Sample records for large frequency spacing

  1. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-05-11

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  2. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime - I. The methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paparo, M.; Benko, J. M.; Hareter, M.

    In this study, a sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT. We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequencesmore » (echelle ridges) were found in the 5–21 d –1 region where the pairs of the sequences are shifted (between 0.5 and 0.59 d –1) by twice the value of the estimated rotational splitting frequency (0.269 d –1). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d –1) are in better agreement with the sum of a possible 1.710 d –1 large separation and two or one times, respectively, the value of the rotational frequency.« less

  3. UNEXPECTED SERIES OF REGULAR FREQUENCY SPACING OF δ SCUTI STARS IN THE NON-ASYMPTOTIC REGIME. I. THE METHODOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paparó, M.; Benkő, J. M.; Hareter, M.

    A sequence search method was developed to search the regular frequency spacing in δ Scuti stars through visual inspection and an algorithmic search. We searched for sequences of quasi-equally spaced frequencies, containing at least four members per sequence, in 90 δ Scuti stars observed by CoRoT . We found an unexpectedly large number of independent series of regular frequency spacing in 77 δ Scuti stars (from one to eight sequences) in the non-asymptotic regime. We introduce the sequence search method presenting the sequences and echelle diagram of CoRoT 102675756 and the structure of the algorithmic search. Four sequences (echelle ridges)more » were found in the 5–21 d{sup −1} region where the pairs of the sequences are shifted (between 0.5 and 0.59 d{sup −1}) by twice the value of the estimated rotational splitting frequency (0.269 d{sup −1}). The general conclusions for the whole sample are also presented in this paper. The statistics of the spacings derived by the sequence search method, by FT (Fourier transform of the frequencies), and the statistics of the shifts are also compared. In many stars more than one almost equally valid spacing appeared. The model frequencies of FG Vir and their rotationally split components were used to formulate the possible explanation that one spacing is the large separation while the other is the sum of the large separation and the rotational frequency. In CoRoT 102675756, the two spacings (2.249 and 1.977 d{sup −1}) are in better agreement with the sum of a possible 1.710 d{sup −1} large separation and two or one times, respectively, the value of the rotational frequency.« less

  4. Principles of Space Plasma Wave Instrument Design

    NASA Technical Reports Server (NTRS)

    Gurnett, Donald A.

    1998-01-01

    Space plasma waves span the frequency range from somewhat below the ion cyclotron frequency to well above the electron cyclotron frequency and plasma frequency. Because of the large frequency range involved, the design of space plasma wave instrumentation presents many interesting challenges. This chapter discusses the principles of space plasma wave instrument design. The topics covered include: performance requirements, electric antennas, magnetic antennas, and signal processing. Where appropriate, comments are made on the likely direction of future developments.

  5. Flexibility of space structures makes design shaky

    NASA Technical Reports Server (NTRS)

    Hearth, D. P.; Boyer, W. J.

    1985-01-01

    An evaluation is made of the development status of high stiffness space structures suitable for orbital construction or deployment of large diameter reflector antennas, with attention to the control system capabilities required by prospective space structure system types. The very low structural frequencies typical of very large, radio frequency antenna structures would be especially difficult for a control system to counteract. Vibration control difficulties extend across the frequency spectrum, even to optical and IR reflector systems. Current research and development efforts are characterized with respect to goals and prospects for success.

  6. Self-starting harmonic frequency comb generation in a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Kazakov, Dmitry; Piccardo, Marco; Wang, Yongrui; Chevalier, Paul; Mansuripur, Tobias S.; Xie, Feng; Zah, Chung-en; Lascola, Kevin; Belyanin, Alexey; Capasso, Federico

    2017-12-01

    Optical frequency combs1,2 establish a rigid phase-coherent link between microwave and optical domains and are emerging as high-precision tools in an increasing number of applications3. Frequency combs with large intermodal spacing are employed in the field of microwave photonics for radiofrequency arbitrary waveform synthesis4,5 and for the generation of terahertz tones of high spectral purity in future wireless communication networks6,7. Here, we demonstrate self-starting harmonic frequency comb generation with a terahertz repetition rate in a quantum cascade laser. The large intermodal spacing caused by the suppression of tens of adjacent cavity modes originates from a parametric contribution to the gain due to temporal modulations of population inversion in the laser8,9. Using multiheterodyne self-detection, the mode spacing of the harmonic comb is shown to be uniform to within 5 × 10-12 parts of the central frequency. This new harmonic comb state extends the range of applications of quantum cascade laser frequency combs10-13.

  7. Identification of flexible structures by frequency-domain observability range context

    NASA Astrophysics Data System (ADS)

    Hopkins, M. A.

    2013-04-01

    The well known frequency-domain observability range space extraction (FORSE) algorithm provides a powerful multivariable system-identification tool with inherent flexibility, to create state-space models from frequency-response data (FRD). This paper presents a method of using FORSE to create "context models" of a lightly damped system, from which models of individual resonant modes can be extracted. Further, it shows how to combine the extracted models of many individual modes into one large state-space model. Using this method, the author has created very high-order state-space models that accurately match measured FRD over very broad bandwidths, i.e., resonant peaks spread across five orders-of-magnitude of frequency bandwidth.

  8. Technologies for low radio frequency observations of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  9. Effect of normalized plasma frequency on electron phase-space orbits in a free-electron laser

    NASA Astrophysics Data System (ADS)

    Ji, Yu-Pin; Wang, Shi-Jian; Xu, Jing-Yue; Xu, Yong-Gen; Liu, Xiao-Xu; Lu, Hong; Huang, Xiao-Li; Zhang, Shi-Chang

    2014-02-01

    Irregular phase-space orbits of the electrons are harmful to the electron-beam transport quality and hence deteriorate the performance of a free-electron laser (FEL). In previous literature, it was demonstrated that the irregularity of the electron phase-space orbits could be caused in several ways, such as varying the wiggler amplitude and inducing sidebands. Based on a Hamiltonian model with a set of self-consistent differential equations, it is shown in this paper that the electron-beam normalized plasma frequency functions not only couple the electron motion with the FEL wave, which results in the evolution of the FEL wave field and a possible power saturation at a large beam current, but also cause the irregularity of the electron phase-space orbits when the normalized plasma frequency has a sufficiently large value, even if the initial energy of the electron is equal to the synchronous energy or the FEL wave does not reach power saturation.

  10. High voltage-high power components for large space power distribution systems

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1984-01-01

    Space power components including a family of bipolar power switching transistors, fast switching power diodes, heat pipe cooled high frequency transformers and inductors, high frequency conduction cooled transformers, high power-high frequency capacitors, remote power controllers and rotary power transfer devices were developed. Many of these components such as the power switching transistors, power diodes and the high frequency capacitor are commercially available. All the other components were developed to the prototype level. The dc/dc series resonant converters were built to the 25 kW level.

  11. Superconducting micro-resonator arrays with ideal frequency spacing

    NASA Astrophysics Data System (ADS)

    Liu, X.; Guo, W.; Wang, Y.; Dai, M.; Wei, L. F.; Dober, B.; McKenney, C. M.; Hilton, G. C.; Hubmayr, J.; Austermann, J. E.; Ullom, J. N.; Gao, J.; Vissers, M. R.

    2017-12-01

    We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the physical resonators. Then, we fine-tune each resonator's frequency by lithographically trimming a small length, calculated from the deviation of the measured frequency from its design value, from the interdigitated capacitor. We demonstrate this technique on a 127-resonator array made from titanium-nitride and show that the uniformity of frequency spacing is greatly improved. The array yield in terms of frequency collisions improves from 84% to 97%, while the quality factors and noise properties are unaffected. The wafer trimming technique provides an easy-to-implement tool to improve the yield and multiplexing density of large resonator arrays, which is important for various applications in photon detection and quantum computing.

  12. An improved output feedback control of flexible large space structures

    NASA Technical Reports Server (NTRS)

    Lin, Y. H.; Lin, J. G.

    1980-01-01

    A special output feedback control design technique for flexible large space structures is proposed. It is shown that the technique will increase both the damping and frequency of selected modes for more effective control. It is also able to effect integrated control of elastic and rigid-body modes and, in particular, closed-loop system stability and robustness to modal truncation and parameter variation. The technique is seen as marking an improvement over previous work concerning large space structures output feedback control.

  13. Ultra-wideband ladder filter using SH(0) plate wave in thin LiNbO(3) plate and its application to tunable filter.

    PubMed

    Kadota, Michio; Tanaka, Shuji

    2015-05-01

    A cognitive radio terminal using vacant frequency bands of digital TV (DTV) channels, i.e., TV white space, strongly requires a compact tunable filter covering a wide frequency range of the DTV band (470 to 710 MHz in Japan). In this study, a T-type ladder filter using ultra-wideband shear horizontal mode plate wave resonators was fabricated, and a low peak insertion loss of 0.8 dB and an ultra-large 6 dB bandwidth of 240 MHz (41%) were measured in the DTV band. In addition, bandpass filters with different center frequencies of 502 and 653 MHz at 6 dB attenuation were numerically synthesized based on the same T-type ladder filter in conjunction with band rejection filters with different frequencies. The results suggest that the combination of the wideband T-type ladder filter and the band rejection filters connected with variable capacitors enables a tunable filter with large tunability of frequency and bandwidth as well as large rejection at the adjacent channels of an available TV white space.

  14. Kepler eclipsing binaries with δ Scuti components and tidally induced heartbeat stars

    NASA Astrophysics Data System (ADS)

    Guo, Zhao; Gies, Douglas R.; Matson, Rachel A.

    δ Scuti stars are generally fast rotators and their pulsations are not in the asymptotic regime, so the interpretation of their pulsation spectra is a very difficult task. Binary stars, especially eclipsing systems, offer us the opportunity to constrain the space of fundamental stellar parameters. Firstly, we show the results of KIC9851944 and KIC4851217 as two case studies. We found the signature of the large frequency separation in the pulsational spectrum of both stars. The observed mean stellar density and the large frequency separation obey the linear relation in the log-log space as found by Suarez et al. (2014) and García Hernández et al. (2015). Second, we apply the simple `one-layer model' of Moreno & Koenigsberger (1999) to the prototype heartbeat star KOI-54. The model naturally reproduces the tidally induced high frequency oscillations and their frequencies are very close to the observed frequency at 90 and 91 times the orbital frequency.

  15. Underexpanded Screeching Jets From Circular, Rectangular, and Elliptic Nozzles

    NASA Technical Reports Server (NTRS)

    Panda, J.; Raman, G.; Zaman, K. B. M. Q.

    2004-01-01

    The screech frequency and amplitude, the shock spacing, the hydrodynamic-acoustic standing wave spacing, and the convective velocity of large organized structures are measured in the nominal Mach number range of 1.1 less than or = Mj less that or = l0.9 for supersonic, underexpanded jets exhausting from a circular, a rectangular and an elliptic nozzle. This provides a carefully measured data set useful in comparing the importance of various physical parameters in the screech generation process. The hydrodynamic-acoustic standing wave is formed between the potential pressure field of large turbulent structures and the acoustic pressure field of the screech sound. It has been demonstrated earlier that in the currently available screech frequency prediction models replacement of the shock spacing by the standing wave spacing provides an exact expression. In view of this newly found evidence, a comparison is made between the average standing wavelength and the average shock spacing. It is found that there exists a small, yet important, difference, which is dependent on the azimuthal screech mode. For example, in the flapping modes of circular, rectangular, and elliptic jets, the standing wavelength is slightly longer than the shock spacing, while for the helical screech mode in a circular jet the opposite is true. This difference accounts for the departure of the existing models from predicting the exact screech frequency. Another important parameter, necessary in screech prediction, is the convective velocity of the large organized structures. It is demonstrated that the presence of the hydrodynamic-acoustic standing wave, even inside the jet shear layer, becomes a significant source of error in the convective velocity data obtained using the conventional methods. However, a new relationship, using the standing wavelength and screech frequency is shown to provide more accurate results.

  16. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE PAGES

    Paparo, M.; Benko, J. M.; Hareter, M.; ...

    2016-06-17

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  17. Unexpected series of regular frequency spacing of δ Scuti stars in the non-asymptotic regime. II. Sample-Echelle diagrams and rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paparo, M.; Benko, J. M.; Hareter, M.

    A sequence search method was developed for searching for regular frequency spacing in δ Scuti stars by visual inspection (VI) and algorithmic search. The sample contains 90 δ Scuti stars observed by CoRoT. An example is given to represent the VI. The algorithm (SSA) is described in detail. The data treatment of the CoRoT light curves, the criteria for frequency filtering, and the spacings derived by two methods (i.e., three approaches: VI, SSA, and FT) are given for each target. Echelle diagrams are presented for 77 targets for which at least one sequence of regular spacing was identified. Comparing the spacing and the shifts between pairs of echelle ridges revealed that at least one pair of echelle ridges is shifted to midway between the spacing for 22 stars. The estimated rotational frequencies compared to the shifts revealed rotationally split doublets, triplets, and multiplets not only for single frequencies, but for the complete echelle ridges in 31 δ Scuti stars. Furthermore, using several possible assumptions for the origin of the spacings, we derived the large separation (more » $${\\rm{\\Delta }}\

  18. The Delta Scuti star 38 Eri from the ground and from space

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Kolláth, Z.; Shobbrook, R. R.; Matthews, J. M.; Antoci, V.; Benkő, J. M.; Park, N.-K.; Mirtorabi, M. T.; Luedeke, K.; Kusakin, A.; Bognár, Zs; Sódor, Á.; García-Hernández, A.; Pe na, J. H.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2018-04-01

    We present and discuss the pulsational characteristics of the Delta Scuti star 38 Eri from photometric data obtained at two widely spaced epochs, partly from the ground (1998) and partly from space (MOST, 2011). We found 18 frequencies resolving the discrepancy among the previously published frequencies. Some of the frequencies appeared with different relative amplitudes at two epochs, however, we carried out investigation for amplitude variability for only the MOST data. Amplitude variability was found for one of three frequencies that satisfy the necessary frequency criteria for linear-combination or resonant-mode coupling. Checking the criteria of beating and resonant-mode coupling we excluded them as possible reason for amplitude variability. The two recently developed methods of rotational-splitting and sequence-search were applied to find regular spacings based only on frequencies. Doublets or incomplete multiplets with l = 1, 2 and 3 were found in the rotational splitting search. In the sequence search method we identified four sequences. The averaged spacing, probably a combination of the large separation and the rotational frequency, is 1.724 ± 0.092 d-1. Using the spacing and the scaling relation \\bar{ρ }= [0.0394, 0.0554] gcm-3 was derived. The shift of the sequences proved to be the integer multiple of the rotational splitting spacing. Using the precise MOST frequencies and multi-colour photometry in a hybrid way, we identified four modes with l = 1, two modes with l = 2, two modes with l = 3, and two modes as l = 0 radial modes.

  19. Design considerations for an astronaut monorail system for large space structures and the structural characterization of its positioning arm

    NASA Astrophysics Data System (ADS)

    Watson, Judith J.

    1992-08-01

    An astronaut monorail system (AMS) is presented as a vehicle to transport and position EVA astronauts along large space truss structures. The AMS is proposed specifically as an alternative to the crew and equipment transfer aid for Space Station Freedom. Design considerations for the AMS were discussed and a reference configuration was selected for the study. Equations were developed to characterize the stiffness and frequency behavior of the AMS positioning arm. Experimental data showed that these equations gave a fairly accurate representation of the stiffness and frequency behavior of the arm. A study was presented to show trends for the arm behavior based on varying parameters of the stiffness and frequency equations. An ergonomics study was conducted to provide boundary conditions for tolerable frequency and deflection to be used in developing a design concept for the positioning arm. The feasibility of the AMS positioning arm was examined using equations and working curves developed in this study. It was found that a positioning arm of a length to reach all interior points of the space station truss structure could not be designed to satisfy frequency and deflection constraints. By relaxing the design requirements and the ergonomic boundaries, an arm could be designed which would provide a stable work platform for the EVA astronaut and give him access to over 75 percent of the truss interior.

  20. Dense electro-optic frequency comb generated by two-stage modulation for dual-comb spectroscopy.

    PubMed

    Wang, Shuai; Fan, Xinyu; Xu, Bingxin; He, Zuyuan

    2017-10-01

    An electro-optic frequency comb enables frequency-agile comb-based spectroscopy without using sophisticated phase-locking electronics. Nevertheless, dense electro-optic frequency combs over broad spans have yet to be developed. In this Letter, we propose a straightforward and efficient method for electro-optic frequency comb generation with a small line spacing and a large span. This method is based on two-stage modulation: generating an 18 GHz line-spacing comb at the first stage and a 250 MHz line-spacing comb at the second stage. After generating an electro-optic frequency comb covering 1500 lines, we set up an easily established mutually coherent hybrid dual-comb interferometer, which combines the generated electro-optic frequency comb and a free-running mode-locked laser. As a proof of concept, this hybrid dual-comb interferometer is used to measure the absorption and dispersion profiles of the molecular transition of H 13 CN with a spectral resolution of 250 MHz.

  1. Free-decay time-domain modal identification for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Vanhorn, David A.; Doiron, Harold H.

    1992-01-01

    Concept definition studies for the Modal Identification Experiment (MIE), a proposed space flight experiment for the Space Station Freedom (SSF), have demonstrated advantages and compatibility of free-decay time-domain modal identification techniques with the on-orbit operational constraints of large space structures. Since practical experience with modal identification using actual free-decay responses of large space structures is very limited, several numerical and test data reduction studies were conducted. Major issues and solutions were addressed, including closely-spaced modes, wide frequency range of interest, data acquisition errors, sampling delay, excitation limitations, nonlinearities, and unknown disturbances during free-decay data acquisition. The data processing strategies developed in these studies were applied to numerical simulations of the MIE, test data from a deployable truss, and launch vehicle flight data. Results of these studies indicate free-decay time-domain modal identification methods can provide accurate modal parameters necessary to characterize the structural dynamics of large space structures.

  2. PLATSIM: A Simulation and Analysis Package for Large-Order Flexible Systems. Version 2.0

    NASA Technical Reports Server (NTRS)

    Maghami, Peiman G.; Kenny, Sean P.; Giesy, Daniel P.

    1997-01-01

    The software package PLATSIM provides efficient time and frequency domain analysis of large-order generic space platforms. PLATSIM can perform open-loop analysis or closed-loop analysis with linear or nonlinear control system models. PLATSIM exploits the particular form of sparsity of the plant matrices for very efficient linear and nonlinear time domain analysis, as well as frequency domain analysis. A new, original algorithm for the efficient computation of open-loop and closed-loop frequency response functions for large-order systems has been developed and is implemented within the package. Furthermore, a novel and efficient jitter analysis routine which determines jitter and stability values from time simulations in a very efficient manner has been developed and is incorporated in the PLATSIM package. In the time domain analysis, PLATSIM simulates the response of the space platform to disturbances and calculates the jitter and stability values from the response time histories. In the frequency domain analysis, PLATSIM calculates frequency response function matrices and provides the corresponding Bode plots. The PLATSIM software package is written in MATLAB script language. A graphical user interface is developed in the package to provide convenient access to its various features.

  3. Finite element structural model of a large, thin, completely free, flat plate. [for large space structures

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Groom, N. J.

    1980-01-01

    A finite element structural model of a 30.48 m x 30.48 m x 2.54 mm completely free aluminum plate is described and modal frequencies and mode shape data for the first 44 modes are presented. An explanation of the procedure for using the data is also presented. The model should prove useful for the investigation of controller design approaches for large flexible space structures.

  4. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  5. The Delta Scuti star 38 Eri from the ground and from space

    NASA Astrophysics Data System (ADS)

    Paparó, M.; Kolláth, Z.; Shobbrook, R. R.; Matthews, J. M.; Antoci, V.; Benkő, J. M.; Park, N.-K.; Mirtorabi, M. T.; Luedeke, K.; Kusakin, A.; Bognár, Zs; Sódor, Á.; García-Hernández, A.; Peña, J. H.; Kuschnig, R.; Moffat, A. F. J.; Rowe, J.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2018-07-01

    We present and discuss the pulsational characteristics of the Delta Scuti star 38 Eri from photometric data obtained at two widely spaced epochs, partly from the ground (1998) and partly from space (MOST, 2011). We found 18 frequencies resolving the discrepancy among the previously published frequencies. Some of the frequencies appeared with different relative amplitudes at two epochs, however, we carried out investigation for amplitude variability for only the MOST (Microvariability and Oscillation of STars) data. Amplitude variability was found for one of the three frequencies that satisfy the necessary frequency criteria for linear-combination or resonant-mode coupling. Checking the criteria of beating and resonant-mode coupling we excluded them as possible reason for amplitude variability. The two recently developed methods of rotational splitting and sequence search were applied to find regular spacings based only on frequencies. Doublets or incomplete multiplets with l = 1, 2, and 3 were found in the rotational splitting search. In the sequence search method we identified four sequences. The averaged spacing, probably a combination of the large separation and the rotational frequency, is 1.724 ± 0.092 d-1. Using the spacing and the scaling relation \\bar{ρ}= [0.0394, 0.0554] g cm-3 was derived. The shift of the sequences proved to be the integer multiple of the rotational splitting spacing. Using the precise MOST frequencies and multicolour photometry in a hybrid way, we identified four modes with l = 1, two modes with l = 2, two modes with l = 3, and two modes as l = 0 radial modes.

  6. Effect of damping on excitability of high-order normal modes. [for a large space telescope spacecraft

    NASA Technical Reports Server (NTRS)

    Merchant, D. H.; Gates, R. M.; Straayer, J. W.

    1975-01-01

    The effect of localized structural damping on the excitability of higher-order large space telescope spacecraft modes is investigated. A preprocessor computer program is developed to incorporate Voigt structural joint damping models in a finite-element dynamic model. A postprocessor computer program is developed to select critical modes for low-frequency attitude control problems and for higher-frequency fine-stabilization problems. The selection is accomplished by ranking the flexible modes based on coefficients for rate gyro, position gyro, and optical sensor, and on image-plane motions due to sinusoidal or random PSD force and torque inputs.

  7. Frequency Analysis of the RRc Variables of the MACHO Database for the LMC

    NASA Astrophysics Data System (ADS)

    Kovács, G.; Alcock, C.; Allsman, R.; Alves, D.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration

    We present the first massive frequency analysis of the 1200 first overtone RR Lyrae stars in the Large Magellanic Cloud observed in the first 4.3 yr of the MACHO project. Besides the many new double-mode variables, we also discovered stars with closely spaced frequencies. These variables are most probably nonradial pulsators.

  8. Structures that Contribute to Middle-Ear Admittance in Chinchilla

    PubMed Central

    Rosowski, John J.; Ravicz, Michael E.; Songer, Jocelyn E.

    2009-01-01

    We describe measurements of middle-ear input admittance in chinchillas (Chinchilla lanigera) before and after various manipulations that define the contributions of different middle-ear components to function. The chinchilla’s middle-ear air spaces have a large effect on the low-frequency compliance of the middle ear, and removing the influences of these spaces reveals a highly admittant tympanic membrane and ossicular chain. Measurements of the admittance of the air spaces reveal that the high-degree of segmentation of these spaces has only a small effect on the admittance. Draining the cochlea further increases the middle-ear admittance at low frequencies and removes a low-frequency (less than 300 Hz) level dependence in the admittance. Spontaneous or sound-driven contractions of the middle-ear muscles in deeply anesthetized animals were associated with significant changes in middle-ear admittance. PMID:16944166

  9. Control considerations for high frequency, resonant, power processing equipment used in large systems

    NASA Technical Reports Server (NTRS)

    Mildice, J. W.; Schreiner, K. E.; Wolff, F.

    1987-01-01

    Addressed is a class of resonant power processing equipment designed to be used in an integrated high frequency (20 KHz domain), utility power system for large, multi-user spacecraft and other aerospace vehicles. It describes a hardware approach, which has been the basis for parametric and physical data used to justify the selection of high frequency ac as the PMAD baseline for the space station. This paper is part of a larger effort undertaken by NASA and General Dynamics to be sure that all potential space station contractors and other aerospace power system designers understand and can comfortably use this technology, which is now widely used in the commercial sector. In this paper, we will examine control requirements, stability, and operational modes; and their hardware impacts from an integrated system point of view. The current space station PMAD system will provide the overall requirements model to develop an understanding of the performance of this type of system with regard to: (1) regulation; (2) power bus stability and voltage control; (3) source impedance; (4) transient response; (5) power factor effects, and (6) limits and overloads.

  10. Common substructure in otoacoustic emission spectra of land vertebrates

    NASA Astrophysics Data System (ADS)

    Manley, Geoffrey A.; Köppl, Christine; Bergevin, Christopher

    2015-12-01

    In humans, a similar spectral periodicity is found in all otoacoustic emission types and in threshold fine structure. This may reflect travelling wave phase and reflectance from "structural roughness" in the organ of Corti, or entrainment and suppressive interactions between emissions. To further understand these phenomena, we have examined spontaneous otoacoustic emission (SOAE) spectra in 9 lizard species and the barn owl and find a comparable periodicity. Importantly, the frequency spacing between SOAE peaks was independent of the physical spacing and of the frequency space constants in hearing organs. In 9 lizard species, median spectral gaps lay between 219 and 461 Hz, with no correlation to papillar length (0.3 to 2.1 mm). Similarly in much longer organs: In humans (35 mm), SOAE spectral gaps vary up to 220 Hz at 4 kHz; in the barn owl (11 mm), the median SOAE peak spacing was 395Hz. In the barn owl, a very large space constant between 5 and 10 kHz (5 mm/octave) contrasts with stable SOAE spacing between 1 and 11 kHz. Similar SOAE spectral gaps across all species suggests they represent a basic frequency grating revealing local phase-dependent interactions between active hair cells, a feature not determined by macro-structural anatomy. Emission spectral spacing is independent of cochlear length, of the frequency space constant, of the existence of travelling waves or of a tectorial membrane. Our data suggest that there are greater similarities between frequency selectivity reflected at the level of the hair cells' spontaneous mechanical output (OAEs) than there are at the level of the auditory nerve, where macro-structural anatomy links hair-cell activity differentially to the neural output. Apparently, all hair-cell arrays show a similar frequency substructure not directly replicated in neural tuning.

  11. A method on error analysis for large-aperture optical telescope control system

    NASA Astrophysics Data System (ADS)

    Su, Yanrui; Wang, Qiang; Yan, Fabao; Liu, Xiang; Huang, Yongmei

    2016-10-01

    For large-aperture optical telescope, compared with the performance of azimuth in the control system, arc second-level jitters exist in elevation under different speeds' working mode, especially low-speed working mode in the process of its acquisition, tracking and pointing. The jitters are closely related to the working speed of the elevation, resulting in the reduction of accuracy and low-speed stability of the telescope. By collecting a large number of measured data to the elevation, we do analysis on jitters in the time domain, frequency domain and space domain respectively. And the relation between jitter points and the leading speed of elevation and the corresponding space angle is concluded that the jitters perform as periodic disturbance in space domain and the period of the corresponding space angle of the jitter points is 79.1″ approximately. Then we did simulation, analysis and comparison to the influence of the disturbance sources, like PWM power level output disturbance, torque (acceleration) disturbance, speed feedback disturbance and position feedback disturbance on the elevation to find that the space periodic disturbance still exist in the elevation performance. It leads us to infer that the problems maybe exist in angle measurement unit. The telescope employs a 24-bit photoelectric encoder and we can calculate the encoder grating angular resolution as 79.1016'', which is as the corresponding angle value in the whole encoder system of one period of the subdivision signal. The value is approximately equal to the space frequency of the jitters. Therefore, the working elevation of the telescope is affected by subdivision errors and the period of the subdivision error is identical to the period of encoder grating angular. Through comprehensive consideration and mathematical analysis, that DC subdivision error of subdivision error sources causes the jitters is determined, which is verified in the practical engineering. The method that analyze error sources from time domain, frequency domain and space domain respectively has a very good role in guiding to find disturbance sources for large-aperture optical telescope.

  12. High Efficiency Power Combining of Ka-Band TWTs for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.; Simons, R. N.; Vaden, K. R.; Lesny, G. G.; Glass, J. L.

    2006-01-01

    Future NASA deep space exploration missions are expected in some cases to require telecommunication systems capable of operating at very high data rates (potentially 1 Gbps or more) for the transmission back to Earth of large volumes of scientific data, which means high frequency transmitters with large bandwidth. Among the Ka band frequencies of interest are the present 500 MHz Deep Space Network (DSN) band of 31.8 to 32.3 GHz and a broader band at 37-38 GHz allocated for space science [1]. The large distances and use of practical antenna sizes dictate the need for high transmitter power of up to 1 kW or more. High electrical efficiency is also a requirement. The approach investigated by NASA GRC is a novel wave guide power combiner architecture based on a hybrid magic-T junction for combining the power output from multiple TWTs [1,2]. This architecture was successfully demonstrated and is capable of both high efficiency (90-95%, depending on frequency) and high data rate transmission (up to 622 Mbps) in a two-way power combiner circuit for two different pairs of Ka band TWTs at two different frequency bands. One pair of TWTs, tested over a frequency range of 29.1 to 29.6 GHz, consisted of two 110-115W TWTs previously used in uplink data transmission evaluation terminals in the NASA Advanced Communications Technology Satellite (ACTS) program [1,2]. The second pair was two 100W TWTs (Boeing 999H) designed for high efficiency operation (greater than 55%) over the DSN frequency band of 31.8 to 32.3 GHz [3]. The presentation will provide a qualitative description of the wave guide circuit, results for power combining and data transmission measurements, and results of computer modeling of the magic-T and alternative hybrid junctions for improvements in efficiency and power handling capability. The power combiner results presented here are relevant not only to NASA deep space exploration missions, but also to other U.S. Government agency programs.

  13. Space transportation alternatives for large space programs - The International Space University summer session - 1992

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    1993-01-01

    The issues discussed in this paper are the result of a 10-week study by the Space Solar Power Program design project members and the Space Transportation Group at the International Space University (ISU) summer session of 1992 to investigate new paradigms in space propulsion and how those paradigms might reduce the costs for large space programs. The program plan was to place a series of power satellites in Earth orbit. Several designs were studied where many kW, MW or GW of power would be transmitted to Earth or to other spacecraft in orbit. During the summer session, a space solar power system was also detailed and analyzed. At ISU, the focus of the study was to foster and develop some of the new paradigms that may eliminate the barriers to low cost for space exploration and exploitation. Many international and technical aspects of a large multinational program were studied. Environmental safety, space construction and maintenance, legal and policy issues of frequency allocation, technology transfer and control and many other areas were addressed.

  14. Large space structure damping design

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Haviland, J. K.

    1983-01-01

    Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.

  15. New optical and radio frequency angular tropospheric refraction models for deep space applications

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Rockwell, S. T.

    1976-01-01

    The development of angular tropospheric refraction models for optical and radio frequency usage is presented. The models are compact analytic functions, finite over the entire domain of elevation angle, and accurate over large ranges of pressure, temperature, and relative humidity. Additionally, FORTRAN subroutines for each of the models are included.

  16. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  18. RF Systems in Space. Volume I. Space Antennas Frequency (SARF) Simulation.

    DTIC Science & Technology

    1983-04-01

    lens SBR designs were investigated. The survivability of an SBR system was analyzed. The design of ground based SBR validation experiments for large...aperture SBR concepts were investigated. SBR designs were investigated for ground target detection. N1’IS GRAMI DTIC TAB E Unannounced E Justificat... designs :~~.~...: .-..:. ->.. - . *.* . ..- . . .. . -. . ..- . .4. To analyze the survivability of space radar 5. To design ground-based validation

  19. Satellite time and frequency transfer (STIFT)

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1983-01-01

    The concept of placing a hydrogen maser high stability clock in Earth orbit to provide accurate time and frequency comparisons worldwide to major timing centers and to a large number of radio observatory antenna sites involved in VLBI measurements was studied. The proposal was chiefly directed toward studies and initial hardware designs for time comparisons between hydrogen maser frequency standards and to modifications of the hydrogen maser for long-term use in space.

  20. Some space shuttle tile/strain-isolator-pad sinusoidal vibration tests

    NASA Technical Reports Server (NTRS)

    Miserentino, R.; Pinson, L. D.; Leadbetter, S. A.

    1980-01-01

    Vibration tests were performed on the tile/strain-isolator-pad system used as thermal protection for the space shuttle orbiter. Experimental data on normal and in-plane vibration response and damping properties are presented. Three test specimens exhibited shear type motion during failures that occurred in the tile near the tile/strain-isolator-pad bond-line. A dynamic instability is described which has large in-plane motion at a frequency one-half that of the nominal driving frequency. Analysis shows that this phenomenon is a parametric response.

  1. Visual sensitivity to spatially sampled modulation in human observers

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Macleod, Donald I. A.

    1991-01-01

    Thresholds were measured for detecting spatial luminance modulation in regular lattices of visually discrete dots. Thresholds for modulation of a lattice are generally higher than the corresponding threshold for modulation of a continuous field, and the size of the threshold elevation, which depends on the spacing of the lattice elements, can be as large as a one log unit. The largest threshold elevations are seen when the sample spacing is 12 min arc or greater. Theories based on response compression cannot explain the further observation that the threshold elevations due to spatial sampling are also dependent on modulation frequency: the greatest elevations occur with higher modulation frequencies. The idea that this is due to masking of the modulation frequency by the spatial frequencies in the sampling lattice is considered.

  2. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators

    PubMed Central

    Wang, C. Y.; Herr, T.; Del’Haye, P.; Schliesser, A.; Hofer, J.; Holzwarth, R.; Hänsch, T. W.; Picqué, N.; Kippenberg, T. J.

    2013-01-01

    The mid-infrared spectral range (λ~2–20 μm) is of particular importance as many molecules exhibit strong vibrational fingerprints in this region. Optical frequency combs—broadband optical sources consisting of equally spaced and mutually coherent sharp lines—are creating new opportunities for advanced spectroscopy. Here we demonstrate a novel approach to create mid-infrared optical frequency combs via four-wave mixing in a continuous-wave pumped ultra-high Q crystalline microresonator made of magnesium fluoride. Careful choice of the resonator material and design made it possible to generate a broadband, low-phase noise Kerr comb at λ=2.5 μm spanning 200 nm (≈10 THz) with a line spacing of 100 GHz. With its distinguishing features of compactness, efficient conversion, large mode spacing and high power per comb line, this novel frequency comb source holds promise for new approaches to molecular spectroscopy and is suitable to be extended further into the mid-infrared. PMID:23299895

  3. Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing

    PubMed Central

    Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang

    2016-01-01

    Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341

  4. Mode Behavior in Ultralarge Ring Lasers

    NASA Astrophysics Data System (ADS)

    Hurst, Robert B.; Dunn, Robert W.; Schreiber, K. Ulrich; Thirkettle, Robert J.; MacDonald, Graeme K.

    2004-04-01

    Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to ~0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are greater than 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of ~100 MHz.

  5. Mode behavior in ultralarge ring lasers.

    PubMed

    Hurst, Robert B; Dunn, Robert W; Schreiber, K Ulrich; Thirkettle, Robert J; MacDonald, Graeme K

    2004-04-10

    Contrary to expectations based on mode spacing, single-mode operation in very large He-Ne ring lasers may be achieved at intracavity power levels up to approximately0.15 times the saturation intensity for the He-Ne transition. Homogeneous line broadening at a high total gas pressure of 4-6 Torr allows a single-peaked gain profile that suppresses closely spaced multiple modes. At startup, decay of initial multiple modes may take tens of seconds. The single remaining mode in each direction persists metastably as the cavity is detuned by many times the mode frequency spacing. A theoretical explanation requires the gain profile to be concave down and to satisfy an inequality related to slope and saturation at the operating frequency. Calculated metastable frequency ranges are > 150 MHz at 6 Torr and depend strongly on pressure. Examples of unusual stable mode configurations are shown, with differently numbered modes in the two directions and with multiple modes at a spacing of approximately 100 MHz.

  6. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures is studied. Lattice filters were used to identify the structural dynamics model of the flexible structures. This identification model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures is control engaged. This type of validation scheme prevents instability when the overall loop is closed. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods. The method uses the Linear Quadratic Guassian/Loop Transfer Recovery (LQG/LTR) approach to ensure stability against unmodeled higher frequency modes and achieves the desired performance.

  7. Control system design for the large space systems technology reference platform

    NASA Technical Reports Server (NTRS)

    Edmunds, R. S.

    1982-01-01

    Structural models and classical frequency domain control system designs were developed for the large space systems technology (LSST) reference platform which consists of a central bus structure, solar panels, and platform arms on which a variety of experiments may be mounted. It is shown that operation of multiple independently articulated payloads on a single platform presents major problems when subarc second pointing stability is required. Experiment compatibility will be an important operational consideration for systems of this type.

  8. Tunable, Highly Stable Lasers for Coherent Lidar

    NASA Technical Reports Server (NTRS)

    Henderson, Sammy W.; Hale, Charley P.; EEpagnier, David M.

    2006-01-01

    Practical space-based coherent laser radar systems envisioned for global winds measurement must be very efficient and must contend with unique problems associated with the large platform velocities that the instruments experience in orbit. To compensate for these large platform-induced Doppler shifts in space-based applications, agile-frequency offset-locking of two single-frequency Doppler reference lasers was thoroughly investigated. Such techniques involve actively locking a frequency-agile master oscillator (MO) source to a comparatively static local oscillator (LO) laser, and effectively producing an offset between MO (the lidar slave oscillator seed source, typically) and heterodyne signal receiver LO that lowers the bandwidth of the receiver data-collection system and permits use of very high-quantum-efficiency, reasonably- low-bandwidth heterodyne photoreceiver detectors and circuits. Recent work on MO/LO offset locking has focused on increasing the offset locking range, improving the graded-InGaAs photoreceiver performance, and advancing the maturity of the offset locking electronics. A figure provides a schematic diagram of the offset-locking system.

  9. Membrane Shell Reflector Segment Antenna

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  10. Low Frequency Turbulence as the Source of High Frequency Waves in Multi-Component Space Plasmas

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.; Krivorutsky, Emmanuel N.; Uritsky, Vadim M.

    2011-01-01

    Space plasmas support a wide variety of waves, and wave-particle interactions as well as wavewave interactions are of crucial importance to magnetospheric and ionospheric plasma behavior. High frequency wave turbulence generation by the low frequency (LF) turbulence is restricted by two interconnected requirements: the turbulence should be strong enough and/or the coherent wave trains should have the appropriate length. These requirements are strongly relaxed in the multi-component plasmas, due to the heavy ions large drift velocity in the field of LF wave. The excitation of lower hybrid waves (LHWs), in particular, is a widely discussed mechanism of interaction between plasma species in space and is one of the unresolved questions of magnetospheric multi-ion plasmas. It is demonstrated that large-amplitude Alfven waves, in particular those associated with LF turbulence, may generate LHW s in the auroral zone and ring current region and in some cases (particularly in the inner magnetosphere) this serves as the Alfven wave saturation mechanism. We also argue that the described scenario can playa vital role in various parts of the outer magnetosphere featuring strong LF turbulence accompanied by LHW activity. Using the data from THEMIS spacecraft, we validate the conditions for such cross-scale coupling in the near-Earth "flow-braking" magnetotail region during the passage of sharp injection/dipolarization fronts, as well as in the turbulent outflow region of the midtail reconnection site.

  11. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    DOEpatents

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  12. Critical frequencies of the ionospheric F1 and F2 layers during the last four solar cycles: Sunspot group type dependencies

    NASA Astrophysics Data System (ADS)

    Yiǧit, Erdal; Kilcik, Ali; Elias, Ana Georgina; Dönmez, Burçin; Ozguc, Atila; Yurchshyn, Vasyl; Rozelot, Jean-Pierre

    2018-06-01

    The long term solar activity dependencies of ionospheric F1 and F2 regions' critical frequencies (f0F1 and f0F2) are analyzed for the last four solar cycles (1976-2015). We show that the ionospheric F1 and F2 regions have different solar activity dependencies in terms of the sunspot group (SG) numbers: F1 region critical frequency (f0F1) peaks at the same time with the small SG numbers, while the f0F2 reaches its maximum at the same time with the large SG numbers, especially during the solar cycle 23. The observed differences in the sensitivity of ionospheric critical frequencies to sunspot group (SG) numbers provide a new insight into the solar activity effects on the ionosphere and space weather. While the F1 layer is influenced by the slow solar wind, which is largely associated with small SGs, the ionospheric F2 layer is more sensitive to Coronal Mass Ejections (CMEs) and fast solar winds, which are mainly produced by large SGs and coronal holes. The SG numbers maximize during of peak of the solar cycle and the number of coronal holes peaks during the sunspot declining phase. During solar minimum there are relatively less large SGs, hence reduced CME and flare activity. These results provide a new perspective for assessing how the different regions of the ionosphere respond to space weather effects.

  13. Test Frame for Gravity Offload Systems

    NASA Technical Reports Server (NTRS)

    Murray, Alexander R.

    2005-01-01

    Advances in space telescope and aperture technology have created a need to launch larger structures into space. Traditional truss structures will be too heavy and bulky to be effectively used in the next generation of space-based structures. Large deployable structures are a possible solution. By packaging deployable trusses, the cargo volume of these large structures greatly decreases. The ultimate goal is to three dimensionally measure a boom's deployment in simulated microgravity. This project outlines the construction of the test frame that supports a gravity offload system. The test frame is stable enough to hold the gravity offload system and does not interfere with deployment of, or vibrations in, the deployable test boom. The natural frequencies and stability of the frame were engineered in FEMAP. The test frame was developed to have natural frequencies that would not match the first two modes of the deployable beam. The frame was then modeled in Solidworks and constructed. The test frame constructed is a stable base to perform studies on deployable structures.

  14. Parametric analysis of hollow conductor parallel and coaxial transmission lines for high frequency space power distribution

    NASA Technical Reports Server (NTRS)

    Jeffries, K. S.; Renz, D. D.

    1984-01-01

    A parametric analysis was performed of transmission cables for transmitting electrical power at high voltage (up to 1000 V) and high frequency (10 to 30 kHz) for high power (100 kW or more) space missions. Large diameter (5 to 30 mm) hollow conductors were considered in closely spaced coaxial configurations and in parallel lines. Formulas were derived to calculate inductance and resistance for these conductors. Curves of cable conductance, mass, inductance, capacitance, resistance, power loss, and temperature were plotted for various conductor diameters, conductor thickness, and alternating current frequencies. An example 5 mm diameter coaxial cable with 0.5 mm conductor thickness was calculated to transmit 100 kW at 1000 Vac, 50 m with a power loss of 1900 W, an inductance of 1.45 micron and a capacitance of 0.07 micron-F. The computer programs written for this analysis are listed in the appendix.

  15. Effect of an alternating current electric field on Co(OH)2 periodic precipitation

    NASA Astrophysics Data System (ADS)

    Karam, Tony; Sultan, Rabih

    2013-02-01

    The present paper studies the effect of an alternating current (AC) electric field on Co(OH)2 Liesegang patterns. In the presence of an AC electric field, the band spacing increases with spacing number, but reaches a plateau at large spacing (or band) numbers. The band spacing increases with applied AC voltage, but to a much lesser extent than the effect of a DC electric field under the same applied voltage [see R. Sultan, R. Halabieh, Chem. Phys. Lett. 332 (2000) 331][1]. At low enough applied voltage, the band spacing increases with frequency. At higher voltages, the band spacing becomes independent of the field frequency. The effect of concentration of the inner electrolyte (Co2+), exactly opposes that observed under DC electric field; i.e., the band spacing decreases with increasing concentration. The dynamics were shown to be governed by a competitive scenario between the diffusion gradient and the alternating current electric field factor.

  16. Advanced Data Collection for Inventory Management

    NASA Technical Reports Server (NTRS)

    Opresko, G. A.; Leet, J. H.; Mcgrath, D. F.; Eidson, J.

    1987-01-01

    Bar-coding, radio-frequency, and voice-operated systems selected. Report discusses study of state-of-the-art in automated collection of data for management of large inventories. Study included comprehensive search of literature on data collection and inventory management, visits to existing automated inventory systems, and tours of selected supply and transportation facilities at Kennedy Space Center. Information collected analyzed in view of needs of conceptual inventory-management systems for Kennedy Space Center and for manned space station and other future space projects.

  17. Frequency Domain Beamforming for a Deep Space Network Downlink Array

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2012-01-01

    This paper describes a frequency domain beamformer to array up to 8 antennas of NASA's Deep Space Network currently in development. The objective of this array is to replace and enhance the capability of the DSN 70m antennas with multiple 34m antennas for telemetry, navigation and radio science use. The array will coherently combine the entire 500 MHz of usable bandwidth available to DSN receivers. A frequency domain beamforming architecture was chosen over a time domain based architecture to handle the large signal bandwidth and efficiently perform delay and phase calibration. The antennas of the DSN are spaced far enough apart that random atmospheric and phase variations between antennas need to be calibrated out on an ongoing basis in real-time. The calibration is done using measurements obtained from a correlator. This DSN Downlink Array expands upon a proof of concept breadboard array built previously to develop the technology and will become an operational asset of the Deep Space Network. Design parameters for frequency channelization, array calibration and delay corrections will be presented as well a method to efficiently calibrate the array for both wide and narrow bandwidth telemetry.

  18. Structural load control during construction

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin M., Jr.

    1991-01-01

    In the absence of gravitational pull, the major design considerations for large space structures are stiffness for controllability, and transient dynamic loadings (as opposed to the traditional static load associated with earth-based structures). Because of the absence of gravitational loading, space structures can be designed to be significantly lighter than their counterparts on Earth. For example, the Space Shuttle manipulator arm is capable of moving and positioning a 60,000 lb payload, yet weighs less than 1,000 lbs. A recent design for the Space Station which had a total weight of about 500,000 lbs. used a primary loadcarrying keel beam which weighed less than 10,000 lbs. For many large space structures designs it is quite common for the load-carrying structure to have a mass fraction on the order of one or two percent of the total spacecraft mass. This significant weight reduction for large space structures is commonly accompanied by very low natural frequencies. These low frequencies cause an unprecedented level of operational complexity for mission applications which require a high level of positioning and control accuracy. This control problem is currently the subject of considerable research directed towards reducing the flexibility problem. In addition, however, the small mass fraction typically results in structures which are quite unforgiving to inadvertent high loadings. In other words, the structures are 'fragile.' In order to deal with the fragility issue CSC developed a load-limiting concept for space truss structures. This concept is aimed at limiting the levels of load which can occur in a large space structure during the construction process as well as during subsequent operations. Currently, the approach for dealing with large loadings is to make the structure larger. The impact this has on construction is significant. The larger structures are more difficult to package in the launch vehicle, and in fact in some instances the concept must be changed from a deployable truss to an erectable truss to permit packaging. The new load-limiting concept is aimed at permitting the use in large space structures of smaller trusses with a high level of strength robustness, in order to simplify the construction process. To date several analyses conducted on the concept have demonstrated its feasibility, and an experiment is currently being designed to demonstrate its operation.

  19. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Deep Space Network advanced systems, very large scale integration architecture for decoders, radar interface and control units, microwave time delays, microwave antenna holography, and a radio frequency interference survey are among the topics discussed.

  20. 1997 Technology Applications Report,

    DTIC Science & Technology

    1997-01-01

    handle high -power loads at microwave radio frequencies , microwave vacuum tubes remain the chosen technology to amplify high power. Aria Microwave...structure called the active RF cavity amplifier (ARFCA). With this design , the amplifier handles high -power loads at radio and microwave frequencies ...developed this technology using BMDO-funded modeling methods designed to simulate the dynamics of large space-based structures. Because it increases

  1. Application of the LQG/LTR technique to robust controller synthesis for a large flexible space antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Armstrong, E. S.; Sundararajan, N.

    1986-01-01

    The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software.

  2. Chaos and unpredictability in evolution.

    PubMed

    Doebeli, Michael; Ispolatov, Iaroslav

    2014-05-01

    The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Conceptual communications system design in the 25.25-27.5 and 37.0-40.5 GHz frequency bands

    NASA Technical Reports Server (NTRS)

    Thompson, Michael W.

    1993-01-01

    Future space applications are likely to rely heavily on Ka-band frequencies (20-40 GHz) for communications traffic. Many space research activities are now conducted using S-band and X-band frequencies, which are becoming congested and require a degree of pre-coordination. In addition to providing relief from frequency congestion, Ka-band technologies offer potential size, weight, and power savings when compared to lower frequency bands. The use of the 37.0-37.5 and 40.0-40.5 GHz bands for future planetary missions was recently approved at the 1992 World Administrative Radio Conference (WARC-92). WARC-92 also allocated the band 25.25-27.5 GHz to the Intersatellite Service on a primary basis to accommodate Data Relay Satellite return link requirements. Intersatellite links are defined to be between artificial satellites and thus a communication link with the surface of a planetary body, such as the moon, and a relay satellite orbiting that body are not permitted in this frequency band. This report provides information about preliminary communications system concepts for forward and return links for earth-Mars and earth-lunar links using the 37.0-37.5 (return link) and 40.0-40.5 (forward link) GHz frequency bands. In this study we concentrate primarily on a conceptual system for communications between earth and a single lunar surface terminal (LST), and between earth and a single Mars surface terminal (MST). Due to large space losses, these links have the most stringent link requirements for an overall interplanetary system. The earth ground station is assumed to be the Deep Space Network (DSN) using either 34 meter or 70 meter antennas. We also develop preliminary communications concepts for a space-to-space system operating at near 26 GHz. Space-to-space applications can encompass a variety of operating conditions, and we consider several 'typical' scenarios described in more detail later in this report. Among these scenarios are vehicle-to-vehicle communications, vehicle-to-geosyncronous satellite (GEO) communications, and GEO-to-GEO communications. Additional details about both the interplanetary and space-to-space communications systems are provided in an 'expanded' final report which has been submitted to the Tracking and Communications Division (TCD) at the NASA Johnson Space Center.

  4. Emergence of postural patterns as a function of vision and translation frequency

    NASA Technical Reports Server (NTRS)

    Buchanan, J. J.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Emergence of postural patterns as a function of vision and translation frequency. We examined the frequency characteristics of human postural coordination and the role of visual information in this coordination. Eight healthy adults maintained balance in stance during sinusoidal support surface translations (12 cm peak to peak) in the anterior-posterior direction at six different frequencies. Changes in kinematic and dynamic measures revealed that both sensory and biomechanical constraints limit postural coordination patterns as a function of translation frequency. At slow frequencies (0.1 and 0.25 Hz), subjects ride the platform (with the eyes open or closed). For fast frequencies (1.0 and 1.25 Hz) with the eyes open, subjects fix their head and upper trunk in space. With the eyes closed, large-amplitude, slow-sway motion of the head and trunk occurred for fast frequencies above 0.5 Hz. Visual information stabilized posture by reducing the variability of the head's position in space and the position of the center of mass (CoM) within the support surface defined by the feet for all but the slowest translation frequencies. When subjects rode the platform, there was little oscillatory joint motion, with muscle activity limited mostly to the ankles. To support the head fixed in space and slow-sway postural patterns, subjects produced stable interjoint hip and ankle joint coordination patterns. This increase in joint motion of the lower body dissipated the energy input by fast translation frequencies and facilitated the control of upper body motion. CoM amplitude decreased with increasing translation frequency, whereas the center of pressure amplitude increased with increasing translation frequency. Our results suggest that visual information was important to maintaining a fixed position of the head and trunk in space, whereas proprioceptive information was sufficient to produce stable coordinative patterns between the support surface and legs. The CNS organizes postural patterns in this balance task as a function of available sensory information, biomechanical constraints, and translation frequency.

  5. Analysis of space vehicle structures using the transfer-function concept

    NASA Technical Reports Server (NTRS)

    Heer, E.; Trubert, M. R.

    1969-01-01

    Analysis of large complex systems is accomplished by dividing it into suitable subsystems and determining the individual dynamical and vibrational responses. Frequency transfer functions then determine the vibrational response of the whole system.

  6. Low-Frequency Waves in Space Plasmas

    NASA Astrophysics Data System (ADS)

    Keiling, Andreas; Lee, Dong-Hun; Nakariakov, Valery

    2016-02-01

    Low-frequency waves in space plasmas have been studied for several decades, and our knowledge gain has been incremental with several paradigm-changing leaps forward. In our solar system, such waves occur in the ionospheres and magnetospheres of planets, and around our Moon. They occur in the solar wind, and more recently, they have been confirmed in the Sun's atmosphere as well. The goal of wave research is to understand their generation, their propagation, and their interaction with the surrounding plasma. Low-frequency Waves in Space Plasmas presents a concise and authoritative up-to-date look on where wave research stands: What have we learned in the last decade? What are unanswered questions? While in the past waves in different astrophysical plasmas have been largely treated in separate books, the unique feature of this monograph is that it covers waves in many plasma regions, including: Waves in geospace, including ionosphere and magnetosphere Waves in planetary magnetospheres Waves at the Moon Waves in the solar wind Waves in the solar atmosphere Because of the breadth of topics covered, this volume should appeal to a broad community of space scientists and students, and it should also be of interest to astronomers/astrophysicists who are studying space plasmas beyond our Solar System.

  7. INSPIRE - Premission. [Interactive NASA Space Physics Ionosphere Radio Experiment

    NASA Technical Reports Server (NTRS)

    Taylor, William W. L.; Mideke, Michael; Pine, William E.; Ericson, James D.

    1992-01-01

    The Interactive NASA Space Physics Ionosphere Radio Experiment (INSPIRE) designed to assist in a Space Experiments with Particle Accelerators (SEPAC) project is discussed. INSPIRE is aimed at recording data from a large number of receivers on the ground to determine the exact propagation paths and absorption of radio waves at frequencies between 50 Hz and 7 kHz. It is indicated how to participate in the experiment that will involve high school classes, colleges, and amateur radio operators.

  8. A role for high frequency superconducting devices in free space power transmission systems

    NASA Technical Reports Server (NTRS)

    Christian, Jose L., Jr.; Cull, Ronald C.

    1988-01-01

    Major advances in space power technology are being made in photovoltaic, solar thermal, and nuclear systems. Despite these advances, the power systems required by the energy and power intensive mission of the future will be massive due to the large collecting surfaces, large thermal management systems, and heavy shielding. Reducing this mass on board the space vehicle can result in significant benefits because of the high cost of transporting and moving mass about in space. An approach to this problem is beaming the power from a point where the massiveness of the power plant is not such a major concern. The viability of such an approach was already investigated. Efficient microwave power beam transmission at 2.45 GHz was demonstrated over short range. Higher frequencies are desired for efficient transmission over several hundred or thousand kilometers in space. Superconducting DC-RF conversion as well as RF-DC conversion offers exciting possibilities. Multivoltage power conditioning for multicavity high power RF tubes could be eliminated since only low voltages are required for Josephson junctions. Small, high efficiency receivers may be possible using the reverse Josephson effects. A conceptual receiving antenna design using superconducting devices to determine possible system operating efficiency is assessed. If realized, these preliminary assessments indicate a role for superconducting devices in millimeter and submillimeter free space power transmission systems.

  9. A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sil; Kim, Jae-Seung; Lee, Seong-Hyun; Seo, Yun-Ho

    2014-12-01

    Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

  10. The MACHO Project Large Magellanic Cloud Variable-Star Inventory. IX. Frequency Analysis of the First-Overtone RR Lyrae Stars and the Indication for Nonradial Pulsations

    NASA Astrophysics Data System (ADS)

    Alcock, C.; Allsman, R.; Alves, D. R.; Axelrod, T.; Becker, A.; Bennett, D.; Clement, C.; Cook, K. H.; Drake, A.; Freeman, K.; Geha, M.; Griest, K.; Kovács, G.; Kurtz, D. W.; Lehner, M.; Marshall, S.; Minniti, D.; Nelson, C.; Peterson, B.; Popowski, P.; Pratt, M.; Quinn, P.; Rodgers, A.; Rowe, J.; Stubbs, C.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.

    2000-10-01

    More than 1300 variables classified provisionally as first-overtone RR Lyrae pulsators in the MACHO variable-star database of the Large Magellanic Cloud (LMC) have been subjected to standard frequency analysis. Based on the remnant power in the prewhitened spectra, we found 70% of the total population to be monoperiodic. The remaining 30% (411 stars) are classified as one of nine types according to their frequency spectra. Several types of RR Lyrae pulsational behavior are clearly identified here for the first time. Together with the earlier discovered double-mode (fundamental and first-overtone) variables, this study increased the number of known double-mode stars in the LMC to 181. During the total 6.5 yr time span of the data, 10% of the stars showed strong period changes. The size, and in general also the patterns of the period changes, exclude a simple evolutionary explanation. We also discovered two additional types of multifrequency pulsators with low occurrence rates of 2% for each. In the first type, there remains one closely spaced component after prewhitening by the main pulsation frequency. In the second type, the number of remnant components is two; they are also closely spaced, and are symmetric in their frequency spacing relative to the central component. This latter type of variables are associated with their relatives among the fundamental pulsators, known as Blazhko variables. Their high frequency (~20%) among the fundamental-mode variables versus the low occurrence rate of their first-overtone counterparts makes it more difficult to explain the Blazhko phenomenon by any theory depending mainly on the role of aspect angle or magnetic field. None of the current theoretical models are able to explain the observed close frequency components without invoking nonradial pulsation components in these stars.

  11. Wideband optical vector network analyzer based on optical single-sideband modulation and optical frequency comb.

    PubMed

    Xue, Min; Pan, Shilong; He, Chao; Guo, Ronghui; Zhao, Yongjiu

    2013-11-15

    A novel approach to increase the measurement range of the optical vector network analyzer (OVNA) based on optical single-sideband (OSSB) modulation is proposed and experimentally demonstrated. In the proposed system, each comb line in an optical frequency comb (OFC) is selected by an optical filter and used as the optical carrier for the OSSB-based OVNA. The frequency responses of an optical device-under-test (ODUT) are thus measured channel by channel. Because the comb lines in the OFC have fixed frequency spacing, by fitting the responses measured in all channels together, the magnitude and phase responses of the ODUT can be accurately achieved in a large range. A proof-of-concept experiment is performed. A measurement range of 105 GHz and a resolution of 1 MHz is achieved when a five-comb-line OFC with a frequency spacing of 20 GHz is applied to measure the magnitude and phase responses of a fiber Bragg grating.

  12. MIMO system identification using frequency response data

    NASA Technical Reports Server (NTRS)

    Medina, Enrique A.; Irwin, R. D.; Mitchell, Jerrel R.; Bukley, Angelia P.

    1992-01-01

    A solution to the problem of obtaining a multi-input, multi-output statespace model of a system from its individual input/output frequency responses is presented. The Residue Identification Algorithm (RID) identifies the system poles from a transfer function model of the determinant of the frequency response data matrix. Next, the residue matrices of the modes are computed guaranteeing that each input/output frequency response is fitted in the least squares sense. Finally, a realization of the system is computed. Results of the application of RID to experimental frequency responses of a large space structure ground test facility are presented and compared to those obtained via the Eigensystem Realization Algorithm.

  13. Frequency maps as a probe of secular evolution in the Milky Way

    NASA Astrophysics Data System (ADS)

    Valluri, Monica

    2015-03-01

    The frequency analysis of the orbits of halo stars and dark matter particles from a cosmological hydrodynamical simulation of a disk galaxy from the MUGS collaboration (Stinson et al. 2010) shows that even if the shape of the dark matter halo is nearly oblate, only about 50% of its orbits are on short-axis tubes, confirming a previous result: under baryonic condensation all orbit families can deform their shapes without changing orbital type (Valluri et al. 2010). Orbits of dark matter particles and halo stars are very similar reflecting their common accretion origin and the influence of baryons. Frequency maps provide a compact representation of the 6-D phase space distribution that also reveals the history of the halo (Valluri et al. 2012). The 6-D phase space coordinates for a large population of halo stars in the Milky Way that will be obtained from future surveys can be used to reconstruct the phase-space distribution function of the stellar halo. The similarity between the frequency maps of halo stars and dark matter particles (Fig. 1) implies that reconstruction of the stellar halo distribution function can reveal the phase space distribution of the unseen dark matter particles and provide evidence for secular evolution. MV is supported by NSF grant AST-0908346 and the Elizabeth Crosby grant.

  14. Performance of the PARCS Testbed Cesium Fountain Frequency Standard

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna G.; Klipstein, William M.

    2004-01-01

    A cesium fountain frequency standard has been developed as a ground testbed for the PARCS (Primary Atomic Reference Clock in Space) experiment, an experiment intended to fly on the International Space Station. We report on the performance of the fountain and describe some of the implementations motivated in large part by flight considerations, but of relevance for ground fountains. In particular, we report on a new technique for delivering cooling and trapping laser beams to the atom collection region, in which a given beam is recirculated three times effectively providing much more optical power than traditional configurations. Allan deviations down to 10 have been achieved with this method.

  15. Photonic harmonic up-converter based on a self-oscillating optical frequency comb using a DP-DPMZM

    NASA Astrophysics Data System (ADS)

    Xiao, Xuedi; Li, Shangyuan; Xie, Zhengyang; Peng, Shaowen; Wu, Dexin; Xue, Xiaoxiao; Zheng, Xiaoping; Zhou, Bingkun

    2018-04-01

    A photonic harmonic up-converter based on a self-oscillating optical frequency comb (OFC) utilizing an integrated dual-polarization dual-parallel Mach-Zehnder Modulator (DP-DPMZM) is proposed and experimentally demonstrated. One DPMZM is used to generate the optoelectronic oscillator (OEO)-based OFC, and the rest one is used to generate the optical-modulated intermediate frequency (IF) signal. Beating these two signals, the up-converted signals at different bands would be obtained. As the OFC is generated based on the OEO loop, phase noise can be very low, ensuring good phase noise properties of the up-converted signals. Moreover, frequency spacing between the combs is dependent on oscillating frequency of the OEO, which can be as large as tens of gigahertz. Thus IF signals with large bandwidth can be up-converted to RF bands without aliasing. Experimentally, the 2.5 GHz IF signal is simultaneously up-converted to 13.3, 24.1, and 34.9 GHz by a self-oscillating 7-line OFC spacing at 10.8 GHz. Owing to good phase noise property of the OEO, the up-converted signals at 13.3 and 24.1 GHz maintain the phase noise of the IF signal from 1 KHz to 100 KHz offset. The results show that the converter is promising for multi-band radar and satellite navigation applications.

  16. Mitigating Aviation Communication and Satellite Orbit Operations Surprises from Adverse Space Weather

    NASA Technical Reports Server (NTRS)

    Tobiska, W. Kent

    2008-01-01

    Adverse space weather affects operational activities in aviation and satellite systems. For example, large solar flares create highly variable enhanced neutral atmosphere and ionosphere electron density regions. These regions impact aviation communication frequencies as well as precision orbit determination. The natural space environment, with its dynamic space weather variability, is additionally changed by human activity. The increase in orbital debris in low Earth orbit (LEO), combined with lower atmosphere CO2 that rises into the lower thermosphere and causes increased cooling that results in increased debris lifetime, adds to the environmental hazards of navigating in near-Earth space. This is at a time when commercial space endeavors are posed to begin more missions to LEO during the rise of the solar activity cycle toward the next maximum (2012). For satellite and aviation operators, adverse space weather results in greater expenses for orbit management, more communication outages or aviation and ground-based high frequency radio used, and an inability to effectively plan missions or service customers with space-based communication, imagery, and data transferal during time-critical activities. Examples of some revenue-impacting conditions and solutions for mitigating adverse space weather are offered.

  17. SAR correlation technique - An algorithm for processing data with large range walk

    NASA Technical Reports Server (NTRS)

    Jin, M.; Wu, C.

    1983-01-01

    This paper presents an algorithm for synthetic aperture radar (SAR) azimuth correlation with extraneously large range migration effect which can not be accommodated by the existing frequency domain interpolation approach used in current SEASAT SAR processing. A mathematical model is first provided for the SAR point-target response in both the space (or time) and the frequency domain. A simple and efficient processing algorithm derived from the hybrid algorithm is then given. This processing algorithm enables azimuth correlation by two steps. The first step is a secondary range compression to handle the dispersion of the spectra of the azimuth response along range. The second step is the well-known frequency domain range migration correction approach for the azimuth compression. This secondary range compression can be processed simultaneously with range pulse compression. Simulation results provided here indicate that this processing algorithm yields a satisfactory compressed impulse response for SAR data with large range migration.

  18. Advantages of high-frequency Pulse-tube technology and its applications in infrared sensing

    NASA Astrophysics Data System (ADS)

    Arts, R.; Willems, D.; Mullié, J.; Benschop, T.

    2016-05-01

    The low-frequency pulse-tube cryocooler has been a workhorse for large heat lift applications. However, the highfrequency pulse tube has to date not seen the widespread use in tactical infrared applications that Stirling cryocoolers have had, despite significant advantages in terms of exported vibrations and lifetime. Thales Cryogenics has produced large series of high-frequency pulse-tube cryocoolers for non-infrared applications since 2005. However, the use of Thales pulse-tube cryocoolers for infrared sensing has to date largely been limited to high-end space applications. In this paper, the performances of existing available off-the-shelf pulse-tube cryocoolers are examined versus typical tactical infrared requirements. A comparison is made on efficiency, power density, reliability, and cost. An outlook is given on future developments that could bring the pulse-tube into the mainstream for tactical infrared applications.

  19. Predicting the effect of urban noise on the active space of avian vocal signals.

    PubMed

    Parris, Kirsten M; McCarthy, Michael A

    2013-10-01

    Urbanization changes the physical environment of nonhuman species but also markedly changes their acoustic environment. Urban noise interferes with acoustic communication in a range of animals, including birds, with potentially profound impacts on fitness. However, a mechanistic theory to predict which species of birds will be most affected by urban noise is lacking. We develop a mathematical model to predict the decrease in the active space of avian vocal signals after moving from quiet forest habitats to noisy urban habitats. We find that the magnitude of the decrease is largely a function of signal frequency. However, this relationship is not monotonic. A metaregression of observed increases in the frequency of birdsong in urban noise supports the model's predictions for signals with frequencies between 1.5 and 4 kHz. Using results of the metaregression and the model described above, we show that the expected gain in active space following observed frequency shifts is up to 12% and greatest for birds with signals at the lower end of this frequency range. Our generally applicable model, along with three predictions regarding the behavioral and population-level responses of birds to urban noise, represents an important step toward a theory of acoustic communication in urban habitats.

  20. Study of large adaptive arrays for space technology applications

    NASA Technical Reports Server (NTRS)

    Berkowitz, R. S.; Steinberg, B.; Powers, E.; Lim, T.

    1977-01-01

    The research in large adaptive antenna arrays for space technology applications is reported. Specifically two tasks were considered. The first was a system design study for accurate determination of the positions and the frequencies of sources radiating from the earth's surface that could be used for the rapid location of people or vehicles in distress. This system design study led to a nonrigid array about 8 km in size with means for locating the array element positions, receiving signals from the earth and determining the source locations and frequencies of the transmitting sources. It is concluded that this system design is feasible, and satisfies the desired objectives. The second task was an experiment to determine the largest earthbound array which could simulate a spaceborne experiment. It was determined that an 800 ft array would perform indistinguishably in both locations and it is estimated that one several times larger also would serve satisfactorily. In addition the power density spectrum of the phase difference fluctuations across a large array was measured. It was found that the spectrum falls off approximately as f to the minus 5/2 power.

  1. Dielectric studies on PEG-LTMS based polymer composites

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Praveen, D.; Damle, R.

    2018-02-01

    PEG LTMS based polymer composites were prepared and studied for dielectric constant variation with frequency and temperature as a potential candidate with better dielectric properties. Solution cast technique is used for the preparation of polymer composite with five different compositions. Samples show variation in dielectric constant with frequency and temperature. Dielectric constant is large at low frequencies and higher temperatures. Samples with larger space charges have shown larger dielectric constant. The highest dielectric constant observed was about 29244 for PEG25LTMS sample at 100Hz and 312 K.

  2. First Measurements of High Frequency Cross-Spectra from a Pair of Large Michelson Interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, Aaron S.; Gustafson, Richard; Hogan, Craig

    Measurements are reported of high frequency cross-spectra of signals from the Fermilab Holometer, a pair of co-located 39 m, high power Michelson interferometers. The instrument obtains differential position sensitivity to cross-correlated signals far exceeding any previous measurement in a broad frequency band extending to the 3.8 MHz inverse light crossing time of the apparatus. A model of universal exotic spatial shear correlations that matches the Planck scale holographic information bound of space-time position states is excluded to 4.6{\\sigma} significance.

  3. Floquet resonant states and validity of the Floquet-Magnus expansion in the periodically driven Friedrichs models

    NASA Astrophysics Data System (ADS)

    Mori, Takashi

    2015-02-01

    The Floquet eigenvalue problem is analyzed for periodically driven Friedrichs models on discrete and continuous space. In the high-frequency regime, there exists a Floquet bound state consistent with the Floquet-Magnus expansion in the discrete Friedrichs model, while it is not the case in the continuous model. In the latter case, however, the bound state predicted by the Floquet-Magnus expansion appears as a metastable state whose lifetime diverges in the limit of large frequencies. We obtain the lifetime by evaluating the imaginary part of the quasienergy of the Floquet resonant state. In the low-frequency regime, there is no Floquet bound state and instead the Floquet resonant state with exponentially small imaginary part of the quasienergy appears, which is understood as the quantum tunneling in the energy space.

  4. Observational Δν-ρ¯ Relation for δ Sct Stars using Eclipsing Binaries and Space Photometry

    NASA Astrophysics Data System (ADS)

    García Hernández, A.; Martín-Ruiz, S.; Monteiro, Mário J. P. F. G.; Suárez, J. C.; Reese, D. R.; Pascual-Granado, J.; Garrido, R.

    2015-10-01

    Delta Scuti (δ Sct) stars are intermediate-mass pulsators, whose intrinsic oscillations have been studied for decades. However, modeling their pulsations remains a real theoretical challenge, thereby even hampering the precise determination of global stellar parameters. In this work, we used space photometry observations of eclipsing binaries with a δ Sct component to obtain reliable physical parameters and oscillation frequencies. Using that information, we derived an observational scaling relation between the stellar mean density and a frequency pattern in the oscillation spectrum. This pattern is analogous to the solar-like large separation but in the low order regime. We also show that this relation is independent of the rotation rate. These findings open the possibility of accurately characterizing this type of pulsator and validate the frequency pattern as a new observable for δ Sct stars.

  5. Anthropogenic Space Weather

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Baker, D. N.; Balogh, A.; Erickson, P. J.; Huba, J. D.; Lanzerotti, L. J.

    2017-11-01

    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release experiments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.

  6. Kuramoto model with uniformly spaced frequencies: Finite-N asymptotics of the locking threshold.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-06-01

    We study phase locking in the Kuramoto model of coupled oscillators in the special case where the number of oscillators, N, is large but finite, and the oscillators' natural frequencies are evenly spaced on a given interval. In this case, stable phase-locked solutions are known to exist if and only if the frequency interval is narrower than a certain critical width, called the locking threshold. For infinite N, the exact value of the locking threshold was calculated 30 years ago; however, the leading corrections to it for finite N have remained unsolved analytically. Here we derive an asymptotic formula for the locking threshold when N≫1. The leading correction to the infinite-N result scales like either N^{-3/2} or N^{-1}, depending on whether the frequencies are evenly spaced according to a midpoint rule or an end-point rule. These scaling laws agree with numerical results obtained by Pazó [D. Pazó, Phys. Rev. E 72, 046211 (2005)PLEEE81539-375510.1103/PhysRevE.72.046211]. Moreover, our analysis yields the exact prefactors in the scaling laws, which also match the numerics.

  7. Space transportation alternatives for large space programs: The International Space University Summer Session, 1992

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.

    1993-01-01

    In 1992, the International Space University (ISU) held its Summer Session in Kitakyushu, Japan. This paper summarizes and expands upon some aspects of space solar power and space transportation that were considered during that session. The issues discussed in this paper are the result of a 10-week study by the Space Solar Power Program design project members and the Space Transportation Group to investigate new paradigms in space propulsion and how those paradigms might reduce the costs for large space programs. The program plan was to place a series of power satellites in Earth orbit. Several designs were studied where many kW, MW, or GW of power would be transmitted to Earth or to other spacecraft in orbit. During the summer session, a space solar power system was also detailed and analyzed. A high-cost space transportation program is potentially the most crippling barrier to such a space power program. At ISU, the focus of the study was to foster and develop some of the new paradigms that may eliminate the barriers to low cost for space exploration and exploitation. Many international and technical aspects of a large multinational program were studied. Environmental safety, space construction and maintenance, legal and policy issues of frequency allocation, technology transfer and control and many other areas were addressed. Over 120 students from 29 countries participated in this summer session. The results discussed in this paper, therefore, represent the efforts of many nations.

  8. On the verge of an astronomy CubeSat revolution

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya L.

    2018-05-01

    CubeSats are small satellites built in standard sizes and form factors, which have been growing in popularity but have thus far been largely ignored within the field of astronomy. When deployed as space-based telescopes, they enable science experiments not possible with existing or planned large space missions, filling several key gaps in astronomical research. Unlike expensive and highly sought after space telescopes such as the Hubble Space Telescope, whose time must be shared among many instruments and science programs, CubeSats can monitor sources for weeks or months at time, and at wavelengths not accessible from the ground such as the ultraviolet, far-infrared and low-frequency radio. Science cases for CubeSats being developed now include a wide variety of astrophysical experiments, including exoplanets, stars, black holes and radio transients. Achieving high-impact astronomical research with CubeSats is becoming increasingly feasible with advances in technologies such as precision pointing, compact sensitive detectors and the miniaturization of propulsion systems. CubeSats may also pair with the large space- and ground-based telescopes to provide complementary data to better explain the physical processes observed.

  9. Design of compact off-axis four-mirror anastigmatic system for space communications

    NASA Astrophysics Data System (ADS)

    Zhao, Fa-cai; Sun, Quan-she; Chen, Kun-feng; Zhu, Xing-bang; Wang, Shao-shui; Wang, Guo-quan; Zheng, Xiang-liang

    2013-08-01

    The deployment of advanced hyperspectral imaging and other Earth sensing instruments onboard Earth observing satellites is driving the demand for high-data rate communications. Space laser communications technology offers the potential for significantly increasing in data return capability from space to Earth. Compared to the current state of the art radio frequency communications links, lasercom links operate at much higher carrier frequencies. The use of higher carrier frequencies implies a much smaller diffraction loss, which in turn, results in a much higher efficiency in delivering the signal energy. Optical communications meet the required data rates with small, low-mass, and low-power communications packages. The communications optical system assembly typically consists of a front aperture, reflection or refraction type telescope, with or without a solar rejection filter, aft optics, fine-pointing mirrors, and array detectors. Optical system used in space laser communications usually has long focal length, large aperture compared with common optical systems. So the reflective optical system is widely used. An unobstructed four-mirror anastigmatic telescope system was proposed, which was modified based on the theory about geometry optics of common-axis three-mirror systems. Intermediate image was between secondary and tertiary mirror. In order to fold the optical path, four-mirror was designed by adding the plane reflective mirror at intermediate image. The design was analyzed, then a system with effective aperture of 200mm and field of view of 1.0°x1.0° was designed, total length and magnification are 700mm and 20, respectively. The system has advantages of large magnification, relative short physical size and loose manufacturing tolerances.

  10. Vibration of a Singly-curved Thin Shell Reflector with a Unidirectional Tension Field

    NASA Technical Reports Server (NTRS)

    Williams, R. Brett; Klein, Kerry J.; Agnes, Gregory S.

    2006-01-01

    Increased science requirements for space-based instruments over the past few decades have lead to the increased popularity of deployable space structures constructed from thin, lightweight films. Such structures offer both low mass and the ability to be stowed inside conventional launch vehicles. The analysis in this work pertains to large, singly-curved lightweight deployable reflectors commonly used in radar antennas and space telescopes. These types of systems, which can vary a great deal in size, often have frequency requirement that must be met. This work discusses two missions that utilize this type of aperture technology, and then develops a Rayleigh-Ritz model that predicts the natural frequencies and mode shapes for a (nearly) flat and singly-curved reflector with unidirectional in-plane loading. The results are compared with NASTRAN analyses.

  11. Comments on Landau damping due to synchrotron frequency spread

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, K.Y.; /Fermilab

    2005-01-01

    An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping ifmore » there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.« less

  12. PLATSIM: An efficient linear simulation and analysis package for large-order flexible systems

    NASA Technical Reports Server (NTRS)

    Maghami, Periman; Kenny, Sean P.; Giesy, Daniel P.

    1995-01-01

    PLATSIM is a software package designed to provide efficient time and frequency domain analysis of large-order generic space platforms implemented with any linear time-invariant control system. Time domain analysis provides simulations of the overall spacecraft response levels due to either onboard or external disturbances. The time domain results can then be processed by the jitter analysis module to assess the spacecraft's pointing performance in a computationally efficient manner. The resulting jitter analysis algorithms have produced an increase in speed of several orders of magnitude over the brute force approach of sweeping minima and maxima. Frequency domain analysis produces frequency response functions for uncontrolled and controlled platform configurations. The latter represents an enabling technology for large-order flexible systems. PLATSIM uses a sparse matrix formulation for the spacecraft dynamics model which makes both the time and frequency domain operations quite efficient, particularly when a large number of modes are required to capture the true dynamics of the spacecraft. The package is written in MATLAB script language. A graphical user interface (GUI) is included in the PLATSIM software package. This GUI uses MATLAB's Handle graphics to provide a convenient way for setting simulation and analysis parameters.

  13. RFQ device for accelerating particles

    DOEpatents

    Shepard, Kenneth W.; Delayen, Jean R.

    1995-01-01

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium.

  14. Modeling Jovian Magnetospheres Beyond the Solar System

    NASA Astrophysics Data System (ADS)

    Williams, Peter K. G.

    2018-06-01

    Low-frequency radio observations are believed to represent one of the few means of directly probing the magnetic fields of extrasolar planets. However, a half-century of low-frequency planetary observations within the Solar System demonstrate that detailed, physically-motivated magnetospheric models are needed to properly interpret the radio data. I will present recent work in this area focusing on the current state of the art: relatively high-frequency observations of relatively massive objects, which are now understood to have magnetospheres that are largely planetary in nature. I will highlight the key challenges that will arise in future space-based observations of lower-mass objects at lower frequencies.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Soumya D.; Nayak, Rajesh K.

    The space based gravitational wave detector LISA (Laser Interferometer Space Antenna) is expected to observe a large population of Galactic white dwarf binaries whose collective signal is likely to dominate instrumental noise at observational frequencies in the range 10{sup -4} to 10{sup -3} Hz. The motion of LISA modulates the signal of each binary in both frequency and amplitude--the exact modulation depending on the source direction and frequency. Starting with the observed response of one LISA interferometer and assuming only Doppler modulation due to the orbital motion of LISA, we show how the distribution of the entire binary population inmore » frequency and sky position can be reconstructed using a tomographic approach. The method is linear and the reconstruction of a delta-function distribution, corresponding to an isolated binary, yields a point spread function (psf). An arbitrary distribution and its reconstruction are related via smoothing with this psf. Exploratory results are reported demonstrating the recovery of binary sources, in the presence of white Gaussian noise.« less

  16. Possible LISA Technology Applications for Other Missions

    NASA Technical Reports Server (NTRS)

    Livas, Jeffrey

    2018-01-01

    The Laser Interferometer Space Antenna (LISA) has been selected as the third large class mission launch opportunity of the Cosmic Visions Program by the European Space Agency (ESA). LISA science will explore a rich spectrum of astrophysical gravitational-wave sources expected at frequencies between 0.0001 and 0.1 Hz and complement the work of other observatories and missions, both space and ground-based, electromagnetic and non-electromagnetic. Similarly, LISA technology may find applications for other missions. This paper will describe the capabilities of some of the key technologies and discuss possible contributions to other missions.

  17. Deterministic reshaping of single-photon spectra using cross-phase modulation.

    PubMed

    Matsuda, Nobuyuki

    2016-03-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing.

  18. Deterministic reshaping of single-photon spectra using cross-phase modulation

    PubMed Central

    Matsuda, Nobuyuki

    2016-01-01

    The frequency conversion of light has proved to be a crucial technology for communication, spectroscopy, imaging, and signal processing. In the quantum regime, it also offers great potential for realizing quantum networks incorporating disparate physical systems and quantum-enhanced information processing over a large computational space. The frequency conversion of quantum light, such as single photons, has been extensively investigated for the last two decades using all-optical frequency mixing, with the ultimate goal of realizing lossless and noiseless conversion. I demonstrate another route to this target using frequency conversion induced by cross-phase modulation in a dispersion-managed photonic crystal fiber. Owing to the deterministic and all-optical nature of the process, the lossless and low-noise spectral reshaping of a single-photon wave packet in the telecommunication band has been readily achieved with a modulation bandwidth as large as 0.4 THz. I further demonstrate that the scheme is applicable to manipulations of a nonclassical frequency correlation, wave packet interference, and entanglement between two photons. This approach presents a new coherent frequency interface for photons for quantum information processing. PMID:27051862

  19. Implementation Status of a Ultra-Wideband Receiver Package for the next-generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph W.; Velazco, Jose; Soriano, Melissa; Hoppe, Daniel; Russell, Damon; D'Addario, Larry; Long, Ezra; Bowen, James; Samoska, Lorene; Janzen, Andrew

    2017-01-01

    The next-generation Very Large Array (ngVLA) is a concept for a radio astronomical interferometric array operating in the frequency range 1.2 GHz to 116 GHz and designed to provide substantial improvements in sensitivity, angular resolution, and frequency coverage above the current Very Large Array (VLA). As notional design goals, it would have a continuous frequency coverage of 1.2 GHz to 48 GHz and be 10 times more sensitive than the VLA (and 25 times more sensitive than a 34 m diameter antenna of the Deep Space Network [DSN]). One of the key goals for the ngVLA is to reduce the operating costs without sacrificing performance. We are designing an ultra-wideband receiver package designed to operate across the 8 to 48 GHz frequency range, which can be contrasted to the current VLA, which covers this frequency range with five receiver packages. Reducing the number of receiving systems required to cover the full frequency range would reduce operating costs, and the objective of this work is to develop a prototype integrated feed-receiver package with a sensitivity performance comparable to current narrower band systems on radio telescopes and the DSN, but with a design that meets the requirement of low long-term operational costs. The ultra-wideband receiver package consists of a feed horn, low-noise amplifier (LNA), and down-converters to analog intermediate frequencies. Key features of this design are a quad-ridge feed horn with dielectric loading and a cryogenic receiver with a noise temperature of no more than 30 K at the low end of the band. We will report on the status of this receiver package development including the feed design and LNA implementation. We will present simulation studies of the feed horn including the insertion of dielectric components for improved illumination efficiencies across the band of interest. In addition, we will show experimental results of low-noise 35nm InP HEMT amplifier testing performed across the 8-50 GHz frequency range.Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  20. Shuttle VLBI experiment. Technical working group summary report

    NASA Technical Reports Server (NTRS)

    Morgan, S. H. (Editor); Roberts, D. H. (Editor)

    1982-01-01

    The gain in interferometric resolution of extragalactic sources at radio frequencies which can be achieved by placing a very long baseline interferometry (VLBI) antenna in space is quantitatively described and a VLBI demonstration experiment using a large deployable antenna, which if realized could be a very acceptable first venture for VLBI in space is discussed. A tutorial on VLBI, a summary of the technology available for the experiment, and a preliminary mission scenario are included.

  1. Time-of-Flight Microwave Camera.

    PubMed

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-05

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable "stealth" regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows "camera-like" behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  2. North Atlantic weather regimes: A synoptic study of phase space. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Orrhede, Anna Karin

    1990-01-01

    In the phase space of weather, low frequency variability (LFV) of the atmosphere can be captured in a large scale subspace, where a trajectory connects consecutive large scale weather maps, thus revealing flow changes and recurrences. Using this approach, Vautard applied the trajectory speed minimization method (Vautard and Legras) to atmospheric data. From 37 winters of 700 mb geopotential height anomalies over the North Atlantic and the adjacent land masses, four persistent and recurrent weather patterns, interpreted as weather regimes, were discernable: a blocking regime, a zonal regime, a Greenland anticyclone regime, and an Atlantic regime. These regimes are studied further in terms of maintenance and transitions. A regime survey unveils preferences regarding event durations and precursors for the onset or break of an event. The transition frequencies between regimes vary, and together with the transition times, suggest the existence of easier transition routes. These matters are more systematically studied using complete synoptic map sequences from a number of events.

  3. Structural stiffness, strength and dynamic characteristics of large tetrahedral space truss structures

    NASA Technical Reports Server (NTRS)

    Mikulas, M. M., Jr.; Bush, H. G.; Card, M. F.

    1977-01-01

    Physical characteristics of large skeletal frameworks for space applications are investigated by analyzing one concept: the tetrahedral truss, which is idealized as a sandwich plate with isotropic faces. Appropriate analytical relations are presented in terms of the truss column element properties which for calculations were taken as slender graphite/epoxy tubes. Column loads, resulting from gravity gradient control and orbital transfer, are found to be small for the class structure investigated. Fundamental frequencies of large truss structures are shown to be an order of magnitude lower than large earth based structures. Permissible loads are shown to result in small lateral deflections of the truss due to low-strain at Euler buckling of the slender graphite/epoxy truss column elements. Lateral thermal deflections are found to be a fraction of the truss depth using graphite/epoxy columns.

  4. Solar polar orbit radio telescope for space weather forecast

    NASA Astrophysics Data System (ADS)

    Wu, J.; Wang, C.; Wang, S.; Wu, J.; Sun, W.; Cai, J.; Yan, Y.

    Radio emission from density plasma can be detected at low radio frequencies. An image of such plasma clouds of the entire inner interplanetary space is always a wanted input for space weather forecast and ICME propagation studies. To take such an image within the ecliptic plane may not fully explore what is happening around the Sun not only because of the blockage of the Sun, also because most of the ICMEs are propagating in the low-latitude of the Sun, near the ecliptic plane. It is then proposed to launch a solar polar orbit radio telescope to acquire high density plasma cloud images from the entire inner interplanetary space. Low radio frequency images require a large antenna aperture in space. It is, therefore, proposed to use the existing passive synthetic aperture radiometer technology to reduce mass and complicity of the deployment system of the big antenna. In order to reduce the mass of the antenna by using minimum number of elements, a zero redundant antenna element design can be used with a rotating time-shared sampling system. A preliminary assessment study shows the mission is feasible.

  5. Comparison of Noise Source Localization Data with Flow Field Data Obtained in Cold Supersonic Jets and Implications Regarding Broadband Shock Noise

    NASA Technical Reports Server (NTRS)

    Podboy, Gary; Wernet, Mark; Clem, Michelle; Fagan, Amy

    2013-01-01

    Phased array noise source localization have been compared with 2 types of flow field data (BOS and PIV). The data show that: 1) the higher frequency noise in a BBSN hump is generated further downstream than the lower frequency noise. This is due to a) the shock spacing decreasing and b) the turbulent structure size increasing with distance downstream. 2) BBSN can be created by very weak shocks. 3) BBSN is not created by the strong shocks just downstream of the nozzle because the turbulent structures have not grown large enough to match the shock spacing. 4) The point in the flow where the shock spacing equals the average size of the turbulent structures is a hot spot for shock noise. 5) Some of the shocks responsible for producing the first hump also produce the second hump.

  6. Test and Analysis of an Inflatable Parabolic Dish Antenna

    NASA Technical Reports Server (NTRS)

    Gaspar, james L.; Sreekantamurthy, Tham; Mann, Troy; Behun, Vaughn; Romanofsky, Robert; Lambert, Kevin; Pearson, James

    2006-01-01

    NASA is developing ultra-lightweight structures technology for large communication antennas for application to space missions. With these goals in mind, SRS Technologies has been funded by NASA Glenn Research Center (GRC) to undertake the development of a subscale ultra-thin membrane inflatable antenna for deep-space applications. One of the research goals is to develop approaches for prediction of the radio frequency and structural characteristics of inflatable and rigidizable membrane antenna structures. GRC has teamed with NASA Langley Research Center (LaRC) to evaluate inflatable and rigidizable antenna concepts for potential space missions. GRC has completed tests to evaluate RF performance, while LaRC completed structural tests and analysis to evaluate the static shape and structural dynamic responses of a laboratory model of a 0.3 meter antenna. This paper presents the details of the tests and analysis completed to evaluate the radio frequency and structural characteristics of the antenna.

  7. Electric power processing, distribution and control for advanced aerospace vehicles.

    NASA Technical Reports Server (NTRS)

    Krausz, A.; Felch, J. L.

    1972-01-01

    The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.

  8. On the accuracy of modelling the dynamics of large space structures

    NASA Technical Reports Server (NTRS)

    Diarra, C. M.; Bainum, P. M.

    1985-01-01

    Proposed space missions will require large scale, light weight, space based structural systems. Large space structure technology (LSST) systems will have to accommodate (among others): ocean data systems; electronic mail systems; large multibeam antenna systems; and, space based solar power systems. The structures are to be delivered into orbit by the space shuttle. Because of their inherent size, modelling techniques and scaling algorithms must be developed so that system performance can be predicted accurately prior to launch and assembly. When the size and weight-to-area ratio of proposed LSST systems dictate that the entire system be considered flexible, there are two basic modeling methods which can be used. The first is a continuum approach, a mathematical formulation for predicting the motion of a general orbiting flexible body, in which elastic deformations are considered small compared with characteristic body dimensions. This approach is based on an a priori knowledge of the frequencies and shape functions of all modes included within the system model. Alternatively, finite element techniques can be used to model the entire structure as a system of lumped masses connected by a series of (restoring) springs and possibly dampers. In addition, a computational algorithm was developed to evaluate the coefficients of the various coupling terms in the equations of motion as applied to the finite element model of the Hoop/Column.

  9. Self-similar space-time evolution of an initial density discontinuity

    NASA Astrophysics Data System (ADS)

    Rekaa, V. L.; Pécseli, H. L.; Trulsen, J. K.

    2013-07-01

    The space-time evolution of an initial step-like plasma density variation is studied. We give particular attention to formulate the problem in a way that opens for the possibility of realizing the conditions experimentally. After a short transient time interval of the order of the electron plasma period, the solution is self-similar as illustrated by a video where the space-time evolution is reduced to be a function of the ratio x/t. Solutions of this form are usually found for problems without characteristic length and time scales, in our case the quasi-neutral limit. By introducing ion collisions with neutrals into the numerical analysis, we introduce a length scale, the collisional mean free path. We study the breakdown of the self-similarity of the solution as the mean free path is made shorter than the system length. Analytical results are presented for charge exchange collisions, demonstrating a short time collisionless evolution with an ensuing long time diffusive relaxation of the initial perturbation. For large times, we find a diffusion equation as the limiting analytical form for a charge-exchange collisional plasma, with a diffusion coefficient defined as the square of the ion sound speed divided by the (constant) ion collision frequency. The ion-neutral collision frequency acts as a parameter that allows a collisionless result to be obtained in one limit, while the solution of a diffusion equation is recovered in the opposite limit of large collision frequencies.

  10. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for future HEDS missions.

  11. Prediction of frequency and exposure level of solar particle events.

    PubMed

    Kim, Myung-Hee Y; Hayat, Matthew J; Feiveson, Alan H; Cucinotta, Francis A

    2009-07-01

    For future space missions outside of the Earth's magnetic field, the risk of radiation exposure from solar particle events (SPEs) during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern when designing radiation protection including determining sufficient shielding requirements for astronauts and hardware. While the expected frequency of SPEs is strongly influenced by solar modulation, SPE occurrences themselves are chaotic in nature. We report on a probabilistic modeling approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19-23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, we then estimated the expected frequency of SPEs at any given proton fluence threshold with energy >30 MeV (Phi(30)) during a defined space mission period. Analytic energy spectra of 34 large SPEs observed in the space era were fitted over broad energy ranges extending to GeV, and subsequently used to calculate the distribution of mGy equivalent (mGy-Eq) dose for a typical blood-forming organ (BFO) inside a spacecraft as a function of total Phi(30) fluence. This distribution was combined with a simulation of SPE events using the Poisson model to estimate the probability of the BFO dose exceeding the NASA 30-d limit of 250 mGy-Eq per 30 d. These results will be useful in implementing probabilistic risk assessment approaches at NASA and guidelines for protection systems for astronauts on future space exploration missions.

  12. RFQ device for accelerating particles

    DOEpatents

    Shepard, K.W.; Delayen, J.R.

    1995-06-06

    A superconducting radio frequency quadrupole (RFQ) device includes four spaced elongated, linear, tubular rods disposed parallel to a charged particle beam axis, with each rod supported by two spaced tubular posts oriented radially with respect to the beam axis. The rod and post geometry of the device has four-fold rotation symmetry, lowers the frequency of the quadrupole mode below that of the dipole mode, and provides large dipole-quadrupole mode isolation to accommodate a range of mechanical tolerances. The simplicity of the geometry of the structure, which can be formed by joining eight simple T-sections, provides a high degree of mechanical stability, is insensitive to mechanical displacement, and is particularly adapted for fabrication with superconducting materials such as niobium. 5 figs.

  13. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.-H.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardware completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio.

  14. A Wire Grid Paraboloid for Large Low Frequency Telescopes

    NASA Astrophysics Data System (ADS)

    Kuiper, Tom

    2017-05-01

    Planetary magnetic fields are usually studied remotely through their electron cyclotron maser (ECM) emission from electrons trapped in their magnetic fields. Jupiter has been well studied since the 1960's because its strong magnetic field allows emissions up to about 40 MHz to be observed. The emission from Earth and other outer planets is mostly below 1 MHz and can only be observed from space. It is reasonable to assume that most exoplanets with ECM must be observed at low frequencies from space. Even optimistic assumptions about the strength of such emission leads one to conclude that very large filled aperture telescopes, with a diameters of a kilometer or more, will be needed.This paper reports on a study of a copper wire reflector with a diameter of 1 km operating between 100 kHz and 3.75 MHz. It would require 200 kg of 0.5 mm diameter copper wire (AWG 24)) to be lifted to and deployed in space. For aluminum, the mass would be about 100 kg. By optimizing the wire spacing the mass can be reduced to 80% of a simple radial-azimuthal arrangement. A relatively flat reflector (0.6 ≤ f/D ≤ 1.0) needs to be anchored at about 5 points from center to ring along 24 radii. Station-keeping CubeSats could serve as anchors. A total of about 100-120 anchors would be needed for an f/D = 1 reflector, adding 200-300 kg. to the mass of the reflector. It would be possible to carry several such reflectors into space in a single payload.The Deep Space Network is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  15. Unified tensor model for space-frequency spreading-multiplexing (SFSM) MIMO communication systems

    NASA Astrophysics Data System (ADS)

    de Almeida, André LF; Favier, Gérard

    2013-12-01

    This paper presents a unified tensor model for space-frequency spreading-multiplexing (SFSM) multiple-input multiple-output (MIMO) wireless communication systems that combine space- and frequency-domain spreadings, followed by a space-frequency multiplexing. Spreading across space (transmit antennas) and frequency (subcarriers) adds resilience against deep channel fades and provides space and frequency diversities, while orthogonal space-frequency multiplexing enables multi-stream transmission. We adopt a tensor-based formulation for the proposed SFSM MIMO system that incorporates space, frequency, time, and code dimensions by means of the parallel factor model. The developed SFSM tensor model unifies the tensorial formulation of some existing multiple-access/multicarrier MIMO signaling schemes as special cases, while revealing interesting tradeoffs due to combined space, frequency, and time diversities which are of practical relevance for joint symbol-channel-code estimation. The performance of the proposed SFSM MIMO system using either a zero forcing receiver or a semi-blind tensor-based receiver is illustrated by means of computer simulation results under realistic channel and system parameters.

  16. Customer premise service study for 30/20 GHz satellite system

    NASA Technical Reports Server (NTRS)

    Milton, R. T.; Ross, D. P.; Harcar, A. R.; Freedenberg, P.; Schoen, D.

    1983-01-01

    Satellite systems in which the space segment operates in the 30/20 GHz frequency band are defined and compared as to their potential for providing various types of communications services to customer premises and the economic and technical feasibility of doing so. Technical tasks performed include: market postulation, definition of the ground segment, definition of the space segment, definition of the integrated satellite system, service costs for satellite systems, sensitivity analysis, and critical technology. Based on an analysis of market data, a sufficiently large market for services is projected so as to make the system economically viable. A large market, and hence a high capacity satellite system, is found to be necessary to minimize service costs, i.e., economy of scale is found to hold. The wide bandwidth expected to be available in the 30/20 GHz band, along with frequency reuse which further increases the effective system bandwidth, makes possible the high capacity system. Extensive ground networking is required in most systems to both connect users into the system and to interconnect Earth stations to provide spatial diversity. Earth station spatial diversity is found to be a cost effective means of compensating the large fading encountered in the 30/20 GHz operating band.

  17. Study of the longitudinal space charge compensation and longitudinal instability of the ferrite inductive inserts in the Los Alamos Proton Storage Ring

    NASA Astrophysics Data System (ADS)

    Beltran, Chris

    Future high intensity synchrotrons will have a large space charge effect. It has been demonstrated in the Proton Storage Ring (PSR) at the Los Alamos National Laboratory (LANL) that ferrite inductive inserts can be used to compensate for the longitudinal space charge effect. However, simply installing ferrite inductors in the PSR led to longitudinal instabilities that were not tolerable. It was proposed that heating the ferrite would change the material properties in such a way as to reduce the instability. This proposal was tested in the PSR, and found to be true. This dissertation investigates and describes the complex permeability of the ferrite at room temperature and at an elevated temperature. The derived complex permeability is then used to obtain an impedance at the two temperatures. The impedance is used to determine the amount of space charge compensation supplied by the inductors and predict the growth time and frequency range of the longitudinal instability. The impedance is verified by comparing the experimental growth time and frequency range of the longitudinal instability to theoretical and computer simulated growth times and frequency ranges of the longitudinal instability. Lastly, an approach to mitigating the longitudinal instability that does not involve heating the ferrite is explored.

  18. Error Estimation and Compensation in Reduced Dynamic Models of Large Space Structures

    DTIC Science & Technology

    1987-04-23

    PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (if aplicable ) AFWAL I FIBRA F33615-84-C-3219 8c. ADDRESS (City, Stateand ZIP Code) ?0 SOURCE...10 Modes of the Full Model 15 5 Comparison of Various Reduced Models 18 6 Driving Point Mobilities , Wing Tip (Z55) 19 7 Driving Point Mobilities , Wing...Root Trailing Edge (Z19) 20 8 AMI Improvement 23 9 Frequency Domain Solution, Driving Point Mobilities , Wing Tip (Z55), RM1I 25 10 Frequency Domain

  19. Vibroacoustic Response of the NASA ACTS Spacecraft Antenna to Launch Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Larko, Jeffrey M.; Cotoni, Vincent

    2008-01-01

    The Advanced Communications Technology Satellite was an experimental NASA satellite launched from the Space Shuttle Discovery. As part of the ground test program, the satellite s large, parabolic reflector antennas were exposed to a reverberant acoustic loading to simulate the launch acoustics in the Shuttle payload bay. This paper describes the modelling and analysis of the dynamic response of these large, composite spacecraft antenna structure subjected to a diffuse acoustic field excitation. Due to the broad frequency range of the excitation, different models were created to make predictions in the various frequency regimes of interest: a statistical energy analysis (SEA) model to capture the high frequency response and a hybrid finite element-statistical energy (hybrid FE-SEA) model for the low to mid-frequency responses. The strengths and limitations of each of the analytical techniques are discussed. The predictions are then compared to the measured acoustic test data and to a boundary element (BEM) model to evaluate the performance of the hybrid techniques.

  20. How to choose a subset of frequencies in frequency-domain finite-difference migration

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.; Plessix, R.-E.

    2004-09-01

    Finite-difference migration with the two-way wave equation can be accelerated by an order of magnitude if the frequency domain rather than the time domain is used. This gain is mainly accomplished by using a subset of the available frequencies. The implicit assumption is that the data have a certain amount of redundancy in the frequency domain. The choice of frequencies cannot be arbitrary. If the frequencies are chosen with a constant increment and their spacing is too large, the well-known wrap-around that occurs when transforming back to the time domain will also show up in the migration to the depth domain, albeit in a more subtle way. Because migration involves propagation in a given background velocity model and summation over shots and receivers, the effects of wrap-around may disappear even when the Nyquist theorem is not obeyed. We have studied these effects analytically for the constant-velocity case and determined sampling conditions that avoid wrap-around artefacts. The conditions depend on the velocity, depth of the migration grid and offset range. They show that the spacing between subsequent frequencies can be larger than the inverse of the time range prescribed by the Nyquist theorem. A 2-D example has been used to test the validity of these conditions for a more realistic velocity model. Finite-difference migration with the one-way wave equation shows a similar behaviour.

  1. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

    NASA Astrophysics Data System (ADS)

    Guo, Hairun; Herkommer, Clemens; Billat, Adrien; Grassani, Davide; Zhang, Chuankun; Pfeiffer, Martin H. P.; Weng, Wenle; Brès, Camille-Sophie; Kippenberg, Tobias J.

    2018-06-01

    Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 μm (that is, 2,500-4,000 cm-1), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 μm). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis.

  2. Volitional exaggeration of body size through fundamental and formant frequency modulation in humans

    PubMed Central

    Pisanski, Katarzyna; Mora, Emanuel C.; Pisanski, Annette; Reby, David; Sorokowski, Piotr; Frackowiak, Tomasz; Feinberg, David R.

    2016-01-01

    Several mammalian species scale their voice fundamental frequency (F0) and formant frequencies in competitive and mating contexts, reducing vocal tract and laryngeal allometry thereby exaggerating apparent body size. Although humans’ rare capacity to volitionally modulate these same frequencies is thought to subserve articulated speech, the potential function of voice frequency modulation in human nonverbal communication remains largely unexplored. Here, the voices of 167 men and women from Canada, Cuba, and Poland were recorded in a baseline condition and while volitionally imitating a physically small and large body size. Modulation of F0, formant spacing (∆F), and apparent vocal tract length (VTL) were measured using Praat. Our results indicate that men and women spontaneously and systemically increased VTL and decreased F0 to imitate a large body size, and reduced VTL and increased F0 to imitate small size. These voice modulations did not differ substantially across cultures, indicating potentially universal sound-size correspondences or anatomical and biomechanical constraints on voice modulation. In each culture, men generally modulated their voices (particularly formants) more than did women. This latter finding could help to explain sexual dimorphism in F0 and formants that is currently unaccounted for by sexual dimorphism in human vocal anatomy and body size. PMID:27687571

  3. Adaptive parametric model order reduction technique for optimization of vibro-acoustic models: Application to hearing aid design

    NASA Astrophysics Data System (ADS)

    Creixell-Mediante, Ester; Jensen, Jakob S.; Naets, Frank; Brunskog, Jonas; Larsen, Martin

    2018-06-01

    Finite Element (FE) models of complex structural-acoustic coupled systems can require a large number of degrees of freedom in order to capture their physical behaviour. This is the case in the hearing aid field, where acoustic-mechanical feedback paths are a key factor in the overall system performance and modelling them accurately requires a precise description of the strong interaction between the light-weight parts and the internal and surrounding air over a wide frequency range. Parametric optimization of the FE model can be used to reduce the vibroacoustic feedback in a device during the design phase; however, it requires solving the model iteratively for multiple frequencies at different parameter values, which becomes highly time consuming when the system is large. Parametric Model Order Reduction (pMOR) techniques aim at reducing the computational cost associated with each analysis by projecting the full system into a reduced space. A drawback of most of the existing techniques is that the vector basis of the reduced space is built at an offline phase where the full system must be solved for a large sample of parameter values, which can also become highly time consuming. In this work, we present an adaptive pMOR technique where the construction of the projection basis is embedded in the optimization process and requires fewer full system analyses, while the accuracy of the reduced system is monitored by a cheap error indicator. The performance of the proposed method is evaluated for a 4-parameter optimization of a frequency response for a hearing aid model, evaluated at 300 frequencies, where the objective function evaluations become more than one order of magnitude faster than for the full system.

  4. Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber.

    PubMed

    Dang, Yunli; Zhao, Zhiyong; Tang, Ming; Zhao, Can; Gan, Lin; Fu, Songnian; Liu, Tongqing; Tong, Weijun; Shum, Perry Ping; Liu, Deming

    2017-08-21

    Featuring a dependence of Brillouin frequency shift (BFS) on temperature and strain changes over a wide range, Brillouin distributed optical fiber sensors are however essentially subjected to the relatively poor temperature/strain measurement resolution. On the other hand, phase-sensitive optical time-domain reflectometry (Φ-OTDR) offers ultrahigh temperature/strain measurement resolution, but the available frequency scanning range is normally narrow thereby severely restricts its measurement dynamic range. In order to achieve large dynamic range and high measurement resolution simultaneously, we propose to employ both the Brillouin optical time domain analysis (BOTDA) and Φ-OTDR through space-division multiplexed (SDM) configuration based on the multicore fiber (MCF), in which the two sensors are spatially separately implemented in the central core and a side core, respectively. As a proof of concept, the temperature sensing has been performed for validation with 2.5 m spatial resolution over 1.565 km MCF. Large temperature range (10 °C) has been measured by BOTDA and the 0.1 °C small temperature variation is successfully identified by Φ-OTDR with ~0.001 °C resolution. Moreover, the temperature changing process has been recorded by continuously performing the measurement of Φ-OTDR with 80 s frequency scanning period, showing about 0.02 °C temperature spacing at the monitored profile. The proposed system enables the capability to see finer and/or farther upon requirement in distributed optical fiber sensing.

  5. Effects of space plasma discharge on the performance of large antenna structures in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Blume, Hans-Juergen C.

    1987-01-01

    The anomalous plasma around spacecrafts in low Earth orbit represents the coma of an artificial comet. The plasma discharge is caused by an energetic disturbance of charged particles which were formerly in a state of equilibrium. The plasma can effect the passive and active radio frequency operation of large space antennas by inducing corona discharge or strong arcing in the antenna feeds. One such large space antenna is the 15-meter hoop column antenna which consists of a mesh membrane material (tricot knitted gold plated wire) reflector and carbon fiber tension cords. The atomic oxygen in the plasma discharge state can force the wire base metal particles through the gold lattice and oxydize the metal particles to build a Schottky-barrier contact at the point where the wires meet. This effect can cause strong deviations in the reflector performance in terms of antenna pattern and losses. Also, the carbon-fiber cords can experience a strength reduction of 30 percent over a 40-hour exposure time.

  6. Weight optimization of ultra large space structures

    NASA Technical Reports Server (NTRS)

    Reinert, R. P.

    1979-01-01

    The paper describes the optimization of a solar power satellite structure for minimum mass and system cost. The solar power satellite is an ultra large low frequency and lightly damped space structure; derivation of its structural design requirements required accommodation of gravity gradient torques which impose primary loads, life up to 100 years in the rigorous geosynchronous orbit radiation environment, and prevention of continuous wave motion in a solar array blanket suspended from a huge, lightly damped structure subject to periodic excitations. The satellite structural design required a parametric study of structural configurations and consideration of the fabrication and assembly techniques, which resulted in a final structure which met all requirements at a structural mass fraction of 10%.

  7. Cantilever Beam Natural Frequencies in Centrifugal Inertia Field

    NASA Astrophysics Data System (ADS)

    Jivkov, V. S.; Zahariev, E. V.

    2018-03-01

    In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.

  8. Efficient waveform tomography for lithospheric imaging: implications for realistic, two-dimensional acquisition geometries and low-frequency data

    NASA Astrophysics Data System (ADS)

    Brenders, A. J.; Pratt, R. G.

    2007-01-01

    We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.

  9. Hybridizing Gravitationl Waveforms of Inspiralling Binary Neutron Star Systems

    NASA Astrophysics Data System (ADS)

    Cullen, Torrey; LIGO Collaboration

    2016-03-01

    Gravitational waves are ripples in space and time and were predicted to be produced by astrophysical systems such as binary neutron stars by Albert Einstein. These are key targets for Laser Interferometer and Gravitational Wave Observatory (LIGO), which uses template waveforms to find weak signals. The simplified template models are known to break down at high frequency, so I wrote code that constructs hybrid waveforms from numerical simulations to accurately cover a large range of frequencies. These hybrid waveforms use Post Newtonian template models at low frequencies and numerical data from simulations at high frequencies. They are constructed by reading in existing Post Newtonian models with the same masses as simulated stars, reading in the numerical data from simulations, and finding the ideal frequency and alignment to ``stitch'' these waveforms together.

  10. Optical linear algebra processors - Architectures and algorithms

    NASA Technical Reports Server (NTRS)

    Casasent, David

    1986-01-01

    Attention is given to the component design and optical configuration features of a generic optical linear algebra processor (OLAP) architecture, as well as the large number of OLAP architectures, number representations, algorithms and applications encountered in current literature. Number-representation issues associated with bipolar and complex-valued data representations, high-accuracy (including floating point) performance, and the base or radix to be employed, are discussed, together with case studies on a space-integrating frequency-multiplexed architecture and a hybrid space-integrating and time-integrating multichannel architecture.

  11. Status of High Data Rate Intersatellite Laser Communication as an Enabler for Earth and Space Science

    NASA Astrophysics Data System (ADS)

    Heine, F.; Zech, H.; Motzigemba, M.

    2017-12-01

    Space based laser communication is supporting earth observation and science missions with Gbps data download capabilities. Currently the Sentinel 1 and Sentinel 2 spacecrafts from the Copernicus earth observation program of the European Commission are using the Gbps laser communication links developed by Tesat Spacecom to download low latency data products via a commercial geostationary laser relay station- the European Data Relay Service- (EDRS) as a standard data path, in parallel to the conventional radio frequency links. The paper reports on the status of high bandwidth space laser communication as an enabler for small and large space science missions ranging from cube sat applications in low earth orbit to deep space missions. Space based laser communication has left the experimental phase and will support space science missions with unprecedented data rates.

  12. Noise-induced phase space transport in two-dimensional Hamiltonian systems.

    PubMed

    Pogorelov, I V; Kandrup, H E

    1999-08-01

    First passage time experiments were used to explore the effects of low amplitude noise as a source of accelerated phase space diffusion in two-dimensional Hamiltonian systems, and these effects were then compared with the effects of periodic driving. The objective was to quantify and understand the manner in which "sticky" chaotic orbits that, in the absence of perturbations, are confined near regular islands for very long times, can become "unstuck" much more quickly when subjected to even very weak perturbations. For both noise and periodic driving, the typical escape time scales logarithmically with the amplitude of the perturbation. For white noise, the details seem unimportant: Additive and multiplicative noise typically have very similar effects, and the presence or absence of a friction related to the noise by a fluctuation-dissipation theorem is also largely irrelevant. Allowing for colored noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable to the natural frequencies of the unperturbed orbit. Similarly, periodic driving is relatively inefficient when the driving frequency is not comparable to these natural frequencies. This suggests that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. The logarithmic dependence of the escape time on amplitude reflects the fact that the time required for perturbed and unperturbed orbits to diverge a given distance scales logarithmically in the amplitude of the perturbation.

  13. How do tympanic-membrane perforations affect human middle-ear sound transmission?

    PubMed

    Voss, S E; Rosowski, J J; Merchant, S N; Peake, W T

    2001-01-01

    Although tympanic-membrane (TM) perforations are common sequelae of middle-ear disease, the hearing losses they cause have not been accurately determined, largely because additional pathological conditions occur in these ears. Our measurements of acoustic transmission before and after making controlled perforations in cadaver ears show that perforations cause frequency-dependent loss that: (1) is largest at low frequencies; (2) increases as perforation size increases; and (3) does not depend on perforation location. The dominant loss mechanism is the reduction in sound-pressure difference across the TM. Measurements of middle-ear air-space sound pressures show that transmission via direct acoustic stimulation of the oval and round windows is generally negligible. A quantitative model predicts the influence of middle-ear air-space volume on loss; with larger volumes, loss is smaller.

  14. Brillouin lasing in coupled silica toroid microcavities

    NASA Astrophysics Data System (ADS)

    Honda, Yoshihiro; Yoshiki, Wataru; Tetsumoto, Tomohiro; Fujii, Shun; Furusawa, Kentaro; Sekine, Norihiko; Tanabe, Takasumi

    2018-05-01

    We demonstrate stimulated Brillouin scattering lasing in a strongly coupled microcavity system. By coupling two silica toroid microcavities, we achieve large mode splitting of 11 GHz, whose frequency separation matches the Brillouin frequency shift of silica. The stimulated Brillouin scattering light is resonantly amplified by pumping at the higher frequency side of the supermode splitting resonance. Since the mode splitting is adjusted by changing the gap distance between the two cavities, our system does not require precise control of a mm-sized cavity diameter to match the free-spectral spacing with the Brillouin frequency shift. It also allows us to use a small cavity, and hence, our system has the potential to achieve the lasing threshold at a very low power.

  15. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    NASA Astrophysics Data System (ADS)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use with FDM systems. These resonators will be used by CMB polarization experiments such as Polarbear-2, Simons Array, and SPT-3G. Existing FDM systems have multiplexing factors up to 16× . We report the extension to 40× , i.e., Polarbear-2, and 68× , i.e., SPT-3G. We present the design criteria of Polarbear-2's LC circuits, the fabrication techniques, and the testing. Concerns such as yield, accuracy in frequency, loss, and mutual inductance between spatially neighboring channels will be discussed.

  16. Time-of-Flight Microwave Camera

    PubMed Central

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-01-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz–12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum. PMID:26434598

  17. Time-of-Flight Microwave Camera

    NASA Astrophysics Data System (ADS)

    Charvat, Gregory; Temme, Andrew; Feigin, Micha; Raskar, Ramesh

    2015-10-01

    Microwaves can penetrate many obstructions that are opaque at visible wavelengths, however microwave imaging is challenging due to resolution limits associated with relatively small apertures and unrecoverable “stealth” regions due to the specularity of most objects at microwave frequencies. We demonstrate a multispectral time-of-flight microwave imaging system which overcomes these challenges with a large passive aperture to improve lateral resolution, multiple illumination points with a data fusion method to reduce stealth regions, and a frequency modulated continuous wave (FMCW) receiver to achieve depth resolution. The camera captures images with a resolution of 1.5 degrees, multispectral images across the X frequency band (8 GHz-12 GHz), and a time resolution of 200 ps (6 cm optical path in free space). Images are taken of objects in free space as well as behind drywall and plywood. This architecture allows “camera-like” behavior from a microwave imaging system and is practical for imaging everyday objects in the microwave spectrum.

  18. GAP Noise Computation By The CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Chang, Sin-Chung; Wang, Xiao Y.; Jorgenson, Philip C. E.

    2001-01-01

    A typical gap noise problem is considered in this paper using the new space-time conservation element and solution element (CE/SE) method. Implementation of the computation is straightforward. No turbulence model, LES (large eddy simulation) or a preset boundary layer profile is used, yet the computed frequency agrees well with the experimental one.

  19. Suppression of annual Bromus tectorum by perennial Agropyon cristatum: roles of soil N availability and biological soil space

    USDA-ARS?s Scientific Manuscript database

    Worldwide, exotic invasive grasses have caused numerous ecosystem perturbations. Rangelands of the western United States have experienced increases in the size and frequency of wildfires largely due to invasion by the annual grass Bromus tectorum. Rehabilitation of invaded rangelands is difficult; b...

  20. Applying transfer matrix method to the estimation of the modal characteristics of the NASA Mini-Mass Truss

    NASA Technical Reports Server (NTRS)

    Shen, Ji-Yao; Taylor, Lawrence W., Jr.

    1994-01-01

    It is beneficial to use a distributed parameter model for large space structures because the approach minimizes the number of model parameters. Holzer's transfer matrix method provides a useful means to simplify and standardize the procedure for solving the system of partial differential equations. Any large space structures can be broken down into sub-structures with simple elastic and dynamical properties. For each single element, such as beam, tether, or rigid body, we can derive the corresponding transfer matrix. Combining these elements' matrices enables the solution of the global system equations. The characteristics equation can then be formed by satisfying the appropriate boundary conditions. Then natural frequencies and mode shapes can be determined by searching the roots of the characteristic equation at frequencies within the range of interest. This paper applies this methodology, and the maximum likelihood estimation method, to refine the modal characteristics of the NASA Mini-Mast Truss by successively matching the theoretical response to the test data of the truss. The method is being applied to more complex configurations.

  1. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  2. Dynamic tests on the NASA Langley CSI evolutionary model

    NASA Technical Reports Server (NTRS)

    Troidl, H.; Elliott, K. B.

    1993-01-01

    A modal analysis study, representing one of the anticipated 'Cooperative Spacecraft Structural Dynamics Experiments on the NASA Langley CSI Evolutionary Model', was carried out as a sub-task under the NASA/DLR collaboration in dynamics and control of large space systems. The CSI evolutionary testbed (CEM) is designed for the development of Controls-Structures Interaction (CSI) technology to improve space science platform pointing. For orbiting space structures like large flexible trusses, new identification challenges arise due to their specific dynamic characteristics (low frequencies and high modal density) on the one hand, and the limited possibilities of exciting such structures and measuring their responses on orbit on the other. The main objective was to investigate the modal identification potential of several different types of forcing functions that could possibly be realized with on-board excitation equipment using a minimum number of exciter locations as well as response locations. These locations were defined in an analytical test prediction process used to study the implications of measuring and analyzing the responses thus produced. It turned out that broadband excitation is needed for a general modal survey, but if only certain modes are of particular interest, combinations of exponentially decaying sine functions provide favorable excitation conditions as they allow to concentrate the available energy on the modes being of special interest. From a practical point-of-view structural nonlinearities as well as noisy measurements make the analysis more difficult, especially in the low frequency range and when the modes are closely spaced.

  3. A k-Space Method for Moderately Nonlinear Wave Propagation

    PubMed Central

    Jing, Yun; Wang, Tianren; Clement, Greg T.

    2013-01-01

    A k-space method for moderately nonlinear wave propagation in absorptive media is presented. The Westervelt equation is first transferred into k-space via Fourier transformation, and is solved by a modified wave-vector time-domain scheme. The present approach is not limited to forward propagation or parabolic approximation. One- and two-dimensional problems are investigated to verify the method by comparing results to analytic solutions and finite-difference time-domain (FDTD) method. It is found that to obtain accurate results in homogeneous media, the grid size can be as little as two points per wavelength, and for a moderately nonlinear problem, the Courant–Friedrichs–Lewy number can be as large as 0.4. Through comparisons with the conventional FDTD method, the k-space method for nonlinear wave propagation is shown here to be computationally more efficient and accurate. The k-space method is then employed to study three-dimensional nonlinear wave propagation through the skull, which shows that a relatively accurate focusing can be achieved in the brain at a high frequency by sending a low frequency from the transducer. Finally, implementations of the k-space method using a single graphics processing unit shows that it required about one-seventh the computation time of a single-core CPU calculation. PMID:22899114

  4. Solar Energetic Particles -- A Radiation Hazard to Humans and Hardware in Space

    NASA Astrophysics Data System (ADS)

    Mewaldt, R. A.

    2006-10-01

    During large solar energetic particle (SEP) events the intensity of >30 MeV protons in nearby interplanetary space can increase by a million times over the steady intensity of galactic cosmic rays, creating a radiation hazard to both humans and hardware in space. With NASA now committed to sending astronauts to the Moon and possibly on to Mars, outside the protective cover of the Earth's magnetosphere, interest in understanding and forecasting large SEP events has taken on a new sense of urgency. The past solar maximum included four of the top ten SEP events of the space era. Fortunately, the array of spacecraft now in interplanetary space has provided greatly improved measurements of the composition and energy spectra of accelerated ions, leading to fresh insights into the nature of these events. The largest SEP events are accelerated by coronal and interplanetary shocks driven by coronal mass ejections (CMEs) traveling at >2000 km/sec. Although shock acceleration is ubiquitous in nature, its efficiency is highly variable, making it difficult to forecast the onset and evolution of large SEP events. This talk will describe the radiation hazards associated with the largest SEP events, discuss their frequency of occurrence, consider a worst-case SEP event, and describe how the radiation risks can be mitigated.

  5. Spacecraft Dynamics and Control Program at AFRPL

    NASA Technical Reports Server (NTRS)

    Das, A.; Slimak, L. K. S.; Schloegel, W. T.

    1986-01-01

    A number of future DOD and NASA spacecraft such as the space based radar will be not only an order of magnitude larger in dimension than the current spacecraft, but will exhibit extreme structural flexibility with very low structural vibration frequencies. Another class of spacecraft (such as the space defense platforms) will combine large physical size with extremely precise pointing requirement. Such problems require a total departure from the traditional methods of modeling and control system design of spacecraft where structural flexibility is treated as a secondary effect. With these problems in mind, the Air Force Rocket Propulsion Laboratory (AFRPL) initiated research to develop dynamics and control technology so as to enable the future large space structures (LSS). AFRPL's effort in this area can be subdivided into the following three overlapping areas: (1) ground experiments, (2) spacecraft modeling and control, and (3) sensors and actuators. Both the in-house and contractual efforts of the AFRPL in LSS are summarized.

  6. Space Environment Effects: Model for Emission of Solar Protons (ESP): Cumulative and Worst Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, E. A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  7. Space Environment Effects: Model for Emission of Solar Protons (ESP)--Cumulative and Worst-Case Event Fluences

    NASA Technical Reports Server (NTRS)

    Xapsos, M. A.; Barth, J. L.; Stassinopoulos, E. G.; Burke, Edward A.; Gee, G. B.

    1999-01-01

    The effects that solar proton events have on microelectronics and solar arrays are important considerations for spacecraft in geostationary and polar orbits and for interplanetary missions. Designers of spacecraft and mission planners are required to assess the performance of microelectronic systems under a variety of conditions. A number of useful approaches exist for predicting information about solar proton event fluences and, to a lesser extent, peak fluxes. This includes the cumulative fluence over the course of a mission, the fluence of a worst-case event during a mission, the frequency distribution of event fluences, and the frequency distribution of large peak fluxes. Naval Research Laboratory (NRL) and NASA Goddard Space Flight Center, under the sponsorship of NASA's Space Environments and Effects (SEE) Program, have developed a new model for predicting cumulative solar proton fluences and worst-case solar proton events as functions of mission duration and user confidence level. This model is called the Emission of Solar Protons (ESP) model.

  8. Fiber-based laser MOPA transmitter packaging for space environment

    NASA Astrophysics Data System (ADS)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Numata, Kenji; Wu, Stewart; Gonzales, Brayler; Han, Lawrence; Fahey, Molly; Plants, Michael; Rodriguez, Michael; Allan, Graham; Abshire, James; Nicholson, Jeffrey; Hariharan, Anand; Mamakos, William; Bean, Brian

    2018-02-01

    NASA's Goddard Space Flight Center has been developing lidar to remotely measure CO2 and CH4 in the Earth's atmosphere. The ultimate goal is to make space-based satellite measurements with global coverage. We are working on maturing the technology readiness of a fiber-based, 1.57-micron wavelength laser transmitter designed for use in atmospheric CO2 remote-sensing. To this end, we are building a ruggedized prototype to demonstrate the required power and performance and survive the required environment. We are building a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture. The laser is a wavelength-locked, single frequency, externally modulated DBR operating at 1.57-micron followed by erbium-doped fiber amplifiers. The last amplifier stage is a polarization-maintaining, very-large-mode-area fiber with 1000 μm2 effective area pumped by a Raman fiber laser. The optical output is single-frequency, one microsecond pulses with >450 μJ pulse energy, 7.5 KHz repetition rate, single spatial mode, and < 20 dB polarization extinction.

  9. Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Kordy, Michal Adam

    The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the case of the right hand analytically dependent on frequency. The operator's null space is treated by decomposing the solution into the part in the null space and orthogonal to it.

  10. Radius Determination of Solar-type Stars Using Asteroseismology: What to Expect from the Kepler Mission

    NASA Astrophysics Data System (ADS)

    Stello, Dennis; Chaplin, William J.; Bruntt, Hans; Creevey, Orlagh L.; García-Hernández, Antonio; Monteiro, Mario J. P. F. G.; Moya, Andrés; Quirion, Pierre-Olivier; Sousa, Sergio G.; Suárez, Juan-Carlos; Appourchaux, Thierry; Arentoft, Torben; Ballot, Jerome; Bedding, Timothy R.; Christensen-Dalsgaard, Jørgen; Elsworth, Yvonne; Fletcher, Stephen T.; García, Rafael A.; Houdek, Günter; Jiménez-Reyes, Sebastian J.; Kjeldsen, Hans; New, Roger; Régulo, Clara; Salabert, David; Toutain, Thierry

    2009-08-01

    For distant stars, as observed by the NASA Kepler satellite, parallax information is currently of fairly low quality and is not complete. This limits the precision with which the absolute sizes of the stars and their potential transiting planets can be determined by traditional methods. Asteroseismology will be used to aid the radius determination of stars observed during NASA's Kepler mission. We report on the recent asteroFLAG hare-and-hounds Exercise#2, where a group of "hares" simulated data of F-K main-sequence stars that a group of "hounds" sought to analyze, aimed at determining the stellar radii. We investigated stars in the range 9 < V < 15, both with and without parallaxes. We further test different uncertainties in T eff, and compare results with and without using asteroseismic constraints. Based on the asteroseismic large frequency spacing, obtained from simulations of 4 yr time series data from the Kepler mission, we demonstrate that the stellar radii can be correctly and precisely determined, when combined with traditional stellar parameters from the Kepler Input Catalogue. The radii found by the various methods used by each independent hound generally agree with the true values of the artificial stars to within 3%, when the large frequency spacing is used. This is 5-10 times better than the results where seismology is not applied. These results give strong confidence that radius estimation can be performed to better than 3% for solar-like stars using automatic pipeline reduction. Even when the stellar distance and luminosity are unknown we can obtain the same level of agreement. Given the uncertainties used for this exercise we find that the input log g and parallax do not help to constrain the radius, and that T eff and metallicity are the only parameters we need in addition to the large frequency spacing. It is the uncertainty in the metallicity that dominates the uncertainty in the radius.

  11. Short-term variability and mass loss in Be stars. III. BRITE and SMEI satellite photometry of 28 Cygni

    NASA Astrophysics Data System (ADS)

    Baade, D.; Pigulski, A.; Rivinius, Th.; Carciofi, A. C.; Panoglou, D.; Ghoreyshi, M. R.; Handler, G.; Kuschnig, R.; Moffat, A. F. J.; Pablo, H.; Popowicz, A.; Wade, G. A.; Weiss, W. W.; Zwintz, K.

    2018-03-01

    Context. Be stars are important reference laboratories for the investigation of viscous Keplerian discs. In some cases, the disc feeder mechanism involves a combination of non-radial pulsation (NRP) modes. Aims: We seek to understand whether high-cadence photometry can shed further light on the role of NRP modes in facilitating rotation-supported mass loss. Methods: The BRITE-Constellation of nanosatellites obtained mmag photometry of 28 Cygni for 11 months in 2014-2016. We added observations with the Solar Mass Ejection Imager (SMEI) in 2003-2010 and 118 Hα line profiles, half of which were from 2016. Results: For decades, 28 Cyg has exhibited four large-amplitude frequencies: two closely spaced frequencies of spectroscopically confirmed g modes near 1.5 c/d, one slightly lower exophotospheric (Štefl) frequency, and at 0.05 c/d the difference (Δ) frequency between the two g modes. This top-level framework is indistinguishable from η Cen (Paper I), which is also very similar in spectral type, rotation rate, and viewing angle. The circumstellar (Štefl) frequency alone does not seem to be affected by the Δ frequency. The amplitude of the Δ frequency undergoes large variations; around maximum the amount of near-circumstellar matter is increased and the amplitude of the Štefl frequency grows by a factor of a few. During such brightenings dozens of transient spikes appear in the frequency spectrum; these spikes are concentrated into three groups. Only 11 frequencies were common to all years of BRITE observations. Conclusions: Be stars seem to be controlled by several coupled clocks, most of which are not very regular on timescales of weeks to months but function for decades. The combination of g modes to the slow Δ variability and/or the atmospheric response to it appears significantly non-linear. As in η Cen, the Δ variability seems to be mainly responsible for the modulation of the star-to-disc mass transfer in 28 Cyg. A hierarchical set of Δ frequencies may reach the longest known timescales of the Be phenomenon. Based in part on data collected by the BRITE-Constellation satellite mission, built, launched and operated thanks to support from the Austrian Aeronautics and Space Agency and the University of Vienna, the Canadian Space Agency (CSA), and the Foundation for Polish Science & Technology (FNiTP MNiSW) and National Science Centre (NCN).Full Tables 2-4 and detrended light curves are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A70

  12. Conjunction Assessment Late-Notice High-Interest Event Investigation: Space Weather Aspects

    NASA Technical Reports Server (NTRS)

    Pachura, D.; Hejduk, M. D.

    2016-01-01

    Late-notice events usually driven by large changes in primary (protected) object or secondary object state. Main parameter to represent size of state change is component position difference divided by associated standard deviation (epsilon divided by sigma) from covariance. Investigation determined actual frequency of large state changes, in both individual and combined states. Compared them to theoretically expected frequencies. Found that large changes ( (epsilon divided by sigma) is greater than 3) in individual object states occur much more frequently than theory dictates. Effect is less pronounced in radial components and in events with probability of collision (Pc) greater than 1 (sup -5) (1e-5). Found combined state matched much closer to theoretical expectation, especially for radial and cross-track. In-track is expected to be the most vulnerable to modeling errors, so not surprising that non-compliance largest in this component.

  13. Autonomous Pointing Control of a Large Satellite Antenna Subject to Parametric Uncertainty

    PubMed Central

    Wu, Shunan; Liu, Yufei; Radice, Gianmarco; Tan, Shujun

    2017-01-01

    With the development of satellite mobile communications, large antennas are now widely used. The precise pointing of the antenna’s optical axis is essential for many space missions. This paper addresses the challenging problem of high-precision autonomous pointing control of a large satellite antenna. The pointing dynamics are firstly proposed. The proportional–derivative feedback and structural filter to perform pointing maneuvers and suppress antenna vibrations are then presented. An adaptive controller to estimate actual system frequencies in the presence of modal parameters uncertainty is proposed. In order to reduce periodic errors, the modified controllers, which include the proposed adaptive controller and an active disturbance rejection filter, are then developed. The system stability and robustness are analyzed and discussed in the frequency domain. Numerical results are finally provided, and the results have demonstrated that the proposed controllers have good autonomy and robustness. PMID:28287450

  14. Generation of uniform large-area very high frequency plasmas by launching two specific standing waves simultaneously

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Liang, E-mail: hlchen@iner.gov.tw; Tu, Yen-Cheng; Hsieh, Cheng-Chang

    2014-09-14

    With the characteristics of higher electron density and lower ion bombardment energy, large-area VHF (very high frequency) plasma enhanced chemical vapor deposition has become an essential manufacturing equipment to improve the production throughput and efficiency of thin film silicon solar cell. However, the combination of high frequency and large electrodes leads to the so-called standing wave effect causing a serious problem for the deposition uniformity of silicon thin film. In order to address this issue, a technique based on the idea of simultaneously launching two standing waves that possess similar amplitudes and are out of phase by 90° in timemore » and space is proposed in this study. A linear plasma reactor with discharge length of 54 cm is tested with two different frequencies including 60 and 80 MHz. The experimental results show that the proposed technique could effectively improve the non-uniformity of VHF plasmas from >±60% when only one standing wave is applied to <±10% once two specific standing waves are launched at the same time. Moreover, in terms of the reactor configuration adopted in this study, in which the standing wave effect along the much shorter dimension can be ignored, the proposed technique is applicable to different frequencies without the need to alter the number and arrangement of power feeding points.« less

  15. Methods for evaluating the predictive accuracy of structural dynamic models

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, Jon D.

    1990-01-01

    Uncertainty of frequency response using the fuzzy set method and on-orbit response prediction using laboratory test data to refine an analytical model are emphasized with respect to large space structures. Two aspects of the fuzzy set approach were investigated relative to its application to large structural dynamics problems: (1) minimizing the number of parameters involved in computing possible intervals; and (2) the treatment of extrema which may occur in the parameter space enclosed by all possible combinations of the important parameters of the model. Extensive printer graphics were added to the SSID code to help facilitate model verification, and an application of this code to the LaRC Ten Bay Truss is included in the appendix to illustrate this graphics capability.

  16. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  17. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for the Convective Wave Equation

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Kreider, K. L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  18. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  19. Power Beaming, Orbital Debris Removal, and Other Space Applications of a Ground Based Free Electron Laser

    DTIC Science & Technology

    2010-03-01

    mask of strength, his character, fortitude, and xxii devotion to our family helped to keep me on my feet. What I say with words, he says through...superfluid) and an extremely large heat capacity. This large heat capacity is what makes He II an ideal refrigerant for high power and high frequency...limited tools, ancient astronomers accomplished many insightful discoveries regarding the motion of celestial bodies, but prior to the 1600s, most of

  20. Channel characterisation for future Ka-band Mobile Satellite Systems and preliminary results

    NASA Technical Reports Server (NTRS)

    Sforza, Mario; Buonomo, Sergio; Arbesser-Rastburg, Bertram

    1994-01-01

    Mobile satellite systems (MSS) are presently designed or planned to operate, with the exception of OMNITRACKS, in the lower part of the frequency spectrum (UHF to S-bands). The decisions taken at the last World Administrative Radio Conference in 1992 to increase the allocated L- and S-bands for MSS services will only partly alleviate the problem of system capacity. In addition the use of L-and S-band frequencies generally requires large antenna apertures on board the satellite terminal side. The idea of exploiting the large spectrum resources available at higher frequencies (20-30 GHz) and the perspective of reducing user terminal size (and possibly price too) have spurred the interest of systems designers and planners. On the other hand, Ka-band frequencies suffer from increased slant path losses due to atmospheric attenuation phenomena. The European Space Agency (ESA) has recently embarked on a number of activities aimed at studying the effect of the typical mobile propagation impairments at Ka-band. This paper briefly summarizes ESA efforts in this field of research and presents preliminary experimental results.

  1. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    PubMed Central

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-01-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802

  2. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa.

    PubMed

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-05-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10 -6 ), and rs7700147, an intergenic variant (P=2.93 × 10 -5 ). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes.

  3. Power supply conditioning circuit

    NASA Technical Reports Server (NTRS)

    Primas, L. E.; Loveland, R.

    1987-01-01

    A power supply conditioning circuit that can reduce Periodic and Random Deviations (PARD) on the output voltages of dc power supplies to -150 dBV from dc to several KHz with no measurable periodic deviations is described. The PARD for a typical commercial low noise power supply is -74 dBV for frequencies above 20 Hz and is often much worse at frequencies below 20 Hz. The power supply conditioning circuit described here relies on the large differences in the dynamic impedances of a constant current diode and a zener diode to establish a dc voltage with low PARD. Power supplies with low PARD are especially important in circuitry involving ultrastable frequencies for the Deep Space Network.

  4. High-efficiency 3 W/40 K single-stage pulse tube cryocooler for space application

    NASA Astrophysics Data System (ADS)

    Zhang, Ankuo; Wu, Yinong; Liu, Shaoshuai; Liu, Biqiang; Yang, Baoyu

    2018-03-01

    Temperature is an extremely important parameter for space-borne infrared detectors. To develop a quantum-well infrared photodetector (QWIP), a high-efficiency Stirling-type pulse tube cryocooler (PTC) has been designed, manufactured and experimentally investigated for providing a large cooling power at 40 K cold temperature. Simulated and experimental studies were carried out to analyse the effects of low temperature on different energy flows and losses, and the performance of the PTC was improved by optimizing components and parameters such as regenerator and operating frequency. A no-load lowest temperature of 26.2 K could be reached at a frequency of 51 Hz, and the PTC could efficiently offer cooling power of 3 W at 40 K cold temperature when the input power was 225 W. The efficiency relative to the Carnot efficiency was approximately 8.4%.

  5. Estimation of snow in extratropical cyclones from multiple frequency airborne radar observations. An Expectation-Maximization approach

    NASA Astrophysics Data System (ADS)

    Grecu, M.; Tian, L.; Heymsfield, G. M.

    2017-12-01

    A major challenge in deriving accurate estimates of physical properties of falling snow particles from single frequency space- or airborne radar observations is that snow particles exhibit a large variety of shapes and their electromagnetic scattering characteristics are highly dependent on these shapes. Triple frequency (Ku-Ka-W) radar observations are expected to facilitate the derivation of more accurate snow estimates because specific snow particle shapes tend to have specific signatures in the associated two-dimensional dual-reflectivity-ratio (DFR) space. However, the derivation of accurate snow estimates from triple frequency radar observations is by no means a trivial task. This is because the radar observations can be subject to non-negligible attenuation (especially at W-band when super-cooled water is present), which may significantly impact the interpretation of the information in the DFR space. Moreover, the electromagnetic scattering properties of snow particles are computationally expensive to derive, which makes the derivation of reliable parameterizations usable in estimation methodologies challenging. In this study, we formulate an two-step Expectation Maximization (EM) methodology to derive accurate snow estimates in Extratropical Cyclones (ECTs) from triple frequency airborne radar observations. The Expectation (E) step consists of a least-squares triple frequency estimation procedure applied with given assumptions regarding the relationships between the density of snow particles and their sizes, while the Maximization (M) step consists of the optimization of the assumptions used in step E. The electromagnetic scattering properties of snow particles are derived using the Rayleigh-Gans approximation. The methodology is applied to triple frequency radar observations collected during the Olympic Mountains Experiment (OLYMPEX). Results show that snowfall estimates above the freezing level in ETCs consistent with the triple frequency radar observations as well as with independent rainfall estimates below the freezing level may be derived using the EM methodology formulated in the study.

  6. Anisotropic spectra of acoustic type turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuznetsov, E.; P.N. Lebedev Physical Institute, 53 Leninsky Ave., 119991 Moscow; Krasnoselskikh, V.

    2008-06-15

    The problem of spectra for acoustic type of turbulence generated by shocks being randomly distributed in space is considered. It is shown that for turbulence with a weak anisotropy, such spectra have the same dependence in k-space as the Kadomtsev-Petviashvili spectrum: E(k){approx}k{sup -2}. However, the frequency spectrum has always the falling {approx}{omega}{sup -2}, independent of anisotropy. In the strong anisotropic case the energy distribution relative to wave vectors takes anisotropic dependence, forming in the large-k region spectra of the jet type.

  7. Free-Suspension Residual Flexibility Testing of Space Station Pathfinder: Comparison to Fixed-Base Results

    NASA Technical Reports Server (NTRS)

    Tinker, Michael L.

    1998-01-01

    Application of the free-suspension residual flexibility modal test method to the International Space Station Pathfinder structure is described. The Pathfinder, a large structure of the general size and weight of Space Station module elements, was also tested in a large fixed-base fixture to simulate Shuttle Orbiter payload constraints. After correlation of the Pathfinder finite element model to residual flexibility test data, the model was coupled to a fixture model, and constrained modes and frequencies were compared to fixed-base test. modes. The residual flexibility model compared very favorably to results of the fixed-base test. This is the first known direct comparison of free-suspension residual flexibility and fixed-base test results for a large structure. The model correlation approach used by the author for residual flexibility data is presented. Frequency response functions (FRF) for the regions of the structure that interface with the environment (a test fixture or another structure) are shown to be the primary tools for model correlation that distinguish or characterize the residual flexibility approach. A number of critical issues related to use of the structure interface FRF for correlating the model are then identified and discussed, including (1) the requirement of prominent stiffness lines, (2) overcoming problems with measurement noise which makes the antiresonances or minima in the functions difficult to identify, and (3) the use of interface stiffness and lumped mass perturbations to bring the analytical responses into agreement with test data. It is shown that good comparison of analytical-to-experimental FRF is the key to obtaining good agreement of the residual flexibility values.

  8. Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kerry H.; Vizy, Edward

    The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less

  9. MONITORING LARGE AREAS FOR FOREST CHANGE USING LANDSAT: GENERALIZATION ACROSS SPACE, TIME AND LANDSAT SENSORS. (R828309)

    EPA Science Inventory

    Landsat 7 ETM+ provides an opportunity to extend the area and frequency with
    which we are able to monitor the Earth's surface with fine spatial resolution
    data. To take advantage of this opportunity it is necessary to move beyond the
    traditional image-by-image approac...

  10. Distributed control of large space antennas

    NASA Technical Reports Server (NTRS)

    Cameron, J. M.; Hamidi, M.; Lin, Y. H.; Wang, S. J.

    1983-01-01

    A systematic way to choose control design parameters and to evaluate performance for large space antennas is presented. The structural dynamics and control properties for a Hoop and Column Antenna and a Wrap-Rib Antenna are characterized. Some results of the effects of model parameter uncertainties to the stability, surface accuracy, and pointing errors are presented. Critical dynamics and control problems for these antenna configurations are identified and potential solutions are discussed. It was concluded that structural uncertainties and model error can cause serious performance deterioration and can even destabilize the controllers. For the hoop and column antenna, large hoop and long meat and the lack of stiffness between the two substructures result in low structural frequencies. Performance can be improved if this design can be strengthened. The two-site control system is more robust than either single-site control systems for the hoop and column antenna.

  11. Performance Comparison between CDTD and STTD for DS-CDMA/MMSE-FDE with Frequency-Domain ICI Cancellation

    NASA Astrophysics Data System (ADS)

    Takeda, Kazuaki; Kojima, Yohei; Adachi, Fumiyuki

    Frequency-domain equalization (FDE) based on the minimum mean square error (MMSE) criterion can provide a better bit error rate (BER) performance than rake combining. However, the residual inter-chip interference (ICI) is produced after MMSE-FDE and this degrades the BER performance. Recently, we showed that frequency-domain ICI cancellation can bring the BER performance close to the theoretical lower bound. To further improve the BER performance, transmit antenna diversity technique is effective. Cyclic delay transmit diversity (CDTD) can increase the number of equivalent paths and hence achieve a large frequency diversity gain. Space-time transmit diversity (STTD) can obtain antenna diversity gain due to the space-time coding and achieve a better BER performance than CDTD. Objective of this paper is to show that the BER performance degradation of CDTD is mainly due to the residual ICI and that the introduction of ICI cancellation gives almost the same BER performance as STTD. This study provides a very important result that CDTD has a great advantage of providing a higher throughput than STTD. This is confirmed by computer simulation. The computer simulation results show that CDTD can achieve higher throughput than STTD when ICI cancellation is introduced.

  12. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-06-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the downdip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multiscale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multiscale mechanisms of slow earthquakes generation.

  13. Imaging different components of a tectonic tremor sequence in southwestern Japan using an automatic statistical detection and location method

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Vilotte, Jean-Pierre; Bernard, Pascal; Satriano, Claudio; Obara, Kazushige

    2018-02-01

    In this study, we demonstrate the capability of an automatic network-based detection and location method to extract and analyse different components of tectonic tremor activity by analysing a 9-day energetic tectonic tremor sequence occurring at the down-dip extension of the subducting slab in southwestern Japan. The applied method exploits the coherency of multi-scale, frequency-selective characteristics of non-stationary signals recorded across the seismic network. Use of different characteristic functions, in the signal processing step of the method, allows to extract and locate the sources of short-duration impulsive signal transients associated with low-frequency earthquakes and of longer-duration energy transients during the tectonic tremor sequence. Frequency-dependent characteristic functions, based on higher-order statistics' properties of the seismic signals, are used for the detection and location of low-frequency earthquakes. This allows extracting a more complete (˜6.5 times more events) and time-resolved catalogue of low-frequency earthquakes than the routine catalogue provided by the Japan Meteorological Agency. As such, this catalogue allows resolving the space-time evolution of the low-frequency earthquakes activity in great detail, unravelling spatial and temporal clustering, modulation in response to tide, and different scales of space-time migration patterns. In the second part of the study, the detection and source location of longer-duration signal energy transients within the tectonic tremor sequence is performed using characteristic functions built from smoothed frequency-dependent energy envelopes. This leads to a catalogue of longer-duration energy sources during the tectonic tremor sequence, characterized by their durations and 3-D spatial likelihood maps of the energy-release source regions. The summary 3-D likelihood map for the 9-day tectonic tremor sequence, built from this catalogue, exhibits an along-strike spatial segmentation of the long-duration energy-release regions, matching the large-scale clustering features evidenced from the low-frequency earthquake's activity analysis. Further examination of the two catalogues showed that the extracted short-duration low-frequency earthquakes activity coincides in space, within about 10-15 km distance, with the longer-duration energy sources during the tectonic tremor sequence. This observation provides a potential constraint on the size of the longer-duration energy-radiating source region in relation with the clustering of low-frequency earthquakes activity during the analysed tectonic tremor sequence. We show that advanced statistical network-based methods offer new capabilities for automatic high-resolution detection, location and monitoring of different scale-components of tectonic tremor activity, enriching existing slow earthquakes catalogues. Systematic application of such methods to large continuous data sets will allow imaging the slow transient seismic energy-release activity at higher resolution, and therefore, provide new insights into the underlying multi-scale mechanisms of slow earthquakes generation.

  14. KIC 9533489: a genuine γ Doradus - δ Scuti Kepler hybrid pulsator with transit events

    NASA Astrophysics Data System (ADS)

    Bognár, Zs.; Lampens, P.; Frémat, Y.; Southworth, J.; Sódor, Á.; De Cat, P.; Isaacson, H. T.; Marcy, G. W.; Ciardi, D. R.; Gilliland, R. L.; Martín-Fernández, P.

    2015-09-01

    Context. Several hundred candidate hybrid pulsators of type A-F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to study the full interior of the genuine hybrids, in which both low radial order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most δ Scuti stars also show long-period light variations represents a real challenge for theory. Aims: We aim at determining the pulsation frequencies of KIC 9533489, to search for regular patterns and spacings among them, and to investigate the stability of the frequencies and the amplitudes. An additional goal is to study the serendipitously detected transit events: is KIC 9533489 the host star? What are the limitations on the physical parameters of the involved bodies? Methods: We performed a Fourier analysis of all the available Kepler light curves. We investigated the frequency and period spacings and determined the stellar physical parameters from spectroscopic observations. We also modelled the transit events. Results: The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 d-1. The light variations are dominated by the beating of two dominant frequencies located at around 4 d-1. The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v ≈ 70 km s-1, i> 70°) or a fast rotator (v ≈ 200 km s-1) with i ≈ 20°. The transit analysis disclosed that the transit events that occur with a ≈197 d period may be caused by a 1.6 RJup body orbiting a fainter star, which would be spatially coincident with KIC 9533489.

  15. Stability and bistability in a one-dimensional model of coastal foredune height

    NASA Astrophysics Data System (ADS)

    Goldstein, Evan B.; Moore, Laura J.

    2016-05-01

    On sandy coastlines, foredunes provide protection from coastal storms, potentially sheltering low areas—including human habitat—from elevated water level and wave erosion. In this contribution we develop and explore a one-dimensional model for coastal dune height based on an impulsive differential equation. In the model, coastal foredunes continuously grow in a logistic manner as the result of a biophysical feedback and they are destroyed by recurrent storm events that are discrete in time. Modeled dunes can be in one of two states: a high "resistant-dune" state or a low "overwash-flat" state. The number of stable states (equilibrium dune heights) depends on the value of two parameters, the nondimensional storm frequency (the ratio of storm frequency to the intrinsic growth rate of dunes) and nondimensional storm magnitude (the ratio of total water level during storms to the maximum theoretical dune height). Three regions of phase space exist (1) when nondimensional storm frequency is small, a single high resistant-dune attracting state exists; (2) when both the nondimensional storm frequency and magnitude are large, there is a single overwash-flat attracting state; (3) within a defined region of phase space model dunes exhibit bistable behavior—both the resistant-dune and the low overwash-flat states are stable. Comparisons to observational studies suggest that there is evidence for each state to exist independently, the coexistence of both states (i.e., segments of barrier islands consisting of overwash-flats and segments of islands having large dunes that resist erosion by storms), as well as transitions between states.

  16. Stabilization of Taylor-Couette flow due to time-periodic outer cylinder oscillation

    NASA Technical Reports Server (NTRS)

    Murray, B. T.; Mcfadden, G. B.; Coriell, S. R.

    1990-01-01

    The linear stability of circular Couette flow between concentric infinite cylinders is considered for the case when the inner cylinder is rotated at a constant angular velocity and the outer cylinder is driven sinusoidally in time with zero mean rotation. This configuration was studied experimentally by Walsh and Donnelly. The critical Reynolds numbers calculated from linear stability theory agree well with the experimental values, except at large modulation amplitudes and small frequencies. The theoretical values are obtained using Floquet theory implemented in two distinct approaches: a truncated Fourier series representation in time, and a fundamental solution matrix based on a Chebyshev pseudospectral representation in space. For large amplitude, low frequency modulation, the linear eigenfunctions are temporally complex, consisting of a quiescent region followed by rapid change in the perturbed flow velocities.

  17. Intraseasonal variability in atmospheric surface pressure and relationship to polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.

    1988-01-01

    Two techniques were used to validate the theoretical relationship between polar motion and P sub s variations. The first method, reproduced from Hide et al. (1984), compares the fluctuations in physical space of the polar spirals and the high frequencies about them. Although the agreement appears reasonable, the lack of a clear measure of closeness and the presence of the large Chandler signal itself makes a comparison at higher frequencies difficult. To overcome this difficulty, the authors present the X functions required to maintain the observed fluctuations at roughly 20 to 70 days and those calculated from the National Meteorological Center (NMC) P sub s data. These curves are in relatively good agreement, indicating that polar motions are indeed driven, at least in large part, by fluctuations in P sub s.

  18. Millimetron and Earth-Space VLBI

    NASA Astrophysics Data System (ADS)

    Likhachev, S.

    2014-01-01

    The main scientific goal of the Millimetron mission operating in Space VLBI (SVLBI) mode will be the exploration of compact radio sources with extremely high angular resolution (better than one microsecond of arc). The space-ground interferometer Millimetron has an orbit around L2 point of the Earth - Sun system and allows operating with baselines up to a hundred Earth diameters. SVLBI observations will be accomplished by space and ground-based radio telescopes simultaneously. At the space telescope the received baseband signal is digitized and then transferred to the onboard memory storage (up to 100TB). The scientific and service data transfer to the ground tracking station is performed by means of both synchronization and communication radio links (1 GBps). Then the array of the scientific data is processed at the correlation center. Due to the (u,v) - plane coverage requirements for SVLBI imaging, it is necessary to propose observations at two different frequencies and two circular polarizations simultaneously with frequency switching. The total recording bandwidth (2x2x4 GHz) defines of the on-board memory size. The ground based support of the Millimetron mission in the VLBI-mode could be Atacama Large Millimeter Array (ALMA), Pico Valletta (Spain), Plateau de Bure interferometer (France), SMT telescope in the US (Arizona), LMT antenna (Mexico), SMA array, (Mauna Kea, USA), as well as the Green Bank and Effelsberg 100 m telescopes (for 22 GHz observations). We will present simulation results for Millimetron-ALMA interferometer. The sensitivity estimate of the space-ground interferometer will be compared to the requirements of the scientific goals of the mission. The possibility of multi-frequency synthesis (MFS) to obtain high quality images will also be considered.

  19. Atmospheric considerations regarding the impact of heat dissipation from a nuclear energy center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotty, R.M.; Bauman, H.; Bennett, L.L.

    1976-05-01

    Potential changes in climate resulting from a large nuclear energy center are discussed. On a global scale, no noticeable changes are likely, but on both a regional and a local scale, changes can be expected. Depending on the cooling system employed, the amount of fog may increase, the amount and distribution of precipitation will change, and the frequency or location of severe storms may change. Very large heat releases over small surface areas can result in greater atmospheric instability; a large number of closely spaced natural-draft cooling towers have this disadvantage. On the other hand, employment of natural-draft towers makesmore » an increase in the occurrence of ground fog unlikely. The analysis suggests that the cooling towers for a large nuclear energy center should be located in clusters of four with at least 2.5-mile spacing between the clusters. This is equivalent to the requirement of one acre of land surface per each two megawatts of heat being rejected.« less

  20. Orbital structure in oscillating galactic potentials

    NASA Astrophysics Data System (ADS)

    Terzić, Balša; Kandrup, Henry E.

    2004-01-01

    Subjecting a galactic potential to (possibly damped) nearly periodic, time-dependent variations can lead to large numbers of chaotic orbits experiencing systematic changes in energy, and the resulting chaotic phase mixing could play an important role in explaining such phenomena as violent relaxation. This paper focuses on the simplest case of spherically symmetric potentials subjected to strictly periodic driving with the aim of understanding precisely why orbits become chaotic and under what circumstances they will exhibit systematic changes in energy. Four unperturbed potentials V0(r) were considered, each subjected to a time dependence of the form V(r, t) =V0(r)(1 +m0 sinωt). In each case, the orbits divide clearly into regular and chaotic, distinctions which appear absolute. In particular, transitions from regularity to chaos are seemingly impossible. Over finite time intervals, chaotic orbits subdivide into what can be termed `sticky' chaotic orbits, which exhibit no large-scale secular changes in energy and remain trapped in the phase-space region where they started; and `wildly' chaotic orbits, which do exhibit systematic drifts in energy as the orbits diffuse to different phase-space regions. This latter distinction is not absolute, transitions corresponding apparently to orbits penetrating a `leaky' phase-space barrier. The three different orbit types can be identified simply in terms of the frequencies for which their Fourier spectra have the most power. An examination of the statistical properties of orbit ensembles as a function of driving frequency ω allows us to identify the specific resonances that determine orbital structure. Attention focuses also on how, for fixed amplitude m0, such quantities as the mean energy shift, the relative measure of chaotic orbits and the mean value of the largest Lyapunov exponent vary with driving frequency ω and how, for fixed ω, the same quantities depend on m0.

  1. Comparison of methods for the detection of gravitational waves from unknown neutron stars

    NASA Astrophysics Data System (ADS)

    Walsh, S.; Pitkin, M.; Oliver, M.; D'Antonio, S.; Dergachev, V.; Królak, A.; Astone, P.; Bejger, M.; Di Giovanni, M.; Dorosh, O.; Frasca, S.; Leaci, P.; Mastrogiovanni, S.; Miller, A.; Palomba, C.; Papa, M. A.; Piccinni, O. J.; Riles, K.; Sauter, O.; Sintes, A. M.

    2016-12-01

    Rapidly rotating neutron stars are promising sources of continuous gravitational wave radiation for the LIGO and Virgo interferometers. The majority of neutron stars in our galaxy have not been identified with electromagnetic observations. All-sky searches for isolated neutron stars offer the potential to detect gravitational waves from these unidentified sources. The parameter space of these blind all-sky searches, which also cover a large range of frequencies and frequency derivatives, presents a significant computational challenge. Different methods have been designed to perform these searches within acceptable computational limits. Here we describe the first benchmark in a project to compare the search methods currently available for the detection of unknown isolated neutron stars. The five methods compared here are individually referred to as the PowerFlux, sky Hough, frequency Hough, Einstein@Home, and time domain F -statistic methods. We employ a mock data challenge to compare the ability of each search method to recover signals simulated assuming a standard signal model. We find similar performance among the four quick-look search methods, while the more computationally intensive search method, Einstein@Home, achieves up to a factor of two higher sensitivity. We find that the absence of a second derivative frequency in the search parameter space does not degrade search sensitivity for signals with physically plausible second derivative frequencies. We also report on the parameter estimation accuracy of each search method, and the stability of the sensitivity in frequency and frequency derivative and in the presence of detector noise.

  2. 40 HP Electro-Mechanical Actuator

    NASA Technical Reports Server (NTRS)

    Fulmer, Chris

    1996-01-01

    This report summarizes the work performed on the 40 BP electro-mechanical actuator (EMA) system developed on NASA contract NAS3-25799 for the NASA National Launch System and Electrical Actuation (ELA) Technology Bridging Programs. The system was designed to demonstrate the capability of large, high power linear ELA's for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, high frequency power source, drive electronics and a linear actuator. The power source is a 25kVA 20 kHz Mapham inverter. The drive electronics are based on the pulse population modulation concept and operate at a nominal frequency of 40 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response and step response tests were conducted at the Marshall Space Flight Center facility. A complete description of the system and all test results can be found in the body of the report.

  3. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography.

    PubMed

    Muller, Leah; Hamilton, Liberty S; Edwards, Erik; Bouchard, Kristofer E; Chang, Edward F

    2016-10-01

    Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.

  4. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    NASA Astrophysics Data System (ADS)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (<90%) at 4 mm, the smallest spacing of the high-density arrays. Thus, ECoG arrays smaller than 4 mm have significant promise for increasing signal resolution at high frequencies, whereas less additional gain is achieved for lower frequencies. Significance. Our findings quantitatively demonstrate the dependence of ECoG spatial resolution on the neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.

  5. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions.

    PubMed

    Dong, Yu-Hui; Liu, He-Shan; Luo, Zi-Ren; Li, Yu-Qiong; Jin, Gang

    2014-07-01

    In space laser interferometer gravitational wave (G.W.) detection missions, the stability of the laser beam pointing direction has to be kept at 10 nrad/√Hz. Otherwise, the beam pointing jitter noise will dominate the noise budget and make the detection of G.W. impossible. Disturbed by the residue non-conservative forces, the fluctuation of the laser beam pointing direction could be a few μrad/√Hz at frequencies from 0.1 mHz to 10 Hz. Therefore, the laser beam pointing control system is an essential requirement for those space G.W. detection missions. An on-ground test of such beam pointing control system is performed, where the Differential Wave-front Sensing technique is used to sense the beams pointing jitter. An active controlled steering mirror is employed to adjust the beam pointing direction to compensate the jitter. The experimental result shows that the pointing control system can be used for very large dynamic range up to 5 μrad. At the interested frequencies of space G.W. detection missions, between 1 mHz and 1 Hz, beam pointing stability of 6 nrad/√Hz is achieved.

  6. Methodological demonstration of laser beam pointing control for space gravitational wave detection missions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yu-Hui; Liu, He-Shan; University of Chinese Academy of Sciences, Beijing 100190

    In space laser interferometer gravitational wave (G.W.) detection missions, the stability of the laser beam pointing direction has to be kept at 10 nrad/√Hz. Otherwise, the beam pointing jitter noise will dominate the noise budget and make the detection of G.W. impossible. Disturbed by the residue non-conservative forces, the fluctuation of the laser beam pointing direction could be a few μrad/√Hz at frequencies from 0.1 mHz to 10 Hz. Therefore, the laser beam pointing control system is an essential requirement for those space G.W. detection missions. An on-ground test of such beam pointing control system is performed, where the Differentialmore » Wave-front Sensing technique is used to sense the beams pointing jitter. An active controlled steering mirror is employed to adjust the beam pointing direction to compensate the jitter. The experimental result shows that the pointing control system can be used for very large dynamic range up to 5 μrad. At the interested frequencies of space G.W. detection missions, between 1 mHz and 1 Hz, beam pointing stability of 6 nrad/√Hz is achieved.« less

  7. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than the averagedmore » phonon mean-free path in BaTiO3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. This time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  8. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  9. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE PAGES

    Zhu, Yi; Chen, Frank; Park, Joonkyu; ...

    2017-11-16

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  10. Effect of turbulence on the dissipation of the space-charge wave in a bounded turbulent plasma column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588

    The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less

  11. Stimulated Parametric Decay of Large Amplitude Alfv'en waves in the Large Plasma Device (LaPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.

    2012-10-01

    Alfv'en waves, the fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied, non-linear effects are important in many real systems. In particular, a parametric decay process in which a large amplitude Alfv'en wave decays into an ion acoustic wave and backward propagating Alfv'en wave may be key to the spectrum of solar wind turbulence. The present laboratory experiments aim to stimulate this process by launching counter-propagating Alfv'en waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has many properties consistent with an ion acoustic wave including: 1) The beat amplitude peaks when the frequency difference between the two Alfv'en waves is near the value predicted by Alfv'en-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfv'en waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfv'en wave. Strong damping observed after the pump Alfv'en waves are turned off is under investigation.

  12. ISAAC: Inflatable Satellite of an Antenna Array for Communications, volume 6

    NASA Technical Reports Server (NTRS)

    Lodgard, Deborah; Ashton, Patrick; Cho, Margaret; Codiana, Tom; Geith, Richard; Mayeda, Sharon; Nagel, Kirsten; Sze, Steven

    1988-01-01

    The results of a study to design an antenna array satellite using rigid inflatable structure (RIS) technology are presented. An inflatable satellite allows for a very large structure to be compacted for transportation in the Space Shuttle to the Space Station where it is assembled. The proposed structure resulting from this study is a communications satellite for two-way communications with many low-power stations on the ground. Total weight is 15,438 kilograms which is within the capabilities of the Space Shuttle. The satellite will have an equivalent aperture greater than 100 meters in diameter and will be operable in K and C band frequencies, with a total power requirement of 10,720 watts.

  13. Orbiting Deep Space Relay Station (ODSRS). Volume 1: Requirement determination

    NASA Technical Reports Server (NTRS)

    Hunter, J. A.

    1979-01-01

    The deep space communications requirements of the post-1985 time frame are described and the orbiting deep space relay station (ODSRS) is presented as an option for meeting these requirements. Under current conditions, the ODSRS is not yet cost competitive with Earth based stations to increase DSN telemetry performance, but has significant advantages over a ground station, and these are sufficient to maintain it as a future option. These advantages include: the ability to track a spacecraft 24 hours per day with ground stations located only in the USA; the ability to operate at higher frequencies that would be attenuated by Earth's atmosphere; and the potential for building very large structures without the constraints of Earth's gravity.

  14. Design of large zoom for visible and infrared optical system in hemisphere space

    NASA Astrophysics Data System (ADS)

    Xing, Yang-guang; Li, Lin; Zhang, Juan

    2018-01-01

    In the field of space optical, the application of advanced optical instruments for related target detection and identification has become an advanced technology in modern optics. In order to complete the task of search in wide field of view and detailed investigation in small field of view, it is inevitable to use the structure of the zoom system to achieve a better observation for important targets. The innovation of this paper lies in using the zoom optical system in space detection, which achieve firstly military needs of searched target in the large field of view and recognized target in the small field of view. At the same time, this paper also completes firstly the design of variable focus optical detection system in the range of hemisphere space, the zoom optical system is working in the range of visible and infrared wavelengths, the perspective angle reaches 360 ° and the zoom ratio of the visible system is up to 15. The visible system has a zoom range of 60-900 mm, a detection band of 0.48-0.70μm, and a F-number of 2.0 to 5.0. The infrared system has a zoom range of 150 900mm, a detection band of 8-12μm, and a F-number of 1.2 to 3.0. The MTF of the visible zoom system is above 0.4 at spatial frequency of 45 lp / mm, and the infrared zoom system is above 0.4 at spatial frequency of 11 lp / mm. The design results show that the system has a good image quality.

  15. An energy dependent earthquake frequency-magnitude distribution

    NASA Astrophysics Data System (ADS)

    Spassiani, I.; Marzocchi, W.

    2017-12-01

    The most popular description of the frequency-magnitude distribution of seismic events is the exponential Gutenberg-Richter (G-R) law, which is widely used in earthquake forecasting and seismic hazard models. Although it has been experimentally well validated in many catalogs worldwide, it is not yet clear at which space-time scales the G-R law still holds. For instance, in a small area where a large earthquake has just happened, the probability that another very large earthquake nucleates in a short time window should diminish because it takes time to recover the same level of elastic energy just released. In short, the frequency-magnitude distribution before and after a large earthquake in a small area should be different because of the different amount of available energy.Our study is then aimed to explore a possible modification of the classical G-R distribution by including the dependence on an energy parameter. In a nutshell, this more general version of the G-R law should be such that a higher release of energy corresponds to a lower probability of strong aftershocks. In addition, this new frequency-magnitude distribution has to satisfy an invariance condition: when integrating over large areas, that is when integrating over infinite energy available, the G-R law must be recovered.Finally we apply a proposed generalization of the G-R law to different seismic catalogs to show how it works and the differences with the classical G-R law.

  16. A space-time lower-upper symmetric Gauss-Seidel scheme for the time-spectral method

    NASA Astrophysics Data System (ADS)

    Zhan, Lei; Xiong, Juntao; Liu, Feng

    2016-05-01

    The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge-Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower-upper symmetric Gauss-Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant-Friedrichs-Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.

  17. Eddy-driven low-frequency variability: physics and observability through altimetry

    NASA Astrophysics Data System (ADS)

    Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.

    2015-04-01

    Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.

  18. Asymptotic symmetries and electromagnetic memory

    NASA Astrophysics Data System (ADS)

    Pasterski, Sabrina

    2017-09-01

    Recent investigations into asymptotic symmetries of gauge theory and gravity have illuminated connections between gauge field zero-mode sectors, the corresponding soft factors, and their classically observable counterparts — so called "memories". Namely, low frequency emissions in momentum space correspond to long time integrations of the corre-sponding radiation in position space. Memory effect observables constructed in this manner are non-vanishing in typical scattering processes, which has implications for the asymptotic symmetry group. Here we complete this triad for the case of large U(1) gauge symmetries at null infinity. In particular, we show that the previously studied electromagnetic memory effect, whereby the passage of electromagnetic radiation produces a net velocity kick for test charges in a distant detector, is the position space observable corresponding to th Weinberg soft photon pole in momentum space scattering amplitudes.

  19. Preliminary Shear Velocity Tomography of Mt St Helens, Washington from iMUSH Array

    NASA Astrophysics Data System (ADS)

    Crosbie, K.; Abers, G. A.; Creager, K. C.; Moran, S. C.; Denlinger, R. P.; Ulberg, C. W.

    2015-12-01

    The imaging Magma Under Mount St Helens (iMUSH) experiment will illuminate the crust beneath Mt St Helens volcano. The ambient noise tomography (ANT) component of this experiment measures shear velocity structure, which is more sensitive than P velocity to the presence of melt and other pore fluids. Seventy passive-source broadband seismometers for iMUSH were deployed in the summer of 2014 in a dense array of 100 Km diameter with a 10 km station spacing. We cross correlated ambient noise in 120 s windows and summed the result over many months for pairs of stations. Then frequency-domain methods on these cross correlations are employed to measure the phase velocities (Ekström et al. Geophys Rev Lett, 2009). Unlike velocities attained by group velocity methods, velocities for path lengths as small as one wavelength can be measured, enabling analysis of higher frequency signals and increasing spatial resolution. The minimum station spacing from which signals can be recovered ranges from 12 km at 0.18 Hz, a frequency that dominantly samples the upper crust to 20 km, to 37 km at 0.04 Hz, a frequency sensitive to structure through the crust and uppermost mantle, with lower spacing at higher frequencies. These phase velocities are tomographically inverted to obtain shear velocity maps for each frequency, assuming ray theory. Initial shear velocity maps for frequencies between 0.04-0.18 Hz reveal low-velocity sediments in the Puget Lowland west of Mount St Helens at 0.16-0.18 Hz, and a low velocity zone near 0.10 Hz between Mt Rainier and Mt Adams, east of Mount St Helens. The latter may reflect large-scale crustal plumbing of the arc between volcanic centers. In subsequent analyses these ANT results will be jointly inverted with receiver functions in order to further resolve crustal and upper mantle structure.

  20. Wave generation by contaminant ions near a large spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Measurements from the space shuttle flights have revealed that a large spacecraft in a low earth orbit is accompanied by an extensive gas cloud which is primarily made up of water. The charge exchange between the water molecule and the ionospheric O(+) ions produces a water ion beam traversing downstream of the spacecraft. In this report we present results from a study on the generation of plasma waves by the interaction of the water ion beams with the ionospheric plasma. Since velocity distribution function is key to the understanding of the wave generation process, we have performed a test particle simulation to determine the nature of H2O(+) ions velocity distribution function. The simulations show that at the time scales shorter than the ion cyclotron period tau(sub c), the distribution function can be described by a beam. On the other hand, when the time scales are larger than tau(sub c), a ring distribution forms. A brief description of the linear instabilities driven by an ion beam streaming across a magnetic field in a plasma is presented. We have identified two types of instabilities occurring in low and high frequency bands; the low-frequency instability occurs over the frequency band from zero to about the lower hybrid frequency for a sufficiently low beam density. As the beam density increases, the linear instability occurs at decreasing frequencies below the lower-hybrid frequency. The high frequency instability occurs near the electron cyclotron frequency and its harmonics.

  1. Effects of local vibrations on the dynamics of space truss structures

    NASA Technical Reports Server (NTRS)

    Warnaar, Dirk B.; Mcgowan, Paul E.

    1987-01-01

    The paper discusses the influence of local member vibrations on the dynamics of repetitive space truss structures. Several focus problems wherein local member vibration modes are in the frequency range of the global truss modes are discussed. Special attention is given to defining methods that can be used to identify the global modes of a truss structure amidst many local modes. Significant interactions between the motions of local member vibrations and the global behavior are shown to occur in truss structures when: (1) the natural frequencies of the individual members for clamped-clamped boundary conditions are in the vicinity of the global truss frequency; and (2) the total mass of the individual members represents a large portion of the mass of the whole structure. The analysis is carried out with a structural analysis code which uses exact member theory. The modeling detail required using conventional finite element codes to adequately represent such a class of problems is examined. The paper concludes with some practical considerations for the design and dynamic testing of structures which might exhibit such behavior.

  2. A study of cylindrical Hall thruster for low power space applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Raitses; N.J. Fisch; K.M. Ertmer

    2000-07-27

    A 9 cm cylindrical thruster with a ceramic channel exhibited performance comparable to the state-of-the-art Hall thrusters at low and moderate power levels. Significantly, its operation is not accompanied by large amplitude discharge low frequency oscillations. Preliminary experiments on a 2 cm cylindrical thruster suggest the possibility of a high performance micro Hall thruster.

  3. ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stello, Dennis; Bedding, Timothy R.; Benomar, Othman

    2013-03-10

    Of the more than 150,000 targets followed by the Kepler Mission, about 10% were selected as red giants. Due to their high scientific value, in particular for Galaxy population studies and stellar structure and evolution, their Kepler light curves were made public in late 2011. More than 13,000 (over 85%) of these stars show intrinsic flux variability caused by solar-like oscillations making them ideal for large-scale asteroseismic investigations. We automatically extracted individual frequencies and measured the period spacings of the dipole modes in nearly every red giant. These measurements naturally classify the stars into various populations, such as the redmore » giant branch, the low-mass (M/M{sub Sun} {approx}< 1.8) helium-core-burning red clump, and the higher-mass (M/M{sub Sun} {approx}> 1.8) secondary clump. The period spacings also reveal that a large fraction of the stars show rotationally induced frequency splittings. This sample of stars will undoubtedly provide an extremely valuable source for studying the stellar population in the direction of the Kepler field, in particular when combined with complementary spectroscopic surveys.« less

  4. Anomalous properties of the acoustic excitations in glasses on the mesoscopic length scale.

    PubMed

    Monaco, Giulio; Mossa, Stefano

    2009-10-06

    The low-temperature thermal properties of dielectric crystals are governed by acoustic excitations with large wavelengths that are well described by plane waves. This is the Debye model, which rests on the assumption that the medium is an elastic continuum, holds true for acoustic wavelengths large on the microscopic scale fixed by the interatomic spacing, and gradually breaks down on approaching it. Glasses are characterized as well by universal low-temperature thermal properties that are, however, anomalous with respect to those of the corresponding crystalline phases. Related universal anomalies also appear in the low-frequency vibrational density of states and, despite a longstanding debate, remain poorly understood. By using molecular dynamics simulations of a model monatomic glass of extremely large size, we show that in glasses the structural disorder undermines the Debye model in a subtle way: The elastic continuum approximation for the acoustic excitations breaks down abruptly on the mesoscopic, medium-range-order length scale of approximately 10 interatomic spacings, where it still works well for the corresponding crystalline systems. On this scale, the sound velocity shows a marked reduction with respect to the macroscopic value. This reduction turns out to be closely related to the universal excess over the Debye model prediction found in glasses at frequencies of approximately 1 THz in the vibrational density of states or at temperatures of approximately 10 K in the specific heat.

  5. A comparison of mutations induced by accelerated iron particles versus those induced by low earth orbit space radiation in the FEM-3 gene of Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Hartman, P. S.; Hlavacek, A.; Wilde, H.; Lewicki, D.; Schubert, W.; Kern, R. G.; Kazarians, G. A.; Benton, E. V.; Benton, E. R.; Nelson, G. A.

    2001-01-01

    The fem-3 gene of Caenorhabditis elegans was employed to determine the mutation frequency as well as the nature of mutations induced by low earth orbit space radiation ambient to Space Shuttle flight STS-76. Recovered mutations were compared to those induced by accelerated iron ions generated by the AGS synchrotron accelerator at Brookhaven National Laboratory. For logistical reasons, dauer larvae were prepared at TCU, transported to either Kennedy Space Center or Brookhaven National Laboratory, flown in space or irradiated, returned to TCU and screened for mutants. A total of 25 fem-3 mutants were recovered after the shuttle flight and yielded a mutation frequency of 2.1x10(-5), roughly 3.3-fold higher than the spontaneous rate of 6.3x10(-6). Four of the mutations were homozygous inviable, suggesting that they were large deletions encompassing fem-3 as well as neighboring, essential genes. Southern blot analyses revealed that one of the 25 contained a polymorphism in fem-3, further evidence that space radiation can induce deletions. While no polymorphisms were detected among the iron ion-induced mutations, three of the 15 mutants were homozygous inviable, which is in keeping with previous observations that high LET iron particles generate deficiencies. These data provide evidence, albeit indirect, that an important mutagenic component of ambient space radiation is high LET charged particles such as iron ions.

  6. Differences in gamma frequencies across visual cortex restrict their possible use in computation.

    PubMed

    Ray, Supratim; Maunsell, John H R

    2010-09-09

    Neuronal oscillations in the gamma band (30-80 Hz) have been suggested to play a central role in feature binding or establishing channels for neural communication. For these functions, the gamma rhythm frequency must be consistent across neural assemblies encoding the features of a stimulus. Here we test the dependence of gamma frequency on stimulus contrast in V1 cortex of awake behaving macaques and show that gamma frequency increases monotonically with contrast. Changes in stimulus contrast over time leads to a reliable gamma frequency modulation on a fast timescale. Further, large stimuli whose contrast varies across space generate gamma rhythms at significantly different frequencies in simultaneously recorded neuronal assemblies separated by as little as 400 microm, making the gamma rhythm a poor candidate for binding or communication, at least in V1. Instead, our results suggest that the gamma rhythm arises from local interactions between excitation and inhibition. 2010 Elsevier Inc. All rights reserved.

  7. A 2-to-48-MHz Phase-Locked Loop

    NASA Technical Reports Server (NTRS)

    Koudelka, Robert D.

    2004-01-01

    A 2-to-48-MHz phase-locked loop (PLL), developed for the U.S. space program, meets or exceeds all space shuttle clock electrical interface requirements by taking as its reference a 2-to-48-MHz clock signal and outputting a phaselocked clock signal set at the same frequency as the reference clock with transistor- transistor logic (TTL) voltage levels. Because it is more adaptable than other PLLs, the new PLL can be used in industries that employ signaling devices and as a tool in future space missions. A conventional PLL consists of a phase/frequency detector, loop filter, and voltage-controlled oscillator in which each component exists individually and is integrated into a single device. PLL components phase-lock to a single frequency or to a narrow bandwidth of frequencies. It is this design, however, that prohibits them from maintaining phase lock to a dynamically changing reference clock when a large bandwidth is required a deficiency the new PLL overcomes. Since most PLL components require their voltage-controlled oscillators to operate at greater than 2-MHz frequencies, conventional PLLs often cannot achieve the low-frequency phase lock allowed by the new PLL. The 2-to-48-MHz PLL is built on a wire-wrap board with pins wired to three position jumpers; this makes changing configurations easy. It responds to variations in voltage-controlled oscillator (VCO) ranges, duty cycle, signal-to-noise ratio (SNR), amplitude, and jitter, exceeding design specifications. A consensus state machine, implemented in a VCO range detector which assures the PLL continues to operate in the correct range, is the primary control state machine for the 2-to-48-MHz PLL circuit. By using seven overlapping frequency ranges with hysteresis, the PLL output sets the resulting phase-locked clock signal at a frequency that agrees with the reference clock with TTL voltage levels. As a space-shuttle tool, the new PLL circuit takes the noisy, degraded reference clock signals as input and outputs phase-locked clock signals of the same frequency but with a corrected wave shape. Since its configuration circuit can be easily changed, the new PLL can do the following: readily respond to variations in VCO ranges, duty cycle, SNR, amplitude, and jitter; continuously operate in the correct VCO range because of its consensus state machine; and use its range detector implements to overlap seven frequency ranges with hysteresis, thus giving the current design a flexibility that exceeds anything available at the time of this development. These features will benefit any industry in which safe and timely clock signals are vital to operation.

  8. Suppression of Phase Mixing in Drift-Kinetic Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Parker, J. T.; Dellar, P. J.; Schekochihin, A. A.; Highcock, E. G.

    2017-12-01

    The solar wind and interstellar medium are examples of strongly magnetised, weakly collisional, astrophysical plasmas. Their turbulent fluctuations are strongly anisotropic, with small amplitudes, and frequencies much lower than the Larmor frequency. This regime is described by gyrokinetic theory, a reduced five-dimensional kinetic system describing averages over Larmor orbits. A turbulent plasma may transfer free energy, a measure of fluctuation amplitudes, from injection at large scales, typically by an instability, to dissipation at small physical scales like a turbulent fluid. Alternatively, a turbulent plasma may form fine scale structures in velocity space via phase-mixing, the mechanism that leads to Landau damping in linear plasma theory. Macroscopic plasma properties like heat and momentum transport are affected by both mechanisms. While each is understood in isolation, their interaction is not. We study this interaction using a Hankel-Hermite velocity space representation of gyrokinetic theory. The Hankel transform interacts neatly with the Bessel functions that arise from averaging over Larmor orbits, so the perpendicular velocity space is decoupled for linearized problems. The Hermite transform expresses phase mixing as nearest-neighbor coupling between parallel velocity space scales represented by Hermite mode numbers. We use this representation to study transfer mechanisms in drift-kinetic plasma turbulence, the long wavelength limit of gyrokinetic theory. We show that phase space is divided into two regions, with one transfer mechanism dominating in each. Most energy is contained in the region where the fluid-like nonlinear cascade dominates. Moreover, in that region the nonlinear cascade interferes with phase mixing by exciting an "anti phase mixing" transfer of free energy from small to large velocity space scales. This cancels out the usual phase mixing, and renders the overall behavior fluid-like. These results profoundly change our understanding of free energy flow in drift-kinetic turbulence, and, moreover, explain previously observed spectra.

  9. Optimal placement of tuning masses on truss structures by genetic algorithms

    NASA Technical Reports Server (NTRS)

    Ponslet, Eric; Haftka, Raphael T.; Cudney, Harley H.

    1993-01-01

    Optimal placement of tuning masses, actuators and other peripherals on large space structures is a combinatorial optimization problem. This paper surveys several techniques for solving this problem. The genetic algorithm approach to the solution of the placement problem is described in detail. An example of minimizing the difference between the two lowest frequencies of a laboratory truss by adding tuning masses is used for demonstrating some of the advantages of genetic algorithms. The relative efficiencies of different codings are compared using the results of a large number of optimization runs.

  10. Theoretical requirements for broadband perfect absorption of acoustic waves by ultra-thin elastic meta-films

    PubMed Central

    Duan, Yuetao; Luo, Jie; Wang, Guanghao; Hang, Zhi Hong; Hou, Bo; Li, Jensen; Sheng, Ping; Lai, Yun

    2015-01-01

    We derive and numerically demonstrate that perfect absorption of elastic waves can be achieved in two types of ultra-thin elastic meta-films: one requires a large value of almost pure imaginary effective mass density and a free space boundary, while the other requires a small value of almost pure imaginary effective modulus and a hard wall boundary. When the pure imaginary density or modulus exhibits certain frequency dispersions, the perfect absorption effect becomes broadband, even in the low frequency regime. Through a model analysis, we find that such almost pure imaginary effective mass density with required dispersion for perfect absorption can be achieved by elastic metamaterials with large damping. Our work provides a feasible approach to realize broadband perfect absorption of elastic waves in ultra-thin films. PMID:26184117

  11. Development of an automated processing and screening system for the space shuttle orbiter flight test data

    NASA Technical Reports Server (NTRS)

    Mccutchen, D. K.; Brose, J. F.; Palm, W. E.

    1982-01-01

    One nemesis of the structural dynamist is the tedious task of reviewing large quantities of data. This data, obtained from various types of instrumentation, may be represented by oscillogram records, root-mean-squared (rms) time histories, power spectral densities, shock spectra, 1/3 octave band analyses, and various statistical distributions. In an attempt to reduce the laborious task of manually reviewing all of the space shuttle orbiter wideband frequency-modulated (FM) analog data, an automated processing system was developed to perform the screening process based upon predefined or predicted threshold criteria.

  12. Filamentation of a surface plasma wave over a semiconductor-free space interface

    NASA Astrophysics Data System (ADS)

    Kumar, Gagan; Tripathi, V. K.

    2007-12-01

    A large amplitude surface plasma wave (SPW), propagating over a semiconductor-free space interface, is susceptible to filamentation instability. A small perturbation in the amplitude of the SPW across the direction of propagation exerts a ponderomotive force on free electrons and holes, causing spatial modulation in free carrier density and hence the effective permittivity ɛeff of the semiconductor. The regions with higher ɛeff attract more power from the nieghborhood, leading to the growth of the perturbation. The growth rate increases with the intensity of the surface wave. It decreases with the frequency of the SPW.

  13. Extraterrestrial intelligence: an observational approach.

    PubMed

    Murray, B; Gulkis, S; Edelson, R E

    1978-02-03

    The microwave region of the electromagnetic spectrum, a plausible regime for signals from extraterrestrial intelligences, is largely unexplored. With new technology, particularly in data processing and low-noise reception, surveys can be conducted over broad regions of frequency and space with existing antennas at flux densities plausible for interstellar signals. An all-sky, broad-band survey lasting perhaps 5 years can be structured so that even negative results would establish significant boundaries on the regime in which such signals may be found. The technology and techniques developed and much of the data acquired would be applicable to radio astronomy and deep-space communications.

  14. Experiments on Frequency Dependence of the Deflection of Light in Yang-Mills Gravity

    NASA Astrophysics Data System (ADS)

    Hao, Yun; Zhu, Yiyi; Hsu, Jong-Ping

    2018-01-01

    In Yang-Mills gravity based on flat space-time, the eikonal equation for a light ray is derived from the modified Maxwell's wave equations in the geometric-optics limit. One obtains a Hamilton-Jacobi type equation, GLµv∂µΨ∂vΨ = 0 with an effective Riemannian metric tensor GLµv. According to Yang-Mills gravity, light rays (and macroscopic objects) move as if they were in an effective curved space-time with a metric tensor. The deflection angle of a light ray by the sun is about 1.53″ for experiments with optical frequencies ≈ 1014Hz. It is roughly 12% smaller than the usual value 1.75″. However, the experimental data in the past 100 years for the deflection of light by the sun in optical frequencies have uncertainties of (10-20)% due to large systematic errors. If one does not take the geometric-optics limit, one has the equation, GLµv[∂µΨ∂vΨcosΨ+ (∂µ∂vΨ)sinΨ] = 0, which suggests that the deflection angle could be frequency-dependent, according to Yang-Mills gravity. Nowadays, one has very accurate data in the radio frequencies ≈ 109Hz with uncertainties less than 0.1%. Thus, one can test this suggestion by using frequencies ≈ 1012 Hz, which could have a small uncertainty 0.1% due to the absence of systematic errors in the very long baseline interferometry.

  15. EVIDENCE FOR GRANULATION IN EARLY A-TYPE STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallinger, Thomas; Matthews, Jaymie M.

    2010-03-01

    Stars with spectral types earlier than about F0 on (or close) to the main sequence have long been believed to lack observable surface convection, although evolutionary models of A-type stars do predict very thin surface convective zones. We present evidence for granulation in two {delta} Scuti stars of spectral type A2: HD 174936 and HD 50844. Recent analyses of space-based CoRoT data revealed up to some 1000 frequencies in the photometry of these stars. The frequencies were interpreted as individual pulsation modes. If true, there must be large numbers of nonradial modes of very high degree l which should suffermore » cancellation effects in disk-integrated photometry (even of high space-based precision). The p-mode interpretation of all the frequencies in HD 174936 and HD 50844 depends on the assumption of white (frequency-independent) noise. Our independent analyses of the data provide an alternative explanation: most of the peaks in the Fourier spectra are the signature of non-white granulation background noise, and less than about 100 of the frequencies are actual stellar p-modes in each star. We find granulation timescales which are consistent with scaling relations that describe cooler stars with known surface convection. If the granulation interpretation is correct, the hundreds of low-amplitude Fourier peaks reported in recent studies are falsely interpreted as independent pulsation modes and a significantly lower number of frequencies are associated with pulsation, consistent with only modes of low degree.« less

  16. Exploring the parahippocampal cortex response to high and low spatial frequency spaces.

    PubMed

    Zeidman, Peter; Mullally, Sinéad L; Schwarzkopf, Dietrich Samuel; Maguire, Eleanor A

    2012-05-30

    The posterior parahippocampal cortex (PHC) supports a range of cognitive functions, in particular scene processing. However, it has recently been suggested that PHC engagement during functional MRI simply reflects the representation of three-dimensional local space. If so, PHC should respond to space in the absence of scenes, geometric layout, objects or contextual associations. It has also been reported that PHC activation may be influenced by low-level visual properties of stimuli such as spatial frequency. Here, we tested whether PHC was responsive to the mere sense of space in highly simplified stimuli, and whether this was affected by their spatial frequency distribution. Participants were scanned using functional MRI while viewing depictions of simple three-dimensional space, and matched control stimuli that did not depict a space. Half the stimuli were low-pass filtered to ascertain the impact of spatial frequency. We observed a significant interaction between space and spatial frequency in bilateral PHC. Specifically, stimuli depicting space (more than nonspatial stimuli) engaged the right PHC when they featured high spatial frequencies. In contrast, the interaction in the left PHC did not show a preferential response to space. We conclude that a simple depiction of three-dimensional space that is devoid of objects, scene layouts or contextual associations is sufficient to robustly engage the right PHC, at least when high spatial frequencies are present. We suggest that coding for the presence of space may be a core function of PHC, and could explain its engagement in a range of tasks, including scene processing, where space is always present.

  17. New advanced netted ground based and topside radio diagnostics for Space Weather Program

    NASA Astrophysics Data System (ADS)

    Rothkaehl, Hanna; Krankowski, Andrzej; Morawski, Marek; Atamaniuk, Barbara; Zakharenkova, Irina; Cherniak, Iurii

    2014-05-01

    To give a more detailed and complete understanding of physical plasma processes that govern the solar-terrestrial space, and to develop qualitative and quantitative models of the magnetosphere-ionosphere-thermosphere coupling, it is necessary to design and build the next generation of instruments for space diagnostics and monitoring. Novel ground- based wide-area sensor networks, such as the LOFAR (Low Frequency Array) radar facility, comprising wide band, and vector-sensing radio receivers and multi-spacecraft plasma diagnostics should help solve outstanding problems of space physics and describe long-term environmental changes. The LOw Frequency ARray - LOFAR - is a new fully digital radio telescope designed for frequencies between 30 MHz and 240 MHz located in Europe. The three new LOFAR stations will be installed until summer 2015 in Poland. The LOFAR facilities in Poland will be distributed among three sites: Lazy (East of Krakow), Borowiec near Poznan and Baldy near Olsztyn. All they will be connected via PIONIER dedicated links to Poznan. Each site will host one LOFAR station (96 high-band+96 low-band antennas). They will most time work as a part of European network, however, when less charged, they can operate as a national network The new digital radio frequency analyzer (RFA) on board the low-orbiting RELEC satellite was designed to monitor and investigate the ionospheric plasma properties. This two-point ground-based and topside ionosphere-located space plasma diagnostic can be a useful new tool for monitoring and diagnosing turbulent plasma properties. The RFA on board the RELEC satellite is the first in a series of experiments which is planned to be launched into the near-Earth environment. In order to improve and validate the large scales and small scales ionospheric structures we will used the GPS observations collected at IGS/EPN network employed to reconstruct diurnal variations of TEC using all satellite passes over individual GPS stations and the data retrieved from FORMOSAT-3/COSMIC radio occultation measurements. The main purpose of this presentation is to describe new advanced diagnostic techniques of the near-Earth space plasma and point out the scientific challenges of the radio frequency analyser located on board of low orbiting satellites and LOFAR facilities. This research is partly supported by grant O N517 418440

  18. Gaussian pre-filtering for uncertainty minimization in digital image correlation using numerically-designed speckle patterns

    NASA Astrophysics Data System (ADS)

    Mazzoleni, Paolo; Matta, Fabio; Zappa, Emanuele; Sutton, Michael A.; Cigada, Alfredo

    2015-03-01

    This paper discusses the effect of pre-processing image blurring on the uncertainty of two-dimensional digital image correlation (DIC) measurements for the specific case of numerically-designed speckle patterns having particles with well-defined and consistent shape, size and spacing. Such patterns are more suitable for large measurement surfaces on large-scale specimens than traditional spray-painted random patterns without well-defined particles. The methodology consists of numerical simulations where Gaussian digital filters with varying standard deviation are applied to a reference speckle pattern. To simplify the pattern application process for large areas and increase contrast to reduce measurement uncertainty, the speckle shape, mean size and on-center spacing were selected to be representative of numerically-designed patterns that can be applied on large surfaces through different techniques (e.g., spray-painting through stencils). Such 'designer patterns' are characterized by well-defined regions of non-zero frequency content and non-zero peaks, and are fundamentally different from typical spray-painted patterns whose frequency content exhibits near-zero peaks. The effect of blurring filters is examined for constant, linear, quadratic and cubic displacement fields. Maximum strains between ±250 and ±20,000 με are simulated, thus covering a relevant range for structural materials subjected to service and ultimate stresses. The robustness of the simulation procedure is verified experimentally using a physical speckle pattern subjected to constant displacements. The stability of the relation between standard deviation of the Gaussian filter and measurement uncertainty is assessed for linear displacement fields at varying image noise levels, subset size, and frequency content of the speckle pattern. It is shown that bias error as well as measurement uncertainty are minimized through Gaussian pre-filtering. This finding does not apply to typical spray-painted patterns without well-defined particles, for which image blurring is only beneficial in reducing bias errors.

  19. Advanced UVOIR Mirror Technology Development for Very Large Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2011-01-01

    Objective of this work is to define and initiate a long-term program to mature six inter-linked critical technologies for future UVOIR space telescope mirrors to TRL6 by 2018 so that a viable flight mission can be proposed to the 2020 Decadal Review. (1) Large-Aperture, Low Areal Density, High Stiffness Mirrors: 4 to 8 m monolithic & 8 to 16 m segmented primary mirrors require larger, thicker, stiffer substrates. (2) Support System:Large-aperture mirrors require large support systems to ensure that they survive launch and deploy on orbit in a stress-free and undistorted shape. (3) Mid/High Spatial Frequency Figure Error:A very smooth mirror is critical for producing a high-quality point spread function (PSF) for high-contrast imaging. (4) Segment Edges:Edges impact PSF for high-contrast imaging applications, contributes to stray light noise, and affects the total collecting aperture. (5) Segment-to-Segment Gap Phasing:Segment phasing is critical for producing a high-quality temporally stable PSF. (6) Integrated Model Validation:On-orbit performance is determined by mechanical and thermal stability. Future systems require validated performance models. We are pursuing multiple design paths give the science community the option to enable either a future monolithic or segmented space telescope.

  20. The Auto-Gopher Deep Drill

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea

    2014-01-01

    Subsurface penetration by coring, drilling or abrading is of great importance for a large number of space and earth applications. An Ultrasonic/Sonic Drill/Corer (USDC) has been in development at JPL's Nondestructive Evaluation and Advanced Actuators (NDEAA) lab as an adaptable tool for many of these applications. The USDC uses a novel drive mechanism to transform the high frequency ultrasonic or sonic vibrations of the tip of a horn into a lower frequency sonic hammering of a drill bit through an intermediate free-flying mass. The USDC device idea has been implemented at various scales from handheld drills to large diameter coring devices. A series of computer programs that model the function and performance of the USDC device were developed and were later integrated into an automated modeling package. The USDC has also evolved from a purely hammering drill to a rotary hammer drill as the design requirements increased form small diameter shallow drilling to large diameter deep coring. A synthesis of the Auto-Gopher development is presented in this paper.

  1. How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?

    DOE PAGES

    Hagos, Samson; Ruby Leung, L.; Zhao, Chun; ...

    2018-02-10

    Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less

  2. How Do Microphysical Processes Influence Large-Scale Precipitation Variability and Extremes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagos, Samson; Ruby Leung, L.; Zhao, Chun

    Convection permitting simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) are used to examine how microphysical processes affect large-scale precipitation variability and extremes. An episode of the Madden-Julian Oscillation is simulated using MPAS-A with a refined region at 4-km grid spacing over the Indian Ocean. It is shown that cloud microphysical processes regulate the precipitable water (PW) statistics. Because of the non-linear relationship between precipitation and PW, PW exceeding a certain critical value (PWcr) contributes disproportionately to precipitation variability. However, the frequency of PW exceeding PWcr decreases rapidly with PW, so changes in microphysical processes that shift the columnmore » PW statistics relative to PWcr even slightly have large impacts on precipitation variability. Furthermore, precipitation variance and extreme precipitation frequency are approximately linearly related to the difference between the mean and critical PW values. Thus observed precipitation statistics could be used to directly constrain model microphysical parameters as this study demonstrates using radar observations from DYNAMO field campaign.« less

  3. Next-generation Event Horizon Telescope developments: new stations for enhanced imaging

    NASA Astrophysics Data System (ADS)

    Palumbo, Daniel; Johnson, Michael; Doeleman, Sheperd; Chael, Andrew; Bouman, Katherine

    2018-01-01

    The Event Horizon Telescope (EHT) is a multinational Very Long Baseline Interferometry (VLBI) network of dishes joined to resolve general relativistic behavior near a supermassive black hole. The imaging quality of the EHT is largely dependent upon the sensitivity and spatial frequency coverage of the many baselines between its constituent telescopes. The EHT already contains many highly sensitive dishes, including the crucial Atacama Large Millimeter/Submillimeter Array (ALMA), making it viable to add smaller, cheaper telescopes to the array, greatly improving future capabilities of the EHT. We develop tools for optimizing the positions of new dishes in planned arrays. We also explore the feasibility of adding small orbiting dishes to the EHT, and develop orbital optimization tools for space-based VLBI imaging. Unlike the Millimetron mission planned to be at L2, we specifically treat near-earth orbiters, and find rapid filling of spatial frequency coverage across a large range of baseline lengths. Finally, we demonstrate significant improvement in image quality when adding small dishes to planned arrays in simulated observations.

  4. Least square regularized regression in sum space.

    PubMed

    Xu, Yong-Li; Chen, Di-Rong; Li, Han-Xiong; Liu, Lu

    2013-04-01

    This paper proposes a least square regularized regression algorithm in sum space of reproducing kernel Hilbert spaces (RKHSs) for nonflat function approximation, and obtains the solution of the algorithm by solving a system of linear equations. This algorithm can approximate the low- and high-frequency component of the target function with large and small scale kernels, respectively. The convergence and learning rate are analyzed. We measure the complexity of the sum space by its covering number and demonstrate that the covering number can be bounded by the product of the covering numbers of basic RKHSs. For sum space of RKHSs with Gaussian kernels, by choosing appropriate parameters, we tradeoff the sample error and regularization error, and obtain a polynomial learning rate, which is better than that in any single RKHS. The utility of this method is illustrated with two simulated data sets and five real-life databases.

  5. Navigation of space VLBI missions: Radioastron and VSOP

    NASA Technical Reports Server (NTRS)

    Ellis, Jordan

    1993-01-01

    In the mid-1990s, Russian and Japanese space agencies will each place into highly elliptic earth orbit a radio telescope consisting of a large antenna and radio astronomy receivers. Very long baseline interferometry (VLBI) techniques will be used to obtain high resolution images of radio sources observed by the space and ground based antennas. Stringent navigation accuracy requirements are imposed on the space VLBI missions by the need to transfer an ultra-stable ground reference frequency standard to the spacecraft and by the demands of the VLBI correlation process. Orbit determination for the mission will be the joint responsibility of navigation centers in the U.S., Russia, and Japan with orbit estimates based on combining tracking data from NASA, Russian, and Japanese sites. This paper describes the operational plans, the inter-agency coordination, and data exchange between the navigation centers required for space VLBI navigation.

  6. Active locking and entanglement in type II optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Ruiz-Rivas, Joaquín; de Valcárcel, Germán J.; Navarrete-Benlloch, Carlos

    2018-02-01

    Type II optical parametric oscillators are amongst the highest-quality sources of quantum-correlated light. In particular, when pumped above threshold, such devices generate a pair of bright orthogonally-polarized beams with strong continuous-variable entanglement. However, these sources are of limited practical use, because the entangled beams emerge with different frequencies and a diffusing phase difference. It has been proven that the use of an internal wave-plate coupling the modes with orthogonal polarization is capable of locking the frequencies of the emerging beams to half the pump frequency, as well as reducing the phase-difference diffusion, at the expense of reducing the entanglement levels. In this work we characterize theoretically an alternative locking mechanism: the injection of a laser at half the pump frequency. Apart from being less invasive, this method should allow for an easier real-time experimental control. We show that such an injection is capable of generating the desired phase locking between the emerging beams, while still allowing for large levels of entanglement. Moreover, we find an additional region of the parameter space (at relatively large injections) where a mode with well defined polarization is in a highly amplitude-squeezed state.

  7. Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects.

    PubMed

    Balashov, Victor; Cherkasova, Maria; Kruglov, Kirill; Kudriavtsev, Arseny; Masherov, Pavel; Mogulkin, Andrey; Obukhov, Vladimir; Riaby, Valentin; Svotina, Victoria

    2017-08-01

    A theoretical-experimental research has been carried out to determine the characteristics of a radio frequency (RF) ion source for the generation of a weakly expanding wedge-shaped xenon ion beam. Such ion beam geometry is of interest as a prototype of an on-board ion injector for contactless "ion shepherding" by service spacecraft to remove large space debris objects from geostationary orbits. The wedge shape of the ion beam increases its range. The device described herein comprises an inductive gas discharge chamber and a slit-type three-electrode ion extraction grid (IEG) unit. Calculations of accelerating cell geometries and ion trajectories determined the dependence of beam expansion half-angle on normalized perveance based on the measurements of the spatial distributions of the xenon plasma parameters at the IEG entrance for a xenon flow rate q ≈ 0.2 mg/s and an incident RF power P in ≤ 250 W at a driving frequency f = 2 MHz. Experimental studies showed that the ion beam, circular at the IEG exit, accepted the elliptical form at the distance of 580 mm with half-angle of beam expansion across IEG slits about 2°-3° and close to 0° along them. Thus, the obtained result proved the possibility of creating a new-generation on-board ion injector that could be used in spacecrafts for removal of debris.

  8. THEORETICAL p-MODE OSCILLATION FREQUENCIES FOR THE RAPIDLY ROTATING {delta} SCUTI STAR {alpha} OPHIUCHI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deupree, Robert G., E-mail: bdeupree@ap.smu.ca

    2011-11-20

    A rotating, two-dimensional stellar model is evolved to match the approximate conditions of {alpha} Oph. Both axisymmetric and nonaxisymmetric oscillation frequencies are computed for two-dimensional rotating models which approximate the properties of {alpha} Oph. These computed frequencies are compared to the observed frequencies. Oscillation calculations are made assuming the eigenfunction can be fitted with six Legendre polynomials, but comparison calculations with eight Legendre polynomials show the frequencies agree to within about 0.26% on average. The surface horizontal shape of the eigenfunctions for the two sets of assumed number of Legendre polynomials agrees less well, but all calculations show significant departuresmore » from that of a single Legendre polynomial. It is still possible to determine the large separation, although the small separation is more complicated to estimate. With the addition of the nonaxisymmetric modes with |m| {<=} 4, the frequency space becomes sufficiently dense that it is difficult to comment on the adequacy of the fit of the computed to the observed frequencies. While the nonaxisymmetric frequency mode splitting is no longer uniform, the frequency difference between the frequencies for positive and negative values of the same m remains 2m times the rotation rate.« less

  9. Perceptual Space of Superimposed Dual-Frequency Vibrations in the Hands.

    PubMed

    Hwang, Inwook; Seo, Jeongil; Choi, Seungmoon

    2017-01-01

    The use of distinguishable complex vibrations that have multiple spectral components can improve the transfer of information by vibrotactile interfaces. We investigated the qualitative characteristics of dual-frequency vibrations as the simplest complex vibrations compared to single-frequency vibrations. Two psychophysical experiments were conducted to elucidate the perceptual characteristics of these vibrations by measuring the perceptual distances among single-frequency and dual-frequency vibrations. The perceptual distances of dual-frequency vibrations between their two frequency components along their relative intensity ratio were measured in Experiment I. The estimated perceptual spaces for three frequency conditions showed non-linear perceptual differences between the dual-frequency and single-frequency vibrations. A perceptual space was estimated from the measured perceptual distances among ten dual-frequency compositions and five single-frequency vibrations in Experiment II. The effect of the component frequency and the frequency ratio was revealed in the perceptual space. In a percept of dual-frequency vibration, the lower frequency component showed a dominant effect. Additionally, the perceptual difference among single-frequency and dual-frequency vibrations were increased with a low relative difference between two frequencies of a dual-frequency vibration. These results are expected to provide a fundamental understanding about the perception of complex vibrations to enrich the transfer of information using vibrotactile stimuli.

  10. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  11. The effect of space allowance and cage size on laying hens housed in furnished cages, Part II: Behavior at the feeder.

    PubMed

    Widowski, T M; Caston, L J; Casey-Trott, T M; Hunniford, M E

    2017-09-01

    Standards for feeder (a.k.a. feed trough) space allowance (SA) are based primarily on studies in conventional cages where laying hens tend to eat simultaneously, limiting feeder space. Large furnished cages (FC) offer more total space and opportunities to perform a greater variety of behaviors, which may affect feeding behavior and feeder space requirements. Our objective was to determine the effects of floor/feeder SA on behavior at the feeder. LSL-Lite hens were housed in FC equipped with a nest, perches, and a scratch mat. Hens with SA of either 520 cm2 (Low; 8.9 cm feeder space/hen) or 748 cm2 (High; 12.8 cm feeder space/hen) per bird resulted in groups of 40 vs. 28 birds in small FC (SFC) and 80 vs. 55 in large FC (LFC). Chain feeders ran at 0500, 0800, 1100, 1400, and 1700 with lights on at 0500 and off at 1900 hours. Digital recordings of FC were scanned at chain feeder onset and every 15 min for one h after (5 scans × 5 feeding times × 2 d) to count the number of birds with their head in the feeder. All occurrences of aggressive pecks and displacements during 2 continuous 30-minute observations at 0800 h and 1700 h also were counted. Mixed model repeated analyses tested the effects of SA, cage size, and time on the percent of hens feeding, and the frequency of aggressive pecks and displacements. Surprisingly, the percent of birds feeding simultaneously was similar regardless of cage size (LFC: 23.0 ± 0.9%; SFC: 24.0 ± 1.0%; P = 0.44) or SA (Low: 23.8 ± 0.9%; High: 23.3 ± 1.0%; P = 0.62). More birds were observed feeding at 1700 h (35.3 ± 0.1%) than any at other time (P < 0.001). Feeder use differed by cage area (nest, middle, or scratch) over the d (P < 0.001). The frequency of aggressive pecks was low overall and not affected by SA or cage size. Frequency of displacements was also low but greater at Low SA (P = 0.001). There was little evidence of feeder competition at the Low SA in this study. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  12. Twisted Radio Waves and Twisted Thermodynamics

    PubMed Central

    Kish, Laszlo B.; Nevels, Robert D.

    2013-01-01

    We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta ‘twisted wave’ mode, to the far field in free space is therefore not possible. PMID:23424647

  13. Applicability of Taylor's hypothesis in thermally driven turbulence

    PubMed Central

    Verma, Mahendra K.

    2018-01-01

    In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor’s hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov’s spectrum (k−5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov’s spectrum (f−5/3), thus validating Taylor’s hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence. PMID:29765668

  14. Applicability of Taylor's hypothesis in thermally driven turbulence

    NASA Astrophysics Data System (ADS)

    Kumar, Abhishek; Verma, Mahendra K.

    2018-04-01

    In this paper, we show that, in the presence of large-scale circulation (LSC), Taylor's hypothesis can be invoked to deduce the energy spectrum in thermal convection using real-space probes, a popular experimental tool. We perform numerical simulation of turbulent convection in a cube and observe that the velocity field follows Kolmogorov's spectrum (k-5/3). We also record the velocity time series using real-space probes near the lateral walls. The corresponding frequency spectrum exhibits Kolmogorov's spectrum (f-5/3), thus validating Taylor's hypothesis with the steady LSC playing the role of a mean velocity field. The aforementioned findings based on real-space probes provide valuable inputs for experimental measurements used for studying the spectrum of convective turbulence.

  15. Tropical rain mapping radar on the Space Station

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Li, Fuk

    1989-01-01

    The conceptual design for a tropical rain mapping radar for flight on the manned Space Station is discussed. In this design the radar utilizes a narrow, dual-frequency (9.7 GHz and 24.1 GHz) beam, electronically scanned antenna to achieve high spatial (4 km) and vertical (250 m) resolutions and a relatively large (800 km) cross-track swath. An adaptive scan strategy will be used for better utilization of radar energy and dwell time. Such a system can detect precipitation at rates of up to 100 mm/hr with accuracies of roughly 15 percent. With the proposed space-time sampling strategy, the monthly averaged rainfall rate can be estimated to within 8 percent, which is essential for many climatological studies.

  16. System for plotting subsoil structure and method therefor

    NASA Technical Reports Server (NTRS)

    Narasimhan, K. Y.; Nathan, R.; Parthasarathy, S. P. (Inventor)

    1980-01-01

    Data for use in producing a tomograph of subsoil structure between boreholes is derived by pacing spaced geophones in one borehole, on the Earth surface if desired, and by producing a sequence of shots at spaced apart locations in the other borehole. The signals, detected by each of the geophones from the various shots, are processed either on a time of arrival basis, or on the basis of signal amplitude, to provide information of the characteristics of a large number of incremental areas between the boreholes. Such information is useable to produce a tomograph of the subsoil structure between the boreholes. By processing signals of relatively high frequencies, e.g., up to 100 Hz, and by closely spacing the geophones, a high resolution tomograph can be produced.

  17. Low-Frequency Waves in HF Heating of the Ionosphere

    NASA Astrophysics Data System (ADS)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  18. Directed search for continuous gravitational waves from the Galactic center

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-11-01

    We present the results of a directed search for continuous gravitational waves from unknown, isolated neutron stars in the Galactic center region, performed on two years of data from LIGO’s fifth science run from two LIGO detectors. The search uses a semicoherent approach, analyzing coherently 630 segments, each spanning 11.5 hours, and then incoherently combining the results of the single segments. It covers gravitational wave frequencies in a range from 78 to 496 Hz and a frequency-dependent range of first-order spindown values down to -7.86×10-8Hz/s at the highest frequency. No gravitational waves were detected. The 90% confidence upper limits on the gravitational wave amplitude of sources at the Galactic center are ˜3.35×10-25 for frequencies near 150 Hz. These upper limits are the most constraining to date for a large-parameter-space search for continuous gravitational wave signals.

  19. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations.

    PubMed

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles

    2010-10-01

    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  20. An all digital low data rate communication system

    NASA Technical Reports Server (NTRS)

    Chen, C.; Fan, M.

    1973-01-01

    The advent of digital hardwares has made it feasible to implement many communication system components digitally. With the exception of frequency down conversion, the proposed low data rate communication system uses digital hardwares completely. Although the system is designed primarily for deep space communications with large frequency uncertainty and low signal-to-noise ratio, it is also suitable for other low data rate applications with time-shared operation among a number of channels. Emphasis is placed on the fast Fourier transform receiver and the automatic frequency control via digital filtering. The speed available from the digital system allows sophisticated signal processing to reduce frequency uncertainty and to increase the signal-to-noise ratio. The practical limitations of the system such as the finite register length are examined. It is concluded that the proposed all-digital system is not only technically feasible but also has potential cost reduction over the existing receiving systems.

  1. Cytogenetic effects of space radiation in lymphocytes of MIR-18 crews

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; George, K.; Johnson, A. S.; Tavakoli, A.; Durante, M.; Fedorenko, B. S.

    1997-01-01

    For assessing health risk, the measurement of physical dose received during a space mission, as well as the LETs, energies and charges of particles is important. It is also important to obtain quantitative information regarding the effectiveness of space radiation in causing damage to critical biological targets, e.g., chromosomes, since at present the estimated uncertainty of biological effects of space radiation is more than a factor of two. Such large uncertainty makes accurate health risk assessment very difficult. For this very reason, a study on cytogenetic effects of space radiation in human lymphocytes was proposed and done for MIR-18 mission. This study used FISH technique to score chromosomal translocations and C-banding method to determine dicentrics. Growth kinetics of cells and SCE were examined to ensure that chromosomal aberrations were scored in first mitosis and were induced not by chemical mutagens. Our results showed that chromosomal aberration frequency of post-flight samples was significantly higher than that of pre-flight ones and that SCE frequency was similar between pre- and post-flight samples. Based on a dose-response curve of preflight samples exposed to gamma rays, the absorbed dose received by crews during the mission was estimated to be about 14.5 cSv. Because the absorbed dose measured by physical dosimeters is 4.16 cGy for the entire mission, the RBE is about 3.5.

  2. Analytical Bistatic k Space Images Compared to Experimental Swept Frequency EAR Images

    NASA Technical Reports Server (NTRS)

    Shaeffer, John; Cooper, Brett; Hom, Kam

    2004-01-01

    A case study of flat plate scattering images obtained by the analytical bistatic k space and experimental swept frequency ISAR methods is presented. The key advantage of the bistatic k space image is that a single excitation is required, i.e., one frequency I one angle. This means that prediction approaches such as MOM only need to compute one solution at a single frequency. Bistatic image Fourier transform data are obtained by computing the scattered field at various bistatic positions about the body in k space. Experimental image Fourier transform data are obtained from the measured response to a bandwidth of frequencies over a target rotation range.

  3. Observations of discrete magnetosonic waves off the magnetic equator

    DOE PAGES

    Zhima, Zeren; Chen, Lunjin; Fu, Huishan; ...

    2015-11-23

    Fast mode magnetosonic waves are typically confined close to the magnetic equator and exhibit harmonic structures at multiples of the local, equatorial proton cyclotron frequency. Here, we report observations of magnetosonic waves well off the equator at geomagnetic latitudes from -16.5°to -17.9° and L shell ~2.7–4.6. The observed waves exhibit discrete spectral structures with multiple frequency spacings. The predominant frequency spacings are ~6 and 9 Hz, neither of which is equal to the local proton cyclotron frequency. Backward ray tracing simulations show that the feature of multiple frequency spacings is caused by propagation from two spatially narrow equatorial source regionsmore » located at L ≈ 4.2 and 3.7. The equatorial proton cyclotron frequencies at those two locations match the two observed frequency spacings. Finally, our analysis provides the first observations of the harmonic nature of magnetosonic waves well away from the equatorial region and suggests that the propagation from multiple equatorial sources contributes to these off-equatorial magnetosonic emissions with varying frequency spacings.« less

  4. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  5. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2017-04-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.

  6. Characteristics of electron-wave interaction in orotron-DRG type devices at the higher modes

    NASA Astrophysics Data System (ADS)

    Shmatko, A. A.

    The excitation of oscillations in an orotron/diffraction-radiation generator at the higher longitudinal modes of the open resonator is analyzed with allowance for the space-charge field of the electron beam, represented by Fourier series in time harmonics of the oscillation frequency. Analytical expressions for the amplitude-frequency characteristics of the starting regime are obtained, and the case of large oscillation amplitudes (where nonlinear phenomena are significant) is analyzed numerically. The collective interaction of beam electrons and the resonator field is examined. Oscillation zones are determined, and the main characteristics of oscillation excitation at the higher modes are established.

  7. Link Correlation Based Transmit Sector Antenna Selection for Alamouti Coded OFDM

    NASA Astrophysics Data System (ADS)

    Ahn, Chang-Jun

    In MIMO systems, the deployment of a multiple antenna technique can enhance the system performance. However, since the cost of RF transmitters is much higher than that of antennas, there is growing interest in techniques that use a larger number of antennas than the number of RF transmitters. These methods rely on selecting the optimal transmitter antennas and connecting them to the respective. In this case, feedback information (FBI) is required to select the optimal transmitter antenna elements. Since FBI is control overhead, the rate of the feedback is limited. This motivates the study of limited feedback techniques where only partial or quantized information from the receiver is conveyed back to the transmitter. However, in MIMO/OFDM systems, it is difficult to develop an effective FBI quantization method for choosing the space-time, space-frequency, or space-time-frequency processing due to the numerous subchannels. Moreover, MIMO/OFDM systems require antenna separation of 5 ∼ 10 wavelengths to keep the correlation coefficient below 0.7 to achieve a diversity gain. In this case, the base station requires a large space to set up multiple antennas. To reduce these problems, in this paper, we propose the link correlation based transmit sector antenna selection for Alamouti coded OFDM without FBI.

  8. Effects of Coherence and Polarization in Radiation and in Scattering Processes

    DTIC Science & Technology

    2012-02-08

    Beams in the Space-time and Space-frequency Domains”, Opt. Lett. 34, 2936- 2938 , (2009). 11. Lahiri and E. Wolf, “Beam Condition for Scattering on...in the space- time and space-frequency domains”, Opt. Lett. 34, 2936- 2938 , (2009). Although the theories of polarization in the space-time and space

  9. Comparison of electric dipole and magnetic loop antennas for exciting whistler modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenzel, R. L.; Urrutia, J. M.

    2016-08-15

    The excitation of low frequency whistler modes from different antennas has been investigated experimentally in a large laboratory plasma. One antenna consists of a linear electric dipole oriented across the uniform ambient magnetic field B{sub 0}. The other antenna is an elongated loop with dipole moment parallel to B{sub 0}. Both antennas are driven by the same rf generator which produces a rf burst well below the electron cyclotron frequency. The antenna currents as well as the wave magnetic fields from each antenna are measured. Both the antenna currents and the wave fields of the loop antenna exceed that ofmore » the electric dipole by two orders of magnitude. The conclusion is that loop antennas are far superior to dipole antennas for exciting large amplitude whistler modes, a result important for active wave experiments in space plasmas.« less

  10. Mechanism of tonal noise generation from circular cylinder with spiral fin

    NASA Astrophysics Data System (ADS)

    Yamashita, Ryo; Hayashi, Hidechito; Okumura, Tetsuya; Hamakawa, Hiromitsu

    2014-12-01

    The pitch of the spiral finned tube influences seriously to the acoustic resonance in the heat exchanger. In this research, the flow characteristics in relating to the aeolian tone from the finned cylinder are studied by the numerical simulation. It is observed that the tonal noise generated from the finned tube at two pitch spaces. The ratio of the fin pitch to the cylinder diameter is changed at 0.11 and 0.27. The tone level increases and the frequency decreases with the pitch shorter. The separation flow from the cylinder generates the span-wise vortices, Karman vortices, and the separation flow from the fin generates the stream-wise vortices. When the fin pitch ratio is small, the stream-wise vortices line up to span-wise and become weak rapidly. Only the Karman vortices are remained and integrate in span. So the Karman vortex became large. This causes the low frequency and the large aeolian tone.

  11. The basic thermodynamics of Earth's radiation budget

    NASA Astrophysics Data System (ADS)

    Ward, Peter L.

    2015-04-01

    The microscopic bonds that hold matter together oscillate about a potential energy minimum between attractive and repulsive electrostatic forces, giving rise to macroscopic temperature. When a body of matter reaches thermal equilibrium, the spectrum of frequencies and associated amplitudes of oscillation on the body's surface are described by Planck's empirical law, which shows that heating matter increases the amplitude of these oscillations at all frequencies and shifts the peak frequency to a higher value. The oscillating motion of charge on the surface of matter induces an electromagnetic field in air or space containing the same frequencies (colors) and amplitudes (brightness) flowing away from the surface just as a radio station transmits its frequency and amplitude. Numerous frequencies coexist in an electromagnetic field over a broad spectral range, but each frequency does not interact with any other frequencies and does not change as it propagates over galactic distances except for Doppler effects. Amplitudes (intensities, brightness), on the other hand, decrease by one over the square of the distance traveled as they spread out over the surface of an expanding sphere. Planck (1900) showed that in air and space radiant (thermal) energy at each frequency is equal to the frequency times a constant (E=hν), an expression used widely in photochemistry to designate the thermal energy required to cause a photochemical reaction. High-frequency ultraviolet radiation causes sunburn; lower frequency visible radiation powers photosynthesis; much lower frequency infrared radiation cannot cause either, no matter how large the amplitude or the amount. While many frequencies coexist in air or space, neither frequencies nor energies interact or are additive until in the presence of matter. According to E=hν, the solar, ultraviolet thermal energy that reaches Earth when ozone is depleted is at least 48 times more energetic (hotter) than infrared energy absorbed by greenhouse gases. There simply is not enough thermal energy absorbed by greenhouse gases to have a major effect on global warming. Computer programs used to quantify greenhouse-gas theory overestimate infrared energies because they assume that thermal energy travels in space as waves, for which energy is a function of amplitude squared, and that energies are additive over bandwidth, both properties that are very different from the observed behavior of radiation in the atmosphere. Heat only flows from hot to cold; it cannot flow from a colder layer in the atmosphere to a warmer Earth, as assumed in many radiation budgets (e.g. Wild et al., 2013); you cannot get warmer by standing next to a cold stove. According to Planck's Law, radiation from a body of matter does not have high enough frequencies or amplitudes to warm the same body, as is assumed by greenhouse-gas theory. Warming radiation must come from a warmer body. Detailed observations of global warming, including the recent hiatus, are explained much more directly and clearly by ozone depletion theory, where less ozone in the stratosphere allows more high-energy, solar ultraviolet radiation to reach Earth, cooling the stratosphere, warming the oceans. More details at ozonedepletiontheory.info plus a video at tinyurl.com/ozone-depletion-theory.

  12. Underwater sound from vessel traffic reduces the effective communication range in Atlantic cod and haddock.

    PubMed

    Stanley, Jenni A; Van Parijs, Sofie M; Hatch, Leila T

    2017-11-07

    Stellwagen Bank National Marine Sanctuary is located in Massachusetts Bay off the densely populated northeast coast of the United States; subsequently, the marine inhabitants of the area are exposed to elevated levels of anthropogenic underwater sound, particularly due to commercial shipping. The current study investigated the alteration of estimated effective communication spaces at three spawning locations for populations of the commercially and ecologically important fishes, Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus). Both the ambient sound pressure levels and the estimated effective vocalization radii, estimated through spherical spreading models, fluctuated dramatically during the three-month recording periods. Increases in sound pressure level appeared to be largely driven by large vessel activity, and accordingly exhibited a significant positive correlation with the number of Automatic Identification System tracked vessels at the two of the three sites. The near constant high levels of low frequency sound and consequential reduction in the communication space observed at these recording sites during times of high vocalization activity raises significant concerns that communication between conspecifics may be compromised during critical biological periods. This study takes the first steps in evaluating these animals' communication spaces and alteration of these spaces due to anthropogenic underwater sound.

  13. Asteroseismology of Procyon with SOPHIE

    NASA Astrophysics Data System (ADS)

    Mosser, B.; Bouchy, F.; Martić, M.; Appourchaux, T.; Barban, C.; Berthomieu, G.; Garcia, R. A.; Lebrun, J. C.; Michel, E.; Provost, J.; Thévenin, F.; Turck-Chièze, S.

    2008-01-01

    Context: This paper reports a 9-night asteroseismic observation program conducted in January 2007 with the new spectrometer sophie at the OHP 193-cm telescope, on the F5 IV-V target Procyon A. Aims: This first asteroseismic program with sophie was intended to test the performance of the instrument with a bright but demanding asteroseismic target and was part of a multisite network. Methods: The sophie spectra have been reduced with the data reduction software provided by OHP. The Procyon asteroseismic data were then analyzed with statistical tools. The asymptotic analysis has been conducted considering possible curvature in the échelle diagram analysis. Results: These observations have proven the efficient performance of sophie used as an asteroseismometer, and succeed in a clear detection of the large spacing. An échelle diagram based on the 54-μHz spacing shows clear ridges. Identification of the peaks exhibits large spacings varying from about 52 μHz to 56 μHz. Outside the frequency range [0.9, 1.0 mHz] where the identification is confused, the large spacing increases at a rate of about dΔν/dn ≃ 0.2 μHz. This may explain some of the different values of the large spacing obtained by previous observations. Based on observations collected with the sophie échelle spectrometer mounted on the 1.93-m telescope at OHP, France (program 06B.PNPS.BOU); http://www.obs-hp.fr/www/guide/ sophie/sophie-eng.html Table of radial velocity measurements is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/478/197

  14. Modal vector estimation for closely spaced frequency modes

    NASA Technical Reports Server (NTRS)

    Craig, R. R., Jr.; Chung, Y. T.; Blair, M.

    1982-01-01

    Techniques for obtaining improved modal vector estimates for systems with closely spaced frequency modes are discussed. In describing the dynamical behavior of a complex structure modal parameters are often analyzed: undamped natural frequency, mode shape, modal mass, modal stiffness and modal damping. From both an analytical standpoint and an experimental standpoint, identification of modal parameters is more difficult if the system has repeated frequencies or even closely spaced frequencies. The more complex the structure, the more likely it is to have closely spaced frequencies. This makes it difficult to determine valid mode shapes using single shaker test methods. By employing band selectable analysis (zoom) techniques and by employing Kennedy-Pancu circle fitting or some multiple degree of freedom (MDOF) curve fit procedure, the usefulness of the single shaker approach can be extended.

  15. Skin friction drag reduction on a flat plate turbulent boundary layer using synthetic jets

    NASA Astrophysics Data System (ADS)

    Belanger, Randy; Boom, Pieter D.; Hanson, Ronald E.; Lavoie, Philippe; Zingg, David W.

    2017-11-01

    In these studies, we investigate the effect of mild synthetic jet actuation on a flat plate turbulent boundary layer with the goal of interacting with the large scales in the log region of the boundary layer and manipulating the overall skin friction. Results will be presented from both large eddy simulations (LES) and wind tunnel experiments. In the experiments, a large parameter space of synthetic jet frequency and amplitude was studied with hot film sensors at select locations behind a pair of synthetic jets to identify the parameters that produce the greatest changes in the skin friction. The LES simulations were performed for a selected set of parameters and provide a more complete evaluation of the interaction between the boundary layer and synthetic jets. Five boundary layer thicknesses downstream, the skin friction between the actuators is generally found to increase, while regions of reduced skin friction persist downstream of the actuators. This pattern is reversed for forcing at low frequency. Overall, the spanwise-averaged skin friction is increased by the forcing, except when forcing at high frequency and low amplitude, for which a net skin friction reduction persists downstream. The physical interpretation of these results will be discussed. The financial support of Airbus is gratefully acknowledged.

  16. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... five applications for GSO-like space station licenses on file with the Commission in a particular frequency band, or a total of five licensed-but-unbuilt GSO-like space stations in a particular frequency...-like space station license in that frequency band. (b) Applicants with an application for one NGSO-like...

  17. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... five applications for GSO-like space station licenses on file with the Commission in a particular frequency band, or a total of five licensed-but-unbuilt GSO-like space stations in a particular frequency...-like space station license in that frequency band. (b) Applicants with an application for one NGSO-like...

  18. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... five applications for GSO-like space station licenses on file with the Commission in a particular frequency band, or a total of five licensed-but-unbuilt GSO-like space stations in a particular frequency...-like space station license in that frequency band. (b) Applicants with an application for one NGSO-like...

  19. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... five applications for GSO-like space station licenses on file with the Commission in a particular frequency band, or a total of five licensed-but-unbuilt GSO-like space stations in a particular frequency...-like space station license in that frequency band. (b) Applicants with an application for one NGSO-like...

  20. 47 CFR 25.159 - Limits on pending applications and unbuilt satellite systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... five applications for GSO-like space station licenses on file with the Commission in a particular frequency band, or a total of five licensed-but-unbuilt GSO-like space stations in a particular frequency...-like space station license in that frequency band. (b) Applicants with an application for one NGSO-like...

  1. Theoretical characterization of the potential energy surface for NH + NO

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1993-01-01

    The potential energy surface for NH + NO was characterized using complete active space self-consistent field (CASSCF) gradient calculation to determine the stationary point geometries and frequencies followed by CASSCF/internally contracted configuration interaction calculations to refine the energetics. The present results are in qualitative accord with the BAC-MP4 calculations, but there are differences as large as 8 kcal/mol in the detailed energetics.

  2. Low Noise Infrasonic Sensor System with High Reduction of Natural Background Noise

    DTIC Science & Technology

    2006-05-01

    local processing allows a variety of options both in the array geometry and signal processing. A generic geometry is indicated in Figure 2. Geometric...higher frequency sound detected . Table 1 provides a comparison of piezocable and microbarograph based arrays . Piezocable Sensor Local Signal ...aliasing associated with the current infrasound sensors used at large spacing in the present designs of infrasound monitoring arrays , particularly in the

  3. Terahertz Spectroscopy and Global Analysis of the Rotational Spectrum of Doubly Deuterated Amidogen Radical ND2

    NASA Astrophysics Data System (ADS)

    Melosso, Mattia; Degli Esposti, Claudio; Dore, Luca

    2017-11-01

    The deuteration mechanism of molecules in the interstellar medium is still being debated. Observations of deuterium-bearing species in several astronomical sources represent a powerful tool to improve our understanding of the interstellar chemistry. The doubly deuterated form of the astrophysically interesting amidogen radical could be a target of detection in space. In this work, the rotational spectrum of the ND2 radical in its ground vibrational and electronic {X}2{B}1 state has been investigated between 588 and 1131 GHz using a frequency modulation millimeter/submillimeter-wave spectrometer. The ND2 molecule has been produced in a free-space glass absorption cell by discharging a mixture of ND3 and Ar. Sixty-four new transition frequencies involving J values from 2 to 5 and K a values from 0 to 4 have been measured. A global analysis including all the previous field-free pure rotational data has been performed, allowing for a more precise determination of a very large number of spectroscopic parameters. Accurate predictions of rotational transition frequencies of ND2 are now available from a few gigahertz up to several terahertz.

  4. Power components for the Space Station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of the Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  5. Power components for the space station 20-kHz power distribution system

    NASA Technical Reports Server (NTRS)

    Renz, David D.

    1988-01-01

    Since 1984, NASA Lewis Research Center was developing high power, high frequency space power components as part of The Space Station Advanced Development program. The purpose of The Advanced Development program was to accelerate existing component programs to ensure their availability for use on the Space Station. These components include a rotary power transfer device, remote power controllers, remote bus isolators, high power semiconductor, a high power semiconductor package, high frequency-high power cable, high frequency-high power connectors, and high frequency-high power transformers. All the components were developed to the prototype level and will be installed in the Lewis Research Center Space Station power system test bed.

  6. Earth-based remote sensing of planetary surfaces and atmospheres at radio wavelengths

    NASA Technical Reports Server (NTRS)

    Dickel, J. R.

    1982-01-01

    Two reasons for remote sensing from the Earth are given: (1) space exploration, particularly below the surfaces or underneath cloud layers, is limited to only a very few planets; and (2) a program of regular monitoring, currently impractical with a limited number of space probes, is required. Reflected solar and nonthermal radiation are discussed. Relativistic electrons, trapped in large magnetospheres on Saturn and Jupiter, are discussed. These electrons produce synchrotron radiation and also interact with the ionosphere to produce bursts of low frequency emission. Because most objects are black-bodies, continuum radiometry is emphasized. Spectroscopic techniques and the measurement of nonthermal emission are also discussed.

  7. Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies.

    PubMed

    Hirata, Akimasa; Yanase, Kazuya; Laakso, Ilkka; Chan, Kwok Hung; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi; Conil, Emmanuelle; Wiart, Joe

    2012-12-21

    According to the international guidelines, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric of basic restriction for radio-frequency whole-body exposure. It is well known that the WBA-SAR largely depends on the frequency of the incident wave for a given incident power density. The frequency at which the WBA-SAR becomes maximal is called the 'resonance frequency'. Our previous study proposed a scheme for estimating the WBA-SAR at this resonance frequency based on an analogy between the power absorption characteristic of human models in free space and that of a dipole antenna. However, a scheme for estimating the WBA-SAR in a grounded human has not been discussed sufficiently, even though the WBA-SAR in a grounded human is larger than that in an ungrounded human. In this study, with the use of the finite-difference time-domain method, the grounded condition is confirmed to be the worst-case exposure for human body models in a standing posture. Then, WBA-SARs in grounded human models are calculated at their respective resonant frequencies. A formula for estimating the WBA-SAR of a human standing on the ground is proposed based on an analogy with a quarter-wavelength monopole antenna. First, homogenized human body models are shown to provide the conservative WBA-SAR as compared with anatomically based models. Based on the formula proposed here, the WBA-SARs in grounded human models are approximately 10% larger than those in free space. The variability of the WBA-SAR was shown to be ±30% even for humans of the same age, which is caused by the body shape.

  8. Contrasting effects of visiting urban green-space and the countryside on biodiversity knowledge and conservation support.

    PubMed

    Coldwell, Deborah F; Evans, Karl L

    2017-01-01

    Conservation policy frequently assumes that increasing people's exposure to green-space enhances their knowledge of the natural world and desire to protect it. Urban development is, however, considered to be driving declining connectedness to nature. Despite this the evidence base supporting the assumption that visiting green-spaces promotes biodiversity knowledge and conservation support, and the impacts of urbanization on these relationships, is surprisingly limited. Using data from door-to-door surveys of nearly 300 residents in three pairs of small and large urban areas in England we demonstrate that people who visit green-space more regularly have higher biodiversity knowledge and support for conservation (measured using scales of pro-environmental behavior). Crucially these relationships only arise when considering visits to the countryside and not the frequency of visits to urban green-space. These patterns are robust to a suite of confounding variables including nature orientated motivations for visiting green-space, socio-economic and demographic factors, garden-use and engagement with natural history programs. Despite this the correlations that we uncover cannot unambiguously demonstrate that visiting the countryside improves biodiversity knowledge and conservation support. We consider it likely, however, that two mechanisms operate through a positive feedback loop i.e. increased visits to green-space promote an interest in and knowledge of biodiversity and support for conservation, which in turn further increase the desire to visit green-space and experience nature. The intensity of urbanization around peoples' homes, but not city size, is negatively associated with their frequency of countryside visits and biodiversity knowledge. Designing less intensely urbanized cities with good access to the countryside, combined with conservation policies that promote access to the countryside thus seems likely to maximize urban residents' biodiversity knowledge and support for conservation.

  9. Green space is associated with walking and moderate-to-vigorous physical activity (MVPA) in middle-to-older-aged adults: findings from 203 883 Australians in the 45 and Up Study.

    PubMed

    Astell-Burt, Thomas; Feng, Xiaoqi; Kolt, Gregory S

    2014-03-01

    Green space is widely hypothesised to promote physical activity. Few studies, however, examine whether this is the case for walking and moderate-to-vigorous physical activity (MVPA). We investigated to what extent neighbourhood green space was associated with weekly participation and frequency of walking and MVPA in a large cross-sectional survey of Australian adults 45 years and older. Logit and negative binomial regression were used to estimate the degree of association between walking, MVPA and neighbourhood green space in a sample of 203 883 adults from the Australian 45 and Up Study. Walking and MVPA were measured using the Active Australia Survey. Green space was measured as a percentage of the total land-use within 1 km radius of residence. We controlled for a range of individual and neighbourhood characteristics. 86.6% of the sample walked and 85.8% participated in MVPA at least once a week. These rates fell steeply with age. Compared with residents of neighbourhoods containing 0-20% green space, those in greener areas were significantly more likely to walk and participate in MVPAs at least once a week (trend for both p<0.001). Among those participating at least once a week, residents of neighbourhoods containing 80%+ green space participated with a greater frequency of walking (incidence rate ratio (IRR) 1.09, 95% CI 1.05 to 1.13) and MVPA (IRR 1.10, 95% CI 1.05 to 1.15). Our findings suggest that the amount of green space available to adults in middle-to-older age within their neighbourhood environments could help to promote walking and MVPA.

  10. Contrasting effects of visiting urban green-space and the countryside on biodiversity knowledge and conservation support

    PubMed Central

    Coldwell, Deborah F.; Evans, Karl L.

    2017-01-01

    Conservation policy frequently assumes that increasing people’s exposure to green-space enhances their knowledge of the natural world and desire to protect it. Urban development is, however, considered to be driving declining connectedness to nature. Despite this the evidence base supporting the assumption that visiting green-spaces promotes biodiversity knowledge and conservation support, and the impacts of urbanization on these relationships, is surprisingly limited. Using data from door-to-door surveys of nearly 300 residents in three pairs of small and large urban areas in England we demonstrate that people who visit green-space more regularly have higher biodiversity knowledge and support for conservation (measured using scales of pro-environmental behavior). Crucially these relationships only arise when considering visits to the countryside and not the frequency of visits to urban green-space. These patterns are robust to a suite of confounding variables including nature orientated motivations for visiting green-space, socio-economic and demographic factors, garden-use and engagement with natural history programs. Despite this the correlations that we uncover cannot unambiguously demonstrate that visiting the countryside improves biodiversity knowledge and conservation support. We consider it likely, however, that two mechanisms operate through a positive feedback loop i.e. increased visits to green-space promote an interest in and knowledge of biodiversity and support for conservation, which in turn further increase the desire to visit green-space and experience nature. The intensity of urbanization around peoples’ homes, but not city size, is negatively associated with their frequency of countryside visits and biodiversity knowledge. Designing less intensely urbanized cities with good access to the countryside, combined with conservation policies that promote access to the countryside thus seems likely to maximize urban residents’ biodiversity knowledge and support for conservation. PMID:28334034

  11. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-13

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  12. An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less

  13. Interpretation of frequency sweeping of n=0 mode in JET

    NASA Astrophysics Data System (ADS)

    Berk, H. L.

    2006-04-01

    Persistent rapid up and down frequency chirping modes with a toroidal mode number of zero (n=0) are observed in the JET tokamak when energetic ions, in the range of several hundred keV, are created by high field side ion cyclotron resonance frequency heating. Fokker-Planck calculations demonstrate that the heating method enables the formation of an energetically inverted ion distribution which supplies the free energy for the ions to excite a global geodesic acoustic mode (GGAM). The large frequency shifts of this mode are attributed to the formation of phase space structures whose frequencies, which are locked to an ion orbit resonance frequency, are forced to continually shift so that energetic particle energy can be released to counterbalance the energy dissipation present in the background plasma. In collaboration with C.J. Boswell, MIT; D. Borba, A.C.A. Figueiredo, Center for Nuclear Fusion Association; T. Johnson, Alfven Laboratory, KTH; M.F.F. Nave, Center for Nuclear Fusion Association; S.D. Pinches, Max Planck Institute for Plasma Physics; S.E. Sharapov, UKEA Culham Science Centre; and T. Zhou, University of Texas at Austin.

  14. Effect of mask dead space and occlusion of mask holes on delivery of nebulized albuterol.

    PubMed

    Berlinski, Ariel

    2014-08-01

    Infants and children with respiratory conditions are often prescribed bronchodilators. Face masks are used to facilitate the administration of nebulized therapy in patients unable to use a mouthpiece. Masks incorporate holes into their design, and their occlusion during aerosol delivery has been a common practice. Masks are available in different sizes and different dead volumes. The aim of this study was to compare the effect of different degrees of occlusion of the mask holes and different mask dead space on the amount of nebulized albuterol available at the mouth opening in a model of a spontaneously breathing child. A breathing simulator mimicking infant (tidal volume [VT] = 50 mL, breathing frequency = 30 breaths/min, inspiratory-expiratory ratio [I:E] = 1:3), child (VT = 155 mL, breathing frequency = 25 breaths/min, I:E = 1:2), and adult (VT = 500 mL, breathing frequency = 15 breaths/min, I:E = 1:2) breathing patterns was connected to a collection filter hidden behind a face plate. A pediatric size mask and an adult size mask connected to a continuous output jet nebulizer were sealed to the face plate. Three nebulizers were loaded with albuterol sulfate (2.5 mg/3 mL) and operated with 6 L/min compressed air for 5 min. Experiments were repeated with different degrees of occlusion (0%, 50%, and 90%). Albuterol was extracted from the filter and measured with a spectrophotometer at 276 nm. Occlusion of the holes in the large mask did not increase the amount of albuterol in any of the breathing patterns. The amount of albuterol captured at the mouth opening did not change when the small mask was switched to the large mask, except with the breathing pattern of a child, and when the holes in the mask were 50% occluded (P = .02). Neither decreasing the dead space of the mask nor occluding the mask holes increased the amount of nebulized albuterol captured at the mouth opening.

  15. Exploring the Last Electromagnetic Frontier with the Long Wavelength Array (LWA)

    NASA Astrophysics Data System (ADS)

    Kassim, Namir E.; Cohen, A. S.; Crane, P. C.; Gross, C. A.; Hicks, B. C.; Lane, W. M.; Lazio, J.; Polisensky, E. J.; Ray, P. S.; Weiler, K. W.; Clarke, T. E.; Schmitt, H. R.; Hartman, J. M.; Helmboldt, J. F.; Craig, J.; Gerstle, W.; Pihlstrom, Y.; Rickard, L. J.; Taylor, G. B.; Ellingson, S. W.; D'Addario, L. R.; Navarro, R.

    2009-05-01

    Several decades ago, instruments like the Very Large Array (VLA) first opened the GHz frequency sky to high dynamic range imaging. Today, a path-finding VLA 74 MHz system is providing the first sub-arcminute resolution view of the radio universe below 100 MHz, a technical innovation inspiring an emerging suite of large (> 100 km), much more powerful long-wavelength instruments including the Long Wavelength Array (LWA). Similar in philosophy to the VLA and also located in New Mexico, the LWA will be a versatile, user-oriented electronic array designed to open the 20--80 MHz frequency range to detailed exploration for the first time. The LWA's mJy sensitivity and near-arcsecond resolution will surpass, by 2--3 orders of magnitude, the imaging power of previous interferometers in its frequency range. LWA scientific frontiers include: (1) the high-z universe, including distant radio galaxies and clusters - tools for understanding the earliest black holes and the cosmological evolution of Dark Matter and Dark Energy, respectively; (2) acceleration, propagation, and turbulence in the ISM, including the space-distribution and spectrum of Galactic cosmic rays and supernova remnants; (3) planetary, solar, and space science, including space-weather prediction and extra-solar planet searches; and (4) the radio transient universe including GRBs, ultra-high energy cosmic rays, and new sources of unknown origin. Because the LWA will explore one of the most poorly investigated spectral regions the potential for new discoveries is high, and there is a strong synergy with exciting new X-ray and Gamma-ray measurements. The LWA will also provide an unparalleled measure of small-scale ionospheric structure, a pre-requisite for accurate calibration and imaging. This presentation focuses on LWA science, while a companion paper reviews the technical design subjected to Preliminary Design Review in March 2009. Basic research in radio astronomy at the Naval Research Laboratory is supported by 6.1 base funding.

  16. Demonstration of Space Optical Transmitter Development for Multiple High Frequency Bands

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Simons, Rainee; Wintucky, Edwin; Freeman, Jon

    2013-01-01

    As the demand for multiple radio frequency carrier bands continues to grow in space communication systems, the design of a cost-effective compact optical transmitter that is capable of transmitting selective multiple RF bands is of great interest, particularly for NASA Space Communications Network Programs. This paper presents experimental results that demonstrate the feasibility of a concept based on an optical wavelength division multiplexing (WDM) technique that enables multiple microwave bands with different modulation formats and bandwidths to be combined and transmitted all in one unit, resulting in many benefits to space communication systems including reduced size, weight and complexity with corresponding savings in cost. Experimental results will be presented including the individual received RF signal power spectra for the L, C, X, Ku, Ka, and Q frequency bands, and measurements of the phase noise associated with each RF frequency. Also to be presented is a swept RF frequency power spectrum showing simultaneous multiple RF frequency bands transmission. The RF frequency bands in this experiment are among those most commonly used in NASA space environment communications.

  17. Model verification of large structural systems. [space shuttle model response

    NASA Technical Reports Server (NTRS)

    Lee, L. T.; Hasselman, T. K.

    1978-01-01

    A computer program for the application of parameter identification on the structural dynamic models of space shuttle and other large models with hundreds of degrees of freedom is described. Finite element, dynamic, analytic, and modal models are used to represent the structural system. The interface with math models is such that output from any structural analysis program applied to any structural configuration can be used directly. Processed data from either sine-sweep tests or resonant dwell tests are directly usable. The program uses measured modal data to condition the prior analystic model so as to improve the frequency match between model and test. A Bayesian estimator generates an improved analytical model and a linear estimator is used in an iterative fashion on highly nonlinear equations. Mass and stiffness scaling parameters are generated for an improved finite element model, and the optimum set of parameters is obtained in one step.

  18. SPIDER: CMB Polarimetry from the Edge of Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualtieri, R.; et al.

    SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first longduration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled Transition Edge Sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrumentmore » in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowder, Jeff; Cornish, Neil J.; Reddinger, J. Lucas

    This work presents the first application of the method of genetic algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands of galactic binary systems that will be emitting gravitational waves detectable by LISA. The challenge of parameter extraction of such a large number of sources in the LISA data stream requires a search method that can efficiently explore the large parameter spaces involved. As signals of many of these sources will overlap, a global search method is desired. GAs representmore » such a global search method for parameter extraction of multiple overlapping sources in the LISA data stream. We find that GAs are able to correctly extract source parameters for overlapping sources. Several optimizations of a basic GA are presented with results derived from applications of the GA searches to simulated LISA data.« less

  20. Bolometric detector systems for IR and mm-wave space astronomy

    NASA Technical Reports Server (NTRS)

    Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.

    1996-01-01

    Recent developments in bolometric detector systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric detectors. These technologies lend themselves to the fabrication of the large format arrays required for the Far Infrared and Submillimeter Space Telescope (FIRST). The scientific goals and detector requirements of the COBRAS/SAMBA platform that will use infrared bolometers are reviewed and the baseline detector system is described, including the feed optics, the infrared filters, the cold amplifiers and the warm readout electronics.

  1. Control-structure interaction study for the Space Station solar dynamic power module

    NASA Technical Reports Server (NTRS)

    Cheng, J.; Ianculescu, G.; Ly, J.; Kim, M.

    1991-01-01

    The authors investigate the feasibility of using a conventional PID (proportional plus integral plus derivative) controller design to perform the pointing and tracking functions for the Space Station Freedom solar dynamic power module. Using this simple controller design, the control/structure interaction effects were also studied without assuming frequency bandwidth separation. From the results, the feasibility of a simple solar dynamic control solution with a reduced-order model, which satisfies the basic system pointing and stability requirements, is suggested. However, the conventional control design approach is shown to be very much influenced by the order of reduction of the plant model, i.e., the number of the retained elastic modes from the full-order model. This suggests that, for complex large space structures, such as the Space Station Freedom solar dynamic, the conventional control system design methods may not be adequate.

  2. Spelling ability selectively predicts the magnitude of disruption in unspaced text reading.

    PubMed

    Veldre, Aaron; Drieghe, Denis; Andrews, Sally

    2017-09-01

    We examined the effect of individual differences in written language proficiency on unspaced text reading in a large sample of skilled adult readers who were assessed on reading comprehension and spelling ability. Participants' eye movements were recorded as they read sentences containing a low or high frequency target word, presented with standard interword spacing, or in one of three unsegmented text conditions that either preserved or eliminated word boundary information. The average data replicated previous studies: unspaced text reading was associated with increased fixation durations, a higher number of fixations, more regressions, reduced saccade length, and an inflation of the word frequency effect. The individual differences results provided insight into the mechanisms contributing to these effects. Higher reading ability was associated with greater overall reading speed and fluency in all conditions. In contrast, spelling ability selectively modulated the effect of interword spacing with poorer spelling ability predicting greater difficulty across the majority of sentence- and word-level measures. These results suggest that high quality lexical representations allowed better spellers to extract lexical units from unfamiliar text forms, inoculating them against the disruptive effects of being deprived of spacing information. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Deformation and Flexibility Equations for ARIS Umbilicals Idealized as Planar Elastica

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Leamy, Michael J.; Bryant, Paul J.; Quraishi, Naveed

    2005-01-01

    The International Space Station relies on the active rack isolation system (ARIS) as the central component of an integrated, stationwide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an international standard payload rack from disturbances due to the motion of the Space Station. Disturbances to microgravity experiments on ARIS isolated racks are transmitted primarily via the ARIS power and vacuum umbilicals. Experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller s bandwidth at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This work documents the development and verification of equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, inextensible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially curved (not necessarily circular), cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical slope changes monotonically. The treatment is applicable to the ARIS power and vacuum umbilicals under the indicated assumptions.

  4. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  5. On the Nature of People's Reaction to Space Weather and Meteorological Weather Changes

    NASA Astrophysics Data System (ADS)

    Khabarova, O. V.; Dimitrova, S.

    2009-12-01

    Our environment includes many natural and artificial agents affecting any person on the Earth in one way or other. This work is focused on two of them - weather and space weather, which are permanently effective. Their cumulative effect is proved by means of the modeling. It is shown that combination of geomagnetic and solar indices and weather strength parameter (which includes six main meteorological parameters) correlates with health state significantly better (up to R=0.7), than separate environmental parameters do. The typical shape of any health characteristics' time-series during human body reaction to any negative impact represents a curve, well-known in medicine as a General Adaptation Syndrome curve by Hans Selye. We demonstrate this on the base of blood pressure time-series and acupunctural experiment data, averaged by group. The first stage of adaptive stress-reaction (resistance to stress) is sometimes observed 1-2 days before geomagnetic storm onset. The effect of "outstripping reaction to magnetic storm", named Tchizhevsky- Velkhover effect, had been known for many years, but its explanation was obtained recently due to the consideration of the near-Earth space plasma processes. It was shown that lowfrequency variations of the solar wind density on a background of the density growth can stimulate the development of the geomagnetic filed (GMF) variations of the wide frequency range. These variations seem to have "bioeffective frequencies", resonant with own frequencies of body organs and systems. The mechanism of human body reaction is supposed to be a parametrical resonance in low-frequency range (which is determined by the resonance in large-scale organs and systems) and a simple forced resonance in GHz-range of variations (the resonance of micro-objects in the organism such as DNA, cell membranes, blood ions etc.) Given examples of mass-reaction of the objects to ULF-range GMF variations during quiet space weather time prove this hypothesis.

  6. ULF/ELF Waves in Near-Moon Space

    NASA Astrophysics Data System (ADS)

    Nakagawa, Tomoko

    2016-02-01

    The reflection of the solar wind protons is equivalent to a beam injection against the solar wind flow. It is expected to produce a ring beam with a 3D distribution function in many cases. The reflected protons are responsible for the generation of ultra-low-frequency (ULF) waves at ˜0.01 Hz and narrowband waves at ˜1 Hz in the extremely low frequency (ELF) range through resonant interaction with magnetohydrodynamic waves and whistler mode waves in the solar wind, respectively. This chapter discusses these commonly observed waves in the near-Moon space. The sinusoidal waveforms and sharp spectra of the monochromatic ELF waves are impressive, but commonly observed are non-monochromatic waves in the ELF range ˜0.03-10 Hz. Some of the solar wind protons reflected by the dayside lunar surface or crustal magnetic field gyrate around the solar wind magnetic field and can access the center of the wake owing to the large Larmour radius.

  7. A data driven control method for structure vibration suppression

    NASA Astrophysics Data System (ADS)

    Xie, Yangmin; Wang, Chao; Shi, Hang; Shi, Junwei

    2018-02-01

    High radio-frequency space applications have motivated continuous research on vibration suppression of large space structures both in academia and industry. This paper introduces a novel data driven control method to suppress vibrations of flexible structures and experimentally validates the suppression performance. Unlike model-based control approaches, the data driven control method designs a controller directly from the input-output test data of the structure, without requiring parametric dynamics and hence free of system modeling. It utilizes the discrete frequency response via spectral analysis technique and formulates a non-convex optimization problem to obtain optimized controller parameters with a predefined controller structure. Such approach is then experimentally applied on an end-driving flexible beam-mass structure. The experiment results show that the presented method can achieve competitive disturbance rejections compared to a model-based mixed sensitivity controller under the same design criterion but with much less orders and design efforts, demonstrating the proposed data driven control is an effective approach for vibration suppression of flexible structures.

  8. A Galactic Binary Detection Pipeline

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2011-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers, etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract 2:: 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  9. 47 CFR 101.147 - Frequency assignments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... connection with deep space research. (8) This frequency band is shared with station(s) in the Local...) Frequencies in this band are shared with stations in the earth exploration satellite service (space to earth..., to a licensee's customer or for its own internal communications. The paired frequencies listed in...

  10. Identifying explosives using broadband millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Weatherall, James C.; Yam, Kevin; Barber, Jeffrey; Smith, Barry T.; Smith, Peter R.; Greca, Joseph

    2017-05-01

    Millimeter wave imaging is employed in Advanced Technology Imaging (AIT) systems to screen personnel for concealed explosives and weapons. AIT systems deployed in airports auto-detect potential threats by highlighting their location on a generic outline of a person using imaging data collected over a range of frequency. We show how the spectral information from the imaging data can be used to identify the composition of an anomalous object, in particular if it is an explosive material. The discriminative value of the technique was illustrated on military sheet explosive using millimeter-wave reflection data at frequencies 18 - 40 GHz, and commercial explosives using 2 - 18 GHz, but the free-space measurement was limited to a single horn with a large-area sample. This work extends the method to imaging data collected at high resolution with a 18 - 40 GHz imaging system. The identification of explosives is accomplished by extracting the dielectric constant from the free-space, multifrequency data. The reflection coefficient is a function of frequency because of propagation effects associated with the material's complex dielectric constant, which include interference from multiple reflections and energy loss in the sample. The dielectric constant is obtained by numerically fitting the reflection coefficient as a function of frequency to an optical model. In principal, the implementation of this technique in standoff imaging systems would allow threat assessment to be accomplished within the scope of millimeter-wave screening.

  11. Time-varying metamaterials based on graphene-wrapped microwires: Modeling and potential applications

    NASA Astrophysics Data System (ADS)

    Salary, Mohammad Mahdi; Jafar-Zanjani, Samad; Mosallaei, Hossein

    2018-03-01

    The successful realization of metamaterials and metasurfaces requires the judicious choice of constituent elements. In this paper, we demonstrate the implementation of time-varying metamaterials in the terahertz frequency regime by utilizing graphene-wrapped microwires as building blocks and modulation of graphene conductivity through exterior electrical gating. These elements enable enhancement of light-graphene interaction by utilizing optical resonances associated with Mie scattering, yielding a large tunability and modulation depth. We develop a semianalytical framework based on transition-matrix formulation for modeling and analysis of periodic and aperiodic arrays of such time-varying building blocks. The proposed method is validated against full-wave numerical results obtained using the finite-difference time-domain method. It provides an ideal tool for mathematical synthesis and analysis of space-time gradient metamaterials, eliminating the need for computationally expensive numerical models. Moreover, it allows for a wider exploration of exotic space-time scattering phenomena in time-modulated metamaterials. We apply the method to explore the role of modulation parameters in the generation of frequency harmonics and their emerging wavefronts. Several potential applications of such platforms are demonstrated, including frequency conversion, holographic generation of frequency harmonics, and spatiotemporal manipulation of light. The presented results provide key physical insights to design time-modulated functional metadevices using various building blocks and open up new directions in the emerging paradigm of time-modulated metamaterials.

  12. Intense THz Pulses with large ponderomotive potential generated from large aperture photoconductive antennas.

    PubMed

    Ropagnol, X; Khorasaninejad, M; Raeiszadeh, M; Safavi-Naeini, S; Bouvier, M; Côté, C Y; Laramée, A; Reid, M; Gauthier, M A; Ozaki, T

    2016-05-30

    We report the generation of free space terahertz (THz) pulses with energy up to 8.3 ± 0.2 µJ from an encapsulated interdigitated ZnSe Large Aperture Photo-Conductive Antenna (LAPCA). An aperture of 12.2 cm2 is illuminated using a 400 nm pump laser with multi-mJ energies at 10 Hz repetition rate. The calculated THz peak electric field is 331 ± 4 kV/cm with a spectrum characterized by a median frequency of 0.28 THz. Given its relatively low frequency, this THz field will accelerate charged particles efficiently having very large ponderomotive energy of 15 ± 1 eV for electrons in vacuum. The scaling of the emission is studied with respect to the dimensions of the antenna, and it is observed that the capacitance of the LAPCA leads to a severe decrease in and distortion of the biasing voltage pulse, fundamentally limiting the maximum applied bias field and consequently the maximum energy of the radiated THz pulses. In order to demonstrate the advantages of this source in the strong field regime, an open-aperture Z-scan experiment was performed on n-doped InGaAs, which showed significant absorption bleaching.

  13. Advanced Control Algorithms for Compensating the Phase Distortion Due to Transport Delay in Human-Machine Systems

    NASA Technical Reports Server (NTRS)

    Guo, Liwen; Cardullo, Frank M.; Kelly, Lon C.

    2007-01-01

    The desire to create more complex visual scenes in modern flight simulators outpaces recent increases in processor speed. As a result, simulation transport delay remains a problem. New approaches for compensating the transport delay in a flight simulator have been developed and are presented in this report. The lead/lag filter, the McFarland compensator and the Sobiski/Cardullo state space filter are three prominent compensators. The lead/lag filter provides some phase lead, while introducing significant gain distortion in the same frequency interval. The McFarland predictor can compensate for much longer delay and cause smaller gain error in low frequencies than the lead/lag filter, but the gain distortion beyond the design frequency interval is still significant, and it also causes large spikes in prediction. Though, theoretically, the Sobiski/Cardullo predictor, a state space filter, can compensate the longest delay with the least gain distortion among the three, it has remained in laboratory use due to several limitations. The first novel compensator is an adaptive predictor that makes use of the Kalman filter algorithm in a unique manner. In this manner the predictor can accurately provide the desired amount of prediction, while significantly reducing the large spikes caused by the McFarland predictor. Among several simplified online adaptive predictors, this report illustrates mathematically why the stochastic approximation algorithm achieves the best compensation results. A second novel approach employed a reference aircraft dynamics model to implement a state space predictor on a flight simulator. The practical implementation formed the filter state vector from the operator s control input and the aircraft states. The relationship between the reference model and the compensator performance was investigated in great detail, and the best performing reference model was selected for implementation in the final tests. Theoretical analyses of data from offline simulations with time delay compensation show that both novel predictors effectively suppress the large spikes caused by the McFarland compensator. The phase errors of the three predictors are not significant. The adaptive predictor yields greater gain errors than the McFarland predictor for short delays (96 and 138 ms), but shows smaller errors for long delays (186 and 282 ms). The advantage of the adaptive predictor becomes more obvious for a longer time delay. Conversely, the state space predictor results in substantially smaller gain error than the other two predictors for all four delay cases.

  14. Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.

    PubMed

    Dastmalchi, Pouya; Veronis, Georgios

    2013-12-30

    We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.

  15. NASA Radio Frequency Spectrum Management Manual

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Radio Frequency (RF) Spectrum Management Manual sets forth procedures and guidelines for the management requirements for controlling the use of radio frequencies by the National Aeronautics and Space Administration. It is applicable to NASA Headquarters and field installations. NASA Management Instruction 1102.3 assigns the authority for management of radio frequencies for the National Aeronautics and Space Administration to the Associate Administrator for Space Operations, NASA Headquarters. This manual is issued in loose-leaf form and will be revised by page changes.

  16. LISA Pathfinder: First steps to observing gravitational waves from space

    NASA Astrophysics Data System (ADS)

    McNamara, Paul; LISA Pathfinder Collaboration

    2017-01-01

    With the first direct detection of gravitational waves a little over a year ago, the gravitational window to the Universe has been opened. The gravitational wave spectrum spans many orders of magnitude in frequency, with several of the most interesting astronomical sources emitting gravitational waves at frequencies only observable from space The European Space Agency (ESA) has been active in the field of space-borne gravitational wave detection for many years, and in 2013 selected the Gravitational Universe as the science theme for the third large class mission in the Cosmic Vision science programme. In addition, ESA took the step of developing the LISA Pathfinder mission to demonstrate the critical technologies required for a future mission. The goal of the LISA Pathfinder mission is to place a test body in free fall such that any external forces (acceleration) are reduced to levels lower than those expected from the passage of a gravitational wave LISA Pathfinder was launched on the 3rd December 2015 from the European Spaceport in Kourou, French Guiana. After a series of 6 apogee raising manoeuvres, the satellite left earth orbit, and travelled to its final science orbit around the first Sun-Earth Lagrange point (L1). Following a relatively short commissioning phase, science operations began on 1st March 2016. In the following 3 months over 100 experiments and over 1500hours of noise measurements have been performed, demonstrating that the observation of gravitational waves from space can be realised.

  17. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization.

    PubMed

    Lim, Jinkang; Chen, Hung-Wen; Chang, Guoqing; Kärtner, Franz X

    2013-02-25

    Laser frequency combs are normally based on mode-locked oscillators emitting ultrashort pulses of ~100-fs or shorter. In this paper, we present a self-referenced frequency comb based on a narrowband (5-nm bandwidth corresponding to 415-fs transform-limited pulses) Yb-fiber oscillator with a repetition rate of 280 MHz. We employ a nonlinear Yb-fiber amplifier to both amplify the narrowband pulses and broaden their optical spectrum. To optimize the carrier envelope offset frequency (fCEO), we optimize the nonlinear pulse amplification by pre-chirping the pulses at the amplifier input. An optimum negative pre-chirp exists, which produces a signal-to-noise ratio of 35 dB (100 kHz resolution bandwidth) for the detected fCEO. We phase stabilize the fCEO using a feed-forward method, resulting in 0.64-rad (integrated from 1 Hz to 10 MHz) phase noise for the in-loop error signal. This work demonstrates the feasibility of implementing frequency combs from a narrowband oscillator, which is of particular importance for realizing large line-spacing frequency combs based on multi-GHz oscillators usually emitting long (>200 fs) pulses.

  18. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, R. R.

    2017-12-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales. Ref.: Geoscience and Environment Protection, vol. 5, no. 3, p. 14-30, 2017. DOI: 10.4236/gep.2017.53002.

  19. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  20. The Shock and Vibration Digest, Volume 17, Number 10

    DTIC Science & Technology

    1985-10-01

    Venkayya, V.B. and Tischler, V.A., 49. Calico , R.A., Jr. and Tnyfault, D.V., "Frequency Control and the Effect on the "Decoupled Large Space Structure...Hurwitz presented. The threshold concept is de- Numerical Structural Mechanics scribed, as are receiver operating charac- Branch (Code 1844 ) teristic...Part Vibration and Dynamics of Off Road Vehi- 2 - Realistic Complex Elements des M. Apetaur I.A. Craighead, P.R. Brown Prague Univ. of Tech

  1. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar withmore » Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.« less

  2. RainyDay: An Online, Open-Source Tool for Physically-based Rainfall and Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Wright, D.; Yu, G.; Holman, K. D.

    2017-12-01

    Flood frequency analysis in ungaged or changing watersheds typically requires rainfall intensity-duration-frequency (IDF) curves combined with hydrologic models. IDF curves only depict point-scale rainfall depth, while true rainstorms exhibit complex spatial and temporal structures. Floods result from these rainfall structures interacting with watershed features such as land cover, soils, and variable antecedent conditions as well as river channel processes. Thus, IDF curves are traditionally combined with a variety of "design storm" assumptions such as area reduction factors and idealized rainfall space-time distributions to translate rainfall depths into inputs that are suitable for flood hydrologic modeling. The impacts of such assumptions are relatively poorly understood. Meanwhile, modern precipitation estimates from gridded weather radar, grid-interpolated rain gages, satellites, and numerical weather models provide more realistic depictions of rainfall space-time structure. Usage of such datasets for rainfall and flood frequency analysis, however, are hindered by relatively short record lengths. We present RainyDay, an open-source stochastic storm transposition (SST) framework for generating large numbers of realistic rainfall "scenarios." SST "lengthens" the rainfall record by temporal resampling and geospatial transposition of observed storms to extract space-time information from regional gridded rainfall data. Relatively short (10-15 year) records of bias-corrected radar rainfall data are sufficient to estimate rainfall and flood events with much longer recurrence intervals including 100-year and 500-year events. We describe the SST methodology as implemented in RainyDay and compare rainfall IDF results from RainyDay to conventional estimates from NOAA Atlas 14. Then, we demonstrate some of the flood frequency analysis properties that are possible when RainyDay is integrated with a distributed hydrologic model, including robust estimation of flood hazards in a changing watershed. The U.S. Bureau of Reclamation is supporting the development of a web-based variant of RainyDay, a "beta" version of which is available at http://her.cee.wisc.edu/projects/rainyday/.

  3. Power Spectrum of Atmospheric Scintillation for the Deep Space Network Goldstone Ka-Band Downlink

    NASA Technical Reports Server (NTRS)

    Ho, C.; Wheelon, A.

    2004-01-01

    Dynamic signal fluctuations due to atmospheric scintillations may impair the Ka-band (around 32-GHz) link sensitivities for a low-margin Deep Space Network (DSN) receiving system. The ranges of frequency and power of the fast fluctuating signals (time scale less than 1 min) are theoretically investigated using the spatial covariance and turbulence theory. Scintillation power spectrum solutions are derived for both a point receiver and a finite-aperture receiver. The aperture-smoothing frequency ((omega(sub s)), corner frequency ((omega(sub c)), and damping rate are introduced to define the shape of the spectrum for a finite-aperture antenna. The emphasis is put on quantitatively describing the aperture-smoothing effects and graphically estimating the corner frequency for a large aperture receiver. Power spectral shapes are analyzed parametrically in detail through both low- and high-frequency approximations. It is found that aperture-averaging effects become significant when the transverse correlation length of the scintillation is smaller than the antenna radius. The upper frequency or corner frequency for a finite-aperture receiver is controlled by both the Fresnel frequency and aperture-smoothing frequency. Above the aperture-smoothing frequency, the spectrum rolls off at a much faster rate of exp (-omega(sup 2)/omega(sup 2, sub s), rather than omega(sup -8/3), which is customary for a point receiver. However, a relatively higher receiver noise level can mask the fast falling-off shape and make it hard to be identified. We also predict that when the effective antenna radius a(sub r) less than or = 6 m, the corner frequency of its power spectrum becomes the same as that for a point receiver. The aperture-smoothing effects are not obvious. We have applied these solutions to the scenario of a DSN Goldstone 34-m-diameter antenna and predicted the power spectrum shape for the receiving station. The maximum corner frequency for the receiver (with omega(sub s) = 0.79 omega(sub 0) is found to be 0.44 Hz (or 1.0 omega(sub 0), while the fading rate (or fading slope) is about 0.06 dB/s.

  4. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  5. Optimising the multiplex factor of the frequency domain multiplexed readout of the TES-based microcalorimeter imaging array for the X-IFU instrument on the Athena x-ray observatory

    NASA Astrophysics Data System (ADS)

    van der Kuur, J.; Gottardi, L. G.; Akamatsu, H.; van Leeuwen, B. J.; den Hartog, R.; Haas, D.; Kiviranta, M.; Jackson, B. J.

    2016-07-01

    Athena is a space-based X-ray observatory intended for exploration of the hot and energetic universe. One of the science instruments on Athena will be the X-ray Integrated Field Unit (X-IFU), which is a cryogenic X-ray spectrometer, based on a large cryogenic imaging array of Transition Edge Sensors (TES) based microcalorimeters operating at a temperature of 100mK. The imaging array consists of 3800 pixels providing 2.5 eV spectral resolution, and covers a field of view with a diameter of of 5 arc minutes. Multiplexed readout of the cryogenic microcalorimeter array is essential to comply with the cooling power and complexity constraints on a space craft. Frequency domain multiplexing has been under development for the readout of TES-based detectors for this purpose, not only for the X-IFU detector arrays but also for TES-based bolometer arrays for the Safari instrument of the Japanese SPICA observatory. This paper discusses the design considerations which are applicable to optimise the multiplex factor within the boundary conditions as set by the space craft. More specifically, the interplay between the science requirements such as pixel dynamic range, pixel speed, and cross talk, and the space craft requirements such as the power dissipation budget, available bandwidth, and electromagnetic compatibility will be discussed.

  6. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, M.; Wieseman, C. D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few a priori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  7. Time simulation of flutter with large stiffness changes

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay; Wieseman, Carol D.

    1992-01-01

    Time simulation of flutter, involving large local structural changes, is formulated with a state-space model that is based on a relatively small number of generalized coordinates. Free-free vibration modes are first calculated for a nominal finite-element model with relatively large fictitious masses located at the area of structural changes. A low-frequency subset of these modes is then transformed into a set of structural modal coordinates with which the entire simulation is performed. These generalized coordinates and the associated oscillatory aerodynamic force coefficient matrices are used to construct an efficient time-domain, state-space model for a basic aeroelastic case. The time simulation can then be performed by simply changing the mass, stiffness, and damping coupling terms when structural changes occur. It is shown that the size of the aeroelastic model required for time simulation with large structural changes at a few apriori known locations is similar to that required for direct analysis of a single structural case. The method is applied to the simulation of an aeroelastic wind-tunnel model. The diverging oscillations are followed by the activation of a tip-ballast decoupling mechanism that stabilizes the system but may cause significant transient overshoots.

  8. Lightning activity observed in upper and lower portions of storms and its relationship to storm structure from VHF mapping and Doppler radar

    NASA Technical Reports Server (NTRS)

    Taylor, W. L.; Rust, W. D.; Macgorman, D. R.; Brandes, E. A.

    1983-01-01

    Space time mapping of very high frequencies (VHF) sources reveals lightning processes for cloud to ground (CG) and for large intracloud (IC) flashes are confined to an altitude below about 10 km and closely associated with the central high reflectivity region of a storm. Another class of IC flashes was identified that produces a splattering of small sources within the main electrically active volume of a storm and also within a large divergent wind canopy at the top of a storm. There is no apparent temporal association between the small high altitude IC flashes occurring almost continuously and the large IC and CG flashes sporadically occurring in the lower portions of storms.

  9. Experimental demonstration of deep frequency modulation interferometry.

    PubMed

    Isleif, Katharina-Sophie; Gerberding, Oliver; Schwarze, Thomas S; Mehmet, Moritz; Heinzel, Gerhard; Cervantes, Felipe Guzmán

    2016-01-25

    Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm. We have tested the technique in a Michelson and a Mach-Zehnder Interferometer topology, respectively, demonstrated continuous phase tracking of a moving mirror and achieved a performance equivalent to a displacement sensitivity of 250 pm/Hz at 1 mHz between the phase measurements of two photodetectors monitoring the same optical signal. By performing time series fitting of the extracted interference signals, we measured that the linearity of the laser frequency modulation is on the order of 2% for the laser source used.

  10. Effect of kappa distribution on the damping rate of the obliquely propagating magnetosonic mode

    NASA Astrophysics Data System (ADS)

    Imran, Ali KHAN; G, MURTAZA

    2018-03-01

    Data from spacecrafts suggest that space plasma has an abundance of suprathermal particles which are controlled by the spectral index κ when modeled on kappa particle velocity distribution. In this paper, considering homogeneous plasma, the effect of integer values of κ on the damping rate of an obliquely propagating magnetosonic (MS) wave is studied. The frequency of the MS wave is assumed to be less than ion cyclotron frequency, i.e., ω \\ll {ω }{{i}}. Under this assumption, the dispersion relation is investigated both numerically and analytically, and it is found that the real frequency of the wave is not a sensitive function of κ, but the imaginary part of the frequency is. It is also shown that for those values of κ where a large number of resonant particles participate in wave-particle interaction, the wave is heavily damped, as expected. The possible application of the results to the solar wind is discussed.

  11. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN {delta} SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breger, M.; Robertson, P.; Fossati, L.

    2012-11-01

    Two years of Kepler data of KIC 8054146 ({delta} Sct/{gamma} Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day{sup -1} (6.3 {mu}Hz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day{sup -1} (32-35 {mu}Hz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequenciesmore » in and beyond the {delta} Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator ({upsilon} sin i = 300 {+-} 20 km s{sup -1}) with an effective temperature of 7600 {+-} 200 K and a surface gravity log g of 3.9 {+-} 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.« less

  12. Radio Science from an Optical Communications Signal

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Asmar, Sami; Oudrhiri, Kamal

    2013-01-01

    NASA is currently developing the capability to deploy deep space optical communications links. This creates the opportunity to utilize the optical link to obtain range, doppler, and signal intensity estimates. These may, in turn, be used to complement or extend the capabilities of current radio science. In this paper we illustrate the achievable precision in estimating range, doppler, and received signal intensity of an non-coherent optical link (the current state-of-the-art for a deep-space link). We provide a joint estimation algorithm with performance close to the bound. We draw comparisons to estimates based on a coherent radio frequency signal, illustrating that large gains in either precision or observation time are possible with an optical link.

  13. Molecular quantum control landscapes in von Neumann time-frequency phase space

    NASA Astrophysics Data System (ADS)

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J.

    2010-10-01

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  14. Molecular quantum control landscapes in von Neumann time-frequency phase space.

    PubMed

    Ruetzel, Stefan; Stolzenberger, Christoph; Fechner, Susanne; Dimler, Frank; Brixner, Tobias; Tannor, David J

    2010-10-28

    Recently we introduced the von Neumann representation as a joint time-frequency description for femtosecond laser pulses and suggested its use as a basis for pulse shaping experiments. Here we use the von Neumann basis to represent multidimensional molecular control landscapes, providing insight into the molecular dynamics. We present three kinds of time-frequency phase space scanning procedures based on the von Neumann formalism: variation of intensity, time-frequency phase space position, and/or the relative phase of single subpulses. The shaped pulses produced are characterized via Fourier-transform spectral interferometry. Quantum control is demonstrated on the laser dye IR140 elucidating a time-frequency pump-dump mechanism.

  15. Omnidirectional antenna having constant phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sena, Matthew

    Various technologies presented herein relate to constructing and/or operating an antenna having an omnidirectional electrical field of constant phase. The antenna comprises an upper plate made up of multiple conductive rings, a lower ground-plane plate, a plurality of grounding posts, a conical feed, and a radio frequency (RF) feed connector. The upper plate has a multi-ring configuration comprising a large outer ring and several smaller rings of equal size located within the outer ring. The large outer ring and the four smaller rings have the same cross-section. The grounding posts ground the upper plate to the lower plate while maintainingmore » a required spacing/parallelism therebetween.« less

  16. Nisar Spacecraft Concept Overview: Design Challenges for a Proposed Flagship Dual-Frequency SAR Mission

    NASA Technical Reports Server (NTRS)

    Xaypraseuth, Peter; Chatterjee, Alok; Satish, R.

    2015-01-01

    NISAR would be the inaugural collaboration between National Aeronautics and Space Administration (NASA) and Indian Space Research Organization (ISRO) on an Earth Science mission, which would feature an L-Band SAR instrument and an S-Band SAR instrument. As partners, NASA and ISRO would each contribute different engineering elements to help achieve the proposed scientific objectives of the mission. ISRO-Vikram Sarabhai Space Centre would provide the GSLV-Mark II launch vehicle, which would deliver the spacecraft into the desired orbit. ISRO-Satellite Centre would provide the spacecraft based on its I3K structural bus, a commonly used platform for ISRO's communication satellite missions, which would provide the resources necessary to operate the science payload. NASA would augment the spacecraft capabilities with engineering payload systems to help store, and transmit the large volume of science data.

  17. Space Radar Image of Wadi Kufra, Libya

    NASA Image and Video Library

    1998-04-14

    The ability of a sophisticated radar instrument to image large regions of the world from space, using different frequencies that can penetrate dry sand cover, produced the discovery in this image: a previously unknown branch of an ancient river, buried under thousands of years of windblown sand in a region of the Sahara Desert in North Africa. This area is near the Kufra Oasis in southeast Libya, centered at 23.3 degrees north latitude, 22.9 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on its 60th orbit on October 4, 1994. This SIR-C image reveals a system of old, now inactive stream valleys, called "paleodrainage systems, http://photojournal.jpl.nasa.gov/catalog/PIA01310

  18. PC Software graphics tool for conceptual design of space/planetary electrical power systems

    NASA Technical Reports Server (NTRS)

    Truong, Long V.

    1995-01-01

    This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.

  19. Quantifying the accuracy of snow water equivalent estimates using broadband radar signal phase

    NASA Astrophysics Data System (ADS)

    Deeb, E. J.; Marshall, H. P.; Lamie, N. J.; Arcone, S. A.

    2014-12-01

    Radar wave velocity in dry snow depends solely on density. Consequently, ground-based pulsed systems can be used to accurately measure snow depth and snow water equivalent (SWE) using signal travel-time, along with manual depth-probing for signal velocity calibration. Travel-time measurements require a large bandwidth pulse not possible in airborne/space-borne platforms. In addition, radar backscatter from snow cover is sensitive to grain size and to a lesser extent roughness of layers at current/proposed satellite-based frequencies (~ 8 - 18 GHz), complicating inversion for SWE. Therefore, accurate retrievals of SWE still require local calibration due to this sensitivity to microstructure and layering. Conversely, satellite radar interferometry, which senses the difference in signal phase between acquisitions, has shown a potential relationship with SWE at lower frequencies (~ 1 - 5 GHz) because the phase of the snow-refracted signal is sensitive to depth and dielectric properties of the snowpack, as opposed to its microstructure and stratigraphy. We have constructed a lab-based, experimental test bed to quantify the change in radar phase over a wide range of frequencies for varying depths of dry quartz sand, a material dielectrically similar to dry snow. We use a laboratory grade Vector Network Analyzer (0.01 - 25.6 GHz) and a pair of antennae mounted on a trolley over the test bed to measure amplitude and phase repeatedly/accurately at many frequencies. Using ground-based LiDAR instrumentation, we collect a coordinated high-resolution digital surface model (DSM) of the test bed and subsequent depth surfaces with which to compare the radar record of changes in phase. Our plans to transition this methodology to a field deployment during winter 2014-2015 using precision pan/tilt instrumentation will also be presented, as well as applications to airborne and space-borne platforms toward the estimation of SWE at high spatial resolution (on the order of meters) over large regions (> 100 square kilometers).

  20. Space Radiation Cancer Risks and Uncertainities for Different Mission Time Periods

    NASA Technical Reports Server (NTRS)

    Kim,Myung-Hee Y.; Cucinotta, Francis A.

    2012-01-01

    Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which includes high energy protons and high charge and energy (HZE) nuclei. For long duration missions, space radiation presents significant health risks including cancer mortality. Probabilistic risk assessment (PRA) is essential for radiation protection of crews on long term space missions outside of the protection of the Earth s magnetic field and for optimization of mission planning and costs. For the assessment of organ dosimetric quantities and cancer risks, the particle spectra at each critical body organs must be characterized. In implementing a PRA approach, a statistical model of SPE fluence was developed, because the individual SPE occurrences themselves are random in nature while the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. An overall cumulative probability of a GCR environment for a specified mission period was estimated for the temporal characterization of the GCR environment represented by the deceleration potential (theta). Finally, this probabilistic approach to space radiation cancer risk was coupled with a model of the radiobiological factors and uncertainties in projecting cancer risks. Probabilities of fatal cancer risk and 95% confidence intervals will be reported for various periods of space missions.

  1. Single stock dynamics on high-frequency data: from a compressed coding perspective.

    PubMed

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors.

  2. Single Stock Dynamics on High-Frequency Data: From a Compressed Coding Perspective

    PubMed Central

    Fushing, Hsieh; Chen, Shu-Chun; Hwang, Chii-Ruey

    2014-01-01

    High-frequency return, trading volume and transaction number are digitally coded via a nonparametric computing algorithm, called hierarchical factor segmentation (HFS), and then are coupled together to reveal a single stock dynamics without global state-space structural assumptions. The base-8 digital coding sequence, which is capable of revealing contrasting aggregation against sparsity of extreme events, is further compressed into a shortened sequence of state transitions. This compressed digital code sequence vividly demonstrates that the aggregation of large absolute returns is the primary driving force for stimulating both the aggregations of large trading volumes and transaction numbers. The state of system-wise synchrony is manifested with very frequent recurrence in the stock dynamics. And this data-driven dynamic mechanism is seen to correspondingly vary as the global market transiting in and out of contraction-expansion cycles. These results not only elaborate the stock dynamics of interest to a fuller extent, but also contradict some classical theories in finance. Overall this version of stock dynamics is potentially more coherent and realistic, especially when the current financial market is increasingly powered by high-frequency trading via computer algorithms, rather than by individual investors. PMID:24586235

  3. Passive Microwave Remote Sensing of Soil Moisture

    NASA Technical Reports Server (NTRS)

    Njoku, Eni G.; Entekhabi, Dara

    1996-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive Microwave soil moisture sensors currently considered for space operation are in the range 10-20 km. The most useful frequency range for soil moisture sensing is 1-5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations.

  4. Dynamic stability with the disturbance-free payload architecture as applied to the Large UV/Optical/Infrared (LUVOIR) Mission

    NASA Astrophysics Data System (ADS)

    Dewell, Larry D.; Tajdaran, Kiarash; Bell, Raymond M.; Liu, Kuo-Chia; Bolcar, Matthew R.; Sacks, Lia W.; Crooke, Julie A.; Blaurock, Carl

    2017-09-01

    The need for high payload dynamic stability and ultra-stable mechanical systems is an overarching technology need for large space telescopes such as the Large Ultraviolet / Optical / Infrared (LUVOIR) Surveyor. Wavefront error stability of less than 10 picometers RMS of uncorrected system WFE per wavefront control step represents a drastic performance improvement over current space-based telescopes being fielded. Previous studies of similar telescope architectures have shown that passive telescope isolation approaches are hard-pressed to meet dynamic stability requirements and usually involve complex actively-controlled elements and sophisticated metrology. To meet these challenging dynamic stability requirements, an isolation architecture that involves no mechanical contact between telescope and the host spacecraft structure has the potential of delivering this needed performance improvement. One such architecture, previously developed by Lockheed Martin called Disturbance Free Payload (DFP), is applied to and analyzed for LUVOIR. In a noncontact DFP architecture, the payload and spacecraft fly in close proximity, and interact via non-contact actuators to allow precision payload pointing and isolation from spacecraft vibration. Because disturbance isolation through non-contact, vibration isolation down to zero frequency is possible, and high-frequency structural dynamics of passive isolators are not introduced into the system. In this paper, the system-level analysis of a non-contact architecture is presented for LUVOIR, based on requirements that are directly traceable to its science objectives, including astrophysics and the direct imaging of habitable exoplanets. Aspects of architecture and how they contribute to system performance are examined and tailored to the LUVOIR architecture and concept of operation.

  5. Adaptive echolocation behavior in bats for the analysis of auditory scenes

    PubMed Central

    Chiu, Chen; Xian, Wei; Moss, Cynthia F.

    2009-01-01

    Summary Echolocating bats emit sonar pulses and listen to returning echoes to probe their surroundings. Bats adapt their echolocation call design to cope with dynamic changes in the acoustic environment, including habitat change or the presence of nearby conspecifics/heterospecifics. Seven pairs of big brown bats, Eptesicus fuscus, were tested in this study to examine how they adjusted their echolocation calls when flying and competing with a conspecific for food. Results showed that differences in five call parameters, start/end frequencies, duration, bandwidth and sweep rate, significantly increased in the two-bat condition compared with the baseline data. In addition, the magnitude of spectral separation of calls was negatively correlated with the baseline call design differences in individual bats. Bats with small baseline call frequency differences showed larger increases in call frequency separation when paired than those with large baseline call frequency differences, suggesting that bats actively change their sonar call structure if pre-existing differences in call design are small. Call design adjustments were also influenced by physical spacing between two bats. Calls of paired bats exhibited the largest design separations when inter-bat distance was shorter than 0.5 m, and the separation decreased as the spacing increased. All individuals modified at least one baseline call parameter in response to the presence of another conspecific. We propose that dissimilarity between the time–frequency features of sonar calls produced by different bats aids each individual in segregating echoes of its own sonar vocalizations from the acoustic signals of neighboring bats. PMID:19376960

  6. Electrically Guided Assembly of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.

    2002-11-01

    In earlier work it was shown that the strength and frequency of an applied electric field alters the dynamic arrangement of particles on an electrode. Two-dimensional 'gas,' 'liquid' and 'solid' arrangements were formed, depending on the field strength and frequency. Since the particles are similarly charged, yet migrate over large distances under the influence of steady or oscillatory fields, it is clear that both hydrodynamic and electrical processes are involved. Here we report on an extensive study of electrically induced ordering in a parallel electrode cell. First, we discuss the kinetics of aggregation in a DC field as measured using video microscopy and digital image analysis. Rate constants were determined as a function of applied electric field strength and particle zeta potential. The kinetic parameters are compared to models based on electrohydrodynamic and electroosmotic fluid flow mechanisms Second, using monodisperse micron-sized particles, we examined the average interparticle spacing over a wide range of applied frequencies and field strengths. Variation of these parameters allows formation of closely-spaced arrangements and ordered arrays of widely separated particles. We find that there is a strong dependence on frequency, but there is surprisingly little influence of the electric field strength past a small threshold. Last, we present experiments with binary suspensions of similarly sized particles with negative but unequal surface potentials. A long-range lateral attraction is observed in an AC field. Depending on the frequency, this attractive interaction results in a diverse set of aggregate morphologies, including superstructured hexagonal lattices. These results are discussed in terms of induced dipole-dipole interactions and electrohydrodynamic flow. Finally, we explore the implications for practical applications.

  7. Attempting to physically explain space-time correlation of extremes

    NASA Astrophysics Data System (ADS)

    Bernardara, Pietro; Gailhard, Joel

    2010-05-01

    Spatial and temporal clustering of hydro-meteorological extreme events is scientific evidence. Moreover, the statistical parameters characterizing their local frequencies of occurrence show clear spatial patterns. Thus, in order to robustly assess the hydro-meteorological hazard, statistical models need to be able to take into account spatial and temporal dependencies. Statistical models considering long term correlation for quantifying and qualifying temporal and spatial dependencies are available, such as multifractal approach. Furthermore, the development of regional frequency analysis techniques allows estimating the frequency of occurrence of extreme events taking into account spatial patterns on the extreme quantiles behaviour. However, in order to understand the origin of spatio-temporal clustering, an attempt to find physical explanation should be done. Here, some statistical evidences of spatio-temporal correlation and spatial patterns of extreme behaviour are given on a large database of more than 400 rainfall and discharge series in France. In particular, the spatial distribution of multifractal and Generalized Pareto distribution parameters shows evident correlation patterns in the behaviour of frequency of occurrence of extremes. It is then shown that the identification of atmospheric circulation pattern (weather types) can physically explain the temporal clustering of extreme rainfall events (seasonality) and the spatial pattern of the frequency of occurrence. Moreover, coupling this information with the hydrological modelization of a watershed (as in the Schadex approach) an explanation of spatio-temporal distribution of extreme discharge can also be provided. We finally show that a hydro-meteorological approach (as the Schadex approach) can explain and take into account space and time dependencies of hydro-meteorological extreme events.

  8. Llamas: Large-area microphone arrays and sensing systems

    NASA Astrophysics Data System (ADS)

    Sanz-Robinson, Josue

    Large-area electronics (LAE) provides a platform to build sensing systems, based on distributing large numbers of densely spaced sensors over a physically-expansive space. Due to their flexible, "wallpaper-like" form factor, these systems can be seamlessly deployed in everyday spaces. They go beyond just supplying sensor readings, but rather they aim to transform the wealth of data from these sensors into actionable inferences about our physical environment. This requires vertically integrated systems that span the entirety of the signal processing chain, including transducers and devices, circuits, and signal processing algorithms. To this end we develop hybrid LAE / CMOS systems, which exploit the complementary strengths of LAE, enabling spatially distributed sensors, and CMOS ICs, providing computational capacity for signal processing. To explore the development of hybrid sensing systems, based on vertical integration across the signal processing chain, we focus on two main drivers: (1) thin-film diodes, and (2) microphone arrays for blind source separation: 1) Thin-film diodes are a key building block for many applications, such as RFID tags or power transfer over non-contact inductive links, which require rectifiers for AC-to-DC conversion. We developed hybrid amorphous / nanocrystalline silicon diodes, which are fabricated at low temperatures (<200 °C) to be compatible with processing on plastic, and have high current densities (5 A/cm2 at 1 V) and high frequency operation (cutoff frequency of 110 MHz). 2) We designed a system for separating the voices of multiple simultaneous speakers, which can ultimately be fed to a voice-command recognition engine for controlling electronic systems. On a device level, we developed flexible PVDF microphones, which were used to create a large-area microphone array. On a circuit level we developed localized a-Si TFT amplifiers, and a custom CMOS IC, for system control, sensor readout and digitization. On a signal processing level we developed an algorithm for blind source separation in a real, reverberant room, based on beamforming and binary masking. It requires no knowledge about the location of the speakers or microphones. Instead, it uses cluster analysis techniques to determine the time delays for beamforming; thus, adapting to the unique acoustic environment of the room.

  9. Modal Analysis with the Mobile Modal Testing Unit

    NASA Technical Reports Server (NTRS)

    Wilder, Andrew J.

    2013-01-01

    Recently, National Aeronautics and Space Administration's (NASA's) White Sands Test Facility (WSTF) has tested rocket engines with high pulse frequencies. This has resulted in the use of some of WSTF's existing thrust stands, which were designed for static loading, in tests with large dynamic forces. In order to ensure that the thrust stands can withstand the dynamic loading of high pulse frequency engines while still accurately reporting the test data, their vibrational modes must be characterized. If it is found that they have vibrational modes with frequencies near the pulsing frequency of the test, then they must be modified to withstand the dynamic forces from the pulsing rocket engines. To make this determination the Mobile Modal Testing Unit (MMTU), a system capable of determining the resonant frequencies and mode shapes of a structure, was used on the test stands at WSTF. Once the resonant frequency has been determined for a test stand, it can be compared to the pulse frequency of a test engine to determine whether or not that stand can avoid resonance and reliably test that engine. After analysis of test stand 406 at White Sands Test Facility, it was determined that natural frequencies for the structure are located around 75, 125, and 240 Hz, and thus should be avoided during testing.

  10. Bursting and critical layer frequencies in minimal turbulent dynamics and connections to exact coherent states

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Shekar, Ashwin; Graham, Michael D.

    2018-01-01

    The dynamics of the turbulent near-wall region is known to be dominated by coherent structures. These near-wall coherent structures are observed to burst in a very intermittent fashion, exporting turbulent kinetic energy to the rest of the flow. In addition, they are closely related to invariant solutions known as exact coherent states (ECS), some of which display nonlinear critical layer dynamics (motions that are highly localized around the surface on which the streamwise velocity matches the wave speed of ECS). The present work aims to investigate temporal coherence in minimal channel flow relevant to turbulent bursting and critical layer dynamics and its connection to the instability of ECS. It is seen that the minimal channel turbulence displays frequencies very close to those displayed by an ECS family recently identified in the channel flow geometry. The frequencies of these ECS are determined by critical layer structures and thus might be described as "critical layer frequencies." While the bursting frequency is predominant near the wall, the ECS frequencies (critical layer frequencies) become predominant over the bursting frequency at larger distances from the wall, and increasingly so as Reynolds number increases. Turbulent bursts are classified into strong and relatively weak classes with respect to an intermittent approach to a lower branch ECS. This temporally intermittent approach is closely related to an intermittent low drag event, called hibernating turbulence, found in minimal and large domains. The relationship between the strong burst and the instability of the lower branch ECS is further discussed in state space. The state-space dynamics of strong bursts is very similar to that of the unstable manifolds of the lower branch ECS. In particular, strong bursting processes are always preceded by hibernation events. This precursor dynamics to strong turbulence may aid in development of more effective control schemes by a way of anticipating dynamics such as intermittent hibernating dynamics.

  11. Injection chaining of diode-pumped single-frequency ring lasers for free-space communication

    NASA Technical Reports Server (NTRS)

    Cheng, E. A. P.; Kane, T. J.; Wallace, R. W.; Cornwell, D. M., Jr.

    1991-01-01

    A high-power three-stage laser suitable for use in a space communication system has been built. This laser uses three diode-pumped Nd:YAG oscillators coherently combined using the technique of injection chaining. All three oscillators are in one compact and permanently aligned package, and are actively frequency locked to provide CW single frequency output. The three stages provide the redundancy desirable for space communications.

  12. Nanosats for a Radio Interferometer Observatory in Space

    NASA Astrophysics Data System (ADS)

    Cecconi, B.; Katsanevras, S.; Puy, D.; Bentum, M.

    2015-10-01

    During the last decades, astronomy and space physics changed dramatically our knowledge of the evolution of the Universe. However, our view is still incomplete in the very low frequency range (1- 30 MHz), which is thus one of the last unexplored astrophysical spectral band. Below 30 MHz, ionospheric fluctuations severely perturb groundbased observations. They are impossible below 10 MHz due to the ionospheric cutoff. In addition, man made radio interferences makes it even more difficult to observe from ground at low frequencies. Deploying a radio instrument in space is the only way to open this new window on the Universe. Among the many science objectives for such type of instrumentations, we can find cosmological studies such as the Dark Ages of the Universe, the remote astrophysical objects, pulsars and fast transients, the interstellar medium. The following Solar system and Planetary objectives are also very important: - Sun-Earth Interactions: The Sun is strongly influencing the interplanetary medium (IPM) and the terrestrial geospatial environment. The evolution mechanisms of coronal mass ejections (CME) and their impact on solar system bodies are still not fully understood. This results in large inaccuracies on the eruption models and prediction tools, and their consequences on the Earth environment. Very low frequency radio imaging capabilities (especially for the Type II solar radio bursts, which are linked with interplanetary shocks) should allow the scientific community to make a big step forward in understanding of the physics and the dynamics of these phenomena, by observing the location of the radio source, how they correlate with their associated shocks and how they propagate within the IPM. - Planets and Exoplanets: The Earth and the fourgiant planets are hosting strong magnetic fields producing large magnetospheres. Particle acceleration are very efficient therein and lead to emitting intense low frequency radio waves in their auroral regions. These radio emissions are produced through the Cyclotron Maser Instability (CMI). Locating the radio sources and tracing back their path along magnetic field lines leads to the particle acceleration regions. This diagnostic is powerful remote sensing tool for studying the dynamics of planetary magnetospheres. Planetary lightnings are also a source electromagnetic radiation, which allows us to sound both planetary atmospheric and ionospheric properties. Finally, the potential observations of exoplanetary radio emissions at low frequencies are a very promising way of getting intrinsic properties of exoplanets such as their sidereal rotation period, the inclination of their rotation axis or magnetic axis, the intensity of their internal magnetic field, etc…

  13. Fast convergent frequency-domain MIMO equalizer for few-mode fiber communication systems

    NASA Astrophysics Data System (ADS)

    He, Xuan; Weng, Yi; Wang, Junyi; Pan, Z.

    2018-02-01

    Space division multiplexing using few-mode fibers has been extensively explored to sustain the continuous traffic growth. In few-mode fiber optical systems, both spatial and polarization modes are exploited to transmit parallel channels, thus increasing the overall capacity. However, signals on spatial channels inevitably suffer from the intrinsic inter-modal coupling and large accumulated differential mode group delay (DMGD), which causes spatial modes de-multiplex even harder. Many research articles have demonstrated that frequency domain adaptive multi-input multi-output (MIMO) equalizer can effectively compensate the DMGD and demultiplex the spatial channels with digital signal processing (DSP). However, the large accumulated DMGD usually requires a large number of training blocks for the initial convergence of adaptive MIMO equalizers, which will decrease the overall system efficiency and even degrade the equalizer performance in fast-changing optical channels. Least mean square (LMS) algorithm is always used in MIMO equalization to dynamically demultiplex the spatial signals. We have proposed to use signal power spectral density (PSD) dependent method and noise PSD directed method to improve the convergence speed of adaptive frequency domain LMS algorithm. We also proposed frequency domain recursive least square (RLS) algorithm to further increase the convergence speed of MIMO equalizer at cost of greater hardware complexity. In this paper, we will compare the hardware complexity and convergence speed of signal PSD dependent and noise power directed algorithms against the conventional frequency domain LMS algorithm. In our numerical study of a three-mode 112 Gbit/s PDM-QPSK optical system with 3000 km transmission, the noise PSD directed and signal PSD dependent methods could improve the convergence speed by 48.3% and 36.1% respectively, at cost of 17.2% and 10.7% higher hardware complexity. We will also compare the frequency domain RLS algorithm against conventional frequency domain LMS algorithm. Our numerical study shows that, in a three-mode 224 Gbit/s PDM-16-QAM system with 3000 km transmission, the RLS algorithm could improve the convergence speed by 53.7% over conventional frequency domain LMS algorithm.

  14. RF wave observations in beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1986-01-01

    The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.

  15. Spatial filtering of audible sound with acoustic landscapes

    NASA Astrophysics Data System (ADS)

    Wang, Shuping; Tao, Jiancheng; Qiu, Xiaojun; Cheng, Jianchun

    2017-07-01

    Acoustic metasurfaces manipulate waves with specially designed structures and achieve properties that natural materials cannot offer. Similar surfaces work in audio frequency range as well and lead to marvelous acoustic phenomena that can be perceived by human ears. Being intrigued by the famous Maoshan Bugle phenomenon, we investigate large scale metasurfaces consisting of periodic steps of sizes comparable to the wavelength of audio frequency in both time and space domains. We propose a theoretical method to calculate the scattered sound field and find that periodic corrugated surfaces work as spatial filters and the frequency selective character can only be observed at the same side as the incident wave. The Maoshan Bugle phenomenon can be well explained with the method. Finally, we demonstrate that the proposed method can be used to design acoustical landscapes, which transform impulsive sound into famous trumpet solos or other melodious sound.

  16. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    PubMed

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  17. Monte Carlo Simulation of THz Multipliers

    NASA Technical Reports Server (NTRS)

    East, J.; Blakey, P.

    1997-01-01

    Schottky Barrier diode frequency multipliers are critical components in submillimeter and Thz space based earth observation systems. As the operating frequency of these multipliers has increased, the agreement between design predictions and experimental results has become poorer. The multiplier design is usually based on a nonlinear model using a form of harmonic balance and a model for the Schottky barrier diode. Conventional voltage dependent lumped element models do a poor job of predicting THz frequency performance. This paper will describe a large signal Monte Carlo simulation of Schottky barrier multipliers. The simulation is a time dependent particle field Monte Carlo simulation with ohmic and Schottky barrier boundary conditions included that has been combined with a fixed point solution for the nonlinear circuit interaction. The results in the paper will point out some important time constants in varactor operation and will describe the effects of current saturation and nonlinear resistances on multiplier operation.

  18. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2015-05-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  19. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    PubMed Central

    Tan, Lilong; Yan, Shuhua

    2018-01-01

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897

  20. Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

    PubMed Central

    An, Sangmin; Long, Christian J

    2014-01-01

    Summary We present an exploratory study of multimodal tapping-mode atomic force microscopy driving more than three cantilever eigenmodes. We present tetramodal (4-eigenmode) imaging experiments conducted on a thin polytetrafluoroethylene (PTFE) film and computational simulations of pentamodal (5-eigenmode) cantilever dynamics and spectroscopy, focusing on the case of large amplitude ratios between the fundamental eigenmode and the higher eigenmodes. We discuss the dynamic complexities of the tip response in time and frequency space, as well as the average amplitude and phase response. We also illustrate typical images and spectroscopy curves and provide a very brief description of the observed contrast. Overall, our findings are promising in that they help to open the door to increasing sophistication and greater versatility in multi-frequency AFM through the incorporation of a larger number of driven eigenmodes, and in highlighting specific future research opportunities. PMID:25383276

  1. Ultra-Compact, Superconducting Spectrometer-on-a-Chip at Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Zmuidzinas, Jonas; Bradford, Charles M.; Leduc, Henry G.; Day, Peter K.; Swenson, Loren; Hailey-Dunsheath, Steven; O'Brient, Roger C.; Padin, Stephen; Shirokoff, Erik D.; hide

    2013-01-01

    Small size, wide spectral bandwidth, and highly multiplexed detector readout are required to develop powerful multi-beam spectrometers for high-redshift observations. Currently available spectrometers at these frequencies are large and bulky. The grating sizes for these spectrometers are prohibitive. This fundamental size issue is a key limitation for space-based spectrometers for astrophysics applications. A novel, moderate-resolving-power (R-700), ultra-compact spectrograph-on-a-chip for millimeter and submillimeter wavelengths is the solution.

  2. Compressive Channel Estimation and Tracking for Large Arrays in mm Wave Picocells

    DTIC Science & Technology

    2014-01-01

    abling sophisticated adaptation, including frequency-selective spatiotemporal processing (e.g., per subcarrier beamforming in OFDM systems). This approach...subarrays are certainly required for more advanced functionalities such as multiuser MIMO [17], spatial multiplexing [18], [19], [20], [21], [22], and...case, a regu- larly spaced 2D array), an estimate of the N2t,1D × N2r,1D MIMO channel matrix H can be efficiently arrived at by estimating the spatial

  3. A Simplified Baseband Prefilter Model with Adaptive Kalman Filter for Ultra-Tight COMPASS/INS Integration

    PubMed Central

    Luo, Yong; Wu, Wenqi; Babu, Ravindra; Tang, Kanghua; Luo, Bing

    2012-01-01

    COMPASS is an indigenously developed Chinese global navigation satellite system and will share many features in common with GPS (Global Positioning System). Since the ultra-tight GPS/INS (Inertial Navigation System) integration shows its advantage over independent GPS receivers in many scenarios, the federated ultra-tight COMPASS/INS integration has been investigated in this paper, particularly, by proposing a simplified prefilter model. Compared with a traditional prefilter model, the state space of this simplified system contains only carrier phase, carrier frequency and carrier frequency rate tracking errors. A two-quadrant arctangent discriminator output is used as a measurement. Since the code tracking error related parameters were excluded from the state space of traditional prefilter models, the code/carrier divergence would destroy the carrier tracking process, and therefore an adaptive Kalman filter algorithm tuning process noise covariance matrix based on state correction sequence was incorporated to compensate for the divergence. The federated ultra-tight COMPASS/INS integration was implemented with a hardware COMPASS intermediate frequency (IF), and INS's accelerometers and gyroscopes signal sampling system. Field and simulation test results showed almost similar tracking and navigation performances for both the traditional prefilter model and the proposed system; however, the latter largely decreased the computational load. PMID:23012564

  4. Space-to-Space Communications System

    NASA Technical Reports Server (NTRS)

    Tu, Kwei; Gaylor, Kent; Vitalpur, Sharada; Sham, Cathy

    1999-01-01

    The Space-to-Space Communications System (SSCS) is an Ultra High Frequency (UHF) Time-Division-Multiple Access (TDMA) system that is designed, developed, and deployed by the NASA Johnson Space Center (JSC) to provide voice, commands, telemetry and data services in close proximity among three space elements: International Space Station (ISS), Space Shuttle Orbiter, and Extravehicular Mobility Units (EMU). The SSCS consists of a family of three radios which are, Space-to-Space Station Radio (SSSR), Space-to-Space Orbiter Radio (SSOR), and Space-to-Space Extravehicular Mobility Radio (SSER). The SSCS can support up to five such radios at a time. Each user has its own time slot within which to transmit voice and data. Continuous Phase Frequency Shift Keying (CPFSK) carrier modulation with a burst data rate of 695 kbps and a frequency deviation of 486.5 kHz is employed by the system. Reed-Solomon (R-S) coding is also adopted to ensure data quality. In this paper, the SSCS system requirements, operational scenario, detailed system architecture and parameters, link acquisition strategy, and link performance analysis will be presented and discussed

  5. Fast time- and frequency-domain finite-element methods for electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Lee, Woochan

    Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to develop structure-aware algorithms that take advantage of the structure specialties to speed up the computation. In addition, among existing time-domain methods, explicit methods can avoid solving a matrix equation. However, their time step is traditionally restricted by the space step for ensuring the stability of a time-domain simulation. Therefore, making explicit time-domain methods unconditionally stable is important to accelerate the computation. In addition to time-domain methods, frequency-domain methods have suffered from an indefinite system that makes an iterative solution difficult to converge fast. The first contribution of this work is a fast time-domain finite-element algorithm for the analysis and design of very large-scale on-chip circuits. The structure specialty of on-chip circuits such as Manhattan geometry and layered permittivity is preserved in the proposed algorithm. As a result, the large-scale matrix solution encountered in the 3-D circuit analysis is turned into a simple scaling of the solution of a small 1-D matrix, which can be obtained in linear (optimal) complexity with negligible cost. Furthermore, the time step size is not sacrificed, and the total number of time steps to be simulated is also significantly reduced, thus achieving a total cost reduction in CPU time. The second contribution is a new method for making an explicit time-domain finite-element method (TDFEM) unconditionally stable for general electromagnetic analysis. In this method, for a given time step, we find the unstable modes that are the root cause of instability, and deduct them directly from the system matrix resulting from a TDFEM based analysis. As a result, an explicit TDFEM simulation is made stable for an arbitrarily large time step irrespective of the space step. The third contribution is a new method for full-wave applications from low to very high frequencies in a TDFEM based on matrix exponential. In this method, we directly deduct the eigenmodes having large eigenvalues from the system matrix, thus achieving a significantly increased time step in the matrix exponential based TDFEM. The fourth contribution is a new method for transforming the indefinite system matrix of a frequency-domain FEM to a symmetric positive definite one. We deduct non-positive definite component directly from the system matrix resulting from a frequency-domain FEM-based analysis. The resulting new representation of the finite-element operator ensures an iterative solution to converge in a small number of iterations. We then add back the non-positive definite component to synthesize the original solution with negligible cost.

  6. Basic features of the STS/Spacelab vibration environment

    NASA Technical Reports Server (NTRS)

    Baugher, Charles R.; Ramachandran, N.

    1994-01-01

    The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.

  7. Underwater sound pressure variation and bottlenose dolphin (Tursiops truncatus) hearing thresholds in a small pool.

    PubMed

    Finneran, James J; Schlundt, Carolyn E

    2007-07-01

    Studies of underwater hearing are often hampered by the behavior of sound waves in small experimental tanks. At lower frequencies, tank dimensions are often not sufficient for free field conditions, resulting in large spatial variations of sound pressure. These effects may be mitigated somewhat by increasing the frequency bandwidth of the sound stimulus, so effects of multipath interference average out over many frequencies. In this study, acoustic fields and bottlenose dolphin (Tursiops truncatus) hearing thresholds were compared for pure tone and frequency modulated signals. Experiments were conducted in a vinyl-walled, seawater-filled pool approximately 3.7 x 6 x 1.5 m. Acoustic signals were pure tone and linear and sinusoidal frequency modulated tones with bandwidths/modulation depths of 1%, 2%, 5%, 10%, and 20%. Thirteen center frequencies were tested between 1 and 100 kHz. Acoustic fields were measured (without the dolphin present) at three water depths over a 60 x 65 cm grid with a 5-cm spacing. Hearing thresholds were measured using a behavioral response paradigm and up/down staircase technique. The use of FM signals significantly improved the sound field without substantially affecting the measured hearing thresholds.

  8. Doppler-based motion compensation algorithm for focusing the signature of a rotorcraft.

    PubMed

    Goldman, Geoffrey H

    2013-02-01

    A computationally efficient algorithm was developed and tested to compensate for the effects of motion on the acoustic signature of a rotorcraft. For target signatures with large spectral peaks that vary slowly in amplitude and have near constant frequency, the time-varying Doppler shift can be tracked and then removed from the data. The algorithm can be used to preprocess data for classification, tracking, and nulling algorithms. The algorithm was tested on rotorcraft data. The average instantaneous frequency of the first harmonic of a rotorcraft was tracked with a fixed-lag smoother. Then, state space estimates of the frequency were used to calculate a time warping that removed the effect of a time-varying Doppler shift from the data. The algorithm was evaluated by analyzing the increase in the amplitude of the harmonics in the spectrum of a rotorcraft. The results depended upon the frequency of the harmonics and the processing interval duration. Under good conditions, the results for the fundamental frequency of the target (~11 Hz) almost achieved an estimated upper bound. The results for higher frequency harmonics had larger increases in the amplitude of the peaks, but significantly lower than the estimated upper bounds.

  9. Enhanced optical nonlinearity and fiber-optical frequency comb controlled by a single atom in a whispering-gallery-mode microtoroid resonator

    NASA Astrophysics Data System (ADS)

    Li, Jiahua; Zhang, Suzhen; Yu, Rong; Zhang, Duo; Wu, Ying

    2014-11-01

    Based on a single atom coupled to a fiber-coupled, chip-based microresonator [B. Dayan et al., Science 319, 1062 (2008), 10.1126/science.1152261], we put forward a scheme to generate optical frequency combs at driving laser powers as low as a few nanowatts. Using state-of-the-art experimental parameters, we investigate in detail the influences of different atomic positions and taper-resonator coupling regimes on optical-frequency-comb generation. In addition to numerical simulations demonstrating this effect, a physical explanation of the underlying mechanism is presented. We find that the combination of the atom and the resonator can induce a large third-order nonlinearity which is significantly stronger than Kerr nonlinearity in Kerr frequency combs. Such enhanced nonlinearity can be used to generate optical frequency combs if driven with two continuous-wave control and probe lasers and significantly reduce the threshold of nonlinear optical processes. The comb spacing can be well tuned by changing the frequency beating between the driving control and probe lasers. The proposed method is versatile and can be adopted to different types of resonators, such as microdisks, microspheres, microtoroids or microrings.

  10. Spectral mass gauging of unsettled liquid with acoustic waves

    NASA Astrophysics Data System (ADS)

    Feller, Jeffrey; Kashani, Ali; Khasin, Michael; Muratov, Cyrill; Osipov, Viatcheslav; Sharma, Surendra

    2017-12-01

    Propellant mass gauging is one of the key technologies required to enable the next step in NASA’s space exploration program. At present, there is no reliable method to accurately measure the amount of unsettled liquid propellant in a large-scale propellant tank in micro- or zero gravity. Recently we proposed a new approach to use sound waves to probe the resonance frequencies of the two-phase liquid-gas mixture and take advantage of the mathematical properties of the high frequency spectral asymptotics to determine the volume fraction of the tank filled with liquid. We report the current progress in exploring the feasibility of this approach in the case of large propellant tanks, both experimental and theoretical. Excitation and detection procedures using solenoids for excitation and both hydrophones and accelerometers for detection have been developed. A 3% uncertainty for mass-gauging was demonstrated for a 200-liter tank partially filled with liquid for various unsettled configurations, such as tilts and artificial ullages.

  11. 106 17 Telemetry Standards Chapter 2

    DTIC Science & Technology

    2017-07-31

    high frequency STC space -time code SOQPSK shaped offset quadrature phase shift keying UHF ultra- high frequency US&P United States...and Possessions VCO voltage-controlled oscillator VHF very- high frequency WCS Wireless Communication Service Telemetry Standards, RCC Standard...get interference. a. Telemetry Bands Air and space -to-ground telemetering is allocated in the ultra- high frequency (UHF) bands 1435 to 1535, 2200

  12. Admissible Diffusion Wavelets and Their Applications in Space-Frequency Processing.

    PubMed

    Hou, Tingbo; Qin, Hong

    2013-01-01

    As signal processing tools, diffusion wavelets and biorthogonal diffusion wavelets have been propelled by recent research in mathematics. They employ diffusion as a smoothing and scaling process to empower multiscale analysis. However, their applications in graphics and visualization are overshadowed by nonadmissible wavelets and their expensive computation. In this paper, our motivation is to broaden the application scope to space-frequency processing of shape geometry and scalar fields. We propose the admissible diffusion wavelets (ADW) on meshed surfaces and point clouds. The ADW are constructed in a bottom-up manner that starts from a local operator in a high frequency, and dilates by its dyadic powers to low frequencies. By relieving the orthogonality and enforcing normalization, the wavelets are locally supported and admissible, hence facilitating data analysis and geometry processing. We define the novel rapid reconstruction, which recovers the signal from multiple bands of high frequencies and a low-frequency base in full resolution. It enables operations localized in both space and frequency by manipulating wavelet coefficients through space-frequency filters. This paper aims to build a common theoretic foundation for a host of applications, including saliency visualization, multiscale feature extraction, spectral geometry processing, etc.

  13. Defense Science Board Task Force on Military Satellite Communication and Tactical Networking. Executive Summary

    DTIC Science & Technology

    2017-03-01

    Communications SMC Space and Missile Systems Center SEV Space Enterprise Vision SHF Super High Frequency SINCGARS Single Channel Ground-Air Radio...Appendix D:Acronyms A2/AD Anti-Access/Area Denial ADNS Automated Digital Network System AEHF Advanced Extremely High Frequency AFSPC Air Force Space ...medium-rate modes of defense extremely high frequency (EHF) SATCOM. This reality should be considered a crisis to be dealt with immediately. In

  14. Relationship between low and high frequencies in the \\delta Scuti star KIC 9764965

    NASA Astrophysics Data System (ADS)

    Rostopchina, A.; Breger, M.

    2014-10-01

    Two years of Kepler spacecraft data of the \\delta Sct/\\gamma Dor star KIC 9764965 revealed 67 statistically significant frequencies from 0.45 to 59.17 c d-1 (0.005 to 0.685 mHz). The 19 low frequencies do not show equidistant period spacing predicted for gravity modes of successive radial order. We note a favored frequency spacing of 2.053 c d-1 that appears in both the low-frequency (gravity mode) region and high-frequency (pressure mode) regions. The value of this frequency spacing also occurs as a dominant low frequency and in a high-frequency triplet. A peak at exactly twice the value of the 2.053 c d-1 mode is shown not to be a Fourier harmonic of the low-frequency peak due to a different amplitude variability. This behavior is also seen in other \\delta Sct stars. The test for resonant mode coupling between low and high frequencies could not be carried out due to the small amplitudes of the peaks, making it difficult to separate the parent and child modes.

  15. Self-consistent chaos in a mean-field Hamiltonian model of fluids and plasmas

    NASA Astrophysics Data System (ADS)

    del-Castillo-Negrete, D.; Firpo, Marie-Christine

    2002-11-01

    We present a mean-field Hamiltonian model that describes the collective dynamics of marginally stable fluids and plasmas. In plasmas, the model describes the self-consistent evolution of electron holes and clumps in phase space. In fluids, the model describes the dynamics of vortices with negative and positive circulation in shear flows. The mean-field nature of the system makes it a tractable model to study the dynamics of large degrees-of-freedom, coupled Hamiltonian systems. Here we focus in the role of self-consistent chaos in the formation and destruction of phase space coherent structures. Numerical simulations in the finite N and in the Narrow kinetic limit (where N is the number of particles) show the existence of coherent, rotating dipole states. We approximate the dipole as two macroparticles, and show that the N = 2 limit has a family of rotating integrable solutions described by a one degree-of-freedom nontwist Hamiltonian. The coherence of the dipole is explained in terms of a parametric resonance between the rotation frequency of the macroparticles and the oscillation frequency of the self-consistent mean field. For a class of initial conditions, the mean field exhibits a self-consistent, elliptic-hyperbolic bifurcation that leads to the destruction of the dipole and violent mixing of the phase space.

  16. Mini-STAR: A small space mission testing special relativity

    NASA Astrophysics Data System (ADS)

    Gürlebeck, Norman

    mSTAR (mini-STAR) is a proposed collaborative Saudi-USA-German small space mission to perform an advanced Kennedy-Thorndike (KT) type test of Special Relativity using the large and rapid velocity modulation available in low Earth orbit (LEO). An improvement of about a factor of 100 over present ground results is expected with an additional factor of 10 possible using more advanced technology. To date, limits on local Lorentz invariance violations (LLIV) related to boost effects are on the order of δc/c ≤ 10 15. While advances in technology will undoubtedly lead to further gains, it has become clear that space experiments in low Earth orbit offer a way to obtain much better results than ground experiments. The mSTAR LLIV experiment consists of the comparison of a molecular frequency reference, 532 nm Iodine, with a length reference, an optical cavity, in a LEO flight (7 km/s orbital velocity, 90 min period). The corresponding sensitivity to boost-dependent LLIV terms is improved relative to Earth based measurements because of the high velocity modulation and the increased number of the measurements. The mSTAR approach is to develop a small-scale instrument with a high scientific output that also provides instrument and spacecraft technology for subsequent missions, which would use further improved frequency standards.

  17. Steerable Principal Components for Space-Frequency Localized Images*

    PubMed Central

    Landa, Boris; Shkolnisky, Yoel

    2017-01-01

    As modern scientific image datasets typically consist of a large number of images of high resolution, devising methods for their accurate and efficient processing is a central research task. In this paper, we consider the problem of obtaining the steerable principal components of a dataset, a procedure termed “steerable PCA” (steerable principal component analysis). The output of the procedure is the set of orthonormal basis functions which best approximate the images in the dataset and all of their planar rotations. To derive such basis functions, we first expand the images in an appropriate basis, for which the steerable PCA reduces to the eigen-decomposition of a block-diagonal matrix. If we assume that the images are well localized in space and frequency, then such an appropriate basis is the prolate spheroidal wave functions (PSWFs). We derive a fast method for computing the PSWFs expansion coefficients from the images' equally spaced samples, via a specialized quadrature integration scheme, and show that the number of required quadrature nodes is similar to the number of pixels in each image. We then establish that our PSWF-based steerable PCA is both faster and more accurate then existing methods, and more importantly, provides us with rigorous error bounds on the entire procedure. PMID:29081879

  18. Numerical study of turbulent flow over stages of interacting barchan dunes: sediment scour and vorticity dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Anderson, William

    2017-11-01

    Large-eddy simulation (LES) results of unidirectional turbulent flow over interacting barchan dunes are presented. A series of interacting barchan dune topographies have been considered wherein a small dune is positioned at locations upflow of a relatively larger dune, and at a slight spanwise offset. The smaller dune is geometrically similar, but one-eighth the volume of the larger dune, thus replicating instantaneous realizations during actual dune interactions. We report that flow channeling in the interdune space induces a mean flow heterogeneity - termed ``wake veering'' - in which the location of maximum momentum deficit in the dune wake is spanwise-displaced. The probability density functions of streamwise velocity fluctuation in the interdune space showed wide variability, and were used to select low-frequency, high-magnitude thresholds for conditional sampling. Conditionally- and Reynolds-averaged iso-contours of Q-criterion and differential helicity revealed a persistent roller in interdune space, which strengthened asymmetric sediment erosion via scouring. We assess terms in the Reynolds-averaged streamwise vorticity transport, and show that the roller is primarily sustained by stretching. Finally, we present results of joint time-frequency analysis using wavelet decomposition, which shows that the dune geometry imparts a distinct influence on the local flow.

  19. Optical frequency comb generation with high tone-to-noise ratio for large-capacity wavelength division multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Ullah, Rahat; Liu, Bo; Zhang, Qi; Tian, Qinghua; Tian, Feng; Qu, Zhaowei; Yan, Cheng; Khan, Muhammad Saad; Ahmad, Ibrar; Xin, Xiangjun

    2015-11-01

    We propose a technique for the generation of optical frequency comb from a single source, which reduces the costs of optical access networks. Two Mach-Zehnder modulators are cascaded with one phase modulator driven by radiofrequency signals. With 10-GHz frequency spacing, the generated 40 optical multicarriers have good tone-to-noise ratio with least excursions in their comb lines. The laser array at the optical line terminal of the conventional wavelength division multiplexed passive optical network (WDM-PON) system has been replaced with optical frequency comb generator (OFCG), which may result in cost-effective optical line terminal (OLT) supporting a large-capacity WDM-PON system. Of 40 carriers generated, each carrier carries 10 Gbps data based on differential phase-shift keying. Four hundred Gbps multiplexed data from all channels are successfully transmitted through a fiber span of 25 km with negligible power penalties. Part of the downlink signal is used in uplink transmission at optical network unit where intensity-modulated on-off keying is deployed for remodulation. Theoretical analysis of the proposed WDM-PON system based on OFCG are in good agreement with simulation results. The metrics considered for the analysis of the proposed OFCG in a WDM-PON system are power penalties of the full-duplex transmission, eye diagrams, and bit error rate.

  20. Successful application of frequency-domain airborne electromagnetic system with a grounded electric source

    NASA Astrophysics Data System (ADS)

    Kang, L.; Lin, J.; Liu, C.; Zhou, H.; Ren, T.; Yao, Y.

    2017-12-01

    A new frequency-domain AEM system with a grounded electric source, which was called ground-airborne frequency-domain electromagnetic (GAFEM) system, was proposed to extend penetration depth without compromising the resolution and detection efficiency. In GAFEM system, an electric source was placed on the ground to enlarge the strength of response signals. UVA was chosen as aircraft to reduce interaction noise and improve its ability to adapt to complex terrain. Multi-source and multi-frequency emission method has been researched and applied to improve the efficiency of GAFEM system. 2n pseudorandom sequence was introduced as transmitting waveform, to ensure resolution and detection efficiency. Inversion-procedure based on full-space apparent resistivity formula was built to realize GAFEM method and extend the survey area to non-far field. Based on GAFEM system, two application was conducted in Changchun, China, to map the deep conductive structure. As shown in the results of this exploration, GAFEM system shows its effectiveness to conductive structure, obtaining a depth of about 1km with a source-receiver distance of over 6km. And it shows the same level of resolution with CSAMT method with an over 10 times of efficiency. This extended a range of important applications where the terrain is too complex to be accessed or large penetration depth is required in a large survey area.

  1. Multiplexing Readout of TES Microcalorimeters Based on Analog Baseband Feedback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takei, Y.; Yamasaki, N.Y; Mitsuda, K.

    2009-12-16

    A TES microcalorimeter array is a promising spectrometer with excellent energy resolution and a moderate imaging capability. To realize a large format array in space, multiplexing the TES signals at the low tempersture stage is mandatory. We are developing frequency division multiplexing (FDM) based on baseband feedback technique. In FDM, each TES is AC-biased with a different carrier frequency. Signals from several pixels are summed and then read out by one SQUID. The maximum number of multiplexed pixels are limited by the frequency band in which the SQUID can be operated in a flux-locked loop, which is {approx}1 MHz withmore » standard flux-locked loop circuit. In the baseband feedback, the signal ({approx}10 kHz band) from the TES is once demodulated. Then a reconstructed copy of the modulated signal with an appropriate phase is fed back to the SQUID input coil to maintain an approximately constant magnetic flux. This can be implemented even for large cable delays and automatically suppresses the carrier. We developed a prototype electronics for the baseband feedback based on an analog phase sensitive detector (PSD) and a multiplier. Combined with Seiko 80-SSA SQUID amp, open-loop gain of 8 has been obtained for 10 kHz baseband signal at 5 MHz carrier frequency, with a moderate noise contribution of 27pA/{radical}(Hz) at input.« less

  2. Frequency-tuning input-shaped manifold-based switching control for underactuated space robot equipped with flexible appendages

    NASA Astrophysics Data System (ADS)

    Kojima, Hirohisa; Ieda, Shoko; Kasai, Shinya

    2014-08-01

    Underactuated control problems, such as the control of a space robot without actuators on the main body, have been widely investigated. However, few studies have examined attitude control problems of underactuated space robots equipped with a flexible appendage, such as solar panels. In order to suppress vibration in flexible appendages, a zero-vibration input-shaping technique was applied to the link motion of an underactuated planar space robot. However, because the vibrational frequency depends on the link angles, simple input-shaping control methods cannot sufficiently suppress the vibration. In this paper, the dependency of the vibrational frequency on the link angles is measured experimentally, and the time-delay interval of the input shaper is then tuned based on the frequency estimated from the link angles. The proposed control method is referred to as frequency-tuning input-shaped manifold-based switching control (frequency-tuning IS-MBSC). The experimental results reveal that frequency-tuning IS-MBSC is capable of controlling the link angles and the main body attitude to maintain the target angles and that the vibration suppression performance of the proposed frequency-tuning IS-MBSC is better than that of a non-tuning IS-MBSC, which does not take the frequency variation into consideration.

  3. Recent Developments in Microwave Ion Clocks

    NASA Astrophysics Data System (ADS)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    We review the development of microwave-frequency standards based on trapped ions. Following two distinct paths, microwave ion clocks have evolved greatly in the last twenty years since the earliest Paul-trap-based units. Laser-cooled ion frequency standards reduce the second-order Doppler shift from ion micromotion and thermal secular motion achieving good signal-to-noise ratios via cycling transitions where as many as ~10^8 photons per second per ion may be scattered. Today, laser-cooled ion standards are based on linear Paul traps which hold ions near the node line of the trapping electric field, minimizing micromotion at the trapping-field frequency and the consequent second-order Doppler frequency shift. These quadrupole (radial) field traps tightly confine tens of ions to a crystalline single-line structure. As more ions are trapped, space charge forces some ions away from the node-line axis and the second-order Doppler effect grows larger, even at negligibly small secular temperatures. Buffer-gas-cooled clocks rely on large numbers of ions, typically ~10^7, optically pumped by a discharge lamp at a scattering rate of a few photons per second per ion. To reduce the second-order Doppler shift from space charge repulsion of ions from the trap node line, novel multipole ion traps are now being developed where ions are weakly bound with confining fields that are effectively zero through the trap interior and grow rapidly near the trap electrode ``walls''.

  4. FAST TRACK COMMUNICATION: Ferroelectric properties and dielectric responses of multiferroic BiFeO3 films grown by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoding; Tsai, Po-Chou; Chen, Yi-Chun; Ko, Cheng-Hung; Huang, Jung-Chun-Andrew; Chen, In-Gann

    2008-12-01

    Multiferroic BiFeO3 films have been grown on LaNiO3-x/SrTiO3 and Pt/Si substrates by RF magnetron sputtering. The films showed fully saturated ferroelectric hysteresis loops with large remanent polarization of 64 µC cm-2, suitable for most device applications. Piezoresponse force microscopy confirmed that the films were electrically writable. In addition to the high-frequency intrinsic dielectric loss of epitaxial films, the Argand diagram also revealed low-frequency contributions from both dc conductivity and interfacial polarization at electrodes. For polycrystalline films on Pt/Si, the dominant contribution to dielectric loss was space charge polarization at grain boundaries.

  5. Analysis of rapid increase in the plasma density during the ramp-up phase in a radio frequency negative ion source by large-scale particle simulation

    NASA Astrophysics Data System (ADS)

    Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.

    2014-02-01

    Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.

  6. On the ghost-induced instability on de Sitter background

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Salles, Filipe de O.; Shapiro, Ilya L.

    2018-03-01

    It is known that the perturbative instability of tensor excitations in higher derivative gravity may not take place if the initial frequency of the gravitational waves is below the Planck threshold. One can assume that this is a natural requirement if the cosmological background is sufficiently mild, since in this case the situation is qualitatively close to the free gravitational wave in flat space. Here, we explore the opposite situation and consider the effect of a very far from Minkowski radiation-dominated or de Sitter cosmological background with a large Hubble rate, e.g., typical of an inflationary period. It turns out that, then, for initial Planckian or even trans-Planckian frequencies, the instability is rapidly suppressed by the very fast expansion of the Universe.

  7. Theoretical physics implications of gravitational wave observation with future detectors

    NASA Astrophysics Data System (ADS)

    Chamberlain, Katie; Yunes, Nicolás

    2017-10-01

    Gravitational waves encode invaluable information about the nature of the relatively unexplored extreme gravity regime, where the gravitational interaction is strong, nonlinear and highly dynamical. Recent gravitational wave observations by advanced LIGO have provided the first glimpses into this regime, allowing for the extraction of new inferences on different aspects of theoretical physics. For example, these detections provide constraints on the mass of the graviton, Lorentz violation in the gravitational sector, the existence of large extra dimensions, the temporal variability of Newton's gravitational constant, and modified dispersion relations of gravitational waves. Many of these constraints, however, are not yet competitive with constraints obtained, for example, through Solar System observations or binary pulsar observations. In this paper, we study the degree to which theoretical physics inferences drawn from gravitational wave observations will strengthen with detections from future detectors. We consider future ground-based detectors, such as the LIGO-class expansions A + , Voyager, Cosmic Explorer and the Einstein Telescope, as well as space-based detectors, such as various configurations of eLISA and the recently proposed LISA mission. We find that space-based detectors will place constraints on general relativity up to 12 orders of magnitude more stringently than current aLIGO bounds, but these space-based constraints are comparable to those obtained with the ground-based Cosmic Explorer or the Einstein Telescope (A + and Voyager only lead to modest improvements in constraints). We also generically find that improvements in the instrument sensitivity band at low frequencies lead to large improvements in certain classes of constraints, while sensitivity improvements at high frequencies lead to more modest gains. These results strengthen the case for the development of future detectors, while providing additional information that could be useful in future design decisions.

  8. Frequency-Weighting Filter Selection, for H2 Control of Microgravity Isolation Systems: A Consideration of the "Implicit Frequency Weighting" Problem

    NASA Technical Reports Server (NTRS)

    Hampton, Roy David; Whorton, Mark S.

    1999-01-01

    Many space-science experiments need an active isolation system to provide them with the requisite microgravity environment. The isolation systems planned for use with the International Space Station (ISS) have been appropriately modeled using relative position, relative velocity, and acceleration states. In theory, frequency-weighting design filters can be applied to these state-space models, in order to develop optimal H2 or mixed-norm controllers with desired stability and performance characteristics. In practice, however, since there is a kinematic relationship among the various states, any frequency weighting applied to one state will implicitly weight other states. These implicit frequency-weighting effects must be considered, for intelligent frequency-weighting filter assignment. This paper suggests a rational approach to the assignment of frequency-weighting design filters, in the presence of the kinematic coupling among states that exists in the microgravity vibration isolation problem.

  9. Satellite orbit and data sampling requirements

    NASA Technical Reports Server (NTRS)

    Rossow, William

    1993-01-01

    Climate forcings and feedbacks vary over a wide range of time and space scales. The operation of non-linear feedbacks can couple variations at widely separated time and space scales and cause climatological phenomena to be intermittent. Consequently, monitoring of global, decadal changes in climate requires global observations that cover the whole range of space-time scales and are continuous over several decades. The sampling of smaller space-time scales must have sufficient statistical accuracy to measure the small changes in the forcings and feedbacks anticipated in the next few decades, while continuity of measurements is crucial for unambiguous interpretation of climate change. Shorter records of monthly and regional (500-1000 km) measurements with similar accuracies can also provide valuable information about climate processes, when 'natural experiments' such as large volcanic eruptions or El Ninos occur. In this section existing satellite datasets and climate model simulations are used to test the satellite orbits and sampling required to achieve accurate measurements of changes in forcings and feedbacks at monthly frequency and 1000 km (regional) scale.

  10. Linear and Nonlinear Time-Frequency Analysis for Parameter Estimation of Resident Space Objects

    DTIC Science & Technology

    2017-02-22

    AFRL-AFOSR-UK-TR-2017-0023 Linear and Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects Marco Martorella...estimated to average 1 hour per response, including the time for reviewing instructions, searching existing   data sources, gathering and maintaining the...Nonlinear Time -Frequency Analysis for Parameter Estimation of Resident Space Objects 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0183 5c.  PROGRAM

  11. On the cross-stream spectral method for the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Hodge, Steven L.

    1993-01-01

    Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.

  12. Extremely Severe Space Weather and Geomagnetically Induced Currents in Regions with Locally Heterogeneous Ground Resistivity

    NASA Technical Reports Server (NTRS)

    Fujita, Shigeru; Kataoka, Ryuho; Pulkkinen, Antti; Watari, Shinichi

    2016-01-01

    Large geomagnetically induced currents (GICs) triggered by extreme space weather events are now regarded as one of the serious natural threats to the modern electrified society. The risk is described in detail in High-Impact, Low-Frequency Event Risk, A Jointly-Commissioned Summary Report of the North American Electric Reliability Corporation and the US Department of Energy's November 2009 Workshop, June 2010. For example, the March 13-14,1989 storm caused a large-scale blackout affecting about 6 million people in Quebec, Canada, and resulting in substantial economic losses in Canada and the USA (Bolduc 2002). Therefore, European and North American nations have invested in GIC research such as the Solar Shield project in the USA (Pulkkinen et al. 2009, 2015a). In 2015, the Japanese government (Ministry of Economy, Trade and Industry, METI) acknowledged the importance of GIC research in Japan. After reviewing the serious damages caused by the 2011 Tohoku-Oki earthquake, METI recognized the potential risk to the electric power grid posed by extreme space weather. During extreme events, GICs can be concerning even in mid- and low-latitude countries and have become a global issue.

  13. Development Towards a Space Qualified Laser Stabilization System in Support of Space-Based Optical Interferometers

    NASA Technical Reports Server (NTRS)

    Seidel, David J.; Dubovitsky, Serge

    2000-01-01

    We report on the development, functional performance and space-qualification status of a laser stabilization system supporting a space-based metrology source used to measure changes in optical path lengths in space-based stellar interferometers. The Space Interferometry Mission (SIM) and Deep Space 3 (DS-3) are two missions currently funded by the National Aeronautics and Space Administration (NASA) that are space-based optical interferometers. In order to properly recombine the starlight received at each telescope of the interferometer it is necessary to perform high resolution laser metrology to stabilize the interferometer. A potentially significant error source in performing high resolution metrology length measurements is the potential for fluctuations in the laser gauge itself. If the laser frequency or wavelength is changing over time it will be misinterpreted as a length change in one of the legs of the interferometer. An analysis of the frequency stability requirement for SIM resulted in a fractional frequency stability requirement of square root (S(sub y)(f)) = <2 x 10(exp -12)/square root(Hz) at Fourier frequencies between 10 Hz and 1000 Hz. The DS-3 mission stability requirement is further increased to square root (S(sub y)(f)) = <5 x 10(exp -14)/Square root(Hz) at Fourier frequencies between 0.2 Hz and 10 kHz with a goal of extending the low frequency range to 0.05 Hz. The free running performance of the Lightwave Electronics NPRO lasers, which are the baseline laser for both SIM and DS-3 vary in stability and we have measured them to perform as follows (9 x l0(exp -11)/ f(Hz))(Hz)/square root(Hz)) = <( square root (S(sub y)(f)) = <(1.3 x l0(exp -8)/ f(Hz))/Square root(Hz). In order to improve the frequency stability of the laser we stabilize the laser to a high finesse optical cavity by locking the optical frequency of the laser to one of the transmission modes of the cavity. At JPL we have built a prototype space-qualifiable system meeting the stability requirements of SIM, which has been delivered to one of the SIM testbeds. We have also started on the development of a system to meet the stability needs of DS-3.

  14. A Detection Pipeline for Galactic Binaries in LISA Data

    NASA Technical Reports Server (NTRS)

    Littenberg, Tyson B.

    2012-01-01

    The Galaxy is suspected to contain hundreds of millions of binary white dwarf systems, a large fraction of which will have sufficiently small orbital period to emit gravitational radiation in band for space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). LISA's main science goal is the detection of cosmological events (supermassive black hole mergers) etc.) however the gravitational signal from the galaxy will be the dominant contribution to the data - including instrumental noise - over approximately two decades in frequency. The catalogue of detectable binary systems will serve as an unparalleled means of studying the Galaxy. Furthermore, to maximize the scientific return from the mission, the data must be "cleansed" of the galactic foreground. We will present an algorithm that can accurately resolve and subtract greater than or equal to 10000 of these sources from simulated data supplied by the Mock LISA Data Challenge Task Force. Using the time evolution of the gravitational wave frequency, we will reconstruct the position of the recovered binaries and show how LISA will sample the entire compact binary population in the Galaxy.

  15. Extending the ICRF to Higher Radio Frequencies

    NASA Technical Reports Server (NTRS)

    Jacobs, C. S.; Jones, D. L.; Lanyi, G. E.; Lowe, S. T.; Naudet, C. J.; Resch, G. M.; Steppe, J. A.; Zhang, L. D.; Ulvestad, J. S.; Taylor, G. B.

    2002-01-01

    The ICRF forms the basis for all astrometry including use as the inertial coordinate system for navigating deep space missions. This frame was defined using S/X-band observations over the past 20+ years. In January 2002, the VLBA approved our proposal for observing time to extend the ICRF to K-band (24 GHz) and Q-band (43 GHz). The first step will be observations at K- and Q-bands on a subset of ICRF sources. Eventually, K- and Q-band multi-epoch observations will be used to estimate positions, flux density and source structure for a large fraction of the current S/X-band ICRF source list. This work will benefit the radio astronomy community by extending the VLBA calibrator list at these bands. In the longer term, we would also like to extend the ICRF to Ka-band (32 GHz). A celestial reference frame will be needed at this frequency to support deep space navigation. A navigation demonstration is being considered for NASA's Mars 2005 mission. The initial K- and Q-band work will serve to identify candidate sources at Ka-band for use with that mission.

  16. Turbulent Statistics From Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2013-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  17. Turbulent Statistics from Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.

    2012-01-01

    Empirical mode decomposition is an adaptive signal processing method that when applied to a broadband signal, such as that generated by turbulence, acts as a set of band-pass filters. This process was applied to data from time-resolved, particle image velocimetry measurements of subsonic jets prior to computing the second-order, two-point, space-time correlations from which turbulent phase velocities and length and time scales could be determined. The application of this method to large sets of simultaneous time histories is new. In this initial study, the results are relevant to acoustic analogy source models for jet noise prediction. The high frequency portion of the results could provide the turbulent values for subgrid scale models for noise that is missed in large-eddy simulations. The results are also used to infer that the cross-correlations between different components of the decomposed signals at two points in space, neglected in this initial study, are important.

  18. Adaptive control of large space structures using recursive lattice filters

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.

    1985-01-01

    The use of recursive lattice filters for identification and adaptive control of large space structures was studied. Lattice filters are used widely in the areas of speech and signal processing. Herein, they are used to identify the structural dynamics model of the flexible structures. This identified model is then used for adaptive control. Before the identified model and control laws are integrated, the identified model is passed through a series of validation procedures and only when the model passes these validation procedures control is engaged. This type of validation scheme prevents instability when the overall loop is closed. The results obtained from simulation were compared to those obtained from experiments. In this regard, the flexible beam and grid apparatus at the Aerospace Control Research Lab (ACRL) of NASA Langley Research Center were used as the principal candidates for carrying out the above tasks. Another important area of research, namely that of robust controller synthesis, was investigated using frequency domain multivariable controller synthesis methods.

  19. Shape control of slack space reflectors using modulated solar pressure.

    PubMed

    Borggräfe, Andreas; Heiligers, Jeannette; Ceriotti, Matteo; McInnes, Colin R

    2015-07-08

    The static deflection profile of a large spin-stabilized space reflector because of solar radiation pressure acting on its surface is investigated. Such a spacecraft consists of a thin reflective circular film, which is deployed from a supporting hoop structure in an untensioned, slack manner. This paper investigates the use of a variable reflectivity distribution across the surface to control the solar pressure force and hence the deflected shape. In this first analysis, the film material is modelled as one-dimensional slack radial strings with no resistance to bending or transverse shear, which enables a semi-analytic derivation of the nominal deflection profile. An inverse method is then used to find the reflectivity distribution that generates a specific, for example, parabolic deflection shape of the strings. Applying these results to a parabolic reflector, short focal distances can be obtained when large slack lengths of the film are employed. The development of such optically controlled reflector films enables future key mission applications such as solar power collection, radio-frequency antennae and optical telescopes.

  20. 14 CFR 1215.107 - User data security and frequency authorizations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false User data security and frequency authorizations. 1215.107 Section 1215.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users...

  1. 14 CFR 1215.107 - User data security and frequency authorizations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true User data security and frequency authorizations. 1215.107 Section 1215.107 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION TRACKING AND DATA RELAY SATELLITE SYSTEM (TDRSS) Use and Reimbursement Policy for Non-U.S. Government Users...

  2. Statistical analysis of modeling error in structural dynamic systems

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, J. D.

    1990-01-01

    The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.

  3. The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    NASA Technical Reports Server (NTRS)

    Brinkman, P. W.; Kretz, D.

    1992-01-01

    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented.

  4. Lamb Shift in the Near Field of Hyperbolic Metamaterial Half Space

    NASA Astrophysics Data System (ADS)

    Deng, Nai Jing; Yu, Kin Wah

    2013-03-01

    Hyperbolic metamaterials give a large magnification of the density of states in a specific frequency ranges, and has motivated various applications in emission lifetime reduction, strong absorption, and extraordinary black body radiation, etc. The boost of vacuum energy, which is proportional to the density of states, is expected in hyperbolic metamaterial. We have studied the Lamb shift in vacuum-hyperbolic-metamterial half spaces and shown the non-trivial role of vacuum energy. In our calculation, the easy-fabricated multilayer structure is employed to generate a hyperbolic dispersion relation. The spectrum of hydrogen atoms is calculated with a perturbation method after quantizing the half spaces with a complete mode expansion. It appears that the shift of spectrum is mainly contributed by the terahertz response of materials, which has been well described and predicted in both theories and experiments. Work supported by the General Research Fund of the Hong Kong SAR Government

  5. Dynamics and Robust Control of Sampled Data Systems for Large Space Structures

    DTIC Science & Technology

    1992-11-01

    physical interpretation of J 1 is this: We wish to keep the state near zero without excessive control-energy expenditcure. The weighting matrix, Q...can be given as follows. Defining v(k) -- [RI+ HT75(k÷!) H) -’ HTP (k+l)Gx(k) (249) where P(k) is a modified version of the Ricatti Equation. £(k)-C... Manual ", GTICES Systems Laboratory, Georgia Institute of Technology, Altanta, GA, Rev.J, April 1978. 21) Ericsson, A.J., "Determination of Frequencies

  6. Electronically steerable millimeter wave antenna techniques for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.

    1975-01-01

    A large multi-function antenna aperture and related components are described which will perform electronic steering of one or more beams for two of the three applications envisioned: (1) communications, (2) radar, and (3) radiometry. The array consists of a 6-meter folded antenna that fits into two pallets. The communications frequencies are 20 and 30 GHz, while the radar is to operate at 13.9 GHz. Weight, prime power, and volumes are given parametrically; antenna designs, electronics configurations, and mechanical design were studied.

  7. An overview of recent advances in system identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1994-01-01

    This paper presents an overview of the recent advances in system identification for modal testing and control of large flexible structures. Several techniques are discussed including the Observer/Kalman Filter Identification, the Observer/Controller Identification, and the State-Space System Identification in the Frequency Domain. The System/Observer/Controller Toolbox developed at NASA Langley Research Center is used to show the applications of these techniques to real aerospace structures such as the Hubble spacecraft telescope and the active flexible aircraft wing.

  8. Fiber-Optic Sensing System: Overview, Development and Deployment in Flight at NASA

    NASA Technical Reports Server (NTRS)

    Chan, Hon Man; Parker, Allen R.; Piazza, Anthony; Richards, W. Lance

    2015-01-01

    An overview of the research and technological development of the fiber-optic sensing system (FOSS) at the National Aeronautics and Space Administration Armstrong Flight Research Center (NASA AFRC) is presented. Theory behind fiber Bragg grating (FBG) sensors, as well as interrogation technique based on optical frequency domain reflectometry (OFDR) is discussed. Assessment and validation of FOSS as an accurate measurement tool for structural health monitoring is realized in the laboratory environment as well as large-scale flight deployment.

  9. Local Electron Density Measurements from Sounding Experiments by RPI on IMAGE

    NASA Astrophysics Data System (ADS)

    Proddaturi, R.; Sonwalkar, V. S.; Li, J.; Venkatasubramanian, A.; Carpenter, D.; Benson, R.; Reinisch, B.

    2004-12-01

    RPI sounding experiments lead to a variety of echoes, propagating in various plasma wave modes, and local resonances. Characteristic frequencies of these echoes and resonances can be used to determine the local plasma frequency and thus the local electron density. In this work we have estimated plasma frequency by two methods: (1) using upper hybrid frequency measured from the diffuse Z mode echo upper cutoff and gyro-frequency measured from a gap in the diffuse Z mode echo or from resonances at the multiples of gyrofrequency, (2) upper hybrid frequency from the diffuse Z mode and the free space cutoff frequency fR=0 from the R-X mode echo. Broadband diffuse Z-mode echoes occur 90% of the time at high latitudes (λ m>45oS) near perigee in the southern hemisphere, where fpe << fce. In the middle and low latitudes (λ m<45oS), where fpe >> fce, Z-mode echoes are narrowband and are often accompanied by Qn and Dn resonances. The free space R-X mode echoes are commonly observed at both high and low latitudes. Multiples of gyrofrequency are typically observed at mid- to low-latitude in both the northern and southern hemisphere and at high latitude in the northern hemisphere. RPI plasmagrams were analyzed for three orbits (apogee to apogee) in the year 2002. These three orbits were selected because suitable sounding programs, those that can cover Z mode bandwidth over a wide range of latitude, were used, and also because a large number of diffuse Z mode echoes were actually observed. Electron densities as low as 10 el/cc and as high as 9000 el/cc were measured. The transmission frequencies place a limitation on the upper and lower limits of measurable fpe. The measured fpe values showed good agreement with measurements made from the thermal noise but showed large deviations when compared with model fpe values. For a particular orbit on August 26, 2002, Ne measured was as low as ˜20 el/cc at higher altitudes outside the plasmasphere (λ m > 60oN, altitude >7000 km, MLT=1.89) and increased as IMAGE approached the plasmasphere. A maximum of ˜8900 el/cc was measured well within the plasmasphere (L = 1.56, λ m = 17oN, altitude =2700 km, MLT = 2.44). As the satellite left the plasmasphere, measured electron density decreased to a minimum of about 55 el/cc near the auroral zone (L = 6.83, λ m = 57oS, altitude = 6277 km, MLT=13.66) and then started to rise again. A sharper change in Ne was seen at both the inbound and outbound crossings of the plasmapause. As the satellite again entered the plasmasphere (L = 3.94, λ m = 21oS, altitude = 15500 km, MLT = 14.34) at a higher altitude the maximum value of Ne measured was lower ( ˜520 el/cc) as expected. Our results demonstrate that magnetospheric sounding experiments employing Z mode and free space modes provide a powerful means of making local plasma density measurements.

  10. Mission definition study for a VLBI station utilizing the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Burke, B. F.

    1982-01-01

    The uses of the Space Shuttle transportation system for orbiting VeryLong-Baseline Interferometry (OVLBI) were examined, both with respect to technical feasibility and its scientific possibilities. The study consisted of a critical look at the adaptability of current technology to an orbiting environment, the suitability of current data reduction facilities for the new technique, and a review of the new science that is made possible by using the Space Shuttle as a moving platform for a VLBI terminal in space. The conclusions are positive in all respects: no technological deficiencies exist that would need remedy, the data processing problem can be handled easily by straightforward adaptations of existing systems, and there is a significant new research frontier to be explored, with the Space Shuttle providing the first step. The VLBI technique utilizes the great frequency stability of modern atomic time standards, the power of integrated circuitry to perform real-time signal conditioning, and the ability of magnetic tape recorders to provide essentially error-free data recording, all of which combine to permit the realization of radio interferometry at arbitrarily large baselines.

  11. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James L.

    2010-01-01

    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.

  12. A Hybrid Algorithm for Period Analysis from Multiband Data with Sparse and Irregular Sampling for Arbitrary Light-curve Shapes

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Vivas, A. Katherina

    2017-12-01

    Ongoing and future surveys with repeat imaging in multiple bands are producing (or will produce) time-spaced measurements of brightness, resulting in the identification of large numbers of variable sources in the sky. A large fraction of these are periodic variables: compilations of these are of scientific interest for a variety of purposes. Unavoidably, the data sets from many such surveys not only have sparse sampling, but also have embedded frequencies in the observing cadence that beat against the natural periodicities of any object under investigation. Such limitations can make period determination ambiguous and uncertain. For multiband data sets with asynchronous measurements in multiple passbands, we wish to maximally use the information on periodicity in a manner that is agnostic of differences in the light-curve shapes across the different channels. Given large volumes of data, computational efficiency is also at a premium. This paper develops and presents a computationally economic method for determining periodicity that combines the results from two different classes of period-determination algorithms. The underlying principles are illustrated through examples. The effectiveness of this approach for combining asynchronously sampled measurements in multiple observables that share an underlying fundamental frequency is also demonstrated.

  13. Electromagnetic Scattering Analysis of Large Size Asteroids/Comets for Reflection/Transmission Tomography (RTT)

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar

    2011-01-01

    A precise knowledge of the interior structure of asteroids, comets, and Near Earth Objects (NEO) is important to assess the consequences of their impacts with the Earth and develop efficient mitigation strategies. Knowledge of their interior structure also provides opportunities for extraction of raw materials for future space activities. Low frequency radio sounding is often proposed for investigating interior structures of asteroids and NEOs. For designing and optimizing radio sounding instrument it is advantageous to have an accurate and efficient numerical simulation model of radio reflection and transmission through large size bodies of asteroid shapes. In this presentation we will present electromagnetic (EM) scattering analysis of electrically large size asteroids using (1) a weak form formulation and (2) also a more accurate hybrid finite element method/method of moments (FEM/MOM) to help estimate their internal structures. Assuming the internal structure with known electrical properties of a sample asteroid, we first develop its forward EM scattering model. From the knowledge of EM scattering as a function of frequency and look angle we will then present the inverse scattering procedure to extract its interior structure image. Validity of the inverse scattering procedure will be presented through few simulation examples.

  14. The CoRoT B-type binary HD 50230: a prototypical hybrid pulsator with g-mode period and p-mode frequency spacings⋆

    NASA Astrophysics Data System (ADS)

    Degroote, P.; Aerts, C.; Michel, E.; Briquet, M.; Pápics, P. I.; Amado, P.; Mathias, P.; Poretti, E.; Rainer, M.; Lombaert, R.; Hillen, M.; Morel, T.; Auvergne, M.; Baglin, A.; Baudin, F.; Catala, C.; Samadi, R.

    2012-06-01

    Context. B-type stars are promising targets for asteroseismic modelling, since their frequency spectrum is relatively simple. Aims: We deduce and summarise observational constraints for the hybrid pulsator, HD 50230, earlier reported to have deviations from a uniform period spacing of its gravity modes. The combination of spectra and a high-quality light curve measured by the CoRoT satellite allow a combined approach to fix the position of HD 50230 in the HR diagram. Methods: To describe the observed pulsations, classical Fourier analysis was combined with short-time Fourier transformations and frequency spacing analysis techniques. Visual spectra were used to constrain the projected rotation rate of the star and the fundamental parameters of the target. In a first approximation, the combined information was used to interpret multiplets and spacings to infer the true surface rotation rate and a rough estimate of the inclination angle. Results: We identify HD 50230 as a spectroscopic binary and characterise the two components. We detect the simultaneous presence of high-order g modes and low-order p and g-modes in the CoRoT light curve, but were unable to link them to line profile variations in the spectroscopic time series. We extract the relevant information from the frequency spectrum, which can be used for seismic modelling, and explore possible interpretations of the pressure mode spectrum. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain. Based on observations made with the ESO telescopes at La Silla Observatory under the ESO Large Programme LP182.D-0356, and on observations made with the Mercator Telescope, operated on the island of La Palma by the Flemish Community, at the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias, and on observations obtained with the HERMES spectrograph, which is supported by the Fund for Scientific Research of Flanders (FWO), Belgium, the Research Council of K.U. Leuven, Belgium, the Fonds National de la Recherche Scientifique (FNRS), Belgium, the Royal Observatory of Belgium, the Observatoire de Genève, Switzerland and the Thüringer Landessternwarte Tautenburg, Germany.Appendix A is available in electronic form at http://www.aanda.org

  15. Presenting Critical Space Weather Information to Customers and Stakeholders (Invited)

    NASA Astrophysics Data System (ADS)

    Viereck, R. A.; Singer, H. J.; Murtagh, W. J.; Rutledge, B.

    2013-12-01

    Space weather involves changes in the near-Earth space environment that impact technological systems such as electric power, radio communication, satellite navigation (GPS), and satellite opeartions. As with terrestrial weather, there are several different kinds of space weather and each presents unique challenges to the impacted technologies and industries. But unlike terrestrial weather, many customers are not fully aware of space weather or how it impacts their systems. This issue is further complicated by the fact that the largest space weather events occur very infrequently with years going by without severe storms. Recent reports have estimated very large potential costs to the economy and to society if a geomagnetic storm were to cause major damage to the electric power transmission system. This issue has come to the attention of emergency managers and federal agencies including the office of the president. However, when considering space weather impacts, it is essential to also consider uncertainties in the frequency of events and the predicted impacts. The unique nature of space weather storms, the specialized technologies that are impacted by them, and the disparate groups and agencies that respond to space weather forecasts and alerts create many challenges to the task of communicating space weather information to the public. Many customers that receive forecasts and alerts are highly technical and knowledgeable about the subtleties of the space environment. Others know very little and require ongoing education and explanation about how a space weather storm will affect their systems. In addition, the current knowledge and understanding of the space environment that goes into forecasting storms is quite immature. It has only been within the last five years that physics-based models of the space environment have played important roles in predictions. Thus, the uncertainties in the forecasts are quite large. There is much that we don't know about space weather and this influences our forecasts. In this presentation, I will discuss the unique challenges that space weather forecasters face when explaining what we know and what we don't know about space weather events to customers and policy makers.

  16. Low-Light-Shift Cesium Fountain without Mechanical Shutters

    NASA Technical Reports Server (NTRS)

    Enzer, Daphna

    2008-01-01

    A new technique for reducing errors in a laser-cooled cesium fountain frequency standard provides for strong suppression of the light shift without need for mechanical shutters. Because mechanical shutters are typically susceptible to failure after operating times of the order of months, the elimination of mechanical shutters could contribute significantly to the reliability of frequency standards that are required to function continuously for longer time intervals. With respect to the operation of an atomic-fountain frequency standard, the term "light shift" denotes an undesired relative shift in the two energy levels of the atoms (in this case, cesium atoms) in the atomic fountain during interrogation by microwaves. The shift in energy levels translates to a frequency shift that reduces the precision and possibly accuracy of the frequency standard. For reasons too complex to describe within the space available for this article, the light shift is caused by any laser light that reaches the atoms during the microwave- interrogation period, but is strongest for near-resonance light. In the absence of any mitigating design feature, the light shift, expressed as a fraction of the standard fs frequency, could be as large as approx. 2 x 10(exp -11), the largest error in the standard. In a typical prior design, to suppress light shift, the intensity of laser light is reduced during the interrogation period by using a single-pass acoustooptic modulator to deflect the majority of light away from the main optical path. Mechanical shutters are used to block the remaining undeflected light to ensure complete attenuation. Without shutters, this remaining undeflected light could cause a light shift of as much as .10.15, which is unacceptably large in some applications. The new technique implemented here involves additionally shifting the laser wavelength off resonance by a relatively large amount (typically of the order of nanometers) during microwave interrogation. In this design, when microwave interrogation is not underway, the atoms are illuminated by a slave laser locked to the lasing frequency of a lower power master laser.

  17. Methods for evaluating the predictive accuracy of structural dynamic models

    NASA Technical Reports Server (NTRS)

    Hasselman, Timothy K.; Chrostowski, Jon D.

    1991-01-01

    Modeling uncertainty is defined in terms of the difference between predicted and measured eigenvalues and eigenvectors. Data compiled from 22 sets of analysis/test results was used to create statistical databases for large truss-type space structures and both pretest and posttest models of conventional satellite-type space structures. Modeling uncertainty is propagated through the model to produce intervals of uncertainty on frequency response functions, both amplitude and phase. This methodology was used successfully to evaluate the predictive accuracy of several structures, including the NASA CSI Evolutionary Structure tested at Langley Research Center. Test measurements for this structure were within + one-sigma intervals of predicted accuracy for the most part, demonstrating the validity of the methodology and computer code.

  18. 47 CFR 25.202 - Frequencies, frequency tolerance and emission limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... case-by-case basis. The Table follows: Space-to-earth(GHz) Earth-to-space(GHz) 3.65-3.7 17 12 19 5.091...-satellite service (space-to-Earth) is limited to feeder links for the mobile-satellite service. 9 The use of the band 17.3-17.8 GHz by the fixed-satellite service (Earth-to-space) is limited to feeder links for...

  19. 47 CFR 25.202 - Frequencies, frequency tolerance and emission limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... case-by-case basis. The Table follows: Space-to-earth(GHz) Earth-to-space(GHz) 3.65-3.7 17 12 19 5.091...-satellite service (space-to-Earth) is limited to feeder links for the mobile-satellite service. 9 The use of the band 17.3-17.8 GHz by the fixed-satellite service (Earth-to-space) is limited to feeder links for...

  20. 47 CFR 25.202 - Frequencies, frequency tolerance and emission limitations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... case-by-case basis. The Table follows: Space-to-earth(GHz) Earth-to-space(GHz) 3.65-3.7 17 12 19 5.091...-satellite service (space-to-Earth) is limited to feeder links for the mobile-satellite service. 9 The use of the band 17.3-17.8 GHz by the fixed-satellite service (Earth-to-space) is limited to feeder links for...

  1. Statistical Prediction of Solar Particle Event Frequency based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Astrophysics Data System (ADS)

    Kim, M. Y.; Hu, S.; Cucinotta, F. A.

    2009-12-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth’s magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA’s short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 -23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (ΦE) with energy (E) >30 MeV during a defined space mission period. Corresponding ΦE (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Φ100, than at lower energies such as Φ30 or Φ60, because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons (50-300 MeV) in real-time is shown to be a crucial issue for crew protection.

  2. Statistical Prediction of Solar Particle Event Frequency Based on the Measurements of Recent Solar Cycles for Acute Radiation Risk Analysis

    NASA Technical Reports Server (NTRS)

    Myung-Hee, Y. Kim; Shaowen, Hu; Cucinotta, Francis A.

    2009-01-01

    Large solar particle events (SPEs) present significant acute radiation risks to the crew members during extra-vehicular activities (EVAs) or in lightly shielded space vehicles for space missions beyond the protection of the Earth's magnetic field. Acute radiation sickness (ARS) can impair performance and result in failure of the mission. Improved forecasting capability and/or early-warning systems and proper shielding solutions are required to stay within NASA's short-term dose limits. Exactly how to make use of observations of SPEs for predicting occurrence and size is a great challenge, because SPE occurrences themselves are random in nature even though the expected frequency of SPEs is strongly influenced by the time position within the solar activity cycle. Therefore, we developed a probabilistic model approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19 - 23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, the expected frequency of SPEs was estimated at any given proton fluence threshold (Phi(sub E)) with energy (E) >30 MeV during a defined space mission period. Corresponding Phi(sub E) (E=30, 60, and 100 MeV) fluence distributions were simulated with a random draw from a gamma distribution, and applied for SPE ARS risk analysis for a specific mission period. It has been found that the accurate prediction of deep-seated organ doses was more precisely predicted at high energies, Phi(sub 100), than at lower energies such as Phi(sub 30) or Phi(sub 60), because of the high penetration depth of high energy protons. Estimates of ARS are then described for 90th and 95th percentile events for several mission lengths and for several likely organ dose-rates. The ability to accurately measure high energy protons (50-300 MeV) in real-time is shown to be a crucial issue for crew protection.

  3. Three-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements, direct solvers and data space Gauss-Newton, parallelized on SMP computers

    NASA Astrophysics Data System (ADS)

    Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.

    2014-12-01

    We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic inversions we examine the importance of including the topography in the inversion and we test different regularization schemes using weighted second norm of model gradient as well as inverting for a static distortion matrix following Miensopust/Avdeeva approach. We also apply our algorithm to invert MT data collected at Mt St Helens.

  4. Equally spaced periods in the δ Scuti star KIC 5123889

    NASA Astrophysics Data System (ADS)

    Balona, L. A.

    2018-03-01

    KIC 5123889 was observed by Kepler almost continuously over a 4-yr period in long-cadence mode. The periodogram shows 14 low-frequency peaks spaced at almost exactly equidistant periods that are shown to be dipole gravity modes. Because the period spacing is practically constant, it can be deduced that the internal rotation period is probably in excess of 1 yr, allowing non-rotating models to be used for frequency matching. For a given metallicity and overshoot parameter, there is a strong correlation between the period spacing and the effective temperature in models covering the main-sequence band. The periods of all 14 dipole modes can be matched with the models to a precision of about 0.1 per cent. In addition, 51 peaks with frequencies in the range 1.7-2.8 d-1 are identified as combinations of the dipole mode frequencies. Four peaks in the frequency range 12.7-18.5 d-1, two of which have high amplitudes, identify the star as a δ Scuti. An attempt to fit the high frequencies using the restrictions imposed by the dipole gravity modes is not convincing as no unique identification can be made. Combination frequencies involving the δ Scuti frequencies and the dipole modes are also present.

  5. Nonresonant interaction of heavy ions with electromagnetic ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Gendrin, R.

    1985-01-01

    The motion of a heavy ion in the presence of an intense ultralow-frequency electromagnetic wave propagating along the dc magnetic field is analyzed. Starting from the basic equations of motion and from their associated two invariants, the heavy ion velocity-space trajectories are drawn. It is shown that after a certain time, particles whose initial phase angles are randomly distributed tend to bunch together, provided that the wave intensity b-sub-1 is sufficiently large. The importance of these results for the interpretation of the recently observed acceleration of singly charged He ions in conjunction with the occurrence of large-amplitude ion cyclotron waves in the equatorial magnetosphere is discussed.

  6. Practical system for the generation of pulsed quantum frequency combs.

    PubMed

    Roztocki, Piotr; Kues, Michael; Reimer, Christian; Wetzel, Benjamin; Sciara, Stefania; Zhang, Yanbing; Cino, Alfonso; Little, Brent E; Chu, Sai T; Moss, David J; Morandotti, Roberto

    2017-08-07

    The on-chip generation of large and complex optical quantum states will enable low-cost and accessible advances for quantum technologies, such as secure communications and quantum computation. Integrated frequency combs are on-chip light sources with a broad spectrum of evenly-spaced frequency modes, commonly generated by four-wave mixing in optically-excited nonlinear micro-cavities, whose recent use for quantum state generation has provided a solution for scalable and multi-mode quantum light sources. Pulsed quantum frequency combs are of particular interest, since they allow the generation of single-frequency-mode photons, required for scaling state complexity towards, e.g., multi-photon states, and for quantum information applications. However, generation schemes for such pulsed combs have, to date, relied on micro-cavity excitation via lasers external to the sources, being neither versatile nor power-efficient, and impractical for scalable realizations of quantum technologies. Here, we introduce an actively-modulated, nested-cavity configuration that exploits the resonance pass-band characteristic of the micro-cavity to enable a mode-locked and energy-efficient excitation. We demonstrate that the scheme allows the generation of high-purity photons at large coincidence-to-accidental ratios (CAR). Furthermore, by increasing the repetition rate of the excitation field via harmonic mode-locking (i.e. driving the cavity modulation at harmonics of the fundamental repetition rate), we managed to increase the pair production rates (i.e. source efficiency), while maintaining a high CAR and photon purity. Our approach represents a significant step towards the realization of fully on-chip, stable, and versatile sources of pulsed quantum frequency combs, crucial for the development of accessible quantum technologies.

  7. Nonideal ultrathin mantle cloak for electrically large conducting cylinders.

    PubMed

    Liu, Shuo; Zhang, Hao Chi; Xu, He-Xiu; Cui, Tie Jun

    2014-09-01

    Based on the concept of the scattering cancellation technique, we propose a nonideal ultrathin mantle cloak that can efficiently suppress the total scattering cross sections of an electrically large conducting cylinder (over one free-space wavelength). The cloaking mechanism is investigated in depth based on the Mie scattering theory and is simultaneously interpreted from the perspective of far-field bistatic scattering and near-field distributions. We remark that, unlike the perfect transformation-optics-based cloak, this nonideal cloaking technique is mainly designed to minimize simultaneously several scattering multipoles of a relatively large geometry around considerably broad bandwidth. Numerical simulations and experimental results show that the antiscattering ability of the metasurface gives rise to excellent total scattering reduction of the electrically large cylinder and remarkable electric-field restoration around the cloak. The outstanding cloaking performance together with the good features of and ultralow profile, flexibility, and easy fabrication predict promising applications in the microwave frequencies.

  8. RFI and Remote Sensing of the Earth from Space

    NASA Technical Reports Server (NTRS)

    Le Vine, D. M.; Johnson, J. T.; Piepmeier, J.

    2016-01-01

    Passive microwave remote sensing of the Earth from space provides information essential for understanding the Earth's environment and its evolution. Parameters such as soil moisture, sea surface temperature and salinity, and profiles of atmospheric temperature and humidity are measured at frequencies determined by the physics (e.g. sensitivity to changes in desired parameters) and by the availability of suitable spectrum free from interference. Interference from manmade sources (radio frequency interference) is an impediment that in many cases limits the potential for accurate measurements from space. A review is presented here of the frequencies employed in passive microwave remote sensing of the Earth from space and the associated experience with RFI.

  9. Frequency Shift During Mass Properties Testing Using Compound Pendulum Method

    NASA Technical Reports Server (NTRS)

    Wolfe, David; Regan, Chris

    2012-01-01

    During mass properties testing on the X-48B Blended Wing Body aircraft (The Boeing Company, Chicago, Illinois) at the National Aeronautics and Space Administration Dryden Flight Research Center, Edwards, California, large inertia measurement errors were observed in results from compound pendulum swings when compared to analytical models. By comparing periods of oscillations as measured from an average over the test period versus the period of each oscillation, it was noticed that the frequency of oscillation was shifting significantly throughout the test. This phenomenon was only noticed during compound pendulum swings, and not during bifilar pendulum swings. The frequency shift was only visible upon extensive data analysis of the frequency for each oscillation, and did not appear in averaged frequency data over the test period. Multiple test articles, test techniques, and hardware setups were used in attempts to eliminate or identify the cause of the frequency shift. Plotting the frequency of oscillation revealed a region of minimal shift that corresponded to a larger amplitude range. This region of minimal shift provided the most accurate results compared to a known test article; however, the amplitudes that produce accurate inertia measurements are amplitudes larger than those generally accepted in mass properties testing. This paper examines two case studies of the frequency shift, using mass properties testing performed on a dummy test article, and on the X-48B Blended Wing Body aircraft.

  10. Vibrational tug-of-war: The pKA dependence of the broad vibrational features of strongly hydrogen-bonded carboxylic acids

    NASA Astrophysics Data System (ADS)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2018-04-01

    Medium and strong hydrogen bonds give rise to broad vibrational features frequently spanning several hundred wavenumbers and oftentimes exhibiting unusual substructures. These broad vibrational features can be modeled from first principles, in a reduced dimensional calculation, that adiabatically separates low-frequency modes, which modulate the hydrogen bond length, from high-frequency OH stretch and bend modes that contribute to the vibrational structure. Previously this method was used to investigate the origin of an unusual vibrational feature frequently found in the spectra of dimers between carboxylic acids and nitrogen-containing aromatic bases that spans over 900 cm-1 and contains two broad peaks. It was found that the width of this feature largely originates from low-frequency modes modulating the hydrogen bond length and that the structure results from Fermi resonance interactions. In this report, we examine how these features change with the relative acid and base strength of the components as reflected by their aqueous pKA values. Dimers with large pKA differences are found to have features that can extend to frequencies below 1000 cm-1. The relationships between mean OH/NH frequency, aqueous pKA, and O-N distance are examined in order to obtain a more rigorous understanding of the origin and shape of the vibrational features. The mean OH/NH frequencies are found to correlate well with O-N distances. The lowest OH stretch frequencies are found in dimer geometries with O-N distances between 2.5 and 2.6 Å. At larger O-N distances, the hydrogen bonding interaction is not as strong, resulting in higher OH stretch frequencies. When the O-N distance is smaller than 2.5 Å, the limited space between the O and N determines the OH stretch frequency, which gives rise to frequencies that decrease with O-N distances. These two effects place a lower limit on the OH stretch frequency which is calculated to be near 700 cm-1. Understanding how the vibrational features of strongly hydrogen-bonded structures depend on the relative pKA and other structural parameters will guide studies of biological structures and analysis of proton transfer studies using photoacids.

  11. Comparison of the results of refractometric measurements in the process of diffusion, obtained by means of the backgroundoriented schlieren method and the holographic interferometry method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraiskii, A V; Mironova, T V

    2015-08-31

    The results of the study of interdiffusion of two liquids, obtained using the holographic recording scheme with a nonstationary reference wave with the frequency linearly varying in space and time are compared with the results of correlation processing of digital photographs, made with a random background screen. The spatio-temporal behaviour of the signal in four basic representations ('space – temporal frequency', 'space – time', 'spatial frequency – temporal frequency' and 'spatial frequency – time') is found in the holographic experiment and calculated (in the appropriate coordinates) based on the background-oriented schlieren method. Practical coincidence of the results of the correlationmore » analysis and the holographic double-exposure interferometry is demonstrated. (interferometry)« less

  12. Controlling the column spacing in isothermal magnetic advection to enable tunable heat and mass transfer.

    DOE PAGES

    Solis, Kyle Jameson; Martin, James E.

    2012-11-01

    Isothermal magnetic advection is a recently discovered method of inducing highly organized, non-contact flow lattices in suspensions of magnetic particles, using only uniform ac magnetic fields of modest strength. The initiation of these vigorous flows requires neither a thermal gradient nor a gravitational field and so can be used to transfer heat and mass in circumstances where natural convection does not occur. These advection lattices are comprised of a square lattice of antiparallel flow columns. If the column spacing is sufficiently large compared to the column length, and the flow rate within the columns is sufficiently large, then one wouldmore » expect efficient transfer of both heat and mass. Otherwise, the flow lattice could act as a countercurrent heat exchanger and only mass will be efficiently transferred. Although this latter case might be useful for feeding a reaction front without extracting heat, it is likely that most interest will be focused on using IMA for heat transfer. In this paper we explore the various experimental parameters of IMA to determine which of these can be used to control the column spacing. These parameters include the field frequency, strength, and phase relation between the two field components, the liquid viscosity and particle volume fraction. We find that the column spacing can easily be tuned over a wide range, to enable the careful control of heat and mass transfer.« less

  13. A study of the extended-range forecasting problem blocking

    NASA Technical Reports Server (NTRS)

    Chen, T. C.; Marshall, H. G.; Shukla, J.

    1981-01-01

    Wavenumber frequency spectral analysis of a 90 day winter (Jan. 15 - April 14) wind field simulated by a climate experiment of the GLAS atmospheric circulation model is made using the space time Fourier analysis which is modified with Tukey's numerical spectral analysis. Computations are also made to examine how the model wave disturbances in the wavenumber frequency domain are maintained by nonlinear interactions. Results are compared with observation. It is found that equatorial easterlies do not show up in this climate experiment at 200 mb. The zonal kinetic energy and momentum transport of stationary waves are too small in the model's Northern Hemisphere. The wavenumber and frequency spectra of the model are generally in good agreement with observation. However, some distinct features of the model's spectra are revealed. The wavenumber spectra of kinetic energy show that the eastward moving waves of low wavenumbers have stronger zonal motion while the eastward moving waves of intermediate wavenumbers have larger meridional motion compared with observation. Furthermore, the eastward moving waves show a band of large spectral value in the medium frequency regime.

  14. Spatial tuning of a RF frequency selective surface through origami

    NASA Astrophysics Data System (ADS)

    Fuchi, Kazuko; Buskohl, Philip R.; Bazzan, Giorgio; Durstock, Michael F.; Joo, James J.; Reich, Gregory W.; Vaia, Richard A.

    2016-05-01

    Origami devices have the ability to spatially reconfigure between 2D and 3D states through folding motions. The precise mapping of origami presents a novel method to spatially tune radio frequency (RF) devices, including adaptive antennas, sensors, reflectors, and frequency selective surfaces (FSSs). While conventional RF FSSs are designed based upon a planar distribution of conductive elements, this leaves the large design space of the out of plane dimension underutilized. We investigated this design regime through the computational study of four FSS origami tessellations with conductive dipoles. The dipole patterns showed increased resonance shift with decreased separation distances, with the separation in the direction orthogonal to the dipole orientations having a more significant effect. The coupling mechanisms between dipole neighbours were evaluated by comparing surface charge densities, which revealed the gain and loss of coupling as the dipoles moved in and out of alignment via folding. Collectively, these results provide a basis of origami FSS designs for experimental study and motivates the development of computational tools to systematically predict optimal fold patterns for targeted frequency response and directionality.

  15. Redistribution of energy available for ocean mixing by long-range propagation of internal waves.

    PubMed

    Alford, Matthew H

    2003-05-08

    Ocean mixing, which affects pollutant dispersal, marine productivity and global climate, largely results from the breaking of internal gravity waves--disturbances propagating along the ocean's internal stratification. A global map of internal-wave dissipation would be useful in improving climate models, but would require knowledge of the sources of internal gravity waves and their propagation. Towards this goal, I present here computations of horizontal internal-wave propagation from 60 historical moorings and relate them to the source terms of internal waves as computed previously. Analysis of the two most energetic frequency ranges--near-inertial frequencies and semidiurnal tidal frequencies--reveals that the fluxes in both frequency bands are of the order of 1 kW x m(-1) (that is, 15-50% of the energy input) and are directed away from their respective source regions. However, the energy flux due to near-inertial waves is stronger in winter, whereas the tidal fluxes are uniform throughout the year. Both varieties of internal waves can thus significantly affect the space-time distribution of energy available for global mixing.

  16. Wideband Isolation by Frequency Conversion in a Josephson-Junction Transmission Line

    NASA Astrophysics Data System (ADS)

    Ranzani, Leonardo; Kotler, Shlomi; Sirois, Adam J.; DeFeo, Michael P.; Castellanos-Beltran, Manuel; Cicak, Katarina; Vale, Leila R.; Aumentado, José

    2017-11-01

    Nonreciprocal transmission and isolation at microwave frequencies are important in many practical applications. In particular, compact isolators are useful in protecting sensitive quantum circuits operating at cryogenic temperatures from amplifier backaction and other environmental noise such as black-body radiation from higher temperature stages. However, the size of commercial cryogenic isolators limits the ability to measure multiple quantum circuits because of space constraints in typical dilution refrigerator systems. Furthermore, isolators usually require the use of ferrite components that cannot be integrated at the chip level and, since they also need large biasing magnetic fields, are incompatible with superconducting quantum circuits. In this work we show one way to accomplish isolation in a superconducting chip-scale device, a traveling-wave unidirectional frequency converter based on a parametrically pumped superconducting Josephson-junction transmission line, demonstrating better than 4.8 dB of inferred signal isolation from 6.6 to 11.4 GHz, with a maximum of 12 dB at 9.5 GHz. By using frequency diplexing techniques a conventional isolator could be implemented over this bandwidth.

  17. Space Flyable Hg(sup +) Frequency Standards

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute

    1994-01-01

    We discuss a design for a space based atomic frequency standard (AFS) based on Hg(sup +) ions confined in a linear ion trap. This newly developed AFS should be well suited for space borne applications because it can supply the ultra-high stability of a H-maser but its total mass is comparable to that of a NAVSTAR/GPS cesium clock, i.e., about 11kg. This paper will compare the proposed Hg(sup +) AFS to the present day GPS cesium standards to arrive at the 11 kg mass estimate. The proposed space borne Hg(sup +) standard is based upon the recently developed extended linear ion trap architecture which has reduced the size of existing trapped Hg(sup +) standards to a physics package which is comparable in size to a cesium beam tube. The demonstrated frequency stability to below 10(sup -15) of existing Hg(sup +) standards should be maintained or even improved upon in this new architecture. This clock would deliver far more frequency stability per kilogram than any current day space qualified standard.

  18. Ponderomotive Force and Lower Hybrid Turbulence Effects in Space Plasmas Subjected to Large-Amplitude Low-Frequency Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Khazanov, George; Liemohn, M. W.; Stone, N. H.; Coffey, V. N.

    1997-01-01

    In the auroral region, simultaneous occurrences of upward-flowing ions and field-aligned electrons have been observed by the Viking satellite. The occurrence is strongly correlated with large amplitude low frequency fluctuations of the electric field. Large-amplitude shear Alfven waves have also been observed by sounding rockets in the auroral ionosphere. When such LF waves are propagating in a plasma, a ponderomotive force and other types of waves are produced which may lead to significant effects on the plasma. This force is directed toward decreasing density, providing the electromagnetic lift of the background plasma and an increase of collisionless plasma expansion. We find that even for modest wave strengths, the influence on the outflowing oxygen ions can be dramatic, increasing the high-altitude density by orders of magnitude. It is also demonstrated that large-amplitude low-frequency waves (LFW) may generate lower hybrid waves (LHW) in the auroral zone. The excitation of LHW by a LF wave may lead to the appearance of an additional channel of energy transfer from, for example, Alfven or fast magnetosonic waves, to particles. This process then influences the formation of the plasma distribution function at the expense of acceleration in the tail of the distribution during the collapse of the LHW. The ion energization due to the LHW can be comparable with that produced by the ponderomotive force of the LFW. It is shown that the LH turbulence leads to equalization of the ponderomotive acceleration of the different ion species. The mechanism of LHW excitation due to the oxygen ion relative drift in a plasma subjected to low-frequency waves is used for analysis of Viking satellite data for events in the cusp/cleft region. It is found that, in some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed.

  19. Flat Panel Space Based Space Surveillance Sensor

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Duncan, A.; Wilm, J.; Thurman, S. T.; Stubbs, D. M.; Ogden, C.

    2013-09-01

    Traditional electro-optical (EO) imaging payloads consist of an optical telescope to collect the light from the object scene and map the photons to an image plane to be digitized by a focal plane detector array. The size, weight, and power (SWaP) for the traditional EO imager is dominated by the optical telescope, driven primarily by the large optics, large stiff structures, and the thermal control needed to maintain precision free-space optical alignments. We propose a non-traditional Segmented Planar Imaging Detector for EO Reconnaissance (SPIDER) imager concept that is designed to substantially reduce SWaP, by at least an order of magnitude. SPIDER maximizes performance by providing a larger effective diameter (resolution) while minimizing mass and cost. SPIDER replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies. Lenslets couple light from the object into a set of waveguides on a PIC. Light from each lenslet is distributed among different waveguides by both field angle and optical frequency, and the lenslets are paired up to form unique interferometer baselines by combining light from different waveguides. The complex spatial coherence of the object (for each field angle, frequency, and baseline) is measured with a balanced four quadrature detection scheme. By the Van-Cittert Zernike Theorem, each measurement corresponds to a unique Fourier component of the incoherent object intensity distribution. Finally, an image reconstruction algorithm is used to invert all the data and form an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction limited telescope is, therefore, replaced by in-process integration and test as part of the PIC fabrication that substantially reduces associated schedule and cost. The low profile and low SWaP of a SPIDER system enables high resolution imaging with a payload that is similar in size and aspect ratio to a solar panel. This allows high resolution low cost options for space based space surveillance telescopes. The low SWaP design enables hosted payloads, cubesat designs as well as traditional bus options that are lower cost. We present a description of the concept and preliminary simulation and experimental data that demonstrate the imaging capabilities of the SPIDER technique.

  20. Generation of auroral kilometric and Z mode radiation by the cyclotron maser mechanism

    NASA Technical Reports Server (NTRS)

    Omidi, N.; Gurnett, D. A.; Wu, C. S.

    1984-01-01

    The relativistic Doppler-shifted cyclotron resonance condition for EM wave interactions with a plasma defines an ellipse in velocity space when the product of the index of refraction and cosine of the wave normal angle is less than or equal to unity, and defines a partial ellipse when the product is greater than unity. It is also noted that waves with frequencies greater than the gyrofrequency can only resonate with particles moving in the same direction along the magnetic field, while waves with lower frequencies than these resonate with particles moving in both directions along the magnetic field. It is found, in the case of auroral kilometric radiation, that both the upgoing and the downgoing electrons are unstable and can give rise to this radiation's growth. The magnitudes of the growth rates for both the upgoing and downgoing auroral kilometric radiation are comparable, and indicate that the path lengths needed to account for the observed intensities of this radiation are of the order of a few hundred km, which is probably too large. Growth rate calculations for the Z mode radiation show that, for wave frequencies just below the gyrofrequency and wave normal angles at or near 90 deg, the electron distribution is unstable and the growth rates are large enough to account for the observed intensities.

  1. Parametric Interactions between Alfven waves in LaPD

    NASA Astrophysics Data System (ADS)

    Brugman, B.; Carter, T. A.; Cowley, S. C.; Pribyl, P.; Lybarger, W.

    2004-11-01

    The physics governing interactions between large amplitude Alfvén waves, which are relevant to plasmas in space as well as the laboratory, is at present not well understood. A major class of such interactions which are believed to occur in compressible plasmas is referred to as parametric decay. We will present the results of a series of experiments involving the interactions of large amplitude LHP Alfvén wave conducted on the Large Plasma Device (LaPD); where β ≪ 1, n ˜ 10^12 frac1cm^3 and B0 in (200,2500) G. These experiments show strong signs of one form of parametric decay, known as the Modulational Instability, which represents the interaction of two Alfvén waves and a low frequency density perturbation. This interaction is believed to occur in plasmas with β < 1 as well as β > 1, over a broad range of wavevector space, and for RHP as well as LHP Alfvén waves - distinguishing it from the Beat and Decay instabilities. Details of this interaction, in particular the structure of the incident waves as well as that of their byproducts, will be shown in physical as well as wavevector space. The generation of large amplitude waves using both an Alfvén wave MASER and high current loop antennas will also be illustrated. Lastly theoretical descriptions of parametric decay will be presented and compared to observations. Future work will also include comparisons of experimental results with applicable simulations, such as GS2. Work supported by DOE grant number DE-FG03-02ER54688

  2. Acoustically induced oscillation and rotation of a large drop in space

    NASA Astrophysics Data System (ADS)

    Jacobi, N.; Croonquist, A. P.; Elleman, D. D.; Wang, T. G.

    1982-03-01

    A 2.5 cm diameter water drop was successfully deployed and manipulated in a triaxial acoustic resonance chamber during a 240 sec low-gravity SPAR rocket flight. Oscillation and rotation were induced by modulating and phase shifting the signals to the speakers. Portions of the film record were digitized and analyzed. Spectral analysis brought out the n = 2, 3, 4 free oscillation modes of the drop, its very low-frequency center-of-mass motion in the acoustic potential well, and the forced oscillation frequency. The drop boundaries were least-square fitted to general ellipses, providing eccentricities of the distorted drop. The normalized equatorial area of the rotating drop was plotted vs a rotational parameter, and was in excellent agreement with values derived from the theory of equilibrium shapes of rotating liquid drops.

  3. Toward Large Field-of-View High-Resolution X-ray Imaging Spectrometers: Microwave Multiplexed Readout of 28 TES Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Yoon, W.; Adams, J. S.; Bandler, S. R.; Becker, D.; Bennett, D. A.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Finkbeiner, F. M.; Fowler, J. W.; Gard, J. D.; Hilton, G. C.; Kelley, R. L.; Kilbourne, C. A.; Mates, J. A. B.; Miniussi, A. R.; Moseley, S. H.; Noroozian, O.; Porter, F. S.; Reintsema, C. D.; Sadleir, J. E.; Sakai, K.; Smith, S. J.; Stevenson, T. R.; Swetz, D. S.; Ullom, J. N.; Vale, L. R.; Wakeham, N. A.; Wassell, E. J.; Wollack, E. J.

    2018-04-01

    We performed small-scale demonstrations at GSFC of high-resolution X-ray TES microcalorimeters read out using a microwave SQUID multiplexer. This work is part of our effort to develop detector and readout technologies for future space-based X-ray instruments such as the microcalorimeter spectrometer envisaged for Lynx, a large mission concept under development for the Astro 2020 Decadal Survey. In this paper we describe our experiment, including details of a recently designed, microwave-optimized low-temperature setup that is thermally anchored to the 55 mK stage of our laboratory ADR. Using a ROACH2 FPGA at room temperature, we read out pixels of a GSFC-built detector array via a NIST-built multiplexer chip with Nb coplanar waveguide resonators coupled to rf-SQUIDs. The resonators are spaced 6 MHz apart (at ˜ 5.9 GHz) and have quality factors of ˜ 15,000. In our initial demonstration, we used flux-ramp modulation frequencies of 125 kHz to read out 5 pixels simultaneously and achieved spectral resolutions of 2.8-3.1 eV FWHM at 5.9 keV. Our subsequent work is ongoing: to-date we have achieved a median spectral resolution of 3.4 eV FWHM at 5.9 keV while reading out 28 pixels simultaneously with flux-ramp frequencies of 160 kHz. We present the measured system-level noise and maximum slew rates and briefly describe our future development work.

  4. Space Radar Image of Randonia Rain Cell

    NASA Image and Video Library

    1999-04-15

    This multi-frequency space radar image of a tropical rainforest in western Brazil shows rapidly changing land use patterns and it also demonstrates the capability of the different radar frequencies to detect and penetrate heavy rainstorms.

  5. Determination of the electromechanical coupling factor of gallium orthophosphate (GaPO4) and its influence on resonance-frequency temperature dependencies.

    PubMed

    Nosek, Jaroslav; Pustka, Martin

    2006-01-01

    The quartz homeotype gallium orthophosphate (GaPO4) is a representative of piezoelectric single crystals of large electromechanical coupling factor. It is known that its coupling factor kappa26 associated with the resonators vibrating in the thickness-shear mode is approximately two times greater than that of quartz. This property increases the spacing between the series and parallel resonance frequencies of resonators, as well as the difference between the resonance frequency temperature dependencies of the fundamental and harmonic resonance frequencies of resonators vibrating in the thickness-shear mode. In this paper, the methods for determination of the coupling factor kappa26 are presented, and the computed values are compared with the measured ones. The influence of the coupling factor to the resonance-frequency temperature dependencies of the fundamental and third harmonics of selected rotated Y-cut GaPO4 resonators vibrating in the thickness-shear mode is presented. The purely elastic case for a laterally unbounded plate, which corresponds closely to the limiting case of high harmonic resonance frequency-temperature behavior was assumed for the calculations. The computed temperature coefficients for the Y-cut orientation and calculated turnover point temperatures TTP for different (YX1) orientations are presented.

  6. A comb-sampling method for enhanced mass analysis in linear electrostatic ion traps.

    PubMed

    Greenwood, J B; Kelly, O; Calvert, C R; Duffy, M J; King, R B; Belshaw, L; Graham, L; Alexander, J D; Williams, I D; Bryan, W A; Turcu, I C E; Cacho, C M; Springate, E

    2011-04-01

    In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components. © 2011 American Institute of Physics

  7. Accurate and efficient seismic data interpolation in the principal frequency wavenumber domain

    NASA Astrophysics Data System (ADS)

    Wang, Benfeng; Lu, Wenkai

    2017-12-01

    Seismic data irregularity caused by economic limitations, acquisition environmental constraints or bad trace elimination, can decrease the performance of the below multi-channel algorithms, such as surface-related multiple elimination (SRME), though some can overcome the irregularity defects. Therefore, accurate interpolation to provide the necessary complete data is a pre-requisite, but its wide applications are constrained because of its large computational burden for huge data volume, especially in 3D explorations. For accurate and efficient interpolation, the curvelet transform- (CT) based projection onto convex sets (POCS) method in the principal frequency wavenumber (PFK) domain is introduced. The complex-valued PF components can characterize their original signal with a high accuracy, but are at least half the size, which can help provide a reasonable efficiency improvement. The irregularity of the observed data is transformed into incoherent noise in the PFK domain, and curvelet coefficients may be sparser when CT is performed on the PFK domain data, enhancing the interpolation accuracy. The performance of the POCS-based algorithms using complex-valued CT in the time space (TX), principal frequency space, and PFK domains are compared. Numerical examples on synthetic and field data demonstrate the validity and effectiveness of the proposed method. With less computational burden, the proposed method can achieve a better interpolation result, and it can be easily extended into higher dimensions.

  8. The role of the deep space network's frequency and timing system in the detection of gravitational waves

    NASA Technical Reports Server (NTRS)

    Mankins, J. C.

    1982-01-01

    A review of the Deep Space Network's (DSN) use of precision Doppler-tracking of deep space vehicles is presented. The review emphasizes operational and configurational aspects and considers: the projected configuration of the DSN's frequency and timing system; the environment within the DSN provided by the precision atomic standards within the frequency and timing system--both current and projected; and the general requirements placed on the DSN and the frequency and timing system for both the baseline and the nominal gravitational wave experiments. A comment is made concerning the current probability that such an experiment will be carried out in the foreseeable future.

  9. A space system for high-accuracy global time and frequency comparison of clocks

    NASA Technical Reports Server (NTRS)

    Decher, R.; Allan, D. W.; Alley, C. O.; Vessot, R. F. C.; Winkler, G. M. R.

    1981-01-01

    A Space Shuttle experiment in which a hydrogen maser clock on board the Space Shuttle will be compared with clocks on the ground using two-way microwave and short pulse laser signals is described. The accuracy goal for the experiment is 1 nsec or better for the time transfer and 10 to the minus 14th power for the frequency comparison. A direct frequency comparison of primary standards at the 10 to the minus 14th power accuracy level is a unique feature of the proposed system. Both time and frequency transfer will be accomplished by microwave transmission, while the laser signals provide calibration of the system as well as subnanosecond time transfer.

  10. Characterization and comprehension of corona partial discharge in air under power frequency to very low frequency voltage

    NASA Astrophysics Data System (ADS)

    Yuanxiang, ZHOU; Zhongliu, ZHOU; Ling, ZHANG; Yunxiao, ZHANG; Yajun, MO; Jiantao, SUN

    2018-05-01

    For the partial discharge test of electrical equipment with large capacitance, the use of low-frequency voltage instead of power frequency voltage can effectively reduce the capacity requirements of test power supply. However, the validity of PD test under low frequency voltage needs to be evaluated. In order to investigate the influence of voltage frequency on corona discharge in the air, the discharge test of the tip-plate electrode under the frequency from 50 to 0.1 Hz is carried out based on the impulse current method. The results show that some of the main features of corona under low frequency do not change. The magnitude of discharge in a positive half cycle is obviously larger than that in a negative cycle. The magnitude of discharge and interval in positive cycle are random, while that in negative cycle are regular. With the decrease of frequency, the inception voltage increases. The variation trend of maximum and average magnitude and repetition rate of the discharge in positive and negative half cycle with the variation of voltage frequency and magnitude is demonstrated, with discussion and interpretation from the aspects of space charge transportation, effective discharge time and transition of discharge modes. There is an obvious difference in the phase resolved pattern of partial discharge and characteristic parameters of discharge patterns between power and low frequency. The experimental results can be the reference for mode identification of partial discharge under low frequency tests. The trend of the measured parameters with the variation of frequency provides more information about the insulation defect than traditional measurements under a single frequency (usually 50 Hz). Also it helps to understand the mechanism of corona discharge with an explanation of the characteristics under different frequencies.

  11. Joint Entropy for Space and Spatial Frequency Domains Estimated from Psychometric Functions of Achromatic Discrimination

    PubMed Central

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised. PMID:24466158

  12. Joint entropy for space and spatial frequency domains estimated from psychometric functions of achromatic discrimination.

    PubMed

    Silveira, Vladímir de Aquino; Souza, Givago da Silva; Gomes, Bruno Duarte; Rodrigues, Anderson Raiol; Silveira, Luiz Carlos de Lima

    2014-01-01

    We used psychometric functions to estimate the joint entropy for space discrimination and spatial frequency discrimination. Space discrimination was taken as discrimination of spatial extent. Seven subjects were tested. Gábor functions comprising unidimensionalsinusoidal gratings (0.4, 2, and 10 cpd) and bidimensionalGaussian envelopes (1°) were used as reference stimuli. The experiment comprised the comparison between reference and test stimulithat differed in grating's spatial frequency or envelope's standard deviation. We tested 21 different envelope's standard deviations around the reference standard deviation to study spatial extent discrimination and 19 different grating's spatial frequencies around the reference spatial frequency to study spatial frequency discrimination. Two series of psychometric functions were obtained for 2%, 5%, 10%, and 100% stimulus contrast. The psychometric function data points for spatial extent discrimination or spatial frequency discrimination were fitted with Gaussian functions using the least square method, and the spatial extent and spatial frequency entropies were estimated from the standard deviation of these Gaussian functions. Then, joint entropy was obtained by multiplying the square root of space extent entropy times the spatial frequency entropy. We compared our results to the theoretical minimum for unidimensional Gábor functions, 1/4π or 0.0796. At low and intermediate spatial frequencies and high contrasts, joint entropy reached levels below the theoretical minimum, suggesting non-linear interactions between two or more visual mechanisms. We concluded that non-linear interactions of visual pathways, such as the M and P pathways, could explain joint entropy values below the theoretical minimum at low and intermediate spatial frequencies and high contrasts. These non-linear interactions might be at work at intermediate and high contrasts at all spatial frequencies once there was a substantial decrease in joint entropy for these stimulus conditions when contrast was raised.

  13. Evaluations of Risks from the Lunar and Mars Radiation Environments

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee; Hayat, Matthew J.; Feiveson, Alan H.; Cucinotta, Francis A.

    2008-01-01

    Protecting astronauts from the space radiation environments requires accurate projections of radiation in future space missions. Characterization of the ionizing radiation environment is challenging because the interplanetary plasma and radiation fields are modulated by solar disturbances and the radiation doses received by astronauts in interplanetary space are likewise influenced. The galactic cosmic radiation (GCR) flux for the next solar cycle was estimated as a function of interplanetary deceleration potential, which has been derived from GCR flux and Climax neutron monitor rate measurements over the last 4 decades. For the chaotic nature of solar particle event (SPE) occurrence, the mean frequency of SPE at any given proton fluence threshold during a defined mission duration was obtained from a Poisson process model using proton fluence measurements of SPEs during the past 5 solar cycles (19-23). Analytic energy spectra of 34 historically large SPEs were constructed over broad energy ranges extending to GeV. Using an integrated space radiation model (which includes the transport codes HZETRN [1] and BRYNTRN [2], and the quantum nuclear interaction model QMSFRG[3]), the propagation and interaction properties of the energetic nucleons through various media were predicted. Risk assessment from GCR and SPE was evaluated at the specific organs inside a typical spacecraft using CAM [4] model. The representative risk level at each event size and their standard deviation were obtained from the analysis of 34 SPEs. Risks from different event sizes and their frequency of occurrences in a specified mission period were evaluated for the concern of acute health effects especially during extra-vehicular activities (EVA). The results will be useful for the development of an integrated strategy of optimizing radiation protection on the lunar and Mars missions. Keywords: Space Radiation Environments; Galactic Cosmic Radiation; Solar Particle Event; Radiation Risk; Risk Analysis; Radiation Protection.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondarenko, A. S., E-mail: AntonBondarenko@ymail.com; Schaeffer, D. B.; Everson, E. T.

    The collision-less transfer of momentum and energy from explosive debris plasma to magnetized background plasma is a salient feature of various astrophysical and space environments. While much theoretical and computational work has investigated collision-less coupling mechanisms and relevant parameters, an experimental validation of the results demands the measurement of the complex, collective electric fields associated with debris-background plasma interaction. Emission spectroscopy offers a non-interfering diagnostic of electric fields via the Stark effect. A unique experiment at the University of California, Los Angeles, that combines the Large Plasma Device (LAPD) and the Phoenix laser facility has investigated the marginally super-Alfvénic, quasi-perpendicularmore » expansion of a laser-produced carbon (C) debris plasma through a preformed, magnetized helium (He) background plasma via emission spectroscopy. Spectral profiles of the He II 468.6 nm line measured at the maximum extent of the diamagnetic cavity are observed to intensify, broaden, and develop equally spaced modulations in response to the explosive C debris, indicative of an energetic electron population and strong oscillatory electric fields. The profiles are analyzed via time-dependent Stark effect models corresponding to single-mode and multi-mode monochromatic (single frequency) electric fields, yielding temporally resolved magnitudes and frequencies. The proximity of the measured frequencies to the expected electron plasma frequency suggests the development of the electron beam-plasma instability, and a simple saturation model demonstrates that the measured magnitudes are feasible provided that a sufficiently fast electron population is generated during C debris–He background interaction. Potential sources of the fast electrons, which likely correspond to collision-less coupling mechanisms, are briefly considered.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, James N.; Benford, Dominic J., E-mail: jimbenford@gmail.com

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for ourmore » receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.« less

  16. Power Beaming Leakage Radiation as A SETI Observable

    NASA Technical Reports Server (NTRS)

    Benford, James N.; Benford, Dominic J.

    2016-01-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beam-ing to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors and ultimately starships. We estimate the principal observable parameters of power beaming leak-age. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system.We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful,if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: Instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be done, which could broaden the parameter space of observable features we have discussed here.

  17. Colorimetric and Longitudinal Analysis of Leukocoria in Recreational Photographs of Children with Retinoblastoma

    PubMed Central

    Holden, Rebecca L.; Shaw, Elizabeth V.; Kentsis, Alex; Rodriguez-Galindo, Carlos; Mukai, Shizuo; Shaw, Bryan F.

    2013-01-01

    Retinoblastoma is the most common primary intraocular tumor in children. The first sign that is often reported by parents is the appearance of recurrent leukocoria (i.e., “white eye”) in recreational photographs. A quantitative definition or scale of leukocoria – as it appears during recreational photography – has not been established, and the amount of clinical information contained in a leukocoric image (collected by a parent) remains unknown. Moreover, the hypothesis that photographic leukocoria can be a sign of early stage retinoblastoma has not been tested for even a single patient. This study used commercially available software (Adobe Photoshop®) and standard color space conversion algorithms (operable in Microsoft Excel®) to quantify leukocoria in actual “baby pictures” of 9 children with retinoblastoma (that were collected by parents during recreational activities i.e., in nonclinical settings). One particular patient with bilateral retinoblastoma (“Patient Zero”) was photographed >7, 000 times by his parents (who are authors of this study) over three years: from birth, through diagnosis, treatment, and remission. This large set of photographs allowed us to determine the longitudinal and lateral frequency of leukocoria throughout the patient's life. This study establishes: (i) that leukocoria can emerge at a low frequency in early-stage retinoblastoma and increase in frequency during disease progression, but decrease upon disease regression, (ii) that Hue, Saturation and Value (i.e., HSV color space) are suitable metrics for quantifying the intensity of retinoblastoma-linked leukocoria; (iii) that different sets of intraocular retinoblastoma tumors can produce distinct leukocoric reflections; and (iv) the Saturation-Value plane of HSV color space represents a convenient scale for quantifying and classifying pupillary reflections as they appear during recreational photography. PMID:24204654

  18. Electrical performance characteristics of high power converters for space power applications

    NASA Technical Reports Server (NTRS)

    Stuart, Thomas A.; King, Roger J.

    1989-01-01

    The first goal of this project was to investigate various converters that would be suitable for processing electric power derived from a nuclear reactor. The implementation is indicated of a 20 kHz system that includes a source converter, a ballast converter, and a fixed frequency converter for generating the 20 kHz output. This system can be converted to dc simply by removing the fixed frequency converter. This present study emphasized the design and testing of the source and ballast converters. A push-pull current-fed (PPCF) design was selected for the source converter, and a 2.7 kW version of this was implemented using three 900 watt modules in parallel. The characteristic equation for two converters in parallel was derived, but this analysis did not yield any experimental methods for measuring relative stability. The three source modules were first tested individually and then in parallel as a 2.7 kW system. All tests proved to be satisfactory; the system was stable; efficiency and regulation were acceptable; and the system was fault tolerant. The design of a ballast-load converter, which was operated as a shunt regulator, was investigated. The proposed power circuit is suitable for use with BJTs because proportional base drive is easily implemented. A control circuit which minimizes switching frequency ripple and automatically bypasses a faulty shunt section was developed. A nonlinear state-space-averaged model of the shunt regulator was developed and shown to produce an accurate incremental (small-signal) dynamic model, even though the usual state-space-averaging assumptions were not met. The nonlinear model was also shown to be useful for large-signal dynamic simulation using PSpice.

  19. Finite frequency shear wave splitting tomography: a model space search approach

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  20. Power Beaming Leakage Radiation as a SETI Observable

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Benford, Dominic J.

    2016-07-01

    The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors, and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC 8462852 by the Allen Telescope Array (ATA) set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be performed, potentially broadening the parameter space of the observable features that we have discussed here.

  1. Antennas for 20/30 GHz and beyond

    NASA Technical Reports Server (NTRS)

    Chen, C. Harry; Wong, William C.; Hamada, S. Jim

    1989-01-01

    Antennas of 20/30 GHz and higher frequency, due to the small wavelength, offer capabilities for many space applications. With the government-sponsored space programs (such as ACTS) in recent years, the industry has gone through the learning curve of designing and developing high-performance, multi-function antennas in this frequency range. Design and analysis tools (such as the computer modelling used in feedhorn design and reflector surface and thermal distortion analysis) are available. The components/devices (such as BFN's, weight modules, feedhorns and etc.) are space-qualified. The manufacturing procedures (such as reflector surface control) are refined to meet the stringent tolerance accompanying high frequencies. The integration and testing facilities (such as Near-Field range) also advance to facilitate precision assembling and performance verification. These capabilities, essential to the successful design and development of high-frequency spaceborne antennas, shall find more space applications (such as ESGP) than just communications.

  2. Dual-pump Kerr Micro-cavity Optical Frequency Comb with varying FSR spacing

    PubMed Central

    Wang, Weiqiang; Chu, Sai T.; Little, Brent E.; Pasquazi, Alessia; Wang, Yishan; Wang, Leiran; Zhang, Wenfu; Wang, Lei; Hu, Xiaohong; Wang, Guoxi; Hu, Hui; Su, Yulong; Li, Feitao; Liu, Yuanshan; Zhao, Wei

    2016-01-01

    In this paper, we demonstrate a novel dual-pump approach to generate robust optical frequency comb with varying free spectral range (FSR) spacing in a CMOS-compatible high-Q micro-ring resonator (MRR). The frequency spacing of the comb can be tuned by an integer number FSR of the MRR freely in our dual-pump scheme. The dual pumps are self-oscillated in the laser cavity loop and their wavelengths can be tuned flexibly by programming the tunable filter embedded in the cavity. By tuning the pump wavelength, broadband OFC with the bandwidth of >180 nm and the frequency-spacing varying from 6 to 46-fold FSRs is realized at a low pump power. This approach could find potential and practical applications in many areas, such as optical metrology, optical communication, and signal processing systems, for its excellent flexibility and robustness. PMID:27338250

  3. Prospects and limitations for use of frequency spectrum from 40 to 300 GHz

    NASA Technical Reports Server (NTRS)

    Catoe, C. E.

    1979-01-01

    The existing and future use of the electromagnetic spectrum from 40 to 300 gigahertz is discussed. The activities envisioned for this segment of the electromagnetic spectrum fall generically into two basic categories: communications and remote sensing. The communications services considered for this region are focused on the existing and future frequency allocations that are required for terrestrial radio services, space to ground radio services, space to space radio services, and space to deep space radio services. The remote sensing services considered for this region are divided into two groups of activities: earth viewing and space viewing.

  4. Enhanced Gravitational Wave Science with LISA and gLISA.

    NASA Astrophysics Data System (ADS)

    Tinto, Massimo

    2017-05-01

    The geosynchronous Laser Interferometer Space Antenna (gLISA) is a space-based gravitational wave (GW) mission that, for the past five years, has been under joint study at the Jet Propulsion Laboratory, Stanford University, the National Institute for Space Research (I.N.P.E., Brazil), and Space Systems Loral. With an arm length of 73,000 km, gLISA will display optimal sensitivity over a frequency region that is exactly in between those accessible by LISA and LIGO. Such a GW frequency band is characterized by the presence of a very large ensemble of coalescing black-hole binaries (BHBs) similar to those first observed by LIGO and with masses that are 10 to 100 times the mass of the Sun. gLISA will detect thousands of such signals with good signal-to-noise ratio (SNR) and enhance the LIGO science by measuring with high precision the parameters characterizing such signals (source direction, chirp parameter, time to coalescence, etc.) well before they will enter the LIGO band. This valuable information will improve LIGO’s ability to detect these signals and facilitate its study of the merger and ring-down phases not observable by space-based detectors. If flown at the same time as the LISA mission, the two arrays will deliver a joint sensitivity that accounts for the best performance of both missions in their respective parts of the milliHertz band. This simultaneous operation will result in an optimally combined sensitivity curve that is “white” from about 3 × 10-3 Hz to 1 Hz, making the two antennas capable of detecting, with high signal-to-noise ratios (SNRs), BHBs with masses in the range (10 - 107)M ⊙. Their ability of jointly tracking, with enhanced SNR, signals similar to that observed by the Advanced Laser Interferometer Gravitational Wave Observatory (aLIGO) on September 14, 2015 (the GW150914 event) will result in a larger number of observable small-mass binary black-holes and an improved precision of the parameters characterizing these sources. Together, LISA, gLISA and aLIGO will cover, with good sensitivity, the (10-4 - 103) Hz frequency band.

  5. 47 CFR 25.202 - Frequencies, frequency tolerance and emission limitations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... earth station operations, provided the licensee under this Part obtains a license under part 101 of this chapter or an agreement from a part 101 licensee for the area in which an earth station is to be located...-space 400.15-401 MHz: Space-to-Earth (4)(i) The following frequencies are available for use by the 1.6/2...

  6. 47 CFR 25.202 - Frequencies, frequency tolerance, and emission limits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... earth station operations, provided the licensee under this part obtains a license under part 101 of this chapter or an agreement from a part 101 licensee for the area in which an earth station is to be located...-space 400.15-401 MHz: Space-to-Earth (4)(i) The following frequencies are available for use by the 1.6/2...

  7. Trajectory NG: portable, compressed, general molecular dynamics trajectories.

    PubMed

    Spångberg, Daniel; Larsson, Daniel S D; van der Spoel, David

    2011-10-01

    We present general algorithms for the compression of molecular dynamics trajectories. The standard ways to store MD trajectories as text or as raw binary floating point numbers result in very large files when efficient simulation programs are used on supercomputers. Our algorithms are based on the observation that differences in atomic coordinates/velocities, in either time or space, are generally smaller than the absolute values of the coordinates/velocities. Also, it is often possible to store values at a lower precision. We apply several compression schemes to compress the resulting differences further. The most efficient algorithms developed here use a block sorting algorithm in combination with Huffman coding. Depending on the frequency of storage of frames in the trajectory, either space, time, or combinations of space and time differences are usually the most efficient. We compare the efficiency of our algorithms with each other and with other algorithms present in the literature for various systems: liquid argon, water, a virus capsid solvated in 15 mM aqueous NaCl, and solid magnesium oxide. We perform tests to determine how much precision is necessary to obtain accurate structural and dynamic properties, as well as benchmark a parallelized implementation of the algorithms. We obtain compression ratios (compared to single precision floating point) of 1:3.3-1:35 depending on the frequency of storage of frames and the system studied.

  8. Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study

    NASA Astrophysics Data System (ADS)

    Fukumori, Ichiro; Raghunath, Ramanujam; Fu, Lee-Lueng

    1998-03-01

    The relation between large-scale sea level variability and ocean circulation is studied using a numerical model. A global primitive equation model of the ocean is forced by daily winds and climatological heat fluxes corresponding to the period from January 1992 to January 1994. The physical nature of sea level's temporal variability from periods of days to a year is examined on the basis of spectral analyses of model results and comparisons with satellite altimetry and tide gauge measurements. The study elucidates and diagnoses the inhomogeneous physics of sea level change in space and frequency domain. At midlatitudes, large-scale sea level variability is primarily due to steric changes associated with the seasonal heating and cooling cycle of the surface layer. In comparison, changes in the tropics and high latitudes are mainly wind driven. Wind-driven variability exhibits a strong latitudinal dependence in itself. Wind-driven changes are largely baroclinic in the tropics but barotropic at higher latitudes. Baroclinic changes are dominated by the annual harmonic of the first baroclinic mode and is largest off the equator; variabilities associated with equatorial waves are smaller in comparison. Wind-driven barotropic changes exhibit a notable enhancement over several abyssal plains in the Southern Ocean, which is likely due to resonant planetary wave modes in basins semienclosed by discontinuities in potential vorticity. Otherwise, barotropic sea level changes are typically dominated by high frequencies with as much as half the total variance in periods shorter than 20 days, reflecting the frequency spectra of wind stress curl. Implications of the findings with regards to analyzing observations and data assimilation are discussed.

  9. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary locations for characterizing the quasi-steady environment for payloads and the vehicle. The high frequency sensor is used to characterize the vibratory environment up to 100 Hz at a single measurement location. The Space Acceleration Measurement System, which deploys high frequency sensors, measures vibratory acceleration data in the range of 0.01 to 400 Hz at multiple measurement locations. This summary report presents analysis of some selected quasi-steady and vibratory activities measured by these accelerometers during Increment- 4/5 from December 2001 to December 2002.

  10. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Astrophysics Data System (ADS)

    Springett, James C.

    1994-05-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.

  11. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later introduced as compensations adjunct to the VLBI correlation process. Accordingly, this paper examines the technique for stable frequency/time transfer within the OVLBI system, together with a critique of the types of link degradation components which must be compensated, and the figures of merit known as coherence factors.

  12. A temporal forecast of radiation environments for future space exploration missions.

    PubMed

    Kim, Myung-Hee Y; Cucinotta, Francis A; Wilson, John W

    2007-06-01

    The understanding of future space radiation environments is an important goal for space mission operations, design, and risk assessment. We have developed a solar cycle statistical model in which sunspot number is coupled to space-related quantities, such as the galactic cosmic radiation (GCR) deceleration potential (phi) and the mean occurrence frequency of solar particle events (SPEs). Future GCR fluxes were derived from a predictive model, in which the temporal dependence represented by phi was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. These results showed that the point dose equivalent inside a typical spacecraft in interplanetary space was influenced by solar modulation by up to a factor of three. It also has been shown that a strong relationship exists between large SPE occurrences and phi. For future space exploration missions, cumulative probabilities of SPEs at various integral fluence levels during short-period missions were defined using a database of proton fluences of past SPEs. Analytic energy spectra of SPEs at different ranks of the integral fluences for energies greater than 30 MeV were constructed over broad energy ranges extending out to GeV for the analysis of representative exposure levels at those fluences. Results will guide the design of protection systems for astronauts during future space exploration missions.

  13. System identification through nonstationary data using Time-Frequency Blind Source Separation

    NASA Astrophysics Data System (ADS)

    Guo, Yanlin; Kareem, Ahsan

    2016-06-01

    Classical output-only system identification (SI) methods are based on the assumption of stationarity of the system response. However, measured response of buildings and bridges is usually non-stationary due to strong winds (e.g. typhoon, and thunder storm etc.), earthquakes and time-varying vehicle motions. Accordingly, the response data may have time-varying frequency contents and/or overlapping of modal frequencies due to non-stationary colored excitation. This renders traditional methods problematic for modal separation and identification. To address these challenges, a new SI technique based on Time-Frequency Blind Source Separation (TFBSS) is proposed. By selectively utilizing "effective" information in local regions of the time-frequency plane, where only one mode contributes to energy, the proposed technique can successfully identify mode shapes and recover modal responses from the non-stationary response where the traditional SI methods often encounter difficulties. This technique can also handle response with closely spaced modes which is a well-known challenge for the identification of large-scale structures. Based on the separated modal responses, frequency and damping can be easily identified using SI methods based on a single degree of freedom (SDOF) system. In addition to the exclusive advantage of handling non-stationary data and closely spaced modes, the proposed technique also benefits from the absence of the end effects and low sensitivity to noise in modal separation. The efficacy of the proposed technique is demonstrated using several simulation based studies, and compared to the popular Second-Order Blind Identification (SOBI) scheme. It is also noted that even some non-stationary response data can be analyzed by the stationary method SOBI. This paper also delineates non-stationary cases where SOBI and the proposed scheme perform comparably and highlights cases where the proposed approach is more advantageous. Finally, the performance of the proposed method is evaluated using a full-scale non-stationary response of a tall building during an earthquake and found it to perform satisfactorily.

  14. The wavelet response as a multiscale characterization of scattering processes at granular interfaces.

    PubMed

    Le Gonidec, Yves; Gibert, Dominique

    2006-11-01

    We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.

  15. High-speed digital fiber optic links for satellite traffic

    NASA Technical Reports Server (NTRS)

    Daryoush, A. S.; Ackerman, E.; Saedi, R.; Kunath, R. R.; Shalkhauser, K.

    1989-01-01

    Large aperture phased array antennas operating at millimeter wave frequencies are designed for space-based communications and imaging platforms. Array elements are comprised of active T/R modules which are linked to the central processing unit through high-speed fiber-optic networks. The system architecture satisfying system requirements at millimeter wave frequency is T/R level data mixing where data and frequency reference signals are distributed independently before mixing at the T/R modules. This paper demonstrates design procedures of a low loss high-speed fiber-optic link used for transmission of data signals over 600-900 MHz bandwidth inside satellite. The fiber-optic link is characterized for transmission of analog and digital data. A dynamic range of 79 dB/MHz was measured for analog data over the bandwidth. On the other hand, for bursted SMSK satellite traffic at 220 Mbps rates, BER of 2 x 10 to the -7th was measured for E(b)/N(o) of 14.3 dB.

  16. Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.

    PubMed

    Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B

    2014-09-24

    In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.

  17. Extremely Low-Frequency Waves Inside the Diamagnetic Cavity of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Madsen, B.; Wedlund, C. Simon; Eriksson, A.; Goetz, C.; Karlsson, T.; Gunell, H.; Spicher, A.; Henri, P.; Vallières, X.; Miloch, W. J.

    2018-05-01

    The European Space Agency/Rosetta mission to comet 67P/Churyumov-Gerasimenko has provided several hundred observations of the cometary diamagnetic cavity induced by the interaction between outgassed cometary particles, cometary ions, and the solar wind magnetic field. Here we present the first electric field measurements of four preperihelion and postperihelion cavity crossings on 28 May 2015 and 17 February 2016, using the dual-probe electric field mode of the Langmuir probe (LAP) instrument of the Rosetta Plasma Consortium. We find that on large scales, variations in the electric field fluctuations capture the cavity and boundary regions observed in the already well-studied magnetic field, suggesting the electric field mode of the LAP instrument as a reliable tool to image cavity crossings. In addition, the LAP electric field mode unravels for the first time extremely low-frequency waves within two cavities. These low-frequency electrostatic waves are likely triggered by lower-hybrid waves observed in the surrounding magnetized plasma.

  18. A multiplexed light-matter interface for fibre-based quantum networks

    PubMed Central

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B.; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-01-01

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks. PMID:27046076

  19. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application formore » the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.« less

  20. A multiplexed light-matter interface for fibre-based quantum networks.

    PubMed

    Saglamyurek, Erhan; Grimau Puigibert, Marcelli; Zhou, Qiang; Giner, Lambert; Marsili, Francesco; Verma, Varun B; Woo Nam, Sae; Oesterling, Lee; Nippa, David; Oblak, Daniel; Tittel, Wolfgang

    2016-04-05

    Processing and distributing quantum information using photons through fibre-optic or free-space links are essential for building future quantum networks. The scalability needed for such networks can be achieved by employing photonic quantum states that are multiplexed into time and/or frequency, and light-matter interfaces that are able to store and process such states with large time-bandwidth product and multimode capacities. Despite important progress in developing such devices, the demonstration of these capabilities using non-classical light remains challenging. Here, employing the atomic frequency comb quantum memory protocol in a cryogenically cooled erbium-doped optical fibre, we report the quantum storage of heralded single photons at a telecom-wavelength (1.53 μm) with a time-bandwidth product approaching 800. Furthermore, we demonstrate frequency-multimode storage and memory-based spectral-temporal photon manipulation. Notably, our demonstrations rely on fully integrated quantum technologies operating at telecommunication wavelengths. With improved storage efficiency, our light-matter interface may become a useful tool in future quantum networks.

  1. Vibration damping characteristics of graphite/epoxy composites for large space structures

    NASA Technical Reports Server (NTRS)

    Gibson, R. F.

    1982-01-01

    Limited data on extensional and flexural damping of small specimens of graphite/epoxy and unreinforced epoxy resin were obtained. Flexural damping was measured using a forced vibration technique based on resonant flexural vibration of shaker excited double cantilever specimens. Extensional damping was measured by subjecting similar specimens to low frequency sinusoidal oscillation in a servohydraulic tensile testing machine while plotting load versus extensional strain. Damping was found to vary slowly and continuously over the frequency range 0.01 - 1000 Hz, and no drastic transitions were observed. Composite damping was found to be less than neat resin damping. Comparison of small specimen damping values with assembled column damping values seems to indicate that, for those materials, material damping is more important than joint damping. The data reported was limited not by the test apparatus, but by signal conditioning and data acquisition. It is believed that filtering of the strain gage signals and the use of digital storage with slow playback will make it possible to extend the frequency and amplitude ranges significantly.

  2. Geostationary platform systems concepts definition study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The results of a geostationary platform concept analysis are summarized. Mission and payloads definition, concept selection, the requirements of an experimental platform, supporting research and technology, and the Space Transportation System interface requirements are addressed. It is concluded that platforms represent a logical extension of current trends toward larger, more complex, multifrequency satellites. Geostationary platforms offer significant cost savings compared to individual satellites, with the majority of these economies being realized with single Shuttle launched platforms. Further cost savings can be realized, however, by having larger platforms. Platforms accommodating communications equipment that operates at multiple frequencies and which provide larger scale frequency reuse through the use of large aperture multibeam antennas and onboard switching maximize the useful capacity of the orbital arc and frequency spectrum. Projections of market demand indicate that such conservation measures are clearly essential if orderly growth is to be provided for. In addition, it is pointed out that a NASA experimental platform is required to demonstrate the technologies necessary for operational geostationary platforms of the 1990's.

  3. Optically pre-amplified lidar-radar

    NASA Astrophysics Data System (ADS)

    Morvan, Loic; Dolfi, Daniel; Huignard, Jean-Pierre

    2001-09-01

    We present the concept of an optically pre-amplified intensity modulated lidar, where the modulation frequency is in the microwave domain (1-10 GHz). Such a system permits to combine directivity of laser beams with mature radar processing. As an intensity modulated or dual-frequency laser beam is directed on a target, the backscattered intensity is collected by an optical system, pass through an optical preamplifier, and is detected on a high speed photodiode in a direct detection scheme. A radar type processing permits then to extract range, speed and identification information. The association of spatially multimode amplifier and direct detection allows low sensitivity to atmospheric turbulence and large field of view. We demonstrated theoretically that optical pre-amplification can greatly enhance sensitivity, even in spatially multimode amplifiers, such as free-space amplifier or multimode doped fiber. Computed range estimates based on this concept are presented. Laboratory demonstrations using 1 to 3 GHz modulated laser sources and >20 dB gain in multimode amplifiers are detailed. Preliminary experimental results on range and speed measurements and possible use for large amplitude vibrometry will be presented.

  4. Interior Noise Predictions in the Preliminary Design of the Large Civil Tiltrotor (LCTR2)

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Cabell, Randolph H.; Boyd, David D.

    2013-01-01

    A prediction scheme was established to compute sound pressure levels in the interior of a simplified cabin model of the second generation Large Civil Tiltrotor (LCTR2) during cruise conditions, while being excited by turbulent boundary layer flow over the fuselage, or by tiltrotor blade loading and thickness noise. Finite element models of the cabin structure, interior acoustic space, and acoustically absorbent (poro-elastic) materials in the fuselage were generated and combined into a coupled structural-acoustic model. Fluctuating power spectral densities were computed according to the Efimtsov turbulent boundary layer excitation model. Noise associated with the tiltrotor blades was predicted in the time domain as fluctuating surface pressures and converted to power spectral densities at the fuselage skin finite element nodes. A hybrid finite element (FE) approach was used to compute the low frequency acoustic cabin response over the frequency range 6-141 Hz with a 1 Hz bandwidth, and the Statistical Energy Analysis (SEA) approach was used to predict the interior noise for the 125-8000 Hz one-third octave bands.

  5. Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  6. Modal test/analysis correlation of Space Station structures using nonlinear sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  7. Payload isolation and stabilization by a Suspended Experiment Mount (SEM)

    NASA Technical Reports Server (NTRS)

    Bailey, Wayne L.; Desanctis, Carmine E.; Nicaise, Placide D.; Schultz, David N.

    1992-01-01

    Many Space Shuttle and Space Station payloads can benefit from isolation from crew or attitude control system disturbances. Preliminary studies have been performed for a Suspended Experiment Mount (SEM) system that will provide isolation from accelerations and stabilize the viewing direction of a payload. The concept consists of a flexible suspension system and payload-mounted control moment gyros. The suspension system, which is rigidly locked for ascent and descent, isolates the payload from high frequency disturbances. The control moment gyros stabilize the payload orientation. The SEM will be useful for payloads that require a lower-g environment than a manned vehicle can provide, such as materials processing, and for payloads that require stabilization of pointing direction, but not large angle slewing, such as nadir-viewing earth observation or solar viewing payloads.

  8. Study of genetic direct search algorithms for function optimization

    NASA Technical Reports Server (NTRS)

    Zeigler, B. P.

    1974-01-01

    The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.

  9. A review of organizations influencing radio frequency allocations to deep space research

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The charters and functions of various national and international scientific organizations were examined to identify those which have a direct or indirect influence on the allocation of radio frequencies for use in deep space research. Those organizations identified as having the ability to influence frequency allocations are described. A brief description of each organization is provided, and the members who are influential specifically in frequency allocations are listed. The interrelations between the organizations and how they influence allocations are explained.

  10. An ultra-stable iodine-based frequency reference for space applications

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Braxmaier, Claus; Doeringshoff, Klaus; Keetman, Anja; Reggentin, Matthias; Kovalchuk, Evgeny; Peters, Achim

    2012-07-01

    Future space missions require for ultra-stable optical frequency references. Examples are the gravitational wave detector LISA/eLISA (Laser Interferometer Space Antenna), the SpaceTime Asymmetry Research (STAR) program, the aperture-synthesis telescope Darwin and the GRACE (Gravity Recovery and Climate Experiment) follow on mission exploring Earth's gravity. As high long-term frequency stability is required, lasers stabilized to atomic or molecular transitions are preferred, also offering an absolute frequency reference. Frequency stabilities in the 10 ^{-15} domains at longer integration times (up to several hours) are demonstrated in laboratory experiments using setups based on Doppler-free spectroscopy. Such setups with a frequency stability comparable to the hydrogen maser in the microwave domain, have the potential to be developed space compatible on a relatively short time scale. Here, we present the development of ultra-stable optical frequency references based on modulation-transfer spectroscopy of molecular iodine. Noise levels of 2\\cdot10 ^{-14} at an integration time of 1 s and below 3\\cdot10 ^{-15} at integration times between 100 s and 1000 s are demonstrated with a laboratory setup using an 80 cm long iodine cell in single-pass configuration in combination with a frequency-doubled Nd:YAG laser and standard optical components and optomechanic mounts. The frequency stability at longer integration times is (amongst other things) limited by the dimensional stability of the optical setup, i.e. by th pointing stability of the two counter-propagating beams overlapped in the iodine cell. With the goal of a future space compatible setup, a compact frequency standard on EBB (elegant breadboard) level was realized. The spectroscopy unit utilizes a baseplate made of Clearceram-HS, a glass ceramics with an ultra-low coefficient of thermal expansion of 2\\cdot10 ^{-8} K ^{-1}. The optical components are joint to the baseplate using adhesive bonding technology, which was developed in a cooperation of HTWG Konstanz and Astrium Friedrichshafen. This setup ensures a higher long-term frequency stability due to enhanced pointing stability. Also, it takes into account space mission related criteria such as compactness, robustness, MAIVT and environmental influences (shock, vibration and thermal tests). The assembly-integration technology was already successfully environmentally tested and demonstrated in a previous setup of a compact fiber-coupled heterodyne interferometer, which serves as a demonstrator for the optical readout of the LISA gravitational reference sensor. We present first measurements of the EBB setup and a first design of an iodine frequency standard on engineering model (EM) level. The EM-setup is based on the EBB experience, but features smaller dimensions by using a multipass iodine cell and less optical components. Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant number 50 QT 1102 is highly appreciated.

  11. Frequency Upconversion and Parametric Surface Instabilities in Microwave Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Rappaport, Harold Lee

    In this thesis the interaction of radiation with plasmas whose density profiles are nearly step functions of space and/or time are studied. The wavelengths of radiation discussed are large compared with plasma density gradient scale lengths. The frequency spectra are evaluated and the energy balance investigated for the transmitted and reflected transient electromagnetic waves that are generated when a monochromatic source drives a finite width plasma in which a temporal step increase in density occurs. Transmission resonances associated with the abrupt boundaries manifest themselves as previously unreported multiple frequency peaks in the transmitted electromagnetic spectrum. A tunneling effect is described in which a burst of energy is transmitted from the plasma immediately following a temporal density transition. Stability of an abruptly bounded plasma, one for which the incident radiation wavelength is large compared with the plasma density gradient scale length, is investigated for both s and p polarized radiation types. For s-polarized radiation a new formalism is introduced in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. Results for a particular regime and a summary of relevant literature is presented. We conclude that when s-polarized radiation acts alone on an abrupt diffusely bounded underdense plasma stimulated excitation of electron surface modes is suppressed. For p-polarized radiation the recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) ^dag is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case, spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields are reported. The regime is of interest because we have found that when the perturbation wavenumber parallel to the boundary is less than the pump frequency divided by twice the speed of light, energy radiates from the boundary region and these emissions can serve as an experimental signature for this mode. The theory of surface wave linear mode conversion is reviewed with special attention paid to power flow and energy conservation in this system. ftn^ dagYu. M. Aliev and G. Brodin, Phys. Rev. A 42, 2374 (1990).

  12. Large Scale Processes and Extreme Floods in Brazil

    NASA Astrophysics Data System (ADS)

    Ribeiro Lima, C. H.; AghaKouchak, A.; Lall, U.

    2016-12-01

    Persistent large scale anomalies in the atmospheric circulation and ocean state have been associated with heavy rainfall and extreme floods in water basins of different sizes across the world. Such studies have emerged in the last years as a new tool to improve the traditional, stationary based approach in flood frequency analysis and flood prediction. Here we seek to advance previous studies by evaluating the dominance of large scale processes (e.g. atmospheric rivers/moisture transport) over local processes (e.g. local convection) in producing floods. We consider flood-prone regions in Brazil as case studies and the role of large scale climate processes in generating extreme floods in such regions is explored by means of observed streamflow, reanalysis data and machine learning methods. The dynamics of the large scale atmospheric circulation in the days prior to the flood events are evaluated based on the vertically integrated moisture flux and its divergence field, which are interpreted in a low-dimensional space as obtained by machine learning techniques, particularly supervised kernel principal component analysis. In such reduced dimensional space, clusters are obtained in order to better understand the role of regional moisture recycling or teleconnected moisture in producing floods of a given magnitude. The convective available potential energy (CAPE) is also used as a measure of local convection activities. We investigate for individual sites the exceedance probability in which large scale atmospheric fluxes dominate the flood process. Finally, we analyze regional patterns of floods and how the scaling law of floods with drainage area responds to changes in the climate forcing mechanisms (e.g. local vs large scale).

  13. Portable microwave frequency dissemination in free space and implications on ground-to-satellite synchronization.

    PubMed

    Miao, J; Wang, B; Bai, Y; Yuan, Y B; Gao, C; Wang, L J

    2015-05-01

    Frequency dissemination and synchronization in free space play an important role in global navigation satellite system, radio astronomy, and synthetic aperture radar. In this paper, we demonstrated a portable radio frequency dissemination scheme via free space using microwave antennas. The setup has a good environment adaptability and high dissemination stability. The frequency signal was disseminated at different distances ranging from 10 to 640 m with a fixed 10 Hz locking bandwidth, and the scaling law of dissemination stability on distance and averaging time was discussed. The preliminary extrapolation shows that the dissemination stability may reach 1 × 10(-12)/s in ground-to-satellite synchronization, which far exceeds all present methods, and is worthy for further study.

  14. The May 1967 great storm and radio disruption event: Extreme space weather and extraordinary responses

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Ramsay, A. C.; Beard, E. D.; Boright, A. L.; Cade, W. B.; Hewins, I. M.; McFadden, R. H.; Denig, W. F.; Kilcommons, L. M.; Shea, M. A.; Smart, D. F.

    2016-09-01

    Although listed as one of the most significant events of the last 80 years, the space weather storm of late May 1967 has been of mostly fading academic interest. The storm made its initial mark with a colossal solar radio burst causing radio interference at frequencies between 0.01 and 9.0 GHz and near-simultaneous disruptions of dayside radio communication by intense fluxes of ionizing solar X-rays. Aspects of military control and communication were immediately challenged. Within hours a solar energetic particle event disrupted high-frequency communication in the polar cap. Subsequently, record-setting geomagnetic and ionospheric storms compounded the disruptions. We explain how the May 1967 storm was nearly one with ultimate societal impact, were it not for the nascent efforts of the United States Air Force in expanding its terrestrial weather monitoring-analysis-warning-prediction efforts into the realm of space weather forecasting. An important and long-lasting outcome of this storm was more formal Department of Defense-support for current-day space weather forecasting. This story develops during the rapid rise of solar cycle 20 and the intense Cold War in the latter half of the twentieth century. We detail the events of late May 1967 in the intersecting categories of solar-terrestrial interactions and the political-military backdrop of the Cold War. This was one of the "Great Storms" of the twentieth century, despite the apparent lack of large geomagnetically induced currents. Radio disruptions like those discussed here warrant the attention of today's radio-reliant, cellular-phone and satellite-navigation enabled world.

  15. Fluctuations, ghosts, and the cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirayama, T.; Holdom, B.

    2004-12-15

    For a large region of parameter space involving the cosmological constant and mass parameters, we discuss fluctuating spacetime solutions that are effectively Minkowskian on large time and distance scales. Rapid, small amplitude oscillations in the scale factor have a frequency determined by the size of a negative cosmological constant. A field with modes of negative energy is required. If it is gravity that induces a coupling between the ghostlike and normal fields, we find that this results in stochastic rather than unstable behavior. The negative energy modes may also permit the existence of Lorentz invariant fluctuating solutions of finite energymore » density. Finally we consider higher derivative gravity theories and find oscillating metric solutions in these theories without the addition of other fields.« less

  16. Chemical Vapor Deposition Of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony; Larkin, David J.; Matus, Lawrence G.; Petit, Jeremy B.

    1993-01-01

    Large single-crystal SiC boules from which wafers of large area cut now being produced commerically. Availability of wafers opens door for development of SiC semiconductor devices. Recently developed chemical vapor deposition (CVD) process produces thin single-crystal SiC films on SiC wafers. Essential step in sequence of steps used to fabricate semiconductor devices. Further development required for specific devices. Some potential high-temperature applications include sensors and control electronics for advanced turbine engines and automobile engines, power electronics for electromechanical actuators for advanced aircraft and for space power systems, and equipment used in drilling of deep wells. High-frequency applications include communication systems, high-speed computers, and microwave power transistors. High-radiation applications include sensors and controls for nuclear reactors.

  17. Directions for Space-Based Low-Frequency Radio Astronomy 2. Telescopes

    NASA Astrophysics Data System (ADS)

    Basart, J. P.; Burns, J. O.; Dennison, B. K.; Weiler, K. W.; Kassim, N. E.; Castillo, S. P.; McCune, B. M.

    Astronomical studies of celestial sources at low radio frequencies (0.3 to 30 MHz) lag far behind the investigations of celestial sources at high radio frequencies. In a companion paper [Basart et al., this issue] we discussed the need for low-frequency investigations, and in this paper we discuss the telescopes required to make the observations. Radio telescopes for use in the low-frequency range can be built principally from ``off-the-shelf'' components. For relatively little cost for a space mission, great strides can be made in deploying arrays of antennas and receivers in space that would produce data contributing significantly to our understanding of galaxies and galactic nebulae. In this paper we discuss an evolutionary sequence of telescopes, antenna systems, receivers, and (u,v) plane coverage. The telescopes are space-based because of the disruptive aspects of the Earth's ionosphere on low-frequency celestial signals traveling to the Earth's surface. Orbiting antennas consisting of array elements deposited on a Kevlar balloon have strong advantages of nearly identical multiple beams over 4π steradians and few mechanical aspects in deployment and operation. The relatively narrow beam width of these antennas can significantly help reduce the ``confusion'' problem. The evolutionary sequence of telescopes starts with an Earth-orbiting spectrometer to measure the low-frequency radio environment in space, proceeds to a two-element interferometer, then to an orbiting array, and ends with a telescope on the lunar farside. The sequence is in the order of increasing capability which is also the order of increasing complexity and cost. All the missions can be accomplished with current technology.

  18. Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow

    NASA Astrophysics Data System (ADS)

    Heeb, N.; Gutmark, E.; Kailasanath, K.

    2016-05-01

    An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.

  19. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator is presented. The intended applications of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  20. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37-43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  1. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  2. Experimental realization of spatially separated entanglement with continuous variables using laser pulse trains

    PubMed Central

    Zhang, Yun; Okubo, Ryuhi; Hirano, Mayumi; Eto, Yujiro; Hirano, Takuya

    2015-01-01

    Spatially separated entanglement is demonstrated by interfering two high-repetition squeezed pulse trains. The entanglement correlation of the quadrature amplitudes between individual pulses is interrogated. It is characterized in terms of the sufficient inseparability criterion with an optimum result of in the frequency domain and in the time domain. The quantum correlation is also observed when the two measurement stations are separated by a physical distance of 4.5 m, which is sufficiently large to demonstrate the space-like separation, after accounting for the measurement time. PMID:26278478

  3. Buckling analysis of the quadripod structure for the NASA 70-meter antenna

    NASA Technical Reports Server (NTRS)

    Chian, Chian T.

    1987-01-01

    As part of the effort to extend the diameter of three Deep Space Network large earth antennas from 64 meters to 70 meters, a slim profiled quadripod structure was designed to support a 7.7 meter diameter subreflector for the 70 meter antenna. The new quadripod design, which particularly emphasizes reduced radio frequency blockage, is achieved by means of a narrow cross sectional profile of the legs. Buckling analysis, using NASTRAN, was conducted in this study to verify the safety margin for the quadripod structural stability.

  4. Performance of wind turbines in a turbulent atmosphere

    NASA Technical Reports Server (NTRS)

    Sundar, R. M.; Sullivan, J. P.

    1981-01-01

    The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency.

  5. Polarization Compensation of Fresnel Aberrations in Telescopes

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckenridge, James B.

    2011-01-01

    Large aperture space telescopes are built with low F# s to accommodate the mechanical constraints of launch vehicles and to reduce resonance frequencies of the on-orbit system. Inherent with these low F# s is Fresnel polarization which affects image quality. We present the design and modeling of a nano-structure consisting of birefringent layers to control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable from 300nm to 1200nm. This Fresnel compensator device has a cross leakage of less than 0.001 retardance.

  6. Double spacing multi-wavelength Brillouin Raman fiber laser of eight-shaped structure utilizing Raman amplifier

    NASA Astrophysics Data System (ADS)

    Madin, M. Sya'aer; Ahmad Hambali, N. A. M.; Shahimin, M. M.; Wahid, M. H. A.; Roshidah, N.; Azaidin, M. A. M.

    2017-02-01

    In this paper, double frequency spacing of multi-wavelength Brillouin Raman fiber laser utilizing eight-shaped structure in conjunction with Raman amplifier is simulated and demonstrated using Optisys software. Double frequency multiwavelength Brillouin Raman fiber laser is one of the solution for single frequency spacing channel de-multiplexing from narrow single spacing in the communication systems. The eight-shaped structure has the ability to produce lower noise and double frequency spacing. The 7 km of single mode fiber acting as a nonlinear medium for the generation of Stimulated Brillouin Scattering and Stimulated Raman Scattering. As a results, the optimum results are recorded at 1450 nm of RP power at 22 dBm and 1550 nm of BP power at 20 dBm. These parameters provide a high output peak power, gain and average OSNR. The highest peak power of Stokes 1 is recorded at 90% of coupling ratio which is 29.88 dBm. It is found that the maximum gain and average OSNR of about 1.23 dB and 63.74 dB.

  7. Maintenance of time and frequency in the Jet Propulsion Laboratory's Deep Space Network using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Clements, P. A.; Borutzki, S. E.; Kirk, A.

    1984-01-01

    The Deep Space Network (DSN), managed by the Jet Propulsion Laboratory for NASA, must maintain time and frequency within specified limits in order to accurately track the spacecraft engaged in deep space exploration. Various methods are used to coordinate the clocks among the three tracking complexes. These methods include Loran-C, TV Line 10, Very Long Baseline Interferometry (VLBI), and the Global Positioning System (GPS). Calculations are made to obtain frequency offsets and Allan variances. These data are analyzed and used to monitor the performance of the hydrogen masers that provide the reference frequencies for the DSN Frequency and Timing System (DFT). Areas of discussion are: (1) a brief history of the GPS timing receivers in the DSN, (2) a description of the data and information flow, (3) data on the performance of the DSN master clocks and GPS measurement system, and (4) a description of hydrogen maser frequency steering using these data.

  8. Scientific applications of frequency-stabilized laser technology in space

    NASA Technical Reports Server (NTRS)

    Schumaker, Bonny L.

    1990-01-01

    A synoptic investigation of the uses of frequency-stabilized lasers for scientific applications in space is presented. It begins by summarizing properties of lasers, characterizing their frequency stability, and describing limitations and techniques to achieve certain levels of frequency stability. Limits to precision set by laser frequency stability for various kinds of measurements are investigated and compared with other sources of error. These other sources include photon-counting statistics, scattered laser light, fluctuations in laser power, and intensity distribution across the beam, propagation effects, mechanical and thermal noise, and radiation pressure. Methods are explored to improve the sensitivity of laser-based interferometric and range-rate measurements. Several specific types of science experiments that rely on highly precise measurements made with lasers are analyzed, and anticipated errors and overall performance are discussed. Qualitative descriptions are given of a number of other possible science applications involving frequency-stabilized lasers and related laser technology in space. These applications will warrant more careful analysis as technology develops.

  9. Army Space and Transformation

    DTIC Science & Technology

    2005-09-01

    Command – Space and Global Strike JFCOM Joint Forces Command JFRL Joint Forces Restricted Frequency List JIC Joint Integrating Concept JIM Joint...into the theater’s Joint Restricted Frequency List (JRFL). The ARSST trained the coalition and US soldiers on installation, use and troubleshooting

  10. Evolving Design Criteria for Very Large Aperture Space Based Telescopes and Their Influence on the Need for Integrated Tools in the Optimization Process

    NASA Technical Reports Server (NTRS)

    Arnold, William R., Sr.

    2015-01-01

    NASA's Advanced Mirror Technology Development (AMTD) program has been developing the means to design and build the future generations of space based telescopes. With the nearing completion of the James Webb Space Telescope (JWST), the astrophysics community is already starting to define the requirements for follow-on observatories. The restrictions of available launch vehicles and the possibilities of planned future vehicles have fueled the competition between monolithic primaries (with better optical quality) and segmented primaries (with larger apertures, but with diffraction, costs and figure control issues). Regardless of the current shroud sizes and lift capacities, these competing architectures share the need for rapid design tools. As part of the AMTD program a number of tools have been developed and tested to speed up the design process. Starting with the Arnold Mirror Modeler (which creates Finite Element Models (FEM) for structural analysis) and now also feeds these models into thermal stability analyses. They share common file formats and interchangeable results. During the development of the program, numerous trade studies were created for 4-meter and 8-meter monolithic primaries, complete with support systems. Evaluation of these results has led to a better understanding of how the specification drives the results. This paper will show some of the early trade studies for typical specification requirements such as lowest mirror bending frequency and suspension system lowest frequency. The results use representative allowable stress values for each mirror substrate material and construction method and generic material properties. These studies lead to some interesting relationships between feasible designs and the realities of actually trying to build these mirrors. Much of the traditional specifications were developed for much smaller systems, where the mass and volume of the primary where a small portion of the overall satellite. JWST shows us that as the aperture grows, the primary takes up the majority of the mass and volume and the established rules need to be adjusted. For example, a small change in lowest frequency requirement can change the cost by millions of dollars. The paper uses numerous trade studies created during the software development phase of the Arnold Mirror Modeler to illustrate the influences of system specifications on the design space. The future telescopes will require better performance, stability and documented feasibility to meet the hurdles of today's budget and schedules realities. AMTD is developing the tools, but the basic system planning mentality also has to adopt to the requirements of these very large and complex physical structures.

  11. Variable frequency matching to a radiofrequency source immersed in vacuum

    NASA Astrophysics Data System (ADS)

    Charles, C.; Boswell, R. W.; Bish, A.

    2013-09-01

    A low-weight (0.12 kg) low-volume fixed ceramic capacitor impedance matching system is developed for frequency agile tuning of a radiofrequency (rf) Helicon plasma thruster. Three fixed groups of capacitors are directly mounted onto a two loop rf antenna with the thruster immersed in a vacuum chamber. Optimum plasma tuning at the resonance frequency is demonstrated via measurements of the load impedance, power transfer efficiency and plasma density versus driving frequency in the 12.882-14.238 MHz range. The resonance frequency with the plasma on is higher than the resonance frequency in vacuum. The minimum rf power necessary for ignition decreases when the ignition frequency is shifted downwards from the resonance frequency. This development has direct applications in space qualification and space use of rf plasma thrusters.

  12. Probabilistic Assessment of Cancer Risk from Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    For long duration missions outside of the protection of the Earth's magnetic field, space radi-ation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We es-timated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration po-tential (φ). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.

  13. Medical Implications of Space Radiation Exposure Due to Low-Altitude Polar Orbits.

    PubMed

    Chancellor, Jeffery C; Auñon-Chancellor, Serena M; Charles, John

    2018-01-01

    Space radiation research has progressed rapidly in recent years, but there remain large uncertainties in predicting and extrapolating biological responses to humans. Exposure to cosmic radiation and solar particle events (SPEs) may pose a critical health risk to future spaceflight crews and can have a serious impact on all biomedical aspects of space exploration. The relatively minimal shielding of the cancelled 1960s Manned Orbiting Laboratory (MOL) program's space vehicle and the high inclination polar orbits would have left the crew susceptible to high exposures of cosmic radiation and high dose-rate SPEs that are mostly unpredictable in frequency and intensity. In this study, we have modeled the nominal and off-nominal radiation environment that a MOL-like spacecraft vehicle would be exposed to during a 30-d mission using high performance, multicore computers. Projected doses from a historically large SPE (e.g., the August 1972 solar event) have been analyzed in the context of the MOL orbit profile, providing an opportunity to study its impact to crew health and subsequent contingencies. It is reasonable to presume that future commercial, government, and military spaceflight missions in low-Earth orbit (LEO) will have vehicles with similar shielding and orbital profiles. Studying the impact of cosmic radiation to the mission's operational integrity and the health of MOL crewmembers provides an excellent surrogate and case-study for future commercial and military spaceflight missions.Chancellor JC, Auñon-Chancellor SM, Charles J. Medical implications of space radiation exposure due to low-altitude polar orbits. Aerosp Med Hum Perform. 2018; 89(1):3-8.

  14. Probabilistic Assessment of Cancer Risk from Solar Particle Events

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Cucinotta, Francis A.

    2010-01-01

    For long duration missions outside of the protection of the Earth s magnetic field, space radiation presents significant health risks including cancer mortality. Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which include high energy protons and heavy ions. While the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle, the individual SPE occurrences themselves are random in nature. We estimated the probability of SPE occurrence using a non-homogeneous Poisson model to fit the historical database of proton measurements. Distributions of particle fluences of SPEs for a specified mission period were simulated ranging from its 5 th to 95th percentile to assess the cancer risk distribution. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. We estimated the overall cumulative probability of GCR environment for a specified mission period using a solar modulation model for the temporal characterization of the GCR environment represented by the deceleration potential (^). Probabilistic assessment of cancer fatal risk was calculated for various periods of lunar and Mars missions. This probabilistic approach to risk assessment from space radiation is in support of mission design and operational planning for future manned space exploration missions. In future work, this probabilistic approach to the space radiation will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks.

  15. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    NASA Technical Reports Server (NTRS)

    Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.

    1976-01-01

    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.

  16. Deformation and Flexibility Equations for Idealized ARIS Umbilicals, Under Planar End-Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Quraishi, Naveed (Technical Monitor)

    2003-01-01

    The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARTS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth, at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This report develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on-orbit application. The analysis assumes an initially straight, cantilevered umbilical with uniform cross-section, which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals, under the indicated assumptions.

  17. Electro-Mechanical Actuator. DC Resonant Link Controller

    NASA Technical Reports Server (NTRS)

    Schreiner, Kenneth E.

    1996-01-01

    This report summarizes the work performed on the 68 HP electro-mechanical actuator (EMA) system developed on NASA contract for the Electrical Actuation (ELA) Technology Bridging Program. The system was designed to demonstrate the capability of large, high power linear ELAs for applications such as Thrust Vector Control (TVC) on rocket engines. It consists of a motor controller, drive electronics and a linear actuator capable of up to 32,00 lbs loading at 7.4 inches/second. The drive electronics are based on the Resonant DC link concept and operate at a nominal frequency of 55 kHz. The induction motor is a specially designed high speed, low inertia motor capable of a 68 peak HP. The actuator was originally designed by MOOG Aerospace under an internal R & D program to meet Space Shuttle Main Engine (SSME) TVC requirements. The design was modified to meet this programs linear rate specification of 7.4 inches/second. The motor and driver were tested on a dynamometer at the Martin Marietta Space Systems facility. System frequency response, step response and force-velocity tests were conducted at the MOOG Aerospace facility. A complete description of the system and all test results can be found in the body of the report.

  18. Deformation and Flexibility Equations for Idealized ARIS Umbilicals, Under Planar End-Loading Conditions

    NASA Technical Reports Server (NTRS)

    Hampton, R. David; Quraishi, Naveed; Rupert, Jason K.

    2000-01-01

    The International Space Station (ISS) relies on the Active Rack Isolation System (ARIS) as the central component of an integrated, station-wide strategy to isolate microgravity space-science experiments. ARIS uses electromechanical actuators to isolate an International Standard Payload Rack (ISPR) from disturbances due to the motion of the ISS. Disturbances to microgravity experiments on ARIS-isolated racks are primarily transmitted via the ARIS power and vacuum umbilicals. Recent experimental tests indicate that these umbilicals resonate at frequencies outside the ARIS controller's bandwidth. at levels of potential concern for certain microgravity experiments. Reduction in the umbilical resonant frequencies could help to address this issue. This paper develops equations for the in-plane deflections and flexibilities of an idealized umbilical (thin, flexible, cantilever beam) under end-point, in-plane loading (inclined-force and moment). The effect of gravity is neglected due to the on:orbit application. The analysis assumes an initially straight. cantilevered umbilical with uniform cross-section. which undergoes large deflections with no plastic deformation, such that the umbilical terminus remains in a single quadrant and the umbilical slope changes monotonically. The analysis is applicable to the ARIS power and vacuum umbilicals. under the indicated assumptions.

  19. Heart Rate Variability During Early Adaptation to Space

    NASA Technical Reports Server (NTRS)

    Toscano, W. B.; Cowings, P. S.

    1994-01-01

    A recent report hypothesized that episodes of space motion sickness (SMS) were reliably associated with low frequency oscillations (less than 0.03 to less than 0.01 Hz) in heart rate variability. This paper archives a large data set for review of investigators in this field which may facilitate the evaluation of this hypothesis. Continuous recording of Electro-cardiography (ECG) and other measures were made for 6 to 12 hours per day (waking hours) of six Shuttle crewmembers for the first 3 mission days of two separate Shuttle flights. Spectral analyses of heart rate variability during approximately 200 hours of inflight is presented. In addition, nearly 200 hours of data collected on these same individuals during ground tests prior to the mission are presented. The Purpose of this Publication is to document the incidence of low frequency oscillations of heart rate in 4 people exposed to microgravity over a period of five days. In addition, this report contains spectral analyses of heart rate data collected on these same individuals during ground-based mission simulations. By archiving these data in this manner, it is our intention to make this information available to other investigators interested in studying this phenomena.

  20. A demonstration of beam intensity modulation without loss of charge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, G.H.; Rawnsley, W.R.; Lee, R.

    1995-09-01

    The large acceptance and the simplicity of H{sup {minus}} extraction makes practical unusual modes of cyclotron operation. RF equipment, initially installed for H{sup {minus}} extraction at TRIUMF, has been used to modulate the beam intensity at the extraction radius. This equipment consists of a 92 MHz, 150 kV cavity (AAC) and an RFD (11.5 MHz, 20 kV). The AAC augments the acceleration provided by the main 23 MHz, RF system; the RFD excites radial betatron oscillations. These devices may be operated at frequencies slightly different from their design multiple; their effect then beats with the main RF. In this modemore » the AAC, for example, alternately reduces the rate of acceleration, thus increasing the overlap of turns, then enhances it, sweeping the clustered turns onto a probe or foil. Operating the AAC or RFD in this manner gathers the bulk of the charge into peaks a few microseconds wide and spaced between 6 and 50 {micro}s. Changing the frequency offset alters the spacing. The peak to valley ratio was 23:1 and all beam was transmitted to the extraction radius.« less

Top