Sample records for large flexible launch

  1. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is stability under mal-function of the roll control system. The roll motion of the Ares-I Crew Launch Vehicle under nominal flight conditions is actively stabilized by its roll control system employing thrusters. This dissertation describes the ascent flight control design problem of Ares-I in the event of disabled or failed roll control. A simple pitch/yaw control logic is developed for such a technically challenging problem by exploiting the inherent versatility of a quaternion-based attitude control system. The proposed scheme requires only the desired inertial attitude quaternion to be re-computed using the actual uncontrolled roll angle information to achieve an ascent flight trajectory identical to the nominal flight case with active roll control. Another approach that utilizes a simple adjustment of the proportional-derivative gains of the quaternion-based flight control system without active roll control is also presented. This approach doesn't require the re-computation of desired inertial attitude quaternion. A linear stability criterion is developed for proper adjustments of attitude and rate gains. The linear stability analysis results are validated by nonlinear simulations of the ascent flight phase. However, the first approach, requiring a simple modification of the desired attitude quaternion, is recommended for the Ares-I as well as other launch vehicles in the event of no active roll control. Finally, the method derived to stabilize a large flexible launch vehicle in the event of uncontrolled roll drift is generalized as a modified attitude quaternion feedback law. It is used to stabilize an axisymmetric rigid body by two independent control torques.

  2. Stackable In-Line Surface Missile Launch System for a Modular Payload Bay

    DTIC Science & Technology

    2004-11-08

    stacked modules 14 are connected 8 and sealed to form a single long continuous missile tube . 9 Flexible seals may be used at the base of each missile...vehicles, such as missiles, 22 both through vertical launch via specialized launch tubes on the 23 submarine, and horizontal launch via the submarine’s...torpedo 24 tubes . In some cases, the missiles are quite large, such as the 1 1 Tomahawk missile, which requires sufficient support for the 2 large

  3. Analysis and Design of Launch Vehicle Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  4. SLS EM-1 Launch Animation

    NASA Image and Video Library

    2017-10-31

    Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.

  5. A Modular Approach To Developing A Large Deployable Reflector

    NASA Astrophysics Data System (ADS)

    Pittman, R.; Leidich, C.; Mascy, F.; Swenson, B.

    1984-01-01

    NASA is currently studying the feasibility of developing a Large Deployable Reflector (LDR) astronomical facility to perform astrophysical studies of the infrared and submillimeter portion of the spectrum in the mid 1990's. The LDR concept was recommended by the Astronomy Survey Committee of the National Academy of Sciences as one of two space based projects to be started this decade. The current baseline calls for a 20 m (65.6 ft) aperture telescope diffraction limited at 30 μm and automatically deployed from a single Shuttle launch. The volume, performance, and single launch constraints place great demands on the technology and place LDR beyond the state-of-the-art in certain areas such as lightweight reflector segments. The advent of the Shuttle is opening up many new options and capabilities for producing large space systems. Until now, LDR has always been conceived as an integrated system, deployed autonomously in a single launch. This paper will look at a combination of automatic deployment and on-orbit assembly that may reduce the technological complexity and cost of the LDR system. Many technological tools are now in use or under study that will greatly enhance our capabilities to do assembly in space. Two Shuttle volume budget scenarios will be examined to assess the potential of these tools to reduce the LDR system complexity. Further study will be required to reach the full optimal combination of deployment and assembly, since in most cases the capabilities of these new tools have not been demonstrated. In order to take maximum advantage of these concepts, the design of LDR must be flexible and allow one subsystem to be modified without adversely affecting the entire system. One method of achieving this flexibility is to use a modular design approach in which the major subsystems are physically separated during launch and assembled on orbit. A modular design approach facilitates this flexibility but requires that the subsystems be interfaced in a simple, straightforward, and controlled manner. NASA is currently defining a technology development plan for LDR which will identify the technology advances that are required. The modular approach offers the flexibility to easily incorporate these new advances into the design.

  6. Next Generation Heavy-Lift Launch Vehicle: Large Diameter, Hydrocarbon-Fueled Concepts

    NASA Technical Reports Server (NTRS)

    Holliday, Jon; Monk, Timothy; Adams, Charles; Campbell, Ricky

    2012-01-01

    With the passage of the 2010 NASA Authorization Act, NASA was directed to begin the development of the Space Launch System (SLS) as a follow-on to the Space Shuttle Program. The SLS is envisioned as a heavy lift launch vehicle that will provide the foundation for future large-scale, beyond low Earth orbit (LEO) missions. Supporting the Mission Concept Review (MCR) milestone, several teams were formed to conduct an initial Requirements Analysis Cycle (RAC). These teams identified several vehicle concept candidates capable of meeting the preliminary system requirements. One such team, dubbed RAC Team 2, was tasked with identifying launch vehicles that are based on large stage diameters (up to the Saturn V S-IC and S-II stage diameters of 33 ft) and utilize high-thrust liquid oxygen (LOX)/RP engines as a First Stage propulsion system. While the trade space for this class of LOX/RP vehicles is relatively large, recent NASA activities (namely the Heavy Lift Launch Vehicle Study in late 2009 and the Heavy Lift Propulsion Technology Study of 2010) examined specific families within this trade space. Although the findings from these studies were incorporated in the Team 2 activity, additional branches of the trade space were examined and alternative approaches to vehicle development were considered. Furthermore, Team 2 set out to define a highly functional, flexible, and cost-effective launch vehicle concept. Utilizing this approach, a versatile two-stage launch vehicle concept was chosen as a preferred option. The preferred vehicle option has the capability to fly in several different configurations (e.g. engine arrangements) that gives this concept an inherent operational flexibility which allows the vehicle to meet a wide range of performance requirements without the need for costly block upgrades. Even still, this concept preserves the option for evolvability should the need arise in future mission scenarios. The foundation of this conceptual design is a focus on low cost and effectiveness rather than efficiency or cutting-edge technology. This paper details the approach and process, as well as the trade space analysis, leading to the preferred vehicle concept.

  7. Final design report of a personnel launch system and a family of heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    Tupa, James; Merritt, Debbie; Riha, David; Burton, Lee; Kubinski, Russell; Drake, Kerry; Mann, Darrin; Turner, Ken

    1991-01-01

    The objective was to design both a Personnel Launch System (PLS) and a family of Heavy Lift Launch Vehicles (FHLLVs) that provide low cost and efficient operation in missions not suited for the Shuttle. The PLS vehicle is designed primarily for space station crew rotation and emergency crew return. The final design of the PLS vehicle and its interior is given. The mission of the FHLLVs is to place large, massive payloads into Earth orbit with payload flexibility being considered foremost in the design. The final design of three launch vehicles was found to yield a payload capacity range from 20 to 200 mt. These designs include the use of multistaged, high thrust liquid engines mounted on the core stages of the rocket.

  8. PEGASUS - A Flexible Launch Solution for Small Satellites with Unique Requirements

    NASA Astrophysics Data System (ADS)

    Richards, B. R.; Ferguson, M.; Fenn, P. D.

    The financial advantages inherent in building small satellites are negligible if an equally low cost launch service is not available to deliver them to the orbit they require. The weight range of small satellites puts them within the capability of virtually all launch vehicles. Initially, this would appear to help drive down costs through competition since, by one estimate, there are roughly 75 active space launch vehicles around the world that either have an established flight record or are planning to make an inaugural launch within the year. When reliability, budget constraints, and other issues such as inclination access are factored in, this list of available launch vehicles is often times reduced to a very limited few, if any at all. This is especially true for small satellites with unusual or low inclination launch requirements where the cost of launching on the heavy-lift launchers that have the capacity to execute the necessary plane changes or meet the mission requirements can be prohibitive. For any small satellite, reducing launch costs by flying as a secondary or even tertiary payload is only advantageous in the event that a primary payload can be found that either requires or is passing through the same final orbit and has a launch date that is compatible. If the satellite is able to find a ride on a larger vehicle that is only passing through the correct orbit, the budget and technical capability must exist to incorporate a propulsive system on the satellite to modify the orbit to that required for the mission. For these customers a launch vehicle such as Pegasus provides a viable alternative due to its proven flight record, relatively low cost, self- contained launch infrastructure, and mobility. Pegasus supplements the existing world-wide launch capability by providing additional services to a targeted niche of payloads that benefit greatly from Pegasus' mobility and flexibility. Pegasus can provide standard services to satellites that do not require the benefits inherent in a mobile platform. In this regard Pegasus is no different from a ground- launched vehicle in that it repeatedly launches from a fixed location at each range, albeit a location that is not on land. However, Pegasus can also offer services that avoid many of the restrictions inherent in being constrained to a particular launch site, few of which are trivial. They include inclination restrictions, large plane changes required to achieve low inclination orbits from high latitude launch sites, politically inopportune launch locations, and low frequency launch opportunities for missions that require phasing. Pegasus has repeatedly demonstrated this flexibility through the course of 31 flights, including 17 consecutive successes dating back to 1996, originating from seven different locations around the world including two outside the United States. Recently, Pegasus launched NASA's HETE-2 satellite in an operation that included satellite integration and vehicle mate in California, pre-launch staging operations from Kwajalein Island in the South Pacific, and launch operations controlled from over 7000 miles away in Florida. Pegasus has also used the Canary Islands as a launch point with the associated control room in Spain, and Florida as a launch point for a mission controlled from Virginia. This paper discusses the operational uniqueness of the Pegasus launch vehicle and the activities associated with establishing low-cost, flexible-inclination, low-risk launch operations that utilize Pegasus' greatest asset: its mobility.

  9. Advanced High-Temperature Flexible TPS for Inflatable Aerodynamic Decelerators

    NASA Technical Reports Server (NTRS)

    DelCorso, Joseph A.; Cheatwood, F. McNeil; Bruce, Walter E., III; Hughes, Stephen J.; Calomino, Anthony M.

    2011-01-01

    Typical entry vehicle aeroshells are limited in size by the launch vehicle shroud. Inflatable aerodynamic decelerators allow larger aeroshell diameters for entry vehicles because they are not constrained to the launch vehicle shroud diameter. During launch, the hypersonic inflatable aerodynamic decelerator (HIAD) is packed in a stowed configuration. Prior to atmospheric entry, the HIAD is deployed to produce a drag device many times larger than the launch shroud diameter. The large surface area of the inflatable aeroshell provides deceleration of high-mass entry vehicles at relatively low ballistic coefficients. Even for these low ballistic coefficients there is still appreciable heating, requiring the HIAD to employ a thermal protection system (TPS). This TPS must be capable of surviving the heat pulse, and the rigors of fabrication handling, high density packing, deployment, and aerodynamic loading. This paper provides a comprehensive overview of flexible TPS tests and results, conducted over the last three years. This paper also includes an overview of each test facility, the general approach for testing flexible TPS, the thermal analysis methodology and results, and a comparison with 8-foot High Temperature Tunnel, Laser-Hardened Materials Evaluation Laboratory, and Panel Test Facility test data. Results are presented for a baseline TPS layup that can withstand a 20 W/cm2 heat flux, silicon carbide (SiC) based TPS layup, and polyimide insulator TPS layup. Recent work has focused on developing material layups expected to survive heat flux loads up to 50 W/cm2 (which is adequate for many potential applications), future work will consider concepts capable of withstanding more than 100 W/cm2 incident radiant heat flux. This paper provides an overview of the experimental setup, material layup configurations, facility conditions, and planned future flexible TPS activities.

  10. Evolution of the Florida Launch Site Architecture: Embracing Multiple Customers, Enhancing Launch Opportunities

    NASA Technical Reports Server (NTRS)

    Colloredo, Scott; Gray, James A.

    2011-01-01

    The impending conclusion of the Space Shuttle Program and the Constellation Program cancellation unveiled in the FY2011 President's budget created a large void for human spaceflight capability and specifically launch activity from the Florida launch Site (FlS). This void created an opportunity to re-architect the launch site to be more accommodating to the future NASA heavy lift and commercial space industry. The goal is to evolve the heritage capabilities into a more affordable and flexible launch complex. This case study will discuss the FlS architecture evolution from the trade studies to select primary launch site locations for future customers, to improving infrastructure; promoting environmental remediation/compliance; improving offline processing, manufacturing, & recovery; developing range interface and control services with the US Air Force, and developing modernization efforts for the launch Pad, Vehicle Assembly Building, Mobile launcher, and supporting infrastructure. The architecture studies will steer how to best invest limited modernization funding from initiatives like the 21 st elSe and other potential funding.

  11. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  12. NASA Marshall Space Flight Center Controls Systems Design and Analysis Branch

    NASA Technical Reports Server (NTRS)

    Gilligan, Eric

    2014-01-01

    Marshall Space Flight Center maintains a critical national capability in the analysis of launch vehicle flight dynamics and flight certification of GN&C algorithms. MSFC analysts are domain experts in the areas of flexible-body dynamics and control-structure interaction, thrust vector control, sloshing propellant dynamics, and advanced statistical methods. Marshall's modeling and simulation expertise has supported manned spaceflight for over 50 years. Marshall's unparalleled capability in launch vehicle guidance, navigation, and control technology stems from its rich heritage in developing, integrating, and testing launch vehicle GN&C systems dating to the early Mercury-Redstone and Saturn vehicles. The Marshall team is continuously developing novel methods for design, including advanced techniques for large-scale optimization and analysis.

  13. EDIN0613P weight estimating program. [for launch vehicles

    NASA Technical Reports Server (NTRS)

    Hirsch, G. N.

    1976-01-01

    The weight estimating relationships and program developed for space power system simulation are described. The program was developed to size a two-stage launch vehicle for the space power system. The program is actually part of an overall simulation technique called EDIN (Engineering Design and Integration) system. The program sizes the overall vehicle, generates major component weights and derives a large amount of overall vehicle geometry. The program is written in FORTRAN V and is designed for use on the Univac Exec 8 (1110). By utilizing the flexibility of this program while remaining cognizant of the limits imposed upon output depth and accuracy by utilization of generalized input, this program concept can be a useful tool for estimating purposes at the conceptual design stage of a launch vehicle.

  14. The Delta and Thor/Agena launch vehicles for scientific and applications satellites.

    NASA Technical Reports Server (NTRS)

    Gunn, C. R.

    1971-01-01

    Description of the Delta Model 904 and the Thor/Agena Model 9A4 scientific and applications satellite launch vehicles, with projections of future growth and launch costs. These launch vehicles are shown to offer scientific and applications satellite mission planners a broad spectrum in performance capabilities together with unprecedented mission flexibility. Depending on the mission, these two medium class launch vehicles can be configured on the new universal boattail (UBT) Thor booster in either two or three stages with thrust augmentation of the UBT ranging from three to nine strap-on solid propellant motors. Both vehicles incorporate strapdown inertial guidance systems that allow flexible mission programming by computer so ftware changes rather than by adjustments.

  15. Actualizing Flexible National Security Space Systems

    DTIC Science & Technology

    2011-01-01

    single launch vehicle is a decision unique to small satellites that adds an extra dimension to the launch risk calculation. While bundling...following a launch failure. The ability to bundle multiple payloads on a single launch vehicle is a decision unique to small satellites that adds an extra ... dimension to the launch risk calculation. While bundling multiple small satellites on a single launch vehicle spreads the initial launch cost across

  16. L1 Adaptive Control Law for Flexible Space Launch Vehicle and Proposed Plan for Flight Test Validation

    NASA Technical Reports Server (NTRS)

    Kharisov, Evgeny; Gregory, Irene M.; Cao, Chengyu; Hovakimyan, Naira

    2008-01-01

    This paper explores application of the L1 adaptive control architecture to a generic flexible Crew Launch Vehicle (CLV). Adaptive control has the potential to improve performance and enhance safety of space vehicles that often operate in very unforgiving and occasionally highly uncertain environments. NASA s development of the next generation space launch vehicles presents an opportunity for adaptive control to contribute to improved performance of this statically unstable vehicle with low damping and low bending frequency flexible dynamics. In this paper, we consider the L1 adaptive output feedback controller to control the low frequency structural modes and propose steps to validate the adaptive controller performance utilizing one of the experimental test flights for the CLV Ares-I Program.

  17. Flexible Modes Control Using Sliding Mode Observers: Application to Ares I

    NASA Technical Reports Server (NTRS)

    Shtessel, Yuri B.; Hall, Charles E.; Baev, Simon; Orr, Jeb S.

    2010-01-01

    The launch vehicle dynamics affected by bending and sloshing modes are considered. Attitude measurement data that are corrupted by flexible modes could yield instability of the vehicle dynamics. Flexible body and sloshing modes are reconstructed by sliding mode observers. The resultant estimates are used to remove the undesirable dynamics from the measurements, and the direct effects of sloshing and bending modes on the launch vehicle are compensated by means of a controller that is designed without taking the bending and sloshing modes into account. A linearized mathematical model of Ares I launch vehicle was derived based on FRACTAL, a linear model developed by NASA/MSFC. The compensated vehicle dynamics with a simple PID controller were studied for the launch vehicle model that included two bending modes, two slosh modes and actuator dynamics. A simulation study demonstrated stable and accurate performance of the flight control system with the augmented simple PID controller without the use of traditional linear bending filters.

  18. Expendable launch vehicle transportation for the space station

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.

    1988-01-01

    Logistics transportation will be a critical element in determining the Space Station Freedom's level of productivity and possible evolutionary options. The current program utilizes the Space Shuttle as the only logistics support vehicle. Augmentation of the total transportation capability by expendable launch vehicles (ELVs) may be required to meet demanding requirements and provide for enhanced manifest flexibility. The total operational concept from ground operations to final return of support hardware or its disposal is required to determine the ELV's benefits and impacts to the Space Station Freedom program. The characteristics of potential medium and large class ELVs planned to be available in the mid-1990's (both U.S. and international partners' vehicles) indicate a significant range of possible transportation systems with varying degrees of operational support capabilities. The options available for development of a support infrastructure in terms of launch vehicles, logistics carriers, transfer vehicles, and return systems is discussed.

  19. Inflatable Re-Entry Vehicle Experiment (IRVE) Design Overview

    NASA Technical Reports Server (NTRS)

    Hughes, Stephen J.; Dillman, Robert A.; Starr, Brett R.; Stephan, Ryan A.; Lindell, Michael C.; Player, Charles J.; Cheatwood, F. McNeil

    2005-01-01

    Inflatable aeroshells offer several advantages over traditional rigid aeroshells for atmospheric entry. Inflatables offer increased payload volume fraction of the launch vehicle shroud and the possibility to deliver more payload mass to the surface for equivalent trajectory constraints. An inflatable s diameter is not constrained by the launch vehicle shroud. The resultant larger drag area can provide deceleration equivalent to a rigid system at higher atmospheric altitudes, thus offering access to higher landing sites. When stowed for launch and cruise, inflatable aeroshells allow access to the payload after the vehicle is integrated for launch and offer direct access to vehicle structure for structural attachment with the launch vehicle. They also offer an opportunity to eliminate system duplication between the cruise stage and entry vehicle. There are however several potential technical challenges for inflatable aeroshells. First and foremost is the fact that they are flexible structures. That flexibility could lead to unpredictable drag performance or an aerostructural dynamic instability. In addition, durability of large inflatable structures may limit their application. They are susceptible to puncture, a potentially catastrophic insult, from many possible sources. Finally, aerothermal heating during planetary entry poses a significant challenge to a thin membrane. NASA Langley Research Center and NASA's Wallops Flight Facility are jointly developing inflatable aeroshell technology for use on future NASA missions. The technology will be demonstrated in the Inflatable Re-entry Vehicle Experiment (IRVE). This paper will detail the development of the initial IRVE inflatable system to be launched on a Terrier/Orion sounding rocket in the fourth quarter of CY2005. The experiment will demonstrate achievable packaging efficiency of the inflatable aeroshell for launch, inflation, leak performance of the inflatable system throughout the flight regime, structural integrity when exposed to a relevant dynamic pressure and aerodynamic stability of the inflatable system. Structural integrity and structural response of the inflatable will be verified with photogrammetric measurements of the back side of the aeroshell in flight. Aerodynamic stability as well as drag performance will be verified with on board inertial measurements and radar tracking from multiple ground radar stations. The experiment will yield valuable information about zero-g vacuum deployment dynamics of the flexible inflatable structure with both inertial and photographic measurements. In addition to demonstrating inflatable technology, IRVE will validate structural, aerothermal, and trajectory modeling techniques for the inflatable. Structural response determined from photogrammetrics will validate structural models, skin temperature measurements and additional in-depth temperature measurements will validate material thermal performance models, and on board inertial measurements along with radar tracking from multiple ground radar stations will validate trajectory simulation models.

  20. Small planetary missions for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Staehle, R. L.

    1979-01-01

    The paper deals with the concept of a small planetary mission that might be described as one which: (1) focuses on a narrow set of discovery-oriented objectives, (2) utilizes largely existing and proven subsystem capabilities, (3) does not tax future launch vehicle capabilities, and (4) is flexible in terms of mission timing such that it can be easily integrated with launch vehicle schedules. Three small planetary mission concepts are presented: a tour of earth-sun Lagrange regions in search of asteroids which might be gravitationally trapped, a network of spacecraft to search beyond Pluto for a tenth planet; and a probe which could be targeted for infrequent long period 'comets of opportunity' or for a multitude of shorter period comets.

  1. Study for analysis of benefit versus cost of low thrust propulsion system

    NASA Technical Reports Server (NTRS)

    Hamlyn, K. M.; Robertson, R. I.; Rose, L. J.

    1983-01-01

    The benefits and costs associated with placing large space systems (LSS) in operational orbits were investigated, and a flexible computer model for analyzing these benefits and costs was developed. A mission model for LSS was identified that included both NASA/Commercial and DOD missions. This model included a total of 68 STS launches for the NASA/Commercial missions and 202 launches for the DOD missions. The mission catalog was of sufficient depth to define the structure type, mass and acceleration limits of each LSS. Conceptual primary propulsion stages (PPS) designs for orbital transfer were developed for three low thrust LO2/LH2 engines baselined for the study. The performance characteristics for each of these PPS was compared to the LSS mission catalog to create a mission capture. The costs involved in placing the LSS in their operational orbits were identified. The two primary costs were that of the PPS and of the STS launch. The cost of the LSS was not included as it is not a function of the PPS performance. The basic relationships and algorithms that could be used to describe the costs were established. The benefit criteria for the mission model were also defined. These included mission capture, reliability, technical risk, development time, and growth potential. Rating guidelines were established for each parameter. For flexibility, each parameter is assigned a weighting factor.

  2. Hybrid Residual Flexibility/Mass-Additive Method for Structural Dynamic Testing

    NASA Technical Reports Server (NTRS)

    Tinker, M. L.

    2003-01-01

    A large fixture was designed and constructed for modal vibration testing of International Space Station elements. This fixed-base test fixture, which weighs thousands of pounds and is anchored to a massive concrete floor, initially utilized spherical bearings and pendulum mechanisms to simulate Shuttle orbiter boundary constraints for launch of the hardware. Many difficulties were encountered during a checkout test of the common module prototype structure, mainly due to undesirable friction and excessive clearances in the test-article-to-fixture interface bearings. Measured mode shapes and frequencies were not representative of orbiter-constrained modes due to the friction and clearance effects in the bearings. As a result, a major redesign effort for the interface mechanisms was undertaken. The total cost of the fixture design, construction and checkout, and redesign was over $2 million. Because of the problems experienced with fixed-base testing, alternative free-suspension methods were studied, including the residual flexibility and mass-additive approaches. Free-suspension structural dynamics test methods utilize soft elastic bungee cords and overhead frame suspension systems that are less complex and much less expensive than fixed-base systems. The cost of free-suspension fixturing is on the order of tens of thousands of dollars as opposed to millions, for large fixed-base fixturing. In addition, free-suspension test configurations are portable, allowing modal tests to be done at sites without modal test facilities. For example, a mass-additive modal test of the ASTRO-1 Shuttle payload was done at the Kennedy Space Center launch site. In this Technical Memorandum, the mass-additive and residual flexibility test methods are described in detail. A discussion of a hybrid approach that combines the best characteristics of each method follows and is the focus of the study.

  3. Earth-to-orbit reusable launch vehicles: A comparative assessment

    NASA Technical Reports Server (NTRS)

    Chase, R. L.

    1978-01-01

    A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.

  4. Launch flexibility using NLP guidance and remote wind sensing

    NASA Technical Reports Server (NTRS)

    Cramer, Evin J.; Bradt, Jerre E.; Hardtla, John W.

    1990-01-01

    This paper examines the use of lidar wind measurements in the implementation of a guidance strategy for a nonlinear programming (NLP) launch guidance algorithm. The NLP algorithm uses B-spline command function representation for flexibility in the design of the guidance steering commands. Using this algorithm, the guidance system solves a two-point boundary value problem at each guidance update. The specification of different boundary value problems at each guidance update provides flexibility that can be used in the design of the guidance strategy. The algorithm can use lidar wind measurements for on pad guidance retargeting and for load limiting guidance steering commands. Examples presented in the paper use simulated wind updates to correct wind induced final orbit errors and to adjust the guidance steering commands to limit the product of the dynamic pressure and angle-of-attack for launch vehicle load alleviation.

  5. A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2011-01-01

    A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.

  6. Coupled Fluid-Structure Interaction Analysis of Solid Rocket Motor with Flexible Inhibitors

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff; Harris, Robert E.

    2014-01-01

    Flexible inhibitors are generally used in solid rocket motors (SRMs) as a means to control the burning of propellant. Vortices generated by the flow of propellant around the flexible inhibitors have been identified as a driving source of instabilities that can lead to thrust oscillations in launch vehicles. Potential coupling between the SRM thrust oscillations and structural vibration modes is an important risk factor in launch vehicle design. As a means to predict and better understand these phenomena, a multidisciplinary simulation capability that couples the NASA production CFD code, Loci/CHEM, with CFDRC's structural finite element code, CoBi, has been developed. This capability is crucial to the development of NASA's new space launch system (SLS). This paper summarizes the efforts in applying the coupled software to demonstrate and investigate fluid-structure interaction (FSI) phenomena between pressure waves and flexible inhibitors inside reusable solid rocket motors (RSRMs). The features of the fluid and structural solvers are described in detail, and the coupling methodology and interfacial continuity requirements are then presented in a general Eulerian-Lagrangian framework. The simulations presented herein utilize production level CFD with hybrid RANS/LES turbulence modeling and grid resolution in excess of 80 million cells. The fluid domain in the SRM is discretized using a general mixed polyhedral unstructured mesh, while full 3D shell elements are utilized in the structural domain for the flexible inhibitors. Verifications against analytical solutions for a structural model under a steady uniform pressure condition and under dynamic modal analysis show excellent agreement in terms of displacement distribution and eigenmode frequencies. The preliminary coupled results indicate that due to acoustic coupling, the dynamics of one of the more flexible inhibitors shift from its first modal frequency to the first acoustic frequency of the solid rocket motor. This insight could have profound implications for SRM and flexible inhibitor designs for current and future launch vehicles including SLS.

  7. Space Launch System Mission Flexibility Assessment

    NASA Technical Reports Server (NTRS)

    Monk, Timothy; Holladay, Jon; Sanders, Terry; Hampton, Bryan

    2012-01-01

    The Space Launch System (SLS) is envisioned as a heavy lift vehicle that will provide the foundation for future beyond low Earth orbit (LEO) missions. While multiple assessments have been performed to determine the optimal configuration for the SLS, this effort was undertaken to evaluate the flexibility of various concepts for the range of missions that may be required of this system. These mission scenarios include single launch crew and/or cargo delivery to LEO, single launch cargo delivery missions to LEO in support of multi-launch mission campaigns, and single launch beyond LEO missions. Specifically, we assessed options for the single launch beyond LEO mission scenario using a variety of in-space stages and vehicle staging criteria. This was performed to determine the most flexible (and perhaps optimal) method of designing this particular type of mission. A specific mission opportunity to the Jovian system was further assessed to determine potential solutions that may meet currently envisioned mission objectives. This application sought to significantly reduce mission cost by allowing for a direct, faster transfer from Earth to Jupiter and to determine the order-of-magnitude mass margin that would be made available from utilization of the SLS. In general, smaller, existing stages provided comparable performance to larger, new stage developments when the mission scenario allowed for optimal LEO dropoff orbits (e.g. highly elliptical staging orbits). Initial results using this method with early SLS configurations and existing Upper Stages showed the potential of capturing Lunar flyby missions as well as providing significant mass delivery to a Jupiter transfer orbit.

  8. Ares V: Current Status and Future Capabilities

    NASA Technical Reports Server (NTRS)

    Sumrall, Phil

    2009-01-01

    This slide presentation reviews the progress made in the design and development of the Ares V launch vehicle. Included in the presentation are views of the elements of the Ares V, the commonality of the Ares I and V, a chart that shows the progress made in the design of the launcher, description of the current activities around the design and preparation for the Ares V, and a slide describing the prospect of large payload volume and the flexibility that this gives to new space sciences.

  9. Pegasus air-launched space booster

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert E.; Mosier, Marty R.

    The launching of small satellites with the mother- aircraft-launched Pegasus booster yields substantial cost improvements over ground launching and enhances operational flexibility, since it allows launches to be conducted into any orbital inclination. The Pegasus launch vehicle is a three-stage solid-rocket-propelled system with delta-winged first stage. The major components of airborne support equipment, located on the mother aircraft, encompass a launch panel operator console, an electronic pallet, and a pylon adapter. Alternatives to the currently employed B-52 launch platform aircraft have been identified for future use. Attention is given to the dynamic, thermal, and acoustic environments experienced by the payload.

  10. Flexible materials technology

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.

    1980-01-01

    A survey of all presently defined or proposed large space systems indicated an ever increasing demand for flexible components and materials, primarily as a result of the widening disparity between the stowage space of launch vehicles and the size of advanced systems. Typical flexible components and material requirements were identified on the basis of recurrence and/or functional commonality. This was followed by the evaluation of candidate materials and the search for material capabilities which promise to satisfy the postulated requirements. Particular attention was placed on thin films, and on the requirements of deployable antennas. The assessment of the performance of specific materials was based primarily on the failure mode, derived from a detailed failure analysis. In view of extensive on going work on thermal and environmental degradation effects, prime emphasis was placed on the assessment of the performance loss by meteoroid damage. Quantitative data were generated for tension members and antenna reflector materials. A methodology was developed for the representation of the overall materials performance as related to systems service life. A number of promising new concepts for flexible materials were identified.

  11. Automated design and optimization of flexible booster autopilots via linear programming, volume 1

    NASA Technical Reports Server (NTRS)

    Hauser, F. D.

    1972-01-01

    A nonlinear programming technique was developed for the automated design and optimization of autopilots for large flexible launch vehicles. This technique, which resulted in the COEBRA program, uses the iterative application of linear programming. The method deals directly with the three main requirements of booster autopilot design: to provide (1) good response to guidance commands; (2) response to external disturbances (e.g. wind) to minimize structural bending moment loads and trajectory dispersions; and (3) stability with specified tolerances on the vehicle and flight control system parameters. The method is applicable to very high order systems (30th and greater per flight condition). Examples are provided that demonstrate the successful application of the employed algorithm to the design of autopilots for both single and multiple flight conditions.

  12. A view toward future launch vehicles - A civil perspective

    NASA Technical Reports Server (NTRS)

    Darwin, Charles R.; Austin, Gene; Varnado, Lee; Eudy, Glenn

    1989-01-01

    Prospective NASA launch vehicle development efforts, which in addition to follow-on developments of the Space Shuttle encompass the Shuttle-C cargo version, various possible Advanced Launch System (ALS) configurations, and various Heavy Lift Launch System (HLLS) design options. Fully and partially reusable manned vehicle alternatives are also under consideration. In addition to improving on the current Space Shuttle's reliability and flexibility, ALS and HLLV development efforts are expected to concentrate on the reduction of operating costs for the given payload-launch capability.

  13. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.; Wall, John H.; VanZwieten, Tannen S.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. The SLS configurations represent a potentially significant increase in complexity and performance capability when compared with other manned launch vehicles. It was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight disturbance compensation through the use of nonlinear observers driven by acceleration measurements. Envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  14. Air Launch: Examining Performance Potential of Various Configurations and Growth Options

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Philips, Alan

    2013-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there existed a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a point-of-departure configuration, two independent design actions were undertaken. Both configurations utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V (?V) splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight refueling scenario. Results indicate many advantages such as large, relative payload delivery of approximately 47,000 lbm and significant mission flexibility, such as variable launch site inclination and launch window; however, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.

  15. Motivation for Air-Launch: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Kelly, John W.; Rogers, Charles E.; Brierly, Gregory T.; Martin, J Campbell; Murphy, Marshall G.

    2017-01-01

    Air-launch is defined as two or more air-vehicles joined and working together, that eventually separate in flight, and that have a combined performance greater than the sum of the individual parts. The use of the air-launch concept has taken many forms across civil, commercial, and military contexts throughout the history of aviation. Air-launch techniques have been applied for entertainment, movement of materiel and personnel, efficient execution of aeronautical research, increasing aircraft range, and enabling flexible and efficient launch of space vehicles. For each air-launch application identified in the paper, the motivation for that application is discussed.

  16. 76 FR 70695 - Taking and Importing Marine Mammals: U.S. Navy Training in 12 Range Complexes and U.S. Air Force...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-15

    ... regarding the types and amounts of missile and rocket launches that the USAF conducts. DATES: Comments and... missiles and rockets that could be launched over the course of the 5-year rule and indicated that marine... flexibility in the types and amounts of missile and rocket launches that they conduct. NMFS now proposes to...

  17. 77 FR 4917 - Taking and Importing Marine Mammals: U.S. Navy Training in 12 Range Complexes and U.S. Air Force...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ... missile and rocket launches that the USAF conducts. DATES: Effective on February 1, 2012. ADDRESSES... rockets that could be launched over the course of the 5-year rule and indicated that marine mammal take... flexibility in the types and amounts of missile and rocket launches that they conduct. NMFS now amends the...

  18. Lightweight Innovative Solar Array (LISA): Providing Higher Power to Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Carr, John; Fabisinski, Leo; Russell,Tiffany; Smith, Leigh

    2015-01-01

    Affordable and convenient access to electrical power is essential for all spacecraft and is a critical design driver for the next generation of smallsats, including cubesats, which are currently extremely power limited. The Lightweight Innovative Solar Array (LISA), a concept designed, prototyped, and tested at the NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama provides an affordable, lightweight, scalable, and easily manufactured approach for power generation in space. This flexible technology has many wide-ranging applications from serving small satellites to providing abundant power to large spacecraft in GEO and beyond. By using very thin, ultra-flexible solar arrays adhered to an inflatable structure, a large area (and thus large amount of power) can be folded and packaged into a relatively small volume. The LISA array comprises a launch-stowed, orbit-deployed structure on which lightweight photovoltaic devices and, potentially, transceiver elements are embedded. The system will provide a 2.5 to 5 fold increase in specific power generation (Watts/kilogram) coupled with a >2x enhancement of stowed volume (Watts/cubic-meter) and a decrease in cost (dollars/Watt) when compared to state-of-the-art solar arrays.

  19. Non-Axisymmetric Inflatable Pressure Structure (NAIPS) Full-Scale Pressure Test

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Warren, Jerry E.; Watson, Judith J.; Shariff, Khadijah; Makino, Alberto; Yount, Bryan C.

    2017-01-01

    Inflatable space structures have the potential to significantly reduce the required launch volume for large pressure vessels required for exploration applications including habitats, airlocks and tankage. In addition, mass savings can be achieved via the use of high specific strength softgoods materials, and the reduced design penalty from launching the structure in a densely packaged state. Large inclusions however, such as hatches, induce a high mass penalty at the interfaces with the softgoods and in the added rigid structure while reducing the packaging efficiency. A novel, Non-Axisymmetric Inflatable Pressure Structure (NAIPS) was designed and recently tested at NASA Langley Research Center to demonstrate an elongated inflatable architecture that could provide areas of low stress along a principal axis in the surface. These low stress zones will allow the integration of a flexible linear seal that substantially reduces the added mass and volume of a heritage rigid hatch structure. This paper describes the test of the first full-scale engineering demonstration unit (EDU) of the NAIPS geometry and a comparison of the results to finite element analysis.

  20. ESA is preparing the most powerful telecommunications satellite

    NASA Astrophysics Data System (ADS)

    Langereux, P.

    1982-01-01

    The L-Sat Program is currently being undertaken by ESA with a goal towards providing a series of large telecommunications satellites for direct television broadcasting beginning in 1986. The basic satellite design is that of a multipurpose platform capable of supporting a variety of telecommunications and direct broadcasting missions with a payload mass greater than 500 kg and powers of over 2.5 kW in eclipse and 7 kW in sunlight. The satellite, intended for launch with Ariane 4, consists of a three-axis stabilized platform with a large flexible solar array and an integrated propulsion system. The first experimental satellite of the program, L-Sat 1, will be launched into geosynchronous orbit over 19 deg W carrying payloads for direct television broadcasting in Italy, business services, telecommunications between 20 and 30 GHz, and radio propagation experiments at 12, 20 and 30 GHz. Studies have shown L-Sat type satellites to have a market potential of up to 40 satellites by the year 2000, and have indicated potential missions in direct broadcasting to Canada, and Switzerland and Luxembourg.

  1. Space Launch System Ascent Flight Control Design

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Hall, Charles E.

    2014-01-01

    A robust and flexible autopilot architecture for NASA's Space Launch System (SLS) family of launch vehicles is presented. As the SLS configurations represent a potentially significant increase in complexity and performance capability of the integrated flight vehicle, it was recognized early in the program that a new, generalized autopilot design should be formulated to fulfill the needs of this new space launch architecture. The present design concept is intended to leverage existing NASA and industry launch vehicle design experience and maintain the extensibility and modularity necessary to accommodate multiple vehicle configurations while relying on proven and flight-tested control design principles for large boost vehicles. The SLS flight control architecture combines a digital three-axis autopilot with traditional bending filters to support robust active or passive stabilization of the vehicle's bending and sloshing dynamics using optimally blended measurements from multiple rate gyros on the vehicle structure. The algorithm also relies on a pseudo-optimal control allocation scheme to maximize the performance capability of multiple vectored engines while accommodating throttling and engine failure contingencies in real time with negligible impact to stability characteristics. The architecture supports active in-flight load relief through the use of a nonlinear observer driven by acceleration measurements, and envelope expansion and robustness enhancement is obtained through the use of a multiplicative forward gain modulation law based upon a simple model reference adaptive control scheme.

  2. The Magnetospheric Multiscale Constellation

    NASA Technical Reports Server (NTRS)

    Tooley, C. R.; Black, R. K.; Robertson, B. P.; Stone, J. M.; Pope, S. E.; Davis, G. T.

    2015-01-01

    The Magnetospheric Multiscale (MMS) mission is the fourth mission of the Solar Terrestrial Probe (STP) program of the National Aeronautics and Space Administration (NASA). The MMS mission was launched on March 12, 2015. The MMS mission consists of four identically instrumented spin-stabilized observatories which are flown in formation to perform the first definitive study of magnetic reconnection in space. The MMS mission was presented with numerous technical challenges, including the simultaneous construction and launch of four identical large spacecraft with 100 instruments total, stringent electromagnetic cleanliness requirements, closed-loop precision maneuvering and pointing of spinning flexible spacecraft, on-board GPS based orbit determination far above the GPS constellation, and a flight dynamics design that enables formation flying with separation distances as small as 10 km. This paper describes the overall mission design and presents an overview of the design, testing, and early on-orbit operation of the spacecraft systems and instrument suite.

  3. Modeling and Flight Data Analysis of Spacecraft Dynamics with a Large Solar Array Paddle

    NASA Technical Reports Server (NTRS)

    Iwata, Takanori; Maeda, Ken; Hoshino, Hiroki

    2007-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24 2006 and has been operated successfully since then. This satellite has the attitude dynamics characterized by three large flexible structures, four large moving components, and stringent attitude/pointing stability requirements. In particular, it has one of the largest solar array paddles. Presented in this paper are flight data analyses and modeling of spacecraft attitude motion induced by the large solar array paddle. On orbit attitude dynamics was first characterized and summarized. These characteristic motions associated with the solar array paddle were identified and assessed. These motions are thermally induced motion, the pitch excitation by the paddle drive, and the role excitation. The thermally induced motion and the pitch excitation by the paddle drive were modeled and simulated to verify the mechanics of the motions. The control law updates implemented to mitigate the attitude vibrations are also reported.

  4. Japan's launch vehicle program update

    NASA Astrophysics Data System (ADS)

    Tadakawa, Tsuguo

    1987-06-01

    NASDA is actively engaged in the development of H-I and H-II launch vehicle performance capabilities in anticipation of future mission requirements. The H-I has both two-stage and three-stage versions for medium-altitude and geosynchronous orbits, respectively; the restart capability of the second stage affords considerable mission planning flexibility. The H-II vehicle is a two-stage liquid rocket primary propulsion design employing two solid rocket boosters for secondary power; it is capable of launching two-ton satellites into geosynchronous orbit, and reduces manufacture and launch costs by extensively employing off-the-shelf technology.

  5. The Business Side of a Successful Career Practice.

    ERIC Educational Resources Information Center

    VanLier, Vivian

    People launch a private career practice for many reasons. Often the motivation is to seek a working life with more control over--and flexibility relating to--time, freedom, location, work style, client base, family life, etc. Career practitioners who launch a private practice have often worked in the academic, government, military or non-profit…

  6. PLÉIADES: Responsiveness, Flexibility, Reactivity

    NASA Astrophysics Data System (ADS)

    Gabriel-Robez, C.; Lees, R.; Bernard, M.

    2012-08-01

    By the end of 2011, Astrium GEO-Information Services launched Pléiades 1, the first of two identical optical imaging satellites that will be operated on a phased orbit. This satellite system, designed by the French Space Agency, CNES, based upon French Defense specifications, will provide 50-cm products in record time. The overall aim of this paper is to describe the benefits of the innovative features of Pléiades 1 and its operations, so as to assess their combined potential in emergency situations, crisis recovery, regular monitoring or large area mapping. Specific care will be brought to describe the reactivity enabled by the system. Based on real-life examples, the paper will lead the analysis on the two main components of the system. On the one hand, the space segment will be presented through the following characteristics: revisit capacity, agility, acquisition capacity and acquisition scenarios (target, single-pass mosaics, stereo, tristereo, linear monitoring, persistent surveillance). On the other hand, the flexibility of the ground segment will be assessed. The benefits of multiple tasking plans per day, direct tasking capacity, automated processing and on-line ordering and delivering will be illustrated, tested and qualified for applications requiring a high level of responsiveness and reactivity. The presentation will end with a summary of the benefits of the space segment features and the flexibility of the ground segment, fine-tuned to answer both military and civilian / commercial needs. The analysis will be extended in the perspective of the second Pléiades' launch, highlighting the advantages of having two satellites operating on a phased orbit, affording a daily revisit anywhere on Earth, with very high resolution.

  7. Habitation Concepts and Tools for Asteroid Missions and Commercial Applications

    NASA Technical Reports Server (NTRS)

    Smitherman, David

    2010-01-01

    In 2009 studies were initiated in response to the Augustine Commission s review of the Human Spaceflight Program to examine the feasibility of additional options for space exploration beyond the lunar missions planned in the Constellation Program. One approach called a Flexible Path option included possible human missions to near-Earth asteroids. This paper presents an overview of possible asteroid missions with emphasis on the habitation options and vehicle configurations conceived for the crew excursion vehicles. One launch vehicle concept investigated for the Flexible Path option was to use a dual launch architecture that could serve a wide variety of exploration goals. The dual launch concept used two medium sized heavy lift launch vehicles for lunar missions as opposed to the single Saturn V architecture used for the Apollo Program, or the one-and-a-half vehicle Ares I / Ares V architecture proposed for the Constellation Program. This dual launch approach was studied as a Flexible Path option for lunar missions and for possible excursions to other destinations like geosynchronous earth orbiting satellites, Lagrange points, and as presented in this paper, asteroid rendezvous. New habitation and exploration systems for the crew are presented that permit crew sizes from 2 to 4, and mission durations from 100 to 360 days. Vehicle configurations are presented that include habitation systems and tools derived from International Space Station (ISS) experience and new extra-vehicular activity tools for asteroid exploration, Figure 1. Findings from these studies and as presented in this paper indicate that missions to near-Earth asteroids appear feasible in the near future using the dual launch architecture, the technologies under development from the Constellation Program, and systems derived from the current ISS Program. In addition, the capabilities derived from this approach that are particularly beneficial to the commercial sector include human access to geosynchronous orbit and the Lagrange points with new tools for satellite servicing and in-space assembly.

  8. On the accuracy of modelling the dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Diarra, C. M.; Bainum, P. M.

    1985-01-01

    Proposed space missions will require large scale, light weight, space based structural systems. Large space structure technology (LSST) systems will have to accommodate (among others): ocean data systems; electronic mail systems; large multibeam antenna systems; and, space based solar power systems. The structures are to be delivered into orbit by the space shuttle. Because of their inherent size, modelling techniques and scaling algorithms must be developed so that system performance can be predicted accurately prior to launch and assembly. When the size and weight-to-area ratio of proposed LSST systems dictate that the entire system be considered flexible, there are two basic modeling methods which can be used. The first is a continuum approach, a mathematical formulation for predicting the motion of a general orbiting flexible body, in which elastic deformations are considered small compared with characteristic body dimensions. This approach is based on an a priori knowledge of the frequencies and shape functions of all modes included within the system model. Alternatively, finite element techniques can be used to model the entire structure as a system of lumped masses connected by a series of (restoring) springs and possibly dampers. In addition, a computational algorithm was developed to evaluate the coefficients of the various coupling terms in the equations of motion as applied to the finite element model of the Hoop/Column.

  9. Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat

    NASA Technical Reports Server (NTRS)

    Stiltner, Brandon C.; Diedrich, Ben; Becker, Chris; Bertaska, Ivan; Heaton, Andrew; Orphee, Juan

    2017-01-01

    This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6-Unit cubesat with an 86-square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2019. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout’s mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail’s structural modes.

  10. Cold Gas Reaction Control System for the Near Earth Asteroid Scout CubeSat

    NASA Technical Reports Server (NTRS)

    Stiltner, Brandon C.; Diedrich, Ben; Orphee, Juan; Heaton, Andrew; Becker, Chris; Bertaska, Ivan

    2017-01-01

    This paper describes the Attitude Control System (ACS) for the Near Earth Asteroid (NEA) Scout cubesat with particular focus on the Reaction Control System (RCS). NEA Scout is a 6U cubesat with an 86 square-meter solar sail. NEA Scout will launch on Space Launch System (SLS) Exploration Mission 1 (EM-1), currently scheduled to launch in 2018. The spacecraft will rendezvous with an asteroid after a two year journey, and will conduct science imagery. The ACS consists of three major actuating subsystems: a Reaction Wheel (RW) control system, a Reaction Control System (RCS), and an Active Mass Translator (AMT) system. The three subsystems allow for a wide range of spacecraft attitude control capabilities, needed for the different phases of the NEA-Scout mission. The RCS performs a number of critical functions during NEA Scout's mission. These requirements are described and the performance for achieving these requirements is shown. Moreover, NEA Scout employs a solar sail for long-duration propulsion. Solar sails are large, flexible structures that typically have low bending-mode frequencies. This paper demonstrates a robust performance while avoiding excitation of the sail's structural modes.

  11. A space exploration strategy that promotes international and commercial participation

    NASA Astrophysics Data System (ADS)

    Arney, Dale C.; Wilhite, Alan W.; Chai, Patrick R.; Jones, Christopher A.

    2014-01-01

    NASA has created a plan to implement the Flexible Path strategy, which utilizes a heavy lift launch vehicle to deliver crew and cargo to orbit. In this plan, NASA would develop much of the transportation architecture (launch vehicle, crew capsule, and in-space propulsion), leaving the other in-space elements open to commercial and international partnerships. This paper presents a space exploration strategy that reverses that philosophy, where commercial and international launch vehicles provide launch services. Utilizing a propellant depot to aggregate propellant on orbit, smaller launch vehicles are capable of delivering all of the mass necessary for space exploration. This strategy has benefits to the architecture in terms of cost, schedule, and reliability.

  12. Reduced Flexibility in Processing Titan IV Space Launch Vehicles at Cape Canaveral Air Force Station.

    DTIC Science & Technology

    1988-04-01

    processing Titan expendable launch vehicles. This study explores the history of those decisions and their effects. It identifies the throughput...HIGH ELL 5PIF ERST BAY TITANI SAM aL’L FIGURE 1.1 SOLID MOTOR ASSEMBLY BUILDING Therefore, DOD decided to convert two of the four Titan solid rocket...required to process a component is based on a 22-year history of assembling and launching Titan vehicles. During this time, the contractor has become

  13. A Study of Flexible Composites for Expandable Space Structures

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    2016-01-01

    Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.

  14. Prepreg and Melt Infiltration Technology Developed for Affordable, Robust Manufacturing of Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Petko, Jeannie F.

    2004-01-01

    Affordable fiber-reinforced ceramic matrix composites with multifunctional properties are critically needed for high-temperature aerospace and space transportation applications. These materials have various applications in advanced high-efficiency and high-performance engines, airframe and propulsion components for next-generation launch vehicles, and components for land-based systems. A number of these applications require materials with specific functional characteristics: for example, thick component, hybrid layups for environmental durability and stress management, and self-healing and smart composite matrices. At present, with limited success and very high cost, traditional composite fabrication technologies have been utilized to manufacture some large, complex-shape components of these materials. However, many challenges still remain in developing affordable, robust, and flexible manufacturing technologies for large, complex-shape components with multifunctional properties. The prepreg and melt infiltration (PREMI) technology provides an affordable and robust manufacturing route for low-cost, large-scale production of multifunctional ceramic composite components.

  15. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  16. Strain Monitoring of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Litteken, Douglas A.

    2017-01-01

    One of the biggest challenges facing NASA's deep space exploration goals is structural mass. A long duration transit vehicle on a journey to Mars, for example, requires a large internal volume for cargo, supplies and crew support. As with all space structures, a large pressure vessel is not enough. The vehicle also requires thermal, micro-meteoroid, and radiation protection, a navigation and control system, a propulsion system, and a power system, etc. As vehicles get larger, their associated systems also get larger and more complex. These vehicles require larger lift capacities and force the mission to become extremely costly. In order to build large volume habitable vehicles, with only minimal increases in launch volume and mass, NASA is developing lightweight structures. Lightweight structures are made from non-metallic materials including graphite composites and high strength fabrics and could provide similar or better structural capability than metals, but with significant launch volume and mass savings. Fabric structures specifically, have been worked by NASA off and on since its inception, but most notably in the 1990's with the TransHAB program. These TransHAB developed structures use a layered material approach to form a pressure vessel with integrated thermal and micro-meteoroid and orbital debris (MMOD) protection. The flexible fabrics allow the vessel to be packed in a small volume during launch and expand into a much larger volume once in orbit. NASA and Bigelow Aerospace recently installed the first human-rated inflatable module on the International Space Station (ISS), known as the Bigelow Expandable Activity Module (BEAM) in May of 2016. The module provides a similar internal volume to that of an Orbital ATK Cygnus cargo vehicle, but with a 77% launch volume savings. As lightweight structures are developed, testing methods are vital to understanding their behavior and validating analytical models. Common techniques can be applied to fabric materials, such as tensile testing, fatigue testing, and shear testing, but common measurement techniques cannot be used on fabric. Measuring strain in a material and during a test is a critical parameter for an engineer to monitor the structure during the test and correlate to an analytical model. The ability to measure strain in fabric structures is a challenge for NASA. Foil strain gauges, for example, are commonplace on metallic structures testing, but are extremely difficult to interface with a fabric substrate. New strain measuring techniques need to be developed for use with fabric structures. This paper investigates options for measuring strain in fabric structures for both ground testing and in-space structural health monitoring. It evaluates current commercially available options and outlines development work underway to build custom measurement solutions for NASA's fabric structures.

  17. Spaceplane Technology and Research (STAR)

    DTIC Science & Technology

    1984-08-01

    autonomy, flexibility , maneuverability, responsiveness, survivability and cost- effectiveness required of military aerospace operations as the result...orbit to simulate desired trajectory. Determine the ablative behavior and its effect on trajectory for various C/C composite materials. Expected... the 747-200F would potentially be the most flexible and cost- effective launch system. The associated use of stage-stations appears especially cost

  18. Space Station Freedom solar array containment box mechanisms

    NASA Technical Reports Server (NTRS)

    Johnson, Mark E.; Haugen, Bert; Anderson, Grant

    1994-01-01

    Space Station Freedom will feature six large solar arrays, called solar array wings, built by Lockheed Missiles & Space Company under contract to Rockwell International, Rocketdyne Division. Solar cells are mounted on flexible substrate panels which are hinged together to form a 'blanket.' Each wing is comprised of two blankets supported by a central mast, producing approximately 32 kW of power at beginning-of-life. During launch, the blankets are fan-folded and compressed to 1.5 percent of their deployed length into containment boxes. This paper describes the main containment box mechanisms designed to protect, deploy, and retract the solar array blankets: the latch, blanket restraint, tension, and guidewire mechanisms.

  19. Innovative Approaches to Space-Based Manufacturing and Rapid Prototyping of Composite Materials

    NASA Technical Reports Server (NTRS)

    Hill, Charles S.

    2012-01-01

    The ability to deploy large habitable structures, construct, and service exploration vehicles in low earth orbit will be an enabling capability for continued human exploration of the solar system. It is evident that advanced manufacturing methods to fabricate replacement parts and re-utilize launch vehicle structural mass by converting it to different uses will be necessary to minimize costs and allow flexibility to remote crews engaged in space travel. Recent conceptual developments and the combination of inter-related approaches to low-cost manufacturing of composite materials and structures are described in context leading to the possibility of on-orbit and space-based manufacturing.

  20. Assessment of Adaptive Guidance for Responsive Launch Vehicles and Spacecraft

    DTIC Science & Technology

    2009-04-29

    Figures 1 Earth centered inertial and launch plumbline coordinate systems . . . . . . . 7 2 Geodetic and geocentric latitude...Dramatically reduced reoccurring costs related to guidance. The same features of the closed-loop ascent guidance that provide operational flexibility...also result in greatly reduced need for human intervention. Thus the operational costs related to ascent guidance could be reduced to minimum

  1. Development of the Architectural Simulation Model for Future Launch Systems and its Application to an Existing Launch Fleet

    NASA Technical Reports Server (NTRS)

    Rabadi, Ghaith

    2005-01-01

    A significant portion of lifecycle costs for launch vehicles are generated during the operations phase. Research indicates that operations costs can account for a large percentage of the total life-cycle costs of reusable space transportation systems. These costs are largely determined by decisions made early during conceptual design. Therefore, operational considerations are an important part of vehicle design and concept analysis process that needs to be modeled and studied early in the design phase. However, this is a difficult and challenging task due to uncertainties of operations definitions, the dynamic and combinatorial nature of the processes, and lack of analytical models and the scarcity of historical data during the conceptual design phase. Ultimately, NASA would like to know the best mix of launch vehicle concepts that would meet the missions launch dates at the minimum cost. To answer this question, we first need to develop a model to estimate the total cost, including the operational cost, to accomplish this set of missions. In this project, we have developed and implemented a discrete-event simulation model using ARENA (a simulation modeling environment) to determine this cost assessment. Discrete-event simulation is widely used in modeling complex systems, including transportation systems, due to its flexibility, and ability to capture the dynamics of the system. The simulation model accepts manifest inputs including the set of missions that need to be accomplished over a period of time, the clients (e.g., NASA or DoD) who wish to transport the payload to space, the payload weights, and their destinations (e.g., International Space Station, LEO, or GEO). A user of the simulation model can define an architecture of reusable or expendable launch vehicles to achieve these missions. Launch vehicles may belong to different families where each family may have it own set of resources, processing times, and cost factors. The goal is to capture the required resource levels of the major launch elements and their required facilities. The model s output can show whether or not a certain architecture of vehicles can meet the launch dates, and if not, how much the delay cost would be. It will also produce aggregate figures of missions cost based on element procurement cost, processing cost, cargo integration cost, delay cost, and mission support cost. One of the most useful features of this model is that it is stochastic where it accepts statistical distributions to represent the processing times mimicking the stochastic nature of real systems.

  2. DTFM Modeling and Analysis Method for Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Fang, Hou-Fei; Lou, Michael; Broduer, Steve (Technical Monitor)

    2001-01-01

    Gossamer systems are mostly composed of support structures formed by highly flexible, long tubular elements and pre-tensioned thin-film membranes. These systems offer order-of-magnitude reductions in mass and launch volume and will revolutionize the architecture and design of space flight systems that require large in-orbit configurations and apertures. A great interest has been generated in recent years to fly gossamer systems on near-term and future space missions. Modeling and analysis requirements for gossamer structures are unique. Simulation of in-space performance issues of gossamer structures, such as inflation deployment of flexible booms, formation and effects of wrinkle in tensioned membranes, synthesis of tubular and membrane elements into a complete structural system, usually cannot be accomplished by using the general-purpose finite-element structural analysis codes. This has led to the need of structural modeling and analysis capabilities specifically suitable for gossamer structures. The Distributed Transfer Function Method (DTFM) can potentially meet this urgent need. Additional information is contained in the original extended abstract.

  3. Dynamic Beam Solutions for Real-Time Simulation and Control Development of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Su, Weihua; King, Cecilia K.; Clark, Scott R.; Griffin, Edwin D.; Suhey, Jeffrey D.; Wolf, Michael G.

    2016-01-01

    In this study, flexible rockets are structurally represented by linear beams. Both direct and indirect solutions of beam dynamic equations are sought to facilitate real-time simulation and control development for flexible rockets. The direct solution is completed by numerically integrate the beam structural dynamic equation using an explicit Newmark-based scheme, which allows for stable and fast transient solutions to the dynamics of flexile rockets. Furthermore, in the real-time operation, the bending strain of the beam is measured by fiber optical sensors (FOS) at intermittent locations along the span, while both angular velocity and translational acceleration are measured at a single point by the inertial measurement unit (IMU). Another study in this paper is to find the analytical and numerical solutions of the beam dynamics based on the limited measurement data to facilitate the real-time control development. Numerical studies demonstrate the accuracy of these real-time solutions to the beam dynamics. Such analytical and numerical solutions, when integrated with data processing and control algorithms and mechanisms, have the potential to increase launch availability by processing flight data into the flexible launch vehicle's control system.

  4. Modeling and Simulation of Variable Mass, Flexible Structures

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    The advent of the new Ares I launch vehicle has highlighted the need for advanced dynamic analysis tools for variable mass, flexible structures. This system is composed of interconnected flexible stages or components undergoing rapid mass depletion through the consumption of solid or liquid propellant. In addition to large rigid body configuration changes, the system simultaneously experiences elastic deformations. In most applications, the elastic deformations are compatible with linear strain-displacement relationships and are typically modeled using the assumed modes technique. The deformation of the system is approximated through the linear combination of the products of spatial shape functions and generalized time coordinates. Spatial shape functions are traditionally composed of normal mode shapes of the system or even constraint modes and static deformations derived from finite element models of the system. Equations of motion for systems undergoing coupled large rigid body motion and elastic deformation have previously been derived through a number of techniques [1]. However, in these derivations, the mode shapes or spatial shape functions of the system components were considered constant. But with the Ares I vehicle, the structural characteristics of the system are changing with the mass of the system. Previous approaches to solving this problem involve periodic updates to the spatial shape functions or interpolation between shape functions based on system mass or elapsed mission time. These solutions often introduce misleading or even unstable numerical transients into the system. Plus, interpolation on a shape function is not intuitive. This paper presents an approach in which the shape functions are held constant and operate on the changing mass and stiffness matrices of the vehicle components. Each vehicle stage or component finite element model is broken into dry structure and propellant models. A library of propellant models is used to describe the distribution of mass in the fuel tank or Solid Rocket Booster (SRB) case for various propellant levels. Based on the mass consumed by the liquid engine or SRB, the appropriate propellant model is coupled with the dry structure model for the stage. Then using vehicle configuration data, the integrated vehicle model is assembled and operated on by the constant system shape functions. The system mode shapes and frequencies can then be computed from the resulting generalized mass and stiffness matrices for that mass configuration. The rigid body mass properties of the vehicle are derived from the integrated vehicle model. The coupling terms between the vehicle rigid body motion and elastic deformation are also updated from the constant system shape functions and the integrated vehicle model. This approach was first used to analyze variable mass spinning beams and then prototyped into a generic dynamics simulation engine. The resulting code was tested against Crew Launch Vehicle (CLV-)class problems worked in the TREETOPS simulation package and by Wilson [2]. The Ares I System Integration Laboratory (SIL) is currently being developed at the Marshall Space Flight Center (MSFC) to test vehicle avionics hardware and software in a hardware-in-the-loop (HWIL) environment and certify that the integrated system is prepared for flight. The Ares I SIL utilizes the Ares Real-Time Environment for Modeling, Integration, and Simulation (ARTEMIS) tool to simulate the launch vehicle and stimulate avionics hardware. Due to the presence of vehicle control system filters and the thrust oscillation suppression system, which are tuned to the structural characteristics of the vehicle, ARTEMIS must incorporate accurate structural models of the Ares I launch vehicle. The ARTEMIS core dynamics simulation models the highly coupled nature of the vehicle flexible body dynamics, propellant slosh, and vehicle nozzle inertia effects combined with mass and flexible body properties that vary significant with time during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.

  5. A Quasi-Steady Flexible Launch Vehicle Stability Analysis Using Steady CFD with Unsteady Aerodynamic Enhancement

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2011-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin is caused by an undamping of the aerodynamics in one of the lower frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic lineloads derived from steady rigid computational fluid dynamics (CFD). However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers where experiment or unsteady computational aeroelastic (CAE) analysis show a reduced or even negative aerodynamic damping. This paper will present a method of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics. The enhanced formulation uses unsteady CFD to compute the response of selected lower frequency modes. The response is contained in a time history of the vehicle lineloads. A proper orthogonal decomposition of the unsteady aerodynamic lineload response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping and mass matrices. The results of the enhanced quasi-static aeroelastic stability analysis are compared with the damping and frequency computed from unsteady CAE analysis and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady CAE analysis.

  6. Life Support Filtration System Trade Study for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    Agui, Juan H.; Perry, Jay L.

    2017-01-01

    The National Aeronautics and Space Administrations (NASA) technical developments for highly reliable life support systems aim to maximize the viability of long duration deep space missions. Among the life support system functions, airborne particulate matter filtration is a significant driver of launch mass because of the large geometry required to provide adequate filtration performance and because of the number of replacement filters needed to a sustain a mission. A trade analysis incorporating various launch, operational and maintenance parameters was conducted to investigate the trade-offs between the various particulate matter filtration configurations. In addition to typical launch parameters such as mass, volume and power, the amount of crew time dedicated to system maintenance becomes an increasingly crucial factor for long duration missions. The trade analysis evaluated these parameters for conventional particulate matter filtration technologies and a new multi-stage particulate matter filtration system under development by NASAs Glenn Research Center. The multi-stage filtration system features modular components that allow for physical configuration flexibility. Specifically, the filtration system components can be configured in distributed, centralized, and hybrid physical layouts that can result in considerable mass savings compared to conventional particulate matter filtration technologies. The trade analysis results are presented and implications for future transit and surface missions are discussed.

  7. Mode Selection Techniques in Variable Mass Flexible Body Modeling

    NASA Technical Reports Server (NTRS)

    Quiocho, Leslie J.; Ghosh, Tushar K.; Frenkel, David; Huynh, An

    2010-01-01

    In developing a flexible body spacecraft simulation for the Launch Abort System of the Orion vehicle, when a rapid mass depletion takes place, the dynamics problem with time varying eigenmodes had to be addressed. Three different techniques were implemented, with different trade-offs made between performance and fidelity. A number of technical issues had to be solved in the process. This paper covers the background of the variable mass flexibility problem, the three approaches to simulating it, and the technical issues that were solved in formulating and implementing them.

  8. Orbital Debris Impact Damage to Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Robinson, Jennifer H.

    1998-01-01

    In an effort by the National Aeronautics and Space Administration (NASA), hypervelocity impact tests were performed on thermal protection systems (TPS) applied on the external surfaces of reusable launch vehicles (RLV) to determine the potential damage from orbital debris impacts. Three TPS types were tested, bonded to composite structures representing RLV fuel tank walls. The three heat shield materials tested were Alumina-Enhanced Thermal Barrier-12 (AETB-12), Flexible Reusable Surface Insulation (FRSI), and Advanced Flexible Reusable Surface Insulation (AFRSI). Using this test data, predictor equations were developed for the entry hole diameters in the three TPS materials, with correlation coefficients ranging from 0.69 to 0.86. Possible methods are proposed for approximating damage occurring at expected orbital impact velocities higher than tested, with references to other published work.

  9. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being studied at Langley; it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission flexibility restraints.

  10. Airbreathing Hypersonic Vision-Operational-Vehicles Design Matrix

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Pegg, Robert J.; Petley, Dennis H.

    1999-01-01

    This paper presents the status of the airbreathing hypersonic airplane and space-access vision-operational-vehicle design matrix, with emphasis on horizontal takeoff and landing systems being, studied at Langley, it reflects the synergies and issues, and indicates the thrust of the effort to resolve the design matrix including Mach 5 to 10 airplanes with global-reach potential, pop-up and dual-role transatmospheric vehicles and airbreathing launch systems. The convergence of several critical systems/technologies across the vehicle matrix is indicated. This is particularly true for the low speed propulsion system for large unassisted horizontal takeoff vehicles which favor turbines and/or perhaps pulse detonation engines that do not require LOX which imposes loading concerns and mission Flexibility restraints.

  11. Space X-3 Social Media Tour of KSC Facilities

    NASA Image and Video Library

    2014-03-14

    CAPE CANAVERAL, Fla. – A group of news media and social media tweeters toured the Launch Abort System Facility and viewed the launch abort system for the Orion spacecraft at NASA's Kennedy Space Center in Florida. Speaking to the group is Scott Wilson, manager of Production Operations for the Orion Program. The group also toured the Launch Control Center and Vehicle Assembly Building, legacy facilities that are being upgraded by the Ground Systems Development and Operations Program at Kennedy to prepare for processing and launch of NASA's Space Launch System and Orion spacecraft. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  12. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is charged with delivering a new capability for human and scientific exploration beyond Earth orbit. The SLS also will provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130 t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and 21st Century Ground Systems programs are working together to create streamlined, affordable operations for sustainable exploration.

  13. Launching applications on compute and service processors running under different operating systems in scalable network of processor boards with routers

    DOEpatents

    Tomkins, James L [Albuquerque, NM; Camp, William J [Albuquerque, NM

    2009-03-17

    A multiple processor computing apparatus includes a physical interconnect structure that is flexibly configurable to support selective segregation of classified and unclassified users. The physical interconnect structure also permits easy physical scalability of the computing apparatus. The computing apparatus can include an emulator which permits applications from the same job to be launched on processors that use different operating systems.

  14. Photogrammetry and Videogrammetry Methods for Solar Sails and Other Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Black, Jonathan T.; Pappa, Richard S.

    2004-01-01

    Ultra-lightweight and inflatable gossamer space structures are designed to be tightly packaged for launch, then deploy or inflate once in space. These properties will allow for in-space construction of very large structures 10 to 1000 meters in size such as solar sails, inflatable antennae, and space solar power stations using a single launch. Solar sails are of particular interest because of their potential for propellantless propulsion. Gossamer structures do, however, have significant complications. Their low mass and high flexibility make them very difficult to test on the ground. The added mass and stiffness of attached measurement devices can significantly alter the static and dynamic properties of the structure. This complication necessitates an alternative approach for characterization. This paper discusses the development and application of photogrammetry and videogrammetry methods for the static and dynamic characterization of gossamer structures, as four specific solar sail applications demonstrate. The applications prove that high-resolution, full-field, non-contact static measurements of solar sails using dot projection photogrammetry are possible as well as full-field, noncontact, dynamic characterization using dot projection videogrammetry.

  15. Mission and Implementation of an Affordable Lunar Return

    NASA Technical Reports Server (NTRS)

    Spudis, Paul; Lavoie, Anthony

    2010-01-01

    We present an architecture that establishes the infrastructure for routine space travel by taking advantage of the Moon's resources, proximity and accessibility. We use robotic assets on the Moon that are teleoperated from Earth to prospect, test, demonstrate and produce water from lunar resources before human arrival. This plan is affordable, flexible and not tied to any specific launch vehicle solution. Individual surface pieces are small, permitting them to be deployed separately on small launchers or combined together on single large launchers. Schedule is our free variable; even under highly constrained budgets, the architecture permits this program to be continuously pursued using small, incremental, cumulative steps. The end stage is a fully functional, human-tended lunar outpost capable of producing 150 metric tonnes of water per year enough to export water from the Moon and create a transportation system that allows routine access to all of cislunar space. This cost-effective lunar architecture advances technology and builds a sustainable transportation infrastructure. By eliminating the need to launch everything from the surface of the Earth, we fundamentally change the paradigm of spaceflight.

  16. Near-term Horizontal Launch for Flexible Operations: Results of the DARPA/NASA Horizontal Launch Study

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Wilhite, Alan W.; Schaffer, Mark G.; Huebner, Lawrence D.; Voland, Randall T.; Voracek, David F.

    2012-01-01

    Horizontal launch has been investigated for 60 years by over 130 different studies. During this time only one concept, Pegasus, has ever been in operation. The attractiveness of horizontal launch is the capability to provide a "mobile launch pad" that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and provide precise placement for orbital intercept, rendezvous, or reconnaissance. A jointly sponsored study by DARPA and NASA, completed in 2011, explored the trade space of horizontal launch system concepts which included an exhaustive literature review of the past 70 years. The Horizontal Launch Study identified potential near- and mid-term concepts capable of delivering 15,000 lb payloads to a 28.5 due East inclination, 100 nautical-mile low-Earth orbit. Results are presented for a range of near-term system concepts selected for their availability and relatively low design, development, test, and evaluation (DDT&E) costs. This study identified a viable low-cost development path forward to make a robust and resilient horizontal launch capability a reality.

  17. Wireless Instrumentation Use on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  18. Cutting More than Metal: Breaking Through the Development Cycle

    NASA Technical Reports Server (NTRS)

    Singer, Christopher E.; Onken, Jay

    2014-01-01

    NASA is advancing a new development approach and new technologies in the design construction, and testing of the next great launch vehicle for space exploration. The ability to use these new tools is made possible by a learning culture able to embrace innovation, flexibility, and prudent risk tolerance, while retaining the hard-won lessons learned through the successes and failures of the past. This paper provides an overview of the Marshall Space Flight Center's new approach to launch vehicle development, as well as examples of how that approach has been leveraged by NASA's Space Launch System (SLS) Program to achieve its key goals to safety, affordability, and sustainability.

  19. Polyimide/Carbon Nanotube Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Delozier, Donavon M.; Connell, John W.; Watson, Kent A.

    2004-01-01

    Low color, space environmentally durable polymeric films with sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have potential applications on large, deployable, ultra-light weight Gossamer spacecraft as thin film membranes on antennas, solar sails, thermal/optical coatings, multi-layer insulation blankets, etc.. The challenge has been to develop a method to impart robust electrical conductivity into these materials without increasing solar absorptivity (alpha ) or decreasing optical transparency or film flexibility. Since these spacecraft will require significant compaction prior to launch, the film portion of the spacecraft will require folding. The state-of-the-art clear, conductive coating (e.g. indium-tin-oxide, ITO) is brittle and cannot tolerate folding. In this report, doping a polymer with single-walled carbon nanotubes (SWNTs) using two different methods afforded materials with good flexibility and surface conductivities in the range sufficient for ESC mitigation. A coating method afforded materials with minimal effects on the mechanical, optical, and thermo-optical properties as compared to dispersal of SWNTs in the matrix. The chemistry and physical properties of these nanocomposites are discussed.

  20. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    NASA Astrophysics Data System (ADS)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  1. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  2. Heavy Lift Launch Vehicles for 1995 and Beyond

    NASA Technical Reports Server (NTRS)

    Toelle, R. (Compiler)

    1985-01-01

    A Heavy Lift Launch Vehicle (HLLV) designed to deliver 300,000 lb to a 540 n mi circular polar orbit may be required to meet national needs for 1995 and beyond. The vehicle described herein can accommodate payload envelopes up to 50 ft diameter by 200 ft in length. Design requirements include reusability for the more expensive components such as avionics and propulsion systems, rapid launch turnaround time, minimum hardware inventory, stage and component flexibility and commonality, and low operational costs. All ascent propulsion systems utilize liquid propellants, and overall launch vehicle stack height is minimized while maintaining a reasonable vehicle diameter. The ascent propulsion systems are based on the development of a new liquid oxygen/hydrocarbon booster engine and liquid oxygen/liquid hydrogen upper stage engine derived from today's SSME technology. Wherever possible, propulsion and avionics systems are contained in reusable propulsion/avionics modules that are recovered after each launch.

  3. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Monk, Timothy; Feldman, Stuart

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. NASA is working diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond LEO large ]scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decisionmaking framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing FOM-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  4. Complex Decision-Making Applications for the NASA Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry; Flores, Tim; Hundley, Jason; Feldman, Stuart; Monk, Timothy

    2012-01-01

    The Space Shuttle program is ending and elements of the Constellation Program are either being cancelled or transitioned to new NASA exploration endeavors. The National Aeronautics and Space Administration (NASA) has worked diligently to select an optimum configuration for the Space Launch System (SLS), a heavy lift vehicle that will provide the foundation for future beyond low earth orbit (LEO) large-scale missions for the next several decades. Thus, multiple questions must be addressed: Which heavy lift vehicle will best allow the agency to achieve mission objectives in the most affordable and reliable manner? Which heavy lift vehicle will allow for a sufficiently flexible exploration campaign of the solar system? Which heavy lift vehicle configuration will allow for minimizing risk in design, test, build and operations? Which heavy lift vehicle configuration will be sustainable in changing political environments? Seeking to address these questions drove the development of an SLS decision-making framework. From Fall 2010 until Spring 2011, this framework was formulated, tested, fully documented, and applied to multiple SLS vehicle concepts at NASA from previous exploration architecture studies. This was a multistep process that involved performing figure of merit (FOM)-based assessments, creating Pass/Fail gates based on draft threshold requirements, performing a margin-based assessment with supporting statistical analyses, and performing sensitivity analysis on each. This paper discusses the various methods of this process that allowed for competing concepts to be compared across a variety of launch vehicle metrics. The end result was the identification of SLS launch vehicle candidates that could successfully meet the threshold requirements in support of the SLS Mission Concept Review (MCR) milestone.

  5. Space Launch System (SLS) Safety, Mission Assurance, and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    May, Todd

    2013-01-01

    SLS Driving Objectives: I. Safe: a) Human-rated to provide safe and reliable systems for human missions. b) Protecting the public, NASA workforce, high-value equipment and property, and the environment from potential harm. II. Affordable: a) Maximum use of common elements and existing assets, infrastructure, and workforce. b) Constrained budget environment. c) Competitive opportunities for affordability on-ramps. III. Sustainable: a) Initial capability: 70 metric tons (t), 2017-2021. 1) Serves as primary transportation for Orion and exploration missions. 2) Provides back-up capability for crew/cargo to ISS. b) Evolved capability: 105 t and 130 t, post-2021. 1) Offers large volume for science missions and payloads. 2) Modular and flexible, right-sized for mission requirements.

  6. Study on launch scheme of space-net capturing system.

    PubMed

    Gao, Qingyu; Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme.

  7. IV&V Project Assessment Process Validation

    NASA Technical Reports Server (NTRS)

    Driskell, Stephen

    2012-01-01

    The Space Launch System (SLS) will launch NASA's Multi-Purpose Crew Vehicle (MPCV). This launch vehicle will provide American launch capability for human exploration and travelling beyond Earth orbit. SLS is designed to be flexible for crew or cargo missions. The first test flight is scheduled for December 2017. The SLS SRR/SDR provided insight into the project development life cycle. NASA IV&V ran the standard Risk Based Assessment and Portfolio Based Risk Assessment to identify analysis tasking for the SLS program. This presentation examines the SLS System Requirements Review/System Definition Review (SRR/SDR), IV&V findings for IV&V process validation correlation to/from the selected IV&V tasking and capabilities. It also provides a reusable IEEE 1012 scorecard for programmatic completeness across the software development life cycle.

  8. Reusable aerospace system with horizontal take-off

    NASA Astrophysics Data System (ADS)

    Lozino-Lozinskii, G. E.; Shkadov, L. M.; Plokhikh, V. P.

    1990-10-01

    An aerospace system (ASS) concept aiming at cost reductions for launching facilities, reduction of ground preparations for start and launch phases, flexibility of use, international inspection of space systems, and emergency rescue operations is presented. The concept suggests the utilization of an AN-225 subsonic carrier aircraft capable of carrying up to 250 ton of the external load, external fuel tank, and orbital spacecraft. It includes a horizontal take-off, full reusable or single-use system, orbital aircraft with hypersonic characteristics, the use of an air-breathing jet engine on the first stage of launch, and the utilization of advanced structural materials. Among possible applications for ASS are satellite launches into low supporting orbits, suborbital cargo and passenger flights, scientific and economic missions, and the technical servicing of orbital vehicles and stations.

  9. Study on launch scheme of space-net capturing system

    PubMed Central

    Zhang, Qingbin; Feng, Zhiwei; Tang, Qiangang

    2017-01-01

    With the continuous progress in active debris-removal technology, scientists are increasingly concerned about the concept of space-net capturing system. The space-net capturing system is a long-range-launch flexible capture system, which has great potential to capture non-cooperative targets such as inactive satellites and upper stages. In this work, the launch scheme is studied by experiment and simulation, including two-step ejection and multi-point-traction analyses. The numerical model of the tether/net is based on finite element method and is verified by full-scale ground experiment. The results of the ground experiment and numerical simulation show that the two-step ejection and six-point traction scheme of the space-net system is superior to the traditional one-step ejection and four-point traction launch scheme. PMID:28877187

  10. Subcooling Cryogenic Propellants for Long Duration Space Exploration

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Canavan, Edgar; Johnson, Wesley; Kutter, Bernard; Shull, Jeff

    2009-01-01

    The use of cryogenic propellants such as hydrogen and oxygen is crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles with the flexibility to remain in orbit or travel in space for months, necessitating long-term storage of these cryogens. One powerful technique for easing the challenge of cryogenic fluid storage is to remove energy from tlie cryogenic propellant by isobaricly subcooling them below their normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced. After launch, even with the use of the best insulation systems, heat will leak into the cold cryogenic propellant tank. However, the large heat capacity available in highly subcooled cryogenic propellants allows them to absorb the energy that leaks into the tank until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be no loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot many months with minimal mass penalty. Subcooling technologies for cryogenic propellants would thus provide the Exploration Systems Mission Directorate with an enhanced level of mission flexibility. However, there are a few challenges associated with subcooling cryogenic propellants since compact subcooling ground support equipment has not been demonstrated. This paper explores the beneficial impact of subcooling cryogenic propellants on the launch pad for long-term cryogenic propellant storage in space and proposes a novel method for implementing subcooling of cryogenic propellants for spacecraft such as the Ares V Earth Departure Stage (EDS). Analysis indicates that with a careful strategy to handle the subcooled cryogen it would be possible to store cryogenic propellants in space for many months without venting. A concept for subcooling the cryogenic propellant relatively quickly and inexpensively on the launch pad - the thermodynamic cryogen subcooler (TCS) - will be presented. Important components of the TCS and an associated subcooled cryogen tank (SCT) will be discussed in this paper. Results from a preliminary thermodynamic model of the performance of a TCS for an EDS sized hydrogen tank will also be presented.

  11. Flexible electronics enters the e-reader market

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-02-01

    A company that was spun off from the physics department at the University of Cambridge in the UK 10 years ago released its first product last month. Plastic Logic, founded by Henning Sirringhaus and Richard Friend, launched an electronic reader that can display books, magazines and newspapers on a flexible, lightweight plastic display. The reader commercializes pioneering work first started over 20 years ago at the lab by the two physicists, who are based in the department's optoelectronics group.

  12. 8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF ROOM 101 (ASSEMBLY ROOM) FROM NORTHEAST CORNER SHOWING FLEXIBLE AIR-CONDITIONING DUCT - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. The Virginia Space Flight Center model for an integrated federal/commercial launch range

    NASA Astrophysics Data System (ADS)

    Reed, Billie M.

    2000-01-01

    Until 1998, the federal government has been the predominant purchaser of space launches in the U.S. through the purchase of hardware and services. Historically, the government provided the necessary infrastructure for launches from the federal DoD and NASA launch ranges. In this historical model, the federal government had complete ownership, responsibility, liability, and expense for launch activities. In 1998, commercial space launches accounted for 60% of U.S. launches. This growth in commercial launches has increased the demand for launch range services. However, the expense, complexity of activities, and issues over certification of flight safety have deterred the establishment of purely commercial launch sites, with purely commercial being defined as without benefit of capabilities provided by the federal government. Provisions of the Commercial Space Launch Act have enabled DoD and NASA to support commercial launches from government launch ranges on a cost-reimbursable, non-interference basis. The government provides services including use of facilities, tracking and data services, and range and flight safety. In the 1990's, commercial space market projections indicated strong potential for large numbers of commercial satellites to be launched well into the first decade of the 21st century. In response to this significant opportunity for economic growth, several states established spaceports to provide the services necessary to meet these forecast commercial needs. In 1997, NASA agreed to the establishment of the Virginia Space Flight Center (VSFC), a commercial spaceport, at its Wallops Flight Facility. Under this arrangement, NASA agreed to allow the Virginia Commercial Space Flight Authority (VCSFA) to construct facilities on NASA property and agreed to provide launch range and other services in accordance with the Space Act and Commercial Space Launch Act in support of VSFC launch customers. A partnership relationship between NASA and VCSFA has emerged which pairs the strengths of the established NASA Test Range and the state-sponsored, commercial launch facility provider in an attempt to satisfy the needs for flexible, low-cost access to space. The continued viability of the VSFC and other commercial spaceports depend upon access to a space launch and re-entry range safety system that assures the public safety and is accepted by the public and government as authoritative and reliable. DoD and NASA budget problems have resulted in deteriorating services and reliability at federal ranges and has caused fear with respect to their ability to service the growing commercial market. Numerous high level studies have been conducted or are in progress that illuminate the deficiencies. No federal agency has been provided the necessary funding or authority to address the nations diminishing space launch capability. It is questionable as to whether the U.S. can continue to compete in the global space launch market unless these domestic space access problems are rapidly corrected. This paper discusses a potential solution to the lack of a coordinated response in the U.S. to the challenge presented by the global market for space launch facilities and services. .

  14. Investigation on the Use of Equivalency Factors for the Design and Evaluation of Flexible Airfield Pavements

    DTIC Science & Technology

    2014-03-27

    Operations on Alternate Launch and Recovery Surfaces (No. ESL -TR-83-46). Tyndall Air Force Base, FL: Air Force Engineering and Services Center. U.S...Little, D. N., Thompson, M. R., Terrell, R. L., Epps, J. A., & Barenberg, E. J. (1987). Soil Stabilization for Roadways and Airfields (No. ESL -TR...Alternate Launch and Recovery Surfaces (No. ESL -TR-83-46). Tyndall Air Force Base, FL: Air Force Engineering and Services Center. U.S. Army Corps of

  15. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    DTIC Science & Technology

    2013-09-30

    by incorporating the proposed IR sensors and ground­sky temperature difference algorithm into a tethered balloon borne payload (Figure 6).This...a drop or balloon sonde, which is low cost but cannot be guided, and a typical UAV, which provides guidance flexibility but uses costly avionics and...air space using balloon launches The SmartSonde vehicle was first test flown under a bungee launch system and manual (R/C) control. After several

  16. Expendable launch vehicle transportation for the Space Station

    NASA Technical Reports Server (NTRS)

    Corban, Robert R.

    1988-01-01

    ELVs are presently evaluated as major components of the NASA Space Station's logistics transportation system, augmenting the cargo capacity of the Space Shuttle in support of Station productivity and operational flexibility. The ELVs in question are the Delta II, Atlas II, Titan III, Titan IV, Shuttle-C (unmanned cargo development), European Ariane 5, and Japanese H-II, as well as smaller launch vehicles and OTVs. Early definition of ELV program impacts will preclude the potentially excessive costs of future Space Station modifications.

  17. Flexible-Path Human Exploration

    NASA Technical Reports Server (NTRS)

    Sherwood, B.; Adler, M.; Alkalai, L.; Burdick, G.; Coulter, D.; Jordan, F.; Naderi, F.; Graham, L.; Landis, R.; Drake, B.; hide

    2010-01-01

    In the fourth quarter of 2009 an in-house, multi-center NASA study team briefly examined "Flexible Path" concepts to begin understanding characteristics, content, and roles of potential missions consistent with the strategy proposed by the Augustine Committee. We present an overview of the study findings. Three illustrative human/robotic mission concepts not requiring planet surface operations are described: assembly of very large in-space telescopes in cis-lunar space; exploration of near Earth objects (NEOs); exploration of Mars' moon Phobos. For each, a representative mission is described, technology and science objectives are outlined, and a basic mission operations concept is quantified. A fourth type of mission, using the lunar surface as preparation for Mars, is also described. Each mission's "capability legacy" is summarized. All four illustrative missions could achieve NASA's stated human space exploration objectives and advance human space flight toward Mars surface exploration. Telescope assembly missions would require the fewest new system developments. NEO missions would offer a wide range of deep-space trip times between several months and two years. Phobos exploration would retire several Marsclass risks, leaving another large remainder set (associated with entry, descent, surface operations, and ascent) for retirement by subsequent missions. And extended lunar surface operations would build confidence for Mars surface missions by addressing a complementary set of risks. Six enabling developments (robotic precursors, ISS exploration testbed, heavy-lift launch, deep-space-capable crew capsule, deep-space habitat, and reusable in-space propulsion stage) would apply across multiple program sequence options, and thus could be started even without committing to a specific mission sequence now. Flexible Path appears to be a viable strategy, with meaningful and worthy mission content.

  18. Decentralized formation flying control in a multiple-team hierarchy.

    PubMed

    Mueller, Joseph B; Thomas, Stephanie J

    2005-12-01

    In recent years, formation flying has been recognized as an enabling technology for a variety of mission concepts in both the scientific and defense arenas. Examples of developing missions at NASA include magnetospheric multiscale (MMS), solar imaging radio array (SIRA), and terrestrial planet finder (TPF). For each of these missions, a multiple satellite approach is required in order to accomplish the large-scale geometries imposed by the science objectives. In addition, the paradigm shift of using a multiple satellite cluster rather than a large, monolithic spacecraft has also been motivated by the expected benefits of increased robustness, greater flexibility, and reduced cost. However, the operational costs of monitoring and commanding a fleet of close-orbiting satellites is likely to be unreasonable unless the onboard software is sufficiently autonomous, robust, and scalable to large clusters. This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple team framework. The objective is to divide large clusters into teams of "manageable" size, so that the communication and computation demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using a messaging architecture for networking and threaded applications (MANTA). In this architecture, tasks may be remotely added, removed, or replaced post launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in Matlab, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.

  19. Quality Control Algorithms and Proposed Integration Process for Wind Profilers Used by Launch Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Decker, Ryan; Barbre, Robert E., Jr.

    2011-01-01

    Impact of winds to space launch vehicle include Design, Certification Day-of-launch (DOL) steering commands (1)Develop "knockdowns" of load indicators (2) Temporal uncertainty of flight winds. Currently use databases from weather balloons. Includes discrete profiles and profile pair datasets. Issues are : (1)Larger vehicles operate near design limits during ascent 150 discrete profiles per month 110-217 seasonal 2.0 and 3.5-hour pairs Balloon rise time (one hour) and drift (up to 100 n mi) Advantages of the Alternative approach using Doppler Radar Wind Profiler (DRWP) are: (1) Obtain larger sample size (2) Provide flexibility for assessing trajectory changes due to winds (3) Better representation of flight winds.

  20. Low Earth Orbit Raider (LER) winged air launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Feaux, Karl; Jordan, William; Killough, Graham; Miller, Robert; Plunk, Vonn

    1989-01-01

    The need to launch small payloads into low earth orbit has increased dramatically during the past several years. The Low Earth orbit Raider (LER) is an answer to this need. The LER is an air-launched, winged vehicle designed to carry a 1500 pound payload into a 250 nautical mile orbit. The LER is launched from the back of a 747-100B at 35,000 feet and a Mach number of 0.8. Three staged solid propellant motors offer safe ground and flight handling, reliable operation, and decreased fabrication cost. The wing provides lift for 747 separation and during the first stage burn. Also, aerodynamic controls are provided to simplify first stage maneuvers. The air-launch concept offers many advantages to the consumer compared to conventional methods. Launching at 35,000 feet lowers atmospheric drag and other loads on the vehicle considerably. Since the 747 is a mobile launch pad, flexibility in orbit selection and launch time is unparalleled. Even polar orbits are accessible with a decreased payload. Most importantly, the LER launch service can come to the customer, satellites and experiments need not be transported to ground based launch facilities. The LER is designed to offer increased consumer freedom at a lower cost over existing launch systems. Simplistic design emphasizing reliability at low cost allows for the light payloads of the LER.

  1. 14 CFR 420.19 - Launch site location review-general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... nm orbit Weight class Small Medium Medium large Large 28 degrees inclination * ≤4400 >4400 to ≤11100.... Orbital expendable launch vehicles are further classified by weight class, based on the weight of payload... class of orbital expendable launch vehicles flown from a launch point, the applicant shall demonstrate...

  2. Building flexibility and managing complexity in community mental health: lessons learned in a large urban centre.

    PubMed

    Stergiopoulos, Vicky; Saab, Dima; Francombe Pridham, Kate; Aery, Anjana; Nakhost, Arash

    2018-01-24

    Across many jurisdictions, adults with complex mental health and social needs face challenges accessing appropriate supports due to system fragmentation and strict eligibility criteria of existing services. To support this underserviced population, Toronto's local health authority launched two novel community mental health models in 2014, inspired by Flexible Assertive Community Team principles. This study explores service user and provider perspectives on the acceptability of these services, and lessons learned during early implementation. We purposively sampled 49 stakeholders (staff, physicians, service users, health systems stakeholders) and conducted 17 semi-structured qualitative interviews and 5 focus groups between October 23, 2014 and March 2, 2015, exploring stakeholder perspectives on the newly launched team based models, as well as activities and strategies employed to support early implementation. Interviews and focus groups were audio recorded, transcribed verbatim and analyzed using thematic analysis. Findings revealed wide-ranging endorsement for the two team-based models' success in engaging the target population of adults with complex service needs. Implementation strengths included the broad recognition of existing service gaps, the use of interdisciplinary teams and experienced service providers, broad partnerships and collaboration among various service sectors, training and team building activities. Emerging challenges included lack of complementary support services such as suitable housing, organizational contexts reluctant to embrace change and risk associated with complexity, as well as limited service provider and organizational capacity to deliver evidence-based interventions. Findings identified implementation drivers at the practitioner, program, and system levels, specific to the implementation of community mental health interventions for adults with complex health and social needs. These can inform future efforts to address the health and support needs of this vulnerable population.

  3. Exploration Platform in the Earth-Moon Libration System Based on ISS

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Derechin, Alexander

    2012-01-01

    International Space Station (ISS) industry partners have been working for the past two years on concepts using ISS development methods and residual assets to support a broad range of exploration missions. These concepts have matured along with planning details for NASA's Space Launch System (SLS) and Multi-Purpose Crew Vehicle (MPCV) to allow serious consideration for a platform located in the Earth-Moon Libration (EML) system. This platform would provide a flexible basis for future exploration missions and would significantly reduce costs because it will enable re-use of expensive spacecraft and reduce the total number of launches needed to accomplish these missions. ISS provides a robust set of methods which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. We will show how ISS can be used to reduce risk and improve operational flexibility for missions beyond low earth orbit through the development of a new Exploration Platform based in the EML system. The benefits of using the EML system as a gateway will be presented along with additional details of a lunar exploration mission concept. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. We will show how technology developed for ISS can be evolved and adapted to the new exploration challenge. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Finally, we will describe how the EML Platform could be built and deployed and how International access for crew and cargo could be provided.

  4. The DAWN Project's Transition to Mission Operations: on Its Way to Rendezvous with (4) Vesta and (1) Ceres

    NASA Technical Reports Server (NTRS)

    Rayman, Marc D.; Patel, Keyur C.

    2008-01-01

    Dawn launched on 27 September 2007 on a mission to orbit main belt asteroids (4) Vesta in 2011 - 2012 and (1) Ceres in 2015. The operations team conducted an extensive set of assessments of the engineering subsystems and science instruments during the first 80 days of the mission. A major objective of this period was to thrust for one week with the ion propulsion system to verify flight and ground systems readiness for typical interplanetary operations. Upon successful conclusion of the checkout phase, the interplanetary cruise phase began, most of which will be devoted to thrusting. The flexibility afforded by the use of ion propulsion enabled the project to accommodate a launch postponement of more than 3 months caused by a combination of launch vehicle and tracking system readiness, unfavorable weather, and then conflicts with other launches. Even with the shift in the launch date, all of the science objectives are retained with the same schedule and greater technical margins. This paper describes the conclusion of the development phase of the project, launch operations, and the progress of mission operations.

  5. Kistler reusable vehicle facility design and operational approach

    NASA Astrophysics Data System (ADS)

    Fagan, D.; McInerney, F.; Johnston, C.; Tolson, B.

    Kistler Aerospace Corporation is designing and developing the K-1, the world's first fully reusable aerospace vehicle to deliver satellites into orbit. The K-1 vehicle test program will be conducted in Woomera, Australia, with commercial operations scheduled to begin shortly afterwards. Both stages of the K-1 will return to the launch site utilizing parachutes and airbags for a soft landing within 24 h after launch. The turnaround flow of the two stages will cycle from landing site to a maintenance/refurbishment facility and through the next launch in only 9 days. Payload processing will occur in a separate facility in parallel with recovery and refurbishment operations. The vehicle design and on-board checkout capability of the avionics system eliminates the need for an abundance of ground checkout equipment. Payload integration, vehicle assembly, and K-1 transport to the launch pad will be performed horizontally, simplifying processing and reducing infrastructure requirements. This simple, innovative, and cost-effective approach will allow Kistler to offer its customers flexible, low-cost, and on-demand launch services.

  6. Kennedy Space Center's Command and Control System - "Toasters to Rocket Ships"

    NASA Technical Reports Server (NTRS)

    Lougheed, Kirk; Mako, Cheryle

    2011-01-01

    This slide presentation reviews the history of the development of the command and control system at Kennedy Space Center. From a system that could be brought to Florida in the trunk of a car in the 1950's. Including the development of larger and more complex launch vehicles with the Apollo program where human launch controllers managed the launch process with a hardware only system that required a dedicated human interface to perform every function until the Apollo vehicle lifted off from the pad. Through the development of the digital computer that interfaced with ground launch processing systems with the Space Shuttle program. Finally, showing the future control room being developed to control the missions to return to the moon and Mars, which will maximize the use of Commercial-Off-The Shelf (COTS) hardware and software which was standards based and not tied to a single vendor. The system is designed to be flexible and adaptable to support the requirements of future spacecraft and launch vehicles.

  7. Study of propellant dynamics in a shuttle type launch vehicle

    NASA Technical Reports Server (NTRS)

    Jones, C. E.; Feng, G. C.

    1972-01-01

    A method and an associated digital computer program for evaluating the vibrational characteristics of large liquid-filled rigid wall tanks of general shape are presented. A solution procedure was developed in which slosh modes and frequencies are computed for systems mathematically modeled as assemblages of liquid finite elements. To retain sparsity in the assembled system mass and stiffness matrices, a compressible liquid element formulation was incorporated in the program. The approach taken in the liquid finite element formulation is compatible with triangular and quadrilateral structural finite elements so that the analysis of liquid motion can be coupled with flexible tank wall motion at some future time. The liquid element repertoire developed during the course of this study consists of a two-dimensional triangular element and a three-dimensional tetrahedral element.

  8. Future launchers strategy : the ariane 2010 initiative

    NASA Astrophysics Data System (ADS)

    Bonnal, Ch.; Eymard, M.; Soccodato, C.

    2001-03-01

    With the new cryogenic upper stage ESC, the European heavy launcher Ariane 5+ is perfectly suited to the space market envisioned for the coming decade: flexible to cope with any payload and commercially attractive despite a fierce competition. Current Arianespace projections for the following years 2010-2020 indicate two major trends: satellites may still become larger and may require very different final orbits; today's market largely dominated by GEO may well evolve, influenced by LEO operations such as those linked to ISS or by constellations, to remain competitive, the launch cost has to be reduced. The future generation of the European heavy launcher has therefore to focus on an ever increased flexibility with a drastic cost reduction. Two strategies are possible to achieve this double goal: reusable launchers, either partially or totally, may ease the access to space, limiting costly expendable stages; the assessment of their technical feasibility and financial viability is undergoing in Europe under the Future Launchers Technology Program (FLTP), expendable launchers, derived from the future Ariane 5+. This second way started by CNES at the end of year 1999 is called the "Ariane 2010 initiative". The main objectives are simultaneously an increase of 25% in performance and a reduction of 30% in launch cost wrt Ariane 5+. To achieve these very ambitious goals, numerous major modifications are studied: technical improvements : modifications of the Solid Rocket Boosters may consist in filament winding casing, increased loading, simplified casting, improved grain, simplified Thrust Vector Control, … evolution of the Vulcain engine leading to higher efficiency despite a simplified design, flow separation controlled nozzle extension, propellant management of the two cryogenic stages, simplified electrical system, increased standardization, for instance on flanged interfaces and manufacturing processes, operational improvements such as launch cycle simplification and standardization of the coupled analyses, organizational improvements such as a redistribution of responsibilities for the developments. All these modifications will of course not be implemented together; the aim is to have a coherent catalogue of improvements in order to enable future choices depending on effective requirements. These basic elements will also be considered for the development of other launchers, in the small or medium size range.

  9. Mechanical attachments for flexible blanket TPS

    NASA Astrophysics Data System (ADS)

    Newquist, Charles W.; Anderson, David M.; Shorey, Mark W.; Preedy, Kristina S.

    1998-01-01

    The operability of a flexible blanket thermal protection system for a reusable launch vehicle can be improved by using mechanical attachments instead of adhesive bonding to fasten the thermal protection system to the vehicle structure. Mechanical attachments offer specific benefits by (1) permitting the use of composite or metal structures at or near their maximum temperatures (above the adhesive temperature limit) thereby reducing the required TPS thickness and weight, (2) significantly reducing both the frequency and time for TPS replacement, (3) providing easy access to hatches and the underlying structure, and (4) allowing the attachment of flexible TPS to integral cryotanks, where the TPS/structure interface temperature may fall below the lower temperature of the silicone adhesives.

  10. Dynamics and control of orbiting flexible systems: A formulation with applications

    NASA Astrophysics Data System (ADS)

    Ng, Chun-Ki Alfred

    1992-06-01

    A relatively general formulation for studying the nonlinear dynamics and control of spacecraft with interconnected flexible members in a tree-type topology is developed. The distinctive features of the formulation include the following: (1) It is applicable to a large class of present and future spacecraft with flexible beam and plate type appendages, arbitrary in number and orientation. (2) The members are free to undergo predefined slewing maneuvers to facilitate modelling of sun tracking solar panels and large angle maneuvers of space based robots. (3) Solar radiation induced thermal deformations of flexible members are incorporated in the study. (4) The governing equations of motion are highly nonlinear, nonautonomous and coupled. They are programmed in a modular fashion to help isolate the effects of flexibility, librational motion, thermal deformations, slewing maneuvers, shifting center of mass, higher modes, initial conditions, etc. The first chapter of the thesis presents a general background to the subject and a brief review of the relevant literature on multibody dynamics. This is followed by the kinematics and kinetics of the problem leading to the Lagrangian equations of motion. The third chapter focuses on methodology and development of the computer code suitable for parametric dynamical study and control. Next versatility of the general formulation is illustrated through the analysis of five spacecraft configurations of contemporary interest the next generation of multi-purpose communications spacecraft represented by the INdian SATellite II (IN-SAT II): the First Element Launch (FEL) and the Permanently Manned Configuration (PMC) of the proposed Space Station Freedom; the Mobile Servicing System (MSS) to be developed by Canada for operation on the Space Station; and the Space Flyer Unit (SFU) to be launched by Japan in mid-nineties. In the FEL study, the attention is directed towards interactions between the librational and vibrational dynamics. During the PMC investigation, effects of the thermal deformation and orbital eccentricity are introduced and the microgravity environment around the station center of mass explored. The MSS study assesses pointing errors arising from inplane and out-of-plane maneuvers of the robotic arms. The SFU represents a challenging configuration to assess deployment and retrieval dynamics associated with a solar array. Parameters considered here include symmetry, orientation, and duration of the deployment/retrieval maneuvers. Results of the dynamical study clearly shows that, under critical combinations of parameters, the systems can become unstable. Obviously, the next logical step is to explore control strategies to restore equilibrium. To that end, feasibility of the nonlinear control based on the Feedback Linearization Technique (FLT) is explored with reference to the INSAT II and the MSS. Results show the procedure to be quite promising in controlling the INSAT II over a range of disturbances, including the thermal effects. Application of the control to the MSS reduced the pointing error induced by robotic arm maneuvers significantly. The amount of information obtained through a planned parametric analysis of the system dynamics and control is indeed enormous.

  11. NASA Space Launch System Operations Strategy

    NASA Technical Reports Server (NTRS)

    Singer, Joan A.; Cook, Jerry R.; Singer, Christer E.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is charged with delivering a new capability for human and scientific exploration beyond Earth orbit (BEO). The SLS may also provide backup crew and cargo services to the International Space Station, where astronauts have been training for long-duration voyages to destinations such as asteroids and Mars. For context, the SLS will be larger than the Saturn V, providing 10 percent more thrust at liftoff in its initial 70 metric ton (t) configuration and 20 percent more in its evolved 130-t configuration. The SLS Program knows that affordability is the key to sustainability. This paper will provide an overview of its operations strategy, which includes initiatives to reduce both development and fixed costs by using existing hardware and infrastructure assets to meet a first launch by 2017 within the projected budget. It also has a long-range plan to keep the budget flat using competitively selected advanced technologies that offer appropriate return on investment. To arrive at the launch vehicle concept, the SLS Program conducted internal engineering and business studies that have been externally validated by industry and reviewed by independent assessment panels. A series of design reference missions has informed the SLS operations concept, including launching the Orion Multi-Purpose Crew Vehicle (MPCV) on an autonomous demonstration mission in a lunar flyby scenario in 2017, and the first flight of a crew on Orion for a lunar flyby in 2021. Additional concepts address the processing of very large payloads, using a series of modular fairings and adapters to flexibly configure the rocket for the mission. This paper will describe how the SLS, Orion, and Ground Systems Development and Operations (GSDO) programs are working together to create streamlined, affordable operations for sustainable exploration for decades to come.

  12. Trajectory options for the DART mission

    NASA Astrophysics Data System (ADS)

    Atchison, Justin A.; Ozimek, Martin T.; Kantsiper, Brian L.; Cheng, Andrew F.

    2016-06-01

    This study presents interplanetary trajectory options for the Double Asteroid Redirection Test (DART) spacecraft to reach the near Earth object, Didymos binary system, during its 2022 Earth conjunction. DART represents a component of a joint NASA-ESA mission to study near Earth object kinetic impact deflection. The DART trajectory must satisfy mission objectives for arrival timing, geometry, and lighting while minimizing launch vehicle and spacecraft propellant requirements. Chemical propulsion trajectories are feasible from two candidate launch windows in late 2020 and 2021. The 2020 trajectories are highly perturbed by Earth's orbit, requiring post-launch deep space maneuvers to retarget the Didymos system. Within these windows, opportunities exist for flybys of additional near Earth objects: Orpheus in 2021 or 2007 YJ in 2022. A second impact attempt, in the event that the first impact is unsuccessful, can be added at the expense of a shorter launch window and increased (∼3x) spacecraft ΔV . However, the second impact arrival geometry has poor lighting, high Earth ranges, and would require additional degrees of freedom for solar panel and/or antenna gimbals. A low-thrust spacecraft configuration increases the trajectory flexibility. A solar electric propulsion spacecraft could be affordably launched as a secondary spacecraft in an Earth orbit and spiral out to target the requisite interplanetary departure condition. A sample solar electric trajectory was constructed from an Earth geostationary transfer using a representative 1.5 kW thruster. The trajectory requires 9 months to depart Earth's sphere of influence, after which its interplanetary trajectory includes a flyby of Orpheus and a second Didymos impact attempt. The solar electric spacecraft implementation would impose additional bus design constraints, including large solar arrays that could pose challenges for terminal guidance. On the basis of this study, there are many feasible options for DART to meet its mission design objectives and enable this unique kinetic impact experiment.

  13. Affordable Launch Services using the Sport Orbit Transfer System

    NASA Astrophysics Data System (ADS)

    Goldstein, D. J.

    2002-01-01

    Despite many advances in small satellite technology, a low-cost, reliable method is needed to place spacecraft in their de- sired orbits. AeroAstro has developed the Small Payload ORbit Transfer (SPORTTM) system to provide a flexible low-cost orbit transfer capability, enabling small payloads to use low-cost secondary launch opportunities and still reach their desired final orbits. This capability allows small payloads to effectively use a wider variety of launch opportunities, including nu- merous under-utilized GTO slots. Its use, in conjunction with growing opportunities for secondary launches, enable in- creased access to space using proven technologies and highly reliable launch vehicles such as the Ariane family and the Starsem launcher. SPORT uses a suite of innovative technologies that are packaged in a simple, reliable, modular system. The command, control and data handling of SPORT is provided by the AeroAstro BitsyTM core electronics module. The Bitsy module also provides power regulation for the batteries and optional solar arrays. The primary orbital maneuvering capability is provided by a nitrous oxide monopropellant propulsion system. This system exploits the unique features of nitrous oxide, which in- clude self-pressurization, good performance, and safe handling, to provide a light-weight, low-cost and reliable propulsion capability. When transferring from a higher energy orbit to a lower energy orbit (i.e. GTO to LEO), SPORT uses aerobraking technol- ogy. After using the propulsion system to lower the orbit perigee, the aerobrake gradually slows SPORT via atmospheric drag. After the orbit apogee is reduced to the target level, an apogee burn raises the perigee and ends the aerobraking. At the conclusion of the orbit transfer maneuver, either the aerobrake or SPORT can be shed, as desired by the payload. SPORT uses a simple design for high reliability and a modular architecture for maximum mission flexibility. This paper will discuss the launch system and its application to small satellite launch without increasing risk. It will also discuss relevant issues such as aerobraking operations and radiation issues, as well as existing partnerships and patents for the system.

  14. Launch Vehicle Ascent Trajectory Simulation Using the Program to Optimize Simulated Trajectories II (POST2)

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Shidner, Jeremy D.; Powell, Richard W.; Marsh, Steven M.; Hoffman, James A.; Litton, Daniel K.; Schmitt, Terri L.

    2017-01-01

    The Program to Optimize Simulated Trajectories II (POST2) has been continuously developed for over 40 years and has been used in many flight and research projects. Recently, there has been an effort to improve the POST2 architecture by promoting modularity, flexibility, and ability to support multiple simultaneous projects. The purpose of this paper is to provide insight into the development of trajectory simulation in POST2 by describing methods and examples of various improved models for a launch vehicle liftoff and ascent.

  15. Lockheed Martin Response to the OSP Challenge

    NASA Technical Reports Server (NTRS)

    Sullivan, Robert T.; Munkres, Randy; Megna, Thomas D.; Beckham, Joanne

    2003-01-01

    The Lockheed Martin Orbital Space Plane System provides crew transfer and rescue for the International Space Station more safely and affordably than current human space transportation systems. Through planned upgrades and spiral development, it is also capable of satisfying the Nation's evolving space transportation requirements and enabling the national vision for human space flight. The OSP System, formulated through rigorous requirements definition and decomposition, consists of spacecraft and launch vehicle flight elements, ground processing facilities and existing transportation, launch complex, range, mission control, weather, navigation, communication and tracking infrastructure. The concept of operations, including procurement, mission planning, launch preparation, launch and mission operations and vehicle maintenance, repair and turnaround, is structured to maximize flexibility and mission availability and minimize program life cycle cost. The approach to human rating and crew safety utilizes simplicity, performance margin, redundancy, abort modes and escape modes to mitigate credible hazards that cannot be designed out of the system.

  16. Design and Experimental Verification of Deployable/Inflatable Ultra-Lightweight Structures

    NASA Technical Reports Server (NTRS)

    Pai, P. Frank

    2004-01-01

    Because launch cost of a space structural system is often proportional to the launch volume and mass and there is no significant gravity in space, NASA's space exploration programs and various science missions have stimulated extensive use of ultra-lightweight deployable/inflatable structures. These structures are named here as Highly Flexible Structures (HFSs) because they are designed to undergo large displacements, rotations, and/or buckling without plastic deformation under normal operation conditions. Except recent applications to space structural systems, HFSs have been used in many mechanical systems, civil structures, aerospace vehicles, home appliances, and medical devices to satisfy space limitations, provide special mechanisms, and/or reduce structural weight. The extensive use of HFSs in today's structural engineering reveals the need of a design and analysis software and a database system with design guidelines for practicing engineers to perform computer-aided design and rapid prototyping of HFSs. Also to prepare engineering students for future structural engineering requires a new and easy-to- understand method of presenting the complex mathematics of the modeling and analysis of HFSs. However, because of the high flexibility of HFSs, many unique challenging problems in the modeling, design and analysis of HFSs need to be studied. The current state of research on HFSs needs advances in the following areas: (1) modeling of large rotations using appropriate strain measures, (2) modeling of cross-section warpings of structures, (3) how to account for both large rotations and cross- section warpings in 2D (two-dimensional) and 1D structural theories, (4) modeling of thickness thinning of membranes due to inflation pressure, pretension, and temperature change, (5) prediction of inflated shapes and wrinkles of inflatable structures, (6) development of efficient numerical methods for nonlinear static and dynamic analyses, and (7) filling the gap between geometrically exact elastic analysis and elastoplastic analysis. The objectives of this research project were: (1) to study the modeling, design, and analysis of deployable/inflatable ultra-lightweight structures, (2) to perform numerical and experimental studies on the static and dynamic characteristics and deployability of HFSs, (3) to derive guidelines for designing HFSs, (4) to develop a MATLAB toolbox for the design, analysis, and dynamic animation of HFSs, and (5) to perform experiments and establish an adequate database of post-buckling characteristics of HFSs.

  17. Use of Flexible Body Coupled Loads in Assessment of Day of Launch Flight Loads

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Yunis, Isam; Olds, Aaron D.

    2011-01-01

    A Day of Launch flight loads assessment technique that determines running loads calculated from flexible body coupled loads was developed for the Ares I-X Flight Test Vehicle. The technique was developed to quantify DOL flight loads in terms of structural load components rather than the typically used q-alpha metric to provide more insight into the DOL loads. In this technique, running loads in the primary structure are determined from the combination of quasi-static aerodynamic loads and dynamic loads. The aerodynamic loads are calculated as a function of time using trajectory parameters passed from the DOL trajectory simulation and are combined with precalculated dynamic loads using a load combination equation. The potential change in aerodynamic load due to wind variability during the countdown is included in the load combination. In the event of a load limit exceedance, the technique allows the identification of what load component is exceeded, a quantification of how much the load limit is exceeded, and where on the vehicle the exceedance occurs. This technique was used to clear the Ares I-X FTV for launch on October 28, 2009. This paper describes the use of coupled loads in the Ares I-X flight loads assessment and summarizes the Ares I-X load assessment results.

  18. A cryogenic scan mechanism for use in Fourier transform spectrometers

    NASA Technical Reports Server (NTRS)

    Hakun, Claef F.; Blumenstock, Kenneth A.

    1995-01-01

    This paper describes the requirements, design, assembly and testing of the linear Scan Mechanism (SM) of the Composite Infrared Spectrometer (CIRS) Instrument. The mechanism consists of an over constrained flexible structure, an innovative moving magnet actuator, passive eddy current dampers, a Differential Eddy Current (DEC) sensor, Optical Limit Sensors (OLS), and a launch lock. Although all the components of the mechanism are discussed, the flexible structure and the magnetic components are the primary focus. Several problems encountered and solutions implemented during the development of the scan mechanism are also described.

  19. Using a cloud to replenish parched groundwater modeling efforts.

    PubMed

    Hunt, Randall J; Luchette, Joseph; Schreuder, Willem A; Rumbaugh, James O; Doherty, John; Tonkin, Matthew J; Rumbaugh, Douglas B

    2010-01-01

    Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate "virtual" computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.

  20. Using a cloud to replenish parched groundwater modeling efforts

    USGS Publications Warehouse

    Hunt, Randall J.; Luchette, Joseph; Schreuder, Willem A.; Rumbaugh, James O.; Doherty, John; Tonkin, Matthew J.; Rumbaugh, Douglas B.

    2010-01-01

    Groundwater models can be improved by introduction of additional parameter flexibility and simultaneous use of soft-knowledge. However, these sophisticated approaches have high computational requirements. Cloud computing provides unprecedented access to computing power via the Internet to facilitate the use of these techniques. A modeler can create, launch, and terminate “virtual” computers as needed, paying by the hour, and save machine images for future use. Such cost-effective and flexible computing power empowers groundwater modelers to routinely perform model calibration and uncertainty analysis in ways not previously possible.

  1. ASCENT Program

    NASA Technical Reports Server (NTRS)

    Brown, Richard; Collier, Gary; Heckenlaible, Richard; Dougherty, Edward; Dolenz, James; Ross, Iain

    2012-01-01

    The ASCENT program solves the three-dimensional motion and attendant structural loading on a flexible vehicle incorporating, optionally, an active analog thrust control system, aerodynamic effects, and staging of multiple bodies. ASCENT solves the technical problems of loads, accelerations, and displacements of a flexible vehicle; staging of the upper stage from the lower stage; effects of thrust oscillations on the vehicle; a payload's relative motion; the effect of fluid sloshing on vehicle; and the effect of winds and gusts on the vehicle (on the ground or aloft) in a continuous analysis. The ATTACH ASCENT Loads program reads output from the ASCENT flexible body loads program, and calculates the approximate load indicators for the time interval under consideration. It calculates the load indicator values from pre-launch to the end of the first stage.

  2. Centralized versus distributed propulsion

    NASA Technical Reports Server (NTRS)

    Clark, J. P.

    1982-01-01

    The functions and requirements of auxiliary propulsion systems are reviewed. None of the three major tasks (attitude control, stationkeeping, and shape control) can be performed by a collection of thrusters at a single central location. If a centralized system is defined as a collection of separated clusters, made up of the minimum number of propulsion units, then such a system can provide attitude control and stationkeeping for most vehicles. A distributed propulsion system is characterized by more numerous propulsion units in a regularly distributed arrangement. Various proposed large space systems are reviewed and it is concluded that centralized auxiliary propulsion is best suited to vehicles with a relatively rigid core. These vehicles may carry a number of flexible or movable appendages. A second group, consisting of one or more large flexible flat plates, may need distributed propulsion for shape control. There is a third group, consisting of vehicles built up from multiple shuttle launches, which may be forced into a distributed system because of the need to add additional propulsion units as the vehicles grow. The effects of distributed propulsion on a beam-like structure were examined. The deflection of the structure under both translational and rotational thrusts is shown as a function of the number of equally spaced thrusters. When two thrusters only are used it is shown that location is an important parameter. The possibility of using distributed propulsion to achieve minimum overall system weight is also examined. Finally, an examination of the active damping by distributed propulsion is described.

  3. The Application of the NASA Advanced Concepts Office, Launch Vehicle Team Design Process and Tools for Modeling Small Responsive Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Threet, Grady E.; Waters, Eric D.; Creech, Dennis M.

    2012-01-01

    The Advanced Concepts Office (ACO) Launch Vehicle Team at the NASA Marshall Space Flight Center (MSFC) is recognized throughout NASA for launch vehicle conceptual definition and pre-phase A concept design evaluation. The Launch Vehicle Team has been instrumental in defining the vehicle trade space for many of NASA s high level launch system studies from the Exploration Systems Architecture Study (ESAS) through the Augustine Report, Constellation, and now Space Launch System (SLS). The Launch Vehicle Team s approach to rapid turn-around and comparative analysis of multiple launch vehicle architectures has played a large role in narrowing the design options for future vehicle development. Recently the Launch Vehicle Team has been developing versions of their vetted tools used on large launch vehicles and repackaged the process and capability to apply to smaller more responsive launch vehicles. Along this development path the LV Team has evaluated trajectory tools and assumptions against sounding rocket trajectories and air launch systems, begun altering subsystem mass estimating relationships to handle smaller vehicle components, and as an additional development driver, have begun an in-house small launch vehicle study. With the recent interest in small responsive launch systems and the known capability and response time of the ACO LV Team, ACO s launch vehicle assessment capability can be utilized to rapidly evaluate the vast and opportune trade space that small launch vehicles currently encompass. This would provide a great benefit to the customer in order to reduce that large trade space to a select few alternatives that should best fit the customer s payload needs.

  4. KSC-2012-4198

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral, Fla. -- NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  5. KSC-2012-4200

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  6. KSC-2012-4202

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as he gets a close look at the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  7. KSC-2012-4201

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden sees firsthand how Kennedy Space Center is transitioning to a spaceport of the future as Kennedy's Mary Hanna explains the upcoming use of the crawler-transporter, which has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  8. KSC00pp0823

    NASA Image and Video Library

    2000-06-30

    At dawn on Launch Pad 36A, Cape Canaveral Air Force Station, an Atlas IIA/Centaur rocket is fueled for launch of NASA’s Tracking and Data Relay Satellite (TDRS-H). One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  9. KSC-00pp0823

    NASA Image and Video Library

    2000-06-30

    At dawn on Launch Pad 36A, Cape Canaveral Air Force Station, an Atlas IIA/Centaur rocket is fueled for launch of NASA’s Tracking and Data Relay Satellite (TDRS-H). One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  10. KSC00pp0819

    NASA Image and Video Library

    2000-06-30

    NASA’s Tracking and Data Relay Satellite (TDRS-H) sits poised on Launch Pad 36A, Cape Canaveral Air Force Station, before its scheduled launch aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  11. KSC-00pp0819

    NASA Image and Video Library

    2000-06-30

    NASA’s Tracking and Data Relay Satellite (TDRS-H) sits poised on Launch Pad 36A, Cape Canaveral Air Force Station, before its scheduled launch aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  12. Space Shuttle development update

    NASA Technical Reports Server (NTRS)

    Brand, V.

    1984-01-01

    The development efforts, since the STS-4 flight, in the Space Shuttle (SS) program are presented. The SS improvements introduced in the last two years include lower-weight loads, communication through the Tracking and Data Relay Satellite, expanded extravehicular activity capability, a maneuvering backpack and the manipulator foot restraint, the improvements in thermal projection system, the 'optional terminal area management targeting' guidance software, a rendezvous system with radar and star tracker sensors, and improved on-orbit living conditions. The flight demonstrations include advanced launch techniques (e.g., night launch and direct insertion to orbit); the on-orbit demonstrations; and added entry and launching capabilities. The entry aerodynamic analysis and entry flight control fine tuning are described. Reusability, improved ascent performance, intact abort and landing flexibility, rollout control, and 'smart speedbrakes' are among the many improvements planned for the future.

  13. The enhancement of the Transtage for the commercial Titan launch vehicle

    NASA Astrophysics Data System (ADS)

    Gunter, D.; Gizinski, S.

    1987-06-01

    The configuration of the Transtage upper stage and its application to the Titan III launch vehicle are examined. The Transtage consists of a control and a propulsion module, and is about 10 feet in diameter and 14.75 feet in length. The elements of the control and propulsion modules and their functions are described. The Transtage/Titan III combination allows for the insertion of a payload into geostationary transfer orbit and eliminates the requirement for a perigee kick motor system. It is observed that the addition of the Transtage upper stage to the Titan III launch vehicle provides a geosynchronous transfer orbit capability of 9500 lbs, flexible mission tailoring, and reliability exceeding 96 percent. Diagrams of the Titan III and the Transtage and its components are provided.

  14. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  15. JPSS-1 Algorithm Updates and upgrades

    NASA Astrophysics Data System (ADS)

    Weinrich, J. A.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) is acquiring the next-generation weather and environmental satellite system, named the Joint Polar Satellite System (JPSS). The Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched on 28 October, 2011, and is a pathfinder for JPSS and provides continuity for the NASA Earth Observation System and the NOAA Polar-orbiting Operational Environmental Satellite (POES) system. JPSS-1 is scheduled to launch in 2017. NASA is developing the Common Ground System which will process JPSS data and has the flexibility to process data from other satellites. This presentation will review the JPSS readiness from a Calibration/Validation perspective. Examples of JPSS Readiness will be presented including algorithm and table updates. The outcomes will show the Cal/Val planning as we going into Launch in 2017.

  16. Making multipayer reform work: what can be learned from medical home initiatives.

    PubMed

    Takach, Mary; Townley, Charles; Yalowich, Rachel; Kinsler, Sarah

    2015-04-01

    Multipayer collaboratives of all types will encounter legal, logistical, and often political obstacles that multipayer medical home initiatives have already overcome. The seventeen multipayer medical home initiatives launched between 2008 and 2014 all navigated four critical decision-making points: convening stakeholders; establishing provider participation criteria; determining payment; and measuring performance. Although we observed trends toward voluntary payer participation and more flexible participation criteria for both payers and providers, initiatives continue to vary widely, each shaped largely by its insurance market and policy environment. Medical home initiatives across the United States are demonstrating that multipayer reform, although complex and difficult to implement, is feasible when committed stakeholders negotiate strategies that are responsive to the local context. Their experiences can inform, and perhaps expedite, negotiations in current and future multipayer collaborations. Project HOPE—The People-to-People Health Foundation, Inc.

  17. Space Station

    NASA Image and Video Library

    1952-01-01

    This is a von Braun 1952 space station concept. In a 1952 series of articles written in Collier's, Dr. Wernher von Braun, then Technical Director of the Army Ordnance Guided Missiles Development Group at Redstone Arsenal, wrote of a large wheel-like space station in a 1,075-mile orbit. This station, made of flexible nylon, would be carried into space by a fully reusable three-stage launch vehicle. Once in space, the station's collapsible nylon body would be inflated much like an automobile tire. The 250-foot-wide wheel would rotate to provide artificial gravity, an important consideration at the time because little was known about the effects of prolonged zero-gravity on humans. Von Braun's wheel was slated for a number of important missions: a way station for space exploration, a meteorological observatory and a navigation aid. This concept was illustrated by artist Chesley Bonestell.

  18. A Common Approach for the Certifying of International Space Station (ISS) Basic Hardware for Ground Safety

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul D.; Trinchero, Jean-Pierre

    2005-01-01

    In order to support the International Space Station, as well as any future long term human missions, vast amounts of logistical-type hardware is required to be processed through the various launch sites. This category consists of such hardware as spare parts, replacement items, and upgraded hardware. The category also includes samples for experiments and consumables. One attribute that all these items have is they are generally non-hazardous, at least to ground personnel. Even though the items are non-hazardous, launch site ground safety has a responsibility for the protection of personnel, the flight hardware, and launch site resources. In order to fulfill this responsibility, the safety organization must have knowledge of the hardware and its operations. Conversely, the hardware providers are entitled to a process that is commensurate with the hazard. Additionally, a common system should be in place that is flexible enough to account for the requirements at all launch sites, so that, the hardware provider need only complete one process for ground safety regardless of the launch site.

  19. Coherent launch-site atmospheric wind sounder - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Hawley, James G.; Targ, Russell; Henderson, Sammy W.; Hale, Charley P.; Kavaya, Michael J.; Moerder, Daniel

    1993-01-01

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 micron with 1-J energy per pulse is able to make real-time measurements of the 3D wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines.

  20. Current Results From The Advanced Photovoltaic Solar Array (APSA) Program

    NASA Technical Reports Server (NTRS)

    Kurland, Richard M.; Stella, Paul M.

    1993-01-01

    The paper continues the status reporting of the ultralightweight flexible blanket, flatpack, foldout solar array testbed wing that was presented at the previous Meeting. The test bed wing has been built and subjected to a variety of critical functional tests after exposure to simulated launch environments.

  1. PHOBOS Exploration using Two Small Solar Electric Propulsion (SEP) Spacecraft

    NASA Technical Reports Server (NTRS)

    Lang, J. J.; Baker, J. D.; McElrath, T. P.; Piacentine, J. S.; Snyder, J. S.

    2012-01-01

    Phobos Surveyor Mission concept provides an innovative low cost, highly reliable approach to exploring the inner solar system 1/16/2013 3 Dual manifest launch. Use only flight proven, well characterize commercial off-the-shelf components. Flexible mission architecture allows for a slew of unique measurements.

  2. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane arrives at the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  3. The New Millennium Program: Validating Advanced Technologies for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Minning, Charles P.; Luers, Philip

    1999-01-01

    This presentation reviews the activities of the New Millennium Program (NMP) in validating advanced technologies for space missions. The focus of these breakthrough technologies are to enable new capabilities to fulfill the science needs, while reducing costs of future missions. There is a broad spectrum of NMP partners, including government agencies, universities and private industry. The DS-1 was launched on October 24, 1998. Amongst the technologies validated by the NMP on DS-1 are: a Low Power Electronics Experiment, the Power Activation and Switching Module, Multi-Functional Structures. The first two of these technologies are operational and the data analysis is still ongoing. The third program is also operational, and its performance parameters have been verified. The second program, DS-2, was launched January 3 1999. It is expected to impact near Mars southern polar region on 3 December 1999. The technologies used on this mission awaiting validation are an advanced microcontroller, a power microelectronics unit, an evolved water experiment and soil thermal conductivity experiment, Lithium-Thionyl Chloride batteries, the flexible cable interconnect, aeroshell/entry system, and a compact telecom system. EO-1 on schedule for launch in December 1999 carries several technologies to be validated. Amongst these are: a Carbon-Carbon Radiator, an X-band Phased Array Antenna, a pulsed plasma thruster, a wideband advanced recorder processor, an atmospheric corrector, lightweight flexible solar arrays, Advanced Land Imager and the Hyperion instrument

  4. Large engines and vehicles, 1958

    NASA Technical Reports Server (NTRS)

    1978-01-01

    During the mid-1950s, the Air Force sponsored work on the feasibility of building large, single-chamber engines, presumably for boost-glide aircraft or spacecraft. In 1956, the Army missile development group began studies of large launch vehicles. The possibilities opened up by Sputnik accelerated this work and gave the Army an opportunity to bid for the leading role in launch vehicles. The Air Force had the responsibility for the largest ballistic missiles and hence a ready-made base for extending their capability for spaceflight. During 1958, actions taken to establish a civilian space agency, and the launch vehicle needs seen by its planners, added a third contender to the space vehicle competition. These activities during 1958 are examined as to how they resulted in the initiation of a large rocket engine and the first large launch vehicle.

  5. Launch vehicle design and GNC sizing with ASTOS

    NASA Astrophysics Data System (ADS)

    Cremaschi, Francesco; Winter, Sebastian; Rossi, Valerio; Wiegand, Andreas

    2018-03-01

    The European Space Agency (ESA) is currently involved in several activities related to launch vehicle designs (Future Launcher Preparatory Program, Ariane 6, VEGA evolutions, etc.). Within these activities, ESA has identified the importance of developing a simulation infrastructure capable of supporting the multi-disciplinary design and preliminary guidance navigation and control (GNC) design of different launch vehicle configurations. Astos Solutions has developed the multi-disciplinary optimization and launcher GNC simulation and sizing tool (LGSST) under ESA contract. The functionality is integrated in the Analysis, Simulation and Trajectory Optimization Software for space applications (ASTOS) and is intended to be used from the early design phases up to phase B1 activities. ASTOS shall enable the user to perform detailed vehicle design tasks and assessment of GNC systems, covering all aspects of rapid configuration and scenario management, sizing of stages, trajectory-dependent estimation of structural masses, rigid and flexible body dynamics, navigation, guidance and control, worst case analysis, launch safety analysis, performance analysis, and reporting.

  6. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. This study focused on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results of these tests, the most corrosion resistant alloys were found to be (in order) Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of those tested for this application.

  7. Evaluation of candidate alloys for the construction of metal flex hoses in the STS launch environment

    NASA Technical Reports Server (NTRS)

    Macdowell, Louis G., III; Ontiveros, Cordelia

    1988-01-01

    Various vacuum jacketed cryogenic supply lines at the Shuttle launch site use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the flex hoses, which were made out of 304L stainless steel. A search was done to find a more corrosion resistant replacement material. Nineteen metal alloys were tested. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, long term exposure at the beach corrosion testing site, and pitting corrosion tests in ferric chloride solution. Based on the results, the most corrosion resistant alloys were found to be, in order, Hastelloy C-22, Inconel 625, Hastelloy C-276, Hastelloy C-4, and Inco Alloy G-3. Of these top five alloys, the Hastelloy C-22 stands out as being the best of the alloys tested.

  8. Subcooling for Long Duration In-Space Cryogenic Propellant Storage

    NASA Technical Reports Server (NTRS)

    Mustafi, Shuvo; Johnson, Wesley; Kashani, Ali; Jurns, John; Kutter, Bernard; Kirk, Daniel; Shull, Jeff

    2010-01-01

    Cryogenic propellants such as hydrogen and oxygen are crucial for exploration of the solar system because of their superior specific impulse capability. Future missions may require vehicles to remain in space for months, necessitating long-term storage of these cryogens. A Thermodynamic Cryogen Subcooler (TCS) can ease the challenge of cryogenic fluid storage by removing energy from the cryogenic propellant through isobaric subcooling of the cryogen below its normal boiling point prior to launch. The isobaric subcooling of the cryogenic propellant will be performed by using a cold pressurant to maintain the tank pressure while the cryogen's temperature is simultaneously reduced using the TCS. The TCS hardware will be integrated into the launch infrastructure and there will be no significant addition to the launched dry mass. Heat leaks into all cryogenic propellant tanks, despite the use of the best insulation systems. However, the large heat capacity available in the subcooled cryogenic propellants allows the energy that leaks into the tank to be absorbed until the cryogen reaches its operational thermodynamic condition. During this period of heating of the subcooled cryogen there will be minimal loss of the propellant due to venting for pressure control. This simple technique can extend the operational life of a spacecraft or an orbital cryogenic depot for months with minimal mass penalty. In fact isobaric subcooling can more than double the in-space hold time of liquid hydrogen compared to normal boiling point hydrogen. A TCS for cryogenic propellants would thus provide an enhanced level of mission flexibility. Advances in the important components of the TCS will be discussed in this paper.

  9. An automated and reproducible workflow for running and analyzing neural simulations using Lancet and IPython Notebook

    PubMed Central

    Stevens, Jean-Luc R.; Elver, Marco; Bednar, James A.

    2013-01-01

    Lancet is a new, simulator-independent Python utility for succinctly specifying, launching, and collating results from large batches of interrelated computationally demanding program runs. This paper demonstrates how to combine Lancet with IPython Notebook to provide a flexible, lightweight, and agile workflow for fully reproducible scientific research. This informal and pragmatic approach uses IPython Notebook to capture the steps in a scientific computation as it is gradually automated and made ready for publication, without mandating the use of any separate application that can constrain scientific exploration and innovation. The resulting notebook concisely records each step involved in even very complex computational processes that led to a particular figure or numerical result, allowing the complete chain of events to be replicated automatically. Lancet was originally designed to help solve problems in computational neuroscience, such as analyzing the sensitivity of a complex simulation to various parameters, or collecting the results from multiple runs with different random starting points. However, because it is never possible to know in advance what tools might be required in future tasks, Lancet has been designed to be completely general, supporting any type of program as long as it can be launched as a process and can return output in the form of files. For instance, Lancet is also heavily used by one of the authors in a separate research group for launching batches of microprocessor simulations. This general design will allow Lancet to continue supporting a given research project even as the underlying approaches and tools change. PMID:24416014

  10. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane begins moving away from the turn basin at the Launch Complex 39 Area on NASA's Kennedy Space Center. The crane with its 70-foot boom will be moved to Launch Pad 39B and used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  11. Potential Applications of Modularity to Enable a Deep Space Habitation Capability for Future Human Exploration Beyond Low-Earth Orbit

    NASA Technical Reports Server (NTRS)

    Simon, Matthew A.; Toups, Larry; Smitherman, David

    2012-01-01

    Evaluating preliminary concepts of a Deep Space Habitat (DSH) enabling long duration crewed exploration of asteroids, the Moon, and Mars is a technically challenging problem. Sufficient habitat volumes and equipment, necessary to ensure crew health and functionality, increase propellant requirements and decrease launch flexibility to deliver multiple elements on a single launch vehicle; both of which increase overall mission cost. Applying modularity in the design of the habitat structures and subsystems can alleviate these difficulties by spreading the build-up of the overall habitation capability across several smaller parts. This allows for a more flexible habitation approach that accommodates various crew mission durations and levels of functionality. This paper provides a technical analysis of how various modular habitation approaches can impact the parametric design of a DSH with potential benefits in mass, packaging volume, and architectural flexibility. This includes a description of the desired long duration habitation capability, the definition of a baseline model for comparison, a small trade study to investigate alternatives, and commentary on potentially advantageous configurations to enable different levels of habitability. The approaches investigated include modular pressure vessel strategies, modular subsystems, and modular manufacturing approaches to habitat structure. The paper also comments upon the possibility of an integrated habitation strategy using modular components to create all short and long duration habitation elements required in the current exploration architectures.

  12. Coupled Solid Rocket Motor Ballistics and Trajectory Modeling for Higher Fidelity Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Ables, Brett

    2014-01-01

    Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.

  13. GLAST: Exploring Nature's Highest Energy Processes with the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Digel, Seth; Myers, J. D.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The Gamma-ray Large Area Space Telescope (GLAST) is an international and multi-agency space mission that will study the cosmos in the energy range 10 keV-300 GeV. Several successful exploratory missions in gamma-ray astronomy led to the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Gamma Ray Observatory (CGRO). Launched in 1991, EGRET made the first complete survey of the sky in the 30 MeV-10 GeV range. EGRET showed the high-energy gamma-ray sky to be surprisingly dynamic and diverse, with sources ranging from the sun and moon to massive black holes at large redshifts. Most of the gamma-ray sources detected by EGRET remain unidentified. In light of the discoveries with EGRET, the great potential of the next generation gamma-ray telescope can be appreciated. GLAST will have an imaging gamma-ray telescope vastly more capable than instruments flown previously, as well as a secondary instrument to augment the study of gamma-ray bursts. The main instrument, the Large Area Telescope (LAT), will have superior area, angular resolution, field of view, and deadtime that together will provide a factor of 30 or more advance in sensitivity, as well as provide capability for study of transient phenomena. The GLAST Burst Monitor (GBM) will have a field of view several times larger than the LAT and will provide spectral coverage of gamma-ray bursts that extends from the lower limit of the LAT down to 10 keV. The basic parameters of the GBM are compared to those of the Burst and Transient Source Experiment (BATSE) instrument on CGRO in Table 1-2. With the LAT and GBM, GLAST will be a flexible observatory for investigating the great range of astrophysical phenomena best studied in high-energy gamma rays. NASA plans to launch GLAST in late 2005.

  14. KSC-2012-4203

    NASA Image and Video Library

    2012-08-03

    CAPE CANAVERAL, Fla. – NASA Administrator Charlie Bolden, accompanied by Center Director Bob Cabana, sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as Kennedy's Mary Hanna explains the upcoming uses for the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  15. KSC-2012-4199

    NASA Image and Video Library

    2012-08-03

    Cape Canaveral Air Force Station, Fla. -- NASA Administrator Charlie Bolden, accompanied by Center Director Bob Cabana, sees firsthand how NASA's Kennedy Space Center is transiting to a spaceport of the future as Kennedy's Mike Parrish explains the upcoming uses for the crawler-transporter that has carried space vehicles to the launch pad since the Apollo Program. NASA is working with U.S. industry partners to develop commercial spaceflight capabilities to low Earth orbit as the agency also is developing the Orion Multi-Purpose Crew Vehicle MPCV and the Space Launch System SLS, a crew capsule and heavy-lift rocket to provide an entirely new capability for human exploration. Designed to be flexible for launching spacecraft for crew and cargo missions, SLS and Orion MPCV will expand human presence beyond low Earth orbit and enable new missions of exploration across the solar system. Photo credit: NASA/Kim Shiflett

  16. KSC00pp0820

    NASA Image and Video Library

    2000-06-30

    In the early morning hours, NASA’s Tracking and Data Relay Satellite (TDRS-H) sits poised on Launch Pad 36A, Cape Canaveral Air Force Station, before its scheduled launch aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  17. KSC-00pp0820

    NASA Image and Video Library

    2000-06-30

    In the early morning hours, NASA’s Tracking and Data Relay Satellite (TDRS-H) sits poised on Launch Pad 36A, Cape Canaveral Air Force Station, before its scheduled launch aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  18. KSC-2014-1971

    NASA Image and Video Library

    2014-04-03

    CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations Program is overseeing efforts to create a new multi-user firing room in Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. The main floor consoles, cabling and wires below the floor and ceiling tiles above have been removed. Sub-flooring has been installed and the room is marked off to create four separate rooms on the main floor. In view along the soffit are space shuttle launch plaques for 21 missions launched from Firing Room 4. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky

  19. Laser-Launched Flyer Plates and Direct Laser Shocks for Dynamic Material Property Measurements

    NASA Astrophysics Data System (ADS)

    Paisley, D. L.; Swift, D. C.; Johnson, R. P.; Kopp, R. A.; Kyrala, G. A.

    2002-07-01

    The Trident laser at Los Alamos was used to impart known and controlled shocks in various materials by launching flyer plates or by irradiating the sample directly. Materials investigated include copper, gold, NiTi, SS316, and other metals and alloys. Tensile spall strength, elastic-plastic transition, phase boundaries, and equation of state can be determined with small samples. Using thin samples (0.1 - 1.0 mm thick) as targets, high pressure gradients can be generated with relatively low pressures, resulting in high tensile strain rates (105 to 108 s-1). Free surface and interface velocities are recorded with point- and line-imaging VISARs. The flexible spatial and temporal pulse profiles of Trident, coupled with the use of laser-launched flyer plates, provides capabilities which complement experiments conducted using gas guns and tensile bars.

  20. Integrated controls-structures design methodology development for a class of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Maghami, P. G.; Joshi, S. M.; Walz, J. E.; Armstrong, E. S.

    1990-01-01

    Future utilization of space will require large space structures in low-Earth and geostationary orbits. Example missions include: Earth observation systems, personal communication systems, space science missions, space processing facilities, etc., requiring large antennas, platforms, and solar arrays. The dimensions of such structures will range from a few meters to possibly hundreds of meters. For reducing the cost of construction, launching, and operating (e.g., energy required for reboosting and control), it will be necessary to make the structure as light as possible. However, reducing structural mass tends to increase the flexibility which would make it more difficult to control with the specified precision in attitude and shape. Therefore, there is a need to develop a methodology for designing space structures which are optimal with respect to both structural design and control design. In the current spacecraft design practice, it is customary to first perform the structural design and then the controller design. However, the structural design and the control design problems are substantially coupled and must be considered concurrently in order to obtain a truly optimal spacecraft design. For example, let C denote the set of the 'control' design variables (e.g., controller gains), and L the set of the 'structural' design variables (e.g., member sizes). If a structural member thickness is changed, the dynamics would change which would then change the control law and the actuator mass. That would, in turn, change the structural model. Thus, the sets C and L depend on each other. Future space structures can be roughly divided into four mission classes. Class 1 missions include flexible spacecraft with no articulated appendages which require fine attitude pointing and vibration suppression (e.g., large space antennas). Class 2 missions consist of flexible spacecraft with articulated multiple payloads, where the requirement is to fine-point the spacecraft and each individual payload while suppressing the elastic motion. Class 3 missions include rapid slewing of spacecraft without appendages, while Class 4 missions include general nonlinear motion of a flexible spacecraft with articulated appendages and robot arms. Class 1 and 2 missions represent linear mathematical modeling and control system design problems (except for actuator and sensor nonlinearities), while Class 3 and 4 missions represent nonlinear problems. The development of an integrated controls/structures design approach for Class 1 missions is addressed. The performance for these missions is usually specified in terms of (1) root mean square (RMS) pointing errors at different locations on the structure, and (2) the rate of decay of the transient response. Both of these performance measures include the contributions of rigid as well as elastic motion.

  1. Wallops: The Management of Rapid Change

    NASA Technical Reports Server (NTRS)

    Kremer, Steven E.

    2016-01-01

    A unique national resource, Wallops Flight Facility's Research Range enables flexible, low-cost space access, in-flight science, and technology research for all of NASA and the nation. It is the only launch range that NASA owns. This is for Keynote Address and charts are primarily an overview of activities performed at Wallops Flight Facility.

  2. A New Path to a College Degree: Match Beyond Helps Low-Income Students Succeed

    ERIC Educational Resources Information Center

    Marcus, Jon

    2017-01-01

    Match Beyond, launched in late 2013, offers accelerated degree programs through a pioneering approach that combines online education--provided by a partner, Southern New Hampshire University (SNHU)--with intensive coaching and support, including job-placement counseling. This small-scale strategy exposes the need for flexibility and personal…

  3. Air Launch: Examining Performance Potential of Various Configurations and Growth Options

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Philips, Alan D.

    2013-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a high-level analysis of various air launch vehicle configurations, objectively determining maximum launch vehicle payload while considering carrier aircraft capabilities and given dimensional constraints. With the renewed interest in aerial launch of low-earth orbit payloads, referenced by programs such as Stratolaunch and Spaceship2, there exists a need to qualify the boundaries of the trade space, identify performance envelopes, and understand advantages and limiting factors of designing for maximum payload capability. Using the NASA/DARPA Horizontal Launch Study (HLS) Point Design 2 (PD-2) as a pointof- departure configuration, two independent design actions were undertaken. Both designs utilized a Boeing 747-400F as the carrier aircraft, LOX/RP-1 first stage and LOX/LH2 second stage. Each design was sized to meet dimensional and mass constraints while optimizing propellant loads and stage delta V splits. All concepts, when fully loaded, exceeded the allowable Gross Takeoff Weight (GTOW) of the aircraft platform. This excess mass was evaluated as propellant/fuel offload available for a potential in-flight propellant loading scenario. Results indicate many advantages such as payload delivery of approximately 47,000 lbm and significant mission flexibility including variable launch site inclination and launch window. However, in-flight cryogenic fluid transfer and carrier aircraft platform integration are substantial technical hurdles to the realization of such a system configuration.

  4. Inflatable habitation for the lunar base

    NASA Technical Reports Server (NTRS)

    Roberts, M.

    1992-01-01

    Inflatable structures have a number of advantages over rigid modules in providing habitation at a lunar base. Some of these advantages are packaging efficiency, convenience of expansion, flexibility, and psychological benefit to the inhabitants. The relatively small, rigid cylinders fitted to the payload compartment of a launch vehicle are not as efficient volumetrically as a collapsible structure that fits into the same space when packaged, but when deployed is much larger. Pressurized volume is a valuable resource. By providing that resource efficiently, in large units, labor intensive external expansion (such as adding additional modules to the existing base) can be minimized. The expansive interior in an inflatable would facilitate rearrangement of the interior to suite the evolving needs of the base. This large, continuous volume would also relieve claustrophobia, enhancing habitability and improving morale. The purpose of this paper is to explore some of the aspects of inflatable habitat design, including structural, architectural, and environmental considerations. As a specific case, the conceptual design of an inflatable lunar habitat, developed for the Lunar Base Systems Study at the Johnson Space Center, is described.

  5. LARGE SCALE REFRIGERATION PLANT FOR GROUND TESTING THE JAMES WEBB TELESCOPE AT NASA JOHNSON SPACE CENTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Arnold, Lutz Decker, D. Howe, J. Urbin, Jonathan Homan, Carl Reis, J. Creel, V. Ganni, P. Knudsen, A. Sidi-Yekhlef

    The James Webb Telescope is the successor to the Hubble Telescope and will be placed in an orbit of 1.5 million km from earth. Before launch in 2014, the telescope will be tested in NASA Johnson Space Center's (JSC) space simulation chamber, Chamber A. The tests will be conducted at deep space conditions. Chamber A's helium cryo-panels are currently cooled down to 20 K by two Linde 3.5 kW helium refrigerators. The new 12.5 kW, 20-K helium coldbox described in this paper is part of the upgrade to the chamber systems for this large test program. The Linde coldbox willmore » provide refrigeration in several operating modes where the temperature of the chamber is being controlled with a high accuracy due to the demanding NASA test requirements. The implementation of two parallel expansion turbine strings and the Ganni cycle—Floating Pressure process results in a highly efficient and flexible process that minimizes the electrical input power. This paper will describe the collaboration and execution of the coldbox project.« less

  6. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. These new boosters will enable the flexible path approach to deep space exploration, opening up vast opportunities for human missions to near-Earth asteroids and Mars. This evolved capability will offer large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements.

  7. Application of a space station to communications satellites

    NASA Technical Reports Server (NTRS)

    Ramler, J. R.

    1983-01-01

    The economic benefits of a space station relative to communications satellites are discussed in terms of technology experiments, spacecraft checkout, repair, servicing, and refurbishment (RSR), and mating an OTV with satellites for boost to GEO. The zero gravity, vacuum conditions, and atmosphere free long ranges are environmental features that can be used for testing large, flexible antennas and laser communications devices. Some resistance might be encountered to checkout in LEO due to the substantial success of launches to GEO without LEO checkout. However, new generations of larger, more complex satellites may warrant the presence of a space station to verify performance of new spacecraft. One RSR positive aspect for a space station is as a storage site for propellant, as well as for reusable OTV booster engines. Also, the space station can serve as a base for manned or unmanned repair spacecraft which will travel to GEO to fix malfunctions in geostationary satellites.

  8. Design and development of a quad copter (UMAASK) using CAD/CAM/CAE

    NASA Astrophysics Data System (ADS)

    Manarvi, Irfan Anjum; Aqib, Muhammad; Ajmal, Muhammad; Usman, Muhammad; Khurshid, Saqib; Sikandar, Usman

    Micro flying vehicles1 (MFV) have become a popular area of research due to economy of production, flexibility of launch and variety of applications. A large number of techniques from pencil sketching to computer based software are being used for designing specific geometries and selection of materials to arrive at novel designs for specific requirements. Present research was focused on development of suitable design configuration using CAD/CAM/CAE tools and techniques. A number of designs were reviewed for this purpose. Finally, rotary wing Quadcopter flying vehicle design was considered appropriate for this research. Performance requirements were planned as approximately 10 meters ceiling, weight less than 500grams and ability to take videos and pictures. Parts were designed using Finite Element Analysis, manufactured using CNC machines and assembled to arrive at final design named as UMAASK. Flight tests were carried out which confirmed the design requirements.

  9. A Single-use Strategy to Enable Manufacturing of Affordable Biologics.

    PubMed

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.

  10. A Historical Perspective on Dynamics Testing at the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Kvaternik, Raymond G.

    2000-01-01

    The history of structural dynamics testing research over the past four decades at the Langley Research Center of the National Aeronautics and Space Administration is reviewed. Beginning in the early sixties, Langley investigated several scale model and full-scale spacecraft including the NIMBUS and various concepts for Apollo and Viking landers. Langley engineers pioneered the use of scaled models to study the dynamics of launch vehicles including Saturn I, Saturn V, and Titan III. In the seventies, work emphasized the Space Shuttle and advanced test and data analysis methods. In the eighties, the possibility of delivering large structures to orbit by the Space Shuttle shifted focus towards understanding the interaction of flexible space structures with attitude control systems. Although Langley has maintained a tradition of laboratory-based research, some flight experiments were supported. This review emphasizes work that, in some way, advanced the state of knowledge at the time.

  11. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline.

    PubMed

    Reid, Jeffrey G; Carroll, Andrew; Veeraraghavan, Narayanan; Dahdouli, Mahmoud; Sundquist, Andreas; English, Adam; Bainbridge, Matthew; White, Simon; Salerno, William; Buhay, Christian; Yu, Fuli; Muzny, Donna; Daly, Richard; Duyk, Geoff; Gibbs, Richard A; Boerwinkle, Eric

    2014-01-29

    Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples.

  12. Understanding the Lunar System Architecture Design Space

    NASA Technical Reports Server (NTRS)

    Arney, Dale C.; Wilhite, Alan W.; Reeves, David M.

    2013-01-01

    Based on the flexible path strategy and the desire of the international community, the lunar surface remains a destination for future human exploration. This paper explores options within the lunar system architecture design space, identifying performance requirements placed on the propulsive system that performs Earth departure within that architecture based on existing and/or near-term capabilities. The lander crew module and ascent stage propellant mass fraction are primary drivers for feasibility in multiple lander configurations. As the aggregation location moves further out of the lunar gravity well, the lunar lander is required to perform larger burns, increasing the sensitivity to these two factors. Adding an orbit transfer stage to a two-stage lunar lander and using a large storable stage for braking with a one-stage lunar lander enable higher aggregation locations than Low Lunar Orbit. Finally, while using larger vehicles enables a larger feasible design space, there are still feasible scenarios that use three launches of smaller vehicles.

  13. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; McCleskey, Carey; Martin, John; Lepsch, Roger; Hernani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs. As a result, these launch opportunities await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options.With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  14. Low-Cost Propellant Launch to LEO from a Tethered Balloon - 'Propulsion Depots' Not 'Propellant Depots'

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau

    2011-01-01

    As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.

  15. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane traveling long one of the crawlerway tracks makes the turn toward Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  16. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane travels along one of the crawlerway tracks on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  17. Large Crawler Crane for new lightning protection system

    NASA Image and Video Library

    2007-10-25

    A large crawler crane moves past the Vehicle Assembly Building on its way to Launch Pad 39B. The crane with its 70-foot boom will be used to construct a new lightning protection system for the Constellation Program and Ares/Orion launches. Pad B will be the site of the first Ares vehicle launch, including Ares I-X which is scheduled for April 2009.

  18. Development of 90 kgf Class CAMUI Hybrid Rocket for a CanSat Experiment

    NASA Astrophysics Data System (ADS)

    Nagata, Harunori; Uematsu, Tsutomu; Ito, Mitsunori; Kakikura, Akihito; Kaneko, Yudai; Mori, Kazuhiro; Murai, Norikazu; Sato, Tatsuhiro; Mitsuhashi, Ryuichi; Totani, Tsuyoshi

    A newly designed CAMUI hybrid rocket motor of 900 N (90 kgf) thrust class, CAMUI-90, was developed. It uses a combination of polyethylene and liquid oxygen as propellants. CAMUI hybrid rocket is an explosive-flee small rocket motor to realize a small launch system with low cost and flexibility. The motor produces a thrust of 900 N for four seconds, keeping the optimal characteristic exhaust velocity of the fuel-oxidizer combination (exceeding 1800 m/s). A main application of the CAMUI-90 motor is for a CanSat experiment. A launch vehicle employing CAMUI-90 motor, 120 mm in diameter and 3.05 m in length, accelerates a payload of 500 g to 140 m/s in four seconds and reaches to an altitude of about 1 km. The first launch of this vehicle was on December 2006.

  19. KSC-00pp0755

    NASA Image and Video Library

    2000-06-13

    The Tracking and Data Relay Satellite (TDRS-H) sits fully encapsulated inside the fairing. Next, it will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  20. KSC00pp0755

    NASA Image and Video Library

    2000-06-13

    The Tracking and Data Relay Satellite (TDRS-H) sits fully encapsulated inside the fairing. Next, it will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  1. Launch vehicles of the future - Earth to near-earth space

    NASA Astrophysics Data System (ADS)

    Keyworth, G. A., II

    Attention is given to criteria for launch vehicles of the future, namely, cost, flexibility of payload size, and routine access to space. The National Aerospace Plane (NASP), an airplane designed to achieve hypersonic speeds using a sophisticated air-breathing engine, is argued to meet these criteria. Little additional oxygen is needed to enter low-earth orbit, and it will return to an airport runway under powered flight. Cost estimates for a NASP-derived vehicle are two to five million dollars for a payload of 20,000 to 30,000 pounds to orbit. For the Shuttle, a comparable payload is nominally about 150 million dollars. NASP estimates for the new single-stage-to-orbit designs are substantially lower than existing launch costs. The NASP also offers fast turnaround and minimal logistics. Access to virtually all near-earth orbits will be provided as well.

  2. Pressure-Equalizing Cradle for Booster Rocket Mounting

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  3. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  4. The Advanced Photovoltaic Solar Array Program Update

    NASA Technical Reports Server (NTRS)

    Kurland, R. M.; Stella, P. M.

    1993-01-01

    The paper continues the status reporting of the development of an ultraweight flexible blanket, flatlpack, fouldout solar array testbed wing that was presented at the First and Second European Space Power Conferences. To date a testbed wing has been built and subjected to a variety of critical functional tests before and after exposrue to simulated launch environments.

  5. High-flexibility, noncollapsing lightweight hose

    DOEpatents

    Williams, David A.

    1993-01-01

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  6. High-flexibility, noncollapsing lightweight hose

    DOEpatents

    Williams, D.A.

    1993-04-20

    A high-flexibility, noncollapsing, lightweight, large-bore, wire-reinforced hose is inside fiber-reinforced PVC tubing that is flexible, lightweight, and abrasion resistant. It provides a strong, kink- and collapse-free conduit for moving large quantities of dangerous fluids, e.g., removing radioactive waste water or processing chemicals.

  7. Measurements in atmospheric electricity designed to improve launch safety during the Apollo series

    NASA Technical Reports Server (NTRS)

    Nanevicz, J. E.; Pierce, E. T.; Whitson, A. L.

    1972-01-01

    Ground test measurements were made during the launches of Apollo 13 and 14 in an effort to better define the electrical characteristics of a large launch vehicle. Of particular concern was the effective electrical length of the vehicle and plume since this parameter markedly affects the likelihood of a lightning stroke being triggered by a launch during disturbed weather conditions. Since no instrumentation could be carried aboard the launch vehicle, the experiments were confined to LF radio noise and electrostatic-field measurements on the ground in the vicinity of the launch pad. The philosophy of the experiment and the instrumentation and layout are described. From the results of the experiment it is concluded that the rocket and exhaust do not produce large-scale shorting of the earth's field out to distances of thousands of feet from the launch pad. There is evidence, however, that the plume does add substantially to the electrical length of the rocket. On this basis, it was recommended that there be no relaxation of launch rules for launches during disturbed weather.

  8. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – The Ground Systems Development and Operations, or GSDO, Program completed its preliminary design review which allows development of the ground systems to proceed to detailed design. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  9. Orbital spacecraft consumables resupply

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.; Eberhardt, Ralph N.; Tracey, Thomas R.

    1988-01-01

    The capability to replenish spacecraft, satellites, and laboratories on-orbit with consumable fluids provides significant increases in their cost and operational effectiveness. Tanker systems to perform on-orbit fluid resupply must be flexible enough to operate from the Space Transportation System (STS), Space Station, or the Orbital Maneuvering Vehicle (OMV), and to accommodate launch from both the Shuttle and Expendable Launch Vehicles (ELV's). Resupply systems for storable monopropellant hydrazine and bipropellants, and water have been developed. These studies have concluded that designing tankers capable of launch on both the Shuttle and ELV's was feasible and desirable. Design modifications and interfaces for an ELV launch of the tanker systems were identified. Additionally, it was determined that modularization of the tanker subsystems was necessary to provide the most versatile tanker and most efficient approach for use at the Space Station. The need to develop an automatic umbilical mating mechanism, capable of performing both docking and coupler mating functions was identified. Preliminary requirements for such a mechanism were defined. The study resulted in a modular tanker capable of resupplying monopropellants, bipropellants, and water with a single design.

  10. FASTSAT a Mini-Satellite Mission...A Way Ahead

    NASA Technical Reports Server (NTRS)

    Boudreaux, Mark; Pearson, Steve; Casas, Joseph

    2012-01-01

    The Fast Affordable Science and Technology Spacecraft (FASTSAT) is a mini-satellite weighing less than 150 kg. FASTSAT was developed as government-industry collaborative research and development flight project targeting rapid access to space to provide an alternative, low cost platform for a variety of scientific, research, and technology payloads. The initial spacecraft was designed to carry six instruments and launch as a secondary rideshare payload. This design approach greatly reduced overall mission costs while maximizing the on-board payload accommodations. FASTSAT was designed from the ground up to meet a challenging short schedule using modular components with a flexible, configurable layout to enable a broad range of payloads at a lower cost and shorter timeline than scaling down a more complex spacecraft. The integrated spacecraft along with its payloads were readied for launch 15 months from authority to proceed. As an ESPA-class spacecraft, FASTSAT is compatible with many different launch vehicles, including Minotaur I, Minotaur IV, Delta IV, Atlas V, Pegasus, Falcon 1/1e, and Falcon 9. These vehicles offer an array of options for launch sites and provide for a variety of rideshare possibilities.

  11. Aerospace Safety Advisory Panel

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report covers the activities of the Aerospace Safety Advisory Panel (ASAP) for calendar year 1998-a year of sharp contrasts and significant successes at NASA. The year opened with the announcement of large workforce cutbacks. The slip in the schedule for launching the International Space Station (ISS) created a 5-month hiatus in Space Shuttle launches. This slack period ended with the successful and highly publicized launch of the STS-95 mission. As the year closed, ISS assembly began with the successful orbiting and joining of the Functional Cargo Block (FGB), Zarya, from Russia and the Unity Node from the United States. Throughout the year, the Panel maintained its scrutiny of NASAs safety processes. Of particular interest were the potential effects on safety of workforce reductions and the continued transition of functions to the Space Flight Operations Contractor. Attention was also given to the risk management plans of the Aero-Space Technology programs, including the X-33, X-34, and X-38. Overall, the Panel concluded that safety is well served for the present. The picture is not as clear for the future. Cutbacks have limited the depth of talent available. In many cases, technical specialties are "one deep." The extended hiring freeze has resulted in an older workforce that will inevitably suffer significant departures from retirements in the near future. The resulting "brain drain" could represent a future safety risk unless appropriate succession planning is started expeditiously. This and other topics are covered in the section addressing workforce. In the case of the Space Shuttle, beneficial and mandatory safety and operational upgrades are being delayed because of a lack of sufficient present funding. Likewise, the ISS has little flexibility to begin long lead-time items for upgrades or contingency planning.

  12. Design optimization of space launch vehicles using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  13. Life Cycle Analysis of Dedicated Nano-Launch Technologies

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; McCleskey, Carey (Editor); Martin, John; Lepsch, Roger; Ternani, Tosoc

    2014-01-01

    Recent technology advancements have enabled the development of small cheap satellites that can perform useful functions in the space environment. Currently, the only low cost option for getting these payloads into orbit is through ride share programs - small satellites awaiting the launch of a larger satellite, and then riding along on the same launcher. As a result, these small satellite customers await primary payload launches and a backlog exists. An alternative option would be dedicated nano-launch systems built and operated to provide more flexible launch services, higher availability, and affordable prices. The potential customer base that would drive requirements or support a business case includes commercial, academia, civil government and defense. Further, NASA technology investments could enable these alternative game changing options. With this context, in 2013 the Game Changing Development (GCD) program funded a NASA team to investigate the feasibility of dedicated nano-satellite launch systems with a recurring cost of less than $2 million per launch for a 5 kg payload to low Earth orbit. The team products would include potential concepts, technologies and factors for enabling the ambitious cost goal, exploring the nature of the goal itself, and informing the GCD program technology investment decision making process. This paper provides an overview of the life cycle analysis effort that was conducted in 2013 by an inter-center NASA team. This effort included the development of reference nano-launch system concepts, developing analysis processes and models, establishing a basis for cost estimates (development, manufacturing and launch) suitable to the scale of the systems, and especially, understanding the relationship of potential game changing technologies to life cycle costs, as well as other factors, such as flights per year.

  14. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    PubMed Central

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-01-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30–70 Ohm/square), optical transmittance values (89–90%), and haze (0.5–1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle. PMID:27677410

  15. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels.

    PubMed

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-28

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  16. Roll-to-roll slot-die coating of 400 mm wide, flexible, transparent Ag nanowire films for flexible touch screen panels

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ju; Shin, Hae-In; Ko, Eun-Hye; Kim, Ki-Hyun; Kim, Tae-Woong; Kim, Han-Ki

    2016-09-01

    We report fabrication of large area Ag nanowire (NW) film coated using a continuous roll-to-roll (RTR) slot die coater as a viable alternative to conventional ITO electrodes for cost-effective and large-area flexible touch screen panels (TSPs). By controlling the flow rate of shear-thinning Ag NW ink in the slot die, we fabricated Ag NW percolating network films with different sheet resistances (30-70 Ohm/square), optical transmittance values (89-90%), and haze (0.5-1%) percentages. Outer/inner bending, twisting, and rolling tests as well as dynamic fatigue tests demonstrated that the mechanical flexibility of the slot-die coated Ag NW films was superior to that of conventional ITO films. Using diamond-shape patterned Ag NW layer electrodes (50 Ohm/square, 90% optical transmittance), we fabricated 12-inch flexible film-film type and rigid glass-film-film type TSPs. Successful operation of flexible TSPs with Ag NW electrodes indicates that slot-die-coated large-area Ag NW films are promising low cost, high performance, and flexible transparent electrodes for cost-effective large-area flexible TSPs and can be substituted for ITO films, which have high sheet resistance and are brittle.

  17. Expendable launch vehicle studies

    NASA Technical Reports Server (NTRS)

    Bainum, Peter M.; Reiss, Robert

    1995-01-01

    Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.

  18. IRVE-3 Post-Flight Reconstruction

    NASA Technical Reports Server (NTRS)

    Olds, Aaron D.; Beck, Roger; Bose, David; White, Joseph; Edquist, Karl; Hollis, Brian; Lindell, Michael; Cheatwood, F. N.; Gsell, Valerie; Bowden, Ernest

    2013-01-01

    The Inflatable Re-entry Vehicle Experiment 3 (IRVE-3) was conducted from the NASA Wallops Flight Facility on July 23, 2012. Launched on a Black Brant XI sounding rocket, the IRVE-3 research vehicle achieved an apogee of 469 km, deployed and inflated a Hypersonic Inflatable Aerodynamic Decelerator (HIAD), re-entered the Earth's atmosphere at Mach 10 and achieved a peak deceleration of 20 g's before descending to splashdown roughly 20 minutes after launch. This paper presents the filtering methodology and results associated with the development of the Best Estimated Trajectory of the IRVE-3 flight test. The reconstructed trajectory is compared against project requirements and pre-flight predictions of entry state, aerodynamics, HIAD flexibility, and attitude control system performance.

  19. Large-Scale Automated Production of Highly Ordered Ultralong Hydroxyapatite Nanowires and Construction of Various Fire-Resistant Flexible Ordered Architectures.

    PubMed

    Chen, Feng; Zhu, Ying-Jie

    2016-12-27

    Practical applications of nanostructured materials have been largely limited by the difficulties in controllable and scaled-up synthesis, large-sized highly ordered self-assembly, and macroscopic processing of nanostructures. Hydroxyapatite (HAP), the major inorganic component of human bone and tooth, is an important biomaterial with high biocompatibility, bioactivity, and high thermal stability. Large-sized highly ordered HAP nanostructures are of great significance for applications in various fields and for understanding the formation mechanisms of bone and tooth. However, the synthesis of large-sized highly ordered HAP nanostructures remains a great challenge, especially for the preparation of large-sized highly ordered ultralong HAP nanowires because ultralong HAP nanowires are easily tangled and aggregated. Herein, we report our three main research findings: (1) the large-scale synthesis of highly flexible ultralong HAP nanowires with lengths up to >100 μm and aspect ratios up to >10000; (2) the demonstration of a strategy for the rapid automated production of highly flexible, fire-resistant, large-sized, self-assembled highly ordered ultralong HAP nanowires (SHOUHNs) at room temperature; and (3) the successful construction of various flexible fire-resistant HAP ordered architectures using the SHOUHNs, such as high-strength highly flexible nanostructured ropes (nanoropes), highly flexible textiles, and 3-D printed well-defined highly ordered patterns. The SHOUHNs are successively formed from the nanoscale to the microscale then to the macroscale, and the ordering direction of the ordered HAP structure is controllable. These ordered HAP architectures made from the SHOUHNs, such as highly flexible textiles, may be engineered into advanced functional products for applications in various fields, for example, fireproof clothing.

  20. Flexible response and the INF (Intermediate-range Nuclear Force) Treaty: what next. Study project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, H.A.

    1988-03-14

    The prospect of the Intermediate-range Nuclear Force (INF) Treaty led the former Supreme Allied Commander, Europe, GEN Bernard Rogers, to claim that NATO would lose weapons vital to the Alliance's defense when Pershing II (PII) and Ground-Launched Cruise Missiles (GLCM) were withdrawn from Europe. Nuclear weapons and the NATO strategy of flexible response are inseparably dependent upon each other. GEN Rogers' comments focus directly on the capability which PII and GLCM provided NATO to strike Soviet territory in event of conflict and if such an escalatory step was deemed necessary. Various sources were researched to determine if the INF Treatymore » will cripple the flexible response strategy; while it should not, certain changes in NATO's approach to defense are suggested. Specifically, conventional and nuclear improvements, the latter within the terms of the INF Treaty, are suggested, as are conventional force reduction negotiations and the Europeanization of NATO.« less

  1. Decentralized Formation Flying Control in a Multiple-Team Hierarchy

    NASA Technical Reports Server (NTRS)

    Mueller, Joseph .; Thomas, Stephanie J.

    2005-01-01

    This paper presents the prototype of a system that addresses these objectives-a decentralized guidance and control system that is distributed across spacecraft using a multiple-team framework. The objective is to divide large clusters into teams of manageable size, so that the communication and computational demands driven by N decentralized units are related to the number of satellites in a team rather than the entire cluster. The system is designed to provide a high-level of autonomy, to support clusters with large numbers of satellites, to enable the number of spacecraft in the cluster to change post-launch, and to provide for on-orbit software modification. The distributed guidance and control system will be implemented in an object-oriented style using MANTA (Messaging Architecture for Networking and Threaded Applications). In this architecture, tasks may be remotely added, removed or replaced post-launch to increase mission flexibility and robustness. This built-in adaptability will allow software modifications to be made on-orbit in a robust manner. The prototype system, which is implemented in MATLAB, emulates the object-oriented and message-passing features of the MANTA software. In this paper, the multiple-team organization of the cluster is described, and the modular software architecture is presented. The relative dynamics in eccentric reference orbits is reviewed, and families of periodic, relative trajectories are identified, expressed as sets of static geometric parameters. The guidance law design is presented, and an example reconfiguration scenario is used to illustrate the distributed process of assigning geometric goals to the cluster. Next, a decentralized maneuver planning approach is presented that utilizes linear-programming methods to enact reconfiguration and coarse formation keeping maneuvers. Finally, a method for performing online collision avoidance is discussed, and an example is provided to gauge its performance.

  2. Large Scale Composite Manufacturing for Heavy Lift Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Stavana, Jacob; Cohen, Leslie J.; Houseal, Keth; Pelham, Larry; Lort, Richard; Zimmerman, Thomas; Sutter, James; Western, Mike; Harper, Robert; Stuart, Michael

    2012-01-01

    Risk reduction for the large scale composite manufacturing is an important goal to produce light weight components for heavy lift launch vehicles. NASA and an industry team successfully employed a building block approach using low-cost Automated Tape Layup (ATL) of autoclave and Out-of-Autoclave (OoA) prepregs. Several large, curved sandwich panels were fabricated at HITCO Carbon Composites. The aluminum honeycomb core sandwich panels are segments of a 1/16th arc from a 10 meter cylindrical barrel. Lessons learned highlight the manufacturing challenges required to produce light weight composite structures such as fairings for heavy lift launch vehicles.

  3. Uncertainty Due to Unsteady Fluid/Structure Interaction for the Ares I Vehicle Traversing the Transonic Regime

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    Rapid reduced-order numerical models are being investigated as candidates to simulate the dynamics of a flexible launch vehicle during atmospheric ascent. There has also been the extension of these new approaches to include gust response. These methods are used to perform aeroelastic and gust response analyses at isolated Mach numbers. Such models require a method to time march through a succession of ascent Mach numbers. An approach is presented for interpolating reduced-order models of the unsteady aerodynamics at successive Mach numbers. The transonic Mach number range is considered here since launch vehicles can suffer the highest dynamic loads through this range. Realistic simulations of the flexible vehicle behavior as it traverses this Mach number range are presented. The response of the vehicle due to gusts is computed. Uncertainties in root mean square and maximum bending moment and crew module accelerations are presented due to assumed probability distributions in design parameters, ascent flight conditions, gusts. The primary focus is on the uncertainty introduced by modeling fidelity. It is found that an unsteady reduced order model produces larger excursions in the root mean square loading and accelerations than does a quasi-steady reduced order model.

  4. Launching GUPPI: the Green Bank Ultimate Pulsar Processing Instrument

    NASA Astrophysics Data System (ADS)

    DuPlain, Ron; Ransom, Scott; Demorest, Paul; Brandt, Patrick; Ford, John; Shelton, Amy L.

    2008-08-01

    The National Radio Astronomy Observatory (NRAO) is launching the Green Bank Ultimate Pulsar Processing Instrument (GUPPI), a prototype flexible digital signal processor designed for pulsar observations with the Robert C. Byrd Green Bank Telescope (GBT). GUPPI uses field programmable gate array (FPGA) hardware and design tools developed by the Center for Astronomy Signal Processing and Electronics Research (CASPER) at the University of California, Berkeley. The NRAO has been concurrently developing GUPPI software and hardware using minimal software resources. The software handles instrument monitor and control, data acquisition, and hardware interfacing. GUPPI is currently an expert-only spectrometer, but supports future integration with the full GBT production system. The NRAO was able to take advantage of the unique flexibility of the CASPER FPGA hardware platform, develop hardware and software in parallel, and build a suite of software tools for monitoring, controlling, and acquiring data with a new instrument over a short timeline of just a few months. The NRAO interacts regularly with CASPER and its users, and GUPPI stands as an example of what reconfigurable computing and open-source development can do for radio astronomy. GUPPI is modular for portability, and the NRAO provides the results of development as an open-source resource.

  5. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  6. How to Make Money out of RLVs

    NASA Astrophysics Data System (ADS)

    Parkinson, B.

    A successful reusable launch vehicle (RLV) will need to launch payloads at lower prices than competing expendable launch vehicles (ELVs). Existing ELVs have the advantage of written off development costs, and support a range of payload sizes through dual launch and launcher modularity - features not expected to be shared by an RLV. However, the majority of ELV launch costs are expendable hardware, while for RLVs many costs are fixed annual costs. Starting with a per-flight cost below that of competing ELVs, an RLV can support a range of payload sizes at a fixed cost/kg. Since the cost of adding an extra flight to the annual operations (“marginal cost”) is also very much less than the “full recovery” cost, it is possible to extend the range of economic payload sizes downwards. This can provide the customer with a flexible, constant specific cost launcher, while giving the operator a strategy allowing recovery of the development and initial fleet production costs. An estimate for the probability distribution of future payloads (to LEO, GTO and polar orbits) is presented. This can then be used to optimize the vehicle market capture to maximise the operator's profit, or to identify a minimum market size for which an RLV will be profitable.

  7. Launch window analysis of satellites in high eccentricity or large circular orbits

    NASA Technical Reports Server (NTRS)

    Renard, M. L.; Bhate, S. K.; Sridharan, R.

    1973-01-01

    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions.

  8. Flexible Ablators: Applications and Arcjet Testing

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Venkatapathy, Ethiraj; Beck, Robin A S.; Mcguire, Kathy; Prabhu, Dinesh K.; Gorbunov, Sergey

    2011-01-01

    Flexible ablators were conceived in 2009 to meet the technology pull for large, human Mars Exploration Class, 23 m diameter hypersonic inflatable aerodynamic decelerators. As described elsewhere, they have been recently undergoing initial technical readiness (TRL) advancement by NASA. The performance limits of flexible ablators in terms of maximum heat rates, pressure and shear remain to be defined. Further, it is hoped that this emerging technology will vastly expand the capability of future NASA missions involving atmospheric entry systems. This paper considers four topics of relevance to flexible ablators: (1) Their potential applications to near/far term human and robotic missions (2) Brief consideration of the balance between heat shield diameter, flexible ablator performance limits, entry vehicle controllability and aft-body shear layer impingement of interest to designers of very large entry vehicles, (3) The approach for developing bonding processes of flexible ablators for use on rigid entry bodies and (4) Design of large arcjet test articles that will enable the testing of flexible ablators in flight-like, combined environments (heat flux, pressure, shear and structural tensile loading). Based on a review of thermal protection system performance requirements for future entry vehicles, it is concluded that flexible ablators have broad applications to conventional, rigid entry body systems and are enabling to large deployable (both inflatable and mechanical) heat shields. Because of the game-changing nature of flexible ablators, it appears that NASA's Office of the Chief Technologist (OCT) will fund a focused, 3-year TRL advancement of the new materials capable of performance in heat fluxes in the range of 200-600 W/sq. cm. This support will enable the manufacture and use of the large-scale arcjet test designs that will be a key element of this OCT funded activity.

  9. Enabling lunar and space missions by laser power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-01-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  10. A series of small scientific satellite with flexible standard bus

    NASA Astrophysics Data System (ADS)

    Saito, Hirobumi; Sawai, Syujiro; Sakai, Shin-ichiro; Fukuda, Seisuke; Kitade, Kenji

    2009-11-01

    Japan Aerospace Exploration Agency has a plan to develop the small satellite standard bus for various scientific missions and disaster monitoring missions. The satellite bus is a class of 250-400 kg mass with three-axis control capability of 0.02∘ accuracy. The science missions include X-ray astronomy missions, planetary telescope missions, and magnetosphere atmosphere missions. In order to adapt the wide range of mission requirements, the satellite bus has to be provided with flexibility. The concepts of modularization, reusability, and product line are applied to the standard bus system. This paper describes the characteristics of the small satellite standard bus which will be firstly launched in 2011.

  11. Design and Development of a Two-Axis Thruster Gimbal with Xenon Propellant Lines

    NASA Technical Reports Server (NTRS)

    Asadurian, Armond

    2010-01-01

    A Two-Axis Thruster Gimbal was developed for a two degree-of-freedom tip-tilt gimbal application. This light weight gimbal mechanism is equipped with flexible xenon propellant lines and features numerous thermal control features for all its critical components. Unique thermal profiles and operating environments have been the key design drivers for this mechanism which is fully tolerant of extreme space environmental conditions. Providing thermal controls that are compatible with flexible components and are also capable of surviving launch vibration within this gimbal mechanism has proven to be especially demanding, requiring creativity and significant development effort. Some of these features, design drivers, and lessons learned will be examined herein.

  12. Ares V and Future Very Large Launch Vehicles to Enable Major Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Thronson, Harley A.; Lester, Daniel F.; Langhoff, Stephanie R.; Corell, Randy; Stahl, H. Philip

    2008-01-01

    The current NASA architecture intended to return humans to the lunar surface includes the Ares V cargo launch vehicle, which is planned to be available within a decade. The capabilities designed for Ares V would permit an 8.8-m diameter, 55 mT payload to be carried to Sun-Earth L1,2 locations. That is, this vehicle could launch very large optical systems to achieve major scientific goals that would otherwise be very difficult. For example, an 8-m monolith UV/visual/IR telescope appears able to be launched to a Sun-Earth L2 location. Even larger apertures that are deployed or assembled seem possible. Alternatively, multiple elements of a spatial array or two or three astronomical observatories might be launched simultaneously. Over the years, scientists and engineers have been evaluating concepts for astronomical observatories that use future large launch vehicles. In this presentation, we report on results of a recent workshop held at NASA Ames Research Center that have improved understanding of the science goals that can be achieved using Ares V. While such a vehicle uniquely enables few of the observatory concepts considered at the workshop, most have a baseline mission that can be flown on existing or near-future vehicles. However, the performance of the Ares V permits design concepts (e.g., large monolithic mirrors) that reduce complexity and risk.

  13. Optimal Reference Strain Structure for Studying Dynamic Responses of Flexible Rockets

    NASA Technical Reports Server (NTRS)

    Tsushima, Natsuki; Su, Weihua; Wolf, Michael G.; Griffin, Edwin D.; Dumoulin, Marie P.

    2017-01-01

    In the proposed paper, the optimal design of reference strain structures (RSS) will be performed targeting for the accurate observation of the dynamic bending and torsion deformation of a flexible rocket. It will provide the detailed description of the finite-element (FE) model of a notional flexible rocket created in MSC.Patran. The RSS will be attached longitudinally along the side of the rocket and to track the deformation of the thin-walled structure under external loads. An integrated surrogate-based multi-objective optimization approach will be developed to find the optimal design of the RSS using the FE model. The Kriging method will be used to construct the surrogate model. For the data sampling and the performance evaluation, static/transient analyses will be performed with MSC.Natran/Patran. The multi-objective optimization will be solved with NSGA-II to minimize the difference between the strains of the launch vehicle and RSS. Finally, the performance of the optimal RSS will be evaluated by checking its strain-tracking capability in different numerical simulations of the flexible rocket.

  14. Intelligent Flexible Materials for Space Structures: Expandable Habitat Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Hinkle, Jon; Sharpe, George; Lin, John; Wiley, Cliff; Timmers, Richard

    2010-01-01

    Expandable habitable elements are an enabling technology for human exploration in space and on planetary surfaces. Large geometries can be deployed from a small launch volume, allowing greater mission capability while reducing mass and improving robustness over traditional rigid shells. This report describes research performed by ILC Dover under the Intelligent Flexible Materials for Space Structures program on the design and manufacture of softgoods for LaRC's Expandable Habitat Engineering Development Unit (EDU). The EDU is a full-scale structural test article of an expandable hybrid habitat, integrating an expandable softgoods center section with two rigid end caps. The design of the bladder, restraint layer and a mock-up Thermal Micrometeoroid Cover is detailed together with the design of the interface hardware used to attach them to the end caps. The integration and design of two windows and a floor are also covered. Analysis was performed to study the effects of the open weave design, and to determine the correct webbing and fabric configuration. Stress analyses were also carried out on the interfaces between the softgoods and the end caps and windows. Testing experimentally determined the strength of the fabric and straps, and component testing was used to proof several critical parts of the design. This program established new manufacturing and design techniques that can be applied to future applications in expandable structures.

  15. Workshop Report on Ares V Solar System Science

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephanie; Spilker, Tom; Martin, Gary; Sullivan, Greg

    2008-01-01

    The workshop blended three major themes: (1) How can elements of the Constellation program, and specifically, the planned Ares-V heavy-launch vehicle, benefit the planetary community by enabling the launch of large planetary payloads that cannot be launched on existing vehicles, and how can the capabilities of an Ares V allow the planetary community to redesign missions to achieve lower risk, and perhaps lower cost on these missions? (2) What are some of the planetary missions that either can be significantly enhanced or enabled by an Ares-V launch vehicle? What constraints do these mission concepts place on the payload environment of the Ares V? (3) Technology challenges that need to be addressed for launching large planetary payloads. Presentations varied in length from 15-40 minutes. Ample time was provided for discussion.

  16. Commercial Titan ELV - Filling a need in the national Space Transportation System

    NASA Astrophysics Data System (ADS)

    Jenkins, T. M.; Davis, R. M., Jr.

    1983-06-01

    The design and performance capabilities of the Titan 34D launch vehicle are reviewed, noting that it is proven launch system that is capable of complementing the Shuttle in terms of having an available, large payload-capacity launch system for domestic satellites. The Titan's development began in the 1950s as an ICBM, and the Titan III configuration was first flown in 1966, followed by 121 operational launches with a 99 percent success rate. The current configuration features a fairing large enough to hold a 150 in. diam payload. Satellites up to 12,500 lb can be launched into GEO, 27,600 lb into polar orbits, and 34,100 lb into LEO. The Titan 34D is reconfigurable and can carry payloads that would otherwise be handled by the Shuttle.

  17. Collaboration Between NASA Centers of Excellence on Autonomous System Software Development

    NASA Technical Reports Server (NTRS)

    Goodrich, Charles H.; Larson, William E.; Delgado, H. (Technical Monitor)

    2001-01-01

    Software for space systems flight operations has its roots in the early days of the space program when computer systems were incapable of supporting highly complex and flexible control logic. Control systems relied on fast data acquisition and supervisory control from a roomful of systems engineers on the ground. Even though computer hardware and software has become many orders of magnitude more capable, space systems have largely adhered to this original paradigm In an effort to break this mold, Kennedy Space Center (KSC) has invested in the development of model-based diagnosis and control applications for ten years having broad experience in both ground and spacecraft systems and software. KSC has now partnered with Ames Research Center (ARC), NASA's Center of Excellence in Information Technology, to create a new paradigm for the control of dynamic space systems. ARC has developed model-based diagnosis and intelligent planning software that enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. ARC demonstrated the utility of onboard diagnosis and planning with an experiment aboard Deep Space I in 1999. This paper highlights the software control system collaboration between KSC and ARC. KSC has developed a Mars In-situ Resource Utilization testbed based on the Reverse Water Gas Shift (RWGS) reaction. This plant, built in KSC's Applied Chemistry Laboratory, is capable of producing the large amount of Oxygen that would be needed to support a Human Mars Mission. KSC and ARC are cooperating to develop an autonomous, fault-tolerant control system for RWGS to meet the need for autonomy on deep space missions. The paper will also describe how the new system software paradigm will be applied to Vehicle Health Monitoring, tested on the new X vehicles and integrated into future launch processing systems.

  18. Implications of Gun Launch to Space for Nanosatellite Architectures

    NASA Technical Reports Server (NTRS)

    Palmer, Miles R.

    1995-01-01

    Engineering and economic scaling factors for gun launch to space (GLTS) systems are compared to conventional rocket launch systems. It is argued that GLTS might reduce the cost of small satellite development and launch in the mid to far term, thereby inducing a shift away from large centralized geosynchronous communications satellites to small proliferated low earth orbit systems.

  19. Apollo 16 liftoff

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The huge, 363-feet tall Apollo 16 (Spacecraft 113/Lunar Module 11/Saturn 511) space vehicle is launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida, at 12:54:00.569 p.m., April 16, 1972. The launch is framed on the left by a large piece of dead wood in a body of water near the launch pad.

  20. The Wallops Flight Facility Model for an Integrated Federal/Commercial Launch Range

    NASA Technical Reports Server (NTRS)

    Underwood, Bruce E.

    1999-01-01

    Historically, the federal government has been the predominant purchaser of space launches in the United States. The government met its needs through purchase of hardware and services. It also provided the infrastructure necessary to conduct launch operations through federal launch ranges, both military and NASA. Under this model, the government had the complete ownership, responsibility, liability, and expense for launch activities. As the commercial space sector grew, there emerged a corresponding growth in demand for launch range services. However, the expense and complexity of activities has thus far deterred a rapid rise in the establishment of purely commercial launch sites. In this context, purely commercial is defined as "without benefit of capabilities provided by the federal government." Consistent with the Commercial Space Launch Act, in recent years NASA and the Air Force have supported commercial launches from government launch ranges on a cost-reimbursable, non-interference basis. In this mode the commercial launch service providers contract with the government to provide services including use of facilities, tracking and data services, and range safety. As the commercial market projections began to show significant opportunities for economic development, several states established spaceports to provide the services necessary to meet these projected commercial needs. In 1997, NASA agreed to the establishment of the Virginia Space Flight Center (VSFC) at the Wallops Flight Facility. Under this arrangement, NASA agreed to allow Virginia Commercial Space Flight Authority (VCSFA) to construct facilities on NASA property and agreed to provide services in accordance with the Space Act of 1958 and the Commercial Space Launch Act of 1984 (as amended) to support VSFC launch customers. The relationship between NASA and VCSFA, however, has evolved beyond a customer supplier relationship. A partnership relationship has emerged which pairs the strengths of the established NASA test range and the state-sponsored, commercial launch facility provider, in an attempt to satisfy the needs for flexible, low-cost access to space. Furthermore, the future of the NASA/Wallops Test Range is closely linked with the success of VCSFA in promoting commercial launches from Wallops. This paper will describe the changing paradigm of the federal launch range and the unique aspects of the NASA/Wallops Facility relationship with VCSFA. Discussion will include institutional cost-sharing, business development and marketing, joint educational programs, and strategic planning.

  1. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    NASA Astrophysics Data System (ADS)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  2. Students' Choices and Achievement in Large Undergraduate Classes Using a Novel Flexible Assessment Approach

    ERIC Educational Resources Information Center

    Rideout, Candice A.

    2018-01-01

    A flexible approach to assessment may promote students' engagement and academic achievement by allowing them to personalise their learning experience, even in the context of large undergraduate classes. However, studies reporting flexible assessment strategies and their impact are limited. In this paper, I present a feasible and effective approach…

  3. Structural Dynamics and Control of Large Space Structures, 1982

    NASA Technical Reports Server (NTRS)

    Brumfield, M. L. (Compiler)

    1983-01-01

    Basic research in the control of large space structures is discussed. Active damping and control of flexible beams, active stabilization of flexible antenna feed towers, spacecraft docking, and robust pointing control of large space platform payloads are among the topics discussed.

  4. Engaging Researchers with the World's First Scholarly Arts Repositories: Ten Years after the UK's Kultur Project

    ERIC Educational Resources Information Center

    Meece, Stephanie; Robinson, Amy; Gramstadt, Marie-Therese

    2017-01-01

    Open access institutional repositories can be ill-equipped to manage the complexity of research outputs from departments of fine arts, media, drama, music, cultural heritage, and the creative arts in general. The U.K.-based Kultur project was funded to create a flexible multimedia repository model using EPrints software. The project launched the…

  5. Near-Term Laser Launch Capability: The Heat Exchanger Thruster

    NASA Astrophysics Data System (ADS)

    Kare, Jordin T.

    2003-05-01

    The heat exchanger (HX) thruster concept uses a lightweight (up to 1 MW/kg) flat-plate heat exchanger to couple laser energy into flowing hydrogen. Hot gas is exhausted via a conventional nozzle to generate thrust. The HX thruster has several advantages over ablative thrusters, including high efficiency, design flexibility, and operation with any type of laser. Operating the heat exchanger at a modest exhaust temperature, nominally 1000 C, allows it to be fabricated cheaply, while providing sufficient specific impulse (~600 seconds) for a single-stage vehicle to reach orbit with a useful payload; a nominal vehicle design is described. The HX thruster is also comparatively easy to develop and test, and offers an extremely promising route to near-term demonstration of laser launch.

  6. KSC-2014-1969

    NASA Image and Video Library

    2014-04-03

    CAPE CANAVERAL, Fla. – Three rows of upper level management consoles are all that remain in Firing Room 4 in the Launch Control Center at NASA’s Kennedy Space Center in Florida. The main floor consoles, cabling and wires below the floor and ceiling tiles above have been removed. The Ground Systems Development and Operations Program is overseeing efforts to create a new firing room based on a multi-user concept that will support NASA and commercial launch needs. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky

  7. KSC-2014-1970

    NASA Image and Video Library

    2014-04-03

    CAPE CANAVERAL, Fla. – Three rows of upper level management consoles are all that remain in Firing Room 4 in the Launch Control Center at NASA’s Kennedy Space Center in Florida. The main floor consoles, cabling and wires below the floor and ceiling tiles above have been removed. The Ground Systems Development and Operations Program is overseeing efforts to create a new firing room based on a multi-user concept that will support NASA and commercial launch needs. The design of Firing Room 4 will incorporate five control room areas that are flexible to meet current and future NASA and commercial user requirements. The equipment and most of the consoles from Firing Room 4 were moved to Firing Room 2 for possible future reuse. Photo credit: NASA/Ben Smegelsky

  8. Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kim, Jin Bong; Kim, Man Geun

    This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.

  9. View of the shuttle Discovery on the launch pad just prior to STS 51-D launch

    NASA Image and Video Library

    1985-04-12

    Just below center of this scene is a distant representation of a large ignition as the Shuttle Discovery lifts off from a Kennedy Space Center (KSC) launch pad. The ignition can be seen through the fronds of the trees. Birds in flight frame the light spot representing the orbiter as it launches.

  10. KSC-00pp0750

    NASA Image and Video Library

    2000-06-13

    In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at left is ready for encapsulation. Workers in an extendable platform wait for the fairing (right) to move into place. After encapsulation in the fairing, TDRS will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  11. KSC-00pp0714

    NASA Image and Video Library

    2000-06-01

    The logo for the Tracking and Data Relay Satellite (TDRS-H) is predominantly displayed on the fairing that will encapsulate the satellite for launch. The fairing is in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) where TDRS is undergoing testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  12. KSC00pp0714

    NASA Image and Video Library

    2000-06-01

    The logo for the Tracking and Data Relay Satellite (TDRS-H) is predominantly displayed on the fairing that will encapsulate the satellite for launch. The fairing is in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) where TDRS is undergoing testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  13. KSC-00pp0749

    NASA Image and Video Library

    2000-06-13

    In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at right sits while one-half of the fairing (left) is moved closer to it. After encapsulation in the fairing, TDRS will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  14. KSC00pp0749

    NASA Image and Video Library

    2000-06-13

    In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at right sits while one-half of the fairing (left) is moved closer to it. After encapsulation in the fairing, TDRS will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  15. KSC00pp0750

    NASA Image and Video Library

    2000-06-13

    In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at left is ready for encapsulation. Workers in an extendable platform wait for the fairing (right) to move into place. After encapsulation in the fairing, TDRS will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  16. Localized corrosion of high performance metal alloys in an acid/salt environment

    NASA Technical Reports Server (NTRS)

    Macdowell, L. G.; Ontiveros, C.

    1991-01-01

    Various vacuum jacketed cryogenic supply lines at the Space Shuttle launch site at Kennedy Space Center use convoluted flexible expansion joints. The atmosphere at the launch site has a very high salt content, and during a launch, fuel combustion products include hydrochloric acid. This extremely corrosive environment has caused pitting corrosion failure in the thin walled 304L stainless steel flex hoses. A search was done to find a more corrosion resistant replacement material. The study focussed on 19 metal alloys. Tests which were performed include electrochemical corrosion testing, accelerated corrosion testing in a salt fog chamber, and long term exposure at a beach corrosion testing site. Based on the results of these tests, several nickel based alloys were found to have very high resistance to this corrosive environment. Also, there was excellent agreement between the electrochemical tests and the actual beach exposure tests. This suggests that electrochemical testing may be useful for narrowing the field of potential candidate alloys before subjecting samples to long term beach exposure.

  17. A Mars environmental survey (MESUR) - Feasibility of a low cost global approach

    NASA Technical Reports Server (NTRS)

    Hubbard, G. S.; Wercinski, Paul F.; Sarver, George L.; Hanel, Robert P.; Ramos, Ruben

    1991-01-01

    In situ measurements of Mars' surface and atmosphere are the objectives of a novel network mission concept called the Mars Environmental SURvey (MESUR). As envisioned, the MESUR mission will emplace a pole-to-pole global distribution of 16 landers on the Martian surface over three launch opportunites using medium-lift (Delta-class) launch vehicles. The basic concept is to deploy small free-flying probes which would directly enter the Martian atmosphere, measure the upper atmospheric structure, image the local terrain before landing, and survive landing to perform meteorology, seismology, surface imaging, and soil chemistry measurements. Data will be returned via dedicated relay orbiter or direct-to-earth transmission. The mission philosophy is to: (1) 'grow' a network over a period of years using a series of launch opportunities; (2) develop a level-of-effort which is flexible and responsive to a broad set of objectives; (3) focus on Mars science while providing a solid basis for future human presence; and (4) minimize overall project cost and complexity wherever possible.

  18. GSDO PDR (Preliminary Design Review) Morning Meeting

    NASA Image and Video Library

    2014-03-20

    CAPE CANAVERAL, Fla. – Mike Bolger, program manager for the Ground Systems Development and Operations, or GSDO, Program speaks to participants during completion of the preliminary design review in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida. Representatives from NASA, its contractor partners and experts from across the aerospace industry met in the Mission Briefing Room inside the Operations and Checkout Building at NASA’s Kennedy Space Center in Florida to conclude the initial design and technology development phase. Completion of this review has validated that the baseline architecture is sound and aligns with the agency's exploration objectives. NASA is developing the Space Launch System and Orion spacecraft to provide an entirely new capability for human exploration beyond low-Earth orbit, with the flexibility to launch spacecraft for crew and cargo missions, including to an asteroid and Mars. Orion’s first unpiloted test flight is scheduled to launch later this year atop a Delta IV rocket. A second uncrewed flight test is scheduled for fiscal year 2018 on the Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston

  19. NASA's Space Launch System Program Update

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2015-01-01

    Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in the past year, including firing tests of both main propulsion elements, manufacturing of flight hardware, and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons (t) (154,000 pounds) of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 t (286,000 pounds) to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware, including flight hardware for Exploration Mission 1 (EM-1). This paper will provide an overview of the progress made over the past year and provide a glimpse of upcoming milestones on the way to a 2018 launch readiness date.

  20. Environmentally Preferable Coatings for Structural Steel Project

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Editor)

    2014-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.

  1. Aerodynamic flight control to increase payload capability of future launch vehicles

    NASA Technical Reports Server (NTRS)

    Cochran, John E., Jr.

    1995-01-01

    The development of new launch vehicles will require that designers use innovative approaches to achieve greater performance in terms of pay load capability. The objective of the work performed under this delivery order was to provide technical assistance to the Contract Officer's Technical Representative (COTR) in the development of ideas and concepts for increasing the payload capability of launch vehicles by incorporating aerodynamic controls. Although aerodynamic controls, such as moveable fins, are currently used on relatively small missiles, the evolution of large launch vehicles has been moving away from aerodynamic control. The COTR reasoned that a closer investigation of the use of aerodynamic controls on large vehicles was warranted.

  2. The evolution of commercial launch vehicles : fourth quarter 2001 Quarterly Launch Report

    DOT National Transportation Integrated Search

    2001-01-01

    Launch vehicle performance continues to constantly improve, in large part to meet the demands of an increasing number of larger satellites. Current vehicles are very likely to be changed from last year's versions and are certainly not the same as one...

  3. Launching genomics into the cloud: deployment of Mercury, a next generation sequence analysis pipeline

    PubMed Central

    2014-01-01

    Background Massively parallel DNA sequencing generates staggering amounts of data. Decreasing cost, increasing throughput, and improved annotation have expanded the diversity of genomics applications in research and clinical practice. This expanding scale creates analytical challenges: accommodating peak compute demand, coordinating secure access for multiple analysts, and sharing validated tools and results. Results To address these challenges, we have developed the Mercury analysis pipeline and deployed it in local hardware and the Amazon Web Services cloud via the DNAnexus platform. Mercury is an automated, flexible, and extensible analysis workflow that provides accurate and reproducible genomic results at scales ranging from individuals to large cohorts. Conclusions By taking advantage of cloud computing and with Mercury implemented on the DNAnexus platform, we have demonstrated a powerful combination of a robust and fully validated software pipeline and a scalable computational resource that, to date, we have applied to more than 10,000 whole genome and whole exome samples. PMID:24475911

  4. Onboard data-processing architecture of the soft X-ray imager (SXI) on NeXT satellite

    NASA Astrophysics Data System (ADS)

    Ozaki, Masanobu; Dotani, Tadayasu; Tsunemi, Hiroshi; Hayashida, Kiyoshi; Tsuru, Takeshi G.

    2004-09-01

    NeXT is the X-ray satellite proposed for the next Japanese space science mission. While the satellite total mass and the launching vehicle are similar to the prior satellite Astro-E2, the sensitivity is much improved; it requires all the components to be lighter and faster than previous architecture. This paper shows the data processing architecture of the X-ray CCD camera system SXI (Soft X-ray Imager), which is the top half of the WXI (Wide-band X-ray Imager) of the sensitivity in 0.2-80keV. The system is basically a variation of Astro-E2 XIS, but event extraction speed is much faster than it to fulfill the requirements coming from the large effective area and fast exposure period. At the same time, data transfer lines between components are redesigned in order to reduce the number and mass of the wire harnesses that limit the flexibility of the component distribution.

  5. Carbon Nanotube Flexible and Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Cai, Le; Wang, Chuan

    2015-08-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  6. Carbon Nanotube Flexible and Stretchable Electronics.

    PubMed

    Cai, Le; Wang, Chuan

    2015-12-01

    The low-cost and large-area manufacturing of flexible and stretchable electronics using printing processes could radically change people's perspectives on electronics and substantially expand the spectrum of potential applications. Examples range from personalized wearable electronics to large-area smart wallpapers and from interactive bio-inspired robots to implantable health/medical apparatus. Owing to its one-dimensional structure and superior electrical property, carbon nanotube is one of the most promising material platforms for flexible and stretchable electronics. Here in this paper, we review the recent progress in this field. Applications of single-wall carbon nanotube networks as channel semiconductor in flexible thin-film transistors and integrated circuits, as stretchable conductors in various sensors, and as channel material in stretchable transistors will be discussed. Lastly, state-of-the-art advancement on printing process, which is ideal for large-scale fabrication of flexible and stretchable electronics, will also be reviewed in detail.

  7. Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics

    PubMed Central

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011

  8. Next generation non-vacuum, maskless, low temperature nanoparticle ink laser digital direct metal patterning for a large area flexible electronics.

    PubMed

    Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan

    2012-01-01

    Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.

  9. Robust, Practical Adaptive Control for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Orr, Jeb. S.; VanZwieten, Tannen S.

    2012-01-01

    A modern mechanization of a classical adaptive control concept is presented with an application to launch vehicle attitude control systems. Due to a rigorous flight certification environment, many adaptive control concepts are infeasible when applied to high-risk aerospace systems; methods of stability analysis are either intractable for high complexity models or cannot be reconciled in light of classical requirements. Furthermore, many adaptive techniques appearing in the literature are not suitable for application to conditionally stable systems with complex flexible-body dynamics, as is often the case with launch vehicles. The present technique is a multiplicative forward loop gain adaptive law similar to that used for the NASA X-15 flight research vehicle. In digital implementation with several novel features, it is well-suited to application on aerodynamically unstable launch vehicles with thrust vector control via augmentation of the baseline attitude/attitude-rate feedback control scheme. The approach is compatible with standard design features of autopilots for launch vehicles, including phase stabilization of lateral bending and slosh via linear filters. In addition, the method of assessing flight control stability via classical gain and phase margins is not affected under reasonable assumptions. The algorithm s ability to recover from certain unstable operating regimes can in fact be understood in terms of frequency-domain criteria. Finally, simulation results are presented that confirm the ability of the algorithm to improve performance and robustness in realistic failure scenarios.

  10. Rapid Geometry Creation for Computer-Aided Engineering Parametric Analyses: A Case Study Using ComGeom2 for Launch Abort System Design

    NASA Technical Reports Server (NTRS)

    Hawke, Veronica; Gage, Peter; Manning, Ted

    2007-01-01

    ComGeom2, a tool developed to generate Common Geometry representation for multidisciplinary analysis, has been used to create a large set of geometries for use in a design study requiring analysis by two computational codes. This paper describes the process used to generate the large number of configurations and suggests ways to further automate the process and make it more efficient for future studies. The design geometry for this study is the launch abort system of the NASA Crew Launch Vehicle.

  11. ARES I AND ARES V CONCEPT IMAGE

    NASA Technical Reports Server (NTRS)

    2008-01-01

    THIS CONCEPT IMAGE SHOWS NASA'S NEXT GENERATION LAUNCH VEHICLE SYSTEMS STANDING SIDE BY SIDE. ARES I, LEFT, IS THE CREW LAUNCH VEHICLE THAT WILL CARRY THE ORION CREW EXPLORATION VEHICLE TO SPACE. ARES V IS THE CARGO LAUNCH VEHICLE THAT WILL DELIVER LARGE SCALE HARDWARE, INCLUDING THE LUNAR LANDER, TO SPACE.

  12. Solar power satellite system definition study. Part 2, volume 8: SPS launch vehicle ascent and entry sonic overpressure and noise effects

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Recoverable launch vehicle concepts for the Solar Power Satellite program were identified. These large launch vehicles are powered by proposed engines in the F-1 thrust level class. A description of the candidate launch vehicles and their operating mode was provided. Predictions of the sonic over pressures during ascent and entry for both types of vehicles, and prediction of launch noise levels in the vicinity of the launch site were included. An overall assessment and criteria for sonic overpressure and noise levels was examined.

  13. Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    NASA Technical Reports Server (NTRS)

    Park, Thomas; Smith, Austin; Oliver, T. Emerson

    2018-01-01

    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GNC software from the set of healthy measurements. This paper explores the trades and analyses that were performed in selecting a set of robust fault-detection algorithms included in the GN&C flight software. These trades included both an assessment of hardware-provided health and status data as well as an evaluation of different algorithms based on time-to-detection, type of failures detected, and probability of detecting false positives. We then provide an overview of the algorithms used for both fault-detection and measurement down selection. We next discuss the role of trajectory design, flexible-body models, and vehicle response to off-nominal conditions in setting the detection thresholds. Lastly, we present lessons learned from software integration and hardware-in-the-loop testing.

  14. Improving Conceptual Design for Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1998-01-01

    This report summarizes activities performed during the second year of a three year cooperative agreement between NASA - Langley Research Center and Georgia Tech. Year 1 of the project resulted in the creation of a new Cost and Business Assessment Model (CABAM) for estimating the economic performance of advanced reusable launch vehicles including non-recurring costs, recurring costs, and revenue. The current year (second year) activities were focused on the evaluation of automated, collaborative design frameworks (computation architectures or computational frameworks) for automating the design process in advanced space vehicle design. Consistent with NASA's new thrust area in developing and understanding Intelligent Synthesis Environments (ISE), the goals of this year's research efforts were to develop and apply computer integration techniques and near-term computational frameworks for conducting advanced space vehicle design. NASA - Langley (VAB) has taken a lead role in developing a web-based computing architectures within which the designer can interact with disciplinary analysis tools through a flexible web interface. The advantages of this approach are, 1) flexible access to the designer interface through a simple web browser (e.g. Netscape Navigator), 2) ability to include existing 'legacy' codes, and 3) ability to include distributed analysis tools running on remote computers. To date, VAB's internal emphasis has been on developing this test system for the planetary entry mission under the joint Integrated Design System (IDS) program with NASA - Ames and JPL. Georgia Tech's complementary goals this year were to: 1) Examine an alternate 'custom' computational architecture for the three-discipline IDS planetary entry problem to assess the advantages and disadvantages relative to the web-based approach.and 2) Develop and examine a web-based interface and framework for a typical launch vehicle design problem.

  15. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2011-03-01

    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  16. Developing a mixture design specification for flexible base construction.

    DOT National Transportation Integrated Search

    2012-06-01

    In the Texas Department of Transportation (TxDOT), flexible base producers typically generate large stockpiles of material exclusively for TxDOT projects. This large state-only inventory often maintained by producers, along with time requiremen...

  17. Large-area high-efficiency flexible PHOLED lighting panels

    NASA Astrophysics Data System (ADS)

    Pang, Huiqing; Mandlik, Prashant; Levermore, Peter A.; Silvernail, Jeff; Ma, Ruiqing; Brown, Julie J.

    2012-09-01

    Organic Light Emitting Diodes (OLEDs) provide various attractive features for next generation illumination systems, including high efficiency, low power, thin and flexible form factor. In this work, we incorporated phosphorescent emitters and demonstrated highly efficient white phosphorescent OLED (PHOLED) devices on flexible plastic substrates. The 0.94 cm2 small-area device has total thickness of approximately 0.25 mm and achieved 63 lm/W at 1,000 cd/m2 with CRI = 85 and CCT = 2920 K. We further designed and fabricated a 15 cm x 15 cm large-area flexible white OLED lighting panels, finished with a hybrid single-layer ultra-low permeability single layer barrier (SLB) encapsulation film. The flexible panel has an active area of 116.4 cm2, and achieved a power efficacy of 47 lm/W at 1,000 cd/m2 with CRI = 83 and CCT = 3470 K. The efficacy of the panel at 3,000 cd/m2 is 43 lm/W. The large-area flexible PHOLED lighting panel is to bring out enormous possibilities to the future general lighting applications.

  18. Flexible and mechanical strain resistant large area SERS active substrates

    NASA Astrophysics Data System (ADS)

    Singh, J. P.; Chu, Hsiaoyun; Abell, Justin; Tripp, Ralph A.; Zhao, Yiping

    2012-05-01

    We report a cost effective and facile way to synthesize flexible, uniform, and large area surface enhanced Raman scattering (SERS) substrates using an oblique angle deposition (OAD) technique. The flexible SERS substrates consist of 1 μm long, tilted silver nanocolumnar films deposited on flexible polydimethylsiloxane (PDMS) and polyethylene terephthalate (PET) sheets using OAD. The SERS enhancement activity of these flexible substrates was determined using 10-5 M trans-1,2-bis(4-pyridyl) ethylene (BPE) Raman probe molecules. The in situ SERS measurements on these flexible substrates under mechanical (tensile/bending) strain conditions were performed. Our results show that flexible SERS substrates can withstand a tensile strain (ε) value as high as 30% without losing SERS performance, whereas the similar bending strain decreases the SERS performance by about 13%. A cyclic tensile loading test on flexible PDMS SERS substrates at a pre-specified tensile strain (ε) value of 10% shows that the SERS intensity remains almost constant for more than 100 cycles. These disposable and flexible SERS substrates can be integrated with biological substances and offer a novel and practical method to facilitate biosensing applications.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hao; Garzoglio, Gabriele; Ren, Shangping

    FermiCloud is a private cloud developed in Fermi National Accelerator Laboratory to provide elastic and on-demand resources for different scientific research experiments. The design goal of the FermiCloud is to automatically allocate resources for different scientific applications so that the QoS required by these applications is met and the operational cost of the FermiCloud is minimized. Our earlier research shows that VM launching overhead has large variations. If such variations are not taken into consideration when making resource allocation decisions, it may lead to poor performance and resource waste. In this paper, we show how we may use an VMmore » launching overhead reference model to minimize VM launching overhead. In particular, we first present a training algorithm that automatically tunes a given refer- ence model to accurately reflect FermiCloud environment. Based on the tuned reference model for virtual machine launching overhead, we develop an overhead-aware-best-fit resource allocation algorithm that decides where and when to allocate resources so that the average virtual machine launching overhead is minimized. The experimental results indicate that the developed overhead-aware-best-fit resource allocation algorithm can significantly improved the VM launching time when large number of VMs are simultaneously launched.« less

  20. Mars Exploration Rovers Launch Performance and TCM-1 Maneuver Design

    NASA Technical Reports Server (NTRS)

    Kangas, Julie A.; Potts, Christopher L.; Raofi, Behzad

    2004-01-01

    The Mars Exploration Rover (MER) project successfully landed two identical rovers on Mars in order to remotely conduct geologic investigations, including characterization of rocks and soils that may hold clues to past water activity. Two landing sites, Gusev crater and Meridiani Planum, were selected out of nearly 200 candidate sites after balancing science returns and flight system engineering and safety. Precise trajectory targeting and control was necessary to achieve the atmospheric entry requirements for the selected landing sites within the flight system constraints. This paper discusses the expected and achieved launch vehicle performance and the impacts of that performance on the first Trajectory Correction Maneuver (TCM-1) while maintaining targeting flexibility in accommodating additional project concerns about landing site safety and possible in-flight retargeting to alternate landing sites.

  1. The capture of lunar materials in low lunar orbit

    NASA Technical Reports Server (NTRS)

    Floyd, M. A.

    1981-01-01

    A scenario is presented for the retrieval of lunar materials sent into lunar orbit to be used as raw materials in space manufacturing operations. The proposal is based on the launch of material from the lunar surface by an electromagnetic mass driver and the capture of this material in low lunar orbit by a fleet of mass catchers which ferry the material to processing facilities when full. Material trajectories are analyzed using the two-body equations of motion, and intercept requirements and the sensitivity of the system to launch errors are determined. The present scenario is shown to be superior to scenarios that place a single mass catcher at the L2 libration point due to increased operations flexibility, decreased mass driver performance requirements and centralized catcher servicing.

  2. Space-Based Telemetry and Range Safety Project Ku-Band and Ka-Band Phased Array Antenna

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  3. Ku- and Ka-Band Phased Array Antenna for the Space-Based Telemetry and Range Safety Project

    NASA Technical Reports Server (NTRS)

    Whiteman, Donald E.; Valencia, Lisa M.; Birr, Richard B.

    2005-01-01

    The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to increase data rates and flexibility and decrease costs by using space-based communications assets for telemetry during launches and landings. Phase 1 used standard S-band antennas with the Tracking and Data Relay Satellite System to obtain a baseline performance. The selection process and available resources for Phase 2 resulted in a Ku-band phased array antenna system. Several development efforts are under way for a Ka-band phased array antenna system for Phase 3. Each phase includes test flights to demonstrate performance and capabilities. Successful completion of this project will result in a set of communications requirements for the next generation of launch vehicles.

  4. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    NASA Technical Reports Server (NTRS)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  5. Modified independent modal space control method for active control of flexible systems

    NASA Technical Reports Server (NTRS)

    Baz, A.; Poh, S.

    1987-01-01

    A modified independent modal space control (MIMSC) method is developed for designing active vibration control systems for large flexible structures. The method accounts for the interaction between the controlled and residual modes. It incorporates also optimal placement procedures for selecting the optimal locations of the actuators in the structure in order to minimize the structural vibrations as well as the actuation energy. The MIMSC method relies on an important feature which is based on time sharing of a small number of actuators, in the modal space, to control effectively a large number of modes. Numerical examples are presented to illustrate the application of the method to generic flexible systems. The results obtained suggest the potential of the devised method in designing efficient active control systems for large flexible structures.

  6. Cellulose Nanofiber Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2012-01-01

    Flexible electronics have a large number of potential applications including malleable displays and wearable computers. The current research into high-speed, flexible electronic substrates employs the use of plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from...

  7. Chapter 2.3 Cellulose Nanofibril Composite Substrates for Flexible Electronics

    Treesearch

    Ronald Sabo; Jung-Hun Seo; Zhenqiang Ma

    2013-01-01

    Flexible electronics have a large number of potential applications, including malleable displays and wearable computers. Current research into high-speed, flexible electronic substrates uses plastics for the flexible substrate, but these plastics typically have drawbacks, such as high thermal expansion coefficients. Transparent films made from cellulose...

  8. Launch Period Development for the Juno Mission to Jupiter

    NASA Technical Reports Server (NTRS)

    Kowalkowski, Theresa D.; Johannesen, Jennie R.; Lam, Try

    2008-01-01

    The Juno mission to Jupiter is targeted to launch in 2011 and would reach the giant planet about five years later. The interplanetary trajectory is planned to include two large deep space maneuvers and an Earth gravity assist a little more than two years after launch. In this paper, we describe the development of a 21-day launch period for Juno with the objective of keeping overall launch energy and delta-V low while meeting constraints imposed on Earth departure, the deep space maneuvers' timing and geometry, and Jupiter arrival.

  9. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Shown is a concept illustration of the Ares I crew launch vehicle during launch and the Ares V cargo launch vehicle on the launch pad. Ares I will carry the Orion Crew Exploration Vehicle with an astronaut crew to Earth orbit. Ares V will deliver large-scale hardware to space. This includes the Altair Lunar Lander, materials for establishing an outpost on the moon, and the vehicles and hardware needed to extend a human presence beyond Earth orbit.

  10. 70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF FUEL APRON FROM EAST SIDE OF LAUNCH PAD. ROCKET FUEL TANKS ON LEFT; GASEOUS NITROGEN AND HELIUM TANKS IN CENTER; AND A LARGE LIQUID NITROGEN TANK ON RIGHT. SKID 1 FOR GASEOUS NITROGEN TRANSFER AND SKID 5 FOR HELIUM TRANSFER IN THE CENTER RIGHT PORTION OF THE PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. Printable Silicon Nanomembranes for Solar-Powered, Bi-Directional Phased-Array-Antenna Communication System on Flexible Substrates

    DTIC Science & Technology

    2013-04-01

    Identification (RFID), Large Area Flexible Displays, Electronic Paper, Bio - Sensors , Large Area Conformal and Flexible Antennas, Smart and Interactive Textiles...Lepeshkin, R. W. Boyd, C. Chase, and J. E. Fajardo, “An environmental sensor based on an integrated optical whispering gallery mode disk resonator ...Ubiquitous Sensor Networks (USN), Vehicle Clickers Readers, Real Time Locating Systems, Lighting, Photovoltaics etc. FA9550-11-C-0014 STTR Phase II

  12. Advanced Modular Power Approach to Affordable, Supportable Space Systems

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Kimnach, Greg L.; Fincannon, James; Mckissock,, Barbara I.; Loyselle, Patricia L.; Wong, Edmond

    2013-01-01

    Recent studies of missions to the Moon, Mars and Near Earth Asteroids (NEA) indicate that these missions often involve several distinct separately launched vehicles that must ultimately be integrated together in-flight and operate as one unit. Therefore, it is important to see these vehicles as elements of a larger segmented spacecraft rather than separate spacecraft flying in formation. The evolution of large multi-vehicle exploration architecture creates the need (and opportunity) to establish a global power architecture that is common across all vehicles. The Advanced Exploration Systems (AES) Modular Power System (AMPS) project managed by NASA Glenn Research Center (GRC) is aimed at establishing the modular power system architecture that will enable power systems to be built from a common set of modular building blocks. The project is developing, demonstrating and evaluating key modular power technologies that are expected to minimize non-recurring development costs, reduce recurring integration costs, as well as, mission operational and support costs. Further, modular power is expected to enhance mission flexibility, vehicle reliability, scalability and overall mission supportability. The AMPS project not only supports multi-vehicle architectures but should enable multi-mission capability as well. The AMPS technology development involves near term demonstrations involving developmental prototype vehicles and field demonstrations. These operational demonstrations not only serve as a means of evaluating modular technology but also provide feedback to developers that assure that they progress toward truly flexible and operationally supportable modular power architecture.

  13. Large Diameter Shuttle Launched-AEM (LDSL-AEM) study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A technical description of a Large Diameter Shuttle Launched-AEM (LDSL-AEM), an AEM base module adapted to carry 5 ft diameter payloads in the shuttle with propulsion for carrying payloads to higher altitude orbits from a 150 NM shuttle orbit, is described. The AEM is designed for launch on the scout launch vehicle. Onboard equipment provides capability to despin, acquire the earth, and control the vehicle in an earth pointing mode using reaction wheels for torque with magnets for all attitude acquisition, wheel desaturation, and nutation damping. Earth sensors in the wheels provide pitch and roll attitude. This system provides autonomous control capability to 1 degree in pitch and roll and 2 degrees in yaw. The attitude can be determined to .5 degrees in pitch and roll and 2 degrees in yaw.

  14. Large Payload Ground Transportation and Test Considerations

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.

    2016-01-01

    Many spacecraft concepts under consideration by the National Aeronautics and Space Administration’s (NASA’s) Evolvable Mars Campaign take advantage of a Space Launch System payload shroud that may be 8 to 10 meters in diameter. Large payloads can theoretically save cost by reducing the number of launches needed--but only if it is possible to build, test, and transport a large payload to the launch site in the first place. Analysis performed previously for the Altair project identified several transportation and test issues with an 8.973 meters diameter payload. Although the entire Constellation Program—including Altair—has since been canceled, these issues serve as important lessons learned for spacecraft designers and program managers considering large payloads for future programs. A transportation feasibility study found that, even broken up into an Ascent and Descent Module, the Altair spacecraft would not fit inside available aircraft. Ground transportation of such large payloads over extended distances is not generally permitted, so overland transportation alone would not be an option. Limited ground transportation to the nearest waterway may be possible, but water transportation could take as long as 67 days per production unit, depending on point of origin and acceptance test facility; transportation from the western United States would require transit through the Panama Canal to access the Kennedy Space Center launch site. Large payloads also pose acceptance test and ground processing challenges. Although propulsion, mechanical vibration, and reverberant acoustic test facilities at NASA’s Plum Brook Station have been designed to accommodate large spacecraft, special handling and test work-arounds may be necessary, which could increase cost, schedule, and technical risk. Once at the launch site, there are no facilities currently capable of accommodating the combination of large payload size and hazardous processing such as hypergolic fuels, pyrotechnic devices, and high pressure gasses. Ironically, the limiting factor to a national heavy lift strategy may not be the rocket technology needed to throw a heavy payload, but rather the terrestrial infrastructure—roads, bridges, airframes, and buildings—necessary to transport, acceptance test, and process large spacecraft. Failure to carefully consider where and how large spacecraft are manufactured, tested, and launched could result in unforeseen cost to modify existing (or develop new) infrastructure, or incur additional risk due to increased handling operations or eliminating key verifications. Although this paper focuses on the canceled Altair spacecraft as a case study, the issues identified here have wide applicability to other large payloads, including concepts under consideration for NASA’s Evolvable Mars Campaign.

  15. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.

    PubMed

    Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    2018-03-14

    Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

  16. NPS-SCAT CONOPS and Radiation Environment

    DTIC Science & Technology

    2012-06-01

    flexibility, as well as allows players in the space market who would otherwise not be able to enter due to budgetary limitations. Important to NPS is...commercial market . Although the time frame for completing NPS-SCAT has not been as short as possible due to the nature of the learning environment on its...Program ( STP ) seeks flight opportunities for approved experiments. The current NPS- SCAT launch date offers ample time to finish and test the

  17. A robust and high precision optimal explicit guidance scheme for solid motor propelled launch vehicles with thrust and drag uncertainty

    NASA Astrophysics Data System (ADS)

    Maity, Arnab; Padhi, Radhakant; Mallaram, Sanjeev; Mallikarjuna Rao, G.; Manickavasagam, M.

    2016-10-01

    A new nonlinear optimal and explicit guidance law is presented in this paper for launch vehicles propelled by solid motors. It can ensure very high terminal precision despite not having the exact knowledge of the thrust-time curve apriori. This was motivated from using it for a carrier launch vehicle in a hypersonic mission, which demands an extremely narrow terminal accuracy window for the launch vehicle for successful initiation of operation of the hypersonic vehicle. The proposed explicit guidance scheme, which computes the optimal guidance command online, ensures the required stringent final conditions with high precision at the injection point. A key feature of the proposed guidance law is an innovative extension of the recently developed model predictive static programming guidance with flexible final time. A penalty function approach is also followed to meet the input and output inequality constraints throughout the vehicle trajectory. In this paper, the guidance law has been successfully validated from nonlinear six degree-of-freedom simulation studies by designing an inner-loop autopilot as well, which enhances confidence of its usefulness significantly. In addition to excellent nominal results, the proposed guidance has been found to have good robustness for perturbed cases as well.

  18. Earth Science Data Archive and Access at the NASA/Goddard Space Flight Center Distributed Active Archive Center (DAAC)

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory

    1999-01-01

    The Goddard Distributed Active Archive Center (DAAC), as an integral part of the Earth Observing System Data and Information System (EOSDIS), is the official source of data for several important earth remote sensing missions. These include the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS) launched in August 1997, the Tropical Rainfall Measuring Mission (TRMM) launched in November 1997, and the Moderate Resolution Imaging Spectroradiometer (MODIS) scheduled for launch in mid 1999 as part of the EOS AM-1 instrumentation package. The data generated from these missions supports a host of users in the hydrological, land biosphere and oceanographic research and applications communities. The volume and nature of the data present unique challenges to an Earth science data archive and distribution system such as the DAAC. The DAAC system receives, archives and distributes a large number of standard data products on a daily basis, including data files that have been reprocessed with updated calibration data or improved analytical algorithms. A World Wide Web interface is provided allowing interactive data selection and automatic data subscriptions as distribution options. The DAAC also creates customized and value-added data products, which allow additional user flexibility and reduced data volume. Another significant part of our overall mission is to provide ancillary data support services and archive support for worldwide field campaigns designed to validate the results from the various satellite-derived measurements. In addition to direct data services, accompanying documentation, WWW links to related resources, support for EOSDIS data formats, and informed response to inquiries are routinely provided to users. The current GDAAC WWW search and order system is being restructured to provide users with a simplified, hierarchical access to data. Data Browsers have been developed for several data sets to aid users in ordering data. These Browsers allow users to specify spatial, temporal, and other parameter criteria in searching for and previewing data.

  19. Ares I-X Flight Test Development Challenges and Success Factors

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Davis, Steve; Olsen, Ronald; Taylor, James

    2010-01-01

    The NASA Constellation Program's Ares I-X rocket launched successfully on October 28, 2009 collecting valuable data and providing risk reduction for the Ares I project. The Ares I-X mission was formulated and implemented in less than four years commencing with the Exploration Systems Architecture Study in 2005. The test configuration was founded upon assets and processes from other rocket programs including Space Shuttle, Atlas, and Peacekeeper. For example, the test vehicle's propulsion element was a Shuttle Solid Rocket Motor. The Ares I-X rocket comprised a motor assembly, mass and outer mold line simulators of the Ares I Upper Stage, Orion Spacecraft and Launch Abort System, a roll control system, avionics, and other miscellaneous components. The vehicle was 327 feet tall and weighed approximately 1,800,000 pounds. During flight the rocket reached a maximum speed of Mach 4.8 and an altitude of 150,000 feet. The vehicle demonstrated staging at 130,000 feet, tested parachutes for recovery of the motor, and utilized approximately 900 sensors for data collection. Developing a new launch system and preparing for a safe flight presented many challenges. Specific challenges included designing a system to withstand the environments, manufacturing large structures, and re-qualifying heritage hardware. These and other challenges, if not mitigated, may have resulted in test cancellation. Ares I-X succeeded because the mission was founded on carefully derived objectives, led by decisive and flexible management, implemented by an exceptionally talented and dedicated workforce, and supported by a thorough independent review team. Other major success factors include the use of proven heritage hardware, a robust System Integration Laboratory, multi-NASA center and contractor team, concurrent operations, efficient vehicle assembly, effective risk management, and decentralized element development with a centralized control board. Ares I-X was a technically complex test that required creative thinking, risk taking, and a passion to succeed.

  20. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.

    PubMed

    Ye, Dong; Ding, Yajiang; Duan, Yongqing; Su, Jiangtao; Yin, Zhouping; Huang, Yong An

    2018-05-01

    Nanofibers/nanowires usually exhibit exceptionally low flexural rigidities and remarkable tolerance against mechanical bending, showing superior advantages in flexible electronics applications. Electrospinning is regarded as a powerful process for this 1D nanostructure; however, it can only be able to produce chaotic fibers that are incompatible with the well-patterned microstructures in flexible electronics. Electro-hydrodynamic (EHD) direct-writing technology enables large-scale deposition of highly aligned nanofibers in an additive, noncontact, real-time adjustment, and individual control manner on rigid or flexible, planar or curved substrates, making it rather attractive in the fabrication of flexible electronics. In this Review, the ground-breaking research progress in the field of EHD direct-writing technology is summarized, including a brief chronology of EHD direct-writing techniques, basic principles and alignment strategies, and applications in flexible electronics. Finally, future prospects are suggested to advance flexible electronics based on orderly arranged EHD direct-written fibers. This technology overcomes the limitations of the resolution of fabrication and viscosity of ink of conventional inkjet printing, and represents major advances in manufacturing of flexible electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ares I and Ares V concept illustrations

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a concept illustration of the Ares I crew launch vehicle during launch and the Ares V cargo launch vehicle on the launch pad. Ares I will carry the Orion Crew Exploration Vehicle with an astronaut crew to Earth orbit. Ares V will deliver large-scale hardware to space. This includes the Altair Lunar Lander, materials for establishing an outpost on the moon, and the vehicles and hardware needed to extend a human presence beyond Earth orbit.

  2. Gravure printing of graphene for large-area flexible electronics.

    PubMed

    Secor, Ethan B; Lim, Sooman; Zhang, Heng; Frisbie, C Daniel; Francis, Lorraine F; Hersam, Mark C

    2014-07-09

    Gravure printing of graphene is demonstrated for the rapid production of conductive patterns on flexible substrates. Development of suitable inks and printing parameters enables the fabrication of patterns with a resolution down to 30 μm. A mild annealing step yields conductive lines with high reliability and uniformity, providing an efficient method for the integration of graphene into large-area printed and flexible electronics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. KSC00pp0751

    NASA Image and Video Library

    2000-06-13

    In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at left is ready for encapsulation. Workers in an extended platform are moved closer to the fairing at right of the satellite. After encapsulation in the fairing, TDRS will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  4. KSC-00pp0751

    NASA Image and Video Library

    2000-06-13

    In the Spacecraft Assembly and Encapsulation Facility, the Tracking and Data Relay Satellite (TDRS-H) at left is ready for encapsulation. Workers in an extended platform are moved closer to the fairing at right of the satellite. After encapsulation in the fairing, TDRS will be transported to Launch Pad 36A, Cape Canaveral Air Force Station for launch scheduled June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  5. Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector

    NASA Technical Reports Server (NTRS)

    Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)

    2001-01-01

    Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.

  6. Gravitational force and torque on a solar power satellite considering the structural flexibility

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Zhang, Jingrui; Zhang, Yao; Zhang, Jun; Hu, Quan

    2017-11-01

    The solar power satellites (SPS) are designed to collect the constant solar energy and beam it to Earth. They are traditionally large in scale and flexible in structure. In order to obtain an accurate model of such system, the analytical expressions of the gravitational force, gravity gradient torque and modal force are investigated. They are expanded to the fourth order in a Taylor series with the elastic displacements considered. It is assumed that the deformation of the structure is relatively small compared with its characteristic length, so that the assumed mode method is applicable. The high-order moments of inertia and flexibility coefficients are presented. The comprehensive dynamics of a large flexible SPS and its orbital, attitude and vibration evolutions with different order gravitational forces, gravity gradient torques and modal forces in geosynchronous Earth orbit are performed. Numerical simulations show that an accurate representation of the SPS‧ dynamic characteristics requires the retention of the higher moments of inertia and flexibility. Perturbations of orbit, attitude and vibration can be retained to the 1-2nd order gravitational forces, the 1-2nd order gravity gradient torques and the 1-2nd order modal forces for a large flexible SPS in geosynchronous Earth orbit.

  7. Solid Freeform Fabrication: An Enabling Technology for Future Space Missions

    NASA Technical Reports Server (NTRS)

    Taminger, Karen M. B.; Hafley, Robert A.; Dicus, Dennis L.

    2002-01-01

    The emerging class of direct manufacturing processes known as Solid Freeform Fabrication (SFF) employs a focused energy beam and metal feedstock to build structural parts directly from computer aided design (CAD) data. Some variations on existing SFF techniques have potential for application in space for a variety of different missions. This paper will focus on three different applications ranging from near to far term to demonstrate the widespread potential of this technology for space-based applications. One application is the on-orbit construction of large space structures, on the order of tens of meters to a kilometer in size. Such structures are too large to launch intact even in a deployable design; their extreme size necessitates assembly or erection of such structures in space. A low-earth orbiting satellite with a SFF system employing a high-energy beam for high deposition rates could be employed to construct large space structures using feedstock launched from Earth. A second potential application is a small, multifunctional system that could be used by astronauts on long-duration human exploration missions to manufacture spare parts. Supportability of human exploration missions is essential, and a SFF system would provide flexibility in the ability to repair or fabricate any part that may be damaged or broken during the mission. The system envisioned would also have machining and welding capabilities to increase its utility on a mission where mass and volume are extremely limited. A third example of an SFF application in space is a miniaturized automated system for structural health monitoring and repair. If damage is detected using a low power beam scan, the beam power can be increased to perform repairs within the spacecraft or satellite structure without the requirement of human interaction or commands. Due to low gravity environment for all of these applications, wire feedstock is preferred to powder from a containment, handling, and safety standpoint. The energy beams may be either electron beam or laser, and the developments required for either energy source to achieve success in these applications will be discussed.

  8. Libration Point Navigation Concepts Supporting Exploration Vision

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell; Folta, David C.; Moreau, Michael C.; Gramling, Cheryl J.

    2004-01-01

    Farquhar described several libration point navigation concepts that would appear to support NASA s current exploration vision. One concept is a Lunar Relay Satellite operating in the vicinity of Earth-Moon L2, providing Earth-to-lunar far-side and long- range surface-to-surface navigation and communications capability. Reference [ 1] lists several advantages of such a system in comparison to a lunar orbiting relay satellite constellation. Among these are one or two vs. many satellites for coverage, simplified acquisition and tracking due to very low relative motion, much longer contact times, and simpler antenna pointing. An obvious additional advantage of such a system is that uninterrupted links to Earth avoid performing critical maneuvers "in the blind." Another concept described is the use of Earth-Moon L1 for lunar orbit rendezvous, rather than low lunar orbit as was done for Apollo. This rendezvous technique would avoid large plane change and high fuel cost associated with high latitude landing sites and long stay times. Earth-Moon L1 also offers unconstrained launch windows from the lunar surface. Farquhar claims this technique requires only slightly higher fuel cost than low lunar orbit rendezvous for short-stay equatorial landings. Farquhar also describes an Interplanetary Transportation System that would use libration points as terminals for an interplanetary shuttle. This approach would offer increased operational flexibility in terms of launch windows, rendezvous, aborts, etc. in comparison to elliptical orbit transfers. More recently, other works including Folta[3] and Howell[4] have shown that patching together unstable trajectories departing Earth-Moon libration points with stable trajectories approaching planetary libration points may also offer lower overall fuel costs than elliptical orbit transfers. Another concept Farquhar described was a Deep Space Relay at Earth-Moon IA and/or L5 that would serve as a high data rate optical navigation and communications relay satellite. The advantages in comparison to a geosynchronous relay are minimal Earth occultation, distance from large noise sources on Earth, easier pointing due to smaller relative velocity, and a large baseline for interferometry if both L4 and L5 are used.

  9. Maglev Launch: Ultra-low Cost, Ultra-high Volume Access to Space for Cargo and Humans

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    Despite decades of efforts to reduce rocket launch costs, improvements are marginal. Launch cost to LEO for cargo is ~$10,000 per kg of payload, and to higher orbit and beyond much greater. Human access to the ISS costs $20 million for a single passenger. Unless launch costs are greatly reduced, large scale commercial use and human exploration of the solar system will not occur. A new approach for ultra low cost access to space-Maglev Launch-magnetically accelerates levitated spacecraft to orbital speeds, 8 km/sec or more, in evacuated tunnels on the surface, using Maglev technology like that operating in Japan for high speed passenger transport. The cost of electric energy to reach orbital speed is less than $1 per kilogram of payload. Two Maglev launch systems are described, the Gen-1System for unmanned cargo craft to orbit and Gen-2, for large-scale access of human to space. Magnetically levitated and propelled Gen-1 cargo craft accelerate in a 100 kilometer long evacuated tunnel, entering the atmosphere at the tunnel exit, which is located in high altitude terrain (~5000 meters) through an electrically powered ``MHD Window'' that prevents outside air from flowing into the tunnel. The Gen-1 cargo craft then coasts upwards to space where a small rocket burn, ~0.5 km/sec establishes, the final orbit. The Gen-1 reference design launches a 40 ton, 2 meter diameter spacecraft with 35 tons of payload. At 12 launches per day, a single Gen-1 facility could launch 150,000 tons annually. Using present costs for tunneling, superconductors, cryogenic equipment, materials, etc., the projected construction cost for the Gen-1 facility is 20 billion dollars. Amortization cost, plus Spacecraft and O&M costs, total $43 per kg of payload. For polar orbit launches, sites exist in Alaska, Russia, and China. For equatorial orbit launches, sites exist in the Andes and Africa. With funding, the Gen-1 system could operate by 2020 AD. The Gen-2 system requires more advanced technology. Passenger spacecraft enter the atmosphere at 70,000 feet, where deceleration is acceptable. A levitated evacuated launch tube is used, with the levitation force generated by magnetic interaction between superconducting cables on the levitated launch tube and superconducting cables on the ground beneath. The Gen-2 system could launch 100's of thousands of passengers per year, and operate by 2030 AD. Maglev launch will enable large human scale exploration of space, thousands of gigawatts of space solar power satellites for beamed power to Earth, a robust defense against asteroids and comets, and many other applications not possible now.

  10. Handling Qualities of Large Flexible Aircraft. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Poopaka, S.

    1980-01-01

    The effects on handling qualities of elastic modes interaction with the rigid body dynamics of a large flexible aircraft are studied by a mathematical computer simulation. An analytical method to predict the pilot ratings when there is a severe modes interactions is developed. This is done by extending the optimal control model of the human pilot response to include the mode decomposition mechanism into the model. The handling qualities are determined for a longitudinal tracking task using a large flexible aircraft with parametric variations in the undamped natural frequencies of the two lowest frequency, symmetric elastic modes made to induce varying amounts of mode interaction.

  11. Workplace flexibility: from research to action.

    PubMed

    Galinsky, Ellen; Sakai, Kelly; Wigton, Tyler

    2011-01-01

    Ellen Galinsky, Kelly Sakai, and Tyler Wigton explore the "time famine" among American workers-the continuing sense among employees of not having enough time to manage the multiple responsibilities of work and personal and family life. Noting that large shares of U.S. employees report feeling the need for greater workplace flexibility to enable them to take better care of family responsibilities, the authors examine a large-scale community-engagement initiative to increase workplace flexibility voluntarily. Using the 2008 National Study of the Changing Workforce as a primary source of data, the authors begin with an overview of the prevalence of flexibility in today's American workplace. They track which categories of employees have access to various flexibility options, as well as the extent to which employees with access to various types of flexibility use those options. Findings from the study indicate that the majority of employees want flexibility but that access to it varies, with more advantaged employees--those who are well educated, have high salaries, and work full time, for example--being doubly advantaged in having greater access to flexibility. A number of employers, say the authors, tend to be skeptical of the value of workplace flexibility and to fear that employees will abuse it if it is offered. But the study data reveal that most employees use flexibility quite conservatively. When the authors use their nationally representative data set to investigate correlations between access to workplace flexibility and a range of workplace outcomes especially valued by employers--employee engagement, job satisfaction, retention, and health--they find that employers as well as employees can benefit from flexibility. Finally, the authors discuss When Work Works, a large, national community-based initiative under way since 2003 to increase voluntary adoption of workplace flexibility. The authors detail the conceptual basis of the project's design, noting its emphasis on flexibility as one component of effective workplaces that can benefit employers, employees, and communities alike. Galinsky, Sakai, and Wigton conclude by drawing lessons learned from the project and briefly discussing the implications of using research to bring about workplace change.

  12. A field study of solid rocket exhaust impacts on the near-field environment

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, Vernon W.

    1990-01-01

    Large solid rocket motors release large quantities of hydrogen chloride and aluminum oxide exhaust during launch and testing. Measurements and analysis of the interaction of this material with the deluge water spray and other environmental factors in the near field (within 1 km of the launch or test site) are summarized. Measurements of mixed solid and liquid deposition (typically 2 normal HCl) following space shuttle launches and 6.4 percent scale model tests are described. Hydrogen chloride gas concentrations measured in the hours after the launch of STS 41D and STS 51A are reported. Concentrations of 9 ppm, which are above the 5 ppm exposure limits for workers, were detected an hour after STS 51A. A simplified model which explains the primary features of the gas concentration profiles is included.

  13. KSC-06pd1339

    NASA Image and Video Library

    2006-06-27

    KENNEDY SPACE CENTER, FLA. - This radar image shows the presence of large birds around Launch Pad 39B. The data is being relayed from the avian radars recently set up on the pad. The computer is one of two set up in Firing Room 4 of the Launch Control Center. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/George Shelton

  14. KSC-98pc1045

    NASA Image and Video Library

    1998-08-06

    In this aerial view, The News Center sits beyond a large parking lot, on a hill at the northeastern end of the Launch Complex 39 Area , next to the turn basin (at left). From left, the grandstand faces the launch pads several miles away on the Atlantic seashore; behind it, the television studio is the site of media conferences; next, the large white-roofed building is the hub of information and activity for press representatives. Lined up on the right of the Press Site are various buildings and trailers, home to major news networks. The parking lot can accommodate the hundreds of media personnel who attend Space Shuttle launches

  15. Technology Innovations from NASA's Next Generation Launch Technology Program

    NASA Technical Reports Server (NTRS)

    Cook, Stephen A.; Morris, Charles E. K., Jr.; Tyson, Richard W.

    2004-01-01

    NASA's Next Generation Launch Technology Program has been on the cutting edge of technology, improving the safety, affordability, and reliability of future space-launch-transportation systems. The array of projects focused on propulsion, airframe, and other vehicle systems. Achievements range from building miniature fuel/oxygen sensors to hot-firings of major rocket-engine systems as well as extreme thermo-mechanical testing of large-scale structures. Results to date have significantly advanced technology readiness for future space-launch systems using either airbreathing or rocket propulsion.

  16. A large number of stepping motor network construction by PLC

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Zhang, Kai; Hongqiang, Guo

    2017-11-01

    In the flexible automatic line, the equipment is complex, the control mode is flexible, how to realize the large number of step and servo motor information interaction, the orderly control become a difficult control. Based on the existing flexible production line, this paper makes a comparative study of its network strategy. After research, an Ethernet + PROFIBUSE communication configuration based on PROFINET IO and profibus was proposed, which can effectively improve the data interaction efficiency of the equipment and stable data interaction information.

  17. Validated simulator for space debris removal with nets and other flexible tethers applications

    NASA Astrophysics Data System (ADS)

    Gołębiowski, Wojciech; Michalczyk, Rafał; Dyrek, Michał; Battista, Umberto; Wormnes, Kjetil

    2016-12-01

    In the context of active debris removal technologies and preparation activities for the e.Deorbit mission, a simulator for net-shaped elastic bodies dynamics and their interactions with rigid bodies, has been developed. Its main application is to aid net design and test scenarios for space debris deorbitation. The simulator can model all the phases of the debris capturing process: net launch, flight and wrapping around the target. It handles coupled simulation of rigid and flexible bodies dynamics. Flexible bodies were implemented using Cosserat rods model. It allows to simulate flexible threads or wires with elasticity and damping for stretching, bending and torsion. Threads may be combined into structures of any topology, so the software is able to simulate nets, pure tethers, tether bundles, cages, trusses, etc. Full contact dynamics was implemented. Programmatic interaction with simulation is possible - i.e. for control implementation. The underlying model has been experimentally validated and due to significant gravity influence, experiment had to be performed in microgravity conditions. Validation experiment for parabolic flight was a downscaled process of Envisat capturing. The prepacked net was launched towards the satellite model, it expanded, hit the model and wrapped around it. The whole process was recorded with 2 fast stereographic camera sets for full 3D trajectory reconstruction. The trajectories were used to compare net dynamics to respective simulations and then to validate the simulation tool. The experiments were performed on board of a Falcon-20 aircraft, operated by National Research Council in Ottawa, Canada. Validation results show that model reflects phenomenon physics accurately enough, so it may be used for scenario evaluation and mission design purposes. The functionalities of the simulator are described in detail in the paper, as well as its underlying model, sample cases and methodology behind validation. Results are presented and typical use cases are discussed showing that the software may be used to design throw nets for space debris capturing, but also to simulate deorbitation process, chaser control system or general interactions between rigid and elastic bodies - all in convenient and efficient way. The presented work was led by SKA Polska under the ESA contract, within the CleanSpace initiative.

  18. KSC00pp0822

    NASA Image and Video Library

    2000-06-30

    After tower rollback just before dawn on Launch Pad 36A, Cape Canaveral Air Force Station, NASA’s Tracking and Data Relay Satellite (TDRS-H) sits bathed in spotlights before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  19. KSC-00pp0821

    NASA Image and Video Library

    2000-06-30

    In the early morning hours on Launch Pad 36A, Cape Canaveral Air Force Station, the tower rolls back from NASA’s Tracking and Data Relay Satellite (TDRS-H) before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  20. KSC00pp0821

    NASA Image and Video Library

    2000-06-30

    In the early morning hours on Launch Pad 36A, Cape Canaveral Air Force Station, the tower rolls back from NASA’s Tracking and Data Relay Satellite (TDRS-H) before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  1. KSC-00pp0822

    NASA Image and Video Library

    2000-06-30

    After tower rollback just before dawn on Launch Pad 36A, Cape Canaveral Air Force Station, NASA’s Tracking and Data Relay Satellite (TDRS-H) sits bathed in spotlights before liftoff atop an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built by the Hughes Space and Communications Company, the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the Space Shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  2. Tracking and data relay satellite system configuration and tradeoff study, part 1. Volume 1: Summary volume

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Study efforts directed at defining all TDRS system elements are summarized. Emphasis was placed on synthesis of a space segment design optimized to support low and medium data rate user spacecraft and launched with Delta 2914. A preliminary design of the satellite was developed and conceptual designs of the user spacecraft terminal and TDRS ground station were defined. As a result of the analyses and design effort it was determined that (1) a 3-axis-stabilized tracking and data relay satellite launched on a Delta 2914 provides telecommunications services considerably in excess of that required by the study statement; and (2) the design concept supports the needs of the space shuttle and has sufficient growth potential and flexibility to provide telecommunications services to high data rate users. Recommendations for further study are included.

  3. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  4. A tape-spring hexapod for deployable telescopes: dynamics

    NASA Astrophysics Data System (ADS)

    Blanchard, L.; Aridon, G.; Falzon, F.; Rémond, D.; Dufour, R.

    2017-11-01

    An hexapod based telescope concept whose legs are deployable has been investigated in order to stow the secondary mirror during launch and to self-deploy it in orbit The main advantages of this concept are: a reduced volume for launch with high reduction of passive stability requirements, mass and inertia reduction inducing an agility gain. The positioning errors are corrected thanks to the vertical displacement of the hexapod feet and the final optical performance is reached thanks to adaptive optics. The paper presents the first steps towards the optimal design of a breadboard and the method developed to model the dynamic behaviour of such a structure with highly deformed flexible elements and validated with the results of sine vibration testing of the hexapod. The following part deals with the evaluation of its deployment and correction capabilities.

  5. Horizontal Launch: A Versatile Concept for Assured Space Access

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul; Wilhite, Alan W.; Schaffer, Mark; Voland, Randall T.; Huebner, Larry

    2011-01-01

    The vision of horizontal launch is the capability to provide a mobile launch pad that can use existing aircraft runways, cruise above weather, loiter for mission instructions, and achieve precise placement for orbital intercept, rendezvous, or reconnaissance. Another compelling benefit of horizontal launch is that today s ground-based vertical launch pads are a single earthquake, hurricane, or terrorist attack away from disruption of critical U.S. launch capabilities. The study did not attempt to design a new system concept for horizontal launch, but rather focused on the refinement of many previously-studied horizontal launch concepts. Because of the large number of past horizontal launch studies, a process was developed to narrow the number of concepts through prescreening, screening, and evaluation of point designs. The refinement process was not intended to select the "best" concept, but rather to establish the feasibility of horizontal launch from a balanced assessment of figures of merit and to identify potential concepts that warrant further exploration.

  6. Simulation of Wind Profile Perturbations for Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    2004-01-01

    Ideally, a statistically representative sample of measured high-resolution wind profiles with wavelengths as small as tens of meters is required in design studies to establish aerodynamic load indicator dispersions and vehicle control system capability. At most potential launch sites, high- resolution wind profiles may not exist. Representative samples of Rawinsonde wind profiles to altitudes of 30 km are more likely to be available from the extensive network of measurement sites established for routine sampling in support of weather observing and forecasting activity. Such a sample, large enough to be statistically representative of relatively large wavelength perturbations, would be inadequate for launch vehicle design assessments because the Rawinsonde system accurately measures wind perturbations with wavelengths no smaller than 2000 m (1000 m altitude increment). The Kennedy Space Center (KSC) Jimsphere wind profiles (150/month and seasonal 2 and 3.5-hr pairs) are the only adequate samples of high resolution profiles approx. 150 to 300 m effective resolution, but over-sampled at 25 m intervals) that have been used extensively for launch vehicle design assessments. Therefore, a simulation process has been developed for enhancement of measured low-resolution Rawinsonde profiles that would be applicable in preliminary launch vehicle design studies at launch sites other than KSC.

  7. Metal oxide semiconductor thin-film transistors for flexible electronics

    NASA Astrophysics Data System (ADS)

    Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard

    2016-06-01

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.

  8. Metal oxide semiconductor thin-film transistors for flexible electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petti, Luisa; Vogt, Christian; Büthe, Lars

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This reviewmore » reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided.« less

  9. Aerogels Insulate Missions and Consumer Products

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Aspen Aerogels, of Northborough, Massachusetts, worked with NASA through an SBIR contract with Kennedy Space Center to develop a robust, flexible form of aerogel for cryogenic insulation for space shuttle launch applications. The company has since used the same manufacturing process developed under the SBIR award to expand its product offerings into the more commercial realms, making the naturally fragile aerogel available for the first time as a standard insulation that can be handled and installed just like standard insulation.

  10. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  11. A Closer Look at 804: A Summary of Considerations for DoD Program Managers

    DTIC Science & Technology

    2011-12-01

    aimed at changing the culture from one that is fo- cused typically on a single delivery to a new model that comprises multiple deliveries to es...under the Agency CIOs, and de - velop flexible budget models that align with modular development. • Launch an interactive platform for pre-RFP agency...permission@sei.cmu.edu. TM Carnegie Mellon Software Engineering Institute (stylized), Carnegie Mellon Software Engineering Institute (and de - sign), Simplex

  12. Payload bay atmospheric vent airflow testing at the Vibration and Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Johnston, James D., Jr.

    1988-01-01

    Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel. This report describes the test setups and procedures used to acquire data for characterization of airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible boundary-layer spoiler which reduced the vent-tone amplitude is described.

  13. Rockwell Automation PLC-5 Lands Stennis Space Center with a Reliable, Flexible Control System

    NASA Technical Reports Server (NTRS)

    Epperson, Dave

    2003-01-01

    Ever since the first rocket was launched, people have been infatuated with the vast and unchartered frontier of space. Whether it's visiting a space center or watching a shuttle launch, people are waiting to see what will be discovered next. And even though orbiting the Earth or taking soil samples form the Moon now seems effortless, decades worth of behind-the-scenes work have helped the U.S. space program get to this point. Even today, NASA must take every precaution to ensure equipment is up to the endeavor of setting foot on the moon. As part of the initial push to put the first man on the moon, NASA established the John C. Stennis Space Center, Hancock County, Mississippi in 1961 for space engine propulsion system development. Today, Stennis has three major test complexes where engine and component testing is carried out and integrated into full motion systems for space shuttles and vehicles as well as secondary testing facilities. With different products being tested throughout the facilities, Stennis was in need of an automation system that could link the operations. By integrating a control system based on a Rockwell Automation's flexible and reliable PLC-5 controller, Stennis was able to implement projects more efficiently and focus its efforts on getting the next generation of products ready for space.

  14. International Space Station as a Platform for Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Raftery, Michael; Woodcock, Gordon

    2010-01-01

    The International Space Station (ISS) has established a new model for the achievement of the most difficult engineering goals in space: international collaboration at the program level with competition at the level of technology. This strategic shift in management approach provides long term program stability while still allowing for the flexible evolution of technology needs and capabilities. Both commercial and government sponsored technology developments are well supported in this management model. ISS also provides a physical platform for development and demonstration of the systems needed for missions beyond low earth orbit. These new systems at the leading edge of technology require operational exercise in the unforgiving environment of space before they can be trusted for long duration missions. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. We will describe representative mission profiles showing how ISS can support exploration missions to the Moon, Mars, asteroids and other potential destinations. Example missions would include humans to lunar surface and return, and humans to Mars orbit as well as Mars surface and return. ISS benefits include: international access from all major launch sites; an assembly location with crew and tools that could help prepare departing expeditions that involve more than one launch; a parking place for reusable vehicles; and the potential to add a propellant depot.

  15. Distributed active control of large flexible space structures

    NASA Technical Reports Server (NTRS)

    Nguyen, C. C.; Baz, A.

    1986-01-01

    This progress report summarizes the research work performed at the Catholic University of America on the research grant entitled Distributed Active Control of Large Flexible Space Structures, funded by NASA/Goddard Space Flight Center, under grant number NAG5-749, during the period of March 15, 1986 to September 15, 1986.

  16. Modified Dynamic Inversion to Control Large Flexible Aircraft: What's Going On?

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1999-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper explores dynamic inversion application to an advanced highly flexible aircraft. An initial application has been made to a large flexible supersonic aircraft. In the course of controller design for this advanced vehicle, modifications were made to the standard dynamic inversion methodology. The results of this application were deemed rather promising. An analytical study has been undertaken to better understand the nature of the made modifications and to determine its general applicability. This paper presents the results of this initial analytical look at the modifications to dynamic inversion to control large flexible aircraft.

  17. Collapsible Cryogenic Storage Vessel Project

    NASA Technical Reports Server (NTRS)

    Fleming, David C.

    2002-01-01

    Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.

  18. Solution processed molecular floating gate for flexible flash memories

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-10-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.

  19. Solution processed molecular floating gate for flexible flash memories

    PubMed Central

    Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.

    2013-01-01

    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758

  20. Current developments in clinical multiphoton tomography

    NASA Astrophysics Data System (ADS)

    König, Karsten; Weinigel, Martin; Breunig, Hans Georg; Gregory, Axel; Fischer, Peter; Kellner-Höfer, Marcel; Bückle, Rainer

    2010-02-01

    Two-photon microscopy has been introduced in 1990 [1]. 13 years later, CE-marked clinical multiphoton systems for 3D imaging of human skin with subcellular resolution have been launched by the JenLab company with the tomograph DermaInspectTM. In 2010, the second generation of clinical multiphoton tomographs was introduced. The novel mobile multiphoton tomograph MPTflexTM, equipped with a flexible articulated optical arm, provides an increased flexibility and accessibility especially for clinical and cosmetical examinations. The multiphoton excitation of fluorescent biomolecules like NAD(P)H, flavins, porphyrins, elastin, and melanin as well as the second harmonic generation of collagen is induced by picojoule femtosecond laser pulses from an tunable turn-key near infrared laser system. The ability for rapid highquality image acquisition, the user-friendly operation of the system, and the compact and flexible design qualifies this system to be used for melanoma detection, diagnostics of dermatological disorders, cosmetic research, and skin aging measurements as well as in situ drug monitoring and animal research. So far, more than 1,000 patients and volunteers have been investigated with the multiphoton tomographs in Europe, Asia, and Australia.

  1. Electric Propulsion Space Experiment (ESEX): Spacecraft design issues for high-power electric propulsion

    NASA Astrophysics Data System (ADS)

    Kriebel, Mary M.; Sanks, Terry M.

    1992-02-01

    Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.

  2. a Kml-Based Approach for Distributed Collaborative Interpretation of Remote Sensing Images in the Geo-Browser

    NASA Astrophysics Data System (ADS)

    Huang, L.; Zhu, X.; Guo, W.; Xiang, L.; Chen, X.; Mei, Y.

    2012-07-01

    Existing implementations of collaborative image interpretation have many limitations for very large satellite imageries, such as inefficient browsing, slow transmission, etc. This article presents a KML-based approach to support distributed, real-time, synchronous collaborative interpretation for remote sensing images in the geo-browser. As an OGC standard, KML (Keyhole Markup Language) has the advantage of organizing various types of geospatial data (including image, annotation, geometry, etc.) in the geo-browser. Existing KML elements can be used to describe simple interpretation results indicated by vector symbols. To enlarge its application, this article expands KML elements to describe some complex image processing operations, including band combination, grey transformation, geometric correction, etc. Improved KML is employed to describe and share interpretation operations and results among interpreters. Further, this article develops some collaboration related services that are collaboration launch service, perceiving service and communication service. The launch service creates a collaborative interpretation task and provides a unified interface for all participants. The perceiving service supports interpreters to share collaboration awareness. Communication service provides interpreters with written words communication. Finally, the GeoGlobe geo-browser (an extensible and flexible geospatial platform developed in LIESMARS) is selected to perform experiments of collaborative image interpretation. The geo-browser, which manage and visualize massive geospatial information, can provide distributed users with quick browsing and transmission. Meanwhile in the geo-browser, GIS data (for example DEM, DTM, thematic map and etc.) can be integrated to assist in improving accuracy of interpretation. Results show that the proposed method is available to support distributed collaborative interpretation of remote sensing image

  3. Robust adaptive vibration control of a flexible structure.

    PubMed

    Khoshnood, A M; Moradi, H M

    2014-07-01

    Different types of L1 adaptive control systems show that using robust theories with adaptive control approaches has produced high performance controllers. In this study, a model reference adaptive control scheme considering robust theories is used to propose a practical control system for vibration suppression of a flexible launch vehicle (FLV). In this method, control input of the system is shaped from the dynamic model of the vehicle and components of the control input are adaptively constructed by estimating the undesirable vibration frequencies. Robust stability of the adaptive vibration control system is guaranteed by using the L1 small gain theorem. Simulation results of the robust adaptive vibration control strategy confirm that the effects of vibration on the vehicle performance considerably decrease without the loss of the phase margin of the system. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Solar Trees: First Large-Scale Demonstration of Fully Solution Coated, Semitransparent, Flexible Organic Photovoltaic Modules.

    PubMed

    Berny, Stephane; Blouin, Nicolas; Distler, Andreas; Egelhaaf, Hans-Joachim; Krompiec, Michal; Lohr, Andreas; Lozman, Owen R; Morse, Graham E; Nanson, Lana; Pron, Agnieszka; Sauermann, Tobias; Seidler, Nico; Tierney, Steve; Tiwana, Priti; Wagner, Michael; Wilson, Henry

    2016-05-01

    The technology behind a large area array of flexible solar cells with a unique design and semitransparent blue appearance is presented. These modules are implemented in a solar tree installation at the German pavilion in the EXPO2015 in Milan/IT. The modules show power conversion efficiencies of 4.5% and are produced exclusively using standard printing techniques for large-scale production.

  5. Direct launch using the electric rail gun

    NASA Technical Reports Server (NTRS)

    Barber, J. P.

    1983-01-01

    The concept explored involves using a large single stage electric rail gun to achieve orbital velocities. Exit aerodynamics, launch package design and size, interior ballistics, system and component sizing and design concepts are treated. Technology development status and development requirements are identified and described. The expense of placing payloads in Earth orbit using conventional chemical rockets is considerable. Chemical rockets are very inefficient in converting chemical energy into payload kinetic energy. A rocket motor is relatively expensive and is usually expended on each launch. In addition specialized and expensive forms of fuel are required. Gun launching payloads directly to orbit from the Earth's surface is a possible alternative. Guns are much more energy efficient than rockets. The high capital cost of the gun installation can be recovered by reusing it over and over again. Finally, relatively inexpensive fuel and large quantities of energy are readily available to a fixed installation on the Earth's surface.

  6. NASA/Howard University Large Space Structures Institute

    NASA Technical Reports Server (NTRS)

    Broome, T. H., Jr.

    1984-01-01

    Basic research on the engineering behavior of large space structures is presented. Methods of structural analysis, control, and optimization of large flexible systems are examined. Topics of investigation include the Load Correction Method (LCM) modeling technique, stabilization of flexible bodies by feedback control, mathematical refinement of analysis equations, optimization of the design of structural components, deployment dynamics, and the use of microprocessors in attitude and shape control of large space structures. Information on key personnel, budgeting, support plans and conferences is included.

  7. Nanofabrication and Nanopatterning of Carbon Nanomaterials for Flexible Electronics

    NASA Astrophysics Data System (ADS)

    Ding, Junjun

    Stretchable electrodes have increasingly drawn attention as a vital component for flexible electronic devices. Carbon nanomaterials such as graphene and carbon nanotubes (CNTs) exhibit properties such as high mechanical flexibility and strength, optical transparency, and electrical conductivity which are naturally required for stretchable electrodes. Graphene growth, nanopatterning, and transfer processes are important steps to use graphene as flexible electrodes. However, advances in the large-area nanofabrication and nanopatterning of carbon nanomaterials such as graphene are necessary to realize the full potential of this technology. In particular, laser interference lithography (LIL), a fast and low cost large-area nanoscale patterning technique, shows tremendous promise for the patterning of graphene and other nanostructures for numerous applications. First, it was demonstrated that large-area nanopatterning and the transfer of chemical vapor deposition (CVD) grown graphene via LIL and plasma etching provide a reliable method to provide large area nanoengineered graphene on various target substrates. Then, to improve the electrode performance under large strain (naturally CVD grown graphene sheet will crack at tensile strains larger than 1%), a corrugated graphene structure on PDMS was designed, fabricated, and tested, with experimental results indicating that this approach successfully allows the graphene sheets to withstand cyclic tensile strains up to 15%. Lastly, to further enhance the performance of carbon-based stretchable electrodes, an approach was developed which coupled graphene and vertically aligned CNT (VACNT) on a flexible PDMS substrate. Characterization of the graphene-VACNT hybrid shows high electrical conductivity and durability through 50 cycles of loading up to 100% tensile strain. While flexible electronics promise tremendous advances in important technological areas such as healthcare, sensing, energy, and wearable electronics, continued advances in the nanofabrication, nanopatterning, and transfer of carbon nanomaterials such as those pursued here are necessary to fully realize this vision.

  8. Highly flexible electronics from scalable vertical thin film transistors.

    PubMed

    Liu, Yuan; Zhou, Hailong; Cheng, Rui; Yu, Woojong; Huang, Yu; Duan, Xiangfeng

    2014-03-12

    Flexible thin-film transistors (TFTs) are of central importance for diverse electronic and particularly macroelectronic applications. The current TFTs using organic or inorganic thin film semiconductors are usually limited by either poor electrical performance or insufficient mechanical flexibility. Here, we report a new design of highly flexible vertical TFTs (VTFTs) with superior electrical performance and mechanical robustness. By using the graphene as a work-function tunable contact for amorphous indium gallium zinc oxide (IGZO) thin film, the vertical current flow across the graphene-IGZO junction can be effectively modulated by an external gate potential to enable VTFTs with a highest on-off ratio exceeding 10(5). The unique vertical transistor architecture can readily enable ultrashort channel devices with very high delivering current and exceptional mechanical flexibility. With large area graphene and IGZO thin film available, our strategy is intrinsically scalable for large scale integration of VTFT arrays and logic circuits, opening up a new pathway to highly flexible macroelectronics.

  9. Flexible low-power RF nanoelectronics in the GHz regime using CVD MoS2

    NASA Astrophysics Data System (ADS)

    Yogeesh, Maruthi

    Two-dimensional (2D) materials have attracted substantial interest for flexible nanoelectronics due to the overall device mechanical flexibility and thickness scalability for high mechanical performance and low operating power. In this work, we demonstrate the first MoS2 RF transistors on flexible substrates based on CVD-grown monolayers, featuring record GHz cutoff frequency (5.6 GHz) and saturation velocity (~1.8×106 cm/s), which is significantly superior to contemporary organic and metal oxide thin-film transistors. Furthermore, multicycle three-point bending results demonstrated the electrical robustness of our flexible MoS2 transistors after 10,000 cycles of mechanical bending. Additionally, basic RF communication circuit blocks such as amplifier, mixer and wireless AM receiver have been demonstrated. These collective results indicate that MoS2 is an ideal advanced semiconducting material for low-power, RF devices for large-area flexible nanoelectronics and smart nanosystems owing to its unique combination of large bandgap, high saturation velocity and high mechanical strength.

  10. Buckling assisted and lithographically micropatterned fully flexible sensors for conformal integration applications

    PubMed Central

    Maji, Debashis; Das, Debanjan; Wala, Jyoti; Das, Soumen

    2015-01-01

    Development of flexible sensors/electronics over substrates thicker than 100 μm is of immense importance for its practical feasibility. However, unlike over ultrathin films, large bending stress hinders its flexibility. Here we have employed a novel technique of fabricating sensors over a non-planar ridge topology under pre-stretched condition which not only helps in spontaneous generation of large and uniform parallel buckles upon release, but also acts as stress reduction zones thereby preventing Poisson’s ratio induced lateral cracking. Further, we propose a complete lithography compatible process to realize flexible sensors over pre-stretched substrates thicker than 100 μm that are released through dissolution of a water soluble sacrificial layer of polyvinyl alcohol. These buckling assisted flexible sensors demonstrated superior performance along different flexible modalities. Based on the above concept, we also realized a micro thermal flow sensor, conformally wrapped around angiographic catheters to detect flow abnormalities for potential applications in interventional catheterization process. PMID:26640124

  11. NASA Tech Briefs, June 2006

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Topics covered include: Magnetic-Field-Response Measurement-Acquisition System; Platform for Testing Robotic Vehicles on Simulated Terrain; Interferometer for Low-Uncertainty Vector Metrology; Rayleigh Scattering for Measuring Flow in a Nozzle Testing Facility; "Virtual Feel" Capaciflectors; FETs Based on Doped Polyaniline/Polyethylene Oxide Fibers; Miniature Housings for Electronics With Standard Interfaces; Integrated Modeling Environment; Modified Recursive Hierarchical Segmentation of Data; Sizing Structures and Predicting Weight of a Spacecraft; Stress Testing of Data-Communication Networks; Framework for Flexible Security in Group Communications; Software for Collaborative Use of Large Interactive Displays; Microsphere Insulation Panels; Single-Wall Carbon Nanotube Anodes for Lithium Cells; Tantalum-Based Ceramics for Refractory Composites; Integral Flexure Mounts for Metal Mirrors for Cryogenic Use; Templates for Fabricating Nanowire/Nanoconduit- Based Devices; Measuring Vapors To Monitor the State of Cure of a Resin; Partial-Vacuum-Gasketed Electrochemical Corrosion Cell; Theodolite Ring Lights; Integrating Terrain Maps Into a Reactive Navigation Strategy; Reducing Centroid Error Through Model-Based Noise Reduction; Adaptive Modeling Language and Its Derivatives; Stable Satellite Orbits for Global Coverage of the Moon; and Low-Cost Propellant Launch From a Tethered Balloon

  12. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  13. Thermal Imaging for Inspection of Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2012-01-01

    The end of the Shuttle Program provides an opportunity to evaluate and possibly refurbish launch support infrastructure at the Kennedy Space Center in support of future launch vehicles. One major infrastructure element needing attention is the cryogenic fuel and oxidizer system and specifically the cryogenic fuel ground storage tanks located at Launch Complex 39. These tanks were constructed in 1965 and served both the Apollo and Shuttle Programs and will be used to support future launch programs. However, they have received only external inspection and minimal refurbishment over the years as there were no operational issues that warranted the significant time and schedule disruption required to drain and refurbish the tanks while the launch programs were ongoing. Now, during the break between programs, the health of the tanks is being evaluated and refurbishment is being performed as necessary to maintain their fitness for future launch programs. Thermography was used as one part of the inspection and analysis of the tanks. This paper will describe the conclusions derived from the thermal images to evaluate anomalous regions in the tanks, confirm structural integrity of components within the annular region, and evaluate the effectiveness of thermal imaging to detect large insulation voids in tanks prior to filling with cryogenic fluid. The use of thermal imaging as a tool to inspect unfilled tanks will be important if the construction of additional storage tanks is required to fuel new launch vehicles.

  14. NASA/DOD Control/Structures Interaction Technology, 1986

    NASA Technical Reports Server (NTRS)

    Wright, Robert L. (Compiler)

    1986-01-01

    Control/structures interactions, deployment dynamics and system performance of large flexible spacecraft are discussed. Spacecraft active controls, deployable truss structures, deployable antennas, solar power systems for space stations, pointing control systems for space station gimballed payloads, computer-aided design for large space structures, and passive damping for flexible structures are among the topics covered.

  15. 49 CFR 178.940 - Standards for flexible Large Packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the construction of the flexible Large Packagings must be appropriate to its capacity and its intended... complete immersion in water for not less than 24 hours, retain at least 85 percent of the tensile strength... less. (3) Seams must be stitched or formed by heat sealing, gluing or any equivalent method. All...

  16. A hypervelocity launcher for simulated large fragment space debris impacts at 10 km/s

    NASA Technical Reports Server (NTRS)

    Tullos, R. J.; Gray, W. M.; Mullin, S. A.; Cour-Palais, B. G.

    1989-01-01

    The background, design, and testing of two explosive launchers for simulating large fragment space debris impacts are presented. The objective was to develop a launcher capable of launching one gram aluminum fragments at velocities of 10 km/s. The two launchers developed are based on modified versions of an explosive shaped charge, common in many military weapons. One launcher design has yielded a stable fragment launch of approximately one gram of aluminum at 8.93 km/s velocity. The other design yielded velocities in excess of 10 km/s, but failed to produce a cohesive fragment launch. This work is ongoing, and future plans are given.

  17. Zero Launch Mass 3D printer

    NASA Image and Video Library

    2018-05-01

    Packing light is the idea behind the Zero Launch Mass 3-D Printer. Instead of loading up on heavy building supplies, a large scale 3-D printer capable of using recycled plastic waste and dirt at the destination as construction material would save mass and money when launching robotic precursor missions to build infrastructure on the Moon or Mars in preparation for human habitation. To make this a reality, Nathan Gelino, a researcher engineer with NASA’s Swamp Works at Kennedy Space Center, measured the temperature of a test specimen from the 3-D printer Tuesday as an early step in characterizing printed material strength properties. Material temperature plays a large role in the strength of bonds between layers.

  18. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  19. Megamap: flexible representation of a large space embedded with nonspatial information by a hippocampal attractor network

    PubMed Central

    Zhang, Kechen

    2016-01-01

    The problem of how the hippocampus encodes both spatial and nonspatial information at the cellular network level remains largely unresolved. Spatial memory is widely modeled through the theoretical framework of attractor networks, but standard computational models can only represent spaces that are much smaller than the natural habitat of an animal. We propose that hippocampal networks are built on a basic unit called a “megamap,” or a cognitive attractor map in which place cells are flexibly recombined to represent a large space. Its inherent flexibility gives the megamap a huge representational capacity and enables the hippocampus to simultaneously represent multiple learned memories and naturally carry nonspatial information at no additional cost. On the other hand, the megamap is dynamically stable, because the underlying network of place cells robustly encodes any location in a large environment given a weak or incomplete input signal from the upstream entorhinal cortex. Our results suggest a general computational strategy by which a hippocampal network enjoys the stability of attractor dynamics without sacrificing the flexibility needed to represent a complex, changing world. PMID:27193320

  20. Spring loaded compliant seal for high temperature use

    DOEpatents

    Memmen, Robert L; Fedock, John A; Downs, James P

    2013-10-15

    A flexible seal having an X-shaped cross section that forms four contact points on four contact surfaces of two opposed seal slots. The flexible seal is used for a component in which the two seal slots undergo a large deflection such that the opposed slots are not aligned and a rigid seal will not form an adequate seal. The flexible seal can be used in a component of a combustor or a turbine in a gas turbine engine where opposed seal slots undergo the large deflection during operation.

  1. Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Modular Spacecraft

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik

    2007-01-01

    Launch vehicle payload capacity and the launch environment represent two of the most operationally limiting constraints on space system mass, volume, and configuration. Large-scale space science and power platforms as well as transit vehicles have been proposed that greatly exceed single-launch capabilities. Reconfigurable systems launched as multiple small modular spacecraft with the ability to rendezvous, approach, mate, and conduct coordinated operations have the potential to make these designs feasible. A key characteristic of these proposed systems is their ability to assemble into desired geometric (spatial) configurations. While flexible and sparse formations may be realized by groups of spacecraft flying in close proximity, flyers physically connected by active structural elements could continuously exchange power, fluids, and heat (via fluids). Configurations of small modular spacecraft temporarily linked together could be sustained as long as needed with minimal propellant use and reconfigured as often as needed over extended missions with changing requirements. For example, these vehicles could operate in extremely compact configurations during boost phases of a mission and then redeploy to generate power or communicate while coasting and upon reaching orbit. In 2005, NASA funded Phase 1 of a program called Modular Reconfigurable High-Energy Technology Demonstrator Assembly Testbed (MRHE) to investigate reconfigurable systems of small spacecraft. The MRHE team was led by NASA's Marshall Space Flight Center and included Lockheed Martin's Advanced Technology Center (ATC) in Palo Alto and its subcontractor, ATK. One of the goals of Phase 1 was to develop an MRHE concept demonstration in a relevant 1-g environment to highlight a number of requisite technologies. In Phase 1 of the MRHE program, Lockheed Martin devised and conducted an automated space system assembly demonstration featuring multipurpose free-floating robots representing Spacecraft in the newly built Controls and Automation Laboratory (CAL) at the ATC. The CAL lab features a 12' x 24' granite air-bearing table and an overhead simulated starfield. Among the technologies needed for the concept demo were mating interfaces allowing the spacecraft to dock and deployable structures allowing for adjustable separation between spacecraft after a rigid connection had been established. The decision to use a nonmetallic deployable boom for this purpose was driven by the MRHE concept demo requirements reproduced in Table 1.

  2. Autonomous Cryogenic Leak Detector for Improving Launch Site Operations

    NASA Technical Reports Server (NTRS)

    Goswami, Kisholoy

    2013-01-01

    NASA, military, and commercial satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. This project has developed a tapered optical fiber sensor for detecting hydrogen. The invention involves incorporating chemical indicators on the tapered end of an optical fiber using organically modified silicate nanomaterials. The Hazardous Gas Detection Lab (HGDL) at Kennedy Space Center is involved in the design and development of instrumentation that can detect and qualify various mission-critical chemicals. Historically, hydrogen, helium, nitrogen, oxygen, and argon are the first five gases of HGDL focus. The use of these cryogenic fluids in the area of propulsion offers challenges. Due to their extreme low temperatures, these fluids induce contraction of the materials they contact, a potential cause of leakage. Among them, hydrogen is of particular concern. Small sensors are needed in multiple locations without adding to the structural weight. The most vulnerable parts of the engine are the connection flanges on the transfer lines, which have to support cycles of large thermal amplitude. The thermal protection of the engine provides a closed area, increasing the likelihood of an explosive atmosphere. Thus, even a small leak represents an unacceptable hazardous condition during loading operations, in flight, or after an aborted launch. Tapered fibers were first fabricated from 1/1.3-mm core/cladding (silica/ plastic) optical fibers. Typically a 1-ft (approx. 30- cm) section of the 1-mm fiber is cut from the bundle and marked with a pen into five 2-.-in. (.5.7-cm) sections. A propane torch is applied at every alternate mark to burn the jacket and soften the glass core. While the core is softening, the two ends of the fiber are pulled apart slowly to create fine tapers of .- to .-in. (.6- to 12-mm) long on the 1-mm optical fiber. Following this, the non-tapered ends of the fibers are polished to a 0.3-micron finish. Then these fibers were coated with indicators sensitive to hydrogen. The tapered hydrogen detection system with its unique flexibility is the only system that can be placed in many locations inside the vehicles and detect the exact location of leaks, saving millions of dollars for launch vehicle industries.

  3. A Concept of Two-Stage-To-Orbit Reusable Launch Vehicle

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Wang, Xiaojun; Tang, Yihua

    2002-01-01

    Reusable Launch Vehicle (RLV) has a capability of delivering a wide rang of payload to earth orbit with greater reliability, lower cost, more flexibility and operability than any of today's launch vehicles. It is the goal of future space transportation systems. Past experience on single stage to orbit (SSTO) RLVs, such as NASA's NASP project, which aims at developing an rocket-based combined-cycle (RBCC) airplane and X-33, which aims at developing a rocket RLV, indicates that SSTO RLV can not be realized in the next few years based on the state-of-the-art technologies. This paper presents a concept of all rocket two-stage-to-orbit (TSTO) reusable launch vehicle. The TSTO RLV comprises an orbiter and a booster stage. The orbiter is mounted on the top of the booster stage. The TSTO RLV takes off vertically. At the altitude about 50km the booster stage is separated from the orbiter, returns and lands by parachutes and airbags, or lands horizontally by means of its own propulsion system. The orbiter continues its ascent flight and delivers the payload into LEO orbit. After completing orbit mission, the orbiter will reenter into the atmosphere, automatically fly to the ground base and finally horizontally land on the runway. TSTO RLV has less technology difficulties and risk than SSTO, and maybe the practical approach to the RLV in the near future.

  4. A Robust Method to Integrate End-to-End Mission Architecture Optimization Tools

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael; Litton, Daniel; Qu, Min; Shidner, Jeremy; Powell, Richard

    2016-01-01

    End-to-end mission simulations include multiple phases of flight. For example, an end-to-end Mars mission simulation may include launch from Earth, interplanetary transit to Mars and entry, descent and landing. Each phase of flight is optimized to meet specified constraints and often depend on and impact subsequent phases. The design and optimization tools and methodologies used to combine different aspects of end-to-end framework and their impact on mission planning are presented. This work focuses on a robust implementation of a Multidisciplinary Design Analysis and Optimization (MDAO) method that offers the flexibility to quickly adapt to changing mission design requirements. Different simulations tailored to the liftoff, ascent, and atmospheric entry phases of a trajectory are integrated and optimized in the MDAO program Isight, which provides the user a graphical interface to link simulation inputs and outputs. This approach provides many advantages to mission planners, as it is easily adapted to different mission scenarios and can improve the understanding of the integrated system performance within a particular mission configuration. A Mars direct entry mission using the Space Launch System (SLS) is presented as a generic end-to-end case study. For the given launch period, the SLS launch performance is traded for improved orbit geometry alignment, resulting in an optimized a net payload that is comparable to that in the SLS Mission Planner's Guide.

  5. The ram accelerator - A chemically driven mass launcher

    NASA Technical Reports Server (NTRS)

    Kaloupis, P.; Bruckner, A. P.

    1988-01-01

    The ram accelerator, a chemically propelled mass driver, is presented as a viable new approach for directly launching acceleration-insensitive payloads into low earth orbit. The propulsion principle is similar to that of a conventional air-breathing ramjet. The cargo vehicle resembles the center-body of a ramjet and travels through a tube filled with a pre-mixed fuel and oxidizer mixture. The launch tube acts as the outer cowling of the ramjet and the combustion process travels with the vehicle. Two drive modes of the ram accelerator propulsion system are described, which when used in sequence are capable of accelerating the vehicle to as high as 10 km/sec. The requirements are examined for placing a 2000 kg vehicle into a 500 km orbit with a minimum of on-board rocket propellant for circularization maneuvers. It is shown that aerodynamic heating during atmospheric transit results in very little ablation of the nose. An indirect orbital insertion scenario is selected, utilizing a three step maneuver consisting of two burns and aerobraking. An on-board propulsion system using storable liquid propellants is chosen in order to minimize propellant mass requirements, and the use of a parking orbit below the desired final orbit is suggested as a means to increase the flexibility of the mass launch concept. A vehicle design using composite materials is proposed that will best meet the structural requirements, and a preliminary launch tube design is presented.

  6. Hybrid adaptive ascent flight control for a flexible launch vehicle

    NASA Astrophysics Data System (ADS)

    Lefevre, Brian D.

    For the purpose of maintaining dynamic stability and improving guidance command tracking performance under off-nominal flight conditions, a hybrid adaptive control scheme is selected and modified for use as a launch vehicle flight controller. This architecture merges a model reference adaptive approach, which utilizes both direct and indirect adaptive elements, with a classical dynamic inversion controller. This structure is chosen for a number of reasons: the properties of the reference model can be easily adjusted to tune the desired handling qualities of the spacecraft, the indirect adaptive element (which consists of an online parameter identification algorithm) continually refines the estimates of the evolving characteristic parameters utilized in the dynamic inversion, and the direct adaptive element (which consists of a neural network) augments the linear feedback signal to compensate for any nonlinearities in the vehicle dynamics. The combination of these elements enables the control system to retain the nonlinear capabilities of an adaptive network while relying heavily on the linear portion of the feedback signal to dictate the dynamic response under most operating conditions. To begin the analysis, the ascent dynamics of a launch vehicle with a single 1st stage rocket motor (typical of the Ares 1 spacecraft) are characterized. The dynamics are then linearized with assumptions that are appropriate for a launch vehicle, so that the resulting equations may be inverted by the flight controller in order to compute the control signals necessary to generate the desired response from the vehicle. Next, the development of the hybrid adaptive launch vehicle ascent flight control architecture is discussed in detail. Alterations of the generic hybrid adaptive control architecture include the incorporation of a command conversion operation which transforms guidance input from quaternion form (as provided by NASA) to the body-fixed angular rate commands needed by the hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight controller. In the simulations where the online parameter identification algorithm was disabled, the tracking error based neural network weight update law forced the network's output to diverge despite repeated reductions of the adaptive learning rate. As a result, the modeling error based neural network weight update law (which generated bounded signals) is utilized by the hybrid adaptive controller in all subsequent simulations. Comparing the PID and hybrid adaptive flight controllers under nominal flight conditions in rigid body ascent simulations showed that their tracking error magnitudes are similar for a period of time during the middle of the ascent phase. Though the PID controller performs better for a short interval around the 20 second mark, the hybrid adaptive controller performs far better from roughly 70 to 120 seconds. Elevating the aerodynamic loads by increasing the force and moment coefficients produced results very similar to the nominal case. However, applying a 5% or 10% thrust reduction to the first stage rocket motor causes the tracking error magnitude observed by the PID controller to be significantly elevated and diverge rapidly as the simulation concludes. In contrast, the hybrid adaptive controller steadily maintains smaller errors (often less than 50% of the corresponding PID value). Under the same sets of flight conditions with flexibility enabled, the results exhibit similar trends with the hybrid adaptive controller performing even better in each case. Again, the reduction of the first stage rocket motor's thrust clearly illustrated the superior robustness of the hybrid adaptive flight controller.

  7. Limited access: gender, occupational composition, and flexible work scheduling.

    PubMed

    Glauber, Rebecca

    2011-01-01

    The current study draws on national data to explore differences in access to flexible work scheduling by the gender composition of women's and men's occupations. Results show that those who work in integrated occupations are more likely to have access to flexible scheduling. Women and men do not take jobs with lower pay in return for greater access to flexibility. Instead, jobs with higher pay offer greater flexibility. Integrated occupations tend to offer the greatest access to flexible scheduling because of their structural locations. Part-time work is negatively associated with men's access to flexible scheduling but positively associated with women's access. Women have greater flexibility when they work for large establishments, whereas men have greater flexibility when they work for small establishments.

  8. Development of a New Data Tool for Computing Launch and Landing Availability with Respect to Surface Weather

    NASA Technical Reports Server (NTRS)

    Burns, K. Lee; Altino, Karen

    2008-01-01

    The Marshall Space Flight Center Natural Environments Branch has a long history of expertise in the modeling and computation of statistical launch availabilities with respect to weather conditions. Their existing data analysis product, the Atmospheric Parametric Risk Assessment (APRA) tool, computes launch availability given an input set of vehicle hardware and/or operational weather constraints by calculating the climatological probability of exceeding the specified constraint limits, APRA has been used extensively to provide the Space Shuttle program the ability to estimate impacts that various proposed design modifications would have to overall launch availability. The model accounts for both seasonal and diurnal variability at a single geographic location and provides output probabilities for a single arbitrary launch attempt. Recently, the Shuttle program has shown interest in having additional capabilities added to the APRA model, including analysis of humidity parameters, inclusion of landing site weather to produce landing availability, and concurrent analysis of multiple sites, to assist in operational landing site selection. In addition, the Constellation program has also expressed interest in the APRA tool, and has requested several additional capabilities to address some Constellation-specific issues, both in the specification and verification of design requirements and in the development of operations concepts. The combined scope of the requested capability enhancements suggests an evolution of the model beyond a simple revision process. Development has begun for a new data analysis tool that will satisfy the requests of both programs. This new tool, Probabilities of Atmospheric Conditions and Environmental Risk (PACER), will provide greater flexibility and significantly enhanced functionality compared to the currently existing tool.

  9. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  10. To increase controllability of a large flexible antenna by modal optimization

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Wang, Pengpeng; Jiang, Wenjian

    2017-12-01

    Large deployable antennas are widely used in aerospace engineering to meet the envelop limit of rocket fairing. The high flexibility and low damping of antenna has proposed critical requirement not only for stability control of the antenna itself, but also for attitude control of the satellite. This paper aims to increase controllability of a large flexible antenna by modal optimization. Firstly, Sensitivity analysis of antenna modal frequencies to stiffness of support structure and stiffness of scanning mechanism are conducted respectively. Secondly, Modal simulation results of antenna frequencies are given, influences of scanning angles on moment of inertia and modal frequencies are evaluated, and modal test is carried out to validate the simulation results. All the simulation and test results show that, after modal optimization the modal characteristic of the large deployable antenna meets the controllability requirement well.

  11. Nonlinear model and attitude dynamics of flexible spacecraft with large amplitude slosh

    NASA Astrophysics Data System (ADS)

    Deng, Mingle; Yue, Baozeng

    2017-04-01

    This paper is focused on the nonlinearly modelling and attitude dynamics of spacecraft coupled with large amplitude liquid sloshing dynamics and flexible appendage vibration. The large amplitude fuel slosh dynamics is included by using an improved moving pulsating ball model. The moving pulsating ball model is an equivalent mechanical model that is capable of imitating the whole liquid reorientation process. A modification is introduced in the capillary force computation in order to more precisely estimate the settling location of liquid in microgravity or zero-g environment. The flexible appendage is modelled as a three dimensional Bernoulli-Euler beam and the assumed modal method is employed to derive the nonlinear mechanical model for the overall coupled system of liquid filled spacecraft with appendage. The attitude maneuver is implemented by the momentum transfer technique, and a feedback controller is designed. The simulation results show that the liquid sloshing can always result in nutation behavior, but the effect of flexible deformation of appendage depends on the amplitude and direction of attitude maneuver performed by spacecraft. Moreover, it is found that the liquid sloshing and the vibration of flexible appendage are coupled with each other, and the coupling becomes more significant with more rapid motion of spacecraft. This study reveals that the appendage's flexibility has influence on the liquid's location and settling time in microgravity. The presented nonlinear system model can provide an important reference for the overall design of the modern spacecraft composed of rigid platform, liquid filled tank and flexible appendage.

  12. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm-2 and 59 wt% PANI gives a specific capacitance of 55.0 F g-1 at a current density of 2.6 A g-1, showing its possibility for transparent and flexible energy storage.

  13. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films.

    PubMed

    Ge, Jun; Cheng, Guanghui; Chen, Liwei

    2011-08-01

    Large-scale transparent and flexible electronic devices have been pursued for potential applications such as those in touch sensors and display technologies. These applications require that the power source of these devices must also comply with transparent and flexible features. Here we present transparent and flexible supercapacitors assembled from polyaniline (PANI)/single-walled carbon nanotube (SWNT) composite thin film electrodes. The ultrathin, optically homogeneous and transparent, electrically conducting films of the PANI/SWNT composite show a large specific capacitance due to combined double-layer capacitance and pseudo-capacitance mechanisms. A supercapacitor assembled using electrodes with a SWNT density of 10.0 µg cm(-2) and 59 wt% PANI gives a specific capacitance of 55.0 F g(-1) at a current density of 2.6 A g(-1), showing its possibility for transparent and flexible energy storage. This journal is © The Royal Society of Chemistry 2011

  14. Enhancing light emission in flexible AC electroluminescent devices by tetrapod-like zinc oxide whiskers.

    PubMed

    Wen, Li; Liu, Nishuang; Wang, Siliang; Zhang, Hui; Zhao, Wanqiu; Yang, Zhichun; Wang, Yumei; Su, Jun; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-10-03

    Flexible alternating current electroluminescent devices (ACEL) are more and more popular and widely used in liquid-crystal display back-lighting, large-scale architectural and decorative lighting due to their uniform light emission, low power consumption and high resolution. However, presently how to acquire high brightness under a certain voltage are confronted with challenges. Here, we demonstrate an electroluminescence (EL) enhancing strategy that tetrapod-like ZnO whiskers (T-ZnOw) are added into the bottom electrode of carbon nanotubes (CNTs) instead of phosphor layer in flexible ACEL devices emitting blue, green and orange lights, and the brightness is greatly enhanced due to the coupling between the T-ZnOw and ZnS phosphor dispersed in the flexible polydimethylsiloxane (PDMS) layer. This strategy provides a new routine for the development of high performance, flexible and large-area ACEL devices.

  15. High-bandwidth and low-loss multimode polymer waveguides and waveguide components for high-speed board-level optical interconnects

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Chen, J.; Penty, R. V.; White, I. H.

    2016-03-01

    Multimode polymer waveguides are being increasingly considered for use in short-reach board-level optical interconnects as they exhibit favourable optical properties and allow direct integration onto standard PCBs with conventional methods of the electronics industry. Siloxane-based multimode waveguides have been demonstrated with excellent optical transmission performance, while a wide range of passive waveguide components that offer routing flexibility and enable the implementation of complex on-board interconnection architectures has been reported. In recent work, we have demonstrated that these polymer waveguides can exhibit very high bandwidth-length products in excess of 30 GHz×m despite their highly-multimoded nature, while it has been shown that even larger values of > 60 GHz×m can be achieved by adjusting their refractive index profile. Furthermore, the combination of refractive index engineering and launch conditioning schemes can ensure high bandwidth (> 100 GHz×m) and high coupling efficiency (<1 dB) with standard multimode fibre inputs with relatively large alignment tolerances (~17×15 μm2). In the work presented here, we investigate the effects of refractive index engineering on the performance of passive waveguide components (crossings, bends) and provide suitable design rules for their on-board use. It is shown that, depending on the interconnection layout and link requirements, appropriate choice of refractive index profile can provide enhanced component performance, ensuring low loss interconnection and adequate link bandwidth. The results highlight the strong potential of this versatile optical technology for the formation of high-performance board-level optical interconnects with high routing flexibility.

  16. Potential Large Decadal Missions Enabled by Nasas Space Launch System

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-01-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  17. Potential large missions enabled by NASA's space launch system

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David A.; Jackman, Angela; Warfield, Keith R.

    2016-07-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope (HST) was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope (JWST) is specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultra-high-contrast spectroscopy and coronagraphy. AURA's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and a LUVOIR as well as Far-IR and an X-Ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8 or 10-m diameter fairings and ability to deliver 35 to 45-mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper reviews the mass and volume capacities of the planned SLS, discusses potential implications of these capacities for designing large space telescope missions, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope and a 12-m segmented on-axis telescope.

  18. Instrumentation of sampling aircraft for measurement of launch vehicle effluents

    NASA Technical Reports Server (NTRS)

    Wornom, D. E.; Woods, D. C.; Thomas, M. E.; Tyson, R. W.

    1977-01-01

    An aircraft was selected and instrumented to measure effluents emitted from large solid propellant rockets during launch activities. The considerations involved in aircraft selection, sampling probes, and instrumentation are discussed with respect to obtaining valid airborne measurements. Discussions of the data acquisition system used, the instrument power system, and operational sampling procedures are included. Representative measurements obtained from an actual rocket launch monitoring activity are also presented.

  19. 69. GENERAL VIEW OF SOUTH SIDE OF SLC3W LIQUID OXYGEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. GENERAL VIEW OF SOUTH SIDE OF SLC-3W LIQUID OXYGEN APRON. EQUIPMENT SKIDS IN FOREGROUND. LARGE LIQUID OXYGEN TANKS FLANKING NITROGEN GAS STORAGE TANKS VISIBLE BEHIND SKIDS. LAUNCH DECK VISIBLE IMMEDIATELY WEST. MST IN PARKED POSITION AT NORTHERN TERMINUS OF RAILS IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. Operational Considerations and Comparisons of the Saturn, Space Shuttle and Ares Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Cruzen, Craig; Chavers, Greg; Wittenstein, Jerry

    2009-01-01

    The United States (U.S.) space exploration policy has directed the National Aeronautics and Space Administration (NASA) to retire the Space Shuttle and to replace it with a new generation of space transportation systems for crew and cargo travel to the International Space Station, the Moon, Mars, and beyond. As part of the Constellation Program, engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama are working to design and build the Ares I, the first of two large launch vehicles to return humans to the Moon. A deliberate effort is being made to ensure a high level of operability in order to significantly increase safety and availability as well as reduce recurring costs of this new launch vehicle. It is the Ares Project's goal to instill operability as part of the requirements development, design and operations of the vehicle. This paper will identify important factors in launch vehicle design that affect the operability and availability of the system. Similarities and differences in operational constraints will also be compared between the Saturn V, Space Shuttle and current Ares I design. Finally, potential improvements in operations and operability for large launch vehicles will be addressed. From the examples presented, the paper will discuss potential improvements for operability for future launch vehicles.

  1. KSC-00pp0713

    NASA Image and Video Library

    2000-06-01

    Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) prepare the Tracking and Data Relay Satellite (TDRS-H) above them for electrical testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  2. KSC00pp0715

    NASA Image and Video Library

    2000-06-01

    Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) conduct electrical testing on the Tracking and Data Relay Satellite (TDRS-H) above them. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  3. KSC-00pp0712

    NASA Image and Video Library

    2000-06-01

    The Tracking and Data Relay Satellite (TDRS-H) sits on a workstand in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) in order to undergo electrical testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  4. KSC-00pp0715

    NASA Image and Video Library

    2000-06-01

    Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) conduct electrical testing on the Tracking and Data Relay Satellite (TDRS-H) above them. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  5. KSC00pp0713

    NASA Image and Video Library

    2000-06-01

    Workers in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) prepare the Tracking and Data Relay Satellite (TDRS-H) above them for electrical testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  6. KSC00pp0712

    NASA Image and Video Library

    2000-06-01

    The Tracking and Data Relay Satellite (TDRS-H) sits on a workstand in KSC’s Spacecraft Assembly and Encapsulation Facility (SAEF-2) in order to undergo electrical testing. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  7. Space Shuttle Project

    NASA Image and Video Library

    1997-07-01

    The Space Shuttle Columbia (STS-94) soared from Launch Pad 39A begirning its 16-day Microgravity Science Laboratory -1 (MSL-1) mission. The launch window was opened 47 minutes earlier than the originally scheduled time to improve the opportunity to lift off before Florida summer rain showers reached the space center. During the space flight, the MSL-1 was used to test some of the hardware, facilities and procedures that were planned for use on the International Space Station which were managed by scientists and engineers from the Marshall Space Flight Center, while the flight crew conducted combustion, protein crystal growth and materials processing experiments. Also onboard was the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which was attached to the right side of Columbia's payload bay. These payloads had previously flown on the STS-83 mission in April, which was cut short after nearly four days because of indications of a faulty fuel cell. STS-94 was a reflight of that mission.

  8. Flight Operations Analysis Tool

    NASA Technical Reports Server (NTRS)

    Easter, Robert; Herrell, Linda; Pomphrey, Richard; Chase, James; Wertz Chen, Julie; Smith, Jeffrey; Carter, Rebecca

    2006-01-01

    Flight Operations Analysis Tool (FLOAT) is a computer program that partly automates the process of assessing the benefits of planning spacecraft missions to incorporate various combinations of launch vehicles and payloads. Designed primarily for use by an experienced systems engineer, FLOAT makes it possible to perform a preliminary analysis of trade-offs and costs of a proposed mission in days, whereas previously, such an analysis typically lasted months. FLOAT surveys a variety of prior missions by querying data from authoritative NASA sources pertaining to 20 to 30 mission and interface parameters that define space missions. FLOAT provides automated, flexible means for comparing the parameters to determine compatibility or the lack thereof among payloads, spacecraft, and launch vehicles, and for displaying the results of such comparisons. Sparseness, typical of the data available for analysis, does not confound this software. FLOAT effects an iterative process that identifies modifications of parameters that could render compatible an otherwise incompatible mission set.

  9. Potential advantages of solar electric propulsion for outer planet orbiters.

    NASA Technical Reports Server (NTRS)

    Sauer, C. G.; Atkins, K. L.

    1972-01-01

    Past studies of solar electric propulsion for outer planet orbiters have generally emphasized the advantages of flight time reduction and payload increases. However, several subtle advantages exist, which may become important in an environment of increasingly difficult requirements as ways to extend current technology are sought. These advantages accrue primarily because of the inherent capability, unique to electric propulsion, to efficiently shape a trajectory while enroute. Stressed in this paper are: the ability to meet orbital constraints due to assumed radiation belts, science flexibility in a dual launch program, increased numbers of observational passes, and the lengthening of launch periods. These are examined for years representative of relatively easy and difficult ballistic missions. The results indicate that an early investment in solar electric technology will provide a strong performance foundation for a long range outer planet exploration program which evolves from current spacecraft technology.

  10. Manipulation strategies for massive space payloads

    NASA Technical Reports Server (NTRS)

    Book, Wayne J.

    1991-01-01

    Motion planning and control for the joints of flexible manipulators are discussed. Specific topics covered include control of a flexible braced manipulator, control of a small working robot on a large flexible manipulator to suppress vibrations, control strategies for ensuring cooperation among disparate manipulators, and motion planning for robots in free-fall.

  11. Students Flourish and Tutors Wither: A Study of Participant Experiences in a First-Year Online Unit

    ERIC Educational Resources Information Center

    Dodo-Balu, Andrea

    2017-01-01

    Contemporary higher education has been affected by policy pressures built around "flexibility". The policies of widening student participation and expanding flexible online delivery combine to provide the opportunity for a university education to students hitherto largely excluded. Flexible employment policies have increasingly placed…

  12. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Shown is a concept illustration of the Ares I crew launch vehicle, left, and Ares V cargo launch vehicle. Ares I will carry the Orion Crew Exploration Vehicle to space. Ares V will serve as NASA's primary vehicle for delivery of large-scale hardware to space.

  13. External Shock in a Multi-bursting Gamma-Ray Burst: Energy Injection Phase Induced by the Later Launched Ejecta

    NASA Astrophysics Data System (ADS)

    Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei

    2018-01-01

    Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.

  14. Fabrication of flexible oriented magnetic thin films with large in-plane uniaxial anisotropy by roll-to-roll nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Thantirige, Rukshan M.; John, Jacob; Pradhan, Nihar R.; Carter, Kenneth R.; Tuominen, Mark T.

    2016-06-01

    Here, we report wafer scale fabrication of densely packed Fe nanostripe-based magnetic thin films on a flexible substrate and their magnetic anisotropy properties. We find that Fe nanostripes exhibit large in-plane uniaxial anisotropy and nearly square hysteresis loops with energy products (BHmax) exceeding 3 MGOe at room temperature. High density Fe nanostripes were fabricated on 70 nm flexible polyethylene terephthalate (PET) gratings, which were made by a roll-to-roll (R2R) UV nanoimprint lithography technique. We observed large in-plane uniaxial anisotropies along the long dimension of nanostripes that can be attributed to the shape. Temperature dependent hysteresis measurements confirm that the magnetization reversal is driven by non-coherent rotation reversal processes.

  15. Assessment of candidate-expendable launch vehicles for large payloads

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In recent years the U.S. Air Force and NASA conducted design studies of 3 expendable launch vehicle configurations that could serve as a backup to the space shuttle--the Titan 34D7/Centaur, the Atlas II/Centaur, and the shuttle-derived SRB-X--as well as studies of advanced shuttle-derived launch vehicles with much larger payload capabilities than the shuttle. The 3 candidate complementary launch vehicles are judged to be roughly equivalent in cost, development time, reliability, and payload-to-orbit performance. Advanced shuttle-derived vehicles are considered viable candidates to meet future heavy lift launch requirements; however, they do not appear likely to result in significant reduction in cost-per-pound to orbit.

  16. Sensor Data Quality and Angular Rate Down-Selection Algorithms on SLS EM-1

    NASA Technical Reports Server (NTRS)

    Park, Thomas; Oliver, Emerson; Smith, Austin

    2018-01-01

    The NASA Space Launch System Block 1 launch vehicle is equipped with an Inertial Navigation System (INS) and multiple Rate Gyro Assemblies (RGA) that are used in the Guidance, Navigation, and Control (GN&C) algorithms. The INS provides the inertial position, velocity, and attitude of the vehicle along with both angular rate and specific force measurements. Additionally, multiple sets of co-located rate gyros supply angular rate data. The collection of angular rate data, taken along the launch vehicle, is used to separate out vehicle motion from flexible body dynamics. Since the system architecture uses redundant sensors, the capability was developed to evaluate the health (or validity) of the independent measurements. A suite of Sensor Data Quality (SDQ) algorithms is responsible for assessing the angular rate data from the redundant sensors. When failures are detected, SDQ will take the appropriate action and disqualify or remove faulted sensors from forward processing. Additionally, the SDQ algorithms contain logic for down-selecting the angular rate data used by the GN&C software from the set of healthy measurements. This paper provides an overview of the algorithms used for both fault-detection and measurement down selection.

  17. KSC-97PC958

    NASA Image and Video Library

    1997-07-01

    The STS-94 crew walks out of the Operations and Checkout Building and heads for the Astrovan that will transport them to Launch Pad 39A as KSC employees show their support. Waving to the crowd and leading the way are Mission Commander James D. Halsell, Jr. and Pilot Susan L. Still. Behind Still is Mission Specialist Donald A.Thomas, followed by Mission Specialist Michael L. Gernhardt , Payload Commander Janice Voss, and Payload Specialists Roger K.Crouch and Gregory T. Linteris. During the scheduled 16-day Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module will be used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducts combustion, protein crystal growth and materials processing experiments. Also onboard is the Hitchhiker Cryogenic Flexible Diode (CRYOFD) experiment payload, which is attached to the right side of Columbia’s payload bay.The Space Shuttle Columbia is scheduled to lift off when the launch window opens at 1:50 p.m. EDT, July 1. The launch window was opened 47 minutes early to improve the opportunity to lift off before Florida summer rain showers reached the space center

  18. Structural Sizing of a Horizontal Take-Off Launch Vehicle with an Air Collection and Enrichment System

    NASA Technical Reports Server (NTRS)

    McCurdy, David R.; Roche, Joseph M.

    2004-01-01

    In support of NASA's Next Generation Launch Technology (NGLT) program, the Andrews Gryphon booster was studied. The Andrews Gryphon concept is a horizontal lift-off, two-stage-to-orbit, reusable launch vehicle that uses an air collection and enrichment system (ACES). The purpose of the ACES is to collect atmospheric oxygen during a subsonic flight loiter phase and cool it to cryogenic temperature, ultimately resulting in a reduced initial take-off weight To study the performance and size of an air-collection based booster, an initial airplane like shape was established as a baseline and modeled in a vehicle sizing code. The code, SIZER, contains a general series of volume, surface area, and fuel fraction relationships that tie engine and ACES performance with propellant requirements and volumetric constraints in order to establish vehicle closure for the given mission. A key element of system level weight optimization is the use of the SIZER program that provides rapid convergence and a great deal of flexibility for different tank architectures and material suites in order to study their impact on gross lift-off weight. This paper discusses important elements of the sizing code architecture followed by highlights of the baseline booster study.

  19. Transparent Large-Area MoS2 Phototransistors with Inkjet-Printed Components on Flexible Platforms.

    PubMed

    Kim, Tae-Young; Ha, Jewook; Cho, Kyungjune; Pak, Jinsu; Seo, Jiseok; Park, Jongjang; Kim, Jae-Keun; Chung, Seungjun; Hong, Yongtaek; Lee, Takhee

    2017-10-24

    Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have gained considerable attention as an emerging semiconductor due to their promising atomically thin film characteristics with good field-effect mobility and a tunable band gap energy. However, their electronic applications have been generally realized with conventional inorganic electrodes and dielectrics implemented using conventional photolithography or transferring processes that are not compatible with large-area and flexible device applications. To facilitate the advantages of 2D TMDCs in practical applications, strategies for realizing flexible and transparent 2D electronics using low-temperature, large-area, and low-cost processes should be developed. Motivated by this challenge, we report fully printed transparent chemical vapor deposition (CVD)-synthesized monolayer molybdenum disulfide (MoS 2 ) phototransistor arrays on flexible polymer substrates. All the electronic components, including dielectric and electrodes, were directly deposited with mechanically tolerable organic materials by inkjet-printing technology onto transferred monolayer MoS 2 , and their annealing temperature of <180 °C allows the direct fabrication on commercial flexible substrates without additional assisted-structures. By integrating the soft organic components with ultrathin MoS 2 , the fully printed MoS 2 phototransistors exhibit excellent transparency and mechanically stable operation.

  20. Mars Mobile Lander Systems for 2005 and 2007 Launch Opportunities

    NASA Technical Reports Server (NTRS)

    Sabahi, D.; Graf, J. E.

    2000-01-01

    A series of Mars missions are proposed for the August 2005 launch opportunity on a medium class Evolved Expendable Launch Vehicle (EELV) with a injected mass capability of 2600 to 2750 kg. Known as the Ranger class, the primary objective of these Mars mission concepts are: (1) Deliver a mobile platform to Mars surface with large payload capability of 150 to 450 kg (depending on launch opportunity of 2005 or 2007); (2) Develop a robust, safe, and reliable workhorse entry, descent, and landing (EDL) capability for landed mass exceeding 750 kg; (3) Provide feed forward capability for the 2007 opportunity and beyond; and (4) Provide an option for a long life telecom relay orbiter. A number of future Mars mission concepts desire landers with large payload capability. Among these concepts are Mars sample return (MSR) which requires 300 to 450 kg landed payload capability to accommodate sampling, sample transfer equipment and a Mars ascent vehicle (MAV). In addition to MSR, large in situ payloads of 150 kg provide a significant step up from the Mars Pathfinder (MPF) and Mars Polar Lander (MPL) class payloads of 20 to 30 kg. This capability enables numerous and physically large science instruments as well as human exploration development payloads. The payload may consist of drills, scoops, rock corers, imagers, spectrometers, and in situ propellant production experiment, and dust and environmental monitoring.

  1. NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned advanced booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  2. NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an Advanced Booster. This paper will discuss, for the first time publicly, the contract awards and how NASA intends to use the data from these efforts to prepare for the planned Advanced Booster DDT&E acquisition as the SLS Program moves forward with competitively procured affordable performance enhancements.

  3. On the apparent insignificance of the randomness of flexible joints on large space truss dynamics

    NASA Technical Reports Server (NTRS)

    Koch, R. M.; Klosner, J. M.

    1993-01-01

    Deployable periodic large space structures have been shown to exhibit high dynamic sensitivity to period-breaking imperfections and uncertainties. These can be brought on by manufacturing or assembly errors, structural imperfections, as well as nonlinear and/or nonconservative joint behavior. In addition, the necessity of precise pointing and position capability can require the consideration of these usually negligible and unknown parametric uncertainties and their effect on the overall dynamic response of large space structures. This work describes the use of a new design approach for the global dynamic solution of beam-like periodic space structures possessing parametric uncertainties. Specifically, the effect of random flexible joints on the free vibrations of simply-supported periodic large space trusses is considered. The formulation is a hybrid approach in terms of an extended Timoshenko beam continuum model, Monte Carlo simulation scheme, and first-order perturbation methods. The mean and mean-square response statistics for a variety of free random vibration problems are derived for various input random joint stiffness probability distributions. The results of this effort show that, although joint flexibility has a substantial effect on the modal dynamic response of periodic large space trusses, the effect of any reasonable uncertainty or randomness associated with these joint flexibilities is insignificant.

  4. Ares I concept illustration

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Shown is a concept illustration of the Ares I crew launch vehicle, left, and Ares V cargo launch vehicle. Ares I will carry the Orion Crew Exploration Vehicle to space. Ares V will serve as NASA's primary vehicle for delivery of large-scale hardware to space.

  5. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaoqiang; Zhang, Tanmei; Yao, Jiandomg; Zhang, Yi; Xu, Jiarui; Yang, Guowei

    2016-06-01

    Although two-dimensional (2D) materials have attracted considerable research interest for use in the development of innovative wearable optoelectronic systems, the integrated optoelectronic performance of 2D materials photodetectors, including flexibility, transparency, broadband response and stability in air, remains quite low to date. Here, we demonstrate a flexible, transparent, high-stability and ultra-broadband photodetector made using large-area and highly-crystalline WSe2 films that were prepared by pulsed-laser deposition (PLD). Benefiting from the 2D physics of WSe2 films, this device exhibits excellent average transparency of 72% in the visible range and superior photoresponse characteristics, including an ultra-broadband detection spectral range from 370 to 1064 nm, reversible photoresponsivity approaching 0.92 A W-1, external quantum efficiency of up to 180% and a relatively fast response time of 0.9 s. The fabricated photodetector also demonstrates outstanding mechanical flexibility and durability in air. Also, because of the wide compatibility of the PLD-grown WSe2 film, we can fabricate various photodetectors on multiple flexible or rigid substrates, and all these devices will exhibit distinctive switching behavior and superior responsivity. These indicate a possible new strategy for the design and integration of flexible, transparent and broadband photodetectors based on large-area WSe2 films, with great potential for practical applications in the wearable optoelectronic devices.

  6. Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghattyvenkatakrishna, Pavan K; Uberbacher, Edward C

    2013-01-01

    The presence of an unusually large number of aromatic residues in the active site gorge of acetylcholinesterase has been a topic of great interest. Flexibility of these residues has been suspected to be a key player in controlling ligand traversal in the gorge. This raises the question of whether the over representation of aromatic residues in the gorge implies higher than normal flexibility of those residues. The current study suggests that it does not. Large changes in the hydrophobic cross sectional area due to dihedral oscillations are probably the reason behind their presence in the gorge.

  7. Cold plasma decontamination using flexible jet arrays

    NASA Astrophysics Data System (ADS)

    Konesky, Gregory

    2010-04-01

    Arrays of atmospheric discharge cold plasma jets have been used to decontaminate surfaces of a wide range of microorganisms quickly, yet not damage that surface. Its effectiveness in decomposing simulated chemical warfare agents has also been demonstrated, and may also find use in assisting in the cleanup of radiological weapons. Large area jet arrays, with short dwell times, are necessary for practical applications. Realistic situations will also require jet arrays that are flexible to adapt to contoured or irregular surfaces. Various large area jet array prototypes, both planar and flexible, are described, as is the application to atmospheric decontamination.

  8. Deployment loads data from a free-flight investigation of all flexible parawings having 371.612 sq meters (4000 sq feet) of wing area

    NASA Technical Reports Server (NTRS)

    Croom, D. R.

    1971-01-01

    A free-flight test program to determine the deployment characteristics of all-flexible parawings was conducted. Both single-keel and twin-keel parawings having a wing area of 4000 square feet with a five-stage reefing system were tested by use of a bomb-type instrumented test vehicle. Several twin-keel-parawing tests were also made by using an instrumented controllable sled-type test vehicle. The systems were launched from either a C-130 or a C-119 carrier airplane, and a programer parachute was used to bring the test vehicle to a proper dynamic pressure and near-vertical flight path prior to deployment of the parawing system. The free-flight deployment loads data are presented in the form of time histories of individual suspension-line loads and total loads.

  9. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  10. Low lift-to-drag aero-assisted orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Savage, R. T.

    1984-01-01

    The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.

  11. AM OLED using a-Si TFT backplane on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Sarma, Kalluri R.; Schmidt, John; Roush, Jerry; Chanley, Charles; Dodd, Sonia R.

    2004-09-01

    Amorphous silicon TFT technology continues to show promise for fabricating large area high resolution flexible AM OLED displays. This paper describes the recent progress in the flexible AM OLED development efforts at Honeywell since our publication in this conference's proceedings in 2003, describing the feasibility of fabricating a 64x64 pixel AM OLED on a flexible plastic substrate. In this paper we describe the design, and fabrication of a 160x160(x3) pixel AM OLED on a flexible plastic substrate with an equivalent 80cgpi resolution. Flexibility characteristics of the fabricated displays are discussed. Further advances and improvements required for extending the size and resolution of flexible AM OLED displays are discussed.

  12. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.

    PubMed

    Wu, Hao; Huang, YongAn; Xu, Feng; Duan, Yongqing; Yin, Zhouping

    2016-12-01

    The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy-harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    PubMed

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  14. An adaptive learning control system for large flexible structures

    NASA Technical Reports Server (NTRS)

    Thau, F. E.

    1985-01-01

    The objective of the research has been to study the design of adaptive/learning control systems for the control of large flexible structures. In the first activity an adaptive/learning control methodology for flexible space structures was investigated. The approach was based on using a modal model of the flexible structure dynamics and an output-error identification scheme to identify modal parameters. In the second activity, a least-squares identification scheme was proposed for estimating both modal parameters and modal-to-actuator and modal-to-sensor shape functions. The technique was applied to experimental data obtained from the NASA Langley beam experiment. In the third activity, a separable nonlinear least-squares approach was developed for estimating the number of excited modes, shape functions, modal parameters, and modal amplitude and velocity time functions for a flexible structure. In the final research activity, a dual-adaptive control strategy was developed for regulating the modal dynamics and identifying modal parameters of a flexible structure. A min-max approach was used for finding an input to provide modal parameter identification while not exceeding reasonable bounds on modal displacement.

  15. Flexible Foam Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neilsen, Michael K.; Lu, Wei-Yang; Werner, Brian T.

    Experiments were performed to characterize the mechanical response of a 15 pcf flexible polyurethane foam to large deformation at different strain rates and temperatures. Results from these experiments indicated that at room temperature, flexible polyurethane foams exhibit significant nonlinear elastic deformation and nearly return to their original undeformed shape when unloaded. However, when these foams are cooled to temperatures below their glass transition temperature of approximately -35 o C, they behave like rigid polyurethane foams and exhibit significant permanent deformation when compressed. Thus, a new model which captures this dramatic change in behavior with temperature was developed and implemented intomore » SIERRA with the name Flex_Foam to describe the mechanical response of both flexible and rigid foams to large deformation at a variety of temperatures and strain rates. This report includes a description of recent experiments. Next, development of the Flex Foam model for flexible polyurethane and other flexible foams is described. Selection of material parameters are discussed and finite element simulations with the new Flex Foam model are compared with experimental results to show behavior that can be captured with this new model.« less

  16. An overview of the Defence Research Agency photovoltaic programme

    NASA Technical Reports Server (NTRS)

    Goodbody, C.; Davies, M. A. H.

    1993-01-01

    The Defense Research Agency (DRA) has been active in the photovoltaic field since the early 1960's, then as the Royal Aircraft Establishment (RAE). The early work was aimed at developing silicon cells, solar panels, and light-weight flexible arrays in support of the 'UK' and 'X' series of British scientific and technology satellites, for which the RAE was either the design authority or technical advisor. The X3 satellite - Prospero, launched in 1971 test flew 50 micron wrap-round silicon cells. The X4 satellite - Miranda, launched in 1974 test flew a deployable flexible silicon array which was developed at the DRA. During this period an extensive range of test equipment was developed which was maintained, modernized, and extended to date. Following a period of reduced activity in the late 1970's and early 1980's the current program evolved. The programs that have been undertaken since 1983 are briefly summarized. These range from various cell developments, new types of coverglasses, flight experiments, radiation testing, primary cell calibration, and environmental testing. The current photovoltaic program is mainly funded by the UK Ministry of Defence and by the Department of Trade and Industry through the British National Space Center (BNSC). The program is aimed at research and development, both internally and with industry, to meet the customer's technical objectives and requirements and to provide them with technical advice. The facilities are also being used on contract work for various national and international organizations.

  17. Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter

    NASA Technical Reports Server (NTRS)

    Calhourn, Philip C.; Garrick, Joseph C.

    2007-01-01

    The Lunar Reconnaissance Orbiter (LRO) mission is the first of a series of lunar robotic spacecraft scheduled for launch in Fall 2008. LRO will spend at least one year in a low altitude polar orbit around the Moon, collecting lunar environment science and mapping data to enable future human exploration. The LRO employs a 3-axis stabilized attitude control system (ACS) whose primary control mode, the "Observing mode", provides Lunar Nadir, off-Nadir, and Inertial fine pointing for the science data collection and instrument calibration. The controller combines the capability of fine pointing with that of on-demand large angle full-sky attitude reorientation into a single ACS mode, providing simplicity of spacecraft operation as well as maximum flexibility for science data collection. A conventional suite of ACS components is employed in this mode to meet the pointing and control objectives. This paper describes the design and analysis of the primary LRO fine pointing and attitude re-orientation controller function, known as the "Observing mode" of the ACS subsystem. The control design utilizes quaternion feedback, augmented with a unique algorithm that ensures accurate Nadir tracking during large angle yaw maneuvers in the presence of high system momentum and/or maneuver rates. Results of system stability analysis and Monte Carlo simulations demonstrate that the observing mode controller can meet fine pointing and maneuver performance requirements.

  18. Exploration Launch Projects RS-68B Engine Requirements for NASA's Heavy Lift Ares V

    NASA Technical Reports Server (NTRS)

    Sumrall, John P.; McArthur, J. Craig; Lacey, Matt

    2007-01-01

    NASA's Vision for Exploration requires a safe, efficient, reliable, and versatile launch vehicle capable of placing large payloads into Earth orbit for transfer to the Moon and destinations beyond. The Ares V Cargo Launch Vehicle (CaLV) will provide this heavy lift capability. The Ares V launch concept is shown in Fig. 1. When it stands on the launch pad at Kennedy Space Center late in the next decade, the Ares V stack will be almost 360 feet tall. As currently envisioned, it will lift 133,000 to 144,000 pounds to trans-lunar injection, depending on the length of loiter time on Earth orbit. This presentation will provide an overview of the Constellation architecture, the Ares launch vehicles, and, specifically, the latest developments in the RS-68B engine for the Ares V.

  19. Flight Data Analysis of HyShot 2

    NASA Technical Reports Server (NTRS)

    Hass, Neal E.; Smart, Michael K.; Paull, Alan

    2005-01-01

    The development of scramjet propulsion for alternative launch and payload delivery capabilities has comprised largely of ground experiments for the last 40 years. With the goal of validating the use of short duration ground test facilities, the University of Queensland, supported by a large international contingency, devised a ballistic re-entry vehicle experiment called HyShot to achieve supersonic combustion in flight above Mach 7.5. It consisted of a double wedge intake and two back-to-back constant area combustors; one supplied with hydrogen fuel at an equivalence ratio of 0.33 and the other un-fueled. Following a first launch failure on October 30th 2001, the University of Queensland conducted a successful second launch on July 30th, 2002. Post-flight data analysis of the second launch confirmed the presence of supersonic combustion during the approximately 3 second test window at altitudes between 35 and 29 km. Reasonable correlation between flight and some pre-flight shock tunnel tests was observed.

  20. An improved output feedback control of flexible large space structures

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.; Lin, J. G.

    1980-01-01

    A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.

  1. Bantam System Technology Project Ground System Operations Concept and Plan

    NASA Technical Reports Server (NTRS)

    Moon, Jesse M.; Beveridge, James R.

    1997-01-01

    The Low Cost Booster Technology Program, also known as the Bantam Booster program, is a NASA sponsored initiative to establish a viable commercial technology to support the market for placing small payloads in low earth orbit. This market is currently served by large boosters which orbit a number of small payloads on a single launch vehicle, or by these payloads taking up available space on major commercial launches. Even by sharing launch costs, the minimum cost to launch one of these small satellites is in the 6 to 8 million dollar range. Additionally, there is a shortage of available launch opportunities which can be shared in this manner. The goal of the Bantam program is to develop two competing launch vehicles, with launch costs in the neighborhood of 1.5 million dollars to launch a 150 kg payload into low earth orbit (200 nautical mile sun synchronous). Not only could the cost of the launch be significantly less than the current situation, but the payload sponsor could expect better service for his expenditure, the ability to specify his own orbit, and a dedicated vehicle. By developing two distinct launch vehicles, market forces are expected to aid in keeping customer costs low.

  2. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils

    PubMed Central

    Gao, Yang; Liu, Zhibo; Sun, Dong-Ming; Huang, Le; Ma, Lai-Peng; Yin, Li-Chang; Ma, Teng; Zhang, Zhiyong; Ma, Xiu-Liang; Peng, Lian-Mao; Cheng, Hui-Ming; Ren, Wencai

    2015-01-01

    Large-area monolayer WS2 is a desirable material for applications in next-generation electronics and optoelectronics. However, the chemical vapour deposition (CVD) with rigid and inert substrates for large-area sample growth suffers from a non-uniform number of layers, small domain size and many defects, and is not compatible with the fabrication process of flexible devices. Here we report the self-limited catalytic surface growth of uniform monolayer WS2 single crystals of millimetre size and large-area films by ambient-pressure CVD on Au. The weak interaction between the WS2 and Au enables the intact transfer of the monolayers to arbitrary substrates using the electrochemical bubbling method without sacrificing Au. The WS2 shows high crystal quality and optical and electrical properties comparable or superior to mechanically exfoliated samples. We also demonstrate the roll-to-roll/bubbling production of large-area flexible films of uniform monolayer, double-layer WS2 and WS2/graphene heterostructures, and batch fabrication of large-area flexible monolayer WS2 film transistor arrays. PMID:26450174

  3. Control and structural optimization for maneuvering large spacecraft

    NASA Technical Reports Server (NTRS)

    Chun, H. M.; Turner, J. D.; Yu, C. C.

    1990-01-01

    Presented here are the results of an advanced control design as well as a discussion of the requirements for automating both the structures and control design efforts for maneuvering a large spacecraft. The advanced control application addresses a general three dimensional slewing problem, and is applied to a large geostationary platform. The platform consists of two flexible antennas attached to the ends of a flexible truss. The control strategy involves an open-loop rigid body control profile which is derived from a nonlinear optimal control problem and provides the main control effort. A perturbation feedback control reduces the response due to the flexibility of the structure. Results are shown which demonstrate the usefulness of the approach. Software issues are considered for developing an integrated structures and control design environment.

  4. An Application of Linear Covariance Analysis to the Design of Responsive Near-Rendezvous Missions

    DTIC Science & Technology

    2007-06-01

    accurately before making large ma- neuvers. A fifth type of error is maneuver knowledge error (MKER). This error accounts for how well a spacecraft is able...utilized due in a large part to the cost of designing and launching spacecraft , in a market where currently there are not many options for launching...is then ordered to fire its thrusters to increase its orbital altitude to 800 km. Before the maneuver the spacecraft is moving with some velocity, V

  5. Retirement-Age Experience Under Flexible-Age Retirement Plans, 1930-1970

    ERIC Educational Resources Information Center

    King, Francis P.

    1970-01-01

    Describes the retirement practices of a large number of institutions of higher education and examines twelve Teachers Insurance and Annuity Association plans which have flexible-age provisions. (Editor)

  6. Flexible multimode polymer waveguides for high-speed short-reach communication links

    NASA Astrophysics Data System (ADS)

    Bamiedakis, N.; Shi, F.; Chu, D.; Penty, R. V.; White, I. H.

    2018-02-01

    Multimode polymer waveguides have attracted great interest for use in high-speed short-reach communication links as they can be cost-effectively integrated onto standard PCBs using conventional methods of the electronics industry and provide low loss (<0.04 dB/cm at 850 nm) and high bandwidth (>30 GHz×m) interconnection. The formation of such waveguides on flexible substrates can further provide flexible low-weight low-thickness interconnects and offer additional freedom in the implementation of high-speed short-reach optical links. These attributes make these flexible waveguides particularly attractive for use in low-cost detachable chip-to-chip links and in environments where weight and shape conformity become important, such as in cars and aircraft. However, the highly-multimoded nature of these waveguides raises important questions about their performance under severe flex due to mode loss and mode coupling. In this work therefore, we investigate the loss, crosstalk and bandwidth performance of such waveguides under out-of plane bending and in-plane twisting under different launch conditions and carry out data transmission tests at 40 Gb/s on a 1 m long spiral flexible waveguide under flexure. Excellent optical transmission characteristics are obtained while robust loss, crosstalk and bandwidth performance are demonstrated under flexure. Error-free (BER<10-12) 40 Gb/s data transmission is achieved over the 1 m long spiral waveguide for a 180° bend with a 4 mm radius. The obtained results demonstrate the excellent optical and mechanical properties of this technology and highlight its potential for use in real-world systems.

  7. Flowfield predictions for multiple body launch vehicles

    NASA Technical Reports Server (NTRS)

    Deese, Jerry E.; Pavish, D. L.; Johnson, Jerry G.; Agarwal, Ramesh K.; Soni, Bharat K.

    1992-01-01

    A method is developed for simulating inviscid and viscous flow around multicomponent launch vehicles. Grids are generated by the GENIE general-purpose grid-generation code, and the flow solver is a finite-volume Runge-Kutta time-stepping method. Turbulence effects are simulated using Baldwin and Lomax (1978) turbulence model. Calculations are presented for three multibody launch vehicle configurations: one with two small-diameter solid motors, one with nine small-diameter solid motors, and one with three large-diameter solid motors.

  8. Small Launch Vehicle Design Approaches: Clustered Cores Compared with Multi-Stage Inline Concepts

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Beers, Benjamin; Esther, Elizabeth; Philips, Alan; Threet, Grady E., Jr.

    2013-01-01

    In an effort to better define small launch vehicle design options two approaches were investigated from the small launch vehicle trade space. The primary focus was to evaluate a clustered common core design against a purpose built inline vehicle. Both designs focused on liquid oxygen (LOX) and rocket propellant grade kerosene (RP-1) stages with the terminal stage later evaluated as a LOX/methane (CH4) stage. A series of performance optimization runs were done in order to minimize gross liftoff weight (GLOW) including alternative thrust levels, delivery altitude for payload, vehicle length to diameter ratio, alternative engine feed systems, re-evaluation of mass growth allowances, passive versus active guidance systems, and rail and tower launch methods. Additionally manufacturability, cost, and operations also play a large role in the benefits and detriments for each design. Presented here is the Advanced Concepts Office's Earth to Orbit Launch Team methodology and high level discussion of the performance trades and trends of both small launch vehicle solutions along with design philosophies that shaped both concepts. Without putting forth a decree stating one approach is better than the other; this discussion is meant to educate the community at large and let the reader determine which architecture is truly the most economical; since each path has such a unique set of limitations and potential payoffs.

  9. Wearable Large-Scale Perovskite Solar-Power Source via Nanocellular Scaffold.

    PubMed

    Hu, Xiaotian; Huang, Zengqi; Zhou, Xue; Li, Pengwei; Wang, Yang; Huang, Zhandong; Su, Meng; Ren, Wanjie; Li, Fengyu; Li, Mingzhu; Chen, Yiwang; Song, Yanlin

    2017-11-01

    Dramatic advances in perovskite solar cells (PSCs) and the blossoming of wearable electronics have triggered tremendous demands for flexible solar-power sources. However, the fracturing of functional crystalline films and transmittance wastage from flexible substrates are critical challenges to approaching the high-performance PSCs with flexural endurance. In this work, a nanocellular scaffold is introduced to architect a mechanics buffer layer and optics resonant cavity. The nanocellular scaffold releases mechanical stresses during flexural experiences and significantly improves the crystalline quality of the perovskite films. The nanocellular optics resonant cavity optimizes light harvesting and charge transportation of devices. More importantly, these flexible PSCs, which demonstrate excellent performance and mechanical stability, are practically fabricated in modules as a wearable solar-power source. A power conversion efficiency of 12.32% for a flexible large-scale device (polyethylene terephthalate substrate, indium tin oxide-free, 1.01 cm 2 ) is achieved. This ingenious flexible structure will enable a new approach for development of wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Analysis and experiments for a system of two spacecraft paired by means of a flexible link

    NASA Astrophysics Data System (ADS)

    Sabatini, Marco; Palmerini, Giovanni B.; Gasbarri, Paolo

    2016-11-01

    A field of current interest in space technology is the on-orbit operation concept, often requiring that a chaser spacecraft captures a target spacecraft. The physical link connecting the two satellites is usually characterized by a high degree of flexibility, because of the special requirements imposed to the space systems, and specifically the constraints on the mass at launch. The focus of this paper is the study of an attitude control of the paired spacecraft system such that the elastic oscillations do not interfere with the attitude dynamics, and the final configuration is reached without residual vibrations. At the scope, a rest-to-rest techniques, that requires an accurate description of the dynamic model of the paired satellites as a flexible multibody setup, is applied. The results of this control are first tested by means of a numerical tool, simulating nominal and non-nominal scenarios. Then the identified control is proved in an experimental test-bed, consisting of two free-floating platforms connected by means of an elastic joint. The performance of the rest-to-rest technique is compared to other classical control laws aiming to minimally excite the system undesired dynamics, showing a promising superiority.

  11. Evaluation of Thermal Control Coatings for Flexible Ceramic Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius; Carroll, Carol; Smith, Dane; Guzinski, Mike; Marschall, Jochen; Pallix, Joan; Ridge, Jerry; Tran, Duoc

    1997-01-01

    This report summarizes the evaluation and testing of high emissivity protective coatings applied to flexible insulations for the Reusable Launch Vehicle technology program. Ceramic coatings were evaluated for their thermal properties, durability, and potential for reuse. One of the major goals was to determine the mechanism by which these coated blanket surfaces become brittle and try to modify the coatings to reduce or eliminate embrittlement. Coatings were prepared from colloidal silica with a small percentage of either SiC or SiB6 as the emissivity agent. These coatings are referred to as gray C-9 and protective ceramic coating (PCC), respectively. The colloidal solutions were either brushed or sprayed onto advanced flexible reusable surface insulation blankets. The blankets were instrumented with thermocouples and exposed to reentry heating conditions in the Ames Aeroheating Arc Jet Facility. Post-test samples were then characterized through impact testing, emissivity measurements, chemical analysis, and observation of changes in surface morphology. The results show that both coatings performed well in arc jet tests with backface temperatures slightly lower for the PCC coating than with gray C-9. Impact testing showed that the least extensive surface destruction was experienced on blankets with lower areal density coatings.

  12. Utility of Thin-Film Solar Cells on Flexible Substrates for Space Power

    NASA Technical Reports Server (NTRS)

    Dickman, J. E.; Hepp, A. F.; Morel, D. L.; Ferekides, C. S.; Tuttle, J. R.; Hoffman, D. J.; Dhere, N. G.

    2004-01-01

    The thin-film solar cell program at NASA GRC is developing solar cell technologies for space applications which address two critical metrics: specific power (power per unit mass) and launch stowed volume. To be competitive for many space applications, an array using thin film solar cells must significantly increase specific power while reducing stowed volume when compared to the present baseline technology utilizing crystalline solar cells. The NASA GRC program is developing two approaches. Since the vast majority of the mass of a thin film solar cell is in the substrate, a thin film solar cell on a very lightweight flexible substrate (polymer or metal films) is being developed as the first approach. The second approach is the development of multijunction thin film solar cells. Total cell efficiency can be increased by stacking multiple cells having bandgaps tuned to convert the spectrum passing through the upper cells to the lower cells. Once developed, the two approaches will be merged to yield a multijunction, thin film solar cell on a very lightweight, flexible substrate. The ultimate utility of such solar cells in space require the development of monolithic interconnections, lightweight array structures, and ultra-lightweight support and deployment techniques.

  13. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  14. Terra Flexible Blanket Solar Array Deployment, On-Orbit Performance and Future Applications

    NASA Technical Reports Server (NTRS)

    Kurland, Richard; Schurig, Hans; Rosenfeld, Mark; Herriage, Michael; Gaddy, Edward; Keys, Denney; Faust, Carl; Andiario, William; Kurtz, Michelle; Moyer, Eric; hide

    2000-01-01

    The Terra spacecraft (formerly identified as EOS AM1) is the flagship in a planned series of NASA/GSFC (Goddard Space Flight Center) Earth observing system satellites designed to provide information on the health of the Earth's land, oceans, air, ice, and life as a total ecological global system. It has been successfully performing its mission since a late-December 1999 launch into a 705 km polar orbit. The spacecraft is powered by a single wing, flexible blanket array using single junction (SJ) gallium arsenide/germanium (GaAs/Ge) solar cells sized to provide five year end-of-life (EOL) power of greater than 5000 watts at 127 volts. It is currently the highest voltage and power operational flexible blanket array with GaAs/Ge cells. This paper briefly describes the wing design as a basis for discussing the operation of the electronics and mechanisms used to achieve successful on-orbit deployment. Its orbital electrical performance to date will be presented and compared to analytical predictions based on ground qualification testing. The paper concludes with a brief section on future applications and performance trends using advanced multi-junction cells and weight-efficient mechanical components.

  15. A Flexible Path for Human and Robotic Space Exploration

    NASA Technical Reports Server (NTRS)

    Korsmeyer, David J.; Landis, Robert; Merrill, Raymond Gabriel; Mazanek, Daniel D.; Falck, Robert D.; Adams, Robert B.

    2010-01-01

    During the summer of 2009, a flexible path scenario for human and robotic space exploration was developed that enables frequent, measured, and publicly notable human exploration of space beyond low-Earth orbit (LEO). The formulation of this scenario was in support of the Exploration Beyond LEO subcommittee of the Review of U.S. Human Space Flight Plans Committee that was commissioned by President Obama. Exploration mission sequences that allow humans to visit a wide number of inner solar system destinations were investigated. The scope of destinations included the Earth-Moon and Earth-Sun Lagrange points, near-Earth objects (NEOs), the Moon, and Mars and its moons. The missions examined assumed the use of Constellation Program elements along with existing launch vehicles and proposed augmentations. Additionally, robotic missions were envisioned as complements to human exploration through precursor missions, as crew emplaced scientific investigations, and as sample gathering assistants to the human crews. The focus of the flexible path approach was to gain ever-increasing operational experience through human exploration missions ranging from a few weeks to several years in duration, beginning in deep space beyond LEO and evolving to landings on the Moon and eventually Mars.

  16. Kennedy Space Center: Creating a Spaceport Reality from the Dreams of Many

    NASA Technical Reports Server (NTRS)

    Gray, James A.; Colloredo, Scott

    2012-01-01

    On December 17, 1903, Orville Wright piloted the first powered airplane only 20 feet above the ground near Kitty Hawk, North Carolina. The flight lasted 12 seconds and covered 120 feet. Who would have guessed that the bizarre looking contraption developed by brothers in the bicycle business would lay the ground work eventually resulting in over a million passengers moved daily in a sky filled with the contrails of jets flying at over 30,000 feet in elevation and over 500 miles per hour. Similarly, who would have guessed that the destructive nature of V-2 rockets of Germany would spark the genesis of spaceflight to explore our solar system and beyond? Yet the interest in using the Kennedy Space Center (KSC) continues to grow. Potential customers have expressed interest in KSC as a location for testing new rocket engines, servicing the world's largest airborne launching platform for drop-launch rockets, developing multi-use launch platforms that permit diverse customers to use the same launch platform, developing new spacecraft, and implementing advanced modifications for lifting 150 metric ton payloads to low earth orbit. The multitude of customers has grown and with this growth comes a need to provide a command, control, communication, and range infrastructure that maximizes flexibility and reconfigurability to address a much more frequent launch rate of diverse vehicles and spacecraft. The Ground Systems Development and Operations (GSDO) Program Office at KSC is embarking upon these developments to realize the dream of a robust spaceport. Many unique technical trade studies have been completed or are underway to successfully transition KSC into a multi-user customer focused spaceport. Like the evolution of the airplane, GSDO is working to transform KSC infrastructures that will turn once unthinkable space opportunities into a reality for today.

  17. Experimental demonstration of the control of flexible structures

    NASA Technical Reports Server (NTRS)

    Schaechter, D. B.; Eldred, D. B.

    1984-01-01

    The Large Space Structure Technology Flexible Beam Experiment employs a pinned-free flexible beam to demonstrate such required methods as dynamic and adaptive control, as well as various control law design approaches and hardware requirements. An attempt is made to define the mechanization difficulties that may inhere in flexible structures. Attention is presently given to analytical work performed in support of the test facility's development, the final design's specifications, the control laws' synthesis, and experimental results obtained.

  18. Wake structures behind a swimming robotic lamprey with a passively flexible tail

    PubMed Central

    Leftwich, Megan C.; Tytell, Eric D.; Cohen, Avis H.; Smits, Alexander J.

    2012-01-01

    SUMMARY A robotic lamprey, based on the silver lamprey, Ichthyomyzon unicuspis, was used to investigate the influence of passive tail flexibility on the wake structure and thrust production during anguilliform swimming. A programmable microcomputer actuated 11 servomotors that produce a traveling wave along the length of the lamprey body. The waveform was based on kinematic studies of living lamprey, and the shape of the tail was taken from a computer tomography scan of the silver lamprey. The tail was constructed of flexible PVC gel, and nylon inserts were used to change its degree of flexibility. Particle image velocimetry measurements using three different levels of passive flexibility show that the large-scale structure of the wake is dominated by the formation of two pairs of vortices per shedding cycle, as seen in the case of a tail that flexed actively according to a pre-defined kinematic pattern, and did not bend in response to fluid forces. When the tail is passively flexible, however, the large structures are composed of a number of smaller vortices, and the wake loses coherence as the degree of flexibility increases. Momentum balance calculations indicate that, at a given tailbeat frequency, increasing the tail flexibility yields less net force, but changing the cycle frequency to match the resonant frequency of the tail increases the force production. PMID:22246250

  19. Design studies of large aperture, high-resolution Earth science microwave radiometers compatible with small launch vehicles

    NASA Technical Reports Server (NTRS)

    Schroeder, Lyle C.; Bailey, M. C.; Harrington, Richard F.; Kendall, Bruce M.; Campbell, Thomas G.

    1994-01-01

    High-spatial-resolution microwave radiometer sensing from space with reasonable swath widths and revisit times favors large aperture systems. However, with traditional precision antenna design, the size and weight requirements for such systems are in conflict with the need to emphasize small launch vehicles. This paper describes tradeoffs between the science requirements, basic operational parameters, and expected sensor performance for selected satellite radiometer concepts utilizing novel lightweight compactly packaged real apertures. Antenna, feed, and radiometer subsystem design and calibration are presented. Preliminary results show that novel lightweight real aperture coupled with state-of-the-art radiometer designs are compatible with small launch systems, and hold promise for high-resolution earth science measurements of sea ice, precipitation, soil moisture, sea surface temperature, and ocean wind speeds.

  20. The paradox of cognitive flexibility in autism

    PubMed Central

    Geurts, Hilde M.; Corbett, Blythe; Solomon, Marjorie

    2017-01-01

    We present an overview of current literature addressing cognitive flexibility in autism spectrum disorders. Based on recent studies at multiple sites, using diverse methods and participants of different autism subtypes, ages and cognitive levels, no consistent evidence for cognitive flexibility deficits was found. Researchers and clinicians assume that inflexible everyday behaviors in autism are directly related to cognitive flexibility deficits as assessed by clinical and experimental measures. However, there is a large gap between the day-to-day behavioral flexibility and that measured with these cognitive flexibility tasks. To advance the field, experimental measures must evolve to reflect mechanistic models of flexibility deficits. Moreover, ecologically valid measures are required to be able to resolve the paradox between cognitive and behavioral inflexibility. PMID:19138551

  1. Statistical Analysis of a Large Sample Size Pyroshock Test Data Set Including Post Flight Data Assessment. Revision 1

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2010-01-01

    The Earth Observing System (EOS) Terra spacecraft was launched on an Atlas IIAS launch vehicle on its mission to observe planet Earth in late 1999. Prior to launch, the new design of the spacecraft's pyroshock separation system was characterized by a series of 13 separation ground tests. The analysis methods used to evaluate this unusually large amount of shock data will be discussed in this paper, with particular emphasis on population distributions and finding statistically significant families of data, leading to an overall shock separation interface level. The wealth of ground test data also allowed a derivation of a Mission Assurance level for the flight. All of the flight shock measurements were below the EOS Terra Mission Assurance level thus contributing to the overall success of the EOS Terra mission. The effectiveness of the statistical methodology for characterizing the shock interface level and for developing a flight Mission Assurance level from a large sample size of shock data is demonstrated in this paper.

  2. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  3. Power and Propulsion System Design for Near-Earth Object Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Snyder, John Steven; Randolph, Thomas M.; Landau, Damon F.; Bury, Kristen M.; Malone, Shane P.; Hickman, Tyler A.

    2011-01-01

    Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.

  4. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate

    PubMed Central

    Zhang, Chengpeng; Yi, Peiyun; Peng, Linfa; Lai, Xinmin; Chen, Jie; Huang, Meizhen; Ni, Jun

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) has been a powerful tool for applications including single molecule detection, analytical chemistry, electrochemistry, medical diagnostics and bio-sensing. Especially, flexible SERS substrates are highly desirable for daily-life applications, such as real-time and in situ Raman detection of chemical and biological targets, which can be used onto irregular surfaces. However, it is still a major challenge to fabricate the flexible SERS substrate on large-area substrates using a facile and cost-effective technique. The roll-to-roll ultraviolet nanoimprint lithography (R2R UV-NIL) technique provides a solution for the continuous fabrication of flexible SERS substrate due to its high-speed, large-area, high-resolution and high-throughput. In this paper, we presented a facile and cost-effective method to fabricate flexible SERS substrate including the fabrication of polymer nanostructure arrays and the metallization of the polymer nanostructure arrays. The polymer nanostructure arrays were obtained by using R2R UV-NIL technique and anodic aluminum oxide (AAO) mold. The functional SERS substrates were then obtained with Au sputtering on the surface of the polymer nanostructure arrays. The obtained SERS substrates exhibit excellent SERS and flexibility performance. This research can provide a beneficial direction for the continuous production of the flexible SERS substrates. PMID:28051175

  5. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    PubMed Central

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-01-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs. PMID:26582471

  6. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels.

    PubMed

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-19

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  7. Indium-free, highly transparent, flexible Cu2O/Cu/Cu2O mesh electrodes for flexible touch screen panels

    NASA Astrophysics Data System (ADS)

    Kim, Dong-Ju; Kim, Hyo-Joong; Seo, Ki-Won; Kim, Ki-Hyun; Kim, Tae-Wong; Kim, Han-Ki

    2015-11-01

    We report on an indium-free and cost-effective Cu2O/Cu/Cu2O multilayer mesh electrode grown by room temperature roll-to-roll sputtering as a viable alternative to ITO electrodes for the cost-effective production of large-area flexible touch screen panels (TSPs). By using a low resistivity metallic Cu interlayer and a patterned mesh structure, we obtained Cu2O/Cu/Cu2O multilayer mesh electrodes with a low sheet resistance of 15.1 Ohm/square and high optical transmittance of 89% as well as good mechanical flexibility. Outer/inner bending test results showed that the Cu2O/Cu/Cu2O mesh electrode had a mechanical flexibility superior to that of conventional ITO films. Using the diamond-patterned Cu2O/Cu/Cu2O multilayer mesh electrodes, we successfully demonstrated TSPS of the flexible film-film type and rigid glass-film-film type TSPs. The TSPs with Cu2O/Cu/Cu2O mesh electrode were used to perform zoom in/out functions and multi-touch writing, indicating that these electrodes are promising cost-efficient transparent electrodes to substitute for conventional ITO electrodes in large-area flexible TSPs.

  8. Highly Efficient Flexible Perovskite Solar Cells with Antireflection and Self-Cleaning Nanostructures.

    PubMed

    Tavakoli, Mohammad Mahdi; Tsui, Kwong-Hoi; Zhang, Qianpeng; He, Jin; Yao, Yan; Li, Dongdong; Fan, Zhiyong

    2015-10-27

    Flexible thin film solar cells have attracted a great deal of attention as mobile power sources and key components for building-integrated photovoltaics, due to their light weight and flexible features in addition to compatibility with low-cost roll-to-roll fabrication processes. Among many thin film materials, organometallic perovskite materials are emerging as highly promising candidates for high efficiency thin film photovoltaics; however, the performance, scalability, and reliability of the flexible perovskite solar cells still have large room to improve. Herein, we report highly efficient, flexible perovskite solar cells fabricated on ultrathin flexible glasses. In such a device structure, the flexible glass substrate is highly transparent and robust, with low thermal expansion coefficient, and perovskite thin film was deposited with a thermal evaporation method that showed large-scale uniformity. In addition, a nanocone array antireflection film was attached to the front side of the glass substrate in order to improve the optical transmittance and to achieve a water-repelling effect at the same time. It was found that the fabricated solar cells have reasonable bendability, with 96% of the initial value remaining after 200 bending cycles, and the power conversion efficiency was improved from 12.06 to 13.14% by using the antireflection film, which also demonstrated excellent superhydrophobicity.

  9. Mission Sizing and Trade Studies for Low Ballistic Coefficient Entry Systems to Venus

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Smith, Brandon; Prabhu, Dinesh; Venkatapathy, Ethiraj

    2012-01-01

    The U.S and the U.S.S.R. have sent seventeen successful atmospheric entry missions to Venus. Past missions to Venus have utilized rigid aeroshell systems for entry. This rigid aeroshell paradigm sets performance limitations since the size of the entry vehicle is constrained by the fairing diameter of the launch vehicle. This has limited ballistic coefficients (beta) to well above 100 kg/m2 for the entry vehicles. In order to maximize the science payload and minimize the Thermal Protection System (TPS) mass, these missions have entered at very steep entry flight path angles (gamma). Due to Venus thick atmosphere and the steep-gamma, high- conditions, these entry vehicles have been exposed to very high heat flux, very high pressures and extreme decelerations (upwards of 100 g's). Deployable aeroshells avoid the launch vehicle fairing diameter constraint by expanding to a larger diameter after the launch. Due to the potentially larger wetted area, deployable aeroshells achieve lower ballistic coefficients (well below 100 kg/m2), and if they are flown at shallower flight path angles, the entry vehicle can access trajectories with far lower decelerations (50-60 g's), peak heat fluxes (400 W/cm2) and peak pressures. The structural and TPS mass of the shallow-gamma, low-beta deployables are lower than their steep-gamma, high-beta rigid aeroshell counterparts at larger diameters, contributing to lower areal densities and potentially higher payload mass fractions. For example, at large diameters, deployables may attain aeroshell areal densities of 10 kg/m2 as opposed to 50 kg/m2 for rigid aeroshells. However, the low-beta, shallow-gamma paradigm also raises issues, such as the possibility of skip-out during entry. The shallow-gamma could also increase the landing footprint of the vehicle. Furthermore, the deployable entry systems may be flexible, so there could be fluid-structure interaction, especially in the high altitude, low-density regimes. The need for precision in guidance, navigation and control during entry also has to be better understood. This paper investigates some of the challenges facing the design of a shallow-gamma, low-beta entry system.

  10. Active Vibration Control of a Large Flexible Manipulator by Inertial Force and Joint Torque. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Soo Han

    1988-01-01

    The efficiency and positional accuracy of a lightweight flexible manipulator are limited by its flexural vibrations, which last after a gross motion is completed. The vibration delays subsequent operations. In the proposed work, the vibration is suppressed by inertial force of a small arm in addition to the joint actuators and passive damping treatment. The proposed approach is: (1) Dynamic modeling of a combined system, a large flexible manipulator and a small arm, (2) Determination of optimal sensor location and controller algorithm, and (3) Verification of the fitness of model and the performance of controller.

  11. Optimal orbit transfer suitable for large flexible structures

    NASA Technical Reports Server (NTRS)

    Chatterjee, Alok K.

    1989-01-01

    The problem of continuous low-thrust planar orbit transfer of large flexible structures is formulated as an optimal control problem with terminal state constraints. The dynamics of the spacecraft motion are treated as a point-mass central force field problem; the thrust-acceleration magnitude is treated as an additional state variable; and the rate of change of thrust-acceleration is treated as a control variable. To ensure smooth transfer, essential for flexible structures, an additional quadratic term is appended to the time cost functional. This term penalizes any abrupt change in acceleration. Numerical results are presented for the special case of a planar transfer.

  12. KSC-2012-1676

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-1674

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lifts a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  14. KSC-2012-1675

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane is used to lift a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  15. KSC-2012-1678

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane lowers a new engine and generator for installation inside crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  16. KSC-2012-1673

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, technicians monitor the progress as a large crane begins to lift a new engine and generator for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  17. KSC-2012-1677

    NASA Image and Video Library

    2012-03-08

    CAPE CANAVERAL, Fla. – Inside the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida, a large crane lifts a new engine and generator high overhead for installation on crawler-transporter 2 CT-2). The Apollo era diesel engines were removed last month. Work continues in high bay 2 to upgrade CT-2 so that it can carry NASA’s Space Launch System heavy-lift rocket, which is under design, and new Orion spacecraft to the launch pad. The crawler-transporters were used to carry the mobile launcher platform and space shuttle to Launch Complex 39 for space shuttle launches for 30 years. Photo credit: NASA/Jim Grossmann

  18. KSC-2012-6185

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crawler-transporter No. 2 moves along the crawler way toward Launch Pad 39A following modifications to ensure its ability to carry launch vehicles such as the space agency's Space Launch System heavy-lift rocket to the launch pad. NASA's Ground Systems Development and Operations Program is leading the 20-year life-extension project for the crawler. A pair of behemoth machines called crawler-transporters has carried the load of taking rockets and spacecraft to the launch pad for more than 40 years at NASA’s Kennedy Space Center in Florida. Each the size of a baseball infield and powered by locomotive and large electrical power generator engines, the crawler-transporters will stand ready to keep up the work for the next generation of launch vehicles projects to lift astronauts into space. For more information, visit http://www.nasa.gov/exploration/systems/ground/index.html Photo credit: NASA/Jim Grossmann

  19. KSC-02pd0103

    NASA Image and Video Library

    2002-01-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility get the Large Orbital Protective Enclosure (LOPE) ready to move to the Multi-Use Lightweight Equipment (MULE) carrier. The LOPE contains part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, scheduled to launch Feb. 28 from Launch Pad 39A

  20. KSC-02pd0102

    NASA Image and Video Library

    2002-01-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility get the Large Orbital Protective Enclosure (LOPE) ready to move to the Multi-Use Lightweight Equipment (MULE) carrier. The LOPE contains part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, scheduled to launch Feb. 28 from Launch Pad 39A

  1. KSC-02pd0101

    NASA Image and Video Library

    2002-01-29

    KENNEDY SPACE CENTER, FLA. -- Workers in the Vertical Processing Facility get the Large Orbital Protective Enclosure (LOPE) ready to move to the Multi-Use Lightweight Equipment (MULE) carrier. The LOPE contains part of the payload on the Hubble Space Telescope Servicing Mission, STS-109, scheduled to launch Feb. 28 from Launch Pad 39A

  2. Designing astrophysics missions for NASA's Space Launch System

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; Hopkins, Randall C.; Schnell, Andrew; Smith, David Alan; Jackman, Angela; Warfield, Keith R.

    2016-10-01

    Large space telescope missions have always been limited by their launch vehicle's mass and volume capacities. The Hubble Space Telescope was specifically designed to fit inside the Space Shuttle and the James Webb Space Telescope was specifically designed to fit inside an Ariane 5. Astrophysicists desire even larger space telescopes. NASA's "Enduring Quests Daring Visions" report calls for an 8- to 16-m Large UV-Optical-IR (LUVOIR) Surveyor mission to enable ultrahigh-contrast spectroscopy and coronagraphy. Association of Universities for Research in Astronomy's "From Cosmic Birth to Living Earth" report calls for a 12-m class High-Definition Space Telescope to pursue transformational scientific discoveries. NASA's "Planning for the 2020 Decadal Survey" calls for a Habitable Exoplanet Imaging (HabEx) and an LUVOIR as well as Far-IR and an X-ray Surveyor missions. Packaging larger space telescopes into existing launch vehicles is a significant engineering complexity challenge that drives cost and risk. NASA's planned Space Launch System (SLS), with its 8- or 10-m diameter fairings and ability to deliver 35 to 45 mt of payload to Sun-Earth-Lagrange-2, mitigates this challenge by fundamentally changing the design paradigm for large space telescopes. This paper introduces the mass and volume capacities of the planned SLS, provides a simple mass allocation recipe for designing large space telescope missions to this capacity, and gives three specific mission concept implementation examples: a 4-m monolithic off-axis telescope, an 8-m monolithic on-axis telescope, and a 12-m segmented on-axis telescope.

  3. Ultra Lightweight Ballutes for Return to Earth from the Moon

    NASA Technical Reports Server (NTRS)

    Masciarelli, James P.; Lin, John K. H.; Ware, Joanne S.; Rohrschneider, Reuben R.; Braun, Robert D.; Bartels, Robert E.; Moses, Robert W.; Hall, Jeffery L.

    2006-01-01

    Ultra lightweight ballutes offer revolutionary mass and cost benefits along with flexibility in flight system design compared to traditional entry system technologies. Under funding provided by NASA s Exploration Systems Research & Technology program, our team was able to make progress in developing this technology through systems analysis and design, evaluation of materials and construction methods, and development of critical analysis tools. Results show that once this technology is mature, significant launch mass savings, operational simplicity, and mission robustness will be available to help carry out NASA s Vision for Space Exploration.

  4. Limited Effects Weapons Study: Catalog of Currently Available Weapons and Devices. Edition 1,

    DTIC Science & Technology

    1995-10-25

    1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3 . REPORT TYPE AND DATES COVERED 77 20 Oct 95 1st edition 4. TITLE AND SUBTITLE S. FUNDING NUMBERS...special markings in all capitals (e.g. Jan 88). Must cite at least the year. NOFORN, REL, ITAR). Block 3 . Type of Report and Dates Covered. DOD See...RA 88 and MA/RA 83 (Muzzle Launched Rubber Ammunition) 1 No. 15 Stinger" Grenade with Rubber Pellets 3 12 Gauge Flexible Baton Lead Shot Bean Bags 5 12

  5. Stampless fabrication of sheet bars using disposable templates

    NASA Astrophysics Data System (ADS)

    Smolentsev, V. P.; Safonov, S. V.; Smolentsev, E. V.; Fedonin, O. N.

    2016-04-01

    The article is devoted to the new method of small-scale fabrication of sheet bars. The procedure is performed by using disposable overlay templates, or those associated with a sheet, which parameters are obtained directly from the drawing. The proposed method used as a substitution of die cutting enables to intensify the preparatory technological process, which is particularly effective when launching the market-oriented items into production. It significantly increases the competitiveness of mechanical engineering and creates the conditions for technical support of present-day flexible production systems.

  6. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A mock-up for the development of the Engineering Model (EM) and Flight Model (FM) is introduced which shortens the delay of 7 weeks regarding the previous planned launch date of September 30, to about 3 weeks maintaining the 4 weeks reserve is discussed. As compared with the new assembly integration test (EM-AIT) schedule of March 11, 1985, the EM data handling system is on the critical path. For the attitude measurement and control subsystem, sufficiently flexibility is achieved through combination of dummies and EM hardware to catch up with the existing delays.

  7. Space transportation booster engine configuration study. Volume 2: Design definition document and environmental analysis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  8. Flexible transparent conductors based on metal nanowire networks

    DOE PAGES

    Guo, Chuan Fei; Ren, Zhifeng

    2015-04-01

    Few conductors are transparent and flexible. Metals have the best electrical conductivity, but they are opaque and stiff in bulk form. However, metals can be transparent and flexible when they are very thin or properly arranged on the nanoscale. This review focuses on the flexible transparent conductors based on percolating networks of metal. Specifically, we discuss the fabrication, the means to improve the electrical conductivity, the large stretchability and its mechanism, and the applications of these metal networks. We also suggest some criteria for evaluating flexible transparent conductors and propose some new research directions in this emerging field.

  9. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    NASA Astrophysics Data System (ADS)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  10. Assembly vs. direct launch of transfer vehicles

    NASA Technical Reports Server (NTRS)

    Katzberg, Stephen J.; Pritchard, E. Brian

    1990-01-01

    A top level assessment is performed of the relative impacts of on-orbit assembly of the lunar or Mars transfer vehicles versus direct launch. The objective is to identify the major option paths for the Earth-to-orbit, ETO, transportation systems. Heavy lift launch vehicles, if large enough, could reduce or eliminate on-orbit assembly. However, with every new approach, there are always counter-balancing considerations and it is the objective to begin the delineation of the necessary follow-on trade study issues.

  11. Temporal Variability of Upper-level Winds at the Eastern Range, Western Range and Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicle commit-to-launch decisions include an assessment of the upper-level (UL) atmospheric wind environment to assess the vehicle's controllability and structural integrity during ascent. These assessments occur at predetermined times during the launch countdown based on measured wind data obtained prior to the assessment. However, the pre-launch measured winds may not represent the wind environment during the vehicle ascent. Uncertainty in the UL winds over the time period between the assessment and launch can be mitigated by a statistical analysis of wind change over time periods of interest using historical data from the launch range. Without historical data, theoretical wind models must be used, which can result in inaccurate wind placards that misrepresent launch availability. Using an overconservative model could result in overly restrictive vehicle wind placards, thus potentially reducing launch availability. Conversely, using an under-conservative model could result in launching into winds that might damage or destroy the vehicle. A large sample of measured wind profiles best characterizes the wind change environment. These historical databases consist of a certain number of wind pairs, where two wind profile measurements spaced by the time period of interest define a pair.

  12. Chemically modified graphene based supercapacitors for flexible and miniature devices

    NASA Astrophysics Data System (ADS)

    Ghosh, Debasis; Kim, Sang Ouk

    2015-09-01

    Rapid progress in the portable and flexible electronic devises has stimulated supercapacitor research towards the design and fabrication of high performance flexible devices. Recent research efforts for flexible supercapacitor electrode materials are highly focusing on graphene and chemically modified graphene owing to the unique properties, including large surface area, high electrical and thermal conductivity, excellent mechanical flexibility, and outstanding chemical stability. This invited review article highlights current status of the flexible electrode material research based on chemically modified graphene for supercapacitor application. A variety of electrode architectures prepared from chemically modified graphene are summarized in terms of their structural dimensions. Novel prototypes for the supercapacitor aiming at flexible miniature devices, i.e. microsupercapacitor with high energy and power density are highlighted. Future challenges relevant to graphene-based flexible supercapacitors are also suggested. [Figure not available: see fulltext.

  13. KSC-08pd1620

    NASA Image and Video Library

    2008-06-11

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance

  14. KSC-08pd1621

    NASA Image and Video Library

    2008-06-11

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance

  15. KSC-08pd1623

    NASA Image and Video Library

    2008-06-11

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance

  16. KSC-08pd1622

    NASA Image and Video Library

    2008-06-11

    CAPE CANAVERAL, Fla. -- On Cape Canaveral Air Force Station's Launch Pad 17-B, NASA's Gamma-ray Large Area Space Telescope , or GLAST, sits poised for launch atop the United Launch Alliance Delta II rocket after rollback of the mobile service tower. GLAST is a powerful space observatory that will explore the universe's ultimate frontier, where nature harnesses forces and energies far beyond anything possible on Earth; probe some of science's deepest questions, such as what our universe is made of, and search for new laws of physics; explain how black holes accelerate jets of material to nearly light speed; and help crack the mystery of stupendously powerful explosions known as gamma-ray bursts. Launch is scheduled for 11:45 a.m. June 11. Photo credit: Carleton Bailie photograph for United Launch Alliance

  17. NASA's Space Launch System Marks Critical Design Review

    NASA Technical Reports Server (NTRS)

    Singer, Chris

    2016-01-01

    With completion of its Critical Design Review (CDR) in 2015, NASA is deep into the manufacturing and testing phases of its new Space Launch System (SLS) for beyond-Earth exploration. This CDR was the first in almost 40 years for a NASA human launch vehicle and marked another successful milestone on the road to the launch of a new era of deep space exploration. The review marked the 90-percent design-complete, a final look at the design and development plan of the integrated vehicle before full-scale fabrications begins and the prelude to the next milestone, design certification. Specifically, the review looked at the first of three increasingly capable configurations planned for SLS. This "Block I" design will stand 98.2 meters (m) (322 feet) tall and provide 39.1 million Newtons (8.8 million pounds) of thrust at liftoff to lift a payload of approximately 70 metric tons (154,000 pounds). This payload is more than double that of the retired space shuttle program or other current launch vehicles. It dramatically increases the mass and volume of human and robotic exploration. Additionally, it will decrease overall mission risk, increase safety, and simplify ground and mission operations - all significant considerations for crewed missions and unique, high-value national payloads. The Block 1 SLS will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on an uncrewed flight beyond the moon and back and the first crewed flight around the moon. The current design has a direct evolutionary path to a vehicle with a 130t lift capability that offers even more flexibility to reduce planetary trip times, simplify payload design cycles, and provide new capabilities such as planetary sample returns. Every major element of SLS has hardware in production or testing, including flight hardware for the Exploration 1 (EM-1) test flight. In fact, the SLS MPCV-to-Stage-Adapter (MSA) flew successfully on the Exploration Flight Test (EFT) 1 launch of a Delta IV and Orion spacecraft in December 2014. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.

  18. When Flexibility Helps: Another Look at the Availability of Flexible Work Arrangements and Work-Family Conflict

    ERIC Educational Resources Information Center

    Shockley, Kristen M.; Allen, Tammy D.

    2007-01-01

    Despite the positive press given to flexible work arrangements (FWA), empirical research investigating the link between the availability of these policies and work-family conflict is largely equivocal. The purpose of the present study was to begin to reconcile these mixed results through more precise measurement and the examination of moderators.…

  19. Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells.

    PubMed

    He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan

    2017-12-06

    Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.

  20. Draft environmental impact statement for the Galileo Mission (Tier 2)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This Draft Environmental Impact Statement (DEIS) addresses the environmental impacts which may be caused by the preparation and operation of the Galileo spacecraft, including its planned launch on the Space Transportation System (STS) Shuttle and the alternative of canceling further work on the mission. The launch configuration will use the STS/Inertial Upper Stage (IUS)/Payload Assist Module-Special (PAM-S) combination. The Tier 1 EIS included a delay alternative which considered the Titan 4 launch vehicle as an alternative booster stage for launch in 1991 or later. However, the U.S. Air Force, which procures the Titan 4 for NASA, could not provide a Titan 4 vehicle for the 1991 launch opportunity because of high priority Department of Defense requirements. The only expected environmental effects of the proposed action are associated with normal Shuttle launch operations. These impacts are limited largely to the near-field at the launch pad, except for temporary stratospheric ozone effects during launch and occasional sonic boom effects near the landing site. These effects have been judged insufficient to preclude Shuttle launches. In the event of: (1) an accident during launch, or (2) reentry of the spacecraft from earth orbit, there are potential adverse health and environmental effects associated with the possible release of plutonium dioxide from the spacecraft's radioisotope thermoelectric generators (RTG).

  1. Control of large flexible systems via eigenvalue relocation

    NASA Technical Reports Server (NTRS)

    Denman, E. D.; Jeon, G. J.

    1985-01-01

    For the vibration control of large flexible systems, a control scheme by which the eigenvalues of the closed-loop systems are assigned to predetermined locations within the feasible region through velocity-only feedback is presented. Owing to the properties of second-order lambda-matrices and an efficient model decoupling technique, the control scheme makes it possible that selected modes are damped with the rest of the modes unchanged.

  2. Preliminary analysis of a flexible instrument mount for large instruments on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A flexible instrument mount for large instruments on the space shuttle is analyzed. Concepts for pointing instruments while in orbit, with weights up to 2000 Kg and dimensions of 2 to 3 m were identified and analyzed. A mechanical concept was selected that can accommodate a set class of scientific instruments such as the LAMAR X-ray experiment with 24 LAMAR telescopes.

  3. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

    PubMed Central

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  4. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.

    PubMed

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-11-24

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.

  5. Dynamic Server-Based KML Code Generator Method for Level-of-Detail Traversal of Geospatial Data

    NASA Technical Reports Server (NTRS)

    Baxes, Gregory; Mixon, Brian; Linger, TIm

    2013-01-01

    Web-based geospatial client applications such as Google Earth and NASA World Wind must listen to data requests, access appropriate stored data, and compile a data response to the requesting client application. This process occurs repeatedly to support multiple client requests and application instances. Newer Web-based geospatial clients also provide user-interactive functionality that is dependent on fast and efficient server responses. With massively large datasets, server-client interaction can become severely impeded because the server must determine the best way to assemble data to meet the client applications request. In client applications such as Google Earth, the user interactively wanders through the data using visually guided panning and zooming actions. With these actions, the client application is continually issuing data requests to the server without knowledge of the server s data structure or extraction/assembly paradigm. A method for efficiently controlling the networked access of a Web-based geospatial browser to server-based datasets in particular, massively sized datasets has been developed. The method specifically uses the Keyhole Markup Language (KML), an Open Geospatial Consortium (OGS) standard used by Google Earth and other KML-compliant geospatial client applications. The innovation is based on establishing a dynamic cascading KML strategy that is initiated by a KML launch file provided by a data server host to a Google Earth or similar KMLcompliant geospatial client application user. Upon execution, the launch KML code issues a request for image data covering an initial geographic region. The server responds with the requested data along with subsequent dynamically generated KML code that directs the client application to make follow-on requests for higher level of detail (LOD) imagery to replace the initial imagery as the user navigates into the dataset. The approach provides an efficient data traversal path and mechanism that can be flexibly established for any dataset regardless of size or other characteristics. The method yields significant improvements in userinteractive geospatial client and data server interaction and associated network bandwidth requirements. The innovation uses a C- or PHP-code-like grammar that provides a high degree of processing flexibility. A set of language lexer and parser elements is provided that offers a complete language grammar for writing and executing language directives. A script is wrapped and passed to the geospatial data server by a client application as a component of a standard KML-compliant statement. The approach provides an efficient means for a geospatial client application to request server preprocessing of data prior to client delivery. Data is structured in a quadtree format. As the user zooms into the dataset, geographic regions are subdivided into four child regions. Conversely, as the user zooms out, four child regions collapse into a single, lower-LOD region. The approach provides an efficient data traversal path and mechanism that can be flexibly established for any dataset regardless of size or other characteristics.

  6. Instrumentation for the Characterization of Inflatable Structures

    NASA Technical Reports Server (NTRS)

    Swanson, Gregory T.; Cassell, Alan M.; Johnson, R. Keith

    2012-01-01

    Current entry, descent, and landing technologies are not practical for heavy payloads due to mass and volume constraints dictated by limitations imposed by launch vehicle fairings. Therefore, new technologies are now being explored to provide a mass- and volume-efficient solution for heavy payload capabilities, including Inflatable Aerodynamic Decelerators (IAD) [1]. Consideration of IADs for space applications has prompted the development of instrumentation systems for integration with flexible structures to characterize system response to flight-like environment testing. This development opportunity faces many challenges specific to inflatable structures in extreme environments, including but not limited to physical flexibility, packaging, temperature, structural integration and data acquisition [2]. In the spring of 2012, two large scale Hypersonic Inflatable Aerodynamic Decelerators (HIAD) will be tested in the National Full-Scale Aerodynamics Complex s 40 by 80 wind tunnel at NASA Ames Research Center. The test series will characterize the performance of a 3.0 m and 6.0 m HIAD at various angles of attack and levels of inflation during flight-like loading. To analyze the performance of these inflatable test articles as they undergo aerodynamic loading, many instrumentation systems have been researched and developed. These systems will utilize new experimental sensing systems developed by the HIAD ground test campaign instrumentation team, in addition to traditional wind tunnel sensing techniques in an effort to improve test article characterization and model validation. During the 2012 test series the instrumentation systems will target inflatable aeroshell static and dynamic deformation, structural strap loading, surface pressure distribution, localized skin deflection, and torus inflation pressure. This paper will offer an overview of inflatable structure instrumentation, and provide detail into the design and implementation of the sensors systems that will be utilized during the 2012 HIAD ground test campaign.

  7. Evaluation of Dual-Launch Lunar Architectures Using the Mission Assessment Post Processor

    NASA Technical Reports Server (NTRS)

    Stewart, Shaun M.; Senent, Juan; Williams, Jacob; Condon, Gerald L.; Lee, David E.

    2010-01-01

    The National Aeronautics and Space Administrations (NASA) Constellation Program is currently designing a new transportation system to replace the Space Shuttle, support human missions to both the International Space Station (ISS) and the Moon, and enable the eventual establishment of an outpost on the lunar surface. The present Constellation architecture is designed to meet nominal capability requirements and provide flexibility sufficient for handling a host of contingency scenarios including (but not limited to) launch delays at the Earth. This report summarizes a body of work performed in support of the Review of U.S. Human Space Flight Committee. It analyzes three lunar orbit rendezvous dual-launch architecture options which incorporate differing methodologies for mitigating the effects of launch delays at the Earth. NASA employed the recently-developed Mission Assessment Post Processor (MAPP) tool to quickly evaluate vehicle performance requirements for several candidate approaches for conducting human missions to the Moon. The MAPP tool enabled analysis of Earth perturbation effects and Earth-Moon geometry effects on the integrated vehicle performance as it varies over the 18.6-year lunar nodal cycle. Results are provided summarizing best-case and worst-case vehicle propellant requirements for each architecture option. Additionally, the associated vehicle payload mass requirements at launch are compared between each architecture and against those of the Constellation Program. The current Constellation Program architecture assumes that the Altair lunar lander and Earth Departure Stage (EDS) vehicles are launched on a heavy lift launch vehicle. The Orion Crew Exploration Vehicle (CEV) is separately launched on a smaller man-rated vehicle. This strategy relaxes man-rating requirements for the heavy lift launch vehicle and has the potential to significantly reduce the cost of the overall architecture over the operational lifetime of the program. The crew launch occurs first, four days prior to the optimal trans-lunar injection (TLI) departure window. This is done to allow for launch delays in the Altair/EDS launch. During this time, the Orion vehicle is required to conduct orbit maintenance while loitering in low Earth orbit (LEO). The alternative architectures presented aim to eliminate the need for costly orbit maintenance maneuvers while loitering in LEO. In all of the alternative architectures considered, it is assumed that the Altair and Orion vehicles are nominally launched 90 minutes apart, depart the Earth separately, and complete the rendezvous and docking sequence at the Moon. In this lunar orbit rendezvous (LOR) strategy, both the Altair and Orion vehicles will require separate EDS stages, and each will be required to perform lunar orbit insertion (LOI). This has the effect of balancing payload requirements between the two launch vehicles at the Earth. In this case, the overall payload mass is increased slightly, but the increased mission costs could potentially be offset by requiring the construction of two rockets similar in size and nature, unlike the current Constellation architecture. Three dual-launch architecture options with LOR were evaluated, which incorporate differing methodologies for mitigating the effects of launch delays at the Earth. Benefits and drawbacks of each of the dual-launch architecture options with LOR are discussed and the overall mission performance is compared with that of the existing Constellation Program lunar architecture.

  8. KSC-2011-6471

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, spacecraft technicians discuss their readiness to stow the robotic arm on the Mars Science Laboratory (MSL) rover, Curiosity. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser

  9. KSC-2011-6475

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, the robotic arm of the Mars Science Laboratory (MSL) rover, Curiosity, has been stowed against the body of the spacecraft. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser

  10. KSC-2011-6469

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, spacecraft technicians prepare to stow the robotic arm on the Mars Science Laboratory (MSL) rover, Curiosity. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser

  11. KSC-2011-6470

    NASA Image and Video Library

    2011-08-13

    CAPE CANAVERAL, Fla. -- In the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, preparations are under way to stow the robotic arm on the Mars Science Laboratory (MSL) rover, Curiosity. The arm will hold and maneuver instruments that will help scientists analyze Martian rocks and soil. Much like a human arm, the robotic arm has flexibility through shoulder, elbow, and wrist joints that permit the arm to extend, bend, and angle precisely against rocks and soil to grind away layers, take microscopic images and analyze their elemental composition. At the end of the arm is a hand-like structure, the turret, for holding various tools that can spin through a 350-degree turning range. A United Launch Alliance Atlas V-541 configuration will be used to loft MSL into space. Curiosity’s 10 science instruments are designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. MSL is scheduled to launch Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Charisse Nahser

  12. Two stage launch vehicle

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Advanced Space Design project for 1986-87 was the design of a two stage launch vehicle, representing a second generation space transportation system (STS) which will be needed to support the space station. The first stage is an unmanned winged booster which is fully reusable with a fly back capability. It has jet engines so that it can fly back to the landing site. This adds safety as well as the flexibility to choose alternate landing sites. There are two different second stages. One of the second stages is a manned advanced space shuttle called Space Shuttle II. Space Shuttle II has a payload capability of delivering 40,000 pounds to the space station in low Earth orbit (LEO), and returning 40,000 pounds to Earth. Servicing the space station makes the ability to return a heavy payload to Earth as important as being able to launch a heavy payload. The other second stage is an unmanned heavy lift cargo vehicle with ability to deliver 150,000 pounds of payload to LEO. This vehicle will not return to Earth; however, the engines and electronics can be removed and returned to Earth in the Space Shuttle II. The rest of the vehicle can then be used on orbit for storage or raw materials, supplies, and space manufactured items awaiting transport back to Earth.

  13. An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Moses, P. L.; Bouchard, K. A.; Vause, R. F.; Pinckney, S. Z.; Ferlemann, S. M.; Leonard, C. P.; Taylor, L. W., III; Robinson, J. S.; Martin, J. G.; Petley, D. H.

    1999-01-01

    Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspective are addressed. This paper primarily focuses on the design details of the preferred configuration and the analyses performed to assess its performance. The integration of both low-speed and high-speed propulsion is covered. Structural and mechanical designs are described along with materials and technologies used. Propellant and systems packaging are shown and the mission-sized vehicle weights are disclosed.

  14. Flexible Heteroepitaxy of CoFe 2 O 4 /Muscovite Bimorph with Large Magnetostriction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Heng-Jui; Wang, Chih-Kuo; Su, Dong

    Van der Waals epitaxy was used to fabricate a bimorph composed of ferrimagnetic cobalt ferrite (CoFe 2O 4, CFO) and flexible muscovite. The combination of X-ray diffraction and transmission electron microscopy was conducted to reveal the heteroepitaxy of the CFO/muscovite system. The robust magnetic behaviors against mechanical bending were characterized by hysteresis measurements and magnetic force microscopy, which maintain a saturation magnetization (Ms) of ~120–150 emu/cm 3 under different bending states. The large magnetostrictive response of the CFO film was then determined by digital holographic microscopy, where the difference of magnetostrction coefficient (Δλ) is -104 ppm. We attribute the superiormore » performance of this bimorph to the nature of weak interaction between film and substrate. Such a flexible CFO/muscovite bimorph provides a new platform to develop next-generation flexible magnetic devices.« less

  15. Flexible Heteroepitaxy of CoFe 2 O 4 /Muscovite Bimorph with Large Magnetostriction

    DOE PAGES

    Liu, Heng-Jui; Wang, Chih-Kuo; Su, Dong; ...

    2017-02-03

    Van der Waals epitaxy was used to fabricate a bimorph composed of ferrimagnetic cobalt ferrite (CoFe 2O 4, CFO) and flexible muscovite. The combination of X-ray diffraction and transmission electron microscopy was conducted to reveal the heteroepitaxy of the CFO/muscovite system. The robust magnetic behaviors against mechanical bending were characterized by hysteresis measurements and magnetic force microscopy, which maintain a saturation magnetization (Ms) of ~120–150 emu/cm 3 under different bending states. The large magnetostrictive response of the CFO film was then determined by digital holographic microscopy, where the difference of magnetostrction coefficient (Δλ) is -104 ppm. We attribute the superiormore » performance of this bimorph to the nature of weak interaction between film and substrate. Such a flexible CFO/muscovite bimorph provides a new platform to develop next-generation flexible magnetic devices.« less

  16. Development costs of reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Koelle, D.

    2002-07-01

    The paper deals first with the definition and understanding of "Development Costs" in general. Usually there is large difference between initial "development cost guesses", "Proposal Cost Estimations" and the final "Cost-to-Completion". The reasons for the usual development cost increases during development are discussed. The second part discusses the range of historic launch systems' development costs under "Business-as-Usual" (BaU) - Conditions and potential cost reductions for future developments of RLVs, as well as the comparison to commercial, industrial development cost. Part three covers the potential reduction of development cost by application of "Cost Engineering Principles". An example of the large potential cost range (between 6 and 17 Billion USD) for the development of the same winged rocket-propelled SSTO launch vehicle concept is presented. Finally the tremendous development cost differences are shown which exist for the different potential Reusable Launch System Options which are under discussion. There remains an unresolved problem between the primary goals of the national space agencies with emphasis on new technology development/national prestige and the commercial market requirement of a simple low-cost RLV-System.

  17. Regulatory uncertainty and the associated business risk for emerging technologies

    NASA Astrophysics Data System (ADS)

    Hoerr, Robert A.

    2011-04-01

    An oversight system specifically concerned with nanomaterials should be flexible enough to take into account the unique aspects of individual novel materials and the settings in which they might be used, while recognizing that heretofore unrecognized safety issues may require future modifications. This article considers a question not explicitly considered by the project team: what is the risk that uncertainty over how regulatory oversight will be applied to nanomaterials will delay or block the development of this emerging technology, thereby depriving human health of potential and substantial benefits? An ambiguous regulatory environment could delay the availability of valuable new technology and therapeutics for human health by reducing access to investment capital. Venture capitalists list regulatory uncertainty as a major reason not to invest at all in certain areas. Uncertainty is far more difficult to evaluate than risk, which lends itself to quantitative models and can be factored into projections of return on possible investments. Loss of time has a large impact on investment return. An examination of regulatory case histories suggests that an increase in regulatory resting requirement, where the path is well-defined, is far less costly than a delay of a year or more in achieving product approval and market launch.

  18. Rollable Thin-Shell Nanolaminate Mirrors

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Lih, Shyh-Shiuh; Barbee, Troy, Jr.

    2003-01-01

    A class of lightweight, deployable, thin-shell, curved mirrors with built-in precise-shape-control actuators is being developed for high-resolution scientific imaging. This technology incorporates a combination of advanced design concepts in actuation and membrane optics that, heretofore, have been considered as separate innovations. These mirrors are conceived to be stowed compactly in a launch shroud and transported aboard spacecraft, then deployed in outer space to required precise shapes at much larger dimensions (diameters of the order of meters or tens of meters). A typical shell rollable mirror structure would include: (1) a flexible single- or multiple-layer face sheet that would include an integrated reflective surface layer that would constitute the mirror; (2) structural supports in the form of stiffeners made of a shape-memory alloy (SMA); and (3) piezoelectric actuators. The actuators, together with an electronic control subsystem, would implement a concept of hierarchical distributed control, in which (1) the SMA actuators would be used for global shape control and would generate the large deformations needed for the deployment process and (2) the piezoelectric actuators would generate smaller deformations and would be used primarily to effect fine local control of the shape of the mirror.

  19. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  20. Remote-Sensing Data Distribution and Processing in the Cloud at the ASF DAAC

    NASA Astrophysics Data System (ADS)

    Stoner, C.; Arko, S. A.; Nicoll, J. B.; Labelle-Hamer, A. L.

    2016-12-01

    The Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC) has been tasked to archive and distribute data from both SENTINEL-1 satellites and from the NASA-ISRO Synthetic Aperture Radar (NISAR) satellite in a cost effective manner. In order to best support processing and distribution of these large data sets for users, the ASF DAAC enhanced our data system in a number of ways that will be detailed in this presentation.The SENTINEL-1 mission comprises a constellation of two polar-orbiting satellites, operating day and night performing C-band Synthetic Aperture Radar (SAR) imaging, enabling them to acquire imagery regardless of the weather. SENTINEL-1A was launched by the European Space Agency (ESA) in April 2014. SENTINEL-1B is scheduled to launch in April 2016.The NISAR satellite is designed to observe and take measurements of some of the planet's most complex processes, including ecosystem disturbances, ice-sheet collapse, and natural hazards such as earthquakes, tsunamis, volcanoes and landslides. NISAR will employ radar imaging, polarimetry, and interferometry techniques using the SweepSAR technology employed for full-resolution wide-swath imaging. NISAR data files are large, making storage and processing a challenge for conventional store and download systems.To effectively process, store, and distribute petabytes of data in a High-performance computing environment, ASF took a long view with regard to technology choices and picked a path of most flexibility and Software re-use. To that end, this Software tools and services presentation will cover Web Object Storage (WOS) and the ability to seamlessly move from local sunk cost hardware to public cloud, such as Amazon Web Services (AWS). A prototype of SENTINEL-1A system that is in AWS, as well as a local hardware solution, will be examined to explain the pros and cons of each. In preparation for NISAR files which will be even larger than SENTINEL-1A, ASF has embarked on a number of cloud initiatives, including processing in the cloud at scale, processing data on-demand, and processing end-user computations on DAAC data in the cloud.

  1. Interconnnect and bonding technologies for large flexible solar arrays

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Thermocompression bonding and conductive adhesive bonding are developed and evaluated as alternate methods of joining solar cells to their interconnect assemblies. Bonding materials and process controls applicable to fabrication of large, flexible substrate solar cell arrays are studied. The primary potential use of the techniques developed is on the solar array developed by NASA/MSFC and LMSC for solar electric propulsion (SEP) and shuttle payload applications. This array is made up of flexible panels approximately 0.7 by 3.4 meters. It is required to operate in space between 0.3 and 6 AU for 5 years with limited degradation. Materials selected must be capable of enduring this space environment, including outgassing and radiation.

  2. High-Precision Shape Control of In-Space Deployable Large Membrane/Thin-Shell Reflectors

    NASA Technical Reports Server (NTRS)

    Watkins, Ronald; Goebel, Dan; Hofer, Richard

    2010-01-01

    This innovation has been developed to improve the resolutions of future spacebased active and passive microwave antennas for earth-science remote sensing missions by maintaining surface figure precisions of large membrane/thin-shell reflectors during orbiting. The intention is for these sensing instruments to be deployable at orbit altitudes one or two orders of magnitude higher than Low Earth Orbit (LEO), but still being able to acquire measurements at spatial resolution and sensitivity similar to those of LEO. Because active and passive microwave remote sensors are able to penetrate through clouds to acquire vertical profile measurements of geophysical parameters, it is desirable to elevate them to the higher orbits to obtain orbital geometries that offer large spatial coverage and more frequent observations. This capability is essential for monitoring and for detailed understanding of the life cycles of natural hazards, such as hurricanes, tropical storms, flash floods, and tsunamis. Major components of this high-precision antenna-surface-control system include a membrane/thin shell reflector, a metrology sensor, a controller, actuators, and corresponding power amplifier and signal conditioning electronics (see figure). Actuators are attached to the back of the reflector to produce contraction/ expansion forces to adjust the shape of the thin-material reflector. The wavefront-sensing metrology system continuously measures the surface figure of the reflector, converts the surface figure to digital data and feeds the data to the controller. The controller determines the control parameters and generates commands to the actuator system. The flexible, piezoelectric polymer actuators are thus activated, providing the control forces needed to correct any distortions that exist in the reflector surface. Piezoelectric polymer actuators are very thin and flexible. They can be implemented on the back of the membrane/thin-shell reflector without introducing significant amounts of mass or stiffness to the reflector. They can be rolled up or folded to accommodate the packaging needed for launch. An analytical model of the system, which includes the membrane reflector, actuator, and controller has been developed to investigate the functionality of this control system on a 35-meter-diameter membrane reflector. The performance of this system under external disturbances such as in space thermal loads and W-error due to inflation has been investigated. A subscale breadboard has been developed, and the functionality of this control concept has been demonstrated by this breadboard.

  3. Spatial operator algebra for flexible multibody dynamics

    NASA Technical Reports Server (NTRS)

    Jain, A.; Rodriguez, G.

    1993-01-01

    This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.

  4. KSC-06pd1335

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-06pd1332

    NASA Image and Video Library

    2006-06-22

    KENNEDY SPACE CENTER, FLA. - Bird detection radar is set up near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods

  6. KSC-06pd1333

    NASA Image and Video Library

    2006-06-22

    KENNEDY SPACE CENTER, FLA. - Radar technicians set up bird detection radar near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods

  7. KSC-06pd1334

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-06pd1336

    NASA Image and Video Library

    2006-06-23

    KENNEDY SPACE CENTER, FLA. - Radar technicians adjust two bird detection radars near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Dimitri Gerondidakis

  9. KSC-06pd1331

    NASA Image and Video Library

    2006-06-22

    KENNEDY SPACE CENTER, FLA. - Bird detection radar is delivered near Launch Pad 39B before the July 1 launch of Space Shuttle Discovery on mission STS-121. When birds, especially vultures, are near the shuttle during a launch, impact on a critical area is possible and could cause catastrophic damage to the vehicle. Already proven affective for aviation where threats posed by bird strikes have been a problem, the avian radar, known as Aircraft Birdstrike Avoidance Radar, provides horizontal and vertical scanning and can monitor either launch pad for movement of vultures around them. If data relayed from the avian radar indicates large birds are dangerously close to the vehicle, controllers could hold the countdown. Photo credit: NASA/Gianni Woods

  10. Built to Explore MSFC-SLS-077

    NASA Image and Video Library

    2018-04-20

    NASA's Space Launch System, the world's most powerful rocket, will enable a new era of exploration. With NASA's Orion spacecraft, SLS will launch astronauts on missions to the Moon, Mars and beyond. Exploration Mission-1, the first integrated flight of SLS and an uncrewed Orion, will be the first in a series of increasingly complex missions that will provide the foundation for human deep-space exploration and demonstrate NASA's commitment and capability to extend human existence beyond low-Earth orbit. Launching from NASA's Kennedy Space Center in Florida, the nation's premier multi-user spaceport, SLS will be the only rocket capable of sending crew and large cargo to the Moon in a single launch. (NASA/MSFC)

  11. Liquid Oxygen Propellant Densification Unit Ground Tested With a Large-Scale Flight-Weight Tank for the X-33 Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    2002-01-01

    Propellant densification has been identified as a critical technology in the development of single-stage-to-orbit reusable launch vehicles. Technology to create supercooled high-density liquid oxygen (LO2) and liquid hydrogen (LH2) is a key means to lowering launch vehicle costs. The densification of cryogenic propellants through subcooling allows 8 to 10 percent more propellant mass to be stored in a given unit volume, thereby improving the launch vehicle's overall performance. This allows for higher propellant mass fractions than would be possible with conventional normal boiling point cryogenic propellants, considering the normal boiling point of LO2 and LH2.

  12. Implementing a Healthy Food Distribution Program: A Supply Chain Strategy to Increase Fruit and Vegetable Access in Underserved Areas.

    PubMed

    DeFosset, Amelia R; Kwan, Allison; Rizik-Baer, Daniel; Gutierrez, Luis; Gase, Lauren N; Kuo, Tony

    2018-05-24

    Increasing access to fresh produce in small retail venues could improve the diet of people in underserved communities. However, small retailers face barriers to stocking fresh produce. In 2014, an innovative distribution program, Community Markets Purchasing Real and Affordable Foods (COMPRA), was launched in Los Angeles with the aim of making it more convenient and profitable for small retailers to stock fresh produce. Our case study describes the key processes and lessons learned in the first 2 years of implementing COMPRA. Considerable investments in staff capacity and infrastructure were needed to launch COMPRA. Early successes included significant week-to-week increases in the volume of produce distributed. Leveraging partnerships, maintaining a flexible operational and funding structure, and broadly addressing store owners' needs contributed to initial gains. We describe key challenges and next steps to scaling the program. Lessons learned from implementing COMPRA could inform other jurisdictions considering supply-side approaches to increase access to healthy food.

  13. KSC-00pp0707

    NASA Image and Video Library

    2000-05-26

    At the Shuttle Landing Facility, the crated Tracking and Data Relay Satellite (TDRS-H) is offloaded from an air cargo plane. It will be taken to the Spacecraft Assembly and Encapsulation Facility (SAEF-2) for testing. The TDRS is one of three (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif. The latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket

  14. KSC-00pp0711

    NASA Image and Video Library

    2000-05-26

    The crated Tracking and Data Relay Satellite (TDRS-H) is pulled inside the Spacecraft Assembly and Encapsulation Facility (SAEF-2) after its arrival at KSC. The TDRS will undergo testing in the SAEF-2. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket

  15. KSC-00pp0748

    NASA Image and Video Library

    2000-06-12

    In the Spacecraft Assembly and Encapsulation Facility, overhead cranes lower the Tracking and Data Relay Satellite (TDRS-H) onto a payload adapter. Next step is the encapsulation of the satellite in the fairing behind it (right and left). TDRS is scheduled to be launched June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

  16. KSC-00pp0706

    NASA Image and Video Library

    2000-05-26

    At the Shuttle Landing Facility, the crated Tracking and Data Relay Satellite (TDRS-H) is offloaded from an air cargo plane. It will be taken to the Spacecraft Assembly and Encapsulation Facility (SAEF-2) for testing. The TDRS is one of three (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif. The latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket

  17. KSC-00pp0710

    NASA Image and Video Library

    2000-05-26

    At the Spacecraft Assembly and Encapsulation Facility (SAEF-2), a crane lowers the crated Tracking and Data Relay Satellite (TDRS-H) onto the ground. It was transported to SAEF-2 on the truckbed at right. The TDRS will undergo testing in SAEF-2. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket

  18. KSC00pp0711

    NASA Image and Video Library

    2000-05-26

    The crated Tracking and Data Relay Satellite (TDRS-H) is pulled inside the Spacecraft Assembly and Encapsulation Facility (SAEF-2) after its arrival at KSC. The TDRS will undergo testing in the SAEF-2. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket

  19. KSC-00pp0708

    NASA Image and Video Library

    2000-05-26

    At the Shuttle Landing Facility, the crated Tracking and Data Relay Satellite (TDRS-H) is placed onto a transporter for its move to the Spacecraft Assembly and Encapsulation Facility (SAEF-2) for testing. The TDRS is one of three (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif. The latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit. The TDRS is scheduled to be launched from CCAFS June 29 aboard an Atlas IIA/Centaur rocket

  20. KSC-00pp0746

    NASA Image and Video Library

    2000-06-12

    In the Spacecraft Assembly and Encapsulation Facility, a worker (left center) checks out the Tracking and Data Relay Satellite (TDRS-H) after its move to the payload adapter (below). Next step is the encapsulation of the TDRS in the fairing. TDRS is scheduled to be launched June 29 aboard an Atlas IIA/Centaur rocket. One of three satellites (labeled H, I and J) being built in the Hughes Space and Communications Company Integrated Satellite Factory in El Segundo, Calif., the latest TDRS uses an innovative springback antenna design. A pair of 15-foot-diameter, flexible mesh antenna reflectors fold up for launch, then spring back into their original cupped circular shape on orbit. The new satellites will augment the TDRS system’s existing Sand Ku-band frequencies by adding Ka-band capability. TDRS will serve as the sole means of continuous, high-data-rate communication with the space shuttle, with the International Space Station upon its completion, and with dozens of unmanned scientific satellites in low earth orbit

Top