesselt, Jan

    2016-04-01

    The synergistic effect of wildfire and extreme post-fire climatic events, (e.g. droughts or torrential rainfall), may result in long windows of disturbance - challenging the overall resilience of Mediterranean ecosystems and communities. The notion that increased fire frequency and severity may reduce ecosystem resilience has received much attention in Mediterranean regions in recent decades. Careful evaluation of vegetation recovery and landscape regeneration after a fire event provides vital information useful in land management. In this study, an extension of Breaks For Additive Seasonal and Trend (BFAST) is proposed as an ideal approach to monitor change and assess fire dynamics at the landscape level based on analysis of the MODerate-resolution Imaging Spectroradiometer (MODIS, TERRA) time series. To this end, satellite images of three vegetation indices (VIs), the Normalized Burn Ratio (NBR), the Enhanced Vegetation Index (EVI) and the Normalized Difference Vegetation Index (NDVI) were used. The analysis was conducted on areas affected by wildfires in the Sardinia region (Italy) between 2007 and 2010. Some land surface (LS) descriptors (i.e. mean and maximum VI) and fire characteristics (e.g. pre-fire trend & VI, change magnitude, current VI) were extracted to characterize the post-fire evolution of each site within a fifteen-year period (2000-2015). Resilience was estimated using a classic linear function, whereby recovery rates were compared to regional climate data (e.g. water balance) and local landscape components (e.g.topography, land use and land cover). The methodology was applied according to land cover type (e.g. mixed forest, maquis, shrubland, pasture) within each fire site and highlighted the challenge of isolating effects and quantifying the role of fire regime characteristics on resilience in a dynamic way when considering large, heterogeneous areas. Preliminary findings can be outlined as follows: I. NBR showed it was most effective at detecting fire occurrence. EVI showed it was more sensitive to the influence of the Savitkzy-Golay smoothing filter than NBR or NDVI; II. The quantitative assessment of resilience for different land covers (maquis, mixed forest, shrubland) allows discrimination of diverse post-fire dynamics. Mixed forest showed an overall lower resilience compared to maquis and shrubland. Detection of post-fire breakpoints appears to occur in a similar time sequence with respect to both year of fire occurrence and land cover. III. The combined use of several climate and landscape components enables characterization of different features of post-fire dynamics in a Mediterranean ecosystem. In summary, the approach used in this study provides useful insight into complex post-fire vegetation dynamics in Mediterranean regions from a remote sensing perspective. Tailoring of the methodologies employed this study can inform a broad spectrum of forest and wildfire management activities, from monitoring and decision support during the fire season to long-term fuel management and landscape planning, with the general goal of reducing fire exposure and losses from future wildfires. Results can be expanded to include additional LS descriptors or soil geological aspects that contribute to a stronger integration of remote sensing data in operational natural resource management plans for ecosystem conservation and natural hazard prevention.

  7. Forest restoration as a strategy to mitigate climate impacts on wildfire, vegetation, and water in semiarid forests.

    PubMed

    O'Donnell, Frances C; Flatley, William T; Springer, Abraham E; Fulé, Peter Z

    2018-06-25

    Climate change and wildfire are interacting to drive vegetation change and potentially reduce water quantity and quality in the southwestern United States, Forest restoration is a management approach that could mitigate some of these negative outcomes. However, little information exists on how restoration combined with climate change might influence hydrology across large forest landscapes that incorporate multiple vegetation types and complex fire regimes. We combined spatially explicit vegetation and fire modeling with statistical water and sediment yield models for a large forested landscape (335,000 ha) on the Kaibab Plateau in northern Arizona, USA. Our objective was to assess the impacts of climate change and forest restoration on the future fire regime, forest vegetation, and watershed outputs. Our model results predict that the combination of climate change and high-severity fire will drive forest turnover, biomass declines, and compositional change in future forests. Restoration treatments may reduce the area burned in high-severity fires and reduce conversions from forested to non-forested conditions. Even though mid-elevation forests are the targets of restoration, the treatments are expected to delay the decline of high-elevation spruce-fir, aspen, and mixed conifer forests by reducing the occurrence of high-severity fires that may spread across ecoregions. We estimate that climate-induced vegetation changes will result in annual runoff declines of up to 10%, while restoration reduced or reversed this decline. The hydrologic model suggests that mid-elevation forests, which are the targets of restoration treatments, provide around 80% of runoff in this system and the conservation of mid- to high-elevation forests types provides the greatest benefit in terms of water conservation. We also predict that restoration treatments will conserve water quality by reducing patches of high-severity fire that are associated with high sediment yield. Restoration treatments are a management strategy that may reduce undesirable outcomes for multiple ecosystem services. © 2018 by the Ecological Society of America.

  8. Short-term effects of spring prescribed burning on the understory vegetation of a Pinushalepensis forest in Northeastern Spain.

    PubMed

    Fuentes, Laura; Duguy, Beatriz; Nadal-Sala, Daniel

    2018-01-01

    Since the 1970s, fire regimes have been modified in the Northern Mediterranean region due to profound landscape changes mostly driven by socioeconomic factors, such as rural abandonment and large-scale plantations. Both fuel accumulation and the increasing vegetation spatial continuity, combined with the expansion of the wildland-urban interface, have enhanced fire risk and the occurrence of large wildfires. This situation will likely worsen under the projected aridity increase resulting from climate change. Higher fire recurrences, in particular, are expected to cause changes in vegetation composition or structure and affect ecosystems' resilience to fire, which may lead to further land degradation. Prescribed burning is a common fuel reduction technique used for fire prevention, but for conservation and restoration purposes as well. It is still poorly accepted in the Mediterranean region since constrained by critical knowledge gaps about, in particular, its effects on the ecosystems (soil, vegetation). We studied the short-term (10months) effects on the understory vegetation of a spring prescribed burning conducted in a Pinushalepensis forest in Mediterranean climate (Northeastern Spain). Our results show that the understory plant community recovered after the burning without short term significant changes in either species richness, diversity, or floristic composition. Most vegetation structural characteristics were modified though. The burning strongly reduced shrub height, shrub and herbaceous percentage covers, and aerial shrub phytomass; especially its living fine fraction, thus resulting in a less flammable community. The treatment proved to be particularly effective for the short term control of Ulexparviflorus, a highly flammable seeder species. Moreover, the strong reduction of seeder shrubs frequency in relation to resprouters' likely promoted the resilience to fire of this plant community. From a fuel-oriented perspective, the burning caused a strong reduction of spatial continuity and surface fuel loads, leading to a less fire-prone fuel complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA

    Treesearch

    Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner

    2015-01-01

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...

  10. Fire history, related to climate and land use in three southern Appalachian landscapes in the eastern United States.

    PubMed

    Flatley, William T; Lafon, Charles W; Grissino-Mayer, Henri D; LaForest, Lisa B

    2013-09-01

    Fire-maintained ecosystems and associated species are becoming increasingly rare in the southern Appalachian Mountains because of fire suppression policies implemented in the early 20th century. Restoration of these communities through prescribed fire has been hindered by a lack of information on historical fire regimes. To characterize past fire regimes, we collected and absolutely dated the tree rings on cross sections from 242 fire-scarred trees at three different sites in the southern Appalachian Mountains of Tennessee and North Carolina. Our objectives were to (1) characterize the historical frequency of fire in southern Appalachian mixed pine-oak forests, (2) assess the impact of interannual climatic variability on the historical occurrence of fire, and (3) determine whether changes in human culture and land use altered the frequency of fire. Results demonstrate that fires burned frequently at all three sites for at least two centuries prior to the implementation of fire suppression and prevention in the early to mid 20th century. Composite mean fire return intervals were 2-4 yr, and point mean fire return intervals were 9-13 yr. Area-wide fires that burned across multiple stands occurred at 6-13-yr intervals. The majority of fires were recorded during the dormant season. Fire occurrence exhibited little relationship with reconstructed annual drought conditions. Also, fire activity did not change markedly during the transition from Native American to Euro-American settlement or during the period of industrial logging at the start of the 20th century. Fire activity declined significantly, however, during the fire suppression period, with a nearly complete absence of fire during recent decades. The characterization of past fire regimes should provide managers with specific targets for restoration of fire-associated communities in the southern Appalachian Mountains. The fire chronologies reported here are among the longest tree-ring reconstructions of fire history compiled for the eastern United States and support the hypothesis that frequent burning has played a long and important role in the development of forests in the southern Appalachian Mountains.

  11. Dynamics, Patterns and Causes of Fires in Northwestern Amazonia

    PubMed Central

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests. PMID:22523580

  12. Dynamics, patterns and causes of fires in Northwestern Amazonia.

    PubMed

    Armenteras, Dolors; Retana, Javier

    2012-01-01

    According to recent studies, two widespread droughts occurred in the Amazon basin, one during 2005 and one during 2010. The drought increased the prevalence of climate-driven fires over most of the basin. Given the importance of human-atmosphere-vegetation interactions in tropical rainforests, these events have generated concerns over the vulnerability of this area to climate change. This paper focuses on one of the wettest areas of the basin, Northwestern Amazonia, where the interactions between the climate and fires are much weaker and where little is known about the anthropogenic drivers of fires. We have assessed the response of fires to climate over a ten-year period, and analysed the socio-economic and demographic determinants of fire occurrence. The patterns of fires and climate and their linkages in Northwestern Amazonia differ from the enhanced fire response to climate variation observed in the rest of Amazonia. The highest number of recorded fires in Northwestern Amazonia occurred in 2004 and 2007, and this did not coincide with the periods of extreme drought experienced in Amazonia in 2005 and 2010. Rather, during those years, Northwestern Amazonia experienced a relatively small numbers of fire hotspots. We have shown that fire occurrence correlated well with deforestation and was determined by anthropogenic drivers, mainly small-scale agriculture, cattle ranching (i.e., pastures) and active agricultural frontiers (including illegal crops). Thus, the particular climatic conditions for air convergence and rainfall created by proximity to the Andes, coupled with the presence of one of the most active colonisation fronts in the region, make this region differently affected by the general drought-induced fire patterns experienced by the rest of the Amazon. Moreover, the results suggest that, even in this wet region, humans are able to modify the frequency of fires and impact these historically well preserved forests.

  13. Rill and gully formation following the 2010 Schultz Fire

    Treesearch

    Daniel G. Neary; Karen A. Koestner; Ann Youberg; Peter E. Koestner

    2011-01-01

    The Schultz Fire burned 6,100 ha on the eastern slopes of the San Francisco Peaks across moderate to very steep ponderosa pine and mixed conifer watersheds. There was widespread occurrence of high severity fire, with several watersheds classified as over 50% high severity. This resulted in moderate to severe water repellency in most soils, especially those on steep...

  14. Fire Prevention Efforts in the Northwest

    Treesearch

    A.W. Lindenmuth; J.J. Keetch

    1952-01-01

    The frequency of forest fires in 13 northeastern states dropped about one-half from 1943 to 1950, exclusive of the fluctuations due to weather. The average downward trend and the annual observations from which the trend is determined are shown graphically in the lower chart on the other side of this page. Each dot on the chart is the ratio of fire occurrence (actual...

  15. Climatic influences on fire regimes in montane forests of the southern Cascades, California, USA

    Treesearch

    A. H. Taylor; V. Trouet; C. N. Skinner

    2008-01-01

    he relationship between climate variability and fire extent was examined in montane and upper montane forests in the southern Cascades. Fire occurrence and extent were reconstructed for seven sites and related to measures of reconstructed climate for the period 1700 to 1900. The climate variables included the Palmer Drought Severity Index (PDSI), summer temperature (...

  16. Fire history near an historic travel corridor in Ontario

    Treesearch

    Daniel C. Dey; Richard P. Guyette

    1996-01-01

    Human beings are one of the most important agents of ecosystem disturbance and have been for millenia (Pyne 1982, 1995). Until recently, fire was the major tool peopel used to alter vegetation to their benefit. The variability in the occurrence and influnce of fire on forested ecosystems over long time periods is often the result of changes in human land use practices...

  17. Future fire probability modeling with climate change data and physical chemistry

    Treesearch

    Richard P. Guyette; Frank R. Thompson; Jodi Whittier; Michael C. Stambaugh; Daniel C. Dey

    2014-01-01

    Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States. We demonstrated a method for...

  18. Fire regime in a Mexican forest under indigenous resource management.

    PubMed

    Fulé, Peter Z; Ramos-Gómez, Mauro; Cortés-Montaño, Citlali; Miller, Andrew M

    2011-04-01

    The Rarámuri (Tarahumara) people live in the mountains and canyons of the Sierra Madre Occidental of Chihuahua, Mexico. They base their subsistence on multiple-use strategies of their natural resources, including agriculture, pastoralism, and harvesting of native plants and wildlife. Pino Gordo is a Rarámuri settlement in a remote location where the forest has not been commercially logged. We reconstructed the forest fire regime from fire-scarred trees, measured the structure of the never-logged forest, and interviewed community members about fire use. Fire occurrence was consistent throughout the 19th and 20th centuries up to our fire scar collection in 2004. This is the least interrupted surface-fire regime reported to date in North America. Studies from other relict sites such as nature reserves in Mexico or the USA have all shown some recent alterations associated with industrialized society. At Pino Gordo, fires recurred frequently at the three study sites, with a composite mean fire interval of 1.9 years (all fires) to 7.6 years (fires scarring 25% or more of samples). Per-sample fire intervals averaged 10-14 years at the three sites. Approximately two-thirds of fires burned in the season of cambial dormancy, probably during the pre-monsoonal drought. Forests were dominated by pines and contained many large living trees and snags, in contrast to two nearby similar forests that have been logged. Community residents reported using fire for many purposes, consistent with previous literature on fire use by indigenous people. Pino Gordo is a valuable example of a continuing frequent-fire regime in a never-harvested forest. The Rarámuri people have actively conserved this forest through their traditional livelihood and management techniques, as opposed to logging the forest, and have also facilitated the fire regime by burning. The data contribute to a better understanding of the interactions of humans who live in pine forests and the fire regimes of these ecosystems, a topic that has been controversial and difficult to assess from historical or paleoecological evidence.

  19. Expansion Of Sugarcane Production In São Paulo, Brazil: Implications For Fire Occurrence And Respiratory Health

    NASA Astrophysics Data System (ADS)

    Uriarte, M.

    2008-12-01

    Recent increases in the price of oil have generated much interest in biofuel development. Despite the increasing demand, the social and environmental impacts of large scale adoption of biofuels at both regional and national scales remain understudied, especially in developing economies. Here we use municipality-level data for the state of São Paulo in Brasil to explore the effects of fires associated with sugarcane cultivation on respiratory health of elderly and children. We examined the effects of fires occurring in the same year in which respiratory cases were reported as well as chronic effects associated with long-term cultivation of sugarcane. Across the state, respiratory morbidity attributable to fires accounted for 113 elderly and 317 child cases, approximately 1.8% of total cases in each group. Although no chronic effects of fire were detected for the elderly group, an additional 650 child cases can be attributed to the long term cultivation of sugar cane increasing to 5.4% the percent of children cases that can be attributed to fire. For municipalities with greater than 50% of the land in sugarcane the percentage increased to 15% and 12 % respectively for elderly and children. An additional 209 child cases could also be attributed to past exposure to fires associated with sugarcane, suggesting that in total 38% of children respiratory cases could be attributed to current or chronic exposure to fires in these municipalities. The harmful effects of cane- associated fires on health are not only a burden for the public health system but also for household economies. This type of information should be incorporated into land use decisions and discussions of biofuel sustainability.

  20. Relationship between leaf traits and fire-response strategies in shrub species of a mountainous region of south-eastern Australia.

    PubMed

    Vivian, Lyndsey M; Cary, Geoffrey J

    2012-01-01

    Resprouting and seed recruitment are important ways in which plants respond to fire. However, the investments a plant makes into ensuring the success of post-fire resprouting or seedling recruitment can result in trade-offs that are manifested in a range of co-occurring morphological, life history and physiological traits. Relationships between fire-response strategies and other traits have been widely examined in fire-prone Mediterranean-type climates. In this paper, we aim to determine whether shrubs growing in a non-Mediterranean climate region exhibit relationships between their fire-response strategy and leaf traits. Field surveys were used to classify species into fire-response types. We then compared specific leaf area, leaf dry-matter content, leaf width, leaf nitrogen and carbon to nitrogen ratios between (a) obligate seeders and all other resprouters, and (b) obligate seeders, facultative resprouters and obligate resprouters. Leaf traits only varied between fire-response types when we considered facultative resprouters as a separate group to obligate resprouters, as observed after a large landscape-scale fire. We found no differences between obligate seeders and obligate resprouters, nor between obligate seeders and resprouters considered as one group. The results suggest that facultative resprouters may require a strategy of rapid resource acquisition and fast growth in order to compete with species that either resprout, or recruit from seed. However, the overall lack of difference between obligate seeders and obligate resprouters suggests that environmental factors are exerting similar effects on species' ecological strategies, irrespective of the constraints and trade-offs that may be associated with obligate seeding and obligate resprouting. These results highlight the limits to trait co-occurrences across different ecosystems and the difficulty in identifying global-scale relationships amongst traits.

  1. Relationship between leaf traits and fire-response strategies in shrub species of a mountainous region of south-eastern Australia

    PubMed Central

    Vivian, Lyndsey M.; Cary, Geoffrey J.

    2012-01-01

    Background and Aims Resprouting and seed recruitment are important ways in which plants respond to fire. However, the investments a plant makes into ensuring the success of post-fire resprouting or seedling recruitment can result in trade-offs that are manifested in a range of co-occurring morphological, life history and physiological traits. Relationships between fire-response strategies and other traits have been widely examined in fire-prone Mediterranean-type climates. In this paper, we aim to determine whether shrubs growing in a non-Mediterranean climate region exhibit relationships between their fire-response strategy and leaf traits. Methods Field surveys were used to classify species into fire-response types. We then compared specific leaf area, leaf dry-matter content, leaf width, leaf nitrogen and carbon to nitrogen ratios between (a) obligate seeders and all other resprouters, and (b) obligate seeders, facultative resprouters and obligate resprouters. Key Results Leaf traits only varied between fire-response types when we considered facultative resprouters as a separate group to obligate resprouters, as observed after a large landscape-scale fire. We found no differences between obligate seeders and obligate resprouters, nor between obligate seeders and resprouters considered as one group. Conclusions The results suggest that facultative resprouters may require a strategy of rapid resource acquisition and fast growth in order to compete with species that either resprout, or recruit from seed. However, the overall lack of difference between obligate seeders and obligate resprouters suggests that environmental factors are exerting similar effects on species' ecological strategies, irrespective of the constraints and trade-offs that may be associated with obligate seeding and obligate resprouting. These results highlight the limits to trait co-occurrences across different ecosystems and the difficulty in identifying global-scale relationships amongst traits. PMID:21994052

  2. A review of the main driving factors of forest fire ignition over Europe.

    PubMed

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  3. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe

    NASA Astrophysics Data System (ADS)

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  4. German General Officer Casualties in World War II -- Harbinger for U.S. Army General Officer Casualties in Airland Battle

    DTIC Science & Technology

    1988-12-07

    grenades, air attacks, tank fire, snipers, and partisans. Many of these causes, such as air attacks and tank fire, were relatively infrequent occurrences...Tank Fire 5 9 Small Arms Fire 7 13 Grenade 3 5 Air Attack 18 32 Tank Fire 2 4 Partisans 5 9 Sniper 3 5 In World War I personal danger for officers had...accounts of individual demises reflect this increased lethality, and better describe the significant dangers to these senior commanders. 18 AIR ATTACK

  5. Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.

    PubMed

    Tuckwell, Henry C

    2006-01-01

    The circuitry of cortical networks involves interacting populations of excitatory (E) and inhibitory (I) neurons whose relationships are now known to a large extent. Inputs to E- and I-cells may have their origins in remote or local cortical areas. We consider a rudimentary model involving E- and I-cells. One of our goals is to test an analytic approach to finding firing rates in neural networks without using a diffusion approximation and to this end we consider in detail networks of excitatory neurons with leaky integrate-and-fire (LIF) dynamics. A simple measure of synchronization, denoted by S(q), where q is between 0 and 100 is introduced. Fully connected E-networks have a large tendency to become dominated by synchronously firing groups of cells, except when inputs are relatively weak. We observed random or asynchronous firing in such networks with diverse sets of parameter values. When such firing patterns were found, the analytical approach was often able to accurately predict average neuronal firing rates. We also considered several properties of E-E networks, distinguishing several kinds of firing pattern. Included were those with silences before or after periods of intense activity or with periodic synchronization. We investigated the occurrence of synchronized firing with respect to changes in the internal excitatory postsynaptic potential (EPSP) magnitude in a network of 100 neurons with fixed values of the remaining parameters. When the internal EPSP size was less than a certain value, synchronization was absent. The amount of synchronization then increased slowly as the EPSP amplitude increased until at a particular EPSP size the amount of synchronization abruptly increased, with S(5) attaining the maximum value of 100%. We also found network frequency transfer characteristics for various network sizes and found a linear dependence of firing frequency over wide ranges of the external afferent frequency, with non-linear effects at lower input frequencies. The theory may also be applied to sparsely connected networks, whose firing behaviour was found to change abruptly as the probability of a connection passed through a critical value. The analytical method was also found to be useful for a feed-forward excitatory network and a network of excitatory and inhibitory neurons.

  6. Impact air quality by wildfire and agricultural fire in Mexico city 2015

    NASA Astrophysics Data System (ADS)

    Mendoza Campos, Alejandra; Agustín García Reynoso, José; Castro Romero, Telma Gloria; Carbajal Pérez, José Noel; Mar Morales, Bertha Eugenia; Gerardo Ruiz Suárez, Luis

    2016-04-01

    A forest fire is a large-scale process natural combustion where different types of flora and fauna of different sizes and ages are consumed. Consequently, forest fires are a potential source of large amounts of air pollutants that must be considered when trying to relate emissions to the air quality in neighboring cities of forest areas as in the Valley of Mexico. The size, intensity and occurrence of a forest fire directly dependent variables such as weather conditions, topography, vegetation type and its moisture content and the mass of fuel per hectare. An agricultural fire is a controlled combustion, which occurred a negligence can get out of control and increase the burned area or the possibly become a wildfire. Once a fire starts, the dry combustible material is consumed first. If the energy release is large and of sufficient duration, drying green material occurs live, with subsequent burning it. Under proper fuel and environmental conditions, this process can start a chain reaction. These events occur mainly in the dry season. Forest fires and agriculture fires contribute directly in the increase of carbon dioxide (CO2) into the atmosphere; The main pollutants emitted to the atmosphere by a wildfire are the PM10, PM2.5, NOx and VOC's, the consequences have by fire are deforestation, soil erosion or change of structure and composition of forests (Villers, 2006), also it affects ecosystems and the health of the population. In this study the impact of air quality for the emissions of particulate matter less than ten microns PM10, by wildfire and agricultural fire occurred on the same day and same place, the study was evaluated in Mexico City the Delegation Milpa Alta in the community of San Lorenzo Tlacoyucan, the fire occurred on 3rd March, 2015, the wildfire duration 12 hours consuming 32 hectares of oak forest and the agricultural fire duration 6 hours consumed 16 hectares of corn. To evaluate the impact of air quality the WRF-Chem, WRF-Fire and METv3 models were used, four scenarios were made, in the first forest fire emissions were included, in the second agricultural fire emissions were included, the third was the difference between agricultural burning and forest fire and the last stage model without fire emissions. In making the interpolation of the modeled scenarios forest and agricultural fires the impact of air quality in the Valley of Mexico was obtained by increasing the concentration of particles smaller than ten micrometers PM10, with the results of the modeling are obtained that the PM10 concentration is ten times higher in the wildfire regarding agricultural fire. By making interpolation between this difference and considering the fire scenario without emissions by that date, a maximum PM10 concentration was 170μg /m3 during the hours of the fires, which exceeds the Mexican standard NOM-025-SSA1-2014 that provides that the maximum allowable limit of exposure to particulate matter less than ten microns is 75μg/m3 on average 24 hours, forest and agricultural fires have an impact of 226% in the PM10 air quality affecting ecosystems and human health

  7. MODIS NDVI Response Following Fires in Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, K. Jon; Sun, G.; Kovacs, K.; Kharuk, V. I.

    2003-01-01

    The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

  8. The effect of fire on soil organic matter--a review.

    PubMed

    González-Pérez, José A; González-Vila, Francisco J; Almendros, Gonzalo; Knicker, Heike

    2004-08-01

    The extent of the soil organic carbon pool doubles that present in the atmosphere and is about two to three times greater than that accumulated in living organisms in all Earth's terrestrial ecosystems. In such a scenario, one of the several ecological and environmental impacts of fires is that biomass burning is a significant source of greenhouse gases responsible for global warming. Nevertheless, the oxidation of biomass is usually incomplete and a range of pyrolysis compounds and particulate organic matter (OM) in aerosols are produced simultaneously to the thermal modification of pre-existing C forms in soil. These changes lead to the evolution of the OM to "pyromorphic humus", composed by rearranged macromolecular substances of weak colloidal properties and an enhanced resistance against chemical and biological degradation. Hence the occurrence of fires in both undisturbed and agricultural ecosystems may produce long-lasting effects on soils' OM composition and dynamics. Due to the large extent of the C pool in soils, small deviations in the different C forms may also have a significant effect in the global C balance and consequently on climate change. This paper reviews the effect of forest fires on the quantity and quality of soils' OM. It is focused mainly on the most stable pool of soil C; i.e., that having a large residence time, composed of free lipids, colloidal fractions, including humic acids (HA) and fulvic acids (FA), and other resilient forms. The main transformations exerted by fire on soil humus include the accumulation of new particulate C forms highly resistant to oxidation and biological degradation including the so-called "black carbon" (BC). Controversial environmental implications of such processes, specifically in the stabilisation of C in soil and their bearing on the global C cycle are discussed.

  9. Near and far field contamination modeling in a large scale enclosure: Fire Dynamics Simulator comparisons with measured observations.

    PubMed

    Ryder, Noah L; Schemel, Christopher F; Jankiewicz, Sean P

    2006-03-17

    The occurrence of a fire, no matter how small, often exposes objects to significant levels of contamination from the products of combustion. The production and dispersal of these contaminants has been an issue of relevance in the field of fire science for many years, though little work has been done to examine the contamination levels accumulated within an enclosure some time after an incident. This phenomenon is of great importance when considering the consequences associated with even low level contamination of sensitive materials, such as food, pharmaceuticals, clothing, electrical equipment, etc. Not only does such exposure present a localized hazard, but also the shipment of contaminated goods places distant recipients at risk. It is the intent of this paper to use a well-founded computational fluid dynamic (CFD) program, the Fire Dynamics Simulator (FDS), a large eddy simulation (LES) code developed by National Institute of Standards and Technology (NIST), to model smoke dispersion in order to assess the subject of air contamination and post fire surface contamination in a warehouse facility. Measured results are then compared with the results from the FDS model. Two components are examined: the production rate of contaminates and the trajectory of contaminates caused by the forced ventilation conditions. Each plays an important role in determining the extent to which the products of combustion are dispersed and the levels to which products are exposed to the contaminants throughout the enclosure. The model results indicate a good first-order approximation to the measured surface contamination levels. The proper application of the FDS model can provide a cost and time efficient means of evaluating contamination levels within a defined volume.

  10. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management.

    PubMed

    Marchal, Jean; Cumming, Steve G; McIntire, Eliot J B

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover's direct effects and feedbacks in simulation models of coupled climate-fire-fuels systems.

  11. Wildfires, mountain pine beetle and large-scale climate in Northern North America.

    NASA Astrophysics Data System (ADS)

    Macias Fauria, M.; Johnson, E. A.

    2009-05-01

    Research on the interactions between biosphere and atmosphere and ocean/atmosphere dynamics, concretely on the coupling between ecological processes and large-scale climate, is presented in two studies in Northern North America: the occurrence of large lightning wildfires and the forest area affected by mountain pine beetle (Dendroctonus ponderosae, MPB). In both cases, large-scale climatic patterns such as the Pacific Decadal Oscillation (PDO) and the Arctic Oscillation (AO) operate as low and low and high frequency frameworks, respectively, that control the occurrence, duration and spatial correlation over large areas of key local weather variables which affect specific ecological processes. Warm PDO phases tend to produce persistent (more than 10 days long) positive mid-troposphere anomalies (blocking highs) over western Canada and Alaska. Likewise, positive (negative) AO configurations increase the frequency of blocking highs at mid (high) latitudes of the Northern Hemisphere. Under these conditions, lack of precipitation and prevailing warm air meridional flow rapidly dry fuel over large areas and increase fire hazard. The spatiotemporal patterns of occurrence of large lightning wildfire in Canada and Alaska for 1959-1999 were largely explained by the action and possible interaction of AO and PDO, the AO being more influential over Eastern Canada, the PDO over Western Canada and Alaska. Changes in the dynamics of the PDO are linked to the occurrence of cold winter temperatures in British Columbia (BC), Western Canada. Reduced frequency of cold events during warm PDO winters is consistent with a northward-displaced polar jet stream inhibiting the outflow of cold Arctic air over BC. Likewise, the AO influences the occurrence of winter cold spells in the area. PDO, and to a lesser degree AO, were strongly related to MPB synchrony in BC during 1959-2002, operating through the control of the frequency of extreme cold winter temperatures that affect MPB larvae survival. The onset of a warm PDO phase in 1976 1) increased (decreased) the area burnt by wildfire in the Canadian Boreal Forest (BC) by increasing (decreasing) the frequency of blocking highs in the area, and 2) favored MPB outbreaks in BC by reducing the occurrence of extremely low winter temperatures. Likewise, the exceptionally high and persistent AO values of the late 1980s and 1990s increased area burned in Eastern Canada and MPB activity in the southern and northern parts of BC. A possible recent PDO phase shift may largely reverse these trends.

  12. Forest Fire Danger Rating (FFDR) Prediction over the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Song, B.; Won, M.; Jang, K.; Yoon, S.; Lim, J.

    2016-12-01

    Approximately five hundred forest fires occur and inflict the losses of both life and property each year in Korea during the forest fire seasons in the spring and autumn. Thus, an accurate prediction of forest fire is essential for effective forest fire prevention. The meteorology is one of important factors to predict and understand the fire occurrence as well as its behaviors and spread. In this study, we present the Forest Fire Danger Rating Systems (FFDRS) on the Korean Peninsula based on the Daily Weather Index (DWI) which represents the meteorological characteristics related to forest fire. The thematic maps including temperature, humidity, and wind speed produced from Korea Meteorology Administration (KMA) were applied to the forest fire occurrence probability model by logistic regression to analyze the DWI over the Korean Peninsula. The regional data assimilation and prediction system (RDAPS) and the improved digital forecast model were used to verify the sensitivity of DWI. The result of verification test revealed that the improved digital forecast model dataset showed better agreements with the real-time weather data. The forest fire danger rating index (FFDRI) calculated by the improved digital forecast model dataset showed a good agreement with the real-time weather dataset at the 233 administrative districts (R2=0.854). In addition, FFDRI were compared with observation-based FFDRI at 76 national weather stations. The mean difference was 0.5 at the site-level. The results produced in this study indicate that the improved digital forecast model dataset can be useful to predict the FFDRI in the Korean Peninsula successfully.

  13. Identifying the controls of wildfire activity in Namibia using multivariate statistics

    NASA Astrophysics Data System (ADS)

    Mayr, Manuel; Le Roux, Johan; Samimi, Cyrus

    2015-04-01

    Despite large areas of Namibia being unaffected by fires due to aridity, substantial burning in the northern and north-eastern parts of the country is observed every year. Within the fire-affected regions, a strong spatial and inter-annual variability characterizes the dry-season fire situation. In order to understand these patterns, it appears critical to identify the causative factors behind fire occurrence and to examine their interactions in detail. Furthermore, most studies dealing with causative factor examination focus either on the local or the regional scale. However, these scales seem to be inappropriate from a management perspective, as fire-related strategic action plans are most often set up nationwide. Here, we will present an examination of the fire regimes of Namibia based on a dataset conducted by Le Roux (2011). A decade-spanning fire record (1994-2003) derived from NOAA's Advanced Very High Resolution Radiometer (AVHRR) imagery was used to generate four fire regime metrics (Burned Area, Fire Season Length, Month of Peak Fire Season, and Fire Return Period) and quantitative information on vegetation and phenology derived from Normalized Difference Vegetation Index (NDVI) time series. Further variables contained by this dataset are related to climate, biodiversity, and human activities. Le Roux (2011) analyzed the correlations between the fire metrics mentioned above and the predictor variables. We hypothesize that linear correlations (as estimated by correlation coefficients) simplify the interactions between response and predictor variables. For instance, moderate population densities could induce the highest number of fires, whereas the complete absence of humans lacks one major source of ignition. Around highly populated areas, in contrary, fuels are usually reduced and space is more fragmented - thus, the initiation and spread of a potential fire could as well be inhibited. From a total of over 40 explanatory variables, we will initially use data mining techniques to select a conceivable set of variables by their explanatory value and to remove redundancy. We will then apply two multivariate statistical methods suitable to a large variety of data types and frequently used for (non-linear) causative factor identification: Non-metric Multidimensional Scaling (NMDS) and Regression Trees. The assumed value of these analyses is i) to determine the most important predictor variables of fire activity in Namibia, ii) to decipher their complex interactions in driving fire variability in Namibia, and iii) to compare the performance of two state-of-the-art statistical methods. References: Le Roux, J. (2011): The effect of land use practices on the spatial and temporal characteristics of savanna fires in Namibia. Doctoral thesis at the University of Erlangen-Nuremberg/Germany - 155 pages.

  14. Using NDVI to assess departure from average greenness and its relation to fire business

    Treesearch

    Robert E. Burgan; Roberta A. Hartford; Jeffery C. Eidenshink

    1996-01-01

    A new satellite-derived vegetation greenness map, departure from average, is designed to compare current-year vegetation greenness with average greenness for the same time of year. Live-fuel condition as portrayed on this map, and the calculated 1,000-hour fuel moistures, are compared to fire occurrence and area burned in Montana and Idaho during the 1993 and 1994 fire...

  15. Developing models to predict the number of fire hotspots from an accumulated fuel dryness index by vegetation type and region in Mexico

    Treesearch

    D. Vega-Nieva; J. Briseño-Reyes; M. Nava-Miranda; E. Calleros-Flores; P. López-Serrano; J. Corral-Rivas; E. Montiel-Antuna; M. Cruz-López; M. Cuahutle; R. Ressl; E. Alvarado-Celestino; A. González-Cabán; E. Jiménez; J. Álvarez-González; A. Ruiz-González; R. Burgan; H. Preisler

    2018-01-01

    Understanding the linkage between accumulated fuel dryness and temporal fire occurrence risk is key for improving decision-making in forest fire management, especially under growing conditions of vegetation stress associated with climate change. This study addresses the development of models to predict the number of 10-day observed Moderate-Resolution Imaging...

  16. Western spruce budworm outbreaks did not increase fire risk over the last three centuries: A dendrochronological analysis of inter-disturbance synergism

    Treesearch

    Aquila Flower; Daniel G. Gavin; Emily K. Heyerdahl; Russell A. Parsons; Gregory M. Cohn

    2014-01-01

    Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these...

  17. Optimum use of air tankers in initial attack: selection, basing, and transfer rules

    Treesearch

    Francis E. Greulich; William G. O' Regan

    1982-01-01

    Fire managers face two interrelated problems in deciding the most efficient use of air tankers: where best to base them, and how best to reallocate them each day in anticipation of fire occurrence. A computerized model based on a mixed integer linear program can help in assigning air tankers throughout the fire season. The model was tested using information from...

  18. Climate drives fire synchrony but local factors control fire regime change in northern Mexico

    Treesearch

    Larissa L. Yocom Kent; Peter Z. Fulé; Peter M. Brown; Julián Cerano-Paredes; Eladio Cornejo-Oviedo; Citlali Cortés Montaño; Stacy A. Drury; Donald A. Falk; Jed Meunier; Helen M. Poulos; Carl N. Skinner; Scott L. Stephens; José Villanueva-Díaz

    2017-01-01

    The occurrence of wildfire is influenced by a suite of factors ranging from “top-down” influences (e.g., climate) to “bottom-up” localized influences (e.g., ignitions, fuels, and land use). We carried out the first broad-scale assessment of wildland fire patterns in northern Mexico to assess the relative influence of top-down and bottom-up drivers of fire in a...

  19. Land cover, more than monthly fire weather, drives fire-size distribution in Southern Québec forests: Implications for fire risk management

    PubMed Central

    Marchal, Jean; Cumming, Steve G.; McIntire, Eliot J. B.

    2017-01-01

    Fire activity in North American forests is expected to increase substantially with climate change. This would represent a growing risk to human settlements and industrial infrastructure proximal to forests, and to the forest products industry. We modelled fire size distributions in southern Québec as functions of fire weather and land cover, thus explicitly integrating some of the biotic interactions and feedbacks in a forest-wildfire system. We found that, contrary to expectations, land-cover and not fire weather was the primary driver of fire size in our study region. Fires were highly selective on fuel-type under a wide range of fire weather conditions: specifically, deciduous forest, lakes and to a lesser extent recently burned areas decreased the expected fire size in their vicinity compared to conifer forest. This has large implications for fire risk management in that fuels management could reduce fire risk over the long term. Our results imply, for example, that if 30% of a conifer-dominated landscape were converted to hardwoods, the probability of a given fire, occurring in that landscape under mean fire weather conditions, exceeding 100,000 ha would be reduced by a factor of 21. A similarly marked but slightly smaller effect size would be expected under extreme fire weather conditions. We attribute the decrease in expected fire size that occurs in recently burned areas to fuel availability limitations on fires spread. Because regenerating burned conifer stands often pass through a deciduous stage, this would also act as a negative biotic feedback whereby the occurrence of fires limits the size of nearby future for some period of time. Our parameter estimates imply that changes in vegetation flammability or fuel availability after fires would tend to counteract shifts in the fire size distribution favoring larger fires that are expected under climate warming. Ecological forecasts from models neglecting these feedbacks may markedly overestimate the consequences of climate warming on fire activity, and could be misleading. Assessments of vulnerability to climate change, and subsequent adaptation strategies, are directly dependent on integrated ecological forecasts. Thus, we stress the need to explicitly incorporate land-cover’s direct effects and feedbacks in simulation models of coupled climate–fire–fuels systems. PMID:28609467

  20. Performance of da Vinci Stapler during robotic-assisted right colectomy with intracorporeal anastomosis.

    PubMed

    Johnson, Craig S; Kassir, Andrew; Marx, Daryl S; Soliman, Mark K

    2018-05-30

    Applications for surgical staplers continue to grow, due to the increase in minimally invasive surgical approaches, and range from vessel ligation to tissue transection and anastomoses. Complications associated with stapled tissue, such as bleeding or leaks, continue to be a concern for surgeons, as both can be associated with prolonged operative times and can contribute to postoperative morbidity and mortality. The goal of this retrospective study was to evaluate the performance of the da Vinci ® Xi EndoWrist ® Stapler 45 with SmartClamp™ technology during robotic-assisted right colectomy with intracorporeal anastomosis. We reviewed 113 consecutive cases from four medical centers. Preclinical diagnoses were inflammatory bowel disease (IBD) (n = 5), benign bowel disease (n = 77), and malignant bowel disease (n = 31). No anastomotic leaks occurred; one event of anastomotic bleeding (0.88%) resolved without surgical intervention. Overall, there were 643 clamp attempts (5.7 attempts per case), and 570 fires (5.0 fires per case). SmartClamp™ occurrences happened in approximately one out of three cases, with the highest proportion of occurrences in the IBD group (2.0 occurrences per case). The most commonly fired reload was blue (1.5 mm closed height) with 4.1 blue reloads fired per case overall. No incomplete fires occurred during the procedures. The study data demonstrate the performance of the da Vinci Xi EndoWrist ® Stapler 45 as used in right colon resection with intracorporeal anastomosis. The collection and analysis of these data provide surgeons with information related to stapler firings, which were not previously available; as such, this analysis may lead to deductions that are useful for intraoperative decision-making and clinical outcomes.

  1. Temporal Trends of NO2, CO and their Relation to the Fire Occurrences over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Pandey, A. K.; Kumar, K.

    2016-12-01

    Air pollution is an environmental issue that has a gigantic impact on human health, and it is a major problem in the densely populated regions throughout the world. Situated in the foothills of the great Himalayas Indo-Gangetic Plain (IGP) is among one of the most densely populated regions of the earth. NO2 and CO are among major air pollutants which affect the air quality of IGP predominantly. In the present study, we studied the temporal trends of NO2, CO and fire count over the IGP region. Further, we investigated the role of the fire occurrences in the ambient NO2 and CO levels. We used MODIS instrument (Aqua satellite), OMI sensor and AIRS instrument data for fire count, Nitrogen Dioxide (NO2) tropospheric column and Carbon monoxide (CO) column study respectively. The IGP is divided into three part geographically i.e. Eastern (E-IGP), Central (C-IGP) and Western (W-IGP). A higher columnar CO concentration is observed in the E-IGP whereas NO2 concentration is highest in the W-IGP. A higher NO2 concentration is obtained in winter followed by summer and a minimum in monsoon months throughout the IGP. Columnar CO concentration is higher in the E-IGP and its concentration is maximum in pre-monsoon months and minimum in the monsoon months. Fire pixel count is highest in the W-IGP with peak twice every year i.e. in the April - May and October - November corresponding to the harvest period in the Rabi-Kharif cropping system. We also obtained a significant positive correlation between fire occurrences and columnar NO2 & CO levels over the IGP which shows the biomass burning practices associated with the agriculture influences the NO2 and CO concentration in the atmosphere.

  2. Post-fire hydrologic response in Central Portugal. A four years study at microplot scale.

    NASA Astrophysics Data System (ADS)

    Vieira, Diana; Malvar, Maruxa; Martins, Martinho; Machado, Ana; Nunes, João; Keizer, Jacob

    2014-05-01

    Wildfires are a natural phenomenon in regions with a Mediterranean-type climate. However, their present-day widespread occurrence in southern Europe is unprecedented and strongly reflects human activity such as ignition, land-use changes, land abandonment and introduction of highly flammable plantations. Besides wildfires, post-fire management practices such as plowing, terracing, clearcutting and logging should also be considered, since their occurrence is getting increasingly common. And, in a long-term period these practices seem to be executed intercalated with repeated fire occurrences in the same site, sharing the impacts together with fire in an escalated degradational effect. In this sense, the work presented here concerns four years of runoff and erosion data at microplot scale after the wildfire, comparing different land management practices that occurred before the fire. Preliminary results indicate that in four years of monitoring, runoff is constantly higher in plowed sites than in the unplowed ones, with the exception of the first year. Regarding soil losses the plowed plots present always higher sediment rates than the unplowed ones. The comparison between two unplowed sites with different land uses, indicate higher runoff and erosion risk for pine comparatively to the eucalypt ones, however the reduced soil depth in the first can have an important role in these differences. Following these facts, the aim of the present work is to answer the following research questions: i) Do these four years of observations fit with the window of disturbance model presented by Prosser and Williams (1998). or the alternative version by Wittenberg and Inbar (2009)?; ii) Does pre-fire disturbances (wildfire, land use changes and land management practices) still have repercussions after wildfire?; In what sense does four years of intensive monitoring provides that one year couldn't provide?

  3. [Investigation on events of bus on fire in 6 years in the mainland of China].

    PubMed

    Wang, X G; Liu, Y; Cen, Y; Wu, P; Zhou, H L; Han, C M

    2016-12-20

    Objective: To retrospectively analyze the characteristics of events of bus on fire in 6 years in the mainland of China. Methods: Events of bus on fire happened between January 2009 and December 2014 were retrieved through Baidu search engine, Chinese Journals Full - text Database, and PubMed database in the search strategy with " bus" and " fire" or " arson" as keywords combined with the name of provinces, autonomous regions, and municipalities of the mainland of China. The occurrence time, region, cause of fire, casualties of each event were recorded, and the correlative analysis was conducted. Data were processed with Microsoft Excel software. Results: Totally 287 events of bus on fire were retrieved, among which 49 events happened in 2009, 36 events happened in 2010, 35 events happened in 2011, 37 events happened in 2012, and respectively 65 events happened in 2013 and 2014. The events of bus on fire most frequently happened in June and July, respectively 49 and 39 events. Among the distribution of occurrence regions of events of bus on fire, there were 78 events (27.18%) in east China, 52 events (18.12%) in northeast China, 41 events (14.29%) both in north China and south China. Among the causes of events of bus on fire, spontaneous combustion of bus ranked in the first (267 events, accounting for 93.03%), followed by arson (13 events, accounting for 4.53%). Among the 13 events of bus on fire caused by arson, 7 events happened between 16: 00 and 20: 00, and 3 events happened between 8: 00 and 10: 00. Totally 27 events of bus on fire (9.41%) were with casualties, among which 13 events (48.15%) were caused by spontaneous combustion of bus, 10 events (37.04%) were caused by arson, and 4 events (14.81%) were caused by traffic accidents. Arson caused the most severe casualties (at least 88 deaths and 287 injuries), followed by spontaneous combustion of bus (at least 35 deaths and 140 injuries) and traffic accidents (at least 9 deaths and 20 injuries). Conclusions: Events of bus on fire happened more frequently in recent years in the mainland of China, and the frequencies were much higher especially in June and July. Most events were caused by spontaneous combustion of bus, followed by arson. Most of the events of bus on fire caused by arson happened in the morning and evening rush hours of urban traffic, and althouth the occurrence rate was not high, the casualties were most severe.

  4. Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado.

    PubMed

    Jones, Kelly W; Cannon, Jeffery B; Saavedra, Freddy A; Kampf, Stephanie K; Addington, Robert N; Cheng, Antony S; MacDonald, Lee H; Wilson, Codie; Wolk, Brett

    2017-08-01

    A small but growing number of watershed investment programs in the western United States focus on wildfire risk reduction to municipal water supplies. This paper used return on investment (ROI) analysis to quantify how the amounts and placement of fuel treatment interventions would reduce sediment loading to the Strontia Springs Reservoir in the Upper South Platte River watershed southwest of Denver, Colorado following an extreme fire event. We simulated various extents of fuel mitigation activities under two placement strategies: (a) a strategic treatment prioritization map and (b) accessibility. Potential fire behavior was modeled under each extent and scenario to determine the impact on fire severity, and this was used to estimate expected change in post-fire erosion due to treatments. We found a positive ROI after large storm events when fire mitigation treatments were placed in priority areas with diminishing marginal returns after treating >50-80% of the forested area. While our ROI results should not be used prescriptively they do show that, conditional on severe fire occurrence and precipitation, investments in the Upper South Platte could feasibly lead to positive financial returns based on the reduced costs of dredging sediment from the reservoir. While our analysis showed positive ROI focusing only on post-fire erosion mitigation, it is important to consider multiple benefits in future ROI calculations and increase monitoring and evaluation of these benefits of wildfire fuel reduction investments for different site conditions and climates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia.

    PubMed

    Aragão, Luiz Eduardo O C; Malhi, Yadvinder; Barbier, Nicolas; Lima, Andre; Shimabukuro, Yosio; Anderson, Liana; Saatchi, Sassan

    2008-05-27

    Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.

  6. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures

    NASA Astrophysics Data System (ADS)

    Cano-Crespo, Ana; Oliveira, Paulo J. C.; Boit, Alice; Cardoso, Manoel; Thonicke, Kirsten

    2015-10-01

    Understanding to what extent different land uses influence fire occurrence in the Amazonian forest is particularly relevant for its conservation. We evaluate the relationship between forest fires and different anthropogenic activities linked to a variety of land uses in the Brazilian states of Mato Grosso, Pará, and Rondônia. We combine the new high-resolution (30 m) TerraClass land use database with Moderate Resolution Imaging Spectroradiometer burned area data for 2008 and the extreme dry year of 2010. Excluding the non-forest class, most of the burned area was found in pastures, primary and secondary forests, and agricultural lands across all three states, while only around 1% of the total was located in deforested areas. The trend in burned area did not follow the declining deforestation rates from 2001 to 2010, and the spatial overlap between deforested and burned areas was only 8% on average. This supports the claim of deforestation being disconnected from burning since 2005. Forest degradation showed an even lower correlation with burned area. We found that fires used in managing pastoral and agricultural lands that escape into the neighboring forests largely contribute to forest fires. Such escaping fires are responsible for up to 52% of the burned forest edges adjacent to burned pastures and up to 22% of the burned forest edges adjacent to burned agricultural fields, respectively. Our findings call for the development of control and monitoring plans to prevent fires from escaping from managed lands into forests to support effective land use and ecosystem management.

  7. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Forest Fire Management: A Comprehensive And Operational Approach

    NASA Astrophysics Data System (ADS)

    Fabrizi, Roberto; Perez, Bruno; Gomez, Antonio

    2013-12-01

    Remote sensing plays an important role in obtaining rapid and complete information on the occurrence and evolution in space and time of forest fires. In this paper, we present a comprehensive study of fire events through Earth Observation data for early warning, crisis monitoring and post-event damage assessment or a synthesis of the fire event, both in a wide spatial range (local to regional) and temporal scale (short to long term). The fire products are stored and distributed by means of a WebGIS and a Geoportal with additional auxiliary geospatial data. These products allow fire managers to perform analysis and decision making in a more comprehensive manner.

  9. Management options for mitigating Nitrogen (N) losses from N-saturated mixed-conifer forests in California

    Treesearch

    Benjamin S. Gimeno; Fengming Yuan; Mark E. Fenn; Thomas Meixner

    2009-01-01

    Mixed-conifer forests of southern California are exposed to nitrogen (N) deposition levels that impair carbon (C) and N cycling, enhance forest flammability, increase the risk of fire occurrence and air pollution emissions in fire, and increase nitrate...

  10. The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change

    USGS Publications Warehouse

    Cannon, Susan H.; DeGraff, Jerry

    2009-01-01

    In southern California and the intermountain west of the USA, debris flows generated from recently-burned basins pose significant hazards. Increases in the frequency and size of wildfires throughout the western USA can be attributed to increases in the number of fire ignitions, fire suppression practices, and climatic influences. Increased urbanization throughout the western USA, combined with the increased wildfire magnitude and frequency, carries with it the increased threat of subsequent debris-flow occurrence. Differences between rainfall thresholds and empirical debris-flow susceptibility models for southern California and the intermountain west indicate a strong influence of climatic and geologic settings on post-fire debris-flow potential. The linkages between wildfires, debris-flow occurrence, and global warming suggests that the experiences in the western United States are highly likely to be duplicated in many other parts of the world, and necessitate hazard assessment tools that are specific to local climates and physiographies.

  11. Fuel models and fire potential from satellite and surface observations

    USGS Publications Warehouse

    Burgan, R.E.; Klaver, R.W.; Klarer, J.M.

    1998-01-01

    A national 1-km resolution fire danger fuel model map was derived through use of previously mapped land cover classes and ecoregions, and extensive ground sample data, then refined through review by fire managers familiar with various portions of the U.S. The fuel model map will be used in the next generation fire danger rating system for the U.S., but it also made possible immediate development of a satellite and ground based fire potential index map. The inputs and algorithm of the fire potential index are presented, along with a case study of the correlation between the fire potential index and fire occurrence in California and Nevada. Application of the fire potential index in the Mediterranean ecosystems of Spain, Chile, and Mexico will be tested.

  12. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America.

    PubMed

    Stevens, Jens T; Safford, Hugh D; North, Malcolm P; Fried, Jeremy S; Gray, Andrew N; Brown, Peter M; Dolanc, Christopher R; Dobrowski, Solomon Z; Falk, Donald A; Farris, Calvin A; Franklin, Jerry F; Fulé, Peter Z; Hagmann, R Keala; Knapp, Eric E; Miller, Jay D; Smith, Douglas F; Swetnam, Thomas W; Taylor, Alan H

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the "stand age" variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical "mixed-severity" fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data.

  13. Landsat imagery evidences great recent land cover changes induced by wild fires in central Siberia*

    NASA Astrophysics Data System (ADS)

    Antamoshkina, O. A.; Trofimova, N. V.; Antamoshkin, O. A.

    2016-04-01

    The article discusses the methods of satellite image classification to determine general types of forest ecosystems, as well as the long-term monitoring of ecosystems changes using satellite imagery of medium spatial resolution and the daily data of space monitoring of active fires. The area of interest of this work is 100 km footprint of the Zotino Tall Tower Observatory (ZOTTO), located near the Zotino settlement, Krasnoyarsk region. The study area is located in the middle taiga subzone of Western Siberia, are presented by the left and right banks of the Yenisei river. For Landsat satellite imagery supervised classification by the maximum likelihood method was made using ground-based studies over the last fifteen years. The results are the identification of the 10 aggregated classes of land surface and composition of the study area thematic map. Operational satellite monitoring and analysis of spatial information about ecosystem in the 100-kilometer footprint of the ZOTTO tall tower allows to monitor the dynamics of forest disturbance by fire and logging over a long time period and to estimate changes in forest ecosystems of the study area. Data on the number and area of fires detected in the study region for the 2000-2014 received in the work. Calculations show that active fires have burned more than a quarter of the footprint area over the study period. Fires have a significant impact on the redistribution of classes of land surface. Area of all types of vegetation ecosystems declined dramatically under the influence of fires, whereas industrial logging does not impact seriously on it. The results obtained in our work indicate the highest occurrence of fires for lichen forest types within study region, probably due to their high natural fire danger, which is consistent with other studies. The least damage the fire caused to the wetland ecosystem due to high content of moisture and the presence of a large number of fire breaks in the form of open water.

  14. Average Stand Age from Forest Inventory Plots Does Not Describe Historical Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

    PubMed Central

    Stevens, Jens T.; Safford, Hugh D.; North, Malcolm P.; Fried, Jeremy S.; Gray, Andrew N.; Brown, Peter M.; Dolanc, Christopher R.; Dobrowski, Solomon Z.; Falk, Donald A.; Farris, Calvin A.; Franklin, Jerry F.; Fulé, Peter Z.; Hagmann, R. Keala; Knapp, Eric E.; Miller, Jay D.; Smith, Douglas F.; Swetnam, Thomas W.; Taylor, Alan H.

    2016-01-01

    Quantifying historical fire regimes provides important information for managing contemporary forests. Historical fire frequency and severity can be estimated using several methods; each method has strengths and weaknesses and presents challenges for interpretation and verification. Recent efforts to quantify the timing of historical high-severity fire events in forests of western North America have assumed that the “stand age” variable from the US Forest Service Forest Inventory and Analysis (FIA) program reflects the timing of historical high-severity (i.e. stand-replacing) fire in ponderosa pine and mixed-conifer forests. To test this assumption, we re-analyze the dataset used in a previous analysis, and compare information from fire history records with information from co-located FIA plots. We demonstrate that 1) the FIA stand age variable does not reflect the large range of individual tree ages in the FIA plots: older trees comprised more than 10% of pre-stand age basal area in 58% of plots analyzed and more than 30% of pre-stand age basal area in 32% of plots, and 2) recruitment events are not necessarily related to high-severity fire occurrence. Because the FIA stand age variable is estimated from a sample of tree ages within the tree size class containing a plurality of canopy trees in the plot, it does not necessarily include the oldest trees, especially in uneven-aged stands. Thus, the FIA stand age variable does not indicate whether the trees in the predominant size class established in response to severe fire, or established during the absence of fire. FIA stand age was not designed to measure the time since a stand-replacing disturbance. Quantification of historical “mixed-severity” fire regimes must be explicit about the spatial scale of high-severity fire effects, which is not possible using FIA stand age data. PMID:27196621

  15. Defining fire environment zones in the boreal forests of northeastern China.

    PubMed

    Wu, Zhiwei; He, Hong S; Yang, Jian; Liang, Yu

    2015-06-15

    Fire activity in boreal forests will substantially increase with prolonged growing seasons under a warming climate. This trend poses challenges to managing fires in boreal forest landscapes. A fire environment zone map offers a basis for evaluating these fire-related problems and designing more effective fire management plans to improve the allocation of management resources across a landscape. Toward that goal, we identified three fire environment zones across boreal forest landscapes in northeastern China using analytical methods to identify spatial clustering of the environmental variables of climate, vegetation, topography, and human activity. The three fire environment zones were found to be in strong agreement with the spatial distributions of the historical fire data (occurrence, size, and frequency) for 1966-2005. This paper discusses how the resulting fire environment zone map can be used to guide forest fire management and fire regime prediction. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Airway fires during surgery: Management and prevention.

    PubMed

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires.

  17. Is the current increase in fire recurrence causing a shift in the soil fertility of Iberian ecosystems?

    NASA Astrophysics Data System (ADS)

    Mayor, Ángeles G.; Keizer, Jan Jacob; González-Pelayo, Óscar; Valdecantos, Alejandro; Vallejo, Ramón; de Ruiter, Peter

    2015-04-01

    Since the mid of the last century fire recurrence has increased in the Iberian peninsula and the overall Mediterranean basin due to changes in land use and climate. The warmer and drier climate projected for this region will further increase the risk of wildfire occurrence and of increasing fire recurrence. Although the impact of wildfires on soil nutrient content in this region has been extensively studied, still few works have assessed this impact on the basis of fire recurrence. This study assesses the changes in soil nutrient status of two Iberian ecosystems, Várzea (N Portugal) and Valencia (E Spain), affected by different levels of fire recurrence and where short inter-fire periods have promoted a transition from pine woodlands to shrublands. Trends towards soil fertility loss with increasing fire recurrence (one, two, three or four fires in 37 years) were observed in the two study sites. The sites differed when soil fertility of areas burned several times were compared with long unburned references. In Valencia, overall soil fertility of the surface mineral soil was lower in areas burned two or three times than in long unburned areas, twenty and eight years after the last fire, respectively. On the contrary, total organic matter in Várzea was higher in burned than in unburned soils one year after the occurrence of one or four fires. However, a negative impact of fire was observed for integrated indicators of soil quality, such as hot-water carbon and potentially mineralizable nitrogen, suggesting that fire also had an adverse effect on substrate quality in Várzea. Our results suggest that the current trend of increasing fire recurrence in Southern Europe may result in losses or alterations of soil organic matter, particularly when fire promotes a transition from pine woodland to shrubland.

  18. Variables associated with the occurrence of Ips beetles, red turpentine beetle and wood borers in live and dead ponderosa pines with post-fire injury

    Treesearch

    Jose F. Negron; Joel McMillin; Carolyn H. Sieg; James F. Fowler; Kurt K. Allen; Linda L. Wadleigh; John A. Anhold; Ken E. Gibson

    2016-01-01

    Recently, wildfires and prescribed burning have become more frequent in conifer forests of western North America. Most studies examining the impacts of insects on trees with post-fire injury have focused on contributions to tree mortality. Few studies have examined fire-caused injuries to estimate the probability of attack by insects. Scant data quantifying...

  19. Influences of climate on fire regimes in montane forests of north-western Mexico

    Treesearch

    Carl N. Skinner; Jack H. Burk; Michael G. Barbour; Ernesto Franco-Vizcaino; Scott L. Stephens

    2008-01-01

    Aim To identify the influence of interannual and interdecadal climate variation on the occurrence and extent of fires in montane conifer forests of north-western Mexico. Location This study was conducted in Jeffrey pine (Pinus jeffreyi Grev. & Balf.)- dominated mixed-conifer...

  20. Coordination through databases can improve prescribed burning as a conservation tool to promote forest biodiversity.

    PubMed

    Ramberg, Ellinor; Strengbom, Joachim; Granath, Gustaf

    2018-04-01

    Prescribed fires are a common nature conservation practice. They are executed by several parties with limited coordination among them, and little consideration for wildfire occurrences and habitat requirements of fire-dependent species. Here, we gathered data on prescribed fires and wildfires in Sweden during 2011-2015 to (i) evaluate the importance and spatial extent of prescribed fires compared to wildfires and (ii) illustrate how a database can be used as a management tool for prescribed fires. We found that on average only 0.006% (prescribed 65%, wildfires 35%) of the Swedish forest burns per year, with 58% of the prescribed fires occurring on clearcuts. Also, both wildfires and prescribed fires seem to be important for the survival of fire-dependent species. A national fire database would simplify coordination and make planning and evaluation of prescribed fires more efficient. We propose an adaptive management strategy to improve the outcome of prescribed fires.

  1. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning

    NASA Astrophysics Data System (ADS)

    Parra, Antonio; Ramírez, David A.; Resco, Víctor; Velasco, Ángel; Moreno, José M.

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  2. Modifying rainfall patterns in a Mediterranean shrubland: system design, plant responses, and experimental burning.

    PubMed

    Parra, Antonio; Ramírez, David A; Resco, Víctor; Velasco, Ángel; Moreno, José M

    2012-11-01

    Global warming is projected to increase the frequency and intensity of droughts in the Mediterranean region, as well as the occurrence of large fires. Understanding the interactions between drought, fire and plant responses is therefore important. In this study, we present an experiment in which rainfall patterns were modified to simulate various levels of drought in a Mediterranean shrubland of central Spain dominated by Cistus ladanifer, Erica arborea and Phillyrea angustifolia. A system composed of automatic rainout shelters with an irrigation facility was used. It was designed to be applied in vegetation 2 m tall, treat relatively large areas (36 m2), and be quickly dismantled to perform experimental burning and reassembled back again. Twenty plots were subjected to four rainfall treatments from early spring: natural rainfall, long-term average rainfall (2 months drought), moderate drought (25% reduction from long-term rainfall, 5 months drought) and severe drought (45% reduction, 7 months drought). The plots were burned in late summer, without interfering with rainfall manipulations. Results indicated that rainfall manipulations caused differences in soil moisture among treatments, leading to reduced water availability and growth of C. ladanifer and E. arborea in the drought treatments. However, P. angustifolia was not affected by the manipulations. Rainout shelters had a negligible impact on plot microenvironment. Experimental burns were of high fire intensity, without differences among treatments. Our system provides a tool to study the combined effects of drought and fire on vegetation, which is important to assess the threats posed by climate change in Mediterranean environments.

  3. ERMiT: Estimating Post-Fire Erosion in Probabilistic Terms

    NASA Astrophysics Data System (ADS)

    Pierson, F. B.; Robichaud, P. R.; Elliot, W. J.; Hall, D. E.; Moffet, C. A.

    2006-12-01

    Mitigating the impact of post-wildfire runoff and erosion on life, property, and natural resources have cost the United States government tens of millions of dollars over the past decade. The decision of where, when, and how to apply the most effective mitigation treatments requires land managers to assess the risk of damaging runoff and erosion events occurring after a fire. The Erosion Risk Management Tool (ERMiT) is a web-based application that estimates erosion in probabilistic terms on burned and recovering forest, range, and chaparral lands. Unlike most erosion prediction models, ERMiT does not provide `average annual erosion rates;' rather, it provides a distribution of erosion rates with the likelihood of their occurrence. ERMiT combines rain event variability with spatial and temporal variabilities of hillslope burn severity, soil properties, and ground cover to estimate Water Erosion Prediction Project (WEPP) model input parameter values. Based on 20 to 40 individual WEPP runs, ERMiT produces a distribution of rain event erosion rates with a probability of occurrence for each of five post-fire years. Over the 5 years of modeled recovery, the occurrence probability of the less erodible soil parameters is increased and the occurrence probability of the more erodible soil parameters is decreased. In addition, the occurrence probabilities and the four spatial arrangements of burn severity (arrangements of overland flow elements (OFE's)), are shifted toward lower burn severity with each year of recovery. These yearly adjustments are based on field measurements made through post-fire recovery periods. ERMiT also provides rain event erosion rate distributions for hillslopes that have been treated with seeding, straw mulch, straw wattles and contour-felled log erosion barriers. Such output can help managers make erosion mitigation treatment decisions based on the probability of high sediment yields occurring, the value of resources at risk for damage, cost, and other management considerations.

  4. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests.

    PubMed

    Kulakowski, Dominik; Veblen, Thomas T

    2007-03-01

    Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.

  5. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Application of data fusion technology based on D-S evidence theory in fire detection

    NASA Astrophysics Data System (ADS)

    Cai, Zhishan; Chen, Musheng

    2015-12-01

    Judgment and identification based on single fire characteristic parameter information in fire detection is subject to environmental disturbances, and accordingly its detection performance is limited with the increase of false positive rate and false negative rate. The compound fire detector employs information fusion technology to judge and identify multiple fire characteristic parameters in order to improve the reliability and accuracy of fire detection. The D-S evidence theory is applied to the multi-sensor data-fusion: first normalize the data from all sensors to obtain the normalized basic probability function of the fire occurrence; then conduct the fusion processing using the D-S evidence theory; finally give the judgment results. The results show that the method meets the goal of accurate fire signal identification and increases the accuracy of fire alarm, and therefore is simple and effective.

  7. Fire in the Brazilian Amazon: A Spatially Explicit Model for Policy Impact Analysis

    NASA Technical Reports Server (NTRS)

    Arima, Eugenio Y.; Simmons, Cynthia S.; Walker, Robert T.; Cochrane, Mark A.

    2007-01-01

    This article implements a spatially explicit model to estimate the probability of forest and agricultural fires in the Brazilian Amazon. We innovate by using variables that reflect farmgate prices of beef and soy, and also provide a conceptual model of managed and unmanaged fires in order to simulate the impact of road paving, cattle exports, and conservation area designation on the occurrence of fire. Our analysis shows that fire is positively correlated with the price of beef and soy, and that the creation of new conservation units may offset the negative environmental impacts caused by the increasing number of fire events associated with early stages of frontier development.

  8. THE POTENTIAL APPLICATION OF FIRESAT DATA TO ASSESSMENT OF HUMAN EXPOSURES TO WILDFIRE EMISSIONS

    EPA Science Inventory

    FireSat is a proposed NASA mission that will obtain global coverage of the occurrence of wildfires. The specifications for FireSat are described in detail by Levine et al., (1991). Because of limitations of instruments (designed for other purposes) in existing satellites, new in...

  9. Potential climate change impacts on fire weather in the United States

    Treesearch

    Warren E. Heilman; Ying Tang; Lifeng Luo; Shiyuan Zhong; Julie Winkler; Xindi. Bian

    2015-01-01

    Researchers at Michigan State University and the Forest Service's Northern Research Station worked on a joint study to examine the possible effects of future global and regional climate change on the occurrence of fire-weather patterns often associated with extreme and erratic wildfire behavior in the United States.

  10. Spectral Mixture Analysis to map burned areas in Brazil's deforestation arc from 1992 to 2011

    NASA Astrophysics Data System (ADS)

    Antunes Daldegan, G.; Ribeiro, F.; Roberts, D. A.

    2017-12-01

    The two most extensive biomes in South America, the Amazon and the Cerrado, are subject to several fire events every dry season. Both are known for their ecological and environmental importance. However, due to the intensive human occupation over the last four decades, they have been facing high deforestation rates. The Cerrado biome is adapted to fire and is considered a fire-dependent landscape. In contrast, the Amazon as a tropical moist broadleaf forest does not display similar characteristics and is classified as a fire-sensitive landscape. Nonetheless, studies have shown that forest areas that have already been burned become more prone to experience recurrent burns. Remote sensing has been extensively used by a large number of researchers studying fire occurrence at a global scale, as well as in both landscapes aforementioned. Digital image processing aiming to map fire activity has been applied to a number of imagery from sensors of various spatial, temporal, and spectral resolutions. More specifically, several studies have used Landsat data to map fire scars in the Amazon forest and in the Cerrado. An advantage of using Landsat data is the potential to map fire scars at a finer spatial resolution, when compared to products derived from imagery of sensors featuring better temporal resolution but coarser spatial resolution, such as MODIS (Moderate Resolution Imaging Spectrometer) and GOES (Geostationary Operational Environmental Satellite). This study aimed to map burned areas present in the Amazon-Cerrado transition zone by applying Spectral Mixture Analysis on Landsat imagery for a period of 20 years (1992-2011). The study area is a subset of this ecotone, centered at the State of Mato Grosso. By taking advantage of the Landsat 5TM and Landsat 7ETM+ imagery collections available in Google Earth Engine platform and applying Spectral Mixture Analysis (SMA) techniques over them permitted to model fire scar fractions and delimitate burned areas. Overlaying yearly burned areas allowed to identify areas with high fire recurrence.

  11. Ecological effects of large fires on US landscapes: benefit or catastrophe?

    USGS Publications Warehouse

    Keane, Robert E.; Agee, James K.; Fule, Peter; Keeley, Jon E.; Key, Carl H.; Kitchen, Stanley G.; Miller, Richard; Schulte, Lisa A.

    2008-01-01

    The perception is that today’s large fires are an ecological catastrophe because they burn vast areas with high intensities and severities. However, little is known of the ecological impacts of large fires on both historical and contemporary landscapes. The present paper presents a review of the current knowledge of the effects of large fires in the United States by important ecosystems written by regional experts. The ecosystems are (1) ponderosa pine–Douglas-fir, (2) sagebrush–grasslands, (3) piñon–juniper, (4) chaparral, (5) mixed-conifer, and (6) spruce–fir. This review found that large fires were common on most historical western US landscapes and they will continue to be common today with exceptions. Sagebrush ecosystems are currently experiencing larger, more severe, and more frequent large fires compared to historical conditions due to exotic cheatgrass invasions. Historical large fires in south-west ponderosa pine forest created a mixed severity mosaic dominated by non-lethal surface fires while today’s large fires are mostly high severity crown fires. While large fires play an important role in landscape ecology for most regions, their importance is much less in the dry piñon–juniper forests and sagebrush–grasslands. Fire management must address the role of large fires in maintaining the health of many US fire-dominated ecosystems.

  12. Fire and vegetation history of the Jemez Mountains

    USGS Publications Warehouse

    Allen, Craig D.; Johnson, Peggy S.

    2001-01-01

    Historic patterns of fire occurrence and vegetation change in the Jemez Mountains of northern New Mexico have been described in detail by using multiple lines of evidence. Data sources include old aerial and ground-based photographs, historic records, charcoal deposits from bogs, fire-scarred trees (Figure 1), tree-ring reconstructions of precipitation, and field sampling of vegetation and soils. The forests and woodlands that cloak the Southwestern uplands provide the most extensive and detailed regional-scale network of fire history data available in the world (Swetnam and Baisan 1996, Swetnam et al. 1999, Allen 2002).

  13. The Relationship of Forest Fires Detected by MODIS and SRTM Derived Topographic Features in Central Siberia

    NASA Technical Reports Server (NTRS)

    Ranson, Jon K.; Kovacs, Katalin; Kharuk, Viatcheslav; Burke, Erin

    2006-01-01

    Fires are a common occurrence in the Siberian boreal forest. The MOD14 Thermal anomalies product of the Terra MODIS Moderate Resolution Spectroradiometer) product set is designed to detect thermal anomalies (i.e. hotspots or fires) on the Earth's surface. Recent field studies showed a dependence of fire occurrence on topography. In this study MODIS thermal anomaly data and SRTM topography data were merged and analyzed to evaluate if forest fires are more likely to occur at certain combinations of elevation, slope and aspect. Using the satellite data over a large area can lead to better understanding how topography and forest fires are related. The study area covers a 2.5 Million krn(exp 2) portion of the Central Siberian southern taiga from 72 deg to 110 deg East and from 50 deg to 60 deg North. About 57% of the study area is forested and 80% of the forest grows between 200 and 1000 m. Forests with pine (Pinus sylvestris), larch (Larix sibirica, L. gmelinii), Siberian pine (Pinus sibirica), spruce (Picea obovata.) and fir (Abies sibirica) cover most of the landscape. Deciduous stands with birch (Betula pendula, B. pubescens) and aspen (Populus tremula) cover the areas of lower elevation in this region. The climate of this area is distinctly continental with long, cold winters and short hot summers. The tree line in this part of the world is around 1500 m in elevation with alpine tundra, snow and ice fields and rock outcrops extending up to over 3800 m. A 500 m resolution landcover map was developed using 2001 MODIS MOD13 Normalized Vegetation Index (NDVI) and Middle Infrared (MIR) products for seven 16-day periods. The classification accuracy was over 87%. The SRTM version 2 data, which is distributed in 1 degree by 1 degree tiles were mosaiced using the ENVI software. In this study, only those MODIS pixels were used that were flagged as "nominal or high confidence fire" by the MODIS fire product team. Using MODIS data from the years 2000 to 2005 along with the improved Shuttle Radar Topographic Mission (SRTM) version 2 data at 100 m resolution, the distribution of hot spots was examined by elevation, slope and aspect as well as by forest type. The results show that more forest area burns at lower elevations but a larger percentage of the available forest area burns at higher elevations. This is probably because steep slopes occur at higher elevations. Fires are only more common on slopes with a southern exposure if the slope is steeper than 15 degrees. The next step in this study will be to monitor areas where the risk of fire is high (steep slopes with a southern exposure) and to refine this method by incorporating anthropogenic features for more accurate fire disturbance monitoring.

  14. Airway fires during surgery: Management and prevention

    PubMed Central

    Akhtar, Navaid; Ansar, Farrukh; Baig, Mirza Shahzad; Abbas, Akbar

    2016-01-01

    Airway fires pose a serious risk to surgical patients. Fires during surgery have been reported for many years with flammable anesthetic agents being the main culprits in the past. Association of airway fires with laser surgery is well-recognized, but there are reports of endotracheal tube fires ignited by electrocautery during pharyngeal surgery or tracheostomy or both. This uncommon complication has potentially grave consequences. While airway fires are relatively uncommon occurrences, they are very serious and can often be fatal. Success in preventing such events requires a thorough understanding of the components leading to a fire (fuel, oxidizer, and ignition source), as well as good communication between all members present to appropriately manage the fire and ensure patient safety. We present a case of fire in the airway during routine adenotonsillectomy. We will review the causes, preventive measures, and brief management for airway fires. PMID:27006554

  15. Black Earths (Terra Preta): Observations of wider occurrence from natural fire

    USDA-ARS?s Scientific Manuscript database

    Recently, the occurrence of fertile dark-colored soils in the Amazon (Anthropogenic Dark Earths or terra preta de Indio) has been associated with prehistoric anthropogenic soil modification through long term additions of black carbon and other organic amendments from both agricultural and waste mana...

  16. Fire modeling in the Brazilian arc of deforestation through nested coupling of atmosphere, dynamic vegetation, LUCC and fire spread models

    NASA Astrophysics Data System (ADS)

    Tourigny, E.; Nobre, C.; Cardoso, M. F.

    2012-12-01

    Deforestation of tropical forests for logging and agriculture, associated to slash-and-burn practices, is a major source of CO2 emissions, both immediate due to biomass burning and future due to the elimination of a potential CO2 sink. Feedbacks between climate change and LUCC (Land-Use and Land-Cover Change) can potentially increase the loss of tropical forests and increase the rate of CO2 emissions, through mechanisms such as land and soil degradation and the increase in wildfire occurrence and severity. However, current understanding of the processes of fires (including ignition, spread and consequences) in tropical forests and climatic feedbacks are poorly understood and need further research. As the processes of LUCC and associated fires occur at local scales, linking them to large-scale atmospheric processes requires a means of up-scaling higher resolutions processes to lower resolutions. Our approach is to couple models which operate at various spatial and temporal scales: a Global Climate Model (GCM), Dynamic Global Vegetation Model (DGVM) and local-scale LUCC and fire spread model. The climate model resolves large scale atmospheric processes and forcings, which are imposed on the surface DGVM and fed-back to climate. Higher-resolution processes such as deforestation, land use management and associated (as well as natural) fires are resolved at the local level. A dynamic tiling scheme allows to represent local-scale heterogeneity while maintaining computational efficiency of the land surface model, compared to traditional landscape models. Fire behavior is modeled at the regional scale (~500m) to represent the detailed landscape using a semi-empirical fire spread model. The relatively coarse scale (as compared to other fire spread models) is necessary due to the paucity of detailed land-cover information and fire history (particularly in the tropics and developing countries). This work presents initial results of a spatially-explicit fire spread model coupled to the IBIS DGVM model. Our area of study comprises selected regions in and near the Brazilian "arc of deforestation". For model training and evaluation, several areas have been mapped using high-resolution imagery from the Landsat TM/ETM+ sensors (Figure 1). This high resolution reference data is used for local-scale simulations and also to evaluate the accuracy of the global MCD45 burned area product, which will be used in future studies covering the entire "arc of deforestation".; Area of study along the arc of deforestation and cerrado: landsat scenes used and burned area (2010) from MCD45 product.

  17. Fire history and fire-climate relationships in upper elevation forests of the southwestern United States

    NASA Astrophysics Data System (ADS)

    Margolis, Ellis Quinn

    Fire history and fire-climate relationships of upper elevation forests of the southwestern United States are imperative for informing management decisions in the face of increased crown fire occurrence and climate change. I used dendroecological techniques to reconstruct fires and stand-replacing fire patch size in the Madrean Sky Islands and Mogollon Plateau. Reconstructed patch size (1685-1904) was compared with contemporary patch size (1996-2004). Reconstructed fires at three sites had stand-replacing patches totaling > 500 ha. No historical stand-replacing fire patches were evident in the mixed conifer/aspen forests of the Sky Islands. Maximum stand-replacing fire patch size of modern fires (1129 ha) was greater than that reconstructed from aspen (286 ha) and spruce-fir (521 ha). Undated spruce-fir patches may be evidence of larger (>2000ha) stand-replacing fire patches. To provide climatological context for fire history I used correlation and regionalization analyses to document spatial and temporal variability in climate regions, and El-Nino Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) and the Atlantic Multi-decadal Oscillation (AMO) teleconnections using 273 tree-ring chronologies (1732-1979). Four regions were determined by common variability in annual ring width. The component score time series replicate spatial variability in 20th century droughts (e.g., 1950's) and pluvials (e.g., 1910's). Two regions were significantly correlated with instrumental SOI and AMO, and three with PDO. Sub-regions within the southwestern U.S. varied geographically between the instrumental (1900-1979) and the pre-instrumental periods (1732-1899). Mapped correlations between ENSO, PDO and AMO, and tree-ring indices illustrate detailed sub-regional variability in the teleconnections. I analyzed climate teleconnections, and fire-climate relationships of historical upper elevation fires from 16 sites in 8 mountain ranges. I tested for links between Palmer Drought Severity Index and tree-ring reconstructed ENSO, PDO and AMO phases (1905-1978 and 1700-1904). Upper elevation fires (115 fires, 84 fire years, 1623-1904) were compared with climate indices. ENSO, PDO, and AMO affected regional PDSI, but AMO and PDO teleconnections changed between periods. Fire occurrence was significantly related to inter-annual variability in PDSI, precipitation, ENSO, and phase combinations of ENSO and PDO, but not AMO (1700-1904). Reduced upper elevation fire (1785-1840) was coincident with a cool AMO phase.

  18. El Niño-southern oscillation effect on a fire regime in northeastern Mexico has changed over time.

    PubMed

    Yocom, Larissa L; Fulé, Peter Z; Brown, Peter M; Cerano, Julian; Villanueva-Díaz, José; Falk, Donald A; Cornejo-Oviedo, Eladio

    2010-06-01

    The El Niño Southern Oscillation (ENSO) is a climate-forcing mechanism that has been shown to affect precipitation and the occurrence of wildfires in many parts of the world. In the southern United States and northern Mexico, warm events (El Niño) are associated with moist winter conditions and fewer fires, while cool events (La Niñia) tend to favor dry winters and more fires. We tested this relationship in a region of northeastern Mexico by characterizing the historical fire regime and climatic influences: Fire regimes were reconstructed from fire-scar samples collected from 100 trees in three high-elevation sites on Peña Nevada in southern Nuevo Le6n. The sites were approximately 25 ha each, and the site centers were approximately 1 km apart. The earliest recorded fire occurred in 1521 and the time period we used for analysis was 1645-1929. The sites were characterized by frequent surface fires before the 1920s. In the three sites, mean fire intervals ranged from 8.6 to 9.6 years (all fires) and 11.9 to 18.6 years (fires that scarred > or = 25% of recording trees). The per-tree mean fire return interval was 17 years, and all three sites burned in the same year seven times between 1774 and 1929. After 1929, fires were nearly eliminated in all sites, likely due to human causes. We found a temporal change in the association between ENSO events and fires; before the 1830s La Niña events were significantly associated with fire years, while after the 1830s this association was not significant. In 1998, when the most severe El Niño event of the past century occurred, the three sites experienced severe, stand-replacing fires that killed many trees that had survived multiple surface fires in the past. Prior to the 1830s, fires tended to occur during dry La Niña years, but since then both La Niña and El Niño have been associated with dry years in this region, especially during the last three decades. This result suggests that ENSO effects have changed over time in this location and that phases of ENSO are not consistent indicators of precipitation, fire occurrence, or fire behavior in this area of northeastern Mexico.

  19. Estimation of Wild Fire Risk Area based on Climate and Maximum Entropy in Korean Peninsular

    NASA Astrophysics Data System (ADS)

    Kim, T.; Lim, C. H.; Song, C.; Lee, W. K.

    2015-12-01

    The number of forest fires and accompanying human injuries and physical damages has been increased by frequent drought. In this study, forest fire danger zone of Korea is estimated to predict and prepare for future forest fire hazard regions. The MaxEnt (Maximum Entropy) model is used to estimate the forest fire hazard region which estimates the probability distribution of the status. The MaxEnt model is primarily for the analysis of species distribution, but its applicability for various natural disasters is getting recognition. The detailed forest fire occurrence data collected by the MODIS for past 5 years (2010-2014) is used as occurrence data for the model. Also meteorology, topography, vegetation data are used as environmental variable. In particular, various meteorological variables are used to check impact of climate such as annual average temperature, annual precipitation, precipitation of dry season, annual effective humidity, effective humidity of dry season, aridity index. Consequently, the result was valid based on the AUC(Area Under the Curve) value (= 0.805) which is used to predict accuracy in the MaxEnt model. Also predicted forest fire locations were practically corresponded with the actual forest fire distribution map. Meteorological variables such as effective humidity showed the greatest contribution, and topography variables such as TWI (Topographic Wetness Index) and slope also contributed on the forest fire. As a result, the east coast and the south part of Korea peninsula were predicted to have high risk on the forest fire. In contrast, high-altitude mountain area and the west coast appeared to be safe with the forest fire. The result of this study is similar with former studies, which indicates high risks of forest fire in accessible area and reflects climatic characteristics of east and south part in dry season. To sum up, we estimated the forest fire hazard zone with existing forest fire locations and environment variables and had meaningful result with artificial and natural effect. It is expected to predict future forest fire risk with future climate variables as the climate changes.

  20. Metapopulation Dynamics of the Mistletoe and Its Host in Savanna Areas with Different Fire Occurrence

    PubMed Central

    Teodoro, Grazielle Sales; van den Berg, Eduardo; Arruda, Rafael

    2013-01-01

    Mistletoes are aerial hemiparasitic plants which occupy patches of favorable habitat (host trees) surrounded by unfavorable habitat and may be possibly modeled as a metapopulation. A metapopulation is defined as a subdivided population that persists due to the balance between colonization and extinction in discrete habitat patches. Our aim was to evaluate the dynamics of the mistletoe Psittacanthus robustus and its host Vochysia thyrsoidea in three Brazilian savanna areas using a metapopulation approach. We also evaluated how the differences in terms of fire occurrence affected the dynamic of those populations (two areas burned during the study and one was fire protected). We monitored the populations at six-month intervals. P. robustus population structure and dynamics met the expected criteria for a metapopulation: i) the suitable habitats for the mistletoe occur in discrete patches; (ii) local populations went extinct during the study and (iii) colonization of previously non-occupied patches occurred. The ratio of occupied patches decreased in all areas with time. Local mistletoe populations went extinct due to two different causes: patch extinction in area with no fire and fire killing in the burned areas. In a burned area, the largest decrease of occupied patch ratios occurred due to a fire event that killed the parasites without, however, killing the host trees. The greatest mortality of V. thyrsoidea occurred in the area without fire. In this area, all the dead trees supported mistletoe individuals and no mortality was observed for parasite-free trees. Because P. robustus is a fire sensitive species and V. thyrsoidea is fire tolerant, P. robustus seems to increase host mortality, but its effect is lessened by periodic burning that reduces the parasite loads. PMID:23776554

  1. Impacts of the post-fire erosion processes compared with the agricultural erosion rates for a mountain catchment in NW Iberia

    NASA Astrophysics Data System (ADS)

    Marisa Santos, Juliana; Nunes, João Pedro; Bernard-Jannin, Léonard; Gonzalez Pelayo, Oscar; Keizer, Jan Jacob

    2014-05-01

    Mediterranean ecosystems are very vulnerable to soil erosion by water due to particular characteristics of climate, lithology and land use history. Moreover, the foreseen climate changes might worsen land degradation and desertification, in which soil erosion has been classified as one of the most important driving forces. In this context, the frequent forest fires seen in some Mediterranean regions can case disturbances to vegetation cover and enhance soil erosion processes. This work addresses this issue for the Caramulo mountain range, NW Iberia. In the past century, large land use changes occurred due to massive afforestation. Changes from mixed natural forest cover and shrublands to Pine, the introduction of Eucalyptus plantations and, more recently, a trend for the substitution of pines by eucalypts, are the evidence of a large and rapid land use change in the last decades. Forest fires started to occur as afforestation proceeded, as a consequence of the disappearance of pasturage and accumulation of highly inflammable material; they became more frequent after the 1960's and became a determinant factor for land use changes in this region. Data collection focused on the Macieira de Alcoba catchment, a headwater agro-forested catchment (94 ha) located in this region. It has a wet Mediterranean climate, with an average annual rainfall of about 1300 mm (2002-2012), concentrated in autumn and winter, while spring and summer are dryer seasons. The mean annual temperature is 14°C and in summer it can reach 35°C. The land use is mixed, with forest and agriculture lands covering respectively 60 and 35% of the catchment area, 5% being built-up areas in the village of Macieira de Alcoba. In the last decades, this catchment suffered several forest fires (in 1969, 1986, 1991, and 2011). Erosion processes are related with periods of low vegetation cover in autumn in fields with a pasture-corn rotation, but also with forest plantations after clear-cutting and especially after forest fires. The last forest fire in August 2011 burned 10% of the total area in the north-west part of the catchment. Post-fire management operations 9 month after the fire (clear-cutting and deep plowing operations) and after plantation of "Quercus robur" left the soil exposed, and relatively mild rainstorms led to large amounts of soil loss, including a large amount of rills and other erosion features. This constituted an opportunity to compare these erosion rates with the ones observed in agricultural fields for similar edapho-climatic conditions, and also observe distinct timing of erosion occurrence which was linked with different periods when soils are exposed. This communication presents the assessment of the impact of this fire on soil erosion rates, where results indicate that soil losses after soil preparation for forest replanting might be equivalent, in long-term, to soil losses in agricultural fields.

  2. Development of a fire weather index using meteorological observations within the Northeast United States

    Treesearch

    Michael J. Erickson; Joseph J. Charney; Brian A. Colle

    2016-01-01

    A fire weather index (FWI) is developed using wildfire occurrence data and Automated Surface Observing System weather observations within a subregion of the northeastern United States (NEUS) from 1999 to 2008. Average values of several meteorological variables, including near-surface temperature, relative humidity, dewpoint, wind speed, and cumulative daily...

  3. Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm

    NASA Astrophysics Data System (ADS)

    Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.

    2017-01-01

    This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.

  4. Confined space emergency response: assessing employer and fire department practices.

    PubMed

    Wilson, Michael P; Madison, Heather N; Healy, Stephen B

    2012-01-01

    An emergency response plan for industrial permit-required confined space entry is essential for employee safety and is legally required. Maintaining a trained confined space rescue team, however, is costly and technically challenging. Some employers turn to public fire departments to meet their emergency response requirements. The confined space emergency response practices of employers and fire departments have not been previously assessed. We present (1) federal data on the U.S. occurrence between 1992 and 2005 of confined space fatal incidents involving toxic and/or oxygen-deficient atmospheres; (2) survey data from 21 large companies on permit-required confined space emergency response practices; (3) data on fire department arrival times; and (4) estimates by 10 senior fire officers of fire department rescue times for confined space incidents. Between 1992 and 2005, 431 confined space incidents that met the case definition claimed 530 lives, or about 0.63% of the 84,446 all-cause U.S. occupational fatal injuries that occurred during this period. Eighty-seven (20%) incidents resulted in multiple fatalities. Twelve (57%) of 21 surveyed companies reported that they relied on the fire department for permit-required confined space emergency response. Median fire department arrival times were about 5 min for engines and 7 min for technical rescue units. Fire department confined space rescue time estimates ranged from 48 to 123 min and increased to 70 and 173 min when hazardous materials were present. The study illustrates that (1) confined space incidents represent a small but continuing source of fatal occupational injuries in the United States; (2) a sizeable portion of employers may be relying on public fire departments for permit-required confined space emergency response; and (3) in the event of a life-threatening emergency, fire departments usually are not able to effect a confined space rescue in a timely manner. We propose that the appropriate role for the fire department is to support a properly trained and equipped on-site rescue team and to provide advanced life support intervention following extrication and during ambulance transportation.

  5. Characterizing Early Succession Following Wildfires at Different Severities in Boreal Bog and Fen Peatlands

    NASA Astrophysics Data System (ADS)

    Ernst, E. J.; Bourgeau-Chavez, L. L.; Kane, E. S.; Wagenbrenner, J. W.; Endres, S.

    2016-12-01

    The Arctic-boreal region is experiencing changes in climate, trending toward warmer summers, resulting in a greater occurrence of wildfires with longer burning periods and higher intensities. Drought-like conditions have dried surface fuels, leading to a higher probability of ignition, even in lowland peatlands. Previous work has been done to characterize post-fire succession rates in Arctic-boreal upland sites, but much less is known of fire effects and early successional dynamics in lowlands. Wildland fires are the number one disturbance in Canada's Northwest Territories (NWT), which characteristically burn at high intensities with large flame fronts, and result in some of the biggest wildfires in the world. Areas surrounding the Great Slave Lake, NWT—including parts of the Taiga Plains, Taiga Shield, and Boreal Plains ecozones—experienced exceptional wildfire activity in 2014 and 2015. We characterized burn severity of the bog and fen peat surface and canopy layers at several burned sites. To determine if the severe ground or crown wildfires were stand-replacing events, we characterized post-fire vegetation in peatlands in 2015 and 2016 based on seedling regeneration. We stratified sites according to estimated water residence times across the three ecozones and made comparisons between data collected at the same sites across years. This work adds much needed context for post-fire succession in boreal peatland ecosystems, as the susceptibility of these systems to burning will continue to increase with a warming climate.

  6. Spacecraft Fire Safety and Microgravity Combustion Research

    NASA Technical Reports Server (NTRS)

    Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    Fire safety is an important concern in our daily lives and it plays a special role in the human presence in space. In a spacecraft, the outside environment is hostile and the opportunity to escape is small. Rescue missions are difficult and time consuming. As a result, we should avoid the occurrence of fires in spacecraft as much as possible. If a fire occurs, we need to keep it small and under control. This implies that the materials used on board the spacecraft should be screened carefully, all the machines and devices need to be operated without accident, and fire detectors have to function properly. Once a fire is detected, it can be extinguished quickly and the cabin can be cleaned up to restore operation and sustain life.

  7. Human versus lightning ignition of presettlement surface fires in costal pine forests of the upper Great Lakes

    USGS Publications Warehouse

    Loope, Walter L.; Anderton, John B.

    1998-01-01

    To recover direct evidence of surface fires before European settlement, we sectioned fire-scarred logging-era stumps and trees in 39 small, physically isolated sand patches along the Great Lakes coast of northern Michigan and northern Wisconsin. While much information was lost to postharvest fire and stump deterioration, 147 fire-free intervals revealed in cross-sections from 29 coastal sand patches document numerous close interval surface fires before 1910; only one post-1910 fire was documented. Cross-sections from the 10 sections with records spanning >150 yr suggest local fire occurrence rates before 1910 ca. 10 times the present rate of lightning-caused fire. Since fire spread between or into coastal sand patches is rare, and seasonal use of the patches by Native people before 1910 is well documented, both historically and ethnographically, ignition by humans probably accounts for more than half of the pre-1910 fires recorded in cross-sections.

  8. Extreme Wildfire Spread and Behaviour: Case Studies from North Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Salis, M.; Arca, B.; Ager, A.; Fois, C.; Bacciu, V.; Duce, P.; Spano, D.

    2012-04-01

    Worldwide, fire seasons are usually characterized by the occurrence of one or more days with extreme environmental conditions, such as heat waves associated with strong winds. On these days, fires can quickly get out of hand originating large and severe wildfires. In these cases, containment and extinguishment phases are critical, considering that the imperative goal is to keep fire crews, people and animals safe. In this work we will present a set of large and severe wildfires occurred with extreme environmental conditions in the northern area of Sardinia. The most recent wildfire we will describe was ignited on July 13, 2011 in the Oschiri municipality (40°43' N; 9°06' E), and burned about 2,500 ha of wooded and herbaceous pastures and oakwoods in few hours. The second wildfire we will present was ignited on July 23, 2009 in the Bonorva municipality (40°25' N; 8° 46' E), and was responsible for the death of two people and several damages to houses, animals and farms. This wildfire lasted on July 25, and burned about 10,000 ha of wooded and herbaceous pastures; the most of the area was burned during the first day. The last wildfire we will describe was ignited on July 23, 2007 in the Oniferi municipality (40°16' N; 9° 16' E) and burned about 9,000 ha of wooded and herbaceous pastures and oakwoods; about 8,000 ha were burned after 11 hours of propagation. All these wildfires were ignited in days characterized by very hot temperatures associated to the effect of air masses moving from inland North Africa to the Mediterranean Basin, and strong winds from west-south west. This is one of the typical weather pattern associated with large and severe wildfires in North Sardinia, and is well documented in the last years. Weather conditions, fuels and topography factors related to each case study will be accurately analyzed. Moreover, a detailed overview of observed fire spread and behavior and post-fire vegetation recovery will be presented. The fire spread and behavior data collected during the events will be also compared with the results obtained with FARSITE (Finney, 1994) and FLAMMAP (Finney, 2003) models. The main goal of this paper is to thoroughly describe the fire behavior of relevant and recent case studies, in order to learn from it and lessen the chance of making potential mistakes or hazardous firefighting operations in the same environmental conditions. Furthermore, a crucial point is to teach and prepare people and fire crews not to be surprised by severe or abrupt fire behavior under extreme environmental conditions. For these reasons, the combination of analysis, knowledge and awareness of historical case studies, field experience and computer modeling represent a key learning technique.

  9. Modelling fire frequency and area burned across phytoclimatic regions in Spain using reanalysis data and the Canadian Fire Weather Index System

    NASA Astrophysics Data System (ADS)

    Bedia, J.; Herrera, S.; Gutiérrez, J. M.

    2013-09-01

    We develop fire occurrence and burned area models in peninsular Spain, an area of high variability in climate and fuel types, for the period 1990-2008. We based the analysis on a phytoclimatic classification aiming to the stratification of the territory into homogeneous units in terms of climatic and fuel type characteristics, allowing to test model performance under different climatic and fuel conditions. We used generalized linear models (GLM) and multivariate adaptive regression splines (MARS) as modelling algorithms and temperature, relative humidity, precipitation and wind speed, taken from the ERA-Interim reanalysis, as well as the components of the Canadian Forest Fire Weather Index (FWI) System as predictors. We also computed the standardized precipitation-evapotranspiration index (SPEI) as an additional predictor for the models of burned area. We found two contrasting fire regimes in terms of area burned and number of fires: one characterized by a bimodal annual pattern, characterizing the Nemoral and Oro-boreal phytoclimatic types, and another one exhibiting an unimodal annual cycle, with the fire season concentrated in the summer months in the Mediterranean and Arid regions. The fire occurrence models attained good skill in most of the phytoclimatic zones considered, yielding in some zones notably high correlation coefficients between the observed and modelled inter-annual fire frequencies. Total area burned also exhibited a high dependence on the meteorological drivers, although their ability to reproduce the observed annual burned area time series was poor in most cases. We identified temperature and some FWI system components as the most important explanatory variables, and also SPEI in some of the burned area models, highlighting the adequacy of the FWI system for fire modelling applications and leaving the door opened to the development a more complex modelling framework based on these predictors. Furthermore, we demonstrate the potential usefulness of ERA-Interim reanalysis data for the reconstruction of historical fire-climate relationships at the scale of analysis. Fire frequency predictions may provide a preferable basis for past fire history reconstruction, long-term monitoring and the assessment of future climate impacts on fire regimes across regions, posing several advantages over burned area as response variable.

  10. Limitations imposed on fire PRA methods as the result of incomplete and uncertain fire event data.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowlen, Steven Patrick; Hyslop, J. S.

    2010-04-01

    Fire probabilistic risk assessment (PRA) methods utilize data and insights gained from actual fire events in a variety of ways. For example, fire occurrence frequencies, manual fire fighting effectiveness and timing, and the distribution of fire events by fire source and plant location are all based directly on the historical experience base. Other factors are either derived indirectly or supported qualitatively based on insights from the event data. These factors include the general nature and intensity of plant fires, insights into operator performance, and insights into fire growth and damage behaviors. This paper will discuss the potential methodology improvements thatmore » could be realized if more complete fire event reporting information were available. Areas that could benefit from more complete event reporting that will be discussed in the paper include fire event frequency analysis, analysis of fire detection and suppression system performance including incipient detection systems, analysis of manual fire fighting performance, treatment of fire growth from incipient stages to fully-involved fires, operator response to fire events, the impact of smoke on plant operations and equipment, and the impact of fire-induced cable failures on plant electrical circuits.« less

  11. Management of a fire in the operating room.

    PubMed

    Kaye, Alan David; Kolinsky, Daniel; Urman, Richard D

    2014-04-01

    Operating room (OR) fires remain a significant source of liability for anesthesia providers and injury for patients, despite existing practice guidelines and other improvements in operating room safety. Factors contributing to OR fires are well understood and these occurrences are generally preventable. OR personnel must be familiar with the fire triad which consists of a fuel supply, an oxidizing agent, and an ignition source. Existing evidence shows that OR-related fires can result in significant patient complications and malpractice claims. Steps to reduce fires include taking appropriate safety measures before a patient is brought to the OR, taking proper preventive measures during surgery, and effectively managing fire and patient complications when they occur. Decreasing the incidence of fires should be a team effort involving the entire OR personnel, including surgeons, anesthesia providers, nurses, scrub technologists, and administrators. Communication and coordination among members of the OR team is essential to creating a culture of safety.

  12. Employment of Direct Fire Systems during Offensive Operations

    DTIC Science & Technology

    1990-06-01

    problems, this criteria suffers from a lack of offensive direct fire planning as part 115 of the scheme of maneuver. Limited TTP discussion in the...these specific occurrences. Doctrine writers could develop TTP to do so. This problem could involve unit training practices. If units differentiate ...10 0 0 0 5 PURPOSE) 4. - IDENTIFIES DIRECT FIRE I 76 15 20 130 21 15 115 R&S PRIORITY (PIR/IR) 5. - IDENTIFIES ENGAGEMENT 1 5 10 0 25 16 0 0 PRIORITY

  13. Efficient video-equipped fire detection approach for automatic fire alarm systems

    NASA Astrophysics Data System (ADS)

    Kang, Myeongsu; Tung, Truong Xuan; Kim, Jong-Myon

    2013-01-01

    This paper proposes an efficient four-stage approach that automatically detects fire using video capabilities. In the first stage, an approximate median method is used to detect video frame regions involving motion. In the second stage, a fuzzy c-means-based clustering algorithm is employed to extract candidate regions of fire from all of the movement-containing regions. In the third stage, a gray level co-occurrence matrix is used to extract texture parameters by tracking red-colored objects in the candidate regions. These texture features are, subsequently, used as inputs of a back-propagation neural network to distinguish between fire and nonfire. Experimental results indicate that the proposed four-stage approach outperforms other fire detection algorithms in terms of consistently increasing the accuracy of fire detection in both indoor and outdoor test videos.

  14. Landscape-scale patterns of fire and drought on the high plains, USA

    Treesearch

    Paulette Ford; Charles Jackson; Matthew Reeves; Benjamin Bird; Dave Turner

    2015-01-01

    We examine 31 years (1982-2012) of temperature, precipitation and natural wildfire occurrence data for Federal and Tribal lands to determine landscape-scale patterns of drought and fire on the southern and central High Plains of the western United States. The High Plains states of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and...

  15. 76 FR 59014 - Standard for the Flammability of Mattresses and Mattress Pads; Technical Amendment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... in 1972 under the authority of the Flammable Fabrics Act (``FFA''), 15 U.S.C. 1191 et seq. When the... NIST Technical Note 1627; and Non-``Fire-Safe Cigarette'' (FSC) The first three descriptors are... the risk of the occurrence of fire leading to death, injury, or significant property damage; (2) is...

  16. Spatiotemporal distribution patterns of forest fires in northern Mexico

    Treesearch

    Gustavo Pérez-Verdin; M. A. Márquez-Linares; A. Cortes-Ortiz; M. Salmerón-Macias

    2013-01-01

    Using the 2000-2011 CONAFOR databases, a spatiotemporal analysis of the occurrence of forest fires in Durango, one of the most affected States in Mexico, was conducted. The Moran's index was used to determine a spatial distribution pattern; also, an analysis of seasonal and temporal autocorrelation of the data collected was completed. The geographically weighted...

  17. Daily fire occurrence in northern Eurasia from 2002 to 2009

    Treesearch

    W. M. Hao; H. M. Eissinger; A. Petkov; B. L. Nordgren; Shawn Urbanski

    2010-01-01

    Northern Eurasia, covering 20% of the global land mass and containing 70% of boreal forest, is extremely sensitive to climate changes. Warmer temperatures in this region have led to less snowfall, earlier spring, longer growing season, and reduced moisture for soil and vegetation in summer. Recently, severe drought and record high temperatures caused catastrophic fires...

  18. Sand sagebrush response to fall and spring prescribed burns

    Treesearch

    Lance T. Vermeire; Robert B. Mitchell; Samuel D. Fuhlendorf

    2001-01-01

    Sand sagebrush (Artemisia filifolia) is a dominant shrub on sandy soils throughout the Great Plains and Southwest. Sand sagebrush is reported to reduce wind erosion and provides valuable forage and cover to numerous wildlife species. However, the fire ecology of sand sagebrush is not well understood. Our objectives were to evaluate fire-induced mortality, occurrence of...

  19. Chaparral recovery following a major fire with variable burn conditions

    Treesearch

    Diane H. Rachels; Douglas A. Stow; John F. O' Leary; Harry D. Johnson; Philip J. Riggan

    2016-01-01

    Wildfires are a common occurrence in California shrublands, maintaining ecosystem functions with the regeneration of key shrub species. The Cedar Fire of 2003 in southern California was unique in that a portion of it burned with wildfire accelerated by dry, strong northeasterly Santa Ana winds that later subsided, while the remaining area burned under an onshore,...

  20. Potential shifts in dominant forest cover in interior Alaska driven by variations in fire severity

    Treesearch

    K. Barrett; A.D. McGuire; E.E. Hoy; E.S. Kasischke

    2011-01-01

    Large fire years in which >1% of the landscape burns are becoming more frequent in the Alaskan (USA) interior, with four large fire years in the past 10 years, and 79000 km2 (17% of the region) burned since 2000. We modeled fire severity conditions for the entire area burned in large fires during a large fire year (2004) to determine the...

  1. Ecological fire use for ecological fire management: Managing large wildfires by design

    Treesearch

    Timothy Ingalsbee

    2015-01-01

    Past fire exclusion policies and fire suppression actions have led to a historic "fire deficit" on public wildlands. These sociocultural actions have led to unprecedented environmental changes that have created conditions conducive to more frequent large-scale wildfires. Politicians, the newsmedia, and agency officials portray large wildland fires as...

  2. Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire prediction

    NASA Astrophysics Data System (ADS)

    Soja, Amber; Westberg, David; Stackhouse, Paul, Jr.; McRae, Douglas; Jin, Ji-Zhong; Sukhinin, Anatoly

    2010-05-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under current climate change scenarios. Therefore, changes in fire regimes have the potential to compel ecological change, moving ecosystems more quickly towards equilibrium with a new climate. The ultimate goal of this research is to assess the viability of large-scale (1°) data to be used to define fire weather danger and fire regimes, so that large-scale data can be confidently used to predict future fire regimes using large-scale fire weather data, like that available from current Intergovernmental Panel on Climate Change (IPCC) climate change scenarios. In this talk, we intent to: (1) evaluate Fire Weather Indices (FWI) derived using reanalysis and interpolated station data; (2) discuss the advantages and disadvantages of using these distinct data sources; and (3) highlight established relationships between large-scale fire weather data, area burned, active fires and ecosystems burned. Specifically, the Canadian Forestry Service (CFS) Fire Weather Index (FWI) will be derived using: (1) NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data; and National Climatic Data Center (NCDC) surface station-interpolated data. Requirements of the FWI are local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. GEOS-4 reanalysis and NCDC station-interpolated fire weather indices are generally consistent spatially, temporally and quantitatively. Additionally, increased fire activity coincides with increased FWI ratings in both data products. Relationships have been established between large-scale FWI to area burned, fire frequency, ecosystem types, and these can be use to estimate historic and future fire regimes.

  3. Geographic Mapping as a Tool for Identifying Communities at High Risk for Fires.

    PubMed

    Fahey, Erin; Lehna, Carlee; Hanchette, Carol; Coty, Mary-Beth

    2016-01-01

    The purpose of this study was to evaluate whether the sample of older adults in a home fire safety (HFS) study captured participants living in the areas at highest risk for fire occurrence. The secondary aim was to identify high risk areas to focus future HFS interventions. Geographic information systems software was used to identify census tracts where study participants resided. Census data for these tracts were compared with participant data based on seven risk factors (ie, age greater than 65 years, nonwhite race, below high school education, low socioeconomic status, rented housing, year home built, home value) previously identified in a fire risk model. The distribution of participants and census tracts among risk categories determined how well higher risk census tracts were sampled. Of the 46 census tracts where the HFS intervention was implemented, 78% (n = 36) were identified as high or severe risk according to the fire risk model. Study participants' means for median annual family income (P < .0001) and median home value (P < .0001) were significantly lower than the census tract means (n = 46), indicating participants were at higher risk of fire occurrence. Of the 92 census tracts identified as high or severe risk in the entire county, the study intervention was implemented in 39% (n = 36), indicating 56 census tracts as potential areas for future HFS interventions. The Geographic information system-based fire risk model is an underutilized but important tool for practice that allows community agencies to develop, plan, and evaluate their outreach efforts and ensure the most effective use of scarce resources.

  4. The Simulations of Wildland Fire Smoke PM25 in the NWS Air Quality Forecasting Systems

    NASA Astrophysics Data System (ADS)

    Huang, H. C.; Pan, L.; McQueen, J.; Lee, P.; ONeill, S. M.; Ruminski, M.; Shafran, P.; Huang, J.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2017-12-01

    The increase of wildland fire intensity and frequency in the United States (U.S.) has led to property loss, human fatality, and poor air quality due to elevated particulate matters and surface ozone concentrations. The NOAA/National Weather Service (NWS) built the National Air Quality Forecast Capability (NAQFC) based on the U.S. Environmental Protection Agency (EPA) Community Multi-scale Air Quality (CMAQ) Modeling System driven by the NCEP North American Mesoscale Forecast System meteorology to provide ozone and fine particulate matter (PM2.5) forecast guidance publicly. State and local forecasters use the NWS air quality forecast guidance to issue air quality alerts in their area. The NAQFC PM2.5 predictions include emissions from anthropogenic and biogenic sources, as well as natural sources such as dust storms and wildland fires. The wildland fire emission inputs to the NAQFC is derived from the NOAA National Environmental Satellite, Data, and Information Service Hazard Mapping System fire and smoke detection product and the emission module of the U.S. Forest Service (USFS) BlueSky Smoke Modeling Framework. Wildland fires are unpredictable and can be ignited by natural causes such as lightning or be human-caused. It is extremely difficult to predict future occurrences and behavior of wildland fires, as is the available bio-fuel to be burned for real-time air quality predictions. Assumptions of future day's wildland fire behavior often have to be made from older observed wildland fire information. The comparisons between the NAQFC modeled PM2.5 and the EPA AirNow surface observation show that large errors in PM2.5 prediction can occur if fire smoke emissions are sometimes placed at the wrong location and/or time. A configuration of NAQFC CMAQ-system to re-run previous 24 hours, during which wildland fires were observed from satellites has been included recently. This study focuses on the effort performed to minimize the error in NAQFC PM2.5 predictions resulting from incorporating fire smoke emissions into the NAQFC from a recently updated newer version of USFS BlueSky system. This study will show how new approaches has improved the PM2.5 predictions at both nearby and downstream areas from fire sources. Furthermore, Environment and Climate Change Canada (ECCC) fire emissions data are being tested.

  5. Wildfire Risk Mapping over the State of Mississippi: Land Surface Modeling Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, William H.; Mostovoy, Georgy; Anantharaj, Valentine G

    2012-01-01

    Three fire risk indexes based on soil moisture estimates were applied to simulate wildfire probability over the southern part of Mississippi using the logistic regression approach. The fire indexes were retrieved from: (1) accumulated difference between daily precipitation and potential evapotranspiration (P-E); (2) top 10 cm soil moisture content simulated by the Mosaic land surface model; and (3) the Keetch-Byram drought index (KBDI). The P-E, KBDI, and soil moisture based indexes were estimated from gridded atmospheric and Mosaic-simulated soil moisture data available from the North American Land Data Assimilation System (NLDAS-2). Normalized deviations of these indexes from the 31-year meanmore » (1980-2010) were fitted into the logistic regression model describing probability of wildfires occurrence as a function of the fire index. It was assumed that such normalization provides more robust and adequate description of temporal dynamics of soil moisture anomalies than the original (not normalized) set of indexes. The logistic model parameters were evaluated for 0.25 x0.25 latitude/longitude cells and for probability representing at least one fire event occurred during 5 consecutive days. A 23-year (1986-2008) forest fires record was used. Two periods were selected and examined (January mid June and mid September December). The application of the logistic model provides an overall good agreement between empirical/observed and model-fitted fire probabilities over the study area during both seasons. The fire risk indexes based on the top 10 cm soil moisture and KBDI have the largest impact on the wildfire odds (increasing it by almost 2 times in response to each unit change of the corresponding fire risk index during January mid June period and by nearly 1.5 times during mid September-December) observed over 0.25 x0.25 cells located along the state of Mississippi Coast line. This result suggests a rather strong control of fire risk indexes on fire occurrence probability over this region.« less

  6. Can anthropic fires affect epigaeic and hypogaeic Cerrado ant (Hymenoptera: Formicidae) communities in the same way?

    PubMed

    Canedo-Júnior, Ernesto de Oliveira; Cuissi, Rafael Gonçalves; Nelson Henrique de Almeida, Curi; Demetrio, Guilherme Ramos; Lasmar, Chaim José; Malves, Kira

    2016-03-01

    Fire occurrences are a common perturbation in Cerrado ecosystems, and may differently impact the local biodiversity. Arthropods are one of the taxa affected by fires, and among them, ants are known as good bioindicators. We aimed to evaluate the effect of anthropic fires on epigaeic and hypogaeic ant communities (species richness and composition) in Cerrado areas with different post-fire event recovery periods. We conducted the study in four Cerrado areas during two weeks of 2012 dry season: one unburned and three at different post-fire times (one month, one and two years). We sampled ants with pitfall traps in epigaeic and hypogaeic microhabitats. We collected 71 ant morpho-species from 25 genera. In the epigaeic microhabitat we sampled 56 morpho-species and 42 in the hypogaeic microhabitat. The area with the shortest recovery time presented lower epigaeic ant species richness (4.3 ± 2.00) in comparison to the other areas (8.1 ± 2.68 species on one year area; 10.3 ± 2.66 species on two years area; 10.4 ± 2.31 species on control area), but recovery time did not affect hypogaeic ant species richness. Regarding ant species composition, fire did not directly affect hypogaeic ant species, which remained the same even one month after fire event. However, two years were not enough to reestablish ant species composition in both microhabitats in relation to our control group samples. Our study is the first to assess anthropic fire effects upon epigaeic and hypogaeic ants communities; highlighting the importance of evaluating different microhabitats, to more accurately detect the effects of anthropic disturbances in biological communities. We concluded that ant communities are just partially affected by fire occurrences, and epigaeic assemblages are the most affected ones in comparison to hypogaeic ants. Furthermore the study provides knowledge to aid in the creation of vegetation management programs that allow Cerrado conservation.

  7. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990-2013).

    PubMed

    Fox, D M; Carrega, P; Ren, Y; Caillouet, P; Bouillon, C; Robert, S

    2018-04-15

    Wildfires burn >450,000ha of forest every year in Euro-Mediterranean countries. Many fires originate in the Wildland Urban Interface (WUI) where housing density and weather conditions affect fire occurrence. Housing density is determined by long term land use policies while weather conditions evolve quickly. The first objective was to quantify the impacts of land use policy on WUI characteristics and fire risk in SE France during 1990-2012. The second objective was to quantify how Fire Weather Index (FWI) is related to fire occurrence. WUI was mapped from 1990, 1999, and 2012 building layers and crossed with a NDVI derived vegetation layer. In all, 12 WUI categories were derived: 4 building density classes and 3 vegetation layers. The I87 FWI was based on daily temperature, wind speed, relative humidity and soil water content. Despite a 30% increase in the number of new buildings, WUI area increased by only 5% as new housing filled in open space in existing WUI area. This trend can be linked to national level urban planning legislation and forest fire protection laws. Major driver variables determining housing location were aspect, slope, and distance to city centers. Fire frequency and burned area were nonlinearly related to FWI: 73% of the 99 fires occurred during weeks with FWI values ≥90 even though these accounted for only 44% of all weeks. Burned area was even more sensitive to FWI since 97% of total burned area occurred during weeks with mean FWI values ≥90. All days with burned areas >100ha had FWI values >150. The study demonstrated that WUI legislation can be an efficient tool to limit WUI fire risk. FWI results suggest the predicted increase in extreme summer heat events with global warming could increase burned area as firefighting resources are stretched beyond capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Simulated Rainfall experiments on burned areas

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina

    2010-05-01

    Simulated Rainfall experiments were carried out in a Mediterranean area located in Italy, immediately after a forest fire occurrence, to evaluate the effects of forest fire on soil hydraulic properties, runoff and erosion. The selected study area was frequently affected by fire in the last years. Two adjacent 30 mq plots were set up with common physiographic features, and the same fire history, except for the last fire, which burned only one of them. Since both plots were previously subject to the passage of fire 6 years before the last one, one compares the hydrologic response and erosion of an area recently burned (B00) with that of an area burnt 6 years before (B06). Several rainfall simulations were carried out considering different pre-event soil moisture conditions where each rainfall simulation consisted of a single 60 minute application of rainfall with constant intensity of about 76 mm/h. The results show runoff ratio, evaluated for different pre-event soil moisture conditions, ranging from 0 to 2% for B06 plot, and from 21 to 41% for B00. Runoff ratio for the recently burned plot was 60 times higher than for the plot burned six years before, under wet conditions, and 20 times higher, under very wet conditions. A large increase in sediment production also was measured in B00 plot, as compared with that in B06 plot. Suspended sediment yield from B00 plot was more than two orders of magnitude higher than that from B06 plot in all the simulated events. The high runoff and soil losses measured immediately after burning indicate that effective post-fire rehabilitation programs must be carried out to reduce flood risk and soil erosion in recently burned areas. However, the results for the plot burned six year prior show that recovery of the hydrological properties of the soil occurs after the transient post fire modification.

  9. Fire in the Earth System: Bridging data and modeling research

    USGS Publications Warehouse

    Hantson, Srijn; Kloster, Silvia; Coughlan, Michael; Daniau, Anne-Laure; Vanniere, Boris; Bruecher, Tim; Kehrwald, Natalie; Magi, Brian I.

    2016-01-01

    Significant changes in wildfire occurrence, extent, and severity in areas such as western North America and Indonesia in 2015 have made the issue of fire increasingly salient in both the public and scientific spheres. Biomass combustion rapidly transforms land cover, smoke pours into the atmosphere, radiative heat from fires initiates dramatic pyrocumulus clouds, and the repeated ecological and atmospheric effects of fire can even impact regional and global climate. Furthermore, fires have a significant impact on human health, livelihoods, and social and economic systems.Modeling and databased methods to understand fire have rapidly coevolved over the past decade. Satellite and ground-based data about present-day fire are widely available for applications in research and fire management. Fire modeling has developed in part because of the evolution in vegetation and Earth system modeling efforts, but parameterizations and validation are largely focused on the present day because of the availability of satellite data. Charcoal deposits in sediment cores have emerged as a powerful method to evaluate trends in biomass burning extending back to the Last Glacial Maximum and beyond, and these records provide a context for present-day fire. The Global Charcoal Database version 3 compiled about 700 charcoal records and more than 1,000 records are expected for the future version 4. Together, these advances offer a pathway to explore how the strengths of fire data and fire modeling could address the weaknesses in the overall understanding of human-climate–fire linkages.A community of researchers studying fire in the Earth system with individual expertise that included paleoecology, paleoclimatology, modern ecology, archaeology, climate, and Earth system modeling, statistics, geography, biogeochemistry, and atmospheric science met at an intensive workshop in Massachusetts to explore new research directions and initiate new collaborations. Research themes, which emerged from the workshop participants via preworkshop surveys, focused on addressing the following questions: What are the climatic, ecological, and human drivers of fire regimes, both past and future? What is the role of humans in shaping historical fire regimes? How does fire ecology affect land cover changes, biodiversity, carbon storage, and human land uses? What are the historical fire trends and their impacts across biomes? Are their impacts local and/or regional? Are the fire trends in the last two decades unprecedented from a historical perspective? The workshop1 aimed to develop testable hypotheses about fire, climate, vegetation, and human interactions by leveraging the confluence of proxy, observational, and model data related to decadal- to millennial-scale fire activity on our planet. New research directions focused on broad interdisciplinary approaches to highlight how knowledge about past fire activity could provide a more complete understanding of the predictive capacity of fire models and inform fire policy in the face of our changing climate.

  10. Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Ramos, Alexandre; Trigo, Ricardo

    2013-04-01

    Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and lightning occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by lightning, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by lightning. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire activity in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Instituto de Meteorologia (IM). The main objective of this work is to analyze for possible relations between the PRFD and the Portuguese lightning database for the 2003 and 2005 extreme fire seasons. In particularly we were able to verify the forest fires labeled as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets.

  11. Active Fire Mapping Program

    MedlinePlus

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  12. The selection of flying roller as an effort to increase the power of scooter-matic as the main power of centrifugal pump for fire fighter motor cycle

    NASA Astrophysics Data System (ADS)

    Hadi Sutrisno, Himawan

    2018-03-01

    In densely populated settlements, fires often occur and cause losses. In some instances, the process of the occurrence of fires takes place so quickly that to reduce and avoid the occurrence of a fire disaster effort is required in accordance with the existing environmental condition. Fire fighter motorcycle by using motorcycle scooter-matic is considered suitable as one alternative to combating fire hazard in densely populated residential settlements. The use of motorcycle engines as the driving force of the pump often leads to unstable and not optimum power. Thus, the water spray on the centrifugal pump also becomes not maximum. To increase the engine power at scooter-matic engine idle rotation (700-2000 rpm), then the flying roller replacement with certain mass weight becomes an option. By selecting a 10 to 14 gram flying roller mass, the power analysis using a dynotest engine produces several variations. Of the calculation, the mass of a 14 gram flying roller provides a significant increase in motor power on the upper rotation. Meanwhile, on the lower power rotation using a flying roller with a mass of 10 grams provides an increase in power compared to a standard flying roller on a scooter matic motor engine. As a reference to the use of scooter-matic motor power as the pump power, the result of use of the flying roller with a mass of 10 grams becomes the best option.

  13. Analysis of weather condition influencing fire regime in Italy

    NASA Astrophysics Data System (ADS)

    Bacciu, Valentina; Masala, Francesco; Salis, Michele; Sirca, Costantino; Spano, Donatella

    2014-05-01

    Fires have a crucial role within Mediterranean ecosystems, with both negative and positive impacts on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In addition, several authors are in agreement suggesting that, during the past decades, changes on fire patterns have occurred, especially in terms of fire-prone areas expansion and fire season lengthening. Climate and weather are two of the main controlling agents, directly and indirectly, of fire regime influencing vegetation productivity, causing water stress, igniting fires through lightning, or modulating fire behavior through wind. On the other hand, these relationships could be not warranted in areas where most ignitions are caused by people (Moreno et al. 2009). Specific analyses of the driving forces of fire regime across countries and scales are thus still required in order to better anticipate fire seasons and also to advance our knowledge of future fire regimes. The objective of this work was to improve our knowledge of the relative effects of several weather variables on forest fires in Italy for the period 1985-2008. Meteorological data were obtained through the MARS (Monitoring Agricultural Resources) database, interpolated at 25x25 km scale. Fire data were provided by the JRC (Join Research Center) and the CFVA (Corpo Forestale e di Vigilanza Ambientale, Sardinia). A hierarchical cluster analysis, based on fire and weather data, allowed the identification of six homogeneous areas in terms of fire occurrence and climate (pyro-climatic areas). Two statistical techniques (linear and non-parametric models) were applied in order to assess if inter-annual variability in weather pattern and fire events had a significant trend. Then, through correlation analysis and multi-linear regression modeling, we investigated the influence of weather variables on fire activity across a range of time- and spatial-scales. The analysis revealed a general decrease of both number of fires and burned area, although not everywhere with the same magnitude. Overall, regression models where highly significant (p<0.001), and the explained variance ranged from 36% to 80% for fire number and from 37% to 76% for burned area, depending on pyro-climatic area. Moreover, our results contributed in determining the relative importance of climate variables acting at different timescales as control on intrinsic (i.e. flammability and moisture) and extrinsic (i.e. fuel amount and structure) characteristics of vegetation, thus strongly influencing fire occurrence. The good performance of our models, especially in the most fire affected pyro-climatic areas of Italy, and the better understanding of the main driver of fire variability gained through this work could be of great help for fire management among the different pyro-climatic areas.

  14. 1954 midsummer fuel moistures in Oregon and Washington national forests compared with other years.

    Treesearch

    Owen P. Cramer

    1955-01-01

    For the third successive year mid-fire-season fuel moistures on national forests of Oregon and Washington averaged higher than in the preceding year, and forest flammability was correspondingly lower. Generally high fuel-moisture conditions during 1954 are reflected in fire occurrence, which approached an all-time low. Fuel-moisture ratings are based on the 25 lowest...

  15. Seasonal variation and the co-occurence of four pathogens and a group of parasites among monogyne and polygyne fire ant colonies

    USDA-ARS?s Scientific Manuscript database

    A year-long survey of was conducted to determine the seasonality and co-occurrence of four pathogens and a group of parasites in colonies of the red imported fire ant, Solenopsis invicta, in north-central Florida. S. invicta colonies were sampled and examined for the presence of Pseudacteon spp. (P...

  16. Impact of wildfire on stream nutrient chemistry and ecosystem metabolism in boreal forest catchments of interior Alaska

    Treesearch

    Emma F. Betts; Jeremy B. Jones

    2009-01-01

    With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...

  17. Limiting the immediate and subsequent hazards associated with wildfires

    USGS Publications Warehouse

    DeGraff, Jerome V.; Cannon, Susan H.; Parise, Mario

    2013-01-01

    Similarly, our capability to limit impacts from post-fire debris flows is improving. Empirical models for estimating the probability of debris-flow occurrence, the volume of such an event, and mapping the inundated area, linked with improved definitions of the rainfall conditions that trigger debris flows, can be used to provide critical information for post-fire hazard mitigation and emergency-response planning.

  18. Guide to PBDE: Toxic Flame Retardant--What Women, Children and School Personnel Need to Know. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Chemical flame-retardants are used in a variety of products to prevent the spread and occurrence of fire. While fire safety is critical, this family of chemicals, known as Polybrominated diphenyl ethers (PBDEs) are highly toxic. They are found in carpeting, foam cushions, polyester clothing and bedding, wallpaper, toys, household dust, a variety…

  19. Diversity and habitat relationships of hypogeous fungi. III. Factors influencing the occurrence of fire-adapted species

    Treesearch

    Andrew W. Claridge; James M. Trappe; Douglas J. Mills; Debbie L. Claridge

    2009-01-01

    Among the huge array of hypogeous ectomycorrhizal fungi so far documented from Australia, six genera and more than 30 species occur within the family Mesophelliaceae, all of which show various adaptations for surviving in fire-prone landscapes. These mostly endemic fungi are critical to postfire reestablishment of regenerating vegetation, and their fruit-bodies provide...

  20. Landscape-scale fuel treatment and wildfire impacts on carbon stocks and fire hazard in California spotted owl habitat

    Treesearch

    Lindsay A. Chiono; Danny L. Fry; Brandon M. Collins; Andrea H. Chatfield; Scott L. Stephens

    2017-01-01

    Forest managers are challenged with meeting numerous demands that often include wildlife habitat and carbon (C) sequestration. We used a probabilistic framework of wildfire occurrence to (1) estimate the potential for fuel treatments to reduce fire risk and hazard across the landscape and within protected California spotted owl (Strix occidentalis...

  1. Emergency assessment of post-fire debris-flow hazards for the 2013 Powerhouse fire, southern California

    USGS Publications Warehouse

    Staley, Dennis M.; Smoczyk, Gregory M.; Reeves, Ryan R.

    2013-01-01

    Wildfire dramatically alters the hydrologic response of a watershed such that even modest rainstorms can produce dangerous flash floods and debris flows. Existing empirical models were used to predict the probability and magnitude of debris-flow occurrence in response to a 10-year recurrence interval rainstorm for the 2013 Powerhouse fire near Lancaster, California. Overall, the models predict a relatively low probability for debris-flow occurrence in response to the design storm. However, volumetric predictions suggest that debris flows that occur may entrain a significant volume of material, with 44 of the 73 basins identified as having potential debris-flow volumes between 10,000 and 100,000 cubic meters. These results suggest that even though the likelihood of debris flow is relatively low, the consequences of post-fire debris-flow initiation within the burn area may be significant for downstream populations, infrastructure, and wildlife and water resources. Given these findings, we recommend that residents, emergency managers, and public works departments pay close attention to weather forecasts and National-Weather-Service-issued Debris Flow and Flash Flood Outlooks, Watches, and Warnings and that residents adhere to any evacuation orders.

  2. A model-based approach to wildland fire reconstruction using sediment charcoal records

    USGS Publications Warehouse

    Itter, Malcolm S.; Finley, Andrew O.; Hooten, Mevin B.; Higuera, Philip E.; Marlon, Jennifer R.; Kelly, Ryan; McLachlan, Jason S.

    2017-01-01

    Lake sediment charcoal records are used in paleoecological analyses to reconstruct fire history, including the identification of past wildland fires. One challenge of applying sediment charcoal records to infer fire history is the separation of charcoal associated with local fire occurrence and charcoal originating from regional fire activity. Despite a variety of methods to identify local fires from sediment charcoal records, an integrated statistical framework for fire reconstruction is lacking. We develop a Bayesian point process model to estimate the probability of fire associated with charcoal counts from individual-lake sediments and estimate mean fire return intervals. A multivariate extension of the model combines records from multiple lakes to reduce uncertainty in local fire identification and estimate a regional mean fire return interval. The univariate and multivariate models are applied to 13 lakes in the Yukon Flats region of Alaska. Both models resulted in similar mean fire return intervals (100–350 years) with reduced uncertainty under the multivariate model due to improved estimation of regional charcoal deposition. The point process model offers an integrated statistical framework for paleofire reconstruction and extends existing methods to infer regional fire history from multiple lake records with uncertainty following directly from posterior distributions.

  3. A review of the relationships between drought and forest fire in the United States

    USGS Publications Warehouse

    Littell, Jeremy; Peterson, David L.; Riley, Karin L.; Yongquiang Liu,; Luce, Charles H.

    2016-01-01

    The historical and pre-settlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate—including short- and long-term droughts—are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem.

  4. Estimating suppression expenditures for individual large wildland fires

    Treesearch

    Krista M. Gebert; David E. Calkin; Jonathan Yoder

    2007-01-01

    The extreme cost of fighting wildland fires has brought fire suppression expenditures to the forefront of budgetary and policy debate in the United States. Inasmuch as large fires are responsible for the bulk of fire suppression expenditures, understanding fire characteristics that influence expenditures is important for both strategic fire planning and onsite fire...

  5. Spaces of Surveillance: A Study of Newspaper Articles on School Surveillance Cameras from 2002-2014

    ERIC Educational Resources Information Center

    Grannäs, Jan

    2016-01-01

    Today, school fires, vandalism, graffiti and bullying in school environments are common occurrences in Sweden. As a result, schools are faced with significant tangible and intangible costs for different types of measures, of which surveillance technology is one. This paper presents a study of newspaper articles mapping the occurrence and…

  6. TRMM Fire Algorithm, Product and Applications

    NASA Technical Reports Server (NTRS)

    Ji, Yi-Min; Stocker, Erich

    2003-01-01

    Land fires are frequent menaces to human lives and property. They also change the state of the vegetation and contribute to the climate forcing by releasing large amount of aerosols and greenhouse gases into the atmosphere. This paper summarizes methodologies of detecting global land fires from the Tropical Rainfall Measuring Mission (TRMM) Visible Infrared Scanner FIRS) measurements. The TRMM Science Data and Information System (TSDIS) fire products include global images of daily hot spots and monthly fire counts at 0.5 deg. x 0.5 deg. resolution, as well as text fiies that details necessary information of all fire pixels. The information includes date, orbit number, pixel number, local time, solar zenith angle, latitude, longitude, reflectance of visible/near infrared channels, brightness temperatures of infrared channels, as well as background brightness temperatures of infrared channels. These products have been archived since January 1998. The TSDIS fire products are compared with the coincidental European Commission (EC) Joint Research Center (JRC) 1 km AVHRR fire products. Analyses of the TSDIS monthly fire products during the period from 1998 to 2003 manifested seasonal cycles of biomass fires over Southeast Asia, Africa, North America and South America. The data also showed interannual variations associated with the 98/99 ENS0 cycle in Central America and the Indonesian region. In order to understand the variability of global land fires and their effects on the distribution of atmospheric aerosols, statistical methods were applied to the TSDIS fire products as well as to the Total Ozone Mapping Spectrometer (TOMS) aerosol index products for a period of five years from January 1998 to December 2002. The variability of global atmospheric aerosol is consistent with the fire variations over these regions during this period. The correlation between fire count and TOMS aerosol index is about 0.55 for fire pixels in Southeast Asia, Indonesia, and Africa. Parallel statistical analyses such as Empirical Orthogonal Function (EOF) analysis and Singular Spectrum Analysis (SSA) methods were applied to pentad TRMM fire data and TOMS aerosol data. The EOF analyses showed contrast between North and South hemispheres and also inter- continental transitions in Africa and America. EOF and SSA analyses also identified 25-60 day intra-seasonal oscillations that were superimposed on the annual cycles of both fire and aerosol data. The intra-seasonal variability of fires showed similarity of tropical rainfall oscillation modes. The TRMM fire products were also compared to the coincident TRMh4 rainfall and other rainfall products to investigate the interaction between rainfall and fire. The results indicate that the annual, interannual and intraseasonal variability of fire are dominated by global rainfall variations. However, the feedback of fire to the rainfall occurrence at regional scale for certain regions is also evident.

  7. Fuel type characterization and potential fire behavior estimation in Sardinia and Corsica islands

    NASA Astrophysics Data System (ADS)

    Bacciu, V.; Pellizzaro, G.; Santoni, P.; Arca, B.; Ventura, A.; Salis, M.; Barboni, T.; Leroy, V.; Cancellieri, D.; Leoni, E.; Ferrat, L.; Perez, Y.; Duce, P.; Spano, D.

    2012-04-01

    Wildland fires represent a serious threat to forests and wooded areas of the Mediterranean Basin. As recorded by the European Commission (2009), during the last decade Southern Countries have experienced an annual average of about 50,000 forest fires and about 470,000 burned hectares. The factor that can be directly manipulated in order to minimize fire intensity and reduce other fire impacts, such as three mortality, smoke emission, and soil erosion, is wildland fuel. Fuel characteristics, such as vegetation cover, type, humidity status, and biomass and necromass loading are critical variables in affecting wildland fire occurrence, contributing to the spread, intensity, and severity of fires. Therefore, the availability of accurate fuel data at different spatial and temporal scales is needed for fire management applications, including fire behavior and danger prediction, fire fighting, fire effects simulation, and ecosystem simulation modeling. In this context, the main aims of our work are to describe the vegetation parameters involved in combustion processes and develop fire behavior fuel maps. The overall work plan is based firstly on the identification and description of the different fuel types mainly affected by fire occurrence in Sardinia (Italy) and Corsica (France) Islands, and secondly on the clusterization of the selected fuel types in relation to their potential fire behavior. In the first part of the work, the available time series of fire event perimeters and the land use map data were analyzed with the purpose of identifying the main land use types affected by fires. Thus, field sampling sites were randomly identified on the selected vegetation types and several fuel variables were collected (live and dead fuel load partitioned following Deeming et al., (1977), depth of fuel layer, plant cover, surface area-to-volume ratio, heat content). In the second part of the work, the potential fire behavior for every experimental site was simulated using BEHAVE fire behavior prediction system (Andrews, 1989) and experimental fuel data. Fire behavior was simulated by setting different weather scenarios representing the most frequent summer meteorological conditions. The simulation outputs (fireline intensity, rate of spread, flame length) were then analyzed for clustering the different fuel types in relation to their potential fire behavior. The results of this analysis can be used to produce fire behavior fuel maps that are important tools in evaluating fire hazard and risk for land management planning, locating and rating fuel treatments, and aiding in environmental assessments and fire danger programs modeling. This work is supported by FUME Project FP7-ENV-2009-1, Grant Agreement Number 243888 and Proterina-C Project, EU Italia-Francia Marittimo 2007-2013 Programme.

  8. Anthropic disturbances in the sedimentological characteristics of a Northern Patagonian lake: evidencing the impacts of the 20th century settlement

    NASA Astrophysics Data System (ADS)

    Araneda, A.; Muñoz, V.; Valenzuela, B.; Alvarez, D.; Torrejon, F.; Pedreros, P.; Urrutia, R.

    2013-12-01

    Traditionally Patagonia has been seen as a very pristine area, being an important reserve of wildlife and clean waters. Nonetheless it was dramatically affected by the first settlers at the beginning of the 20th century, that generated large fires for clearing the land originally covered by native forest. Those fires produced a dramatic impact left behind thousands of dead trees, increasing soil erosion, altering nutrient inputs in the aquatic ecosystems, which in turn affected the aquatic biota. However those impacts have been barely asses, then through the study of the sediment record of lake La Esponja (45°S) we want to evaluate the magnitude of the changes produced by the fires and to determine the resilience capacity of the lake. We analyzed magnetic susceptibility, organic content, charcoal, total phosphorous and a biological proxy (Chironomidae) in a sediment sequence of 60 cm long. Magnetic susceptibility shows a very variable behavior along the profile, being possible to identify a decreasing trend since the bottom, up to the most recent part of the record. An opposite behavior describes the organic content, showing a noticeable increase toward the surficial sediments. The number of charcoal particles -a direct indicator of fires occurrence, shows a peak of fires approximately at seven cm depth, diminishing toward the recent part. Total phosphorous also follow the trend recognized by charcoal, which allow inferring a probable trophic increase of the lake. This trend is partially recognized by chironomid assemblages through the increasing of some taxa typical of a higher nutrient status. Acknowledgements: Fondecyt projects 1120765 and 1120807.

  9. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.

    PubMed

    Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura

    2005-12-01

    The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.

  10. Lightning in Colorado forest fire smoke plumes during summer 2012

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Krehbiel, P. R.; Dolan, B.; Lindsey, D.; Rutledge, S. A.; Rison, W.

    2012-12-01

    May and June 2012 were unusually hot and dry in Colorado, which was suffering from a strong drought. A major consequence of this climatic regime was one of the most destructive forest fire seasons in state history, with hundreds of thousands of acres of forest and grassland consumed by flames, hundreds of homes burned, and several lives lost. Many of these fires occurred within range of the newly installed Colorado Lightning Mapping Array (COLMA), which provides high-resolution observations of discharges over a large portion of the state. The COLMA was installed in advance of the Deep Convective Clouds and Chemistry (DC3) project. High-altitude lightning was observed to occur sporadically in the smoke plumes over three major fires that occurred during early summer: Hewlett Gulch, High Park, and Waldo Canyon. Additionally, the Colorado State University CHILL (CSU-CHILL) and Pawnee radars observed the Hewlett Gulch plume electrify with detailed polarimetric and dual-Doppler measurements, and also provided these same measurements for the High Park plume when it was not producing lightning. Meanwhile, local Next Generation Radars (NEXRADs) provided observations of the electrified High Park and Waldo Canyon plumes. All of these plumes also were observed by geostationary meteorological satellites. These observations provide an unprecedented dataset with which to study smoke plume and pyrocumulus electrification. The polarimetric data - low reflectivity, high differential reflectivity, low correlation coefficient, and noisy differential phase - were consistent with the smoke plumes and associated pyrocumulus being filled primarily with irregularly shaped ash particles. Lightning was not observed in the plumes until they reached over 10 km above mean sea level, which was an uncommon occurrence requiring explosive fire growth combined with increased meteorological instability and reduced wind shear. Plume updraft intensification and echo-top growth led the occurrence of lightning by 10-15 minutes. Discharges typically only occurred over the span of a few minutes thereafter, or sporadically over the course of one of more hours. Plume lightning was intra-cloud and relatively small in size, and featured extensive precursor activity. Due to the preponderance of ash in the plumes and the lack of precipitation-sized ice, electrification had to occur via some other mechanism besides standard graupel-based non-inductive mechanisms. Triboelectric charging of the ash particles, aided by reduced breakdown fields at high altitudes, is posited as the primary mechanism behind the lightning in these smoke plumes.

  11. Vehicle Assembly Building Fire Mishap Investigation Report. Volume I of V

    NASA Technical Reports Server (NTRS)

    Kight, Ira; Luciano, Steven; Stevens, Michael B.; Farley, W. Max; Collins, Bryce D.; Potterger, William C.; Levesque, Jodi

    2005-01-01

    On January 13, 2005, at approximately 1355, smoke was noticed on the 4th floor of D Tower in the Vehicle Assembly Building (VAB). Subsequently, a 911 call was made, a fire alarm pull station was activated, and the VAB was evacuated. The source of the smoke was determined to be a fire on the Low Bay M/N section roof near the Launch Control Center (LCC) Crossover. Due to the high visibility of the mishap, the KSC Center Director appointed a Mishap Investigation Board. Damage to government property was limited to the roof and a small number of ceiling tiles that were damaged by the fire fighters during the response. At the time of the mishap, there were hazardous commodities in the VAB including Solid Rocket Motors (SRMs) with open grain due to Solid Rocket Booster (SRB) igniter inspections. The Board agrees with the SGS Fire Services' theory that large amounts of smoke concentrated in the VAB D Tower and moved downward into the cable tunnel. The Board determined the proximate cause of this incident to be torching. HRI was installing a torch applied roof membrane which resulted in the ignition of combustible materials under the membrane near a wooden roof expansion joint. The torch applied roofing method is a universally accepted safe industry practice when applied to non-combustible surfaces. The combination of an open flame torch and combustible materiaLs presents an increased level of risk even with skilled applicators. The addition of high winds to this combination results in a risk the Board thinks can not be adequately mitigated. An appropriate risk assessment and analysis must be performed on the proposed roofing method to be used on high visibility facilities which represent unique national assets even when using common industry practices for repair and modification. The Board identified three root causes which contributed to or created the proximate cause and, if eliminated or modified, would have prevented the mishap: 1. Combustible materials in existing roof system 2. Wind speed and direction 3. Inadequate fire watch technique. Two contributing factors were identified which may have contributed to the occurrence but, if eliminated or modified, would not have prevented the occurrence: 1. HRI rushed to dry in and seal the roof on January 13 because heavy rain was predicted for the next day 2. No guidance on torching in windy conditions A total of 17 significant observations were noted during this investigation, which could lead to another mishap, or increase the severity of a mishap, but were not contributing factors in this mishap.

  12. An operational system of fire danger rating over Mediterranean Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Miguel M.; DaCamara, Carlos C.; Trigo, Isabel F.; Trigo, Ricardo M.

    2017-04-01

    A methodology is presented to assess fire danger based on the probability of exceedance of prescribed thresholds of daily released energy. The procedure is developed and tested over Mediterranean Europe, defined by latitude circles of 35 and 45°N and meridians of 10°W and 27.5°E, for the period 2010-2016. The procedure involves estimating the so-called static and daily probabilities of exceedance. For a given point, the static probability is estimated by the ratio of the number of daily fire occurrences releasing energy above a given threshold to the total number of occurrences inside a cell centred at the point. The daily probability of exceedance which takes into account meteorological factors by means of the Canadian Fire Weather Index (FWI) is in turn estimated based on a Generalized Pareto distribution with static probability and FWI as covariates of the scale parameter. The rationale of the procedure is that small fires, assessed by the static probability, have a weak dependence on weather, whereas the larger fires strongly depend on concurrent meteorological conditions. It is shown that observed frequencies of exceedance over the study area for the period 2010-2016 match with the estimated values of probability based on the developed models for static and daily probabilities of exceedance. Some (small) variability is however found between different years suggesting that refinements can be made in future works by using a larger sample to further increase the robustness of the method. The developed methodology presents the advantage of evaluating fire danger with the same criteria for all the study area, making it a good parameter to harmonize fire danger forecasts and forest management studies. Research was performed within the framework of EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA SAF). Part of methods developed and results obtained are on the basis of the platform supported by The Navigator Company that is currently providing information about fire meteorological danger for Portugal for a wide range of users.

  13. Mapping burned areas using dense time-series of Landsat data

    USGS Publications Warehouse

    Hawbaker, Todd J.; Vanderhoof, Melanie; Beal, Yen-Ju G.; Takacs, Joshua; Schmidt, Gail L.; Falgout, Jeff T.; Williams, Brad; Brunner, Nicole M.; Caldwell, Megan K.; Picotte, Joshua J.; Howard, Stephen M.; Stitt, Susan; Dwyer, John L.

    2017-01-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete. Consequently, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables (ECVs), including information about burned area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient boosted regression models to generate burn probability surfaces using band values and spectral indices from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in combination with a region growing process. The algorithm can be applied anywhere Landsat and training data are available. For this study, BAECV products were generated for the conterminous United States from 1984 through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability and a burn classification. We compared the BAECV burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring Trends in Burn Severity (MTBS; 1984–2013) data. We found that the BAECV products mapped 36% more burned area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the GFED were especially high in the West and East where the BAECV products mapped 32% and 88% more burned area, respectively. However, the BAECV products found less burned area than the GFED in regions with frequent agricultural fires. Compared to the MTBS data, the BAECV products identified 31% more burned area in the West, 312% more in the Great Plains, and 233% more in the East. Most pixels in the MTBS data were detected by the BAECV, regardless of burn severity. The BAECV products document patterns of fire similar to those in the GFED but also showed patterns of fire that are not well characterized by the existing MTBS data. We anticipate the BAECV products will be useful to studies that seek to understand past patterns of fire occurrence, the drivers that created them, and the impacts fires have on natural and human systems.

  14. Firebrands and spotting ignition in large-scale fires

    Treesearch

    Eunmo Koo; Patrick J. Pagni; David R. Weise; John P. Woycheese

    2010-01-01

    Spotting ignition by lofted firebrands is a significant mechanism of fire spread, as observed in many largescale fires. The role of firebrands in fire propagation and the important parameters involved in spot fire development are studied. Historical large-scale fires, including wind-driven urban and wildland conflagrations and post-earthquake fires are given as...

  15. Using unplanned fires to help suppressing future large fires in Mediterranean forests.

    PubMed

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire-succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000-2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18-22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change.

  16. Post-breeding habitat use by adult boreal toads (Bufo boreas boreas) after wildfire in Glacier National Park, USA

    Treesearch

    C. Gregory Guscio; Blake R. Hossack; Lisa A. Eby; Paul Stephen Corn

    2008-01-01

    Effects of wildfire on amphibians are complex, and some species may benefit from the severe disturbance of stand-replacing fire. Boreal Toads (Bufo boreas boreas) in Glacier National Park, Montana, USA increased in occurrence after fires in 2001 and 2003. We used radio telemetry to track adult B. boreas in a mosaic of terrestrial...

  17. Occurrence and spread of nonnative invasive plants in stands treated with fire and/or mechanical treatments in the upper piedmont of South Carolina

    Treesearch

    Ross J. Phillips; Thomas A. Waldrop; Aaron D. Stottlemyer

    2013-01-01

    Increasing numbers of nonnative invasive plant species and the expansion of existing nonnative plant populations provide challenges for land managers trying to achieve commercial and restoration goals. Some methods used to achieve these goals, e.g., prescribed fire and mechanical treatments, may result in disturbances that promote the establishment and spread of...

  18. A preliminary report, giving some of the results obtained in a study of lightning storm occurrence and behavior on the national forests of Oregon and Washington.

    Treesearch

    William G. Morris

    1932-01-01

    When do lightning storms occur, why do they occur, where do they occur most frequently, where do they start the most fires, is it possible to determine whether or not an approaching storm is liable to start fires, do lightning storms move along definite paths over the national forests?

  19. Characteristics of lightning and wildland fire ignition in the Pacific Northwest.

    Treesearch

    Miriam L. Rorig; Sue A. Ferguson

    1999-01-01

    Lightning is the primary cause of fire in the forested regions of the Pacific Northwest, especially when it occurs without significant precipitation at the surface. Using thunderstorm occurrence and precipitation observations for the period 1948–77, along with automated lightning strike data for the period 1986–96, it was possible to classify convective days as either...

  20. Use of ryegrass seeding as an emergency revegetation measure in chaparral ecosystems

    Treesearch

    Susan C. Barro

    1987-01-01

    Fire is a common occurrence in the California chaparral. Aside from brush removal through combustion, physical changes also take place in the soil during fire. These changes lead to accelerated erosion rates which begin almost immediately and continue through the next 5 to 10 years (Rowe and others 1954; Wells and Brown 1982). Since the late 1940's seeding burned...

  1. Appraisal of biomass combustion biomarkers to track the paleo-occurrence of forest fires

    NASA Astrophysics Data System (ADS)

    Rivas-Ruiz, P.; Cao, M.; Rosell Mele, A.

    2015-12-01

    Wildfires influence many aspects of the Earth system, including ecosystem distribution, biodiversity, the carbon cycle, atmospheric chemistry and climate. The challenge is disentangling the various controls of fire, partly because of their diversity, and also because fire was impossible to observe and analyse as a global phenomenon until the satellite era. The study of ancient climates can be helpful to understand the natural drivers of wildfires. However, the reconstruction of wildfires is limited by the nature of the proxies available, chiefly charcoal, which only represents a portion of the carbon combustion continuum. In here we evaluate the application molecular combustion biomarkers. For this purpose we have compiled an extensive collection of soils and lacustrine sediments representative of the humid to arid environments, which encompass the wide range of climates and ecosystems within the Iberian peninsula. We have measured the abundance of a monosaccharide anhydride (MA) biomarker called levoglucosan (1,6-anhydro-β-D-glucopyranose) and polyaromatic hydrocarbons (PAHs), as well as general plant biomarkers such as n-alkanes. To discern between biogenic and/or anthropogenic combustion sources and the nature of fires we have investigated the use of levoglucosan, retene (PAH generated during combustion of conifer trees) and PAHs ratios such as phenantrane/anthracene and fluoranthene/pyrene. Charcoal (>150 microns) has also been measured in the lake samples to contribute in the assessment of local vs. regions fire signals. The final objective is to constrain the use of the molecular proxies as quantitative biomass combustion paleoproxies. The data obtained has been mapped and compared to the documented occurrence of wildfires in Spain over the last two decades, and mesoescale patterns of atmospheric circulation and particle transport. Results show that the occurrence of levoglucosan and PAHs is widespread in modern soils and sediments in Iberia. Chemical markers are indicative of regional patterns of biomass burning rather than just local fires. Moreover, the interpretation of the molecular data requires careful consideration of the preservation processes of biomarkers as well as their input fluxes to sediments and soils.

  2. Spatial-Temporal Dynamics of Urban Fire Incidents: a Case Study of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Yao, J.; Zhang, X.

    2016-06-01

    Fire and rescue service is one of the fundamental public services provided by government in order to protect people, properties and environment from fires and other disasters, and thus promote a safer living environment. Well understanding spatial-temporal dynamics of fire incidents can offer insights for potential determinants of various fire events and enable better fire risk estimation, assisting future allocation of prevention resources and strategic planning of mitigation programs. Using a 12-year (2002-2013) dataset containing the urban fire events in Nanjing, China, this research explores the spatial-temporal dynamics of urban fire incidents. A range of exploratory spatial data analysis (ESDA) approaches and tools, such as spatial kernel density and co-maps, are employed to examine the spatial, temporal and spatial-temporal variations of the fire events. Particular attention has been paid to two types of fire incidents: residential properties and local facilities, due to their relatively higher occurrence frequencies. The results demonstrated that the amount of urban fire has greatly increased in the last decade and spatial-temporal distribution of fire events vary among different incident types, which implies varying impact of potential influencing factors for further investigation.

  3. Logging slash and forest protection.

    Treesearch

    Raphael Zon; Russell N. Cunningham

    1931-01-01

    What to do with the brush after logging? This question has been debated in Wisconsin throughout the entire history of lumbering. In the popular mind, the occurrence of severe forest conflagrations has invariably been associated with the presence of logging slash on the ground. The occurrence of vast forest fires was noted by explorers and fur traders long before...

  4. Birth wind and fire: raising awareness to operating room fires during delivery.

    PubMed

    Wolf, Omer; Weissman, Oren; Harats, Moti; Farber, Nimrod; Stavrou, Demetris; Tessone, Ariel; Zilinsky, Isaac; Winkler, Eyal; Haik, Josef

    2013-09-01

    We researched whether the obstetric operating room (OR) qualified as a fire-risk environment so as to take preventive measures accordingly. We analyzed a series of iatrogenic burns inflicted during birth by collecting clinical data and comparing it with known OR fire risk factors and with other factors that repeated in all cases in search of unique characteristics of the obstetric OR. All three cases shared in common the same type of oxygen-rich open ventilation system, alcohol-based prepping solution, and the hastiness of cesarean delivery while spontaneous vaginal delivery was already in progress. The obstetric OR is, as suspected, a fire-prone zone in more ways than the regular OR. Therefore, preventive measures should be undertaken and awareness for the possibility for such occurrences should be raised.

  5. Using Unplanned Fires to Help Suppressing Future Large Fires in Mediterranean Forests

    PubMed Central

    Regos, Adrián; Aquilué, Núria; Retana, Javier; De Cáceres, Miquel; Brotons, Lluís

    2014-01-01

    Despite the huge resources invested in fire suppression, the impact of wildfires has considerably increased across the Mediterranean region since the second half of the 20th century. Modulating fire suppression efforts in mild weather conditions is an appealing but hotly-debated strategy to use unplanned fires and associated fuel reduction to create opportunities for suppression of large fires in future adverse weather conditions. Using a spatially-explicit fire–succession model developed for Catalonia (Spain), we assessed this opportunistic policy by using two fire suppression strategies that reproduce how firefighters in extreme weather conditions exploit previous fire scars as firefighting opportunities. We designed scenarios by combining different levels of fire suppression efficiency and climatic severity for a 50-year period (2000–2050). An opportunistic fire suppression policy induced large-scale changes in fire regimes and decreased the area burnt under extreme climate conditions, but only accounted for up to 18–22% of the area to be burnt in reference scenarios. The area suppressed in adverse years tended to increase in scenarios with increasing amounts of area burnt during years dominated by mild weather. Climate change had counterintuitive effects on opportunistic fire suppression strategies. Climate warming increased the incidence of large fires under uncontrolled conditions but also indirectly increased opportunities for enhanced fire suppression. Therefore, to shift fire suppression opportunities from adverse to mild years, we would require a disproportionately large amount of area burnt in mild years. We conclude that the strategic planning of fire suppression resources has the potential to become an important cost-effective fuel-reduction strategy at large spatial scale. We do however suggest that this strategy should probably be accompanied by other fuel-reduction treatments applied at broad scales if large-scale changes in fire regimes are to be achieved, especially in the wider context of climate change. PMID:24727853

  6. Evaluating fire danger in Brazilian biomes: present and future patterns

    NASA Astrophysics Data System (ADS)

    Silva, Patrícia; Bastos, Ana; DaCamara, Carlos; Libonati, Renata

    2017-04-01

    Climate change is expected to have a significant impact on fire occurrence and activity, particularly in Brazil, a region known to be fire-prone [1]. The Brazilian savanna, commonly referred to as cerrado, is a fire-adapted biome covering more than 20% of the country's total area. It presents the highest numbers of fire events, making it particularly susceptible to changes in climate. It is thus essential to understand the present fire regimes in Brazilian biomes, in order to better evaluate future patterns. The CPTEC/INPE, the Brazilian Center for Weather Forecasting and Climate Research at the Brazilian National Institute of Space Research developed a fire danger index based on the occurrence of hundreds of thousands of fire events in the main Brazilian biomes [2]: the Meteorological Fire Danger Index (MFDI). This index indicates the predisposition of vegetation to be burned on a given day, for given climate conditions preceding that day. It relies on daily values of air temperature, relative humidity, accumulated precipitation and vegetation cover. In this study we aim to access the capability of the MFDI to accurately replicate present fire conditions for different biomes, with a special focus on cerrado. To this end, we assess the link between the MFDI as calculated by three different reanalysis (ERA-Interim, NCEP/DOE Reanalysis 2 and MERRA-2) and the observed burned area. We further calculate the validated MFDI using a regional climate model, the RCA4 as forced by EC-Earth from CORDEX, to understand the ability of the model to characterize present fire danger. Finally, the need to calibrate the model to better characterize future fire danger was also evaluated. This work was developed within the framework of the Brazilian Fire-Land-Atmosphere System (BrFLAS) Project financed by the Portuguese and Brazilian science foundations, FCT and FAPESP (project references FAPESP/1389/2014 and 2014/20042-2). [1] KRAWCHUK, M.A.; MORITZ, M.A.; PARISIEN, M.A.; VAN DORN, J.; HAYHOE, K. Global Pyrogeography: the Current and Future Distribution of Wildfire. PLOS ONE, v. 4, n. 4, e5102, 2009. [2] SETZER, A.W.; SISMANOGLU, R.A. Risco de Fogo: Metodologia do Cálculo - Descrição sucinta da Versão 9. Instituto Nacional de Pesquisas Espaciais (INPE), 2012. Available at: . Accessed on: 10 jan. 2017.

  7. Catastrophic Fires in Russian Forests

    NASA Astrophysics Data System (ADS)

    Sukhinin, A. I.; McRae, D. J.; Stocks, B. J.; Conard, S. G.; Hao, W.; Soja, A. J.; Cahoon, D.

    2010-12-01

    We evaluated the contribution of catastrophic fires to the total burned area and the amount of tree mortality in Russia since the 1970’s. Such fires occurred in the central regions of European Russia (1972, 1976, 1989, 2002, 2010), Khabarovsk krai (1976, 1988, 1998), Amur region (1997-2002), Republics of Yakutia and Tuva (2002), Magadan and Kamchatka oblast (1984, 2001, 2010), and Irkutsk, Chita, Amur regions, Buryat, Agin national districts (2003, 2007-08). We define a catastrophic fire as a single high-severity fire that covers more than 10,000 ha and results in total consumption of the litter and humus layers and in high tree mortality, or the simultaneous occurrence of several high-severity fires in a given region with a total area exceeding 10,000 km2. Fires on this scale can cause substantial economic, social and environmental effects, with regional to global impacts. We hypothesize that there is a positive feedback between anticyclone growth and energy release from wildfires burning over large areas. Usually the first blocking anticyclone appears in June in Russia, bringing with it dry weather that increases fire hazard. The anticyclonic pattern has maximum activity in the end of July and disappears around the middle of August. When high fire activity occurs, the anticyclone may strengthen and develop a blocking character that prevents cyclonic patterns from moving into anticyclone-dominated areas, where the fire danger index may be more than six times the average maximum. The likelihood of uncontrolled fire situations developing increases greatly when the fire number and burned area exceed critical values as a function of conditions that favor high intensity fires. In such situations fire suppression by regional forest protection services becomes impossible and federal resources are required. If the appearance of a blocking anticyclone is forecast, active fire prevention and suppression of small fires (most of which appear to be human caused) is critical. Based on NOAA and TOMS daily data, we estimated fire emissions (including CO2, CO, CH4 and other smoke aerosols) of over 70 Tg Carbon for Yakutian fires in 2002 and more than 120 Tg C for all Russian fires in 2010. We note the potential for increasing amounts of methane emissions when fires occur in permafrost zones and peat bogs. Post-fire changes in permafrost and vegetation cover are discussed in the connection changes in solar radiance balance. During the fire season of 2006 in the Eastern-Siberian, Transbaikal, and Far East regions we identified more than 15,000 fires with a total area of 120,000 km2. From 2002-2010 the annual number of fires in this area ranged from 10,000 to 16,500, and annual burned areas ranged from a low of 30 000 km2 in 2004 to a high of 145,000 km2 in 2003.

  8. A stand-replacing fire history in upper montane forests of the southern Rocky Mountains

    USGS Publications Warehouse

    Margolis, E.Q.; Swetnam, T.W.; Allen, Craig D.

    2007-01-01

    Dendroecological techniques were applied to reconstruct stand-replacing fire history in upper montane forests in northern New Mexico and southern Colorado. Fourteen stand-replacing fires were dated to 8 unique fire years (1842–1901) using four lines of evidence at each of 12 sites within the upper Rio Grande Basin. The four lines of evidence were (i) quaking aspen (Populus tremuloides Michx.) inner-ring dates, (ii) fire-killed conifer bark-ring dates, (iii) tree-ring width changes or other morphological indicators of injury, and (iv) fire scars. The annual precision of dating allowed the identification of synchronous stand-replacing fire years among the sites, and co-occurrence with regional surface fire events previously reconstructed from a network of fire scar collections in lower elevation pine forests across the southwestern United States. Nearly all of the synchronous stand-replacing and surface fire years coincided with severe droughts, because climate variability created regional conditions where stand-replacing fires and surface fires burned across ecosystems. Reconstructed stand-replacing fires that predate substantial Anglo-American settlement in this region provide direct evidence that stand-replacing fires were a feature of high-elevation forests before extensive and intensive land-use practices (e.g., logging, railroad, and mining) began in the late 19th century.

  9. Enhancing fire science exchange: The Joint Fire Science Program's National Network of Knowledge Exchange Consortia

    Treesearch

    Vita Wright; Crystal Kolden; Todd Kipfer; Kristine Lee; Adrian Leighton; Jim Riddering; Leana Schelvan

    2011-01-01

    The Northern Rocky Mountain region is one of the most fire-prone regions in the United States. With a history of large fires that have shaped national policy, including the fires of 1910 and 2000 in Idaho and Montana and the Yellowstone fires of 1988, this region is projected to have many large severe fires in the future. Communication about fire science needs and...

  10. Socio-ecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, CA, 1600-2015 CE

    NASA Astrophysics Data System (ADS)

    Trouet, V.; Taylor, A. H.; Skinner, C. N.; Stephens, S.

    2016-12-01

    In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections. In California, large wildfires cause significant socio-ecological impacts and they incur high federal funding costs for fire suppression. Future fire activity is projected to increase with climate change, but anthropogenic effects can modulate or even override climatic effects causing large uncertainty in fire projections. We developed a 415-year fire history record (1600-2015 CE) based on tree-ring fire-scar data from 29 sites throughout the Sierra Nevada, California. Changes in socio-ecological systems from the Native American to the current period drove large historical fire regime shifts in our record and socio-ecological conditions amplified and buffered fire response to climate. Fire activity was highest and fire-climate relationships were strongest after Native American depopulation - following mission establishment ca. 1775 CE - reduced the self-limiting effect of Native American burns on fire spread. With the Gold Rush and Euro-American immigration (ca. 1865 CE), area burned declined and the strong multidecadal relationship between temperature and fire decayed and then disappeared after implementation of fire suppression (ca. 1900 CE). The past anthropogenic modulation of fire-climate relationships underscores the need for nuanced representations of human-fire interactions to improve the skill of future fire-climate projections.

  11. Proceedings of the large wildland fires conference; May 19-23, 2014; Missoula, MT

    Treesearch

    Robert E. Keane; Matt Jolly; Russell Parsons; Karin Riley

    2015-01-01

    Large fires or "megafires" have been a major topic in wildland fire research and management for over a decade. There is great debate regarding the impacts of large fires. Many believe that they (1) are occurring too frequently, (2) are burning abnormally large areas, (3) cause uncharacteristically adverse ecological harm, and (4) must be suppressed at all...

  12. Ecological effects of large fires on US landscapes: benefit or catastrophe?

    Treesearch

    Robert E. Keane; James K. Agee; Peter Fule; Jon E. Keeley; Carl Key; Stanley G. Kitchen; Richard Miller; Lisa A. Schulte

    2008-01-01

    The perception is that today's large fires are an ecological catastrophe because they burn vast areas with high intensities and severities. However, little is known of the ecological impacts of large fires on both historical and contemporary landscapes. The present paper presents a review of the current knowledge of the effects of large fires in the United States...

  13. The Evolution of Wildland Fire Management Policy in the USA: Successes and Failures

    NASA Astrophysics Data System (ADS)

    Gonzalez-Caban, A.

    2015-12-01

    Wildfires have been suppressed over the last 100 years in forest and brush landscapes. For the last three decades, fires occurrence and severity have significantly increased when compared to historical levels causing economic damage and suppression costs never experienced before in the US or globally. As the wildland fire problem evolved so did the public response through a wildland fire management policy guided by the Forest Service and Bureau of Land Management understanding of the problem. Globally it is estimated that more 350 million hectares of wildland burn annually. They oxidize approximately 3-8% of the total terrestrial net primary productivity. The economic and physical relevance of wildland fire management and protection programs is ever growing, particularly considering mounting wildfire costs and losses globally. In the US alone, from 2000 to 2013 more than 37 million hectares of wildland has been affected at a cost of over $21 billion. The increase in siege-like fires can be explained in part by increasing population, particularly in the wildland-urban interface and the accumulation of biomass fuel due to over a century of fire exclusion. Recent developments demonstrate a strong relationship between fire and weather and climate variations. How the wildland fire management policy has evolved through time? The development can be divided in three stages: the formative years between 1905 and 1911; the consolidation years from 1911 through 1968; and the modern era from 1995 to present. Each stage is characterized by a series of significant events that caused changes on how the problem was approached. For example, the establishment of the Forest Service in 1905 and the rash of large wildfires in the western USA set the base for the wildfire suppression of all wildfires in 1911. During the second stage we see the 1935 policy of suppressing all wildfires by 10-am next-day. By 1968 the policy has evolved to include the use of prescribed burning and the elimination of the 10-am next-day policy. In the modern era, by 1995 the wildland fire management policy changed to require the use of economic efficiency analysis in fire suppression actions. The recently passed FLAME Act and establishment of the FS Cohesive Strategy have been in response to increases in the wildland-urban interface problem and climate change challenges.

  14. A NASA-NOAA Update on Global Fire Monitoring Capabilities for Studying Fire-Climate Interactions: Focus on Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Gutman, G.; Csiszar, I.

    2012-04-01

    The global, long-term effects of fires are not well understood and we are learning more every year about its global impacts and potential feedbacks to climate change. The frequency, intensity, severity, and emissions of fires may be changing as a result of climate warming as has been manifested by the observations in northern Eurasia. The climate-fire interaction may produce important societal and environmental impacts in the long run. NASA and NOAA have been developing long-term fire datasets and improving systems to monitor active fires, study fire severity, fire growth, emissions into the atmosphere, and fire effects on carbon stocks. Almost every year there are regions in the world that experience particularly severe fires. For example, less than two years ago the European part of Russia was the focus of attention due to the anomalous heat and dry wave with record high temperatures that caused wildfires rage for weeks and that led to thousands of deaths. The fires also have spread to agricultural land and damaged crops, causing sharp increases of global wheat commodity prices. Remote sensing observations are widely used to monitor fire occurrence, fire spread; smoke dispersion, and atmospheric pollutant levels. In the context of climate warming and acute interest to large-scale emissions from various land-cover disturbances studying spatial-temporal dynamics of forest fire activity is critical. NASA supports several activities related to fires and the Earth system. These include GOFC-GOLD Fire Project Office at University of Maryland and the Rapid Response System for global fire monitoring. NASA has funded many research projects on biomass burning, which cover various geographic regions of the world and analyze impacts of fires on atmospheric carbon in support of REDD initiative, as well as on atmospheric pollution with smoke. Monitoring active fires, studying their severity and burned areas, and estimating fire-induced atmospheric emissions has been the subject of several research projects in the NASA LCLUC program over the globe, and, in particular, in Northern Eurasia. As an operational agency, NOAA puts global fire monitoring as a priority and supports related GCOS, CEOS and GOFC-GOLD objectives. NOAA developed an operational quasi-global fire monitoring system using geostationary satellites that provides coverage over parts of Northern Eurasia. Fire products from the VIIRS (Visible Infrared Imager Radiometer Suite) sensor on the NPP (NPOESS Preparatory Project) satellite, launched in October 2011, and on subsequent JPSS satellites will ensure high quality global fire monitoring and will extent the AVHRR- and MODIS-based fire data record over Northern Eurasia. This overview presents an update of NASA's and NOAA's fire monitoring capability and scientific achievements on fire-climate interactions. We will illustrate how combination of coarse spatial resolution polar orbiting satellite observations are combined with moderate spatial resolution observations to better monitor the location of fires and burned areas. While coarse resolution data have been more or less easily available, the utility of moderate resolution Landsat data has increased tremendously during the past couple of years once the data became freely available. Data fusion from polar orbiting and geostationary satellites will be discussed.

  15. Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo

    NASA Astrophysics Data System (ADS)

    Hubau, Wannes; Van den Bulcke, Jan; Kitin, Peter; Mees, Florias; Baert, Geert; Verschuren, Dirk; Nsenga, Laurent; Van Acker, Joris; Beeckman, Hans

    2013-09-01

    Charcoal was sampled in four soil profiles at the Mayumbe forest boundary (DRC). Five fire events were recorded and 44 charcoal types were identified. One stratified profile yielded charcoal assemblages around 530 cal yr BP and > 43.5 cal ka BP in age. The oldest assemblage precedes the period of recorded anthropogenic burning, illustrating occasional long-term absence of fire but also natural wildfire occurrences within tropical rainforest. No other charcoal assemblages older than 2500 cal yr BP were recorded, perhaps due to bioturbation and colluvial reworking. The recorded paleofires were possibly associated with short-lived climate anomalies. Progressively dry climatic conditions since ca. 4000 cal yr BP onward did not promote paleofire occurrence until increasing seasonality affected vegetation at the end of the third millennium BP, as illustrated by a fire occurring in mature rainforest that persisted until around 2050 cal yr BP. During a drought episode coinciding with the 'Medieval Climate Anomaly', mature rainforest was locally replaced by woodland savanna. Charcoal remains from pioneer forest indicate that fire hampered forest regeneration after climatic drought episodes. The presence of pottery shards and oil-palm endocarps associated with two relatively recent paleofires suggests that the effects of climate variability were amplified by human activities.

  16. Fire modifies the phylogenetic structure of soil bacterial co-occurrence networks.

    PubMed

    Pérez-Valera, Eduardo; Goberna, Marta; Faust, Karoline; Raes, Jeroen; García, Carlos; Verdú, Miguel

    2017-01-01

    Fire alters ecosystems by changing the composition and community structure of soil microbes. The phylogenetic structure of a community provides clues about its main assembling mechanisms. While environmental filtering tends to reduce the community phylogenetic diversity by selecting for functionally (and hence phylogenetically) similar species, processes like competitive exclusion by limiting similarity tend to increase it by preventing the coexistence of functionally (and phylogenetically) similar species. We used co-occurrence networks to detect co-presence (bacteria that co-occur) or exclusion (bacteria that do not co-occur) links indicative of the ecological interactions structuring the community. We propose that inspecting the phylogenetic structure of co-presence or exclusion links allows to detect the main processes simultaneously assembling the community. We monitored a soil bacterial community after an experimental fire and found that fire altered its composition, richness and phylogenetic diversity. Both co-presence and exclusion links were more phylogenetically related than expected by chance. We interpret such a phylogenetic clustering in co-presence links as a result of environmental filtering, while that in exclusion links reflects competitive exclusion by limiting similarity. This suggests that environmental filtering and limiting similarity operate simultaneously to assemble soil bacterial communities, widening the traditional view that only environmental filtering structures bacterial communities. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Emissions of nitrous oxide from biomass burning

    NASA Technical Reports Server (NTRS)

    Winstead, Edward L.; Cofer, Wesley R., III; Levine, Joel S.

    1991-01-01

    A study has been conducted which compared N2O results obtained over large prescribed fires or wildfires, in which 'grab-sampling' with storage had been used with N2O measurements made in near-real time. CO2-normalized emission ratios obtained initially from the laboratory fires are substantially lower than those obtained over large-scale biomass fires. Combustion may not be the only source of N2O in large fire smoke plumes; physical, chemical, and biochemical processes in the soil may be altered by large biomass fires, leading to large N2O releases.

  18. Contribution of Earth Observation and meteorological datasets for the design and development of a national fire risk assessment system (NFOFRAS)

    NASA Astrophysics Data System (ADS)

    Katagis, Thomas; Bliziotis, Dimitris; Liantinioti, Chrysa; Gitas, Ioannis Z.; Charalampopoulou, Betty

    2016-08-01

    During the past decades, forest fires have increased both in frequency and severity thus, increasing the life threats for people and environment and leading countries to spend vast amounts of resources in fighting forest fires. Besides anthropogenic activities, climatic and environmental changes are considered as driving factors affecting fire occurrence and vegetation succession. Especially in the Mediterranean region, the development and existence of effective tools and services is crucial for assisting pre-fire planning and preparedness. The collaborative project NFOFRAS aims at introducing an innovative and effective system for rating forest fire risk, and is based on existing technology and standards that have been developed by countries with a long and a very successful involvement in this field. During the first phase of the project a detailed documentation of the proposed methodology was composed. In addition, Earth Observation (EO) and meteorological datasets were utilized for producing accurate pre-fire measurements over a selected study area in Greece.

  19. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    NASA Astrophysics Data System (ADS)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  20. Controls on carbon consumption during Alaskan wildland fires

    Treesearch

    Eric S. Kasischke; Elizabeth E. Hoy

    2012-01-01

    A method was developed to estimate carbon consumed during wildland fires in interior Alaska based on medium-spatial scale data (60 m cell size) generated on a daily basis. Carbon consumption estimates were developed for 41 fire events in the large fire year of 2004 and 34 fire events from the small fire years of 2006-2008. Total carbon consumed during the large fire...

  1. United States Geological Survey fire science: fire danger monitoring and forecasting

    USGS Publications Warehouse

    Eidenshink, Jeff C.; Howard, Stephen M.

    2012-01-01

    Each day, the U.S. Geological Survey produces 7-day forecasts for all Federal lands of the distributions of number of ignitions, number of fires above a given size, and conditional probabilities of fires growing larger than a specified size. The large fire probability map is an estimate of the likelihood that ignitions will become large fires. The large fire forecast map is a probability estimate of the number of fires on federal lands exceeding 100 acres in the forthcoming week. The ignition forecast map is a probability estimate of the number of fires on Federal land greater than 1 acre in the forthcoming week. The extreme event forecast is the probability estimate of the number of fires on Federal land that may exceed 5,000 acres in the forthcoming week.

  2. Are prescribed fire and thinning dominant processes affecting snag occurrence at a landscape scale?

    Treesearch

    Stanley J. Zarnoch; John I. Blake; Bernard R. Parresol

    2014-01-01

    Snags are standing dead trees that are an important component in the nesting habitat of birds and other species. Although snag availability is believed to limit populations in managed and non-managed forests, little data are available to evaluate the relative effect of stand conditions and management on snag occurrence. We analyzed point sample data from an intensive...

  3. Risk of large-scale fires in boreal forests of Finland under changing climate

    NASA Astrophysics Data System (ADS)

    Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Peltola, H.; Gregow, H.

    2016-01-01

    The target of this work was to assess the impact of projected climate change on forest-fire activity in Finland with special emphasis on large-scale fires. In addition, we were particularly interested to examine the inter-model variability of the projected change of fire danger. For this purpose, we utilized fire statistics covering the period 1996-2014 and consisting of almost 20 000 forest fires, as well as daily meteorological data from five global climate models under representative concentration pathway RCP4.5 and RCP8.5 scenarios. The model data were statistically downscaled onto a high-resolution grid using the quantile-mapping method before performing the analysis. In examining the relationship between weather and fire danger, we applied the Canadian fire weather index (FWI) system. Our results suggest that the number of large forest fires may double or even triple during the present century. This would increase the risk that some of the fires could develop into real conflagrations which have become almost extinct in Finland due to active and efficient fire suppression. However, the results reveal substantial inter-model variability in the rate of the projected increase of forest-fire danger, emphasizing the large uncertainty related to the climate change signal in fire activity. We moreover showed that the majority of large fires in Finland occur within a relatively short period in May and June due to human activities and that FWI correlates poorer with the fire activity during this time of year than later in summer when lightning is a more important cause of fires.

  4. Informing the network: Improving communication with interface communities during wildland fire

    USGS Publications Warehouse

    Taylor, J.G.; Gillette, S.C.; Hodgson, R.W.; Downing, J.L.; Burns, M.R.; Chavez, D.J.; Hogan, J.T.

    2007-01-01

    An interagency research team studied fire communications that took place during different stages of two wildfires in southern California: one small fire of short duration and one large fire of long duration. This "quick- response" research showed that pre-fire communication planning was particularly effective for smaller fire events and parts of that planning proved invaluable for the large fire event as well. Information seeking by the affected public relied on locally convenient sources during the small fire. During the large fire, widespread evacuations disrupted many of the local informal communication networks. Residents' needs were for "real-time, " place-specific information: precise location, severity, size, and direction of spread of the fires. Fire management agencies must contribute real-time, place-specific fire information when it is most needed by the affected public, as they try to make sense out of the chaos of a wildland fire. Disseminating fire information as broadly as possible through multiple pathways will maximize the probability of the public finding the information they need. ?? Society for Human Ecology.

  5. Serosal Laceration During Firing of Powered Linear Stapler Is a Predictor of Staple Malformation.

    PubMed

    Matsuzawa, Fumihiko; Homma, Shigenori; Yoshida, Tadashi; Konishi, Yuji; Shibasaki, Susumu; Ishikawa, Takahisa; Kawamura, Hideki; Takahashi, Norihiko; Iijima, Hiroaki; Taketomi, Akinobu

    2017-12-01

    Although several types of staplers have been developed, staple-line leaks have been a great problem in gastrointestinal surgery. Powered linear staplers were recently developed to further reduce the risk of tissue trauma during laparoscopic surgery. The aim of this study was to identify the factors that predict staple malformation and determine the effect of precompression and slow firing on the staple formation of this novel powered stapling method. Porcine stomachs were divided using an endoscopic powered linear stapler with gold reloads. We divided the specimens into 9 groups according to the precompression time (0/60/180 seconds) and firing time (0/60/180 seconds). The occurrence and length of laceration and the shape of the staples were evaluated. We examined the factors influencing successful stapling and investigated the key factors for staple malformation. Precompression significantly decreased the occurrence and length of serosal laceration. Precompression and slow firing significantly improved the optimal stapling formation rate. Univariate analysis showed that the precompression time (0 seconds), firing time (0 seconds), and presence of serosal laceration were significantly associated with a low optimal formation rate. Multivariate analysis showed that these three factors were associated independently with low optimal formation rate and that the presence of serosal laceration was the only factor that could be detected during the stapling procedure. We have shown that serosal laceration is a predictor of staple malformation and demonstrated the importance of precompression and slow stapling when using the powered stapling method.

  6. Landscape Scale Influences of Forest Area and Housing Density on House Loss in the 2009 Victorian Bushfires

    PubMed Central

    Price, Owen; Bradstock, Ross

    2013-01-01

    Previous investigations into the factors associated with house loss in wildfires have focused on the house construction and its immediate environment (e.g. gardens). Here, we examine how nearby native forest and other houses can influence house loss. Specifically, we used a sample of 3500 houses affected by the Victorian bushfires of February 7th 2009 to explore how the amount of forest, proportion of forest burned by crown fire and the number of nearby houses affected house loss and how far from the house this influence was exerted. These fires were the most destructive in Australian history and so represent the extreme of fire risk. Using generalized linear modeling we found that the probability of house loss increased with forest extent and the proportion burnt by crown fire and this relationship was strongest for forest measured 1 km from the houses. Houses were more likely to be destroyed if there were other houses within 50 m and if they were on a slope. A model containing these variables predicted house loss with 72% accuracy. Our findings have three important implications: i) management to change the occurrence of crown fire will be effective in reducing house loss; ii) this management may be required up to 1 km away from houses in some situations (a much larger zone than is currently used); iii) high density of houses may increase risk of loss. Given the potentially large width of this management zone and the hazard from nearby houses, it may be more sensible to concentrate on modification of buildings to reduce their vulnerability. PMID:24009753

  7. Mapping wildfire danger at regional scale with an index model integrating coarse spatial resolution remote sensing data

    NASA Astrophysics Data System (ADS)

    ChéRet, VéRonique; Denux, Jean Philippe

    2007-06-01

    Wildfires are a prevalent natural hazard in the south of France. Planners need a permanent fire danger assessment valid for several years over a territory as large and heterogeneous as Midi-Pyrénées region. To this end, we developed an expert knowledge-based index model adapted to the specific features of the study area. The fire danger depends on two complementary elements: spatial occurrence and fire intensity. Among the GIS layers identified as input variables for modeling, vegetation fire susceptibility is one of the most influent. However, the main difficulty at this scale is the scarcity or the lack of exhaustiveness of the data. In this respect, remote sensing imagery is capable of providing relevant information. We proposed to calculate an annual relative greenness index (annual RGRE) that reflects vegetation dryness in summer. We processed times series of Normalized Difference Vegetation Index (NDVI) from SPOT-VEGETATION images over the last six available years (1998 to 2003). The first step was to verify that these images characterize vegetation types and highlight intraannual and interannual response variability. It is then possible to identify phenological stages corresponding to the maximum NDVI (and therefore to maximum photosynthetic activity) during the growing season, the minimum NDVI at the end of the growing season and the minimum NDVI during winter period. These phenology metrics ground the annual RGRE calculation. Values obtained for each observation year show significant correlation (r2 = 0.70) with the De Martonne aridity index calculated for the same period. A synthesis of yearly index was integrated in the model as a variable that expresses fire susceptibility.

  8. Factors influencing large wildland fire suppression expenditures

    Treesearch

    Jingjing Liang; Dave E. Calkin; Krista M. Gebert; Tyron J. Venn; Robin P. Silverstein

    2008-01-01

    There is an urgent and immediate need to address the excessive cost of large fires. Here, we studied large wildland fire suppression expenditures by the US Department of Agriculture Forest Service. Among 16 potential nonmanagerial factors, which represented fire size and shape, private properties, public land attributes, forest and fuel conditions, and geographic...

  9. Exploring links between biomass burning smoke and tornado likelihood: From regional to large-eddy scale simulations

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Thompson, G.; Eidhammer, T.; da Silva, A. M., Jr.; Pierce, R. B.; Carmichael, G. R.

    2015-12-01

    Biomass burning smoke from Central America can have the potential to enhance the likelihood of tornado occurrence and intensity in the SE US by changing the environment where tornadic storms form (Saide et al., GRL 2015). In this presentation we build over this study to further our understanding of these interactions on multiple dimensions: 1) Biomass burning smoke emissions are constrained using an inverse modeling technique to improve the representation of smoke loads and its impacts, 2) The representation of these smoke-tornado interactions are assessed when using a simplified aerosol scheme with the intent of introducing these feedbacks into numerical weather prediction in the future, 3) The occurrence of these interactions is investigated for other tornado outbreaks on the record to learn about their frequency and under what conditions they occur, and 4) Multi-scale simulations are performed from regional to tornado-resolving scales to assess the impact of smoke on the number of tornadoes formed and their EF intensity. Future steps will also be discussed. The image below shows MODIS-Aqua satellite products for 27 April 2011 over the southeast US, Central America and the Gulf of Mexico (GoM), along with tornado tracks (red solid lines, thickness indicates the magnitude of the tornado reports , thickest=5, thinnest=1) for the period from April 26-28. The background is a true color image of the surface, clouds, and smoke, with yellow markers indicating fire detections and an iridescent overlay showing aerosol optical depth (AOD). Red, green and purple colors show high (1.0), medium (0.6) and low (0.1) AOD values. The article by Saide et al. (2015) shows that the increase in aerosol loads in the GoM is produced by fires in Central America, and this smoke is further transported to the southeast US where it can interact with clouds and radiation producing environmental conditions more favorable to significant tornado occurrence for the historical outbreak on 27 April 2011. Satellite true color image, AOD, and fire detection retrievals obtained from the NASA Level 1 and Atmosphere Archive and Distribution System (LAADS); Tornado reports obtained from the NOAA Storm Prediction Center; imagery courtesy of Brad Pierce NOAA Satellite and Information Service (NESDIS) Center for Satellite Applications and Research (STAR).

  10. Erosion in Mediterranean landscapes: Changes and future challenges

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; Nadal-Romero, Estela; Lana-Renault, Noemí; Beguería, Santiago

    2013-09-01

    Intense erosion processes are widespread in the Mediterranean region, and include sheet wash erosion, rilling, gullying, shallow landsliding, and the development of large and active badlands in both subhumid and semi-arid areas. This review analyses the main environmental and human features related to soil erosion processes, and the main factors that explain the extreme variability of factors influencing soil erosion, particularly recent land use changes. The importance of erosion in the Mediterranean is related to the long history of human activity in a region characterized by low levels of annual precipitation, the occurrence of intense rainstorms and long-lasting droughts, high evapotranspiration, the presence of steep slopes and the occurrence of recent tectonic activity, together with the recurrent use of fire, overgrazing and farming. These factors have resulted in a complex landscape in which intensification and abandonment, wealth and poverty can co-exist. The changing conditions of national and international markets and the evolution of population pressure are now the main drivers explaining land use changes, including farmland abandonment in mountain areas, the expansion of some subsidized crops to marginal lands, and the development of new terraces affected by landslides and intense soil erosion during extreme rainstorm events. The occurrence of human-related forest fires affecting thousands of hectares each year is a significant problem in both the northern and southern areas of the Mediterranean basin. Here, we highlight the rise of new scientific challenges in controlling the negative consequences of soil erosion in the Mediterranean region: 1) to reduce the effects and extent of forest fires, and restructure the spatial organization of abandoned landscapes; 2) to provide guidance for making the EU agricultural policy more adapted to the complexity and fragility of Mediterranean environments; 3) to develop field methods and models to improve the identification of runoff and sediment contributing areas; 4) to contribute to the conservation of landscapes (i.e. bench-terraced fields) having high cultural and productivity values; 5) to improve knowledge of the hydrological and geomorphological functioning of badlands, with the aim of reducing sediment yield and accessibility; 6) to better understand the effect of climate change on soil erosion in the Mediterranean region; and 7) to improve quantitative information on long-term soil erosion.

  11. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    USGS Publications Warehouse

    Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.

  12. The impact of precipitation regimes on forest fires in Yunnan Province, southwest China.

    PubMed

    Chen, Feng; Niu, Shukui; Tong, Xiaojuan; Zhao, Jinlong; Sun, Yu; He, Tengfei

    2014-01-01

    The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982-1988 and 1989-2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I-III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change.

  13. Export of solids and nutrients from burnt areas: effects of fire severity and forest type

    NASA Astrophysics Data System (ADS)

    Abrantes, Nelson; Morais, Inês; Silva, Vera; Malvar, Mauxa C.; Prats, Sérgio; Coelho, Celeste; Keizer, Jan J.

    2015-04-01

    In the last few decades, the number of wildfires has markedly increased in Mediterranean Europe, including Portugal. Besides a range of direct impacts, wildfires can significantly alter the geomorphological and hydrological processes during a period commonly referred to as the "window-of-disturbance". It is now increasingly recognized that these indirect wildfire effects depend strongly on fire severity, i.e. the heating-induced changes in vegetation and litter cover as well as in topsoil properties such as infiltration capacity, aggregate stability and soil water repellency. Nonetheless, the exact role of fire severity in post-fire hydrological and erosion processes is still poorly quantified in many parts of the world, including Portugal. Another important gap in fire-related research stills to be the impacts of wildfire on soil fertility losses, in particular through erosion by runoff. Both research gaps were addressed in this study, following a wildfire that took place in July 2013 in Talhadas (Sever do Vouga, Aveiro) and burnt circa 815 ha. In the burnt area and the surrounding unburnt areas, six study sites were selected and, immediately after the fire, instrumented with slope-scale runoff plots. Two of the sites were long-unburnt, two were burnt at low severity and the other two were burnt at high severity; for all of them one being covered by a Eucalyptus globulus plantation and the other by a Pinus pinaster plantation. Following the instrumentation of the sites, runoff was measured at 1- to 2-weekly intervals and, whenever possible, runoff samples were collected for subsequent analysis in the laboratory with respect to total suspended sediments content and total nitrogen and total phosphorus concentrations. The results obtained in this study showed that the severity of the fire played a more important role in the loss of nutrients and solids than the type of vegetation. While the occurrence of fire markedly increased soil (fertility) losses, this effect was much stronger following a high-severity than low-severity fire. In the case of the pine slope, this effect of fire severity could be attributed to post-fire pine needle cast, with pine needles being scorched by the low-severity fire and being combusted in the high-severity fire. Looking at the temporal evolution, for both pine and eucalyptus slopes, significant exportations of solids as well nutrients were still found 10 months after the fire occurrence (May 2014) . This study highlight the importance of wildfire as a driver for the soil and fertility loss with consequent/potential impacts on surface water quality.

  14. Simulating the impacts of fire: A computer program

    NASA Astrophysics Data System (ADS)

    Ffolliott, Peter F.; Guertin, D. Phillip; Rasmussen, William D.

    1988-11-01

    Recurrent fire has played a dominant role in the ecology of southwestern ponderosa pine forests. To assess the benefits or losses of fire in these forests, a computer simulation model, called BURN, considers vegetation (mortality, regeneration, and production of herbaceous vegetation), wildlife (populations and habitats), and hydrology (streamflow and water quality). In the formulation of the model, graphical representations (time-trend response curves) of increases or losses (compared to an unburned control) after the occurrence of fire are converted to fixedterm annual ratios, and then annuities for the simulation components. Annuity values higher than 1.0 indicate benefits, while annuity values lower than 1.0 indicate losses. Studies in southwestern ponderosa pine forests utilized in the development of BURN are described briefly.

  15. Development of fire test methods for airplane interior materials

    NASA Technical Reports Server (NTRS)

    Tustin, E. A.

    1978-01-01

    Fire tests were conducted in a 737 airplane fuselage at NASA-JSC to characterize jet fuel fires in open steel pans (simulating post-crash fire sources and a ruptured airplane fuselage) and to characterize fires in some common combustibles (simulating in-flight fire sources). Design post-crash and in-flight fire source selections were based on these data. Large panels of airplane interior materials were exposed to closely-controlled large scale heating simulations of the two design fire sources in a Boeing fire test facility utilizing a surplused 707 fuselage section. Small samples of the same airplane materials were tested by several laboratory fire test methods. Large scale and laboratory scale data were examined for correlative factors. Published data for dangerous hazard levels in a fire environment were used as the basis for developing a method to select the most desirable material where trade-offs in heat, smoke and gaseous toxicant evolution must be considered.

  16. Strategy for increasing the participation of masyarakat peduli api in forest fire control

    NASA Astrophysics Data System (ADS)

    Ni’mah, N. L. K.; Herdiansyah, H.; Soesilo, T. E. B.; Mutia, E. F.

    2018-03-01

    Forest fires have negative impact on ecology, health, and damage economic activities. One of conservation areas facing the threat of forest fire is Gunung Ciremai National Park. This research aims to formulate a strategy to increase the participation of Masyarakat Peduli Api in the effort of forest fire control. This research use quantitative method with SWOT analysis. Expert consisting of representatives from the national park, Ministry of Environment and Forestry, and BPBD Kuningan Regency. An alternative strategy based on SWOT analysis is in quadrant 1 with coordinate point (0,39; 1,23). The position shows that sustainability of national park management through forest fire control can be done with an aggressive strategy. That is maximizing the strength that is owned with its potential as an ecotourism area to increase community motivation to engage in forest fire control activities. Provision of tourism management licenses will create employment opportunities and increase income for the community so it is expected to increase community participation to prevent the occurrence of forest fires rather than forest fire prevention.

  17. Mechanised spraying device a novel technology for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.V.K. Singh; V.K. Singh

    2004-10-15

    Spontaneous combustion in coal mines plays a vital role in occurrences of fire. Fire in coal, particularly in opencast mines, not only causes irreparable loss of national wealth but damages the surface structure and pollutes the environment. The problem of spontaneous combustion/fire in opencast coal benches is acute. Presently over 75% of the total production of coal in Indian mines is being carried out by opencast mining. Accordingly a mechanised spraying device has been developed for spraying the fire protective coating material for preventing spontaneous combustion in coal benches of opencast mines jointly by Central Mining Research Institute, Dhanbad andmore » M/s Signum Fire Protection (India) Pvt. Ltd., Nagpur under Science & Technology (S&T) project funded by Ministry of Coal, Govt. of India. The objective of this paper is to describe in detail about the mechanised spraying device and its application for spraying fire protective coating material in the benches of opencast coal mines for preventing spontaneous combustion/fire.« less

  18. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2016-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  19. Forecasting wildland fire behavior using high-resolution large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Munoz-Esparza, D.; Kosovic, B.; Jimenez, P. A.; Anderson, A.; DeCastro, A.; Brown, B.

    2017-12-01

    Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. To this end, the state of Colorado is funding the development of the Colorado Fire Prediction System (CO-FPS). The system is based on the Weather Research and Forecasting (WRF) model enhanced with a fire behavior module (WRF-Fire). Realistic representation of wildland fire behavior requires explicit representation of small scale weather phenomena to properly account for coupled atmosphere-wildfire interactions. Moreover, transport and dispersion of biomass burning emissions from wildfires is controlled by turbulent processes in the atmospheric boundary layer, which are difficult to parameterize and typically lead to large errors when simplified source estimation and injection height methods are used. Therefore, we utilize turbulence-resolving large-eddy simulations at a resolution of 111 m to forecast fire spread and smoke distribution using a coupled atmosphere-wildfire model. This presentation will describe our improvements to the level-set based fire-spread algorithm in WRF-Fire and an evaluation of the operational system using 12 wildfire events that occurred in Colorado in 2016, as well as other historical fires. In addition, the benefits of explicit representation of turbulence for smoke transport and dispersion will be demonstrated.

  20. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    PubMed

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street increases with the rise of the wind velocity at the roof level of the street canyon.

  1. 49 CFR 213.367 - Special inspections.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., DEPARTMENT OF TRANSPORTATION TRACK SAFETY STANDARDS Train Operations at Track Classes 6 and Higher § 213.367 Special inspections. In the event of fire, flood, severe storm, temperature extremes or other occurrence...

  2. Emergency Assessment of Debris-Flow Hazards from Basins Burned by the Piru, Simi, and Verdale Fires of 2003, Southern California

    USGS Publications Warehouse

    Cannon, Susan H.; Gartner, Joseph E.; Rupert, Michael G.; Michael, John A.

    2003-01-01

    These maps present preliminary assessments of the probability of debris-flow activity and estimates of peak discharges that can potentially be generated by debris-flows issuing from basins burned by the Piru, Simi and Verdale Fires of October 2003 in southern California in response to the 25-year, 10-year, and 2-year 1-hour rain storms. The probability maps are based on the application of a logistic multiple regression model that describes the percent chance of debris-flow production from an individual basin as a function of burned extent, soil properties, basin gradients and storm rainfall. The peak discharge maps are based on application of a multiple-regression model that can be used to estimate debris-flow peak discharge at a basin outlet as a function of basin gradient, burn extent, and storm rainfall. Probabilities of debris-flow occurrence for the Piru Fire range between 2 and 94% and estimates of debris flow peak discharges range between 1,200 and 6,640 ft3/s (34 to 188 m3/s). Basins burned by the Simi Fire show probabilities for debris-flow occurrence between 1 and 98%, and peak discharge estimates between 1,130 and 6,180 ft3/s (32 and 175 m3/s). The probabilities for debris-flow activity calculated for the Verdale Fire range from negligible values to 13%. Peak discharges were not estimated for this fire because of these low probabilities. These maps are intended to identify those basins that are most prone to the largest debris-flow events and provide information for the preliminary design of mitigation measures and for the planning of evacuation timing and routes.

  3. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    PubMed Central

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  4. A review of the relationships between drought and forest fire in the United States.

    PubMed

    Littell, Jeremy S; Peterson, David L; Riley, Karin L; Liu, Yongquiang; Luce, Charles H

    2016-07-01

    The historical and presettlement relationships between drought and wildfire are well documented in North America, with forest fire occurrence and area clearly increasing in response to drought. There is also evidence that drought interacts with other controls (forest productivity, topography, fire weather, management activities) to affect fire intensity, severity, extent, and frequency. Fire regime characteristics arise across many individual fires at a variety of spatial and temporal scales, so both weather and climate - including short- and long-term droughts - are important and influence several, but not all, aspects of fire regimes. We review relationships between drought and fire regimes in United States forests, fire-related drought metrics and expected changes in fire risk, and implications for fire management under climate change. Collectively, this points to a conceptual model of fire on real landscapes: fire regimes, and how they change through time, are products of fuels and how other factors affect their availability (abundance, arrangement, continuity) and flammability (moisture, chemical composition). Climate, management, and land use all affect availability, flammability, and probability of ignition differently in different parts of North America. From a fire ecology perspective, the concept of drought varies with scale, application, scientific or management objective, and ecosystem. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  5. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    PubMed

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  6. Photographic handbook for comparing burned and unburned sites within a dry forested and grassland mosiac: a tool for communication, calibration, and monitoring post-fire effects

    Treesearch

    Theresa Jain; Molly Juillerat; Jonathan Sandquist; Mike Ford; Brad Sauer; Robert Mitchell; Scott McAvoy; Justin Hanley; Jon David

    2007-01-01

    This photograph handbook describes characteristics and burn severity of a dry forested and grassland mosaic that burned within the last decade. We show photographs of different burned and unburned sites to help compare fire occurrence in similar stands. The handbook provides local land managers with a quick, inexpensive, and efficient way to evaluate effects of...

  7. Measurement of the spatial dependence of temperature and gas and soot concentrations within large open hydrocarbon fuel fires

    NASA Technical Reports Server (NTRS)

    Johnson, H. T.; Linley, L. J.; Mansfield, J. A.

    1982-01-01

    A series of large-scale JP-4 fuel pool fire tests was conducted to refine existing mathematical models of large fires. Seven tests were conducted to make chemical concentration and temperature measurements in 7.5 and 15 meter-diameter pool fires. Measurements were made at heights of 0.7, 1.4, 2.9, 5.7, 11.4, and 21.3 meters above the fires. Temperatures were measured at up to 50 locations each second during the fires. Chemistry samples were taken at up to 23 locations within the fires and analyzed for combustion chemistry and soot concentration. Temperature and combustion chemistry profiles obtained during two 7.5 meter-diameter and two 15 meter-diameter fires are included.

  8. Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information

    USGS Publications Warehouse

    Preisler, H.K.; Burgan, R.E.; Eidenshink, J.C.; Klaver, Jacqueline M.; Klaver, R.W.

    2009-01-01

    The current study presents a statistical model for assessing the skill of fire danger indices and for forecasting the distribution of the expected numbers of large fires over a given region and for the upcoming week. The procedure permits development of daily maps that forecast, for the forthcoming week and within federal lands, percentiles of the distributions of (i) number of ignitions; (ii) number of fires above a given size; (iii) conditional probabilities of fires greater than a specified size, given ignition. As an illustration, we used the methods to study the skill of the Fire Potential Index an index that incorporates satellite and surface observations to map fire potential at a national scale in forecasting distributions of large fires. ?? 2009 IAWF.

  9. A statistical model to estimate the local vulnerability to severe weather

    NASA Astrophysics Data System (ADS)

    Pardowitz, Tobias

    2018-06-01

    We present a spatial analysis of weather-related fire brigade operations in Berlin. By comparing operation occurrences to insured losses for a set of severe weather events we demonstrate the representativeness and usefulness of such data in the analysis of weather impacts on local scales. We investigate factors influencing the local rate of operation occurrence. While depending on multiple factors - which are often not available - we focus on publicly available quantities. These include topographic features, land use information based on satellite data and information on urban structure based on data from the OpenStreetMap project. After identifying suitable predictors such as housing coverage or local density of the road network we set up a statistical model to be able to predict the average occurrence frequency of local fire brigade operations. Such model can be used to determine potential hotspots for weather impacts even in areas or cities where no systematic records are available and can thus serve as a basis for a broad range of tools or applications in emergency management and planning.

  10. Critical Review of Commercial Secondary Lithium-Ion Battery Safety Standards

    NASA Astrophysics Data System (ADS)

    Jones, Harry P.; Chapin, Thomas, J.; Tabaddor, Mahmod

    2010-09-01

    The development of Li-ion cells with greater energy density has lead to safety concerns that must be carefully assessed as Li-ion cells power a wide range of products from consumer electronics to electric vehicles to space applications. Documented field failures and product recalls for Li-ion cells, mostly for consumer electronic products, highlight the risk of fire, smoke, and even explosion. These failures have been attributed to the occurrence of internal short circuits and the subsequent thermal runaway that can lead to fire and explosion. As packaging for some applications include a large number of cells, the risk of failure is likely to be magnified. To address concerns about the safety of battery powered products, safety standards have been developed. This paper provides a review of various international safety standards specific to lithium-ion cells. This paper shows that though the standards are harmonized on a host of abuse conditions, most lack a test simulating internal short circuits. This paper describes some efforts to introduce internal short circuit tests into safety standards.

  11. Urban fire risk control: House design, upgrading and replanning

    PubMed Central

    Mbuya, Elinorata Celestine

    2018-01-01

    Urbanisation leads to house densification, a phenomenon experienced in both planned and unplanned settlements in cities in developing countries. Such densification limits fire brigade access into settlements, thereby aggravating fire disaster risks. In this article, we assess the fire exposure and risks in residences in informal areas of Mchikichini ward, in Dar es Salaam City, Tanzania. We rely on interviews of residents and government officials to obtain background on the occurrence and causes of fire accidents, policy provisions and regulations, and experiences with fire outbreaks and coping strategies, as well as on observations and measurements of house transformations, spatial quality and indoor real life. Our findings suggest that fire risks arise from both inappropriate structural characteristics and unsound behavioural practices. This includes unsafe electric practices by residents, poor capacity of residents to fight fires once started, limited access to structures by firefighting equipment because of flouting of planning regulations and inadequate awareness of local government leaders of the magnitude of fire risks. Potential changes to reduce fire risks in the settlement include the installation of firefighting systems, restriction of cooking to designated spaces, use of safer cooking energy sources and lighting means, improvements of vehicle access routes to neighbourhoods, capacity building at the grass root level and the establishment of community-based fire risk management.

  12. Assessing the effects of fire disturbances on ecosystems: A scientific agenda for research and management

    USGS Publications Warehouse

    Schmoldt, D.L.; Peterson, D.L.; Keane, R.E.; Lenihan, J.M.; McKenzie, D.; Weise, D.R.; Sandberg, D.V.

    1999-01-01

    A team of fire scientists and resource managers convened 17-19 April 1996 in Seattle, Washington, to assess the effects of fire disturbance on ecosystems. Objectives of this workshop were to develop scientific recommendations for future fire research and management activities. These recommendations included a series of numerically ranked scientific and managerial questions and responses focusing on (1) links among fire effects, fuels, and climate; (2) fire as a large-scale disturbance; (3) fire-effects modeling structures; and (4) managerial concerns, applications, and decision support. At the present time, understanding of fire effects and the ability to extrapolate fire-effects knowledge to large spatial scales are limited, because most data have been collected at small spatial scales for specific applications. Although we clearly need more large-scale fire-effects data, it will be more expedient to concentrate efforts on improving and linking existing models that simulate fire effects in a georeferenced format while integrating empirical data as they become available. A significant component of this effort should be improved communication between modelers and managers to develop modeling tools to use in a planning context. Another component of this modeling effort should improve our ability to predict the interactions of fire and potential climatic change at very large spatial scales. The priority issues and approaches described here provide a template for fire science and fire management programs in the next decade and beyond.

  13. Fire reinforces structure of pondcypress (Taxodium distichum var. imbricarium) domes in a wetland landscape

    USGS Publications Warehouse

    Watts, Adam C.; Kobziar, Leda N.; Snyder, James R.

    2012-01-01

    Fire periodically affects wetland forests, particularly in landscapes with extensive fire-prone uplands. Rare occurrence and difficulty of access have limited efforts to understand impacts of wildfires fires in wetlands. Following a 2009 wildfire, we measured tree mortality and structural changes in wetland forest patches. Centers of these circular landscape features experienced lower fire severity, although no continuous patch-size or edge effect was evident. Initial survival of the dominant tree, pondcypress (Taxodium distichum var. imbricarium), was high (>99%), but within one year of the fire approximately 23% of trees died. Delayed mortality was correlated with fire severity, but unrelated to other hypothesized factors such as patch size or edge distance. Tree diameter and soil elevation were important predictors of mortality, with smaller trees and those in areas with lower elevation more likely to die following severe fire. Depressional cypress forests typically exhibit increasing tree size towards their interiors, and differential mortality patterns were related to edge distance. These patterns result in the exaggeration of a dome-shaped profile. Our observations quantify roles of fire and hydrology in determining cypress mortality in these swamps, and imply the existence of feedbacks that maintain the characteristic shape of cypress domes.

  14. Relationships Between Fire and Land Use Change in the Brazilian Amazon Based on Satellite Data

    NASA Astrophysics Data System (ADS)

    Fanin, T.; van der Werf, G.

    2014-12-01

    Fires are used as a tool in the process of deforestation. The relationship between fire and deforestation varies temporally and spatially according to the type of deforestation and climatic conditions. This study evaluates spatiotemporal variability between fire and deforestation over the 2002-2012 period in the Brazilian Legal Amazon (BLA). We based our study on four datasets: deforestation estimates from PRODES (Amazon Deforestation Monitoring Project) and forest cover loss from the Global Forest Change (GFC) project based on Landsat data, and burned area and land cover based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. While GFC and PRODES supported similar findings on spatial and temporal dynamics, the Landsat-scale comparison also highlighted a number of differences. Both datasets show a decrease after 2004 in forest loss or deforestation extent mainly from decreasing clearing rates in evergreen broadleaf forest, mostly in the states of Mato Grosso and Rondonia. However, the drop is larger and more gradual in PRODES than in GFC, with the former having less than half the forest loss of the latter. GFC indicates anomalous high forest loss in the years 2007 and 2010 not seen in PRODES. Rescaling these forest dynamics datasets to 500-meter resolution, allowed for a comparison against the MODIS datasets. The burned area data indicates that the mismatch between PRODES and GFC is largely related to increased fire occurrence during these dry years, mainly in Para. In addition it indicates that the time interval between deforestation and fire differs according to land cover, which is important when estimating the atmospheric impact of forest loss. We found that evergreen broadleaf forests are burned shortly after deforestation due to slash and burn techniques, while croplands have longer intervals depending on the crop variety. As a final step, we used these insights to better quantify carbon emissions from this region.

  15. Postfire encroachment of Fabiana imbricata is real? Assessing changes of shrubland occupation during 40 years in NW Patagonia steppe

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Oddi, Facundo; Ghermandi, Luciana

    2014-05-01

    Landscapes are dynamic in space and time, being spatio-temporal processes of particular interest for landscape ecology. In particular, grasslands can change their structure through the expansion of shrubs in the landscape matrix. Shrub encroachment affect biodiversity as well as forage availability that is the key component of the productive use of rangelands. However, despite its recognition as a global problem, knowledge on the rates, dynamics and encroachment patterns is even scarce. For example, although it is generally accepted that fire control shrub encroachment, certain shrubby species could be favored by the occurrence of fire. In northwestern Patagonian steppe, Fabiana imbricata form large monospecific shrublands that are part of the landscape mosaic and its dynamics of regeneration is strongly related to fire. This long-lived shrub (≡ 150 years) is a typical seeder that is killed by fire and recruits seedlings almost exclusively in post-fire, establishing even-age patches. Our objective was to determine whether F. imbricata shrublands have expanded during the last 40 years in a landscape fire prone. The study area corresponds to San Ramon ranch (22,000 ha) located in northwestern Patagonia steppe, Argentina (latitude -41° 04'; longitude -70° 51'). Two distribution maps of the species were made that corresponds to the study area in 1968 and 2011. The 1968 map was elaborated from the digitalization of aerial photographs (1:45000) while the 2011 map was produced with very high resolution satellite images, current aerial photographs and GPS field data. Both maps were loaded into a GIS environment, in which landscape metrics at patch and class level were determined and then compared. From remote sensing and dendroecological techniques, we know that the study area was almost entirely affected by fires during the study period. Therefore, the comparison of both maps allows us to know post-fire changes in the shrublands spatial configuration at the landscape scale and to infer the fire effect on these changes. Our results show that during the studied period F. imbricata shrublands has expanded over the grassland. Nowadays, the species occupies 20% more area than in 1968 and this area, is divided into a smaller number of patches that are closer to each other. The observed change in the shrublands spatial pattern is evidence of a post-fire shrub encroachment. These results contribute to the understanding of the role of fire in vegetation dynamics in fire prone ecosystems

  16. Simulating the Effects of Fire on Forests in the Russian Far East: Integrating a Fire Danger Model and the FAREAST Forest Growth Model Across a Complex Landscape

    NASA Astrophysics Data System (ADS)

    Sherman, N. J.; Loboda, T.; Sun, G.; Shugart, H. H.; Csiszar, I.

    2008-12-01

    The remaining natural habitat of the critically endangered Amur tiger (Panthera tigris altaica) and Amur leopard (Panthera pardus orientalis) is a vast, biologically and topographically diverse area in the Russian Far East (RFE). Although wildland fire is a natural component of ecosystem functioning in the RFE, severe or repeated fires frequently re-set the process of forest succession, which may take centuries to return the affected forests to the pre-fire state and thus significantly alters habitat quality and long-term availability. The frequency of severe fire events has increased over the last 25 years, leading to irreversible modifications of some parts of the species' habitats. Moreover, fire regimes are expected to continue to change toward more frequent and severe events under the influence of climate change. Here we present an approach to developing capabilities for a comprehensive assessment of potential Amur tiger and leopard habitat availability throughout the 21st century by integrating regionally parameterized fire danger and forest growth models. The FAREAST model is an individual, gap-based model that simulates forest growth in a single location and demonstrates temporally explicit forest succession leading to mature forests. Including spatially explicit information on probabilities of fire occurrence at 1 km resolution developed from the regionally specific remotely -sensed data-driven fire danger model improves our ability to provide realistic long-term projections of potential forest composition in the RFE. This work presents the first attempt to merge the FAREAST model with a fire disturbance model, to validate its outputs across a large region, and to compare it to remotely-sensed data products as well as in situ assessments of forest structure. We ran the FAREAST model at 1,000 randomly selected points within forested areas in the RFE. At each point, the model was calibrated for temperature, precipitation, slope, elevation, and fire probability. The output of the model includes biomass estimates for 44 tree species that occur in the RFE, grouped by genus. We compared the model outputs with land cover classifications derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) data and LIDAR-based estimates of biomass across the entire region, and Russian forest inventory records at selected sites. Overall, we find that the FAREAST estimates of forest biomass and general composition are consistent with the observed distribution of forest types.

  17. Forest fire risk zonation mapping using remote sensing technology

    NASA Astrophysics Data System (ADS)

    Chandra, Sunil; Arora, M. K.

    2006-12-01

    Forest fires cause major losses to forest cover and disturb the ecological balance in our region. Rise in temperature during summer season causing increased dryness, increased activity of human beings in the forest areas, and the type of forest cover in the Garhwal Himalayas are some of the reasons that lead to forest fires. Therefore, generation of forest fire risk maps becomes necessary so that preventive measures can be taken at appropriate time. These risk maps shall indicate the zonation of the areas which are in very high, high, medium and low risk zones with regard to forest fire in the region. In this paper, an attempt has been made to generate the forest fire risk maps based on remote sensing data and other geographical variables responsible for the occurrence of fire. These include altitude, temperature and soil variations. Key thematic data layers pertaining to these variables have been generated using various techniques. A rule-based approach has been used and implemented in GIS environment to estimate fuel load and fuel index leading to the derivation of fire risk zonation index and subsequently to fire risk zonation maps. The fire risk maps thus generated have been validated on the ground for forest types as well as for forest fire risk areas. These maps would help the state forest departments in prioritizing their strategy for combating forest fires particularly during the fire seasons.

  18. An Assessment of Land Surface and Lightning Characteristics Associated with Lightning-Initiated Wildfires

    NASA Technical Reports Server (NTRS)

    Coy, James; Schultz, Christopher J.; Case, Jonathan L.

    2017-01-01

    Can we use modeled information of the land surface and characteristics of lightning beyond flash occurrence to increase the identification and prediction of wildfires? Combine observed cloud-to-ground (CG) flashes with real-time land surface model output, and Compare data with areas where lightning did not start a wildfire to determine what land surface conditions and lightning characteristics were responsible for causing wildfires. Statistical differences between suspected fire-starters and non-fire-starters were peak-current dependent 0-10 cm Volumetric and Relative Soil Moisture comparisons were statistically dependent to at least the p = 0.05 independence level for both polarity flash types Suspected fire-starters typically occurred in areas of lower soil moisture than non-fire-starters. GVF value comparisons were only found to be statistically dependent for -CG flashes. However, random sampling of the -CG non-fire starter dataset revealed that this relationship may not always hold.

  19. The influence of weather and fuel type on the fuel composition of the area burned by forest fires in Ontario, 1996-2006.

    PubMed

    Podur, Justin J; Martell, David L

    2009-07-01

    Forest fires are influenced by weather, fuels, and topography, but the relative influence of these factors may vary in different forest types. Compositional analysis can be used to assess the relative importance of fuels and weather in the boreal forest. Do forest or wild land fires burn more flammable fuels preferentially or, because most large fires burn in extreme weather conditions, do fires burn fuels in the proportions they are available despite differences in flammability? In the Canadian boreal forest, aspen (Populus tremuloides) has been found to burn in less than the proportion in which it is available. We used the province of Ontario's Provincial Fuels Database and fire records provided by the Ontario Ministry of Natural Resources to compare the fuel composition of area burned by 594 large (>40 ha) fires that occurred in Ontario's boreal forest region, a study area some 430,000 km2 in size, between 1996 and 2006 with the fuel composition of the neighborhoods around the fires. We found that, over the range of fire weather conditions in which large fires burned and in a study area with 8% aspen, fires burn fuels in the proportions that they are available, results which are consistent with the dominance of weather in controlling large fires.

  20. Econometric analysis of fire suppression production functions for large wildland fires

    Treesearch

    Thomas P. Holmes; David E. Calkin

    2013-01-01

    In this paper, we use operational data collected for large wildland fires to estimate the parameters of economic production functions that relate the rate of fireline construction with the level of fire suppression inputs (handcrews, dozers, engines and helicopters). These parameter estimates are then used to evaluate whether the productivity of fire suppression inputs...

  1. Studying interregional wildland fire engine assignments for large fire suppression

    Treesearch

    Erin J. Belval; Yu Wei; David E. Calkin; Crystal S. Stonesifer; Matthew P. Thompson; John R. Tipton

    2017-01-01

    One crucial component of large fire response in the United States (US) is the sharing of wildland firefighting resources between regions: resources from regions experiencing low fire activity supplement resources in regions experiencing high fire activity. An important step towards improving the efficiency of resource sharing and related policies is to develop a better...

  2. Climate Change Amplifications of Climate-Fire Teleconnections in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Mariani, Michela; Holz, Andrés.; Veblen, Thomas T.; Williamson, Grant; Fletcher, Michael-Shawn; Bowman, David M. J. S.

    2018-05-01

    Recent changes in trend and variability of the main Southern Hemisphere climate modes are driven by a variety of factors, including increasing atmospheric greenhouse gases, changes in tropical sea surface temperature, and stratospheric ozone depletion and recovery. One of the most important implications for climatic change is its effect via climate teleconnections on natural ecosystems, water security, and fire variability in proximity to populated areas, thus threatening human lives and properties. Only sparse and fragmentary knowledge of relationships between teleconnections, lightning strikes, and fire is available during the observed record within the Southern Hemisphere. This constitutes a major knowledge gap for undertaking suitable management and conservation plans. Our analysis of documentary fire records from Mediterranean and temperate regions across the Southern Hemisphere reveals a critical increased strength of climate-fire teleconnections during the onset of the 21st century including a tight coupling between lightning-ignited fire occurrences, the upward trend in the Southern Annular Mode, and rising temperatures across the Southern Hemisphere.

  3. Dynamics of mangrove-marsh ecotones in subtropical coastal wetlands: fire, sea-level rise, and water levels

    USGS Publications Warehouse

    Smith, Thomas J.; Foster, Ann M.; Tiling-Range, Ginger; Jones, John W.

    2013-01-01

    Ecotones are areas of sharp environmental gradients between two or more homogeneous vegetation types. They are a dynamic aspect of all landscapes and are also responsive to climate change. Shifts in the position of an ecotone across a landscape can be an indication of a changing environment. In the coastal Everglades of Florida, USA, a dominant ecotone type is that of mangrove forest and marsh. However, there is a variety of plants that can form the marsh component, including sawgrass (Cladium mariscus [L.] Pohl), needlegrass rush (Juncus roemerianus Scheele), and spikerush (Eleocharis spp.). Environmental factors including water depth, soil type, and occurrence of fires vary across these ecotones, influencing their dynamics. Altered freshwater inflows from upstream and increasing sea level over the past 100 years may have also had an impact. We analyzed a time series of historical aerial photographs for a number of sites in the coastal Everglades and measured change in position of mangrove–marsh ecotones. For three sites, detailed maps were produced and the area of marsh, mangrove, and other habitats was determined for five periods spanning the years 1928 to 2004. Contrary to our initial hypothesis on fire, we found that fire did not prevent mangrove expansion into marsh areas but may in fact assist mangroves to invade some marsh habitats, especially sawgrass. Disparate patterns in mangrove–marsh change were measured at two downstream sites, both of which had multiple fires over from 1948 to 2004. No change in mangrove or marsh area was measured at one site. Mangrove area increased and marsh area decreased at the second of these fire-impacted sites. We measured a significant increase in mangrove area and a decline in marsh area at an upstream site that had little occurrence of fire. At this site, water levels have increased significantly as sea level has risen, and this has probably been a factor in the mangrove expansion.

  4. Analysis of historical forest fire regime in Madrid region (1984-2010) and its relation with land-use/land-cover changes

    NASA Astrophysics Data System (ADS)

    Gómez-Nieto, Israel; Martín, María del Pilar; Salas, Francisco Javier; Gallardo, Marta

    2013-04-01

    Understanding the interaction between natural and socio-economic factors that determine fire regime is essential to make accurate projections and impact assessments. However, this requires having accurate historical, systematic, homogeneous and spatially explicit information on fire occurrence. Fire databases usually have serious limitations in this regard; therefore other sources of information, such as remote sensing, have emerged as alternatives to generate optimal fire maps on various spatial and temporal scales. Several national and international projects work in order to generate information to study the factors that determine the current fire regime and its future evolution. This work is included in the framework of the project "Forest fires under climate, social and economic Changes in Europe, the Mediterranean and other fire-affected areas of the World" (FUME http://www.fumeproject.eu), which aims to study the changes and factors related to fire regimes through time to determine the potential impacts on vegetation in Mediterranean regions and concrete steps to address future risk scenarios. We analyzed the changes in the fire regime in Madrid region (Spain) in the past three decades (1984-2010) and its relation to land use changes. We identified and mapped fires that have occurred in the region during those years using Landsat satellite images by combining digital techniques and visual analysis. The results show a clear cyclical behaviour of the fire, with years of high incidence (as 1985, 2000 and 2003, highlighted by the number of fires and the area concerned, over 2000 ha) followed by another with a clear occurrence decrease. At the same time, we analyzed the land use changes that have occurred in Madrid region between the early 80s and mid-2000s using as reference the CORINE Land-cover maps (1990, 2000 and 2006) and the Vegetation and Land Use map of the Community of Madrid, 1982. We studied the relationship between fire regimes and observed land-use and land-cover changes in the periods analyzed, it was determined that between years 1984 and 2006 most of the burned area remained pre-fire cover type (above 80% of the area). However, in areas that experienced change, the most important transitions were recorded in wooded areas, especially conifers, which became shrubs or sparsely vegetated areas, followed by non-irrigated crops, which were replaced by grasslands or industrial areas, and sparse vegetation which changed to shrubs. Finally, the analysis of land-use changes over burned areas situated shrubland as the most favored type of cover, either as a result of a vegetative degradation process after intense burning of wooded areas, especially conifers, or as stage of natural increase in areas previously covered by sparsely vegetation.

  5. Temperature monitoring and Forest Fires in Góis Council, Portugal

    NASA Astrophysics Data System (ADS)

    Rodrigues, M. A. S.; Costa, M. E. G.

    2012-04-01

    In our school the activities linked with sciences are developed in a partnership with other school subjects. Interdisciplinary projects are always valued from beginning to end of a project. It is common for teachers of different areas to work together in a Science project. Research of English written articles is very important not only for the development of our students' scientific literacy but also as a way of widening knowledge and a view on different perspectives of life instead of being limited to research of any articles in Portuguese language. As in this area there is a strong occurrence of forest fires, we are going to study the influence of temperature and its occurrence. For this study we have selected six meteorological stations, distributed through the region and placed in different altitudes. Through the analysis of the temperatures we have verified the lack of data from some stations, so we have proceeded to the homogenisation of the series, using the correlation coefficient of a reference series. In a second stage we will analyse forest fires episodes in the region, with data collected from the Civil Protection and the Meteorological Institute from 1980 to 2010 and correlate this with the series of temperatures for the different areas selected for this study. This research allows an evaluation of the forest fire propagation in the region and recognise the most affected areas.

  6. Predicting the effectiveness of different mulching techniques to reduce post-fire runoff and erosion in Mediterranean pine stands - does cover matter?

    NASA Astrophysics Data System (ADS)

    Vieira, Diana; Nunes, João; Prats, Sergio; Serpa, Dalila; Keizer, Jan

    2016-04-01

    Wildfires have become a recurrent threat for many forest ecosystems of the Mediterranean. The characteristics of the Mediterranean climate with its warm and dry summers and mild and wet winters make it prone to wildfire occurrence as well as to post-fire soil erosion. Furthermore, climate change and continuation of current land management practices and planning are generally expected to further increase this threat. The wide recognition of the effects of wildfires to enhance runoff and erosion has created a strong demand for model-based tools for predicting the post-fire hydrological and erosion response and, in particular, for predicting the effectiveness of post-fire forestry operations to mitigate these responses. Such a tool should allow to identify areas with elevated risks of soil erosion and to evaluate which measures should be applied and when to minimize these risks. A key element in evaluating these measures is also their costs, in order to optimize the use of the limited resources that are typically available for post-fire land management. In this study, two "treatments" are compared with control conditions (i.e. doing nothing) after a wildfire with a moderate soil burn severity: (i) 4 erosion plots were treated with hydro-mulch, (ii) 4 erosion plots were untreated but had a high pine needle cover quickly after the fire, due to needle cast from scorched pine crowns (often referred to as "natural mulching") (iii) 4 plots were untreated and had a very reduced protective litter cover . The main objective of this study was to asses if the revised MMF model could effectively predict the impacts of hydro-mulching and natural mulching with pine needle on runoff generation and the associated soil losses. If MMF could predict well the impact of natural mulching, it could be very useful in limiting the areas that should be considered for specific soil mitigation measures, especially in the case of wildfires that affect large areas with moderate severity. The revised MMF model allowed, in fact, accurate predictions of runoff and soil erosion over the first year following hydro-mulch application . The obtained efficiency indices (Nash Sutcliffe Efficiency) of 0.82 and 0.71 for runoff and erosion, respectively, suggested that the revised MMF model could be at the base of a tool to assist decision-making in post-fire forest management. Furthermore, the MMF results obtained for hydro-mulching agreed well with those obtained in a previous study in the region for mulching with forest residues (Vieira et al., 2014). Ongoing work is assessing the possible improvements in model predictions by applying MMF on a seasonal basis and/or taking into account the occurrence of soil water repellency, i.e. using the adjustments of MMF to post-fire conditions as proposed in Vieira et al. (2014) and so far only tested - successfully - for eucalypt plantations in the study region. Vieira DCS, Prats SA, Nunes JP, Shakesby RA, Coelho COA, Keizer JJ (2014) Modelling runoff and erosion, and their mitigation, in burned Portuguese forest using the revised Morgan-Morgan-Finney model. Forest Ecology and Management 314: 150-165

  7. Explosion and/or fire risk assessment methodology: a common approach, structured for underground coalmine environments / Metoda szacowania ryzyka wybuchu i pożarów: podejście ogólne, dostosowane do środowiska kopalni podziemnej

    NASA Astrophysics Data System (ADS)

    Cioca, Ionel-Lucian; Moraru, Roland Iosif

    2012-10-01

    In order to meet statutory requirements concerning the workers health and safety, it is necessary for mine managers within Valea Jiului coal basin in Romania to address the potential for underground fires and explosions and their impact on the workforce and the mine ventilation systems. Highlighting the need for a unified and systematic approach of the specific risks, the authors are developing a general framework for fire/explosion risk assessment in gassy mines, based on the quantification of the likelihood of occurrence and gravity of the consequences of such undesired events and employing Root-Cause analysis method. It is emphasized that even a small fire should be regarded as being a major hazard from the point of view of explosion initiation, should a combustible atmosphere arise. The developed methodology, for the assessment of underground fire and explosion risks, is based on the known underground explosion hazards, fire engineering principles and fire test criteria for potentially combustible materials employed in mines.

  8. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.

  9. The Impact of Precipitation Regimes on Forest Fires in Yunnan Province, Southwest China

    PubMed Central

    Chen, Feng; Niu, Shukui; Tong, Xiaojuan; Zhao, Jinlong; Sun, Yu; He, Tengfei

    2014-01-01

    The amount, frequency, and duration of precipitation have important impact on the occurrence and severity of forest fires. To fully understand the effects of precipitation regimes on forest fires, a drought index was developed with number of consecutive dry days (daily precipitation less than 2 mm) and total precipitation, and the relationships of drought and precipitation with fire activities were investigated over two periods (i.e., 1982–1988 and 1989–2008) in five ecoregions of Yunnan Province. The results showed that precipitation regime had a significant relationship with fire activities during the two periods. However, the influence of the drought on fire activities varied by ecoregions, with more impacts in drier ecoregions IV-V and less impacts in the more humid ecoregions I–III. The drought was more closely related to fire activities than precipitation during the two study periods, especially in the drier ecoregions, indicating that the frequency and the duration of precipitation had significant influences on forest fires in the drier areas. Drought appears to offer a better explanation than total precipitation on temporal changes in fire regimes across the five ecoregions in Yunnan. Our findings have significant implications for forecasting the local fire dangers under the future climate change. PMID:25243208

  10. What determines area burned in large landscapes? Insights from a decade of comparative landscape-fire modelling

    Treesearch

    Geoffrey J. Cary; Robert E. Keane; Mike D. Flannigan; Ian D. Davies; Russ A. Parsons

    2015-01-01

    Understanding what determines area burned in large landscapes is critical for informing wildland fire management in fire-prone environments and for representing fire activity in Dynamic Global Vegetation Models. For the past ten years, a group of landscape-fire modellers have been exploring the relative influence of key determinants of area burned in temperate and...

  11. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA

    Treesearch

    James A. Lutz; Jan W. van Wagtendonk; Andrea E. Thode; Jay D. Miller; Jerry F. Franklin

    2009-01-01

    Continental-scale studies of western North America have attributed recent increases in annual area burned and fire size to a warming climate, but these studies have focused on large fires and have left the issues of fire severity and ignition frequency unaddressed. Lightning ignitions, any of which could burn a large area given appropriate conditions for fire spread,...

  12. Operating room fires: a closed claims analysis.

    PubMed

    Mehta, Sonya P; Bhananker, Sanjay M; Posner, Karen L; Domino, Karen B

    2013-05-01

    To assess patterns of injury and liability associated with operating room (OR) fires, closed malpractice claims in the American Society of Anesthesiologists Closed Claims Database since 1985 were reviewed. All claims related to fires in the OR were compared with nonfire-related surgical anesthesia claims. An analysis of fire-related claims was performed to identify causative factors. There were 103 OR fire claims (1.9% of 5,297 surgical claims). Electrocautery was the ignition source in 90% of fire claims. OR fire claims more frequently involved older outpatients compared with other surgical anesthesia claims (P < 0.01). Payments to patients were more often made in fire claims (P < 0.01), but payment amounts were lower (median $120,166) compared to nonfire surgical claims (median $250,000, P < 0.01). Electrocautery-induced fires (n = 93) increased over time (P < 0.01) to 4.4% claims between 2000 and 2009. Most (85%) electrocautery fires occurred during head, neck, or upper chest procedures (high-fire-risk procedures). Oxygen served as the oxidizer in 95% of electrocautery-induced OR fires (84% with open delivery system). Most electrocautery-induced fires (n = 75, 81%) occurred during monitored anesthesia care. Oxygen was administered via an open delivery system in all high-risk procedures during monitored anesthesia care. In contrast, alcohol-containing prep solutions and volatile compounds were present in only 15% of OR fires during monitored anesthesia care. Electrocautery-induced fires during monitored anesthesia care were the most common cause of OR fires claims. Recognition of the fire triad (oxidizer, fuel, and ignition source), particularly the critical role of supplemental oxygen by an open delivery system during use of the electrocautery, is crucial to prevent OR fires. Continuing education and communication among OR personnel along with fire prevention protocols in high-fire-risk procedures may reduce the occurrence of OR fires.

  13. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2002-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ˜97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ˜2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  14. Large forest fires in Canada, 1959-1997

    NASA Astrophysics Data System (ADS)

    Stocks, B. J.; Mason, J. A.; Todd, J. B.; Bosch, E. M.; Wotton, B. M.; Amiro, B. D.; Flannigan, M. D.; Hirsch, K. G.; Logan, K. A.; Martell, D. L.; Skinner, W. R.

    2003-01-01

    A Large Fire Database (LFDB), which includes information on fire location, start date, final size, cause, and suppression action, has been developed for all fires larger than 200 ha in area for Canada for the 1959-1997 period. The LFDB represents only 3.1% of the total number of Canadian fires during this period, the remaining 96.9% of fires being suppressed while <200 ha in size, yet accounts for ~97% of the total area burned, allowing a spatial and temporal analysis of recent Canadian landscape-scale fire impacts. On average ~2 million ha burned annually in these large fires, although more than 7 million ha burned in some years. Ecozones in the boreal and taiga regions experienced the greatest areas burned, with an average of 0.7% of the forested land burning annually. Lightning fires predominate in northern Canada, accounting for 80% of the total LFDB area burned. Large fires, although small in number, contribute substantially to area burned, most particularly in the boreal and taiga regions. The Canadian fire season runs from late April through August, with most of the area burned occurring in June and July due primarily to lightning fire activity in northern Canada. Close to 50% of the area burned in Canada is the result of fires that are not actioned due to their remote location, low values-at-risk, and efforts to accommodate the natural role of fire in these ecosystems. The LFDB is updated annually and is being expanded back in time to permit a more thorough analysis of long-term trends in Canadian fire activity.

  15. Heavy Precipitation impacts and emergency planning - developing applicable strategies for a metropolitan area

    NASA Astrophysics Data System (ADS)

    Kutschker, Thomas; Glade, Thomas

    2016-04-01

    Heavy rainfall in central Europe is one of the assumed effects of climate change, which occurs with large seasonal and regional differences in its magnitude. The extent of loss depends on natural parameters (e.g. topography and vegetation) as well as on socio-economic factors like urbanized and industrialized areas and population density. Dangerous cascade effects appear, if critical infrastructure like the electrical power supply is affected. In some cases mudflows and flash floods cause inundated or undercut roads and cause a high demand for fast and effective assistance of the authorities. The civil protection in Germany is based on a federal system with a bottom-up command-structure and responsibility to the local community. Commonly this responsibility is taken by the fire brigades and civil protection units of the community or district. After heavy rainfall in an urban area, numerous incidents and emergency calls appearing at a time are overstressing the human and technical resources of the fire brigades within the local authority frequently. In this study, a method of comprehensive evaluation of meteorological data and the operation data from local fire brigades shall be developed for the Rhine-Main-Area in order to identify particular affected spots of heavy rain and bundle resources of the fire brigades. It is to be found out if the study area contains regions with a particularly high exposure to heavy rain and high application numbers of the fire department and whether there is a relationship of rainfall and frequency of use. To evaluate particular local effects on the fire brigades capability, a brief analysis of the meteorological data provided by the German Meteorological Service (DWD) as well as the evaluation of the incident data of the affected fire brigades, is used to frame a realistic approach. In particular fire brigade operation data can be used accordingly to describe the intensity of the aftermath when heavy precipitation strikes a certain area. It shows that most of the damage is caused by spilled sewage drains flooding basements and streets. Besides less fire brigade operations are observed in rural areas with constant amount of rainfall. The occurrence of heavy rain events is spatially limited, hot-spot areas with higher probability can be detected. Based on this finding, a resource management strategy for the fire brigade can be developed. Keywords: emergency planning strategy, critical infrastructure, heavy rainfall, fire-brigade resource management

  16. Monitoring subsurface coal fires in Jharia coalfield using observations of land subsidence from differential interferometric synthetic aperture radar (DInSAR)

    NASA Astrophysics Data System (ADS)

    Gupta, Nishant; Syed, Tajdarul H.; Athiphro, Ashiihrii

    2013-10-01

    Coal fires in the Jharia coalfield pose a serious threat to India's vital resource of primary coking coal and the regional environment. In order to undertake effective preventative measures, it is critical to detect the occurrence of subsurface coal fires and to monitor the extent of the existing ones. In this study, Differential Interferometric Synthetic Aperature Radar (DInSAR) technique has been utilized to monitor subsurface coal fires in the Jharia coalfield. Results showed that majority of the coal fire-related subsidence were concentrated on the eastern and western boundaries of the coalfield. The magnitude of subsidence observed was classified into high (10-27.8 mm), low (0-10 mm) and upliftment (-10-0 mm). The results were strongly supported by in situ observations and satellite-based thermal imagery analysis. Major subsidence was observed in the areas with repeated sightings of coal fire. Further, the study highlighted on the capability of the methodology for predicting potential coal fire zones on the basis of land surface subsidence only. The results from this study have major implications for demarcating the hazardous coal fire areas as well as effective implementation of public safety measures.

  17. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these results suggest that besides minimizing biomass burning activities, an effective air pollution mitigation policy for Southeast Asia needs to consider controlling emissions from non-fire anthropogenic sources.

  18. Risk factors for rural residential fires.

    PubMed

    Allareddy, Veerasathpurush; Peek-Asa, Corinne; Yang, Jingzhen; Zwerling, Craig

    2007-01-01

    Rural households report high fire-related mortality and injury rates, but few studies have examined the risk factors for fires. This study aims to identify occupant and household characteristics that are associated with residential fires in a rural cohort. Of 1,005 households contacted in a single rural county, 691 (68.8%) agreed to participate. One household with missing information on a reported fire was excluded from the analysis. We used logistic regression to examine the independent association of occupant and household characteristics with reported fires, controlling for years lived in the residence. We also examined the association between the occurrence of previous fires and the adoption of safety measures. A total of 78 (11.3%) households reported a residential fire. Occupant characteristics that were associated with significantly higher odds of reported fires included the presence of an occupant with alcohol problems (OR = 1.82, 95% CI = 1.01-3.28) and being married (OR = 2.11, 95% CI = 1.14-3.91). Rural farm households were associated with significantly higher odds (OR = 1.72, 95% CI = 1.01-2.93) of reporting a fire when compared to residences in towns, after controlling for all other occupant and household characteristics. The presence of a fire extinguisher (OR = 2.00, 95% CI = 1.10-3.64) was the only fire safety measure that had a statistically significant association with reported fire. Rural farm households report higher incidences of fire when compared to households located in towns. Experiencing a fire is not associated with an increased likelihood of adopting safety measures to prevent injuries once a fire has started.

  19. Designing fire safe interiors.

    PubMed

    Belles, D W

    1992-01-01

    Any product that causes a fire to grow large is deficient in fire safety performance. A large fire in any building represents a serious hazard. Multiple-death fires almost always are linked to fires that grow quickly to a large size. Interior finishes have large, continuous surfaces over which fire can spread. They are regulated to slow initial fire growth, and must be qualified for use on the basis of fire tests. To obtain meaningful results, specimens must be representative of actual installation. Variables--such as the substrate, the adhesive, and product thickness and density--can affect product performance. The tunnel test may not adequately evaluate some products, such as foam plastics or textile wall coverings, thermoplastic materials, or materials of minimal mass. Where questions exist, products should be evaluated on a full-scale basis. Curtains and draperies are examples of products that ignite easily and spread flames readily. The present method for testing curtains and draperies evaluates one fabric at a time. Although a fabric tested alone may perform well, fabrics that meet test standards individually sometimes perform poorly when tested in combination. Contents and furnishings constitute the major fuels in many fires. Contents may involve paper products and other lightweight materials that are easily ignited and capable of fast fire growth. Similarly, a small source may ignite many items of furniture that are capable of sustained fire growth. Upholstered furniture can reach peak burning rates in less than 5 minutes. Furnishings have been associated with many multiple-death fires.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Management impacts on fire occurrence: A comparison of fire regimes of African and South American tropical savannas in different protected areas.

    PubMed

    Alvarado, Swanni T; Silva, Thiago Sanna Freire; Archibald, Sally

    2018-07-15

    Humans can alter fire dynamics in grassland systems by changing fire frequency, fire seasonality and fuel conditions. These changes have effects on vegetation structure and recovery, species composition, and ecosystem function. Understanding how human management can affect fire regimes is vital to detect potential changes in the resilience of plant communities, and to predict vegetation responses to human interventions. We evaluated the fire regimes of two recently protected areas in Madagascar (Ibity and Itremo NPA) and one in Brazil (Serra do Cipó NP) before and after livestock exclusion and fire suppression policies. We compare the pre- and post-management fire history in these areas and analyze differences in terms of total annual burned area, density of ignitions, burn scar size distribution, fire return period and seasonal fire distribution. More than 90% of total park areas were burned at least once during the studied period, for all parks. We observed a significant reduction in the number of ignitions for Ibity NPA and Serra do Cipó NP after livestock exclusion and active fire suppression, but no significant change in total burned area for each protected area. We also observed a seasonal shift in burning, with fires happening later in the fire season (October-November) after management intervention. However, the protected areas in Madagascar had shorter fire return intervals (3.23 and 1.82 years) than those in Brazil (7.91 years). Our results demonstrate that fire exclusion is unattainable, and probably unwarranted in tropical grassland conservation areas, but show how human intervention in fire and vegetation patterns can alter various aspects of the fire regimes. This information can help with formulating realistic and effective fire management policies in these valuable conservation areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

Top