Sample records for large genetic variability

  1. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    ERIC Educational Resources Information Center

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-01-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about…

  2. The challenge for genetic epidemiologists: how to analyze large numbers of SNPs in relation to complex diseases.

    PubMed

    Heidema, A Geert; Boer, Jolanda M A; Nagelkerke, Nico; Mariman, Edwin C M; van der A, Daphne L; Feskens, Edith J M

    2006-04-21

    Genetic epidemiologists have taken the challenge to identify genetic polymorphisms involved in the development of diseases. Many have collected data on large numbers of genetic markers but are not familiar with available methods to assess their association with complex diseases. Statistical methods have been developed for analyzing the relation between large numbers of genetic and environmental predictors to disease or disease-related variables in genetic association studies. In this commentary we discuss logistic regression analysis, neural networks, including the parameter decreasing method (PDM) and genetic programming optimized neural networks (GPNN) and several non-parametric methods, which include the set association approach, combinatorial partitioning method (CPM), restricted partitioning method (RPM), multifactor dimensionality reduction (MDR) method and the random forests approach. The relative strengths and weaknesses of these methods are highlighted. Logistic regression and neural networks can handle only a limited number of predictor variables, depending on the number of observations in the dataset. Therefore, they are less useful than the non-parametric methods to approach association studies with large numbers of predictor variables. GPNN on the other hand may be a useful approach to select and model important predictors, but its performance to select the important effects in the presence of large numbers of predictors needs to be examined. Both the set association approach and random forests approach are able to handle a large number of predictors and are useful in reducing these predictors to a subset of predictors with an important contribution to disease. The combinatorial methods give more insight in combination patterns for sets of genetic and/or environmental predictor variables that may be related to the outcome variable. As the non-parametric methods have different strengths and weaknesses we conclude that to approach genetic association studies using the case-control design, the application of a combination of several methods, including the set association approach, MDR and the random forests approach, will likely be a useful strategy to find the important genes and interaction patterns involved in complex diseases.

  3. Genetic structure of American chestnut populations based on neutral DNA markers

    Treesearch

    Thomas L. Kubisiak; James H. Roberds

    2006-01-01

    Microsatellite and RAPD markers suggest that American chestnut exists as a highly variable species. Even at the margins of its natural range, with a large proportion of its genetic variability occurring within populations (~95%). A statistically significant proportion also exists among population. Although genetic differentiation among populations has taken place, no...

  4. Five species, many genotypes, broad phenotypic diversity: When agronomy meets functional ecology.

    PubMed

    Prieto, Ivan; Litrico, Isabelle; Violle, Cyrille; Barre, Philippe

    2017-01-01

    Current ecological theory can provide insight into the causes and impacts of plant domestication. However, just how domestication has impacted intraspecific genetic variability (ITV) is unknown. We used 50 ecotypes and 35 cultivars from five grassland species to explore how selection drives functional trait coordination and genetic differentiation. We quantified the extent of genetic diversity among different sets of functional traits and determined how much genetic diversity has been generated within populations of natural ecotypes and selected cultivars. In general, the cultivars were larger (e.g., greater height, faster growth rates) and had larger and thinner leaves (greater SLA). We found large (average 63%) and trait-dependent (ranging from 14% for LNC to 95.8% for growth rate) genetic variability. The relative extent of genetic variability was greater for whole-plant than for organ-level traits. This pattern was consistent within ecotypes and within cultivars. However, ecotypes presented greater ITV variability. The results indicated that genetic diversity is large in domesticated species with contrasting levels of heritability among functional traits and that selection for high yield has led to indirect selection of some associated leaf traits. These findings open the way to define which target traits should be the focus in selection programs, especially in the context of community-level selection. © 2017 Botanical Society of America.

  5. Sylvatic plague reduces genetic variability in black-tailed prairie dogs.

    PubMed

    Trudeau, Kristie M; Britten, Hugh B; Restani, Marco

    2004-04-01

    Small, isolated populations are vulnerable to loss of genetic diversity through in-breeding and genetic drift. Sylvatic plague due to infection by the bacterium Yersinia pestis caused an epizootic in the early 1990s resullting in declines and extirpations of many black-tailed prairie dog (Cynomys ludovicianus) colonies in north-central Montana, USA. Plague-induced population bottlenecks may contribute to significant reductions in genetic variability. In contrast, gene flow maintains genetic variability within colonies. We investigated the impacts of the plague epizootic and distance to nearest colony on levels of genetic variability in six prairie dog colonies sampled between June 1999 and July 2001 using 24 variable randomly amplified polymorphic DNA (RAPD) markers. Number of effective alleles per locus (n(e)) and gene diversity (h) were significantly decreased in the three colonies affected by plague that were recovering from the resulting bottlenecks compared with the three colonies that did not experience plague. Genetic variability was not significantly affected by geographic distance between colonies. The majority of variance in gene fieqnencies was found within prairie clog colonies. Conservation of genetic variability in black-tailed prairie dogs will require the preservation of both large and small colony complexes and the gene flow amonog them.

  6. Genetic diversity in natural populations of a soil bacterium across a landscape gradient

    PubMed Central

    McArthur, J. Vaun; Kovacic, David A.; Smith, Michael H.

    1988-01-01

    Genetic diversity in natural populations of the bacterium Pseudomonas cepacia was surveyed in 10 enzymes from 70 clones isolated along a landscape gradient. Estimates of genetic diversity, ranging from 0.54 to 0.70, were higher than any previously reported values of which we are aware and were positively correlated with habitat variability. Patterns of bacterial genetic diversity were correlated with habitat variability. Findings indicate that the source of strains used in genetic engineering will greatly affect the outcome of planned releases in variable environments. Selection of generalist strains may confer a large advantage to engineered populations, while selection of laboratory strains may result in quick elimination of the engineered strains. PMID:16594009

  7. Genetic influences on heart rate variability

    PubMed Central

    Golosheykin, Simon; Grant, Julia D.; Novak, Olga V.; Heath, Andrew C.; Anokhin, Andrey P.

    2016-01-01

    Heart rate variability (HRV) is the variation of cardiac inter-beat intervals over time resulting largely from the interplay between the sympathetic and parasympathetic branches of the autonomic nervous system. Individual differences in HRV are associated with emotion regulation, personality, psychopathology, cardiovascular health, and mortality. Previous studies have shown significant heritability of HRV measures. Here we extend genetic research on HRV by investigating sex differences in genetic underpinnings of HRV, the degree of genetic overlap among different measurement domains of HRV, and phenotypic and genetic relationships between HRV and the resting heart rate (HR). We performed electrocardiogram (ECG) recordings in a large population-representative sample of young adult twins (n = 1060 individuals) and computed HRV measures from three domains: time, frequency, and nonlinear dynamics. Genetic and environmental influences on HRV measures were estimated using linear structural equation modeling of twin data. The results showed that variability of HRV and HR measures can be accounted for by additive genetic and non-shared environmental influences (AE model), with no evidence for significant shared environmental effects. Heritability estimates ranged from 47 to 64%, with little difference across HRV measurement domains. Genetic influences did not differ between genders for most variables except the square root of the mean squared differences between successive R-R intervals (RMSSD, higher heritability in males) and the ratio of low to high frequency power (LF/HF, distinct genetic factors operating in males and females). The results indicate high phenotypic and especially genetic correlations between HRV measures from different domains, suggesting that >90% of genetic influences are shared across measures. Finally, about 40% of genetic variance in HRV was shared with HR. In conclusion, both HR and HRV measures are highly heritable traits in the general population of young adults, with high degree of genetic overlap across different measurement domains. PMID:27114045

  8. Utility of computer simulations in landscape genetics

    Treesearch

    Bryan K. Epperson; Brad H. McRae; Kim Scribner; Samuel A. Cushman; Michael S. Rosenberg; Marie-Josee Fortin; Patrick M. A. James; Melanie Murphy; Stephanie Manel; Pierre Legendre; Mark R. T. Dale

    2010-01-01

    Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to...

  9. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2017-04-01

    A large-scale cross-sectional study (N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  10. Genetic variability and differentiation among populations of the Azorean endemic gymnosperm Juniperus brevifolia: baseline information for a conservation and restoration perspective.

    PubMed

    Silva, Luís; Elias, Rui B; Moura, Mónica; Meimberg, Harald; Dias, Eduardo

    2011-12-01

    The Azorean endemic gymnosperm Juniperus brevifolia (Seub.) Antoine is a top priority species for conservation in Macaronesia, based on its ecological significance in natural plant communities. To evaluate genetic variability and differentiation among J. brevifolia populations from the Azorean archipelago, we studied 15 ISSR and 15 RAPD markers in 178 individuals from 18 populations. The average number of polymorphic bands per population was 65 for both ISSR and RAPD. The majority of genetic variability was found within populations and among populations within islands, and this partitioning of variability was confirmed by AMOVA. The large majority of population pairwise F(ST) values were above 0.3 and below 0.6. The degree of population genetic differentiation in J. brevifolia was relatively high compared with other species, including Juniperus spp. The genetic differentiation among populations suggests that provenance should be considered when formulating augmentation or reintroduction strategies.

  11. Variables Affecting Secondary School Students' Willingness to Eat Genetically Modified Food Crops

    NASA Astrophysics Data System (ADS)

    Maes, Jasmien; Bourgonjon, Jeroen; Gheysen, Godelieve; Valcke, Martin

    2018-06-01

    A large-scale cross-sectional study ( N = 4002) was set up to determine Flemish secondary school students' willingness to eat genetically modified food (WTE) and to link students' WTE to previously identified key variables from research on the acceptance of genetic modification (GM). These variables include subjective and objective knowledge about genetics and biotechnology, perceived risks and benefits of GM food crops, trust in information from different sources about GM, and food neophobia. Differences between WTE-related variables based on students' grade level, educational track, and gender were analyzed. The students displayed a rather indecisive position toward GM food and scored weakly on a genetics and biotechnology knowledge test. WTE correlated most strongly with perceived benefits and subjective and objective knowledge. The results have clear implications for education, as they reiterate the need to strengthen students' scientific knowledge base and to introduce a GM-related debate at a much earlier stage in their school career.

  12. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  13. Hair Cortisol in Twins: Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes.

    PubMed

    Rietschel, Liz; Streit, Fabian; Zhu, Gu; McAloney, Kerrie; Frank, Josef; Couvy-Duchesne, Baptiste; Witt, Stephanie H; Binz, Tina M; McGrath, John; Hickie, Ian B; Hansell, Narelle K; Wright, Margaret J; Gillespie, Nathan A; Forstner, Andreas J; Schulze, Thomas G; Wüst, Stefan; Nöthen, Markus M; Baumgartner, Markus R; Walker, Brian R; Crawford, Andrew A; Colodro-Conde, Lucía; Medland, Sarah E; Martin, Nicholas G; Rietschel, Marcella

    2017-11-10

    Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.

  14. The ecology of an adaptive radiation of three-spined stickleback from North Uist, Scotland.

    PubMed

    Magalhaes, Isabel S; D'Agostino, Daniele; Hohenlohe, Paul A; MacColl, Andrew D C

    2016-09-01

    There has been a large focus on the genetics of traits involved in adaptation, but knowledge of the environmental variables leading to adaptive changes is surprisingly poor. Combined use of environmental data with morphological and genomic data should allow us to understand the extent to which patterns of phenotypic and genetic diversity within a species can be explained by the structure of the environment. Here, we analyse the variation of populations of three-spined stickleback from 27 freshwater lakes on North Uist, Scotland, that vary greatly in their environment, to understand how environmental and genetic constraints contribute to phenotypic divergence. We collected 35 individuals per population and 30 abiotic and biotic environmental parameters to characterize variation across lakes and analyse phenotype-environment associations. Additionally, we used RAD sequencing to estimate the genetic relationships among a subset of these populations. We found a large amount of phenotypic variation among populations, most prominently in armour and spine traits. Despite large variation in the abiotic environment, namely in ion composition, depth and dissolved organic Carbon, more phenotypic variation was explained by the biotic variables (presence of predators and density of predator and competitors), than by associated abiotic variables. Genetic structure among populations was partly geographic, with closer populations being more similar. Altogether, our results suggest that differences in body shape among stickleback populations are the result of both canalized genetic and plastic responses to environmental factors, which shape fish morphology in a predictable direction regardless of their genetic starting point. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  15. Hubby and Lewontin on Protein Variation in Natural Populations: When Molecular Genetics Came to the Rescue of Population Genetics.

    PubMed

    Charlesworth, Brian; Charlesworth, Deborah; Coyne, Jerry A; Langley, Charles H

    2016-08-01

    The 1966 GENETICS papers by John Hubby and Richard Lewontin were a landmark in the study of genome-wide levels of variability. They used the technique of gel electrophoresis of enzymes and proteins to study variation in natural populations of Drosophila pseudoobscura, at a set of loci that had been chosen purely for technical convenience, without prior knowledge of their levels of variability. Together with the independent study of human populations by Harry Harris, this seminal study provided the first relatively unbiased picture of the extent of genetic variability in protein sequences within populations, revealing that many genes had surprisingly high levels of diversity. These papers stimulated a large research program that found similarly high electrophoretic variability in many different species and led to statistical tools for interpreting the data in terms of population genetics processes such as genetic drift, balancing and purifying selection, and the effects of selection on linked variants. The current use of whole-genome sequences in studies of variation is the direct descendant of this pioneering work. Copyright © 2016 by the Genetics Society of America.

  16. Conserving genomic variability in large mammals: Effect of population fluctuations and variance in male reproductive success on variability in Yellowstone bison

    Treesearch

    Andres Perez-Figueroa; Rick L. Wallen; Tiago Antao; Jason A. Coombs; Michael K. Schwartz; P. J. White; Gordon Luikart

    2012-01-01

    Loss of genetic variation through genetic drift can reduce population viability. However, relatively little is known about loss of variation caused by the combination of fluctuating population size and variance in reproductive success in age structured populations. We built an individual-based computer simulation model to examine how actual culling and hunting...

  17. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  18. Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape

    USGS Publications Warehouse

    Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

    2013-01-01

    In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

  19. GENETIC STRUCTURE OF NORWAY SPRUCE (PICEA ABIES): CONCORDANCE OF MORPHOLOGICAL AND ALLOZYMIC VARIATION.

    PubMed

    Lagercrantz, Ulf; Ryman, Nils

    1990-02-01

    This study describes the population structure of Norway spruce (Picea abies) as revealed by protein polymorphisms and morphological variation. Electrophoretically detectable genetic variability was examined at 22 protein loci in 70 populations from the natural range of the species in Europe. Like other conifers, Norway spruce exhibits a relatively large amount of genetic variability and little differentiation among populations. Sixteen polymorphic loci (73%) segregate for a total of 51 alleles, and average heterozygosity per population is 0.115. Approximately 5% of the total genetic diversity is explained by differences between populations (G ST = 0.052), and Nei's standard genetic distance is less than 0.04 in all cases. We suggest that the population structure largely reflects relatively recent historical events related to the last glaciation and that Norway spruce is still in a process of adaptation and differentiation. There is a clear geographic pattern in the variation of allele frequencies. A major part of the allelefrequency variation can be accounted for by a few synthetic variables (principal components), and 80% of the variation of the first principal component is "explained" by latitude and longitude. The central European populations are consistently depauperate of genetic variability, most likely as an effect of severe restrictions of population size during the last glaciation. The pattern of differentiation at protein loci is very similar to that observed for seven morphological traits examined. This similarity suggests that the same evolutionary forces have acted upon both sets of characters. © 1990 The Society for the Study of Evolution.

  20. Site-to-site genetic correlations and their implications on breeding zone size and optimum number of progeny test sites for Coastal Douglas-fir.

    Treesearch

    G.R. Johnson

    1997-01-01

    Type B genetic correlations were used to examine the relation among geographic differences between sites and their site-to-site genetic (Type B) correlations. Examination of six local breeding zones in Oregon indicated that breeding zones were, for the most part, not too large because few environmental variables were correlated with Type B genetic correlations. The...

  1. Kernel-Based Measure of Variable Importance for Genetic Association Studies.

    PubMed

    Gallego, Vicente; Luz Calle, M; Oller, Ramon

    2017-06-17

    The identification of genetic variants that are associated with disease risk is an important goal of genetic association studies. Standard approaches perform univariate analysis where each genetic variant, usually Single Nucleotide Polymorphisms (SNPs), is tested for association with disease status. Though many genetic variants have been identified and validated so far using this univariate approach, for most complex diseases a large part of their genetic component is still unknown, the so called missing heritability. We propose a Kernel-based measure of variable importance (KVI) that provides the contribution of a SNP, or a group of SNPs, to the joint genetic effect of a set of genetic variants. KVI can be used for ranking genetic markers individually, sets of markers that form blocks of linkage disequilibrium or sets of genetic variants that lie in a gene or a genetic pathway. We prove that, unlike the univariate analysis, KVI captures the relationship with other genetic variants in the analysis, even when measured at the individual level for each genetic variable separately. This is specially relevant and powerful for detecting genetic interactions. We illustrate the results with data from an Alzheimer's disease study and show through simulations that the rankings based on KVI improve those rankings based on two measures of importance provided by the Random Forest. We also prove with a simulation study that KVI is very powerful for detecting genetic interactions.

  2. Genetic variation in insecticide tolerance in a population of southern leopard frogs (Rana sphenocephala): Implications for amphibian conservation

    USGS Publications Warehouse

    Bridges, C.M.; Semlitsch, R.D.

    2001-01-01

    Currently, conservation efforts are devoted to determining the extent and the causes of the decline of many amphibian species worldwide. Human impacts frequently degrade amphibian habitat and have been implicated in many declines. Because genetic variance is critical in determining the persistence of a species in a changing environment, we examined the amount of genetic variability present in a single population for tolerance to an environmental stressor. We examined the amount of genetic variability among full- and half-sib families in a single population of southern leopard frogs (Rana sphenocephala) with respect to their tolerance to lethal concentrations of the agricultural chemical, carbaryl. Analysis of time-to-death data indicated significant differences among full-sib families and suggests a large amount of variability present in the responses to this environmental stressor. Significant differences in responses among half-sib families indicated that there is additive genetic variance. These data suggest that this population may have the ability to adapt to environmental stressors. It is possible that declines of amphibian populations in the western United States may be attributed to low genetic variability resulting from limited migration among populations and small population sizes.

  3. Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.

    PubMed

    Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst

    2016-09-01

    The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.

  4. Multivariate Analysis of Genotype-Phenotype Association.

    PubMed

    Mitteroecker, Philipp; Cheverud, James M; Pavlicev, Mihaela

    2016-04-01

    With the advent of modern imaging and measurement technology, complex phenotypes are increasingly represented by large numbers of measurements, which may not bear biological meaning one by one. For such multivariate phenotypes, studying the pairwise associations between all measurements and all alleles is highly inefficient and prevents insight into the genetic pattern underlying the observed phenotypes. We present a new method for identifying patterns of allelic variation (genetic latent variables) that are maximally associated-in terms of effect size-with patterns of phenotypic variation (phenotypic latent variables). This multivariate genotype-phenotype mapping (MGP) separates phenotypic features under strong genetic control from less genetically determined features and thus permits an analysis of the multivariate structure of genotype-phenotype association, including its dimensionality and the clustering of genetic and phenotypic variables within this association. Different variants of MGP maximize different measures of genotype-phenotype association: genetic effect, genetic variance, or heritability. In an application to a mouse sample, scored for 353 SNPs and 11 phenotypic traits, the first dimension of genetic and phenotypic latent variables accounted for >70% of genetic variation present in all 11 measurements; 43% of variation in this phenotypic pattern was explained by the corresponding genetic latent variable. The first three dimensions together sufficed to account for almost 90% of genetic variation in the measurements and for all the interpretable genotype-phenotype association. Each dimension can be tested as a whole against the hypothesis of no association, thereby reducing the number of statistical tests from 7766 to 3-the maximal number of meaningful independent tests. Important alleles can be selected based on their effect size (additive or nonadditive effect on the phenotypic latent variable). This low dimensionality of the genotype-phenotype map has important consequences for gene identification and may shed light on the evolvability of organisms. Copyright © 2016 by the Genetics Society of America.

  5. Evaluation of Genetic Algorithm Concepts using Model Problems. Part 1; Single-Objective Optimization

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Pulliam, Thomas H.

    2003-01-01

    A genetic-algorithm-based optimization approach is described and evaluated using a simple hill-climbing model problem. The model problem utilized herein allows for the broad specification of a large number of search spaces including spaces with an arbitrary number of genes or decision variables and an arbitrary number hills or modes. In the present study, only single objective problems are considered. Results indicate that the genetic algorithm optimization approach is flexible in application and extremely reliable, providing optimal results for all problems attempted. The most difficult problems - those with large hyper-volumes and multi-mode search spaces containing a large number of genes - require a large number of function evaluations for GA convergence, but they always converge.

  6. Mendelian randomization with fine-mapped genetic data: Choosing from large numbers of correlated instrumental variables.

    PubMed

    Burgess, Stephen; Zuber, Verena; Valdes-Marquez, Elsa; Sun, Benjamin B; Hopewell, Jemma C

    2017-12-01

    Mendelian randomization uses genetic variants to make causal inferences about the effect of a risk factor on an outcome. With fine-mapped genetic data, there may be hundreds of genetic variants in a single gene region any of which could be used to assess this causal relationship. However, using too many genetic variants in the analysis can lead to spurious estimates and inflated Type 1 error rates. But if only a few genetic variants are used, then the majority of the data is ignored and estimates are highly sensitive to the particular choice of variants. We propose an approach based on summarized data only (genetic association and correlation estimates) that uses principal components analysis to form instruments. This approach has desirable theoretical properties: it takes the totality of data into account and does not suffer from numerical instabilities. It also has good properties in simulation studies: it is not particularly sensitive to varying the genetic variants included in the analysis or the genetic correlation matrix, and it does not have greatly inflated Type 1 error rates. Overall, the method gives estimates that are less precise than those from variable selection approaches (such as using a conditional analysis or pruning approach to select variants), but are more robust to seemingly arbitrary choices in the variable selection step. Methods are illustrated by an example using genetic associations with testosterone for 320 genetic variants to assess the effect of sex hormone related pathways on coronary artery disease risk, in which variable selection approaches give inconsistent inferences. © 2017 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.

  7. Genetic Variability Under the Seedbank Coalescent.

    PubMed

    Blath, Jochen; González Casanova, Adrián; Eldon, Bjarki; Kurt, Noemi; Wilke-Berenguer, Maite

    2015-07-01

    We analyze patterns of genetic variability of populations in the presence of a large seedbank with the help of a new coalescent structure called the seedbank coalescent. This ancestral process appears naturally as a scaling limit of the genealogy of large populations that sustain seedbanks, if the seedbank size and individual dormancy times are of the same order as those of the active population. Mutations appear as Poisson processes on the active lineages and potentially at reduced rate also on the dormant lineages. The presence of "dormant" lineages leads to qualitatively altered times to the most recent common ancestor and nonclassical patterns of genetic diversity. To illustrate this we provide a Wright-Fisher model with a seedbank component and mutation, motivated from recent models of microbial dormancy, whose genealogy can be described by the seedbank coalescent. Based on our coalescent model, we derive recursions for the expectation and variance of the time to most recent common ancestor, number of segregating sites, pairwise differences, and singletons. Estimates (obtained by simulations) of the distributions of commonly employed distance statistics, in the presence and absence of a seedbank, are compared. The effect of a seedbank on the expected site-frequency spectrum is also investigated using simulations. Our results indicate that the presence of a large seedbank considerably alters the distribution of some distance statistics, as well as the site-frequency spectrum. Thus, one should be able to detect from genetic data the presence of a large seedbank in natural populations. Copyright © 2015 by the Genetics Society of America.

  8. Pharmacogenetics and outcome with antipsychotic drugs.

    PubMed

    Pouget, Jennie G; Shams, Tahireh A; Tiwari, Arun K; Müller, Daniel J

    2014-12-01

    Antipsychotic medications are the gold-standard treatment for schizophrenia, and are often prescribed for other mental conditions. However, the efficacy and side-effect profiles of these drugs are heterogeneous, with large interindividual variability. As a result, treatment selection remains a largely trial-and-error process, with many failed treatment regimens endured before finding a tolerable balance between symptom management and side effects. Much of the interindividual variability in response and side effects is due to genetic factors (heritability, h(2)~ 0.60-0.80). Pharmacogenetics is an emerging field that holds the potential to facilitate the selection of the best medication for a particular patient, based on his or her genetic information. In this review we discuss the most promising genetic markers of antipsychotic treatment outcomes, and present current translational research efforts that aim to bring these pharmacogenetic findings to the clinic in the near future.

  9. Pharmacogenetics and outcome with antipsychotic drugs

    PubMed Central

    Pouget, Jennie G.; Shams, Tahireh A.; Tiwari, Arun K.; Müller, Daniel J.

    2014-01-01

    Antipsychotic medications are the gold-standard treatment for schizophrenia, and are often prescribed for other mental conditions. However, the efficacy and side-effect profiles of these drugs are heterogeneous, with large interindividual variability. As a result, treatment selection remains a largely trial-and-error process, with many failed treatment regimens endured before finding a tolerable balance between symptom management and side effects. Much of the interindividual variability in response and side effects is due to genetic factors (heritability, h2~ 0.60-0.80). Pharmacogenetics is an emerging field that holds the potential to facilitate the selection of the best medication for a particular patient, based on his or her genetic information. In this review we discuss the most promising genetic markers of antipsychotic treatment outcomes, and present current translational research efforts that aim to bring these pharmacogenetic findings to the clinic in the near future. PMID:25733959

  10. Population structure and molecular characterization of Nigerian field genebank collections of cacao, Theobroma cacao L

    USDA-ARS?s Scientific Manuscript database

    Over the last 130 years since cacao introduction into Nigeria, genetic variability in cacao cultivated which has increased as a result of further introduction and breeding activities, remain largely unknown. To determine the genetic diversity and population structure of cacao populations, 13 cacao ...

  11. A Kernel Machine Method for Detecting Effects of Interaction Between Multidimensional Variable Sets: An Imaging Genetics Application

    PubMed Central

    Ge, Tian; Nichols, Thomas E.; Ghosh, Debashis; Mormino, Elizabeth C.

    2015-01-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. PMID:25600633

  12. Maintenance of Genetic Variability under Strong Stabilizing Selection: A Two-Locus Model

    PubMed Central

    Gavrilets, S.; Hastings, A.

    1993-01-01

    We study a two locus model with additive contributions to the phenotype to explore the relationship between stabilizing selection and recombination. We show that if the double heterozygote has the optimum phenotype and the contributions of the loci to the trait are different, then any symmetric stabilizing selection fitness function can maintain genetic variability provided selection is sufficiently strong relative to linkage. We present results of a detailed analysis of the quadratic fitness function which show that selection need not be extremely strong relative to recombination for the polymorphic equilibria to be stable. At these polymorphic equilibria the mean value of the trait, in general, is not equal to the optimum phenotype, there exists a large level of negative linkage disequilibrium which ``hides'' additive genetic variance, and different equilibria can be stable simultaneously. We analyze dependence of different characteristics of these equilibria on the location of optimum phenotype, on the difference in allelic effect, and on the strength of selection relative to recombination. Our overall result that stabilizing selection does not necessarily eliminate genetic variability is compatible with some experimental results where the lines subject to strong stabilizing selection did not have significant reductions in genetic variability. PMID:8514145

  13. Long-range gene flow and the effects of climatic and ecological factors on genetic structuring in a large, solitary carnivore: the Eurasian lynx.

    PubMed

    Ratkiewicz, Mirosław; Matosiuk, Maciej; Saveljev, Alexander P; Sidorovich, Vadim; Ozolins, Janis; Männil, Peep; Balciauskas, Linas; Kojola, Ilpo; Okarma, Henryk; Kowalczyk, Rafał; Schmidt, Krzysztof

    2014-01-01

    Due to their high mobility, large terrestrial predators are potentially capable of maintaining high connectivity, and therefore low genetic differentiation among populations. However, previous molecular studies have provided contradictory findings in relation to this. To elucidate patterns of genetic structure in large carnivores, we studied the genetic variability of the Eurasian lynx, Lynx lynx throughout north-eastern Europe using microsatellite, mitochondrial DNA control region and Y chromosome-linked markers. Using SAMOVA we found analogous patterns of genetic structure based on both mtDNA and microsatellites, which coincided with a relatively little evidence for male-biased dispersal. No polymorphism for the cytochrome b and ATP6 mtDNA genes and Y chromosome-linked markers were found. Lynx inhabiting a large area encompassing Finland, the Baltic countries and western Russia formed a single genetic unit, while some marginal populations were clearly divergent from others. The existence of a migration corridor was suggested to correspond with distribution of continuous forest cover. The lowest variability (in both markers) was found in lynx from Norway and Białowieża Primeval Forest (BPF), which coincided with a recent demographic bottleneck (Norway) or high habitat fragmentation (BPF). The Carpathian population, being monomorphic for the control region, showed relatively high microsatellite diversity, suggesting the effect of a past bottleneck (e.g. during Last Glacial Maximum) on its present genetic composition. Genetic structuring for the mtDNA control region was best explained by latitude and snow cover depth. Microsatellite structuring correlated with the lynx's main prey, especially the proportion of red deer (Cervus elaphus) in its diet. Eurasian lynx are capable of maintaining panmictic populations across eastern Europe unless they are severely limited by habitat continuity or a reduction in numbers. Different correlations of mtDNA and microsatellite population divergence patterns with climatic and ecological factors may suggest separate selective pressures acting on males and females in this solitary carnivore.

  14. A kernel machine method for detecting effects of interaction between multidimensional variable sets: an imaging genetics application.

    PubMed

    Ge, Tian; Nichols, Thomas E; Ghosh, Debashis; Mormino, Elizabeth C; Smoller, Jordan W; Sabuncu, Mert R

    2015-04-01

    Measurements derived from neuroimaging data can serve as markers of disease and/or healthy development, are largely heritable, and have been increasingly utilized as (intermediate) phenotypes in genetic association studies. To date, imaging genetic studies have mostly focused on discovering isolated genetic effects, typically ignoring potential interactions with non-genetic variables such as disease risk factors, environmental exposures, and epigenetic markers. However, identifying significant interaction effects is critical for revealing the true relationship between genetic and phenotypic variables, and shedding light on disease mechanisms. In this paper, we present a general kernel machine based method for detecting effects of the interaction between multidimensional variable sets. This method can model the joint and epistatic effect of a collection of single nucleotide polymorphisms (SNPs), accommodate multiple factors that potentially moderate genetic influences, and test for nonlinear interactions between sets of variables in a flexible framework. As a demonstration of application, we applied the method to the data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to detect the effects of the interactions between candidate Alzheimer's disease (AD) risk genes and a collection of cardiovascular disease (CVD) risk factors, on hippocampal volume measurements derived from structural brain magnetic resonance imaging (MRI) scans. Our method identified that two genes, CR1 and EPHA1, demonstrate significant interactions with CVD risk factors on hippocampal volume, suggesting that CR1 and EPHA1 may play a role in influencing AD-related neurodegeneration in the presence of CVD risks. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network

    USGS Publications Warehouse

    Neville, H.M.; Dunham, J.B.; Peacock, M.M.

    2006-01-01

    Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.

  16. Microsatellite marker analysis of the genetic variability in Hanoverian Hounds.

    PubMed

    Lüpke, L; Distl, O

    2005-04-01

    Genetic variability of the dog breed Hanoverian Hound was analysed using a set of 16 microsatellites. The sample of 92 dogs was representative for the total current population [n=334, inbreeding coefficient 9.2%, relationship coefficient 11.2%] with respect to the level and distribution of the inbreeding and relationship coefficients. All microsatellites used were in Hardy-Weinberg equilibrium. The average number of alleles was 6.4. The average observed heterozygosity (H(O)) was slightly higher than the expected heterozygosity (H(E)). Dinucleotide microsatellites exhibited lower polymorphism information content (PIC) than tetranucleotide microsatellites (0.52 versus 0.66). The average PIC was 0.61. The individual inbreeding coefficient was negatively related to the average H(O) of all microsatellites, whereas the proportion of genes from introducing of Hanoverian Hounds from abroad showed no relationships to H(O). We found that the genetic variability in the Hanoverian Hounds analysed here was unexpectedly higher than that previously published for dog breeds of similar population size. Even in dog breeds of larger population size heterogyzosity was seldom higher than that observed here. The rather high genetic variability as quantified by polymorphic microsatellites in Hanoverian Hounds may be due to a large genetic variation in the founder animals of this breed and to the fact that this genetic diversity could be maintained despite genetic bottlenecks experienced by this breed in the 1920s and 1950s and despite the presence of high inbreeding and relationship coefficients for more than 50 years.

  17. Genetic Variability Under the Seedbank Coalescent

    PubMed Central

    Blath, Jochen; González Casanova, Adrián; Eldon, Bjarki; Kurt, Noemi; Wilke-Berenguer, Maite

    2015-01-01

    We analyze patterns of genetic variability of populations in the presence of a large seedbank with the help of a new coalescent structure called the seedbank coalescent. This ancestral process appears naturally as a scaling limit of the genealogy of large populations that sustain seedbanks, if the seedbank size and individual dormancy times are of the same order as those of the active population. Mutations appear as Poisson processes on the active lineages and potentially at reduced rate also on the dormant lineages. The presence of “dormant” lineages leads to qualitatively altered times to the most recent common ancestor and nonclassical patterns of genetic diversity. To illustrate this we provide a Wright–Fisher model with a seedbank component and mutation, motivated from recent models of microbial dormancy, whose genealogy can be described by the seedbank coalescent. Based on our coalescent model, we derive recursions for the expectation and variance of the time to most recent common ancestor, number of segregating sites, pairwise differences, and singletons. Estimates (obtained by simulations) of the distributions of commonly employed distance statistics, in the presence and absence of a seedbank, are compared. The effect of a seedbank on the expected site-frequency spectrum is also investigated using simulations. Our results indicate that the presence of a large seedbank considerably alters the distribution of some distance statistics, as well as the site-frequency spectrum. Thus, one should be able to detect from genetic data the presence of a large seedbank in natural populations. PMID:25953769

  18. Life-history and habitat features influence the within-river genetic structure of Atlantic salmon.

    PubMed

    Vähä, Juha-Pekka; Erkinaro, Jaakko; Niemelä, Eero; Primmer, Craig R

    2007-07-01

    Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing management strategies for the system.

  19. Self-fertilization, long-distance flash invasion and biogeography shape the population structure of Pseudosuccinea columella at the worldwide scale.

    PubMed

    Lounnas, M; Correa, A C; Vázquez, A A; Dia, A; Escobar, J S; Nicot, A; Arenas, J; Ayaqui, R; Dubois, M P; Gimenez, T; Gutiérrez, A; González-Ramírez, C; Noya, O; Prepelitchi, L; Uribe, N; Wisnivesky-Colli, C; Yong, M; David, P; Loker, E S; Jarne, P; Pointier, J P; Hurtrez-Boussès, S

    2017-02-01

    Population genetic studies are efficient for inferring the invasion history based on a comparison of native and invasive populations, especially when conducted at species scale. An expected outcome in invasive populations is variability loss, and this is especially true in self-fertilizing species. We here focus on the self-fertilizing Pseudosuccinea columella, an invasive hermaphroditic freshwater snail that has greatly expanded its geographic distribution and that acts as intermediate host of Fasciola hepatica, the causative agent of human and veterinary fasciolosis. We evaluated the distribution of genetic diversity at the largest geographic scale analysed to date in this species by surveying 80 populations collected during 16 years from 14 countries, using eight nuclear microsatellites and two mitochondrial genes. As expected, populations from North America, the putative origin area, were strongly structured by selfing and history and harboured much more genetic variability than invasive populations. We found high selfing rates (when it was possible to infer it), none-to-low genetic variability and strong population structure in most invasive populations. Strikingly, we found a unique genotype/haplotype in populations from eight invaded regions sampled all over the world. Moreover, snail populations resistant to infection by the parasite are genetically distinct from susceptible populations. Our results are compatible with repeated introductions in South America and flash worldwide invasion by this unique genotype/haplotype. Our study illustrates the population genetic consequences of biological invasion in a highly selfing species at very large geographic scale. We discuss how such a large-scale flash invasion may affect the spread of fasciolosis. © 2016 John Wiley & Sons Ltd.

  20. Landscape genetic approaches to guide native plant restoration in the Mojave Desert

    USGS Publications Warehouse

    Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.

    2016-01-01

    Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration.

  1. Use of allele scores as instrumental variables for Mendelian randomization

    PubMed Central

    Burgess, Stephen; Thompson, Simon G

    2013-01-01

    Background An allele score is a single variable summarizing multiple genetic variants associated with a risk factor. It is calculated as the total number of risk factor-increasing alleles for an individual (unweighted score), or the sum of weights for each allele corresponding to estimated genetic effect sizes (weighted score). An allele score can be used in a Mendelian randomization analysis to estimate the causal effect of the risk factor on an outcome. Methods Data were simulated to investigate the use of allele scores in Mendelian randomization where conventional instrumental variable techniques using multiple genetic variants demonstrate ‘weak instrument’ bias. The robustness of estimates using the allele score to misspecification (for example non-linearity, effect modification) and to violations of the instrumental variable assumptions was assessed. Results Causal estimates using a correctly specified allele score were unbiased with appropriate coverage levels. The estimates were generally robust to misspecification of the allele score, but not to instrumental variable violations, even if the majority of variants in the allele score were valid instruments. Using a weighted rather than an unweighted allele score increased power, but the increase was small when genetic variants had similar effect sizes. Naive use of the data under analysis to choose which variants to include in an allele score, or for deriving weights, resulted in substantial biases. Conclusions Allele scores enable valid causal estimates with large numbers of genetic variants. The stringency of criteria for genetic variants in Mendelian randomization should be maintained for all variants in an allele score. PMID:24062299

  2. Genetic Divergence and Chemotype Diversity in the Fusarium Head Blight Pathogen Fusarium poae.

    PubMed

    Vanheule, Adriaan; De Boevre, Marthe; Moretti, Antonio; Scauflaire, Jonathan; Munaut, Françoise; De Saeger, Sarah; Bekaert, Boris; Haesaert, Geert; Waalwijk, Cees; van der Lee, Theo; Audenaert, Kris

    2017-08-23

    Fusarium head blight is a disease caused by a complex of Fusarium species. F. poae is omnipresent throughout Europe in spite of its low virulence. In this study, we assessed a geographically diverse collection of F. poae isolates for its genetic diversity using AFLP (Amplified Fragment Length Polymorphism). Furthermore, studying the mating type locus and chromosomal insertions, we identified hallmarks of both sexual recombination and clonal spread of successful genotypes in the population. Despite the large genetic variation found, all F. poae isolates possess the nivalenol chemotype based on Tri7 sequence analysis. Nevertheless, Tri gene clusters showed two layers of genetic variability. Firstly, the Tri1 locus was highly variable with mostly synonymous mutations and mutations in introns pointing to a strong purifying selection pressure. Secondly, in a subset of isolates, the main trichothecene gene cluster was invaded by a transposable element between Tri5 and Tri6 . To investigate the impact of these variations on the phenotypic chemotype, mycotoxin production was assessed on artificial medium. Complex blends of type A and type B trichothecenes were produced but neither genetic variability in the Tri genes nor variability in the genome or geography accounted for the divergence in trichothecene production. In view of its complex chemotype, it will be of utmost interest to uncover the role of trichothecenes in virulence, spread and survival of F. poae .

  3. Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma.

    PubMed

    Reddy, Anupama; Zhang, Jenny; Davis, Nicholas S; Moffitt, Andrea B; Love, Cassandra L; Waldrop, Alexander; Leppa, Sirpa; Pasanen, Annika; Meriranta, Leo; Karjalainen-Lindsberg, Marja-Liisa; Nørgaard, Peter; Pedersen, Mette; Gang, Anne O; Høgdall, Estrid; Heavican, Tayla B; Lone, Waseem; Iqbal, Javeed; Qin, Qiu; Li, Guojie; Kim, So Young; Healy, Jane; Richards, Kristy L; Fedoriw, Yuri; Bernal-Mizrachi, Leon; Koff, Jean L; Staton, Ashley D; Flowers, Christopher R; Paltiel, Ora; Goldschmidt, Neta; Calaminici, Maria; Clear, Andrew; Gribben, John; Nguyen, Evelyn; Czader, Magdalena B; Ondrejka, Sarah L; Collie, Angela; Hsi, Eric D; Tse, Eric; Au-Yeung, Rex K H; Kwong, Yok-Lam; Srivastava, Gopesh; Choi, William W L; Evens, Andrew M; Pilichowska, Monika; Sengar, Manju; Reddy, Nishitha; Li, Shaoying; Chadburn, Amy; Gordon, Leo I; Jaffe, Elaine S; Levy, Shawn; Rempel, Rachel; Tzeng, Tiffany; Happ, Lanie E; Dave, Tushar; Rajagopalan, Deepthi; Datta, Jyotishka; Dunson, David B; Dave, Sandeep S

    2017-10-05

    Diffuse large B cell lymphoma (DLBCL) is the most common form of blood cancer and is characterized by a striking degree of genetic and clinical heterogeneity. This heterogeneity poses a major barrier to understanding the genetic basis of the disease and its response to therapy. Here, we performed an integrative analysis of whole-exome sequencing and transcriptome sequencing in a cohort of 1,001 DLBCL patients to comprehensively define the landscape of 150 genetic drivers of the disease. We characterized the functional impact of these genes using an unbiased CRISPR screen of DLBCL cell lines to define oncogenes that promote cell growth. A prognostic model comprising these genetic alterations outperformed current established methods: cell of origin, the International Prognostic Index comprising clinical variables, and dual MYC and BCL2 expression. These results comprehensively define the genetic drivers and their functional roles in DLBCL to identify new therapeutic opportunities in the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Androgens and doping tests: genetic variation and pit-falls

    PubMed Central

    Rane, Anders; Ekström, Lena

    2012-01-01

    The large variation in disposition known for most drugs is also true for anabolic androgenic steroids. Genetic factors are probably the single most important cause of this variation. Further, there are reasons to believe that there is a corresponding variation in efficacy of doping agents. Doped individuals employ a large variety of doping strategies in respect of choice of substance, dose, dose interval, duration of treatment and use of other drugs for enforcement of effects or correction of side effects. Metabolic steps up-stream and down-stream of testosterone are genetically variable and contribute substantially to the variation in disposition of testosterone, the most common doping agent in sports and in society. Large inter- and intra-ethnic variation in testosterone glucuronidation and excretion is described as well as the pit-falls in evaluation of testosterone doping test results. The hydrolysis and bioactivation of testosterone enanthate is also genetically variable yielding a 2–3 fold variation in excretion rate and serum concentration, thereby implicating a substantial variation in ‘efficacy’ of testosterone. Given this situation it is logical to adopt the new findings in the doping control programme. The population based cut-off level for the testosterone : epitestosterone ratio should be replaced by a Bayesian interpretation of consecutive tests in the same individual. When combined with the above genetic information the sensitivity of the test is considerably improved. The combination of the three approaches should reduce the rate of falsely negative or positive results and the number of expensive follow-up tests, stipulated by the World Anti-Doping Agency. PMID:22506612

  5. Genetic analysis of the Venezuelan Criollo horse.

    PubMed

    Cothran, E G; Canelon, J L; Luis, C; Conant, E; Juras, R

    2011-10-07

    Various horse populations in the Americas have an origin in Spain; they are remnants of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). We evaluated genetic variability within the Venezuelan Criollo horse and its relationship with other horse breeds. We observed high levels of genetic diversity within the Criollo breed. Significant population differentiation was observed between all South American breeds. The Venezuelan Criollo horse showed high levels of genetic diversity, and from a conservation standpoint, there is no immediate danger of losing variation unless there is a large drop in population size.

  6. Learning, climate and the evolution of cultural capacity.

    PubMed

    Whitehead, Hal

    2007-03-21

    Patterns of environmental variation influence the utility, and thus evolution, of different learning strategies. I use stochastic, individual-based evolutionary models to assess the relative advantages of 15 different learning strategies (genetic determination, individual learning, vertical social learning, horizontal/oblique social learning, and contingent combinations of these) when competing in variable environments described by 1/f noise. When environmental variation has little effect on fitness, then genetic determinism persists. When environmental variation is large and equal over all time-scales ("white noise") then individual learning is adaptive. Social learning is advantageous in "red noise" environments when variation over long time-scales is large. Climatic variability increases with time-scale, so that short-lived organisms should be able to rely largely on genetic determination. Thermal climates usually are insufficiently red for social learning to be advantageous for species whose fitness is very determined by temperature. In contrast, population trajectories of many species, especially large mammals and aquatic carnivores, are sufficiently red to promote social learning in their predators. The ocean environment is generally redder than that on land. Thus, while individual learning should be adaptive for many longer-lived organisms, social learning will often be found in those dependent on the populations of other species, especially if they are marine. This provides a potential explanation for the evolution of a prevalence of social learning, and culture, in humans and cetaceans.

  7. Genetic signatures of natural selection in a model invasive ascidian

    NASA Astrophysics Data System (ADS)

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-03-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta.

  8. Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers.

    PubMed

    Despres, Laurence; Loriot, Sandrine; Gaudeul, Myriam

    2002-11-01

    The distribution of genetic variation and the phylogenetic relationships between 18 populations of the arctic-alpine plant Trollius europaeus were analysed in three main regions (Alps, Pyrenees and Fennoscandia) by using dominant AFLP markers. Analysis of molecular variance revealed that most of the genetic variability was found within populations (64%), although variation among regions (17%) and among populations within regions (19%) was highly significant (P < 0.001). Accordingly, the global fixation index FST averaged over loci was high (0.39). The among-population differentiation indicates restricted gene flow, congruent with limited dispersal of specific globeflower's pollinating flies (Chiastocheta spp.). Within-population diversity levels were significantly higher in the Alps (mean Nei's expected heterozygosity HE = 0.229) than in the Pyrenees (HE= 0.197) or in Fennoscandia (HE = 0.158). This finding is congruent with the species-richness of the associated flies, which is maximum in the Alps. We discuss the processes involved in shaping observed patterns of genetic diversity within and among T. europaeus populations. Genetic drift is the major factor acting on the small Pyrenean populations at the southern edge of T. europaeus distribution, while large Fennoscandian populations result probably from a founder effect followed by demographic expansion. The Alpine populations represent moderately fragmented relics of large southern ancestral populations. The patterns of genetic variability observed in the host plant support the hypothesis of sympatric speciation in associated flies, rather than recurrent allopatric speciations.

  9. Preliminary Design of a Manned Nuclear Electric Propulsion Vehicle Using Genetic Algorithms

    NASA Technical Reports Server (NTRS)

    Irwin, Ryan W.; Tinker, Michael L.

    2005-01-01

    Nuclear electric propulsion (NEP) vehicles will be needed for future manned missions to Mars and beyond. Candidate designs must be identified for further detailed design from a large array of possibilities. Genetic algorithms have proven their utility in conceptual design studies by effectively searching a large design space to pinpoint unique optimal designs. This research combined analysis codes for NEP subsystems with a genetic algorithm. The use of penalty functions with scaling ratios was investigated to increase computational efficiency. Also, the selection of design variables for optimization was considered to reduce computation time without losing beneficial design search space. Finally, trend analysis of a reference mission to the asteroids yielded a group of candidate designs for further analysis.

  10. Implementation and utilization of genetic testing in personalized medicine

    PubMed Central

    Abul-Husn, Noura S; Owusu Obeng, Aniwaa; Sanderson, Saskia C; Gottesman, Omri; Scott, Stuart A

    2014-01-01

    Clinical genetic testing began over 30 years ago with the availability of mutation detection for sickle cell disease diagnosis. Since then, the field has dramatically transformed to include gene sequencing, high-throughput targeted genotyping, prenatal mutation detection, preimplantation genetic diagnosis, population-based carrier screening, and now genome-wide analyses using microarrays and next-generation sequencing. Despite these significant advances in molecular technologies and testing capabilities, clinical genetics laboratories historically have been centered on mutation detection for Mendelian disorders. However, the ongoing identification of deoxyribonucleic acid (DNA) sequence variants associated with common diseases prompted the availability of testing for personal disease risk estimation, and created commercial opportunities for direct-to-consumer genetic testing companies that assay these variants. This germline genetic risk, in conjunction with other clinical, family, and demographic variables, are the key components of the personalized medicine paradigm, which aims to apply personal genomic and other relevant data into a patient’s clinical assessment to more precisely guide medical management. However, genetic testing for disease risk estimation is an ongoing topic of debate, largely due to inconsistencies in the results, concerns over clinical validity and utility, and the variable mode of delivery when returning genetic results to patients in the absence of traditional counseling. A related class of genetic testing with analogous issues of clinical utility and acceptance is pharmacogenetic testing, which interrogates sequence variants implicated in interindividual drug response variability. Although clinical pharmacogenetic testing has not previously been widely adopted, advances in rapid turnaround time genetic testing technology and the recent implementation of preemptive genotyping programs at selected medical centers suggest that personalized medicine through pharmacogenetics is now a reality. This review aims to summarize the current state of implementing genetic testing for personalized medicine, with an emphasis on clinical pharmacogenetic testing. PMID:25206309

  11. Extent of height variability explained by known height-associated genetic variants in an isolated population of the Adriatic coast of Croatia.

    PubMed

    Zhang, Ge; Karns, Rebekah; Sun, Guangyun; Indugula, Subba Rao; Cheng, Hong; Havas-Augustin, Dubravka; Novokmet, Natalija; Rudan, Dusko; Durakovic, Zijad; Missoni, Sasa; Chakraborty, Ranajit; Rudan, Pavao; Deka, Ranjan

    2011-01-01

    Human height is a classical example of a polygenic quantitative trait. Recent large-scale genome-wide association studies (GWAS) have identified more than 200 height-associated loci, though these variants explain only 2∼10% of overall variability of normal height. The objective of this study was to investigate the variance explained by these loci in a relatively isolated population of European descent with limited admixture and homogeneous genetic background from the Adriatic coast of Croatia. In a sample of 1304 individuals from the island population of Hvar, Croatia, we performed genome-wide SNP typing and assessed the variance explained by genetic scores constructed from different panels of height-associated SNPs extracted from five published studies. The combined information of the 180 SNPs reported by Lango Allen el al. explained 7.94% of phenotypic variation in our sample. Genetic scores based on 20~50 SNPs reported by the remaining individual GWA studies explained 3~5% of height variance. These percentages of variance explained were within ranges comparable to the original studies and heterogeneity tests did not detect significant differences in effect size estimates between our study and the original reports, if the estimates were obtained from populations of European descent. We have evaluated the portability of height-associated loci and the overall fitting of estimated effect sizes reported in large cohorts to an isolated population. We found proportions of explained height variability were comparable to multiple reference GWAS in cohorts of European descent. These results indicate similar genetic architecture and comparable effect sizes of height loci among populations of European descent. © 2011 Zhang et al.

  12. Among-provence variability of gas exchange and growth in response to long-term elevated CO2 exposure

    Treesearch

    James L.J. Houpis; Paul D. Anderson; James C. Pushnik; David J. Anschel

    1999-01-01

    Genetic variability can have profound effects on the interpretation of results from elevated CO2 studies, and future forest management decisions. Information on which varieties are best suited to future atmospheric conditions is needed to develop future forest management practices. A large-scale screening study of the effects of elevated CO

  13. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis.

    PubMed

    Soneson, Charlotte; Lilljebjörn, Henrik; Fioretos, Thoas; Fontes, Magnus

    2010-04-15

    With the rapid development of new genetic measurement methods, several types of genetic alterations can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set separately, there is an increasing interest in studying the correlation structure between two or more data sets. Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The method is implemented by translating a regularized CCA to its dual form, where the computational complexity depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number alterations in leukemia. Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-selection of known disease-relevant genes, and without using information about clinical class membership, an exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the variables showing the highest relevance to the extracted features agree with previous biological knowledge concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-maximizing methods are shown to yield results which are more biologically interpretable than those resulting from a covariance-maximizing method, and provide different insight compared to when each variable set is studied separately using PCA. We conclude that regularized dual CCA as well as PCA+CCA are useful methods for exploratory analysis of paired genetic data sets, and can be efficiently implemented also when the number of variables is very large.

  14. Oxytocin receptor gene polymorphism modulates the effects of social support on heart rate variability

    PubMed Central

    Kanthak, Magdalena K.; Chen, Frances S.; Kumsta, Robert; Hill, LaBarron K.; Thayer, Julian F.; Heinrichs, Markus

    2017-01-01

    A large body of empirical research has demonstrated stress-buffering effects of social support. However, recent studies suggest that genetic variation of the oxytocin system (specifically, a common single nucleotide polymorphism, rs53576, of the oxytocin receptor gene) modulates the efficacy of social support. The timing and neurobiological basis of this genetic modulation were investigated using a standardized, laboratory-based psychological stress procedure (Trier Social Stress Test for Groups, TSST-G). To index potential stress buffering effects of social support mediated by the oxytocin system, heart rate variability (HRV) was obtained before and during the TSST-G from 40 healthy participants. Results indicate that social support is associated with higher HRV only in G allele carriers. Specifically, social support increased heart rate variability during direct social interaction and only in individuals with at least one copy of the G allele of rs53576. These findings support the idea that the stress-attenuating effects of social support are modulated by genetic variation of the oxytocin system. PMID:26903384

  15. Molecular genetic and morphological analyses of the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Kat, P W; Mills, M G; Ginsberg, J R; Borner, M; Wilson, V; Fanshawe, J H; Fitzgibbon, C; Lau, L M; Wayne, R K

    1993-01-01

    African wild dog populations have declined precipitously during the last 100 years in eastern Africa. The possible causes of this decline include a reduction in prey abundance and habitat; disease; and loss of genetic variability accompanied by inbreeding depression. We examined the levels of genetic variability and distinctiveness among populations of African wild dogs using mitochondrial DNA (mtDNA) restriction site and sequence analyses and multivariate analysis of cranial and dental measurements. Our results indicate that the genetic variability of eastern African wild dog populations is comparable to that of southern Africa and similar to levels of variability found in other large canids. Southern and eastern populations of wild dogs show about 1% divergence in mtDNA sequence and form two monophyletic assemblages containing three mtDNA genotypes each. No genotypes are shared between the two regions. With one exception, all wild dogs examined from zoos had southern African genotypes. Morphological analysis supports the distinction of eastern and southern African wild dog populations, and we suggest they should be considered separate subspecies. An eastern African wild dog breeding program should be initiated to ensure preservation of the eastern African form and to slow the loss of genetic variability that, while not yet apparent, will inevitably occur if wild populations continue to decline. Finally, we examined the phylogenetic relationships of wild dogs to other wolf-like canids through analysis of 736 base pairs (bp) of cytochrome b sequence and showed wild dogs to belong to a phylogenetically distinct lineage of the wolf-like canids.

  16. Evolution in health and medicine Sackler colloquium: Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease.

    PubMed

    Feinberg, Andrew P; Irizarry, Rafael A

    2010-01-26

    Neo-Darwinian evolutionary theory is based on exquisite selection of phenotypes caused by small genetic variations, which is the basis of quantitative trait contribution to phenotype and disease. Epigenetics is the study of nonsequence-based changes, such as DNA methylation, heritable during cell division. Previous attempts to incorporate epigenetics into evolutionary thinking have focused on Lamarckian inheritance, that is, environmentally directed epigenetic changes. Here, we propose a new non-Lamarckian theory for a role of epigenetics in evolution. We suggest that genetic variants that do not change the mean phenotype could change the variability of phenotype; and this could be mediated epigenetically. This inherited stochastic variation model would provide a mechanism to explain an epigenetic role of developmental biology in selectable phenotypic variation, as well as the largely unexplained heritable genetic variation underlying common complex disease. We provide two experimental results as proof of principle. The first result is direct evidence for stochastic epigenetic variation, identifying highly variably DNA-methylated regions in mouse and human liver and mouse brain, associated with development and morphogenesis. The second is a heritable genetic mechanism for variable methylation, namely the loss or gain of CpG dinucleotides over evolutionary time. Finally, we model genetically inherited stochastic variation in evolution, showing that it provides a powerful mechanism for evolutionary adaptation in changing environments that can be mediated epigenetically. These data suggest that genetically inherited propensity to phenotypic variability, even with no change in the mean phenotype, substantially increases fitness while increasing the disease susceptibility of a population with a changing environment.

  17. Canal construction destroys the barrier between major European invasion lineages of the zebra mussel.

    PubMed Central

    Müller, Jakob C; Hidde, Dennis; Seitz, Alfred

    2002-01-01

    Since the mid-1980s the zebra mussel, Dreissena polymorpha, Pallas 1771, has become the protagonist of a spectacular freshwater invasion in North America due to its large economic and biological impact. Several genetic studies on American populations have failed to detect any large-scale geographical patterns. In western Europe, where D. polymorpha has been a classical invader from the Pontocaspian since the early 19th century, the situation is strikingly different. Here, we show with genetic markers that two major western European invasion lineages with lowered genetic variability within and among populations can be discriminated. These two invasion lineages correspond with two separate navigable waterways to western Europe. We found a rapid and asymmetrical genetic interchange of the two invasion lines after the construction of the Main-Danube canal in 1992, which interconnected the two waterways across the main watershed. PMID:12061957

  18. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    NASA Astrophysics Data System (ADS)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  19. Genetic variability of garlic accessions as revealed by agro-morphological traits evaluated under different environments.

    PubMed

    Hoogerheide, E S S; Azevedo Filho, J A; Vencovsky, R; Zucchi, M I; Zago, B W; Pinheiro, J B

    2017-05-31

    The cultivated garlic (Allium sativum L.) displays a wide phenotypic diversity, which is derived from natural mutations and phenotypic plasticity, due to dependence on soil type, moisture, latitude, altitude and cultural practices, leading to a large number of cultivars. This study aimed to evaluate the genetic variability shown by 63 garlic accessions belonging to Instituto Agronômico de Campinas and the Escola Superior de Agricultura "Luiz de Queiroz" germplasm collections. We evaluated ten quantitative characters in experimental trials conducted under two localities of the State of São Paulo: Monte Alegre do Sul and Piracicaba, during the agricultural year of 2007, in a randomized blocks design with five replications. The Mahalanobis distance was used to measure genetic dissimilarities. The UPGMA method and Tocher's method were used as clustering procedures. Results indicated significant variation among accessions (P < 0.01) for all evaluated characters, except for the percentage of secondary bulb growth in MAS, indicating the existence of genetic variation for bulb production, and germplasm evaluation considering different environments is more reliable for the characterization of the genotypic variability among garlic accessions, since it diminishes the environmental effects in the clustering of genotypes.

  20. Integrative Lifecourse and Genetic Analysis of Military Working Dogs

    DTIC Science & Technology

    2015-12-01

    done as the samples are collected in order to avoid experimental variability and batch effects . Detailed description and discussion of this task...associated loss of power to detect all associations but those of large effect sizes) and latent variables (e.g., population structure – addressed in...processes associated with tissue development and maintenance are thus grouped with external environmental effects . This in turn suggests how those

  1. Finite element analysis and genetic algorithm optimization design for the actuator placement on a large adaptive structure

    NASA Astrophysics Data System (ADS)

    Sheng, Lizeng

    The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.

  2. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events

    PubMed Central

    Vincenzi, Simone

    2014-01-01

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an ‘extinction window’ of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the ‘extinction window’, although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. PMID:24920116

  3. Conservation genetics of the endangered Isle Royale gray wolf

    USGS Publications Warehouse

    Wayne, R.K.; Lehman, N.; Girman, D.; Gogan, P.J.P.; Gilbert, D.A.; Hansen, K.; Peterson, R.O.; Seal, U.S.; Eisenhawer, Andrew; Mech, L.D.; Krumenaker, R.J.

    1991-01-01

    The small group of wolves on Isle Royale has been studied for over three decades as a model of the relationship between large carnivores and their prey. During the last ten years the population declined from 50 individuals to as few as 12 individuals. The causes of this decline may be food shortages, disease, or reduced genetic variability. We address the issues of genetic variability and relationships of Isle Royale wolves using allozyme electrophoresis, mtDNA restriction-site analysis, and multilocus hypervariable minisatellite DNA analysis (genetic fingerprinting). Our results indicate that approximately 50% of the allozyme heterozygosity has been lost in the island population, a decline similar to that expected if no immigration had occurred from the mainland. The genetic fingerprinting data indicate that the seven sampled Isle Royale wolves are as similar as captive populations of siblings. Surprisingly, the Isle Royale wolves have an mtDNA genotype that is very rare on the mainland, being found in only one of 144 mainland wolves. This suggests that the remaining Isle Royale wolves are probably derived from a single female founder.

  4. Ashes to ashes: Large Fraxinus germplasm collections and their fates

    Treesearch

    Kim C. Steiner; Paul. Lupo

    2010-01-01

    As the emerald ash borer (EAB) threatens the survival of our ash species, measures should be taken to preserve their genetic variability in the event that we discover a way to restore populations destroyed by the beetle. As it happens, large germplasm collections exist for our most important and widely distributed eastern species of the genus, white ash (...

  5. Fetal Environment Is a Major Determinant of the Neonatal Blood Thyroxine Level: Results of a Large Dutch Twin Study.

    PubMed

    Zwaveling-Soonawala, Nitash; van Beijsterveldt, Catharina E M; Mesfum, Ertirea T; Wiedijk, Brenda; Oomen, Petra; Finken, Martijn J J; Boomsma, Dorret I; van Trotsenburg, A S Paul

    2015-06-01

    The interindividual variability in thyroid hormone function parameters is much larger than the intraindividual variability, suggesting an individual set point for these parameters. There is evidence to suggest that environmental factors are more important than genetic factors in the determination of this individual set point. This study aimed to quantify the effect of genetic factors and (fetal) environment on the early postnatal blood T4 concentration. This was a classical twin study comparing the resemblance of neonatal screening blood T4 concentrations in 1264 mono- and 2566 dizygotic twin pairs retrieved from the population-based Netherlands Twin Register. Maximum-likelihood estimates of variance explained by genetic and environmental influences were obtained by structural equation modeling in data from full-term and preterm twin pairs. In full-term infants, genetic factors explained 40%/31% of the variance in standardized T4 scores in boys/girls, and shared environment, 27%/22%. The remaining variance of 33%/47% was due to environmental factors not shared by twins. For preterm infants, genetic factors explained 34%/0% of the variance in boys/girls, shared environment 31%/57%, and unique environment 35%/43%. In very preterm twins, no significant contribution of genetic factors was observed. Environment explains a large proportion of the resemblance of the postnatal blood T4 concentration in twin pairs. Because we analyzed neonatal screening results, the fetal environment is the most likely candidate for these environmental influences. Genetic influences on the T4 set point diminished with declining gestational age, especially in girls. This may be due to major environmental influences such as immaturity and nonthyroidal illness in very preterm infants.

  6. Comparison of the theoretical and real-world evolutionary potential of a genetic circuit

    NASA Astrophysics Data System (ADS)

    Razo-Mejia, M.; Boedicker, J. Q.; Jones, D.; DeLuna, A.; Kinney, J. B.; Phillips, R.

    2014-04-01

    With the development of next-generation sequencing technologies, many large scale experimental efforts aim to map genotypic variability among individuals. This natural variability in populations fuels many fundamental biological processes, ranging from evolutionary adaptation and speciation to the spread of genetic diseases and drug resistance. An interesting and important component of this variability is present within the regulatory regions of genes. As these regions evolve, accumulated mutations lead to modulation of gene expression, which may have consequences for the phenotype. A simple model system where the link between genetic variability, gene regulation and function can be studied in detail is missing. In this article we develop a model to explore how the sequence of the wild-type lac promoter dictates the fold-change in gene expression. The model combines single-base pair resolution maps of transcription factor and RNA polymerase binding energies with a comprehensive thermodynamic model of gene regulation. The model was validated by predicting and then measuring the variability of lac operon regulation in a collection of natural isolates. We then implement the model to analyze the sensitivity of the promoter sequence to the regulatory output, and predict the potential for regulation to evolve due to point mutations in the promoter region.

  7. The Genetic and Environmental Etiologies of the Relations between Cognitive Skills and Components of Reading Ability

    PubMed Central

    Christopher, Micaela E.; Keenan, Janice M.; Hulslander, Jacqueline; DeFries, John C.; Miyake, Akira; Wadsworth, Sally J.; Willcutt, Erik; Pennington, Bruce; Olson, Richard K.

    2016-01-01

    While previous research has shown cognitive skills to be important predictors of reading ability in children, the respective roles for genetic and environmental influences on these relations is an open question. The present study explored the genetic and environmental etiologies underlying the relations between selected executive functions and cognitive abilities (working memory, inhibition, processing speed, and naming speed) with three components of reading ability (word reading, reading comprehension, and listening comprehension). Twin pairs drawn from the Colorado Front Range (n = 676; 224 monozygotic pairs; 452 dizygotic pairs) between the ages of eight and 16 (M = 11.11) were assessed on multiple measures of each cognitive and reading-related skill. Each cognitive and reading-related skill was modeled as a latent variable, and behavioral genetic analyses estimated the portions of phenotypic variance on each latent variable due to genetic, shared environmental, and nonshared environmental influences. The covariance between the cognitive skills and reading-related skills was driven primarily by genetic influences. The cognitive skills also shared large amounts of genetic variance, as did the reading-related skills. The common cognitive genetic variance was highly correlated with the common reading genetic variance, suggesting that genetic influences involved in general cognitive processing are also important for reading ability. Skill-specific genetic variance in working memory and processing speed also predicted components of reading ability. Taken together, the present study supports a genetic association between children’s cognitive ability and reading ability. PMID:26974208

  8. Genetic signatures of natural selection in a model invasive ascidian

    PubMed Central

    Lin, Yaping; Chen, Yiyong; Yi, Changho; Fong, Jonathan J.; Kim, Won; Rius, Marc; Zhan, Aibin

    2017-01-01

    Invasive species represent promising models to study species’ responses to rapidly changing environments. Although local adaptation frequently occurs during contemporary range expansion, the associated genetic signatures at both population and genomic levels remain largely unknown. Here, we use genome-wide gene-associated microsatellites to investigate genetic signatures of natural selection in a model invasive ascidian, Ciona robusta. Population genetic analyses of 150 individuals sampled in Korea, New Zealand, South Africa and Spain showed significant genetic differentiation among populations. Based on outlier tests, we found high incidence of signatures of directional selection at 19 loci. Hitchhiking mapping analyses identified 12 directional selective sweep regions, and all selective sweep windows on chromosomes were narrow (~8.9 kb). Further analyses indentified 132 candidate genes under selection. When we compared our genetic data and six crucial environmental variables, 16 putatively selected loci showed significant correlation with these environmental variables. This suggests that the local environmental conditions have left significant signatures of selection at both population and genomic levels. Finally, we identified “plastic” genomic regions and genes that are promising regions to investigate evolutionary responses to rapid environmental change in C. robusta. PMID:28266616

  9. High intralocus variability and interlocus recombination promote immunological diversity in a minimal major histocompatibility system.

    PubMed

    Wilson, Anthony B; Whittington, Camilla M; Bahr, Angela

    2014-12-20

    The genes of the major histocompatibility complex (MHC/MH) have attracted considerable scientific interest due to their exceptional levels of variability and important function as part of the adaptive immune system. Despite a large number of studies on MH class II diversity of both model and non-model organisms, most research has focused on patterns of genetic variability at individual loci, failing to capture the functional diversity of the biologically active dimeric molecule. Here, we take a systematic approach to the study of MH variation, analyzing patterns of genetic variation at MH class IIα and IIβ loci of the seahorse, which together form the immunologically active peptide binding cleft of the MH class II molecule. The seahorse carries a minimal class II system, consisting of single copies of both MH class IIα and IIβ, which are physically linked and inherited in a Mendelian fashion. Both genes are ubiquitously expressed and detectible in the brood pouch of male seahorses throughout pregnancy. Genetic variability of the two genes is high, dominated by non-synonymous variation concentrated in their peptide-binding regions. Coding variation outside these regions is negligible, a pattern thought to be driven by intra- and interlocus recombination. Despite the tight physical linkage of MH IIα and IIβ loci, recombination has produced novel composite alleles, increasing functional diversity at sites responsible for antigen recognition. Antigen recognition by the adaptive immune system of the seahorse is enhanced by high variability at both MH class IIα and IIβ loci. Strong positive selection on sites involved in pathogen recognition, coupled with high levels of intra- and interlocus recombination, produce a patchwork pattern of genetic variation driven by genetic hitchhiking. Studies focusing on variation at individual MH loci may unintentionally overlook an important component of ecologically relevant variation.

  10. Evidence of opposing fitness effects of parental heterozygosity and relatedness in a critically endangered marine turtle?

    PubMed

    Phillips, K P; Jorgensen, T H; Jolliffe, K G; Richardson, D S

    2017-11-01

    How individual genetic variability relates to fitness is important in understanding evolution and the processes affecting populations of conservation concern. Heterozygosity-fitness correlations (HFCs) have been widely used to study this link in wild populations, where key parameters that affect both variability and fitness, such as inbreeding, can be difficult to measure. We used estimates of parental heterozygosity and genetic similarity ('relatedness') derived from 32 microsatellite markers to explore the relationship between genetic variability and fitness in a population of the critically endangered hawksbill turtle, Eretmochelys imbricata. We found no effect of maternal MLH (multilocus heterozygosity) on clutch size or egg success rate, and no single-locus effects. However, we found effects of paternal MLH and parental relatedness on egg success rate that interacted in a way that may result in both positive and negative effects of genetic variability. Multicollinearity in these tests was within safe limits, and null simulations suggested that the effect was not an artefact of using paternal genotypes reconstructed from large samples of offspring. Our results could imply a tension between inbreeding and outbreeding depression in this system, which is biologically feasible in turtles: female-biased natal philopatry may elevate inbreeding risk and local adaptation, and both processes may be disrupted by male-biased dispersal. Although this conclusion should be treated with caution due to a lack of significant identity disequilibrium, our study shows the importance of considering both positive and negative effects when assessing how variation in genetic variability affects fitness in wild systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  11. Teacher quality moderates the genetic effects on early reading.

    PubMed

    Taylor, J; Roehrig, A D; Soden Hensler, B; Connor, C M; Schatschneider, C

    2010-04-23

    Children's reading achievement is influenced by genetics as well as by family and school environments. The importance of teacher quality as a specific school environmental influence on reading achievement is unknown. We studied first- and second-grade students in Florida from schools representing diverse environments. Comparison of monozygotic and dizygotic twins, differentiating genetic similarities of 100% and 50%, provided an estimate of genetic variance in reading achievement. Teacher quality was measured by how much reading gain the non-twin classmates achieved. The magnitude of genetic variance associated with twins' oral reading fluency increased as the quality of their teacher increased. In circumstances where the teachers are all excellent, the variability in student reading achievement may appear to be largely due to genetics. However, poor teaching impedes the ability of children to reach their potential.

  12. Genetic variability in Brazilian Capsicum baccatum germplasm collection assessed by morphological fruit traits and AFLP markers

    PubMed Central

    Giacomin, Renata M.; Ruas, Paulo M.; Ruas, Eduardo A.; Barbieri, Rosa L.; Rodrigues, Rosana

    2018-01-01

    Capsicum baccatum is one of the main pepper species grown and consumed in South America. In Brazil, it is commonly cultivated by family farmers, using mostly the genotypes bishop's hat genotypes (locally cambuci) and red chili pepper (dedo-de-moça). This study had the objective of characterizing 116 C. baccatum accessions from different regions of Brazil, based on morphological fruit descriptors and AFLP (Amplified Fragment Length Polymorphisms) markers. Broad phenotypic variability among the C. baccatum accessions was detected when using morphological fruit descriptors. The Ward modified location model (Ward-MLM) discriminated five groups, based mainly on fruit shape. Six combinations of AFLP primers detected polymorphism in 97.93% of the 2466 identified bands, indicating the high genetic variability in the accessions. The UPGMA coincided with the Bayesian clustering analysis and three large groups were formed, separating the wild variety C. baccatum var. praetermissum from the other accessions. There was no relation between genetic distance and geographical origin of the accessions, probably due to the intense exchange of fruits and seeds between farmers. Morphological descriptors used together with AFLP markers proved efficient in detecting the levels of genetic variability among the accessions maintained in the germplasm collections. These results can be used as an additional source of helpful information to be exploited in C. baccatum breeding programs. PMID:29758023

  13. Genetic and environmental influences on female sexual orientation, childhood gender typicality and adult gender identity.

    PubMed

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates--childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation.

  14. Implementation of genetic conservation practices in a muskellunge propagation and stocking program

    USGS Publications Warehouse

    Jennings, Martin J.; Sloss, Brian L.; Hatzenbeler, Gene R.; Kampa, Jeffrey M.; Simonson, Timothy D.; Avelallemant, Steven P.; Lindenberger, Gary A.; Underwood, Bruce D.

    2010-01-01

    Conservation of genetic resources is a challenging issue for agencies managing popular sport fishes. To address the ongoing potential for genetic risks, we developed a comprehensive set of recommendations to conserve genetic diversity of muskellunge (Esox masquinongy) in Wisconsin, and evaluated the extent to which the recommendations can be implemented. Although some details are specific to Wisconsin's muskellunge propagation program, many of the practical issues affecting implementation are applicable to other species and production systems. We developed guidelines to restrict future broodstock collection operations to lakes with natural reproduction and to develop a set of brood lakes to use on a rotational basis within regional stock boundaries, but implementation will require considering lakes with variable stocking histories. Maintaining an effective population size sufficient to minimize the risk of losing alleles requires limiting broodstock collection to large lakes. Recommendations to better approximate the temporal distribution of spawning in hatchery operations and randomize selection of brood fish are feasible. Guidelines to modify rearing and distribution procedures face some logistic constraints. An evaluation of genetic diversity of hatchery-produced fish during 2008 demonstrated variable success representing genetic variation of the source population. Continued evaluation of hatchery operations will optimize operational efficiency while moving toward genetic conservation goals.

  15. Implementation of genetic conservation practices in a muskellunge propagation and stocking program

    USGS Publications Warehouse

    Jennings, Martin J.; Sloss, Brian L.; Hatzenbeler, Gene R.; Kampa, Jeffrey M.; Simonson, Timothy D.; Avelallemant, Steven P.; Lindenberger, Gary A.; Underwood, Bruce D.

    2010-01-01

    Conservation of genetic resources is a challenging issue for agencies managing popular sport fishes. To address the ongoing potential for genetic risks, we developed a comprehensive set of recommendations to conserve genetic diversity of muskellunge (Esox masquinongy) in Wisconsin, and evaluated the extent to which the recommendations can be implemented. Although some details are specific to Wisconsin's muskellunge propagation program, many of the practical issues affecting implementation are applicable to other species and production systems. We developed guidelines to restrict future brood stock collection operations to lakes with natural reproduction and to develop a set of brood lakes to use on a rotational basis within regional stock boundaries, but implementation will require considering lakes with variable stocking histories. Maintaining an effective population size sufficient to minimize the risk of losing alleles requires limiting brood stock collection to large lakes. Recommendations to better approximate the temporal distribution of spawning in hatchery operations and randomize selection of brood fish are feasible. Guidelines to modify rearing and distribution procedures face some logistic constraints. An evaluation of genetic diversity of hatchery-produced fish during 2008 demonstrated variable success representing genetic variation of the source population. Continued evaluation of hatchery operations will optimize operational efficiency while moving toward genetic conservation goals.

  16. DIFFERENTIAL SUSCEPTIBILITY TO CONTEXT: A PROMISING MODEL OF THE INTERPLAY OF GENES AND THE SOCIAL ENVIRONMENT

    PubMed Central

    Simons, Ronald L.; Beach, Steven R. H.; Barr, Ashley B.

    2013-01-01

    The goal of this chapter is to demonstrate the importance of incorporating gene by environment (GxE) interactions into behavioral science theory and research. In pursuit of this aim, the chapter is organized in the following way. First, we provide a brief critique of the behavioral genetics paradigm, noting why one should be skeptical of its suggestion that genes exert large main effects, and only main effects, on social behavior. Second, we describe how the recent mapping of the human genome has facilitated molecular genetic research and the emergence of the new epigenetic paradigm that has begun to supplement and replace the simpler model of genetic determinism. Third, we turn our focus to the explosion of GxE research that has occurred in the wake of this paradigmatic shift. These studies find that genetic variation often interacts with environmental context to influence the probability of various behaviors. Importantly, in many, and perhaps most, of these studies the genetic variable, unlike the environmental variable, has little if any main effect on the outcome of interest. Rather, the influence of the genetic variable is limited to its moderation of the effect of the environmental construct. Such research does not undermine the importance of environmental factors; rather it shows how social scientific explanations of human behavior might be made more precise by incorporating genetic information. Finally, we consider various models of gene - environment interplay, paying particular attention to the differential susceptibility to context perspective. This model of GxE posits that a substantial proportion of the population is genetically predisposed to be more susceptible than others to environment influence. We argue that this model of GxE is particularly relevant to sociologists and psychologists. PMID:24379521

  17. Simultaneous Analysis of the Behavioural Phenotype, Physical Factors, and Parenting Stress in People with Cornelia De Lange Syndrome

    ERIC Educational Resources Information Center

    Wulffaert, J.; van Berckelaer-Onnes, I.; Kroonenberg, P.; Scholte, E.; Bhuiyan, Z.; Hennekam, R.

    2009-01-01

    Background: Studies into the phenotype of rare genetic syndromes largely rely on bivariate analysis. The aim of this study was to describe the phenotype of Cornelia de Lange syndrome (CdLS) in depth by examining a large number of variables with varying measurement levels. Virtually the only suitable multivariate technique for this is categorical…

  18. Influence of boar breeds or hybrid genetic composition on semen quality and seminal plasma biochemical variables.

    PubMed

    Žaja, Ivona Žura; Samardžija, Marko; Vince, Silvijo; Majić-Balić, Ivanka; Vilić, Marinko; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-01-01

    The enzyme concentrations of seminal plasma are important for spermatozoa metabolism and function in boars. The need has arisen for introducing a biochemical evaluation of semen, along with the usual standard semen analyses. There are no data on the influence of boar breeds on the seminal plasma biochemical variables investigated in this study. Therefore, the objective was to determine the influence of breed and hybrid genetic composition of boars on semen quality and seminal plasma biochemical variables. Semen samples of 27 boars (Swedish Landrace, German Landrace, Large White, Pietrain and Pig Improvement Company hybrid-PIC-hybrid), aged between 1.5 and 3 years, were collected. After evaluation of semen quality, the seminal plasma was separated from the spermatozoa by centrifugation of semen. The seminal plasma was subjected to spectrophotometric analysis to determine alkaline phosphatase (ALP), acid phosphatase (ACP), γ-glutamyltransferase (GGT), creatine kinase (CK) and lactate dehydrogenase (LDH) and to atomic absorption spectrophotometric analysis to measure the concentration of calcium and magnesium. Conventional semen quality variables differed depending on breed and PIC-hybrid genetic composition, though these differences were typically insignificant. In the seminal plasma, significant differences were determined in enzyme activity (ALP, GGT, CK and LDH) and in calcium concentration among boars of different breeds. There are, therefore, differences in semen quality and significant differences in the seminal plasma biochemical variables among boars of different breeds and PIC-hybrid genetic composition. The data and differences in semen variables detected in the present study provide knowledge for enhancing evaluation and monitoring of boar reproductive potential, semen quality and explain the potential causes of boar infertility. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Genetic Pool Information Reflects Highly Suitable Areas: The Case of Two Parapatric Endangered Species of Tuco-tucos (Rodentia: Ctenomiydae)

    PubMed Central

    Galiano, Daniel; Bernardo-Silva, Jorge; de Freitas, Thales R. O.

    2014-01-01

    Conservation of small mammals requires knowledge of the genetically and ecologically meaningful spatial scales at which species respond to habitat modifications. Conservation strategies can be improved through the use of ecological niche models and genetic data to classify areas of high environmental suitability. In this study, we applied a Maxent model integrated with genetic information (nucleotide diversity, haplotype diversity and Fu's Fs neutrality tests) to evaluate potential genetic pool populations with highly suitable areas for two parapatric endangered species of tuco-tucos (Ctenomys minutus and C. lami). Our results demonstrated that both species were largely influenced by vegetation and soil variables at a landscape scale and inhabit a highly specific niche. Ctenomys minutus was also influenced by the variable altitude; the species was associated with low altitudes (sea level). Our model of genetic data associated with environmental suitability indicate that the genetic pool data were associated with highly suitable areas for C. minutus. This pattern was not evident for C. lami, but this outcome could be a consequence of the restricted range of the species. The preservation of species requires not only detailed knowledge of their natural history and genetic structure but also information on the availability of suitable areas where species can survive, and such knowledge can aid significantly in conservation planning. This finding reinforces the use of these two techniques for planning conservation actions. PMID:24819251

  20. Conservation genetics of managed ungulate populations

    USGS Publications Warehouse

    Scribner, Kim T.

    1993-01-01

    Natural populations of many species are increasingly impacted by human activities. Perturbations are particularly pronunced for large ungulates due in part to sport and commercial harvest, to reductions and fragmentation of native habitat, and as the result of reintroductions. These perturbations affect population size, sex and age composition, and population breeding structure, and as a consequence affect the levels and partitioning of genetic variation. Three case histories highlighting long-term ecological genetic research on mule deer Odocoileus hemionus (Rafinesque, 1817), white-tailed deer O. virginianus (Zimmermann, 1780), and Alpine ibex Capra i. ibex Linnaeus, 1758 are presented. Joint examinations of population ecological and genetic data from several populations of each species reveal: (1) that populations are not in genetic equilibrium, but that allele frequencies and heterozygosity change dramatically over time and among cohorts produced in successive years, (2) populations are genetically structured over short and large geographic distances reflecting local breeding structure and patterns of gene flow, respectively; however, this structure is quite dynamic over time, due in part to population exploitation, and (3) restocking programs are often undertaken with small numbers of founding individuals resulting in dramatic declines in levels of genetic variability and increasing levels of genetic differentiation among populations due to genetic drift. Genetic characteristics have and will continue to provide valuable indirect sources of information relating enviromental and human perturbations to changes in population processes.

  1. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events.

    PubMed

    Vincenzi, Simone

    2014-08-06

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an 'extinction window' of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the 'extinction window', although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Large-scale SNP discovery and construction of a high-density genetic map of Colossoma macropomum through genotyping-by-sequencing

    PubMed Central

    Nunes, José de Ribamar da Silva; Liu, Shikai; Pértille, Fábio; Perazza, Caio Augusto; Villela, Priscilla Marqui Schmidt; de Almeida-Val, Vera Maria Fonseca; Hilsdorf, Alexandre Wagner Silva; Liu, Zhanjiang; Coutinho, Luiz Lehmann

    2017-01-01

    Colossoma macropomum, or tambaqui, is the largest native Characiform species found in the Amazon and Orinoco river basins, yet few resources for genetic studies and the genetic improvement of tambaqui exist. In this study, we identified a large number of single-nucleotide polymorphisms (SNPs) for tambaqui and constructed a high-resolution genetic linkage map from a full-sib family of 124 individuals and their parents using the genotyping by sequencing method. In all, 68,584 SNPs were initially identified using minimum minor allele frequency (MAF) of 5%. Filtering parameters were used to select high-quality markers for linkage analysis. We selected 7,734 SNPs for linkage mapping, resulting in 27 linkage groups with a minimum logarithm of odds (LOD) of 8 and maximum recombination fraction of 0.35. The final genetic map contains 7,192 successfully mapped markers that span a total of 2,811 cM, with an average marker interval of 0.39 cM. Comparative genomic analysis between tambaqui and zebrafish revealed variable levels of genomic conservation across the 27 linkage groups which allowed for functional SNP annotations. The large-scale SNP discovery obtained here, allowed us to build a high-density linkage map in tambaqui, which will be useful to enhance genetic studies that can be applied in breeding programs. PMID:28387238

  3. Considering the Influence of Nonadaptive Evolution on Primate Color Vision.

    PubMed

    Jacobs, Rachel L; Bradley, Brenda J

    2016-01-01

    Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to consider adaptive and nonadaptive mechanisms of color vision evolution in primates.

  4. Considering the Influence of Nonadaptive Evolution on Primate Color Vision

    PubMed Central

    Jacobs, Rachel L.; Bradley, Brenda J.

    2016-01-01

    Color vision in primates is variable across species, and it represents a rare trait in which the genetic mechanisms underlying phenotypic variation are fairly well-understood. Research on primate color vision has largely focused on adaptive explanations for observed variation, but it remains unclear why some species have trichromatic or polymorphic color vision while others are red-green color blind. Lemurs, in particular, are highly variable. While some species are polymorphic, many closely-related species are strictly dichromatic. We provide the first characterization of color vision in a wild population of red-bellied lemurs (Eulemur rubriventer, Ranomafana National Park, Madagascar) with a sample size (87 individuals; NX chromosomes = 134) large enough to detect even rare variants (0.95 probability of detection at ≥ 3% frequency). By sequencing exon 5 of the X-linked opsin gene we identified opsin spectral sensitivity based on known diagnostic sites and found this population to be dichromatic and monomorphic for a long wavelength allele. Apparent fixation of this long allele is in contrast to previously published accounts of Eulemur species, which exhibit either polymorphic color vision or only the medium wavelength opsin. This unexpected result may represent loss of color vision variation, which could occur through selective processes and/or genetic drift (e.g., genetic bottleneck). To indirectly assess the latter scenario, we genotyped 55 adult red-bellied lemurs at seven variable microsatellite loci and used heterozygosity excess and M-ratio tests to assess if this population may have experienced a recent genetic bottleneck. Results of heterozygosity excess but not M-ratio tests suggest a bottleneck might have occurred in this red-bellied lemur population. Therefore, while selection may also play a role, the unique color vision observed in this population might have been influenced by a recent genetic bottleneck. These results emphasize the need to consider adaptive and nonadaptive mechanisms of color vision evolution in primates. PMID:26959829

  5. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping

    PubMed Central

    2012-01-01

    Background Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs. Results Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (VvLAR1, VvMYBPA2, VvCHI1, VvMYBPA1) showed at least one significant association with PA variables, especially VvLAR1 revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel. Conclusions This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different genetic architectures for grape PA composition between berry skin and seeds. This work also uncovers novel genomic regions for further investigation in order to increase our knowledge of the genetic basis of PA composition. PMID:22369244

  6. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    PubMed

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Genetic evolution, plasticity, and bet-hedging as adaptive responses to temporally autocorrelated fluctuating selection: A quantitative genetic model.

    PubMed

    Tufto, Jarle

    2015-08-01

    Adaptive responses to autocorrelated environmental fluctuations through evolution in mean reaction norm elevation and slope and an independent component of the phenotypic variance are analyzed using a quantitative genetic model. Analytic approximations expressing the mutual dependencies between all three response modes are derived and solved for the joint evolutionary outcome. Both genetic evolution in reaction norm elevation and plasticity are favored by slow temporal fluctuations, with plasticity, in the absence of microenvironmental variability, being the dominant evolutionary outcome for reasonable parameter values. For fast fluctuations, tracking of the optimal phenotype through genetic evolution and plasticity is limited. If residual fluctuations in the optimal phenotype are large and stabilizing selection is strong, selection then acts to increase the phenotypic variance (bet-hedging adaptive). Otherwise, canalizing selection occurs. If the phenotypic variance increases with plasticity through the effect of microenvironmental variability, this shifts the joint evolutionary balance away from plasticity in favor of genetic evolution. If microenvironmental deviations experienced by each individual at the time of development and selection are correlated, however, more plasticity evolves. The adaptive significance of evolutionary fluctuations in plasticity and the phenotypic variance, transient evolution, and the validity of the analytic approximations are investigated using simulations. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  8. Meta-analysis of genome-wide association studies for circulating phylloquinone concentrations

    USDA-ARS?s Scientific Manuscript database

    Background: Poor vitamin K status is linked to greater risk of several chronic diseases. Age, sex, and diet are determinants of circulating vitamin K; however, there is still large unexplained interindividual variability in vitamin K status. Although a strong genetic component has been hypothesized,...

  9. Variation in Women's Preferences Regarding Male Facial Masculinity Is Better Explained by Genetic Differences Than by Previously Identified Context-Dependent Effects.

    PubMed

    Zietsch, Brendan P; Lee, Anthony J; Sherlock, James M; Jern, Patrick

    2015-09-01

    Women's preferences for masculine versus feminine male faces are highly variable. According to a dominant theory in evolutionary psychology, this variability results from adaptations that optimize preferences by calibrating them to certain contextual factors, including women's self-perceived attractiveness, short- versus long-term relationship orientation, pathogen disgust sensitivity, and stage of the menstrual cycle. The theory does not account for the possible contribution of genetic variation on women's facial masculinity preference. Using a large sample (N = 2,160) of identical and nonidentical female Finnish twins and their siblings, we showed that the proportion of variation in women's preferences regarding male facial masculinity that was attributable to genetic variation (38%) dwarfed the variation due to the combined effect of contextual factors (< 1%). These findings cast doubt on the importance of these context-dependent effects and may suggest a need for refocusing in the field toward understanding the wide genetic variation in these preferences and how this variation relates to the evolution of sexual dimorphism in faces. © The Author(s) 2015.

  10. Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales

    PubMed Central

    Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias

    2016-01-01

    Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625

  11. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    PubMed Central

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; Lovell, John T.; Moyers, Brook T.; Baraoidan, Marietta; Naredo, Maria Elizabeth B.; McNally, Kenneth L.; Poland, Jesse; Bush, Daniel R.; Leung, Hei; Leach, Jan E.; McKay, John K.

    2017-01-01

    To ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. Here we demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor-intensive measures of flowering time, height, biomass, grain yield, and harvest index. Genetic mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution. PMID:28220807

  12. Finite Adaptation and Multistep Moves in the Metropolis-Hastings Algorithm for Variable Selection in Genome-Wide Association Analysis

    PubMed Central

    Peltola, Tomi; Marttinen, Pekka; Vehtari, Aki

    2012-01-01

    High-dimensional datasets with large amounts of redundant information are nowadays available for hypothesis-free exploration of scientific questions. A particular case is genome-wide association analysis, where variations in the genome are searched for effects on disease or other traits. Bayesian variable selection has been demonstrated as a possible analysis approach, which can account for the multifactorial nature of the genetic effects in a linear regression model. Yet, the computation presents a challenge and application to large-scale data is not routine. Here, we study aspects of the computation using the Metropolis-Hastings algorithm for the variable selection: finite adaptation of the proposal distributions, multistep moves for changing the inclusion state of multiple variables in a single proposal and multistep move size adaptation. We also experiment with a delayed rejection step for the multistep moves. Results on simulated and real data show increase in the sampling efficiency. We also demonstrate that with application specific proposals, the approach can overcome a specific mixing problem in real data with 3822 individuals and 1,051,811 single nucleotide polymorphisms and uncover a variant pair with synergistic effect on the studied trait. Moreover, we illustrate multimodality in the real dataset related to a restrictive prior distribution on the genetic effect sizes and advocate a more flexible alternative. PMID:23166669

  13. Leveraging human genetic and adverse outcome pathway (AOP) data to inform susceptibility in human health risk assessment

    EPA Science Inventory

    Estimation of susceptibility differences in human health risk assessment (HHRA) has been challenged by a lack of available susceptibility and variability data after exposure to a specific environmental chemical or pharmaceutical. With the increasingly large number of available da...

  14. Do-it-yourself statistics: A computer-assisted likelihood approach to analysis of data from genetic crosses.

    PubMed Central

    Robbins, L G

    2000-01-01

    Graduate school programs in genetics have become so full that courses in statistics have often been eliminated. In addition, typical introductory statistics courses for the "statistics user" rather than the nascent statistician are laden with methods for analysis of measured variables while genetic data are most often discrete numbers. These courses are often seen by students and genetics professors alike as largely irrelevant cookbook courses. The powerful methods of likelihood analysis, although commonly employed in human genetics, are much less often used in other areas of genetics, even though current computational tools make this approach readily accessible. This article introduces the MLIKELY.PAS computer program and the logic of do-it-yourself maximum-likelihood statistics. The program itself, course materials, and expanded discussions of some examples that are only summarized here are available at http://www.unisi. it/ricerca/dip/bio_evol/sitomlikely/mlikely.h tml. PMID:10628965

  15. pulver: an R package for parallel ultra-rapid p-value computation for linear regression interaction terms.

    PubMed

    Molnos, Sophie; Baumbach, Clemens; Wahl, Simone; Müller-Nurasyid, Martina; Strauch, Konstantin; Wang-Sattler, Rui; Waldenberger, Melanie; Meitinger, Thomas; Adamski, Jerzy; Kastenmüller, Gabi; Suhre, Karsten; Peters, Annette; Grallert, Harald; Theis, Fabian J; Gieger, Christian

    2017-09-29

    Genome-wide association studies allow us to understand the genetics of complex diseases. Human metabolism provides information about the disease-causing mechanisms, so it is usual to investigate the associations between genetic variants and metabolite levels. However, only considering genetic variants and their effects on one trait ignores the possible interplay between different "omics" layers. Existing tools only consider single-nucleotide polymorphism (SNP)-SNP interactions, and no practical tool is available for large-scale investigations of the interactions between pairs of arbitrary quantitative variables. We developed an R package called pulver to compute p-values for the interaction term in a very large number of linear regression models. Comparisons based on simulated data showed that pulver is much faster than the existing tools. This is achieved by using the correlation coefficient to test the null-hypothesis, which avoids the costly computation of inversions. Additional tricks are a rearrangement of the order, when iterating through the different "omics" layers, and implementing this algorithm in the fast programming language C++. Furthermore, we applied our algorithm to data from the German KORA study to investigate a real-world problem involving the interplay among DNA methylation, genetic variants, and metabolite levels. The pulver package is a convenient and rapid tool for screening huge numbers of linear regression models for significant interaction terms in arbitrary pairs of quantitative variables. pulver is written in R and C++, and can be downloaded freely from CRAN at https://cran.r-project.org/web/packages/pulver/ .

  16. Genetic and Environmental Influences on Female Sexual Orientation, Childhood Gender Typicality and Adult Gender Identity

    PubMed Central

    Burri, Andrea; Cherkas, Lynn; Spector, Timothy; Rahman, Qazi

    2011-01-01

    Background Human sexual orientation is influenced by genetic and non-shared environmental factors as are two important psychological correlates – childhood gender typicality (CGT) and adult gender identity (AGI). However, researchers have been unable to resolve the genetic and non-genetic components that contribute to the covariation between these traits, particularly in women. Methodology/Principal Findings Here we performed a multivariate genetic analysis in a large sample of British female twins (N = 4,426) who completed a questionnaire assessing sexual attraction, CGT and AGI. Univariate genetic models indicated modest genetic influences on sexual attraction (25%), AGI (11%) and CGT (31%). For the multivariate analyses, a common pathway model best fitted the data. Conclusions/Significance This indicated that a single latent variable influenced by a genetic component and common non-shared environmental component explained the association between the three traits but there was substantial measurement error. These findings highlight common developmental factors affecting differences in sexual orientation. PMID:21760939

  17. RAPD analysis of genetic variation in the Australian fan flower, Scaevola.

    PubMed

    Swoboda, I; Bhalla, P L

    1997-10-01

    The use of randomly amplified polymorphic DNA (RAPD) to study genetic variability in Scaevola (family Goodeniaceae), a native Australian species used in ornamental horticulture, is demonstrated. Plants of the genus Scaevola are commonly known as "fan flowers," due to the fan-like shape of the flowers. Nineteen accessions of Scaevola (12 cultivated and 7 wild) were studied using 20 random decamer arbitrary primers. Eight primers gave a distinct reproducible amplification profile of 90 scorable polymorphic fragments, enabling the differentiation of the Scaevola accessions. RAPD amplification of genomic DNA revealed a high genetic variability among the different species of Scaevola studied. Molecular markers were used to calculate the similarity coefficients, which were then used for determining genetic distances between each of the accessions. Based on genetic distances, a dendrogram was constructed. Though the dendrogram is in general agreement with the taxonomy, it also highlights discrepancies in the classification. The RAPD data showed that Scaevola aemula (series Pogogynae) is closer to Scaevola glandulifera of series Globuliferae than to the rest of members of series Pogogynae. In addition, the RAPD banding pattern of white flower S. aemula, one of the commercial cultivars, was identical to that of Scaevola albida, indicating their genetic similarity. Our study showed that there is a large genetic distance between commercial cultivars of Scaevola (Purple Fanfare, Pink Perfection, and Mauve Cluster), indicating considerable genetic variation among them. The use of RAPDs in intra- and inter-specific breeding of Scaevola is also explored.

  18. Comparison of Genetic Structure of Epixylic Liverwort Crossocalyx hellerianus between Central European and Fennoscandian Populations.

    PubMed

    Holá, Eva; Košnar, Jiří; Kučera, Jan

    2015-01-01

    Patterns of genetic variation and spatial genetic structure (SGS) were investigated in Crossocalyx hellerianus, a strictly epixylic dioicous liverwort (Scapaniaceae s.l., Marchantiophyta). Studied populations were located in Fennoscandia and Central Europe, with localities differing in availability of substrate and the population connectivity, and their populations consequently different in size, density, and prevailing reproductive mode. A set of nine polymorphic microsatellites was successfully developed and used. Identical individuals were only found within populations. Especially in large populations, the majority of the individuals were genetically unique. Resampled number of genotypes, mean number of observed alleles per locus after rarefaction, and Nei's gene diversity in large populations reached high values and ranged between 4.41-4.97, 3.13-4.45, and 0.94-0.99, respectively. On the contrary, the values in small populations were lower and ranged between 1.00-4.42, 1.00-2.73, and 0.00-0.95, respectively. As expected, large populations were found to be more genetically diverse than small populations but relatively big diversity of genotypes was also found in small populations. This indicated that even small populations are important sources of genetic variation in bryophytes and processes causing loss of genetic variation might be compensated by other sources of variability, of which somatic mutations might play an important role. The presence of SGS was discovered in all populations. Large populations possessed less SGS, with individuals showing a pronounced decrease in kinship over 50 cm of distance. Apparent SGS of small populations even at distances up to 16 meters suggests the aggregation of similar genotypes, caused predominantly by the deposition of asexually formed gemmae. Although no strong kinship was detectable at the distances over 16 meters in both small and large populations, identical genotypes were occasionally detected at longer distances (20-80 m), suggesting effective dispersal of asexual propagules.

  19. Comparison of Genetic Structure of Epixylic Liverwort Crossocalyx hellerianus between Central European and Fennoscandian Populations

    PubMed Central

    Holá, Eva; Košnar, Jiří; Kučera, Jan

    2015-01-01

    Patterns of genetic variation and spatial genetic structure (SGS) were investigated in Crossocalyx hellerianus, a strictly epixylic dioicous liverwort (Scapaniaceae s.l., Marchantiophyta). Studied populations were located in Fennoscandia and Central Europe, with localities differing in availability of substrate and the population connectivity, and their populations consequently different in size, density, and prevailing reproductive mode. A set of nine polymorphic microsatellites was successfully developed and used. Identical individuals were only found within populations. Especially in large populations, the majority of the individuals were genetically unique. Resampled number of genotypes, mean number of observed alleles per locus after rarefaction, and Nei’s gene diversity in large populations reached high values and ranged between 4.41–4.97, 3.13–4.45, and 0.94–0.99, respectively. On the contrary, the values in small populations were lower and ranged between 1.00–4.42, 1.00–2.73, and 0.00–0.95, respectively. As expected, large populations were found to be more genetically diverse than small populations but relatively big diversity of genotypes was also found in small populations. This indicated that even small populations are important sources of genetic variation in bryophytes and processes causing loss of genetic variation might be compensated by other sources of variability, of which somatic mutations might play an important role. The presence of SGS was discovered in all populations. Large populations possessed less SGS, with individuals showing a pronounced decrease in kinship over 50 cm of distance. Apparent SGS of small populations even at distances up to 16 meters suggests the aggregation of similar genotypes, caused predominantly by the deposition of asexually formed gemmae. Although no strong kinship was detectable at the distances over 16 meters in both small and large populations, identical genotypes were occasionally detected at longer distances (20–80 m), suggesting effective dispersal of asexual propagules. PMID:26186214

  20. Tumoural specimens for forensic purposes: comparison of genetic alterations in frozen and formalin-fixed paraffin-embedded tissues.

    PubMed

    Ananian, Viviana; Tozzo, Pamela; Ponzano, Elena; Nitti, Donato; Rodriguez, Daniele; Caenazzo, Luciana

    2011-05-01

    In certain circumstances, tumour tissue specimens are the only DNA resource available for forensic DNA analysis. However, cancer tissues can show microsatellite instability and loss of heterozygosity which, if concerning the short tandem repeats (STRs) used in the forensic field, can cause misinterpretation of the results. Moreover, though formalin-fixed paraffin-embedded tissues (FFPET) represent a large resource for these analyses, the quality of the DNA obtained from this kind of specimen can be an important limit. In this study, we evaluated the use of tumoural tissue as biological material for the determination of genetic profiles in the forensic field, highlighting which STR polymorphisms are more susceptible to tumour genetic alterations and which of the analysed tumours show a higher genetic variability. The analyses were conducted on samples of the same tissues conserved in different storage conditions, to compare genetic profiles obtained by frozen tissues and formalin-fixed paraffin-embedded tissues. The importance of this study is due to the large number of specimens analysed (122), the large number of polymorphisms analysed for each specimen (39), and the possibility to compare, many years after storage, the same tissue frozen and formalin-fixed paraffin-embedded. In the comparison between the genetic profiles of frozen tumour tissues and FFPET, the same genetic alterations have been reported in both kinds of specimens. However, FFPET showed new alterations. We conclude that the use of FFPET requires greater attention than frozen tissues in the results interpretation and great care in both pre-extraction and extraction processes.

  1. Genetic variability and resistance of cultivars of cowpea [Vigna unguiculata (L.) Walp] to cowpea weevil (Callosobruchus maculatus Fabr.).

    PubMed

    Vila Nova, M X; Leite, N G A; Houllou, L M; Medeiros, L V; Lira Neto, A C; Hsie, B S; Borges-Paluch, L R; Santos, B S; Araujo, C S F; Rocha, A A; Costa, A F

    2014-03-31

    The cowpea weevil (Callosobruchus maculatus Fabr.) is the most destructive pest of the cowpea bean; it reduces seed quality. To control this pest, resistance testing combined with genetic analysis using molecular markers has been widely applied in research. Among the markers that show reliable results, the inter-simple sequence repeats (ISSRs) (microsatellites) are noteworthy. This study was performed to evaluate the resistance of 27 cultivars of cowpea bean to cowpea weevil. We tested the resistance related to the genetic variability of these cultivars using ISSR markers. To analyze the resistance of cultivars to weevil, a completely randomized test design with 4 replicates and 27 treatments was adopted. Five pairs of the insect were placed in 30 grains per replicate. Analysis of variance showed that the number of eggs and emerged insects were significantly different in the treatments, and the means were compared by statistical tests. The analysis of the large genetic variability in all cultivars resulted in the formation of different groups. The test of resistance showed that the cultivar Inhuma was the most sensitive to both number of eggs and number of emerged adults, while the TE96-290-12-G and MNC99-537-F4 (BRS Tumucumaque) cultivars were the least sensitive to the number of eggs and the number of emerged insects, respectively.

  2. Genetic variability in krill.

    PubMed

    Valentine, J W; Ayala, F J

    1976-02-01

    We have estimated genetic variability by gel electrophoresis in three species of krill, genus Euphausia (Arthropoda: Crustacea). Genetic variability is low where trophic resources are most seasonal, and high where trophic resources are most stable. Simlar trends have been found in benthic marine invertebrates. The observed trends of genetic variability do not correlate with trends in the stability of physical environment parameters.

  3. Large-Scale Genetic Structuring of a Widely Distributed Carnivore - The Eurasian Lynx (Lynx lynx)

    PubMed Central

    Rueness, Eli K.; Naidenko, Sergei; Trosvik, Pål; Stenseth, Nils Chr.

    2014-01-01

    Over the last decades the phylogeography and genetic structure of a multitude of species inhabiting Europe and North America have been described. The flora and fauna of the vast landmasses of north-eastern Eurasia are still largely unexplored in this respect. The Eurasian lynx is a large felid that is relatively abundant over much of the Russian sub-continent and the adjoining countries. Analyzing 148 museum specimens collected throughout its range over the last 150 years we have described the large-scale genetic structuring in this highly mobile species. We have investigated the spatial genetic patterns using mitochondrial DNA sequences (D-loop and cytochrome b) and 11 microsatellite loci, and describe three phylogenetic clades and a clear structuring along an east-west gradient. The most likely scenario is that the contemporary Eurasian lynx populations originated in central Asia and that parts of Europe were inhabited by lynx during the Pleistocene. After the Last Glacial Maximum (LGM) range expansions lead to colonization of north-western Siberia and Scandinavia from the Caucasus and north-eastern Siberia from a refugium further east. No evidence of a Berinigan refugium could be detected in our data. We observed restricted gene flow and suggest that future studies of the Eurasian lynx explore to what extent the contemporary population structure may be explained by ecological variables. PMID:24695745

  4. GENETICS OF WHITE MATTER DEVELOPMENT: A DTI STUDY OF 705 TWINS AND THEIR SIBLINGS AGED 12 TO 29

    PubMed Central

    Chiang, Ming-Chang; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Hickie, Ian; Toga, Arthur W.; Wright, Margaret J.; Thompson, Paul M.

    2011-01-01

    White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12–29; 290 M/415 F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 800% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity. PMID:20950689

  5. Modelling the co-evolution of indirect genetic effects and inherited variability.

    PubMed

    Marjanovic, Jovana; Mulder, Han A; Rönnegård, Lars; Bijma, Piter

    2018-03-28

    When individuals interact, their phenotypes may be affected not only by their own genes but also by genes in their social partners. This phenomenon is known as Indirect Genetic Effects (IGEs). In aquaculture species and some plants, however, competition not only affects trait levels of individuals, but also inflates variability of trait values among individuals. In the field of quantitative genetics, the variability of trait values has been studied as a quantitative trait in itself, and is often referred to as inherited variability. Such studies, however, consider only the genetic effect of the focal individual on trait variability and do not make a connection to competition. Although the observed phenotypic relationship between competition and variability suggests an underlying genetic relationship, the current quantitative genetic models of IGE and inherited variability do not allow for such a relationship. The lack of quantitative genetic models that connect IGEs to inherited variability limits our understanding of the potential of variability to respond to selection, both in nature and agriculture. Models of trait levels, for example, show that IGEs may considerably change heritable variation in trait values. Currently, we lack the tools to investigate whether this result extends to variability of trait values. Here we present a model that integrates IGEs and inherited variability. In this model, the target phenotype, say growth rate, is a function of the genetic and environmental effects of the focal individual and of the difference in trait value between the social partner and the focal individual, multiplied by a regression coefficient. The regression coefficient is a genetic trait, which is a measure of cooperation; a negative value indicates competition, a positive value cooperation, and an increasing value due to selection indicates the evolution of cooperation. In contrast to the existing quantitative genetic models, our model allows for co-evolution of IGEs and variability, as the regression coefficient can respond to selection. Our simulations show that the model results in increased variability of body weight with increasing competition. When competition decreases, i.e., cooperation evolves, variability becomes significantly smaller. Hence, our model facilitates quantitative genetic studies on the relationship between IGEs and inherited variability. Moreover, our findings suggest that we may have been overlooking an entire level of genetic variation in variability, the one due to IGEs.

  6. Host Factors in Ebola Infection.

    PubMed

    Rasmussen, Angela L

    2016-08-31

    Ebola virus (EBOV) emerged in West Africa in 2014 to devastating effect, and demonstrated that infection can cause a broad range of severe disease manifestations. As the virus itself was genetically similar to other Zaire ebolaviruses, the spectrum of pathology likely resulted from variable responses to infection in a large and genetically diverse population. This review comprehensively summarizes current knowledge of the host response to EBOV infection, including pathways hijacked by the virus to facilitate replication, host processes that contribute directly to pathogenesis, and host-pathogen interactions involved in subverting or antagonizing host antiviral immunity.

  7. Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279bp of mtDNA.

    PubMed

    Laurimäe, Teivi; Kinkar, Liina; Andresiuk, Vanessa; Haag, Karen Luisa; Ponce-Gordo, Francisco; Acosta-Jamett, Gerardo; Garate, Teresa; Gonzàlez, Luis Miguel; Saarma, Urmas

    2016-11-01

    Echinococcus granulosus is a taeniid cestode and the etiological agent of an infectious zoonotic disease known as cystic echinococcosis (CE) or hydatid disease. CE is a serious public health concern in many parts of the world, including the Americas, where it is highly endemic in many regions. Echinococcus granulosus displays high intraspecific genetic variability and is divided into multiple genotypes (G1-G8, G10) with differences in their biology and etiology. Of these, genotype G1 is responsible for the majority of human and livestock infections and has the broadest host spectrum. However, despite the high significance to the public and livestock health, the data on genetic variability and regional genetic differences of genotype G1 in America are scarce. The aim of this study was to evaluate the genetic variability and phylogeography of G1 in several countries in America by sequencing a large portion of the mitochondrial genome. We analysed 8279bp of mtDNA for 52 E. granulosus G1 samples from sheep, cattle and pigs collected in Argentina, Brazil, Chile and Mexico, covering majority of countries in the Americas where G1 has been reported. The phylogenetic network revealed 29 haplotypes and a high haplotype diversity (Hd=0.903). The absence of phylogeographic segregation between different regions in America suggests the importance of animal transportation in shaping the genetic structure of E. granulosus G1. In addition, our study revealed many highly divergent haplotypes, indicating a long and complex evolutionary history of E. granulosus G1 in the Americas. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Characterization and genetic variability of feed-borne and clinical animal/human Aspergillus fumigatus strains using molecular markers.

    PubMed

    Pena, Gabriela A; Coelho, Irene; Reynoso, María M; Soleiro, Carla; Cavaglieri, Lilia R

    2015-09-01

    Aspergillus fumigatus, the major etiological agent of human and animal aspergillosis, is a toxigenic fungus largely regarded as a single species by macroscopic and microscopic features. However, molecular studies have demonstrated that several morphologically identified A. fumigatus strains might be genetically distinct. This work was aimed to apply PCR-restriction length fragment polymorphisms (PCR-RFLP) and random amplification of polymorphic DNA (RAPD) molecular markers to characterize a set of feed-borne and clinical A. fumigatus sensu lato strains isolated from Argentina and Brazil and to determine and compare their genetic variability. All A. fumigatus strains had the same band profile and those typical of A. fumigatus sensu stricto positive controls by PCR-RFLP. Moreover, all Argentinian and Brazilian strains typified by RAPD showed similar band patterns to each other and to A. fumigatus sensu stricto reference strains regardless of their isolation source (animal feeds or human/animal clinical cases) and geographic origin. Genetic similarity coefficients ranged from 0.61 to 1.00, but almost all isolates showed 78% of genetic similarly suggesting that genetic variability was found at intraspecific level. Finally, benA sequencing confirmed its identification as A. fumigatus sensu stricto species. These results suggest that A. fumigatus sensu stricto is a predominant species into Aspergillus section Fumigati found in animal environments as well as in human/animal clinical cases, while other species may be rarely isolated. The strains involved in human and animal aspergillosis could come from the environment where this fungus is frequently found. Rural workers and animals would be constantly exposed. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Genetic variability in krill.

    PubMed Central

    Valentine, J W; Ayala, F J

    1976-01-01

    We have estimated genetic variability by gel electrophoresis in three species of krill, genus Euphausia (Arthropoda: Crustacea). Genetic variability is low where trophic resources are most seasonal, and high where trophic resources are most stable. Simlar trends have been found in benthic marine invertebrates. The observed trends of genetic variability do not correlate with trends in the stability of physical environment parameters. Images PMID:1061166

  10. Genetic variability in calving success in Aberdeen Angus cows under extensive recording.

    PubMed

    Urioste, J I; Chang, Y M; Naya, H; Gianola, D

    2007-09-01

    Data from 2032 Uruguayan Aberdeen Angus cows under extensive management and recording practices were analysed with Bayesian threshold-liability sire models, to assess genetic variability in calving success (CS), defined as a different binary trait for each of the second (CS2), third (CS3) and fourth (CS4) calving opportunities. Sire (herd) variances ranged from 0.08 to 0.11 (0.10 to 0.20) and heritability from 0.27 to 0.35, with large credibility intervals. Correlations between herd effects on CS at different calving opportunities were positive. Genetic correlation between CS2 and CS4 was positive (0.68), whereas those involving adjacent calving opportunities (CS2-CS3 and CS3-CS4) were negative, at -0.39 and -0.54, respectively. The residual correlation CS2-CS3 was negative (-0.32). The extent of uncertainty associated with the posterior estimates of the parameters was further evaluated through simulation, assuming different true values (-0.4, -0.2, +0.2 and +0.4) for the genetic correlations and changes in the degree of belief parameters of the inverse Wishart priors for the sire covariance matrix. Although inferences were not sharp enough, CS appears to be moderately heritable. The quality of data recording should be improved, in order to effect genetic improvement in female fertility.

  11. Assessment of hepatic gene expression between hybrid striped bass exhibiting extremes in growth performance

    USDA-ARS?s Scientific Manuscript database

    Hybrid striped bass is a major aquaculture species in the United States. Artificial breeding of this species can introduce large variation in growth performance during grow-out to market size. To assess the genetic and nutrigenomic basis behind growth variability in these hybrids, fingerlings from 4...

  12. Reaction time, inhibition, working memory and ‘delay aversion’ performance: genetic influences and their interpretation

    PubMed Central

    KUNTSI, JONNA; ROGERS, HANNAH; SWINARD, GREER; BÖRGER, NORBERT; van der MEERE, JAAP; RIJSDIJK, FRUHLING; ASHERSON, PHILIP

    2013-01-01

    Background For candidate endophenotypes to be useful for psychiatric genetic research, they first of all need to show significant genetic influences. To address the relative lack of previous data, we set to investigate the extent of genetic and environmental influences on performance in a set of theoretically driven cognitive-experimental tasks in a large twin sample. We further aimed to illustrate how test–retest reliability of the measures affects the estimates. Method Four-hundred 7- to 9-year-old twin pairs were assessed individually on tasks measuring reaction time, inhibition, working memory and ‘delay aversion’ performance. Test–retest reliability data on some of the key measures were available from a previous study. Results Several key measures of reaction time, inhibition and working-memory performance indicated a moderate degree of genetic influence. Combining data across theoretically related tasks increased the heritability estimates, as illustrated by the heritability estimates of 60% for mean reaction time and 50% for reaction-time variability. Psychometric properties (reliability or ceiling effects) had a substantial influence on the estimates for some measures. Conclusions The data support the usefulness of several of the variables for endophenotype studies that aim to link genes to cognitive and motivational processes. Importantly, the data also illustrate specific conditions under which the true extent of genetic influences may be underestimated and hence the usefulness for genetic mapping studies compromised, and suggest ways to address this. PMID:16882357

  13. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.

  14. Associations between race, sex and immune response variations to rubella vaccination in two independent cohorts

    PubMed Central

    Haralambieva, Iana H.; Salk, Hannah M.; Lambert, Nathaniel D.; Ovsyannikova, Inna G.; Kennedy, Richard B.; Warner, Nathaniel D.; Pankratz, V.Shane; Poland, Gregory A.

    2014-01-01

    Introduction Immune response variations after vaccination are influenced by host genetic factors and demographic variables, such as race, ethnicity and sex. The latter have not been systematically studied in regard to live rubella vaccine, but are of interest for developing next generation vaccines for diverse populations, for predicting immune responses after vaccination, and for better understanding the variables that impact immune response. Methods We assessed associations between demographic variables, including race, ethnicity and sex, and rubella-specific neutralizing antibody levels and secreted cytokines (IFN! , IL-6) in two independent cohorts (1,994 subjects), using linear and linear mixed models approaches, and genetically defined racial and ethnic categorizations. Results Our replicated findings in two independent, large, racially diverse cohorts indicate that individuals of African descent have significantly higher rubella-specific neutralizing antibody levels compared to individuals of European descent and/or Hispanic ethnicity (p! 0.001). Conclusion Our study provides consistent evidence for racial/ethnic differences in humoral immune response following rubella vaccination. PMID:24530932

  15. Genetic Programming as Alternative for Predicting Development Effort of Individual Software Projects

    PubMed Central

    Chavoya, Arturo; Lopez-Martin, Cuauhtemoc; Andalon-Garcia, Irma R.; Meda-Campaña, M. E.

    2012-01-01

    Statistical and genetic programming techniques have been used to predict the software development effort of large software projects. In this paper, a genetic programming model was used for predicting the effort required in individually developed projects. Accuracy obtained from a genetic programming model was compared against one generated from the application of a statistical regression model. A sample of 219 projects developed by 71 practitioners was used for generating the two models, whereas another sample of 130 projects developed by 38 practitioners was used for validating them. The models used two kinds of lines of code as well as programming language experience as independent variables. Accuracy results from the model obtained with genetic programming suggest that it could be used to predict the software development effort of individual projects when these projects have been developed in a disciplined manner within a development-controlled environment. PMID:23226305

  16. Variation in recombination rate may bias human genetic disease mapping studies.

    PubMed

    Boyle, A Susannah; Noor, Mohamed A F

    2004-11-01

    The availability of the human genome sequence and variability information (as from the International HapMap project) will enhance our ability to map genetic disorders and choose targets for therapeutic intervention. However, several factors, such as regional variation in recombination rate, can bias conclusions from genetic mapping studies. Here, we examine the impact of regional variation in recombination rate across the human genome. Through computer simulations and literature surveys, we conclude that genetic disorders have been mapped to regions of low recombination more often than expected if such diseases were randomly distributed across the genome. This concentration in low recombination regions may be an artifact, and disorders appearing to be caused by a few genes of large effect may be polygenic. Future genetic mapping studies should be conscious of this potential complication by noting the regional recombination rate of regions implicated in diseases.

  17. Calculating expected DNA remnants from ancient founding events in human population genetics

    PubMed Central

    Stacey, Andrew; Sheffield, Nathan C; Crandall, Keith A

    2008-01-01

    Background Recent advancements in sequencing and computational technologies have led to rapid generation and analysis of high quality genetic data. Such genetic data have achieved wide acceptance in studies of historic human population origins and admixture. However, in studies relating to small, recent admixture events, genetic factors such as historic population sizes, genetic drift, and mutation can have pronounced effects on data reliability and utility. To address these issues we conducted genetic simulations targeting influential genetic parameters in admixed populations. Results We performed a series of simulations, adjusting variable values to assess the affect of these genetic parameters on current human population studies and what these studies infer about past population structure. Final mean allele frequencies varied from 0.0005 to over 0.50, depending on the parameters. Conclusion The results of the simulations illustrate that, while genetic data may be sensitive and powerful in large genetic studies, caution must be used when applying genetic information to small, recent admixture events. For some parameter sets, genetic data will not be adequate to detect historic admixture. In such cases, studies should consider anthropologic, archeological, and linguistic data where possible. PMID:18928554

  18. Broad-scale adaptive genetic variation in alpine plants is driven by temperature and precipitation

    PubMed Central

    MANEL, STÉPHANIE; GUGERLI, FELIX; THUILLER, WILFRIED; ALVAREZ, NADIR; LEGENDRE, PIERRE; HOLDEREGGER, ROLF; GIELLY, LUDOVIC; TABERLET, PIERRE

    2014-01-01

    Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran’s eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps. PMID:22680783

  19. Screening large-scale association study data: exploiting interactions using random forests.

    PubMed

    Lunetta, Kathryn L; Hayward, L Brooke; Segal, Jonathan; Van Eerdewegh, Paul

    2004-12-10

    Genome-wide association studies for complex diseases will produce genotypes on hundreds of thousands of single nucleotide polymorphisms (SNPs). A logical first approach to dealing with massive numbers of SNPs is to use some test to screen the SNPs, retaining only those that meet some criterion for further study. For example, SNPs can be ranked by p-value, and those with the lowest p-values retained. When SNPs have large interaction effects but small marginal effects in a population, they are unlikely to be retained when univariate tests are used for screening. However, model-based screens that pre-specify interactions are impractical for data sets with thousands of SNPs. Random forest analysis is an alternative method that produces a single measure of importance for each predictor variable that takes into account interactions among variables without requiring model specification. Interactions increase the importance for the individual interacting variables, making them more likely to be given high importance relative to other variables. We test the performance of random forests as a screening procedure to identify small numbers of risk-associated SNPs from among large numbers of unassociated SNPs using complex disease models with up to 32 loci, incorporating both genetic heterogeneity and multi-locus interaction. Keeping other factors constant, if risk SNPs interact, the random forest importance measure significantly outperforms the Fisher Exact test as a screening tool. As the number of interacting SNPs increases, the improvement in performance of random forest analysis relative to Fisher Exact test for screening also increases. Random forests perform similarly to the univariate Fisher Exact test as a screening tool when SNPs in the analysis do not interact. In the context of large-scale genetic association studies where unknown interactions exist among true risk-associated SNPs or SNPs and environmental covariates, screening SNPs using random forest analyses can significantly reduce the number of SNPs that need to be retained for further study compared to standard univariate screening methods.

  20. "Ant" and "grasshopper" life-history strategies in Saccharomyces cerevisiae.

    PubMed

    Spor, Aymé; Wang, Shaoxiao; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine

    2008-02-13

    From the evolutionary and ecological points of view, it is essential to distinguish between the genetic and environmental components of the variability of life-history traits and of their trade-offs. Among the factors affecting this variability, the resource uptake rate deserves particular attention, because it depends on both the environment and the genetic background of the individuals. In order to unravel the bases of the life-history strategies in yeast, we grew a collection of twelve strains of Saccharomyces cerevisiae from different industrial and geographical origins in three culture media differing for their glucose content. Using a population dynamics model to fit the change of population size over time, we estimated the intrinsic growth rate (r), the carrying capacity (K), the mean cell size and the glucose consumption rate per cell. The life-history traits, as well as the glucose consumption rate, displayed large genetic and plastic variability and genetic-by-environment interactions. Within each medium, growth rate and carrying capacity were not correlated, but a marked trade-off between these traits was observed over the media, with high K and low r in the glucose rich medium and low K and high r in the other media. The cell size was tightly negatively correlated to carrying capacity in all conditions. The resource consumption rate appeared to be a clear-cut determinant of both the carrying capacity and the cell size in all media, since it accounted for 37% to 84% of the variation of those traits. In a given medium, the strains that consume glucose at high rate have large cell size and low carrying capacity, while the strains that consume glucose at low rate have small cell size but high carrying capacity. These two contrasted behaviors may be metaphorically defined as "ant" and "grasshopper" strategies of resource utilization. Interestingly, a strain may be "ant" in one medium and "grasshopper" in another. These life-history strategies are discussed with regards to yeast physiology, and in an evolutionary perspective.

  1. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants.

    PubMed

    Pierce, Brandon L; Ahsan, Habibul; Vanderweele, Tyler J

    2011-06-01

    Mendelian Randomization (MR) studies assess the causality of an exposure-disease association using genetic determinants [i.e. instrumental variables (IVs)] of the exposure. Power and IV strength requirements for MR studies using multiple genetic variants have not been explored. We simulated cohort data sets consisting of a normally distributed disease trait, a normally distributed exposure, which affects this trait and a biallelic genetic variant that affects the exposure. We estimated power to detect an effect of exposure on disease for varying allele frequencies, effect sizes and samples sizes (using two-stage least squares regression on 10,000 data sets-Stage 1 is a regression of exposure on the variant. Stage 2 is a regression of disease on the fitted exposure). Similar analyses were conducted using multiple genetic variants (5, 10, 20) as independent or combined IVs. We assessed IV strength using the first-stage F statistic. Simulations of realistic scenarios indicate that MR studies will require large (n > 1000), often very large (n > 10,000), sample sizes. In many cases, so-called 'weak IV' problems arise when using multiple variants as independent IVs (even with as few as five), resulting in biased effect estimates. Combining genetic factors into fewer IVs results in modest power decreases, but alleviates weak IV problems. Ideal methods for combining genetic factors depend upon knowledge of the genetic architecture underlying the exposure. The feasibility of well-powered, unbiased MR studies will depend upon the amount of variance in the exposure that can be explained by known genetic factors and the 'strength' of the IV set derived from these genetic factors.

  2. Application of Response Surface Methods To Determine Conditions for Optimal Genomic Prediction

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2017-01-01

    An epistatic genetic architecture can have a significant impact on prediction accuracies of genomic prediction (GP) methods. Machine learning methods predict traits comprised of epistatic genetic architectures more accurately than statistical methods based on additive mixed linear models. The differences between these types of GP methods suggest a diagnostic for revealing genetic architectures underlying traits of interest. In addition to genetic architecture, the performance of GP methods may be influenced by the sample size of the training population, the number of QTL, and the proportion of phenotypic variability due to genotypic variability (heritability). Possible values for these factors and the number of combinations of the factor levels that influence the performance of GP methods can be large. Thus, efficient methods for identifying combinations of factor levels that produce most accurate GPs is needed. Herein, we employ response surface methods (RSMs) to find the experimental conditions that produce the most accurate GPs. We illustrate RSM with an example of simulated doubled haploid populations and identify the combination of factors that maximize the difference between prediction accuracies of best linear unbiased prediction (BLUP) and support vector machine (SVM) GP methods. The greatest impact on the response is due to the genetic architecture of the population, heritability of the trait, and the sample size. When epistasis is responsible for all of the genotypic variance and heritability is equal to one and the sample size of the training population is large, the advantage of using the SVM method vs. the BLUP method is greatest. However, except for values close to the maximum, most of the response surface shows little difference between the methods. We also determined that the conditions resulting in the greatest prediction accuracy for BLUP occurred when genetic architecture consists solely of additive effects, and heritability is equal to one. PMID:28720710

  3. Output variability across animals and levels in a motor system

    PubMed Central

    Norris, Brian J; Günay, Cengiz; Kueh, Daniel

    2018-01-01

    Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614

  4. Genetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment

    PubMed Central

    Fu, Yong-Bi

    2014-01-01

    Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, with up to 90% of observations missing. Here we performed an empirical assessment of accuracy in genetic diversity analysis of highly incomplete single nucleotide polymorphism genotypes with imputations. Three large single-nucleotide polymorphism genotype data sets for corn, wheat, and rice were acquired, and missing data with up to 90% of missing observations were randomly generated and then imputed for missing genotypes with three map-independent imputation methods. Estimating heterozygosity and inbreeding coefficient from original, missing, and imputed data revealed variable patterns of bias from assessed levels of missingness and genotype imputation, but the estimation biases were smaller for missing data without genotype imputation. The estimates of genetic differentiation were rather robust up to 90% of missing observations but became substantially biased when missing genotypes were imputed. The estimates of topology accuracy for four representative samples of interested groups generally were reduced with increased levels of missing genotypes. Probabilistic principal component analysis based imputation performed better in terms of topology accuracy than those analyses of missing data without genotype imputation. These findings are not only significant for understanding the reliability of the genetic diversity analysis with respect to large missing data and genotype imputation but also are instructive for performing a proper genetic diversity analysis of highly incomplete GBS or other genotype data. PMID:24626289

  5. An Introduction to Recursive Partitioning: Rationale, Application, and Characteristics of Classification and Regression Trees, Bagging, and Random Forests

    ERIC Educational Resources Information Center

    Strobl, Carolin; Malley, James; Tutz, Gerhard

    2009-01-01

    Recursive partitioning methods have become popular and widely used tools for nonparametric regression and classification in many scientific fields. Especially random forests, which can deal with large numbers of predictor variables even in the presence of complex interactions, have been applied successfully in genetics, clinical medicine, and…

  6. A large-scale study of the random variability of a coding sequence: a study on the CFTR gene.

    PubMed

    Modiano, Guido; Bombieri, Cristina; Ciminelli, Bianca Maria; Belpinati, Francesca; Giorgi, Silvia; Georges, Marie des; Scotet, Virginie; Pompei, Fiorenza; Ciccacci, Cinzia; Guittard, Caroline; Audrézet, Marie Pierre; Begnini, Angela; Toepfer, Michael; Macek, Milan; Ferec, Claude; Claustres, Mireille; Pignatti, Pier Franco

    2005-02-01

    Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (n(g) approximately 100-150 genes). In the present investigation, a large random European population sample (average n(g) approximately 1500) was studied for a single gene, the CFTR (Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q > 0.005), much lower than that of the synonymous (S) substitutions, but they showed a similar rate of subpolymorphic (q < 0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic.

  7. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis.

    PubMed

    Chen, Eric C H; Morin, Emmanuelle; Beaudet, Denis; Noel, Jessica; Yildirir, Gokalp; Ndikumana, Steve; Charron, Philippe; St-Onge, Camille; Giorgi, John; Krüger, Manuela; Marton, Timea; Ropars, Jeanne; Grigoriev, Igor V; Hainaut, Matthieu; Henrissat, Bernard; Roux, Christophe; Martin, Francis; Corradi, Nicolas

    2018-01-22

    Arbuscular mycorrhizal fungi (AMF) are known to improve plant fitness through the establishment of mycorrhizal symbioses. Genetic and phenotypic variations among closely related AMF isolates can significantly affect plant growth, but the genomic changes underlying this variability are unclear. To address this issue, we improved the genome assembly and gene annotation of the model strain Rhizophagus irregularis DAOM197198, and compared its gene content with five isolates of R. irregularis sampled in the same field. All isolates harbor striking genome variations, with large numbers of isolate-specific genes, gene family expansions, and evidence of interisolate genetic exchange. The observed variability affects all gene ontology terms and PFAM protein domains, as well as putative mycorrhiza-induced small secreted effector-like proteins and other symbiosis differentially expressed genes. High variability is also found in active transposable elements. Overall, these findings indicate a substantial divergence in the functioning capacity of isolates harvested from the same field, and thus their genetic potential for adaptation to biotic and abiotic changes. Our data also provide a first glimpse into the genome diversity that resides within natural populations of these symbionts, and open avenues for future analyses of plant-AMF interactions that link AMF genome variation with plant phenotype and fitness. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  8. Pharmacogenetics and forensic toxicology.

    PubMed

    Musshoff, Frank; Stamer, Ulrike M; Madea, Burkhard

    2010-12-15

    Large inter-individual variability in drug response and toxicity, as well as in drug concentrations after application of the same dosage, can be of genetic, physiological, pathophysiological, or environmental origin. Absorption, distribution and metabolism of a drug and interactions with its target often are determined by genetic differences. Pharmacokinetic and pharmacodynamic variations can appear at the level of drug metabolizing enzymes (e.g., the cytochrome P450 system), drug transporters, drug targets or other biomarker genes. Pharmacogenetics or toxicogenetics can therefore be relevant in forensic toxicology. This review presents relevant aspects together with some examples from daily routines. Copyright © 2010. Published by Elsevier Ireland Ltd.

  9. Stochastic models for regulatory networks of the genetic toggle switch.

    PubMed

    Tian, Tianhai; Burrage, Kevin

    2006-05-30

    Bistability arises within a wide range of biological systems from the lambda phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks.

  10. Stochastic models for regulatory networks of the genetic toggle switch

    PubMed Central

    Tian, Tianhai; Burrage, Kevin

    2006-01-01

    Bistability arises within a wide range of biological systems from the λ phage switch in bacteria to cellular signal transduction pathways in mammalian cells. Changes in regulatory mechanisms may result in genetic switching in a bistable system. Recently, more and more experimental evidence in the form of bimodal population distributions indicates that noise plays a very important role in the switching of bistable systems. Although deterministic models have been used for studying the existence of bistability properties under various system conditions, these models cannot realize cell-to-cell fluctuations in genetic switching. However, there is a lag in the development of stochastic models for studying the impact of noise in bistable systems because of the lack of detailed knowledge of biochemical reactions, kinetic rates, and molecular numbers. In this work, we develop a previously undescribed general technique for developing quantitative stochastic models for large-scale genetic regulatory networks by introducing Poisson random variables into deterministic models described by ordinary differential equations. Two stochastic models have been proposed for the genetic toggle switch interfaced with either the SOS signaling pathway or a quorum-sensing signaling pathway, and we have successfully realized experimental results showing bimodal population distributions. Because the introduced stochastic models are based on widely used ordinary differential equation models, the success of this work suggests that this approach is a very promising one for studying noise in large-scale genetic regulatory networks. PMID:16714385

  11. Genotype by Environment Interactions in Cognitive Ability: A Survey of 14 Studies from 4 Countries covering 4 Age Groups

    PubMed Central

    Molenaar, Dylan; van der Sluis, Sophie; Boomsma, Dorret I.; Haworth, Claire M. A.; Hewitt, John K.; Martin, Nicholas G.; Plomin, Robert; Wright, Margie J.; Dolan, Conor V.

    2014-01-01

    A large part of the variation in cognitive ability is known to be due to genetic factors. Researchers have tried to identify modifiers that influence the heritability of cognitive ability, indicating a genotype by environment interaction (GxE). To date, such modifiers include measured variables like income and socioeconomic status. The present paper focuses on GxE in cognitive ability where the environmental variable is an unmeasured environmental factor that is uncorrelated in family members. We examined this type of GxE in the GHCA-database (Haworth et al., 2009), which comprises data of 14 different cognition studies from 4 different countries including participants of different ages. Results indicate that for younger participants (4–13 years), the strength of E decreases across the additive genetic factor A, but that this effect reverts for older participants (17–34 years). However, a clear and general conclusion about the presence of a genuine GxE is hampered by differences between the individual studies with respect to environmental and genetic influences on cognitive ability. PMID:23397253

  12. Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

    PubMed

    Burgarella, Concetta; Chantret, Nathalie; Gay, Laurène; Prosperi, Jean-Marie; Bonhomme, Maxime; Tiffin, Peter; Young, Nevin D; Ronfort, Joelle

    2016-07-01

    Local climatic conditions likely constitute an important selective pressure on genes underlying important fitness-related traits such as flowering time, and in many species, flowering phenology and climatic gradients strongly covary. To test whether climate shapes the genetic variation on flowering time genes and to identify candidate flowering genes involved in the adaptation to environmental heterogeneity, we used a large Medicago truncatula core collection to examine the association between nucleotide polymorphisms at 224 candidate genes and both climate variables and flowering phenotypes. Unlike genome-wide studies, candidate gene approaches are expected to enrich for the number of meaningful trait associations because they specifically target genes that are known to affect the trait of interest. We found that flowering time mediates adaptation to climatic conditions mainly by variation at genes located upstream in the flowering pathways, close to the environmental stimuli. Variables related to the annual precipitation regime reflected selective constraints on flowering time genes better than the other variables tested (temperature, altitude, latitude or longitude). By comparing phenotype and climate associations, we identified 12 flowering genes as the most promising candidates responsible for phenological adaptation to climate. Four of these genes were located in the known flowering time QTL region on chromosome 7. However, climate and flowering associations also highlighted largely distinct gene sets, suggesting different genetic architectures for adaptation to climate and flowering onset. © 2016 John Wiley & Sons Ltd.

  13. Temporal stability of parasite distribution and genetic variability values of Contracaecum osculatum sp. D and C. osculatum sp. E (Nematoda: Anisakidae) from fish of the Ross Sea (Antarctica)

    PubMed Central

    Mattiucci, Simonetta; Cipriani, Paolo; Paoletti, Michela; Nardi, Valentina; Santoro, Mario; Bellisario, Bruno; Nascetti, Giuseppe

    2015-01-01

    The Ross Sea, Eastern Antarctica, is considered a “pristine ecosystem” and a biodiversity “hotspot” scarcely impacted by humans. The sibling species Contracaecum osculatum sp. D and C. osculatum sp. E are anisakid parasites embedded in the natural Antarctic marine ecosystem. Aims of this study were to: identify the larvae of C. osculatum (s.l.) recovered in fish hosts during the XXVII Italian Expedition to Antarctica (2011–2012); perform a comparative analysis of the contemporary parasitic load and genetic variability estimates of C. osculatum sp. D and C. osculatum sp. E with respect to samples collected during the expedition of 1993–1994; to provide ecological data on these parasites. 200 fish specimens (Chionodraco hamatus, Trematomus bernacchii, Trematomus hansoni, Trematomus newnesi) were analysed for Contracaecum sp. larvae, identified at species level by allozyme diagnostic markers and sequences analysis of the mtDNA cox2 gene. Statistically significant differences were found between the occurrence of C. osculatum sp. D and C. osculatum sp. E in different fish species. C. osculatum sp. E was more prevalent in T. bernacchii; while, a higher percentage of C. osculatum sp. D occurred in Ch. hamatus and T. hansoni. The two species also showed differences in the host infection site: C. osculatum sp. D showed higher percentage of infection in the fish liver. High genetic variability values at both nuclear and mitochondrial level were found in the two species in both sampling periods. The parasitic infection levels by C. osculatum sp. D and sp. E and their estimates of genetic variability showed no statistically significant variation over a temporal scale (2012 versus 1994). This suggests that the low habitat disturbance of the Antarctic region permits the maintenance of stable ecosystem trophic webs, which contributes to the maintenance of a large populations of anisakid nematodes with high genetic variability. PMID:26767164

  14. The Genetic Diversity and Structure of Linkage Disequilibrium of the MTHFR Gene in Populations of Northern Eurasia.

    PubMed

    Trifonova, E A; Eremina, E R; Urnov, F D; Stepanov, V A

    2012-01-01

    The structure of the haplotypes and linkage disequilibrium (LD) of the methylenetetrahydrofolate reductase gene (MTHFR) in 9 population groups from Northern Eurasia and populations of the international HapMap project was investigated in the present study. The data suggest that the architecture of LD in the human genome is largely determined by the evolutionary history of populations; however, the results of phylogenetic and haplotype analyses seems to suggest that in fact there may be a common "old" mechanism for the formation of certain patterns of LD. Variability in the structure of LD and the level of diversity of MTHFRhaplotypes cause a certain set of tagSNPs with an established prognostic significance for each population. In our opinion, the results obtained in the present study are of considerable interest for understanding multiple genetic phenomena: namely, the association of interpopulation differences in the patterns of LD with structures possessing a genetic susceptibility to complex diseases, and the functional significance of the pleiotropicMTHFR gene effect. Summarizing the results of this study, a conclusion can be made that the genetic variability analysis with emphasis on the structure of LD in human populations is a powerful tool that can make a significant contribution to such areas of biomedical science as human evolutionary biology, functional genomics, genetics of complex diseases, and pharmacogenomics.

  15. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes

    PubMed Central

    Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

    2014-01-01

    Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species. PMID:25067950

  16. Genetic variability in Jatropha curcas L. from diallel crossing.

    PubMed

    Ribeiro, D O; Silva-Mann, R; Alvares-Carvalho, S V; Souza, E M S; Vasconcelos, M C; Blank, A F

    2017-05-18

    Physic nut (Jatropha curcas L.) presents high oilseed yield and low production cost. However, technical-scientific knowledge on this crop is still limited. This study aimed to evaluate and estimate the genetic variability of hybrids obtained from dialell crossing. Genetic variability was carried out using ISSR molecular markers. For genetic variability, nine primers were used, and six were selected with 80.7% polymorphism. Genetic similarity was obtained using the NTSYS pc. 2.1 software, and cluster analysis was obtained by the UPGMA method. Mean genetic similarity was 58.4% among hybrids; the most divergent pair was H1 and H10 and the most similar pair was H9 and H10. ISSR PCR markers provided a quick and highly informative system for DNA fingerprinting, and also allowed establishing genetic relationships of Jatropha hybrids.

  17. Prediction of early weight gain during psychotropic treatment using a combinatorial model with clinical and genetic markers.

    PubMed

    Vandenberghe, Frederik; Saigí-Morgui, Núria; Delacrétaz, Aurélie; Quteineh, Lina; Crettol, Séverine; Ansermot, Nicolas; Gholam-Rezaee, Mehdi; von Gunten, Armin; Conus, Philippe; Eap, Chin B

    2016-12-01

    Psychotropic drugs can induce significant (>5%) weight gain (WG) already after 1 month of treatment, which is a good predictor for major WG at 3 and 12 months. The large interindividual variability of drug-induced WG can be explained in part by genetic and clinical factors. The aim of this study was to determine whether extensive analysis of genes, in addition to clinical factors, can improve prediction of patients at risk for more than 5% WG at 1 month of treatment. Data were obtained from a 1-year naturalistic longitudinal study, with weight monitoring during weight-inducing psychotropic treatment. A total of 248 Caucasian psychiatric patients, with at least baseline and 1-month weight measures, and with compliance ascertained were included. Results were tested for replication in a second cohort including 32 patients. Age and baseline BMI were associated significantly with strong WG. The area under the curve (AUC) of the final model including genetic (18 genes) and clinical variables was significantly greater than that of the model including clinical variables only (AUCfinal: 0.92, AUCclinical: 0.75, P<0.0001). Predicted accuracy increased by 17% with genetic markers (Accuracyfinal: 87%), indicating that six patients must be genotyped to avoid one misclassified patient. The validity of the final model was confirmed in a replication cohort. Patients predicted before treatment as having more than 5% WG after 1 month of treatment had 4.4% more WG over 1 year than patients predicted to have up to 5% WG (P≤0.0001). These results may help to implement genetic testing before starting psychotropic drug treatment to identify patients at risk of important WG.

  18. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations.

    PubMed

    Fennell, Mark; Gallagher, Tommy; Vintro, Luis Leon; Osborne, Bruce

    2014-05-01

    Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼90 years; (3) the soil is largely undisturbed; and (4) the soil's age can be reliably determined radiometrically at different depths. Amplified fragment length polymorphic markers (AFLPs) were used to assess differences in the genetic structure of 75 individuals sampled from both the standing population and from four soil layers, which spanned 18 cm (estimated at ∼90 years based on (210)Pb and (137)Cs dating). While there are difficulties in interpreting such data, including accounting for the effects of selection, seed loss, and seed migration, a clear pattern of lower total allele counts, percentage polymorphic loci, and genetic diversity was observed in deeper soils. The greatest percentage increase in the measured genetic variables occurred prior to the shift from the lag to the exponential range expansion phases and may be of adaptive significance. These findings highlight that seed banks in areas with long-established invasive populations can contain valuable genetic information relating to invasion processes and as such, should not be overlooked.

  19. Using soil seed banks to assess temporal patterns of genetic variation in invasive plant populations

    PubMed Central

    Fennell, Mark; Gallagher, Tommy; Vintro, Luis Leon; Osborne, Bruce

    2014-01-01

    Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼90 years; (3) the soil is largely undisturbed; and (4) the soil's age can be reliably determined radiometrically at different depths. Amplified fragment length polymorphic markers (AFLPs) were used to assess differences in the genetic structure of 75 individuals sampled from both the standing population and from four soil layers, which spanned 18 cm (estimated at ∼90 years based on 210Pb and 137Cs dating). While there are difficulties in interpreting such data, including accounting for the effects of selection, seed loss, and seed migration, a clear pattern of lower total allele counts, percentage polymorphic loci, and genetic diversity was observed in deeper soils. The greatest percentage increase in the measured genetic variables occurred prior to the shift from the lag to the exponential range expansion phases and may be of adaptive significance. These findings highlight that seed banks in areas with long-established invasive populations can contain valuable genetic information relating to invasion processes and as such, should not be overlooked. PMID:24967082

  20. Resolving the Conflict Between Associative Overdominance and Background Selection

    PubMed Central

    Zhao, Lei; Charlesworth, Brian

    2016-01-01

    In small populations, genetic linkage between a polymorphic neutral locus and loci subject to selection, either against partially recessive mutations or in favor of heterozygotes, may result in an apparent selective advantage to heterozygotes at the neutral locus (associative overdominance) and a retardation of the rate of loss of variability by genetic drift at this locus. In large populations, selection against deleterious mutations has previously been shown to reduce variability at linked neutral loci (background selection). We describe analytical, numerical, and simulation studies that shed light on the conditions under which retardation vs. acceleration of loss of variability occurs at a neutral locus linked to a locus under selection. We consider a finite, randomly mating population initiated from an infinite population in equilibrium at a locus under selection. With mutation and selection, retardation occurs only when S, the product of twice the effective population size and the selection coefficient, is of order 1. With S >> 1, background selection always causes an acceleration of loss of variability. Apparent heterozygote advantage at the neutral locus is, however, always observed when mutations are partially recessive, even if there is an accelerated rate of loss of variability. With heterozygote advantage at the selected locus, loss of variability is nearly always retarded. The results shed light on experiments on the loss of variability at marker loci in laboratory populations and on the results of computer simulations of the effects of multiple selected loci on neutral variability. PMID:27182952

  1. The effect of newly induced mutations on the fitness of genotypes and populations of yeast (Saccharomyces cerevisiae).

    PubMed

    Orthen, E; Lange, P; Wöhrmann, K

    1984-12-01

    This paper analyses the fate of artificially induced mutations and their importance to the fitness of populations of the yeast, Saccharomyces cerevisiae, an increasingly important model organism in population genetics. Diploid strains, treated with UV and EMS, were cultured asexually for approximately 540 generations and under conditions where the asexual growth was interrupted by a sexual phase. Growth rates of 100 randomly sampled diploid clones were estimated at the beginning and at the end of the experiment. After the induction of sporulation the growth rates of 100 randomly sampled spores were measured. UV and EMS treatment decreases the average growth rate of the clones significantly but increases the variability in comparison to the untreated control. After selection over approximately 540 generations, variability in growth rates was reduced to that of the untreated control. No increase in mean population fitness was observed. However, the results show that after selection there still exists a large amount of hidden genetic variability in the populations which is revealed when the clones are cultivated in environments other than those in which selection took place. A sexual phase increased the reduction of the induced variability.

  2. Incomplete penetrance and variable expressivity of a growth defect as a consequence of knocking out two K(+) transporters in the euascomycete fungus Podospora anserina.

    PubMed Central

    Lalucque, Hervé; Silar, Philippe

    2004-01-01

    We describe an example of incomplete penetrance and variable expressivity in the filamentous fungus Podospora anserina, two genetic properties classically associated with mutations in more complex organisms, such as green plants and animals. We show that the knockouts of two TRK-related K(+) transporters of this ascomycete present variability in their phenotype that cannot be attributed to fluctuations of the genetic background or the environment. Thalli of the knockout strains derived from independent monokaryotic ascospores or from a single monokaryotic ascospore and cultivated under standard growth conditions may or may not present impaired growth. When impaired, thalli exhibit a range of phenotypes. Environmental conditions control expressivity to a large extent and penetrance to a low extent. Restoration of functional potassium transport by heterologous expression of K(+) transporters from Neurospora crassa abolishes or strongly diminishes the growth impairment. These data show that incomplete penetrance and variable expressivity can be an intrinsic property of a single Mendelian loss-of-function mutation. They also show that such variability in the expression of a mutant phenotype can be promoted by a phenomenon not obviously related to the well-known chromatin structure modifications, i.e., potassium transport. They provide a framework to understand human channelopathies with similar properties. PMID:15020412

  3. Incomplete penetrance and variable expressivity of a growth defect as a consequence of knocking out two K(+) transporters in the euascomycete fungus Podospora anserina.

    PubMed

    Lalucque, Hervé; Silar, Philippe

    2004-01-01

    We describe an example of incomplete penetrance and variable expressivity in the filamentous fungus Podospora anserina, two genetic properties classically associated with mutations in more complex organisms, such as green plants and animals. We show that the knockouts of two TRK-related K(+) transporters of this ascomycete present variability in their phenotype that cannot be attributed to fluctuations of the genetic background or the environment. Thalli of the knockout strains derived from independent monokaryotic ascospores or from a single monokaryotic ascospore and cultivated under standard growth conditions may or may not present impaired growth. When impaired, thalli exhibit a range of phenotypes. Environmental conditions control expressivity to a large extent and penetrance to a low extent. Restoration of functional potassium transport by heterologous expression of K(+) transporters from Neurospora crassa abolishes or strongly diminishes the growth impairment. These data show that incomplete penetrance and variable expressivity can be an intrinsic property of a single Mendelian loss-of-function mutation. They also show that such variability in the expression of a mutant phenotype can be promoted by a phenomenon not obviously related to the well-known chromatin structure modifications, i.e., potassium transport. They provide a framework to understand human channelopathies with similar properties.

  4. Fine Analysis of Genetic Diversity of the tpr Gene Family among Treponemal Species, Subspecies and Strains

    PubMed Central

    Centurion-Lara, Arturo; Giacani, Lorenzo; Godornes, Charmie; Molini, Barbara J.; Brinck Reid, Tara; Lukehart, Sheila A.

    2013-01-01

    Background The pathogenic non-cultivable treponemes include three subspecies of Treponema pallidum (pallidum, pertenue, endemicum), T. carateum, T. paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme (Simian isolate). These treponemes are morphologically indistinguishable and antigenically and genetically highly similar, yet cross-immunity is variable or non-existent. Although all of these organisms cause chronic, multistage skin and systemic disease, they have historically been classified by mode of transmission, clinical presentations and host ranges. Whole genome studies underscore the high degree of sequence identity among species, subspecies and strains, pinpointing a limited number of genomic regions for variation. Many of these “hot spots” include members of the tpr gene family, composed of 12 paralogs encoding candidate virulence factors. We hypothesize that the distinct clinical presentations, host specificity, and variable cross-immunity might reside on virulence factors such as the tpr genes. Methodology/Principal Findings Sequence analysis of 11 tpr loci (excluding tprK) from 12 strains demonstrated an impressive heterogeneity, including SNPs, indels, chimeric genes, truncated gene products and large deletions. Comparative analyses of sequences and 3D models of predicted proteins in Subfamily I highlight the striking co-localization of discrete variable regions with predicted surface-exposed loops. A hallmark of Subfamily II is the presence of chimeric genes in the tprG and J loci. Diversity in Subfamily III is limited to tprA and tprL. Conclusions/Significance An impressive sequence variability was found in tpr sequences among the Treponema isolates examined in this study, with most of the variation being consistent within subspecies or species, or between syphilis vs. non-syphilis strains. Variability was seen in the pallidum subspecies, which can be divided into 5 genogroups. These findings support a genetic basis for the classification of these organisms into their respective subspecies and species. Future functional studies will determine whether the identified genetic differences relate to cross-immunity, clinical differences, or host ranges. PMID:23696912

  5. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Vilà, C; Geffen, E; Creel, S; Mills, M G; McNutt, J W; Ginsberg, J; Kat, P W; Mamiya, K H; Wayne, R K

    2001-07-01

    African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.

  6. Sex chromosome aneuploidies and copy-number variants: a further explanation for neurodevelopmental prognosis variability?

    PubMed

    Le Gall, Jessica; Nizon, Mathilde; Pichon, Olivier; Andrieux, Joris; Audebert-Bellanger, Séverine; Baron, Sabine; Beneteau, Claire; Bilan, Frédéric; Boute, Odile; Busa, Tiffany; Cormier-Daire, Valérie; Ferec, Claude; Fradin, Mélanie; Gilbert-Dussardier, Brigitte; Jaillard, Sylvie; Jønch, Aia; Martin-Coignard, Dominique; Mercier, Sandra; Moutton, Sébastien; Rooryck, Caroline; Schaefer, Elise; Vincent, Marie; Sanlaville, Damien; Le Caignec, Cédric; Jacquemont, Sébastien; David, Albert; Isidor, Bertrand

    2017-08-01

    Sex chromosome aneuploidies (SCA) is a group of conditions in which individuals have an abnormal number of sex chromosomes. SCA, such as Klinefelter's syndrome, XYY syndrome, and Triple X syndrome are associated with a large range of neurological outcome. Another genetic event such as another cytogenetic abnormality may explain a part of this variable expressivity. In this study, we have recruited fourteen patients with intellectual disability or developmental delay carrying SCA associated with a copy-number variant (CNV). In our cohort (four patients 47,XXY, four patients 47,XXX, and six patients 47,XYY), seven patients were carrying a pathogenic CNV, two a likely pathogenic CNV and five a variant of uncertain significance. Our analysis suggests that CNV might be considered as an additional independent genetic factor for intellectual disability and developmental delay for patients with SCA and neurodevelopmental disorder.

  7. Some Like It Hot, Some Like It Warm: Phenotyping to Explore Thermotolerance Diversity

    PubMed Central

    Yeh, Ching-Hui; Kaplinsky, Nicholas J.; Hu, Catherine; Charng, Yee-yung

    2012-01-01

    Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: 1) the heat stress regime used, 2) the developmental stage of the plants being studied, and 3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance. PMID:22920995

  8. Genetic variability in environmental isolates of Legionella pneumophila from Comunidad Valenciana (Spain).

    PubMed

    Coscollá, Mireia; Gosalbes, María José; Catalán, Vicente; González-Candelas, Fernando

    2006-06-01

    Legionella pneumophila is associated to recurrent outbreaks in several Comunidad Valenciana (Spain) localities, especially in Alcoi, where social and climatic conditions seem to provide an excellent environment for bacterial growth. We have analysed the nucleotide sequences of three loci from 25 environmental isolates from Alcoi and nearby locations sampled over 3 years. The analysis of these isolates has revealed a substantial level of genetic variation, with consistent patterns of variability across loci, and comparable to that found in a large, European-wide sampling of clinical isolates. Among the tree loci studied, fliC showed the highest level of nucleotide diversity. The analysis of isolates sampled in different years revealed a clear differentiation, with samples from 2001 being significantly distinct from those obtained in 2002 and 2003. Furthermore, although linkage disequilibrium measures indicate a clonal nature for population structure in this sample, the presence of some recombination events cannot be ruled out.

  9. Warfarin therapy: in need of improvement after all these years

    PubMed Central

    Kimmel, Stephen E

    2010-01-01

    Background Warfarin therapy has been used clinically for over 60 years, yet continues to be problematic because of its narrow therapeutic index and large inter-individual variability in patient response. As a result, warfarin is a leading cause of serious medication-related adverse events, and its efficacy is also suboptimal. Objective To review factors that are responsible for variable response to warfarin, including clinical, environmental, and genetic factors, and to explore some possible approaches to improving warfarin therapy. Results Recent efforts have focused on developing dosing algorithms that included genetic information to try to improve warfarin dosing. These dosing algorithms hold promise, but have not been fully validated or tested in rigorous clinical trials. Perhaps equally importantly, adherence to warfarin is a major problem that should be addressed with innovative and cost-effective interventions. Conclusion Additional research is needed to further test whether interventions can be used to improve warfarin dosing and outcomes. PMID:18345947

  10. Current status of the banana and plantain collection at the USDA-ARS Tropical Agriculture Research Station, Mayaguez, Puerto Rico

    USDA-ARS?s Scientific Manuscript database

    Banana (Musa acuminata Colla. [AA, AAA]; Musa x paradisiaca Colla [ABB, AAAB, AABB]), are large monocotyledonous plants in the Musaceae family and is one of the world’s furthermost important crops in the world. High genetic variability can be found in centers of origin, but the lack of diversity in...

  11. How Genes Modulate Patterns of Aging-Related Changes on the Way to 100: Biodemographic Models and Methods in Genetic Analyses of Longitudinal Data

    PubMed Central

    Yashin, Anatoliy I.; Arbeev, Konstantin G.; Wu, Deqing; Arbeeva, Liubov; Kulminski, Alexander; Kulminskaya, Irina; Akushevich, Igor; Ukraintseva, Svetlana V.

    2016-01-01

    Background and Objective To clarify mechanisms of genetic regulation of human aging and longevity traits, a number of genome-wide association studies (GWAS) of these traits have been performed. However, the results of these analyses did not meet expectations of the researchers. Most detected genetic associations have not reached a genome-wide level of statistical significance, and suffered from the lack of replication in the studies of independent populations. The reasons for slow progress in this research area include low efficiency of statistical methods used in data analyses, genetic heterogeneity of aging and longevity related traits, possibility of pleiotropic (e.g., age dependent) effects of genetic variants on such traits, underestimation of the effects of (i) mortality selection in genetically heterogeneous cohorts, (ii) external factors and differences in genetic backgrounds of individuals in the populations under study, the weakness of conceptual biological framework that does not fully account for above mentioned factors. One more limitation of conducted studies is that they did not fully realize the potential of longitudinal data that allow for evaluating how genetic influences on life span are mediated by physiological variables and other biomarkers during the life course. The objective of this paper is to address these issues. Data and Methods We performed GWAS of human life span using different subsets of data from the original Framingham Heart Study cohort corresponding to different quality control (QC) procedures and used one subset of selected genetic variants for further analyses. We used simulation study to show that approach to combining data improves the quality of GWAS. We used FHS longitudinal data to compare average age trajectories of physiological variables in carriers and non-carriers of selected genetic variants. We used stochastic process model of human mortality and aging to investigate genetic influence on hidden biomarkers of aging and on dynamic interaction between aging and longevity. We investigated properties of genes related to selected variants and their roles in signaling and metabolic pathways. Results We showed that the use of different QC procedures results in different sets of genetic variants associated with life span. We selected 24 genetic variants negatively associated with life span. We showed that the joint analyses of genetic data at the time of bio-specimen collection and follow up data substantially improved significance of associations of selected 24 SNPs with life span. We also showed that aging related changes in physiological variables and in hidden biomarkers of aging differ for the groups of carriers and non-carriers of selected variants. Conclusions . The results of these analyses demonstrated benefits of using biodemographic models and methods in genetic association studies of these traits. Our findings showed that the absence of a large number of genetic variants with deleterious effects may make substantial contribution to exceptional longevity. These effects are dynamically mediated by a number of physiological variables and hidden biomarkers of aging. The results of these research demonstrated benefits of using integrative statistical models of mortality risks in genetic studies of human aging and longevity. PMID:27773987

  12. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.

    PubMed

    Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C

    2016-08-01

    Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

  13. Rapid Communication: Large exploitable genetic variability exists to shorten age at slaughter in cattle.

    PubMed

    Berry, D P; Cromie, A R; Judge, M M

    2017-10-01

    Apprehension among consumers is mounting on the efficiency by which cattle convert feedstuffs into human edible protein and energy as well as the consequential effects on the environment. Most (genetic) studies that attempt to address these issues have generally focused on efficiency metrics defined over a certain time period of an animal's life cycle, predominantly the period representing the linear phase of growth. The age at which an animal reaches the carcass specifications for slaughter, however, is also known to vary between breeds; less is known on the extent of the within-breed variability in age at slaughter. Therefore, the objective of the present study was to quantify the phenotypic and genetic variability in the age at which cattle reach a predefined carcass weight and subcutaneous fat cover. A novel trait, labeled here as the deviation in age at slaughter (DAGE), was represented by the unexplained variability from a statistical model, with age at slaughter as the dependent variable and with the fixed effects, among others, of carcass weight and fat score (scale 1 to 15 scored by video image analysis of the carcass at slaughter). Variance components for DAGE were estimated using either a 2-step approach (i.e., the DAGE phenotype derived first and then variance components estimated) or a 1-step approach (i.e., variance components for age at slaughter estimated directly in a mixed model that included the fixed effects of, among others, carcass weight and carcass fat score as well as a random direct additive genetic effect). The raw phenotypic SD in DAGE was 44.2 d. The genetic SD and heritability for DAGE estimated using the 1-step or 2-step models varied from 14.2 to 15.1 d and from 0.23 to 0.26 (SE 0.02), respectively. Assuming the (genetic) variability in the number of days from birth to reaching a desired carcass specifications can be exploited without any associated unfavorable repercussions, considerable potential exists to improve not only the (feed) efficiency of the animal and farm system but also the environmental footprint of the system. The beauty of the approach proposed, relative to strategies that select directly for the feed intake complex and enteric methane emissions, is that data on age at slaughter are generally readily available. Of course, faster gains may potentially be achieved if a dual objective of improving animal efficiency per day coupled with reduced days to slaughter was embarked on.

  14. X-linked retinitis pigmentosa: Report of a large kindred with loss of central vision and preserved peripheral function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shastry, B.S.; Trese, M.T.

    1995-11-20

    X-linked retinitis pigmentosa (XLRP) is the most severe form of the inherited forms of retinitis pigmentosa and is clinically variable and genetically heterogeneous. It affects one in 20,000 live births. The affected individuals manifest degeneration of the peripheral retina during the first two decades of life on the basis of night blindness. Central vision usually is preserved until age 50, when the disease advances, affecting central vision and ultimately leading to complete loss of sight. Linkage analysis has shown two loci with a possibility of a third locus on the human X chromosome. The genetic abnormality that causes XLRP ismore » not known at present. Here we describe a large kindred which manifests central loss of field with the preservation of peripheral vision. 5 refs., 1 fig.« less

  15. [Genetic polymorphism of Tulipa gesneriana L. evaluated on the basis of the ISSR marking data].

    PubMed

    Kashin, A S; Kritskaya, T A; Schanzer, I A

    2016-10-01

    Using the method of ISSR analysis, the genetic diversity of 18 natural populations of Tulipa gesneriana L. from the north of the Lower Volga region was examined. The ten ISSR primers used in the study provided identification of 102 PCR fragments, of which 50 were polymorphic (49.0%). According to the proportion of polymorphic markers, two population groups were distinguished: (1) the populations in which the proportion of polymorphic markers ranged from 0.35 to 0.41; (2) the populations in which the proportion of polymorphic markers ranged from 0.64 to 0.85. UPGMA clustering analysis provided subdivision of the sample into two large clusters. The unrooted tree constructed using the Neighbor Joining algorithm had similar topology. The first cluster included slightly variable populations and the second cluster included highly variable populations. The AMOVA analysis showed statistically significant differences (F CT = 0.430; p = 0.000) between the two groups. Local populations are considerably genetically differentiated from each other (F ST = 0.632) and have almost no links via modern gene flow, as evidenced by the results of the Mantel test (r =–0.118; p = 0.819). It is suggested that the degree of genetic similarities and differences between the populations depends on the time and the species dispersal patterns on these territories.

  16. Integrating mechanistic and polymorphism data to characterize human genetic susceptibility for environmental chemical risk assessment in the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mortensen, Holly M., E-mail: mortensen.holly@epa.gov; Euling, Susan Y.

    Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization ofmore » drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.« less

  17. Relating adaptive genetic traits to climate for Sandberg bluegrass from the intermountain western United States.

    PubMed

    Johnson, Richard C; Horning, Matthew E; Espeland, Erin K; Vance-Borland, Ken

    2015-02-01

    Genetic variation for potentially adaptive traits of the key restoration species Sandberg bluegrass (Poa secunda J. Presl) was assessed over the intermountain western United States in relation to source population climate. Common gardens were established at two intermountain west sites with progeny from two maternal parents from each of 130 wild populations. Data were collected over 2 years at each site on fifteen plant traits associated with production, phenology, and morphology. Analyses of variance revealed strong population differences for all plant traits (P < 0.0001), indicating genetic variation. Both the canonical correlation and linear correlation established associations between source populations and climate variability. Populations from warmer, more arid climates had generally lower dry weight, earlier phenology, and smaller, narrower leaves than those from cooler, moister climates. The first three canonical variates were regressed with climate variables resulting in significant models (P < 0.0001) used to map 12 seed zones. Of the 700 981 km(2) mapped, four seed zones represented 92% of the area in typically semi-arid and arid regions. The association of genetic variation with source climates in the intermountain west suggested climate driven natural selection and evolution. We recommend seed transfer zones and population movement guidelines to enhance adaptation and diversity for large-scale restoration projects.

  18. Genetic diversity of Brazilian natural populations of Anthonomus grandis Boheman (Coleoptera: Curculionidae), the major cotton pest in the New World.

    PubMed

    Martins, W F S; Ayres, C F J; Lucena, W A

    2007-01-27

    Twenty-five RAPD loci and 6 isozyme loci were studied to characterize the genetic variability of natural populations of Anthonomus grandis from two agroecosystems of Brazil. The random-amplified polymorphic DNA data disclosed a polymorphism that varied from 52 to 84% and a heterozygosity of 0.189 to 0.347. The index of genetic differentiation (GST) among the six populations was 0.258. The analysis of isozymes showed a polymorphism and a heterozygosity ranging from 25 to 100% and 0.174 to 0.277, respectively. The genetic differentiation (FST) among the populations obtained by isozyme data was 0.544. It was possible to observe rare alleles in the populations from the Northeast region. The markers examined allowed us to distinguish populations from large-scale, intensive farming region (cotton belts) versus populations from areas of small-scale farming

  19. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity

    PubMed Central

    Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.

    2016-01-01

    Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161

  20. Image-based computational quantification and visualization of genetic alterations and tumour heterogeneity.

    PubMed

    Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J

    2016-04-07

    Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.

  1. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders.

    PubMed

    Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal

    2009-07-24

    Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain.

  2. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic.

    PubMed

    Assis, Jorge; Araújo, Miguel B; Serrão, Ester A

    2018-01-01

    Intraspecific genetic variability is critical for species adaptation and evolution and yet it is generally overlooked in projections of the biological consequences of climate change. We ask whether ongoing climate changes can cause the loss of important gene pools from North Atlantic relict kelp forests that persisted over glacial-interglacial cycles. We use ecological niche modelling to predict genetic diversity hotspots for eight species of large brown algae with different thermal tolerances (Arctic to warm temperate), estimated as regions of persistence throughout the Last Glacial Maximum (20,000 YBP), the warmer Mid-Holocene (6,000 YBP), and the present. Changes in the genetic diversity within ancient refugia were projected for the future (year 2100) under two contrasting climate change scenarios (RCP2.6 and RCP8.5). Models predicted distributions that matched empirical distributions in cross-validation, and identified distinct refugia at the low latitude ranges, which largely coincide among species with similar ecological niches. Transferred models into the future projected polewards expansions and substantial range losses in lower latitudes, where richer gene pools are expected (in Nova Scotia and Iberia for cold affinity species and Gibraltar, Alboran, and Morocco for warm-temperate species). These effects were projected for both scenarios but were intensified under the extreme RCP8.5 scenario, with the complete borealization (circum-Arctic colonization) of kelp forests, the redistribution of the biogeographical transitional zones of the North Atlantic, and the erosion of global gene pools across all species. As the geographic distribution of genetic variability is unknown for most marine species, our results represent a baseline for identification of locations potentially rich in unique phylogeographic lineages that are also climatic relics in threat of disappearing. © 2017 John Wiley & Sons Ltd.

  3. Morphology and genetic variability within Taenia multiceps in ruminants from Italy.

    PubMed

    Varcasia, Antonio; Pipia, Anna Paola; Dessì, Giorgia; Zidda, Antonella; Tamponi, Claudia; Pau, Marco; Scala, Antonio; Boufana, Belgees

    2016-06-15

    The aim of this study was to investigate the genetic variability and population structure of Taenia multiceps, and to correlate morphological features of individual coenuri with haplotypes. A total of 92 animals (86 sheep; 4 goats; 1 cattle; 1 mouflon, Ovis musimon) aged between 6-36 months showing clinical symptoms of cerebral coenurosis were included in this study. T. multiceps coenuri (n=118) sampled from live animals during routine surgery procedures or at post-mortem inspections were examined morphologically and molecularly identified. Morphological features of the 52 coenuri selected for this study (number and size of large and small hooks) were within the range reported in the literature. Fifty-two of the molecularly confirmed T. multiceps coenuri harboured by 47 animals (sheep=41; cattle=1; goats=4; mouflon=1) were used to determine gene genealogies and population genetic indices and were compared to the 3 T. multiceps genetic variants, Tm1-Tm3 previously described from Sardinia, Italy. For the 379 bp cox1 dataset we identified 11 polymorphic sites of which 8 were parsimony informative. A high haplotype diversity (0.664±0.067) was recorded for the cox1 sequences defining 10 haplotypes (TM01-TM10). The comparison of haplotypes generated in this study with published T. multiceps Tm1 variant pointed to the possible existence of a common lineage for T. multiceps. No correlation was detected between the size of the small and large hooks and the cox 1 haplotypes. Polycystic infestation (2-9 coenuri) was recorded in 27.7% of animals (13/47). No statistical correlation between polycystic T. multiceps infection and haplotypes was detected. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sociocultural behavior, sex-biased admixture, and effective population sizes in Central African Pygmies and non-Pygmies.

    PubMed

    Verdu, Paul; Becker, Noémie S A; Froment, Alain; Georges, Myriam; Grugni, Viola; Quintana-Murci, Lluis; Hombert, Jean-Marie; Van der Veen, Lolke; Le Bomin, Sylvie; Bahuchet, Serge; Heyer, Evelyne; Austerlitz, Frédéric

    2013-04-01

    Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter-gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history.

  5. Sociocultural Behavior, Sex-Biased Admixture, and Effective Population Sizes in Central African Pygmies and Non-Pygmies

    PubMed Central

    Verdu, Paul; Becker, Noémie S.A.; Froment, Alain; Georges, Myriam; Grugni, Viola; Quintana-Murci, Lluis; Hombert, Jean-Marie; Van der Veen, Lolke; Le Bomin, Sylvie; Bahuchet, Serge; Heyer, Evelyne; Austerlitz, Frédéric

    2013-01-01

    Sociocultural phenomena, such as exogamy or phylopatry, can largely determine human sex-specific demography. In Central Africa, diverging patterns of sex-specific genetic variation have been observed between mobile hunter–gatherer Pygmies and sedentary agricultural non-Pygmies. However, their sex-specific demography remains largely unknown. Using population genetics and approximate Bayesian computation approaches, we inferred male and female effective population sizes, sex-specific migration, and admixture rates in 23 Central African Pygmy and non-Pygmy populations, genotyped for autosomal, X-linked, Y-linked, and mitochondrial markers. We found much larger effective population sizes and migration rates among non-Pygmy populations than among Pygmies, in agreement with the recent expansions and migrations of non-Pygmies and, conversely, the isolation and stationary demography of Pygmy groups. We found larger effective sizes and migration rates for males than for females for Pygmies, and vice versa for non-Pygmies. Thus, although most Pygmy populations have patrilocal customs, their sex-specific genetic patterns resemble those of matrilocal populations. In fact, our results are consistent with a lower prevalence of polygyny and patrilocality in Pygmies compared with non-Pygmies and a potential female transmission of reproductive success in Pygmies. Finally, Pygmy populations showed variable admixture levels with the non-Pygmies, with often much larger introgression from male than from female lineages. Social discrimination against Pygmies triggering complex movements of spouses in intermarriages can explain these male-biased admixture patterns in a patrilocal context. We show how gender-related sociocultural phenomena can determine highly variable sex-specific demography among populations, and how population genetic approaches contrasting chromosomal types allow inferring detailed human sex-specific demographic history. PMID:23300254

  6. Rapid fixation of non-native alleles revealed by genome-wide SNP analysis of hybrid tiger salamanders

    PubMed Central

    Fitzpatrick, Benjamin M; Johnson, Jarrett R; Kump, D Kevin; Shaffer, H Bradley; Smith, Jeramiah J; Voss, S Randal

    2009-01-01

    Background Hybrid zones represent valuable opportunities to observe evolution in systems that are unusually dynamic and where the potential for the origin of novelty and rapid adaptation co-occur with the potential for dysfunction. Recently initiated hybrid zones are particularly exciting evolutionary experiments because ongoing natural selection on novel genetic combinations can be studied in ecological time. Moreover, when hybrid zones involve native and introduced species, complex genetic patterns present important challenges for conservation policy. To assess variation of admixture dynamics, we scored a large panel of markers in five wild hybrid populations formed when Barred Tiger Salamanders were introduced into the range of California Tiger Salamanders. Results At three of 64 markers, introduced alleles have largely displaced native alleles within the hybrid populations. Another marker (GNAT1) showed consistent heterozygote deficits in the wild, and this marker was associated with embryonic mortality in laboratory F2's. Other deviations from equilibrium expectations were idiosyncratic among breeding ponds, consistent with highly stochastic demographic effects. Conclusion While most markers retain native and introduced alleles in expected proportions, strong selection appears to be eliminating native alleles at a smaller set of loci. Such rapid fixation of alleles is detectable only in recently formed hybrid zones, though it might be representative of dynamics that frequently occur in nature. These results underscore the variable and mosaic nature of hybrid genomes and illustrate the potency of recombination and selection in promoting variable, and often unpredictable genetic outcomes. Introgression of a few, strongly selected introduced alleles should not necessarily affect the conservation status of California Tiger Salamanders, but suggests that genetically pure populations of this endangered species will be difficult to maintain. PMID:19630983

  7. Genetic and environmental influences on relationship between anxiety sensitivity and anxiety subscales in children

    PubMed Central

    Waszczuk, M.A.; Zavos, H.M.S.; Eley, T.C.

    2013-01-01

    Anxiety sensitivity, a belief that symptoms of anxiety are harmful, has been proposed to influence development of panic disorder. Recent research suggests it may be a vulnerability factor for many anxiety subtypes. Moderate genetic influences have been implicated for both anxiety sensitivity and anxiety, however, little is known about the aetiology of the relationship between these traits in children. Self-reports of anxiety sensitivity and anxiety symptoms were collected from approximately 300 twin pairs at two time points. Partial correlations indicated that anxiety sensitivity at age 8 was broadly associated with most anxiety subtypes at age 10 (r = 0.11–0.17, p < 0.05). The associations were largely unidirectional, underpinned by stable genetic influences. Non-shared environment had unique influences on variables. Phenotypic results showed that anxiety sensitivity is a broad predictor of anxiety symptoms in childhood. Genetic results suggest that childhood is a developmental period characterised by genetic stability and time-specific environmental influences on anxiety-related traits. PMID:23872507

  8. Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis).

    PubMed

    López, Rosana; López de Heredia, Unai; Collada, Carmen; Cano, Francisco Javier; Emerson, Brent C; Cochard, Hervé; Gil, Luis

    2013-06-01

    It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = -0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth. The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.

  9. Population genetic analysis and bioclimatic modeling in Agave striata in the Chihuahuan Desert indicate higher genetic variation and lower differentiation in drier and more variable environments.

    PubMed

    Trejo, Laura; Alvarado-Cárdenas, Leonardo O; Scheinvar, Enrique; Eguiarte, Luis E

    2016-06-01

    Is there an association between bioclimatic variables and genetic variation within species? This question can be approached by a detailed analysis of population genetics parameters along environmental gradients in recently originated species (so genetic drift does not further obscure the patterns). The genus Agave, with more than 200 recent species encompassing a diversity of morphologies and distributional patterns, is an adequate system for such analyses. We studied Agave striata, a widely distributed species from the Chihuahuan Desert, with a distinctive iteroparous reproductive ecology and two recognized subspecies with clear morphological differences. We used population genetic analyses along with bioclimatic studies to understand the effect of environment on the genetic variation and differentiation of this species. We analyzed six populations of the subspecies A. striata subsp. striata, with a southern distribution, and six populations of A. striata subsp. falcata, with a northern distribution, using 48 ISSR loci and a total of 541 individuals (averaging 45 individuals per population). We assessed correlations between population genetics parameters (the levels of genetic variation and differentiation) and the bioclimatic variables of each population. We modeled each subspecies distribution and used linear correlations and multifactorial analysis of variance. Genetic variation (measured as expected heterozygosity) increased at higher latitudes. Higher levels of genetic variation in populations were associated with a higher variation in environmental temperature and lower precipitation. Stronger population differentiation was associated with wetter and more variable precipitation in the southern distribution of the species. The two subspecies have genetic differences, which coincide with their climatic differences and potential distributions. Differences in genetic variation among populations and the genetic differentiation between A. striata subsp. striata and A. striata subsp. falcata is correlated with differences in environmental climatic variables along their distribution. We found two distinct gene pools that suggest active differentiation and perhaps incipient speciation. The detected association between genetic variation and environment variables indicates that climatic variables are playing an important role in the differentiation of A. striata. © 2016 Botanical Society of America.

  10. Multi-site study of additive genetic effects on fractional anisotropy of cerebral white matter: Comparing meta and megaanalytical approaches for data pooling.

    PubMed

    Kochunov, Peter; Jahanshad, Neda; Sprooten, Emma; Nichols, Thomas E; Mandl, René C; Almasy, Laura; Booth, Tom; Brouwer, Rachel M; Curran, Joanne E; de Zubicaray, Greig I; Dimitrova, Rali; Duggirala, Ravi; Fox, Peter T; Hong, L Elliot; Landman, Bennett A; Lemaitre, Hervé; Lopez, Lorna M; Martin, Nicholas G; McMahon, Katie L; Mitchell, Braxton D; Olvera, Rene L; Peterson, Charles P; Starr, John M; Sussmann, Jessika E; Toga, Arthur W; Wardlaw, Joanna M; Wright, Margaret J; Wright, Susan N; Bastin, Mark E; McIntosh, Andrew M; Boomsma, Dorret I; Kahn, René S; den Braber, Anouk; de Geus, Eco J C; Deary, Ian J; Hulshoff Pol, Hilleke E; Williamson, Douglas E; Blangero, John; van 't Ent, Dennis; Thompson, Paul M; Glahn, David C

    2014-07-15

    Combining datasets across independent studies can boost statistical power by increasing the numbers of observations and can achieve more accurate estimates of effect sizes. This is especially important for genetic studies where a large number of observations are required to obtain sufficient power to detect and replicate genetic effects. There is a need to develop and evaluate methods for joint-analytical analyses of rich datasets collected in imaging genetics studies. The ENIGMA-DTI consortium is developing and evaluating approaches for obtaining pooled estimates of heritability through meta-and mega-genetic analytical approaches, to estimate the general additive genetic contributions to the intersubject variance in fractional anisotropy (FA) measured from diffusion tensor imaging (DTI). We used the ENIGMA-DTI data harmonization protocol for uniform processing of DTI data from multiple sites. We evaluated this protocol in five family-based cohorts providing data from a total of 2248 children and adults (ages: 9-85) collected with various imaging protocols. We used the imaging genetics analysis tool, SOLAR-Eclipse, to combine twin and family data from Dutch, Australian and Mexican-American cohorts into one large "mega-family". We showed that heritability estimates may vary from one cohort to another. We used two meta-analytical (the sample-size and standard-error weighted) approaches and a mega-genetic analysis to calculate heritability estimates across-population. We performed leave-one-out analysis of the joint estimates of heritability, removing a different cohort each time to understand the estimate variability. Overall, meta- and mega-genetic analyses of heritability produced robust estimates of heritability. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The distribution of nuclear genetic variation and historical demography of sea otters

    USGS Publications Warehouse

    Aguilar, A.; Jessup, David A.; Estes, J.; Garza, J.C.

    2008-01-01

    The amount and distribution of population genetic variation is crucial information for the design of effective conservation strategies for endangered species and can also be used to provide inference about demographic processes and patterns of migration. Here, we describe variation at a large number of nuclear genes in sea otters Enhydra lutris ssp. We surveyed 14 variable microsatellite loci and two genes of the major histocompatibility complex (MHC) in up to 350 California sea otters Enhydra lutris nereis, which represents ∼10% of the subspecies' population, and 46 otters from two Alaskan sites. We utilized methods for detecting past reductions in effective population size to examine the effects of near extinction from the fur trade. Summary statistic tests largely failed to find a signal of a recent population size reduction (within the past 200 years), but a Bayesian method found a signal of a strong reduction over a longer time scale (up to 500 years ago). These results indicate that the reduction in size began long enough ago that much genetic variation was lost before the 19th century fur trade. A comparison of geographic distance and pairwise relatedness for individual otters found no evidence of kin-based spatial clustering for either gender. This indicates that there is no population structure, due to extended family groups, within the California population. A survey of population genetic variation found that two of the MHC genes, DQB and DRB, had two alleles present and one of the genes, DRA, was monomorphic in otters. This contrasts with other mammals, where they are often the most variable coding genes known. Genetic variation in the sea otter is among the lowest observed for a mammal and raises concerns about the long-term viability of the species, particularly in the face of future environmental changes.

  12. Genetic studies on the ghrelin, growth hormone secretagogue receptor (GHSR) and ghrelin O-acyl transferase (GOAT) genes.

    PubMed

    Liu, Boyang; Garcia, Edwin A; Korbonits, Márta

    2011-11-01

    Ghrelin is a 28 amino acid peptide hormone that is produced both centrally and peripherally. Regulated by the ghrelin O-acyl transferase enzyme, ghrelin exerts its action through the growth hormone secretagogue receptor, and is implicated in a diverse range of physiological processes. These implications have placed the ghrelin signaling pathway at the center of a large number of candidate gene and genome-wide studies which aim to identify the genetic basis of human heterogeneity. In this review we summarize the available data on the genetic variability of ghrelin, its receptor and its regulatory enzyme, and their association with obesity, stature, type 2 diabetes, cardiovascular disease, eating disorders, and reward seeking behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Complex Patterns of Local Adaptation in Teosinte

    PubMed Central

    Pyhäjärvi, Tanja; Hufford, Matthew B.; Mezmouk, Sofiane; Ross-Ibarra, Jeffrey

    2013-01-01

    Populations of widely distributed species encounter and must adapt to local environmental conditions. However, comprehensive characterization of the genetic basis of adaptation is demanding, requiring genome-wide genotype data, multiple sampled populations, and an understanding of population structure and potential selection pressures. Here, we used single-nucleotide polymorphism genotyping and data on numerous environmental variables to describe the genetic basis of local adaptation in 21 populations of teosinte, the wild ancestor of maize. We found complex hierarchical genetic structure created by altitude, dispersal events, and admixture among subspecies, which complicated identification of locally beneficial alleles. Patterns of linkage disequilibrium revealed four large putative inversion polymorphisms showing clinal patterns of frequency. Population differentiation and environmental correlations suggest that both inversions and intergenic polymorphisms are involved in local adaptation. PMID:23902747

  14. Genetic pleiotropy explains associations between musical auditory discrimination and intelligence.

    PubMed

    Mosing, Miriam A; Pedersen, Nancy L; Madison, Guy; Ullén, Fredrik

    2014-01-01

    Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions.

  15. Genetic Pleiotropy Explains Associations between Musical Auditory Discrimination and Intelligence

    PubMed Central

    Mosing, Miriam A.; Pedersen, Nancy L.; Madison, Guy; Ullén, Fredrik

    2014-01-01

    Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions. PMID:25419664

  16. Poa secunda local collections and commercial releases: A genotypic evaluation

    PubMed Central

    Shaw, Alanna N.; Mummey, Daniel L.

    2017-01-01

    The genetics of native plants influence the success of ecological restoration, yet genetic variability of local seed collections and commercial seed releases remains unclear for most taxa. Poa secunda, a common native grass species in Intermountain West grasslands and a frequent component of restoration seed mixes, is one such species. Here, we evaluate the genetic variation of local Poa secunda collections in the context of wild populations and commercial seed releases. We evaluated AFLP markers for seven Poa secunda collections made over a 4000-hectare area and four commercial releases (High Plains, MT-1, Opportunity, and Sherman). We compare the genetic distance and distribution of genetic variation within and between local collections and commercial releases. The extent and patterns of genetic variation in our local collections indicate subtle site differences with most variation occurring within rather than between collections. Identical genetic matches were usually, but not always, found within 5 m2 collection sites. Our results suggest that the genetic variation in two Poa secunda releases (High Plains and MT-1) is similar to our local collections. Our results affirm that guidelines for Poa secunda seed collection should follow recommendations for selfing species, by collecting from many sites over large individual sites. PMID:28369130

  17. Poa secunda local collections and commercial releases: A genotypic evaluation.

    PubMed

    Shaw, Alanna N; Mummey, Daniel L

    2017-01-01

    The genetics of native plants influence the success of ecological restoration, yet genetic variability of local seed collections and commercial seed releases remains unclear for most taxa. Poa secunda, a common native grass species in Intermountain West grasslands and a frequent component of restoration seed mixes, is one such species. Here, we evaluate the genetic variation of local Poa secunda collections in the context of wild populations and commercial seed releases. We evaluated AFLP markers for seven Poa secunda collections made over a 4000-hectare area and four commercial releases (High Plains, MT-1, Opportunity, and Sherman). We compare the genetic distance and distribution of genetic variation within and between local collections and commercial releases. The extent and patterns of genetic variation in our local collections indicate subtle site differences with most variation occurring within rather than between collections. Identical genetic matches were usually, but not always, found within 5 m2 collection sites. Our results suggest that the genetic variation in two Poa secunda releases (High Plains and MT-1) is similar to our local collections. Our results affirm that guidelines for Poa secunda seed collection should follow recommendations for selfing species, by collecting from many sites over large individual sites.

  18. Climate Variability and Ponderosa Pine Colonizations in Central Wyoming: Integrating Dendroecology and Dendroclimatology

    NASA Astrophysics Data System (ADS)

    Lesser, M.; Wentzel, C.; Gray, S.; Jackson, S.

    2007-12-01

    Many tree species are predicted to expand into new territory over the coming decades in response to changing climate. By studying tree expansions over the last several centuries we can begin to understand the mechanisms underlying these changes and anticipate their consequences for forest management. Woody-plant demographics and decadal to multidecadal climate variability are often closely linked in semi-arid regions. Integrated tree-ring analysis, combining dendroecology and dendroclimatology to document, respectively, the demographic history of the population and the climatic history of the region, can reveal ecological dynamics in response to climate variability. We studied four small, disjunct populations of Pinus ponderosa in the Bighorn Basin of north-central Wyoming. These populations are located 30 to 100 kilometers from the nearest core populations of ponderosa pine in the western Bighorn Mountains. Packrat midden studies have shown that ponderosa pine colonized the western slopes of the Bighorn Range 1500 years ago, so the disjunct populations in the basin must be younger. All trees (living and dead) at each of the four disjunct populations were mapped, cored, and then aged using tree-ring based techniques. We obtained records of hydroclimatic variability from the Bighorn Basin using four tree-ring series from Pinus flexilis (3 sites) and Pseudotsuga menziesii (1 site). The four disjunct populations were all established within the past 500 years. Initially, the populations grew slowly with low recruitment rates until the early 19th century, when they experienced one or more large recruitment pulses. These pulses coincided with extended wet periods in the climate reconstruction. However, similar wet periods before the 19th Century were not accompanied by recruitment pulses, indicating that other factors (e.g., population density, genetic variability) are also important in colonization and expansion. We are currently obtaining genetic data and carrying out population modeling to differentiate the effects of population dynamics, genetic variability, and climate variability on recruitment and expansion of these populations.

  19. Genetic variability in CHMP2B and frontotemporal dementia.

    PubMed

    Momeni, Parastoo; Rogaeva, Ekaterina; Van Deerlin, Vivianna; Yuan, Wuxing; Grafman, Jordan; Tierney, Michael; Huey, Edward; Bell, Jason; Morris, Chris M; Kalaria, Rajesh N; van Rensburg, Susan J; Niehaus, Dana; Potocnik, Felix; Kawarai, Toshitaka; Salehi-Rad, Shabnam; Sato, Christine; St George-Hyslop, Peter; Hardy, John

    2006-01-01

    A nonsense/protein chain-terminating mutation in the CHMP2B gene has recently been reported as a cause of frontotemporal dementia (FTD) in the single large family known to show linkage to chromosome 3. Screening for mutations in this gene in a large series of FTD families and individual patients led to the identification of a protein-truncating mutation in 2 unaffected members of an Afrikaner family with FTD, but not in their affected relatives. The putative pathogenicity of CHMP2B mutations for dementia is discussed.

  20. Metabolic Capacity of Sinorhizobium (Ensifer) meliloti Strains as Determined by Phenotype MicroArray Analysis▿ †

    PubMed Central

    Biondi, Emanuele G.; Tatti, Enrico; Comparini, Diego; Giuntini, Elisa; Mocali, Stefano; Giovannetti, Luciana; Bazzicalupo, Marco; Mengoni, Alessio; Viti, Carlo

    2009-01-01

    Sinorhizobium meliloti is a soil bacterium that fixes atmospheric nitrogen in plant roots. The high genetic diversity of its natural populations has been the subject of extensive analysis. Recent genomic studies of several isolates revealed a high content of variable genes, suggesting a correspondingly large phenotypic differentiation among strains of S. meliloti. Here, using the Phenotype MicroArray (PM) system, hundreds of different growth conditions were tested in order to compare the metabolic capabilities of the laboratory reference strain Rm1021 with those of four natural S. meliloti isolates previously analyzed by comparative genomic hybridization (CGH). The results of PM analysis showed that most phenotypic differences involved carbon source utilization and tolerance to osmolytes and pH, while fewer differences were scored for nitrogen, phosphorus, and sulfur source utilization. Only the variability of the tested strain in tolerance to sodium nitrite and ammonium sulfate of pH 8 was hypothesized to be associated with the genetic polymorphisms detected by CGH analysis. Colony and cell morphologies and the ability to nodulate Medicago truncatula plants were also compared, revealing further phenotypic diversity. Overall, our results suggest that the study of functional (phenotypic) variability of S. meliloti populations is an important and complementary step in the investigation of genetic polymorphism of rhizobia and may help to elucidate rhizobial evolutionary dynamics, including adaptation to diverse environments. PMID:19561177

  1. Population structure, genetic variability, and gene flow of the bean leaf beetle, Cerotoma trifurcata, in the Midwestern United States

    USDA-ARS?s Scientific Manuscript database

    Bean leaf beetle, Cerotoma trifurcata (Forster) (Coleoptera: Chrysomelidae), is a common pest of soybean in the Midwest. However, there are currently no studies on the genetic variability of C. trifurcata. This study examined 15-30 individuals from 25 subpopulations to determine genetic variability ...

  2. Inter-Simple Sequence Repeat Data Reveals High Genetic Diversity in Wild Populations of the Narrowly Distributed Endemic Lilium regale in the Minjiang River Valley of China

    PubMed Central

    Wu, Zhu-hua; Shi, Jisen; Xi, Meng-li; Jiang, Fu-xing; Deng, Ming-wen; Dayanandan, Selvadurai

    2015-01-01

    Lilium regale E.H. Wilson is endemic to a narrow geographic area in the Minjiang River valley in southwestern China, and is considered an important germplasm for breeding commercially valuable lily varieties, due to its vigorous growth, resistance to diseases and tolerance for low moisture. We analyzed the genetic diversity of eight populations of L. regale sampled across the entire natural distribution range of the species using Inter-Simple Sequence Repeat markers. The genetic diversity (expected heterozygosity= 0.3356) was higher than those reported for other narrowly distributed endemic plants. The levels of inbreeding (F st = 0.1897) were low, and most of the genetic variability was found to be within (80.91%) than amongpopulations (19.09%). An indirect estimate of historical levels of gene flow (N m =1.0678) indicated high levels of gene flow among populations. The eight analyzed populations clustered into three genetically distinct groups. Based on these results, we recommend conservation of large populations representing these three genetically distinct groups. PMID:25799495

  3. Unlocking the genetic diversity of Creole wheats.

    PubMed

    Vikram, Prashant; Franco, Jorge; Burgueño-Ferreira, Juan; Li, Huihui; Sehgal, Deepmala; Saint Pierre, Carolina; Ortiz, Cynthia; Sneller, Clay; Tattaris, Maria; Guzman, Carlos; Sansaloni, Carolina Paola; Ellis, Mark; Fuentes-Davila, Guillermo; Reynolds, Matthew; Sonders, Kai; Singh, Pawan; Payne, Thomas; Wenzl, Peter; Sharma, Achla; Bains, Navtej Singh; Singh, Gyanendra Pratap; Crossa, José; Singh, Sukhwinder

    2016-03-15

    Climate change and slow yield gains pose a major threat to global wheat production. Underutilized genetic resources including landraces and wild relatives are key elements for developing high-yielding and climate-resilient wheat varieties. Landraces introduced into Mexico from Europe, also known as Creole wheats, are adapted to a wide range of climatic regimes and represent a unique genetic resource. Eight thousand four hundred and sixteen wheat landraces representing all dimensions of Mexico were characterized through genotyping-by-sequencing technology. Results revealed sub-groups adapted to specific environments of Mexico. Broadly, accessions from north and south of Mexico showed considerable genetic differentiation. However, a large percentage of landrace accessions were genetically very close, although belonged to different regions most likely due to the recent (nearly five centuries before) introduction of wheat in Mexico. Some of the groups adapted to extreme environments and accumulated high number of rare alleles. Core reference sets were assembled simultaneously using multiple variables, capturing 89% of the rare alleles present in the complete set. Genetic information about Mexican wheat landraces and core reference set can be effectively utilized in next generation wheat varietal improvement.

  4. Newborn screening of metabolic disorders: recent progress and future developments.

    PubMed

    Rinaldo, Piero; Lim, James S; Tortorelli, Silvia; Gavrilov, Dimitar; Matern, Dietrich

    2008-01-01

    Tandem mass spectrometry has been the main driver behind a significant expansion in newborn screening programs. The ability to detect more than 40 conditions by a single test underscores the need to better understand the clinical and laboratory characteristics of the conditions being tested, and the complexity of pattern recognition and differential diagnoses of one or more elevated markers. The panel of conditions recommended by the American College of Medical Genetics, including 20 primary conditions and 22 secondary targets that are detectable by tandem mass spectrometry has been adopted as the standard of care in the vast majority of US states. The evolution of newborn screening is far from being idle as a large number of infectious, genetic, and metabolic conditions are currently under investigation at variable stages of test development and clinical validation. In the US, a formal process with oversight by the Advisory Committee on Heritable Disorders and Genetic Diseases in Newborns and Children has been established for nomination and evidence-based review of new candidate conditions. If approved, these conditions could be added to the uniform panel and consequently pave the way to large scale implementation.

  5. A Locus Encoding Variable Defense Systems against Invading DNA Identified in Streptococcus suis

    PubMed Central

    Okura, Masatoshi; Nozawa, Takashi; Watanabe, Takayasu; Murase, Kazunori; Nakagawa, Ichiro; Takamatsu, Daisuke; Osaki, Makoto; Sekizaki, Tsutomu; Gottschalk, Marcelo; Hamada, Shigeyuki

    2017-01-01

    Streptococcus suis, an important zoonotic pathogen, is known to have an open pan-genome and to develop a competent state. In S. suis, limited genetic lineages are suggested to be associated with zoonosis. However, little is known about the evolution of diversified lineages and their respective phenotypic or ecological characteristics. In this study, we performed comparative genome analyses of S. suis, with a focus on the competence genes, mobile genetic elements, and genetic elements related to various defense systems against exogenous DNAs (defense elements) that are associated with gene gain/loss/exchange mediated by horizontal DNA movements and their restrictions. Our genome analyses revealed a conserved competence-inducing peptide type (pherotype) of the competence system and large-scale genome rearrangements in certain clusters based on the genome phylogeny of 58 S. suis strains. Moreover, the profiles of the defense elements were similar or identical to each other among the strains belonging to the same genomic clusters. Our findings suggest that these genetic characteristics of each cluster might exert specific effects on the phenotypic or ecological differences between the clusters. We also found certain loci that shift several types of defense elements in S. suis. Of note, one of these loci is a previously unrecognized variable region in bacteria, at which strains of distinct clusters code for different and various defense elements. This locus might represent a novel defense mechanism that has evolved through an arms race between bacteria and invading DNAs, mediated by mobile genetic elements and genetic competence. PMID:28379509

  6. High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens.

    PubMed

    Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang

    2017-02-22

    Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st  = 0.05 ± 0.049). The smallest divergence is among African populations (G st  = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st  = 0.0217 ± 0.0109) and then among African and non-African populations (G st  = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.

  7. Endophenotype Best Practices

    PubMed Central

    Iacono, William G.; Malone, Stephen M.; Vrieze, Scott I.

    2016-01-01

    This review examines the current state of electrophysiological endophenotype research and recommends best practices that are based on knowledge gleaned from the last decade of molecular genetic research with complex traits. Endophenotype research is being oversold for its potential to help discover psychopathology relevant genes using the types of small samples feasible for electrophysiological research. This is largely because the genetic architecture of endophenotypes appears to be very much like that of behavioral traits and disorders: they are complex, influenced by many variants (e.g., tens of thousands) within many genes, each contributing a very small effect. Out of over 40 electrophysiological endophenotypes covered by our review, only resting heart, a measure that has received scant advocacy as an endophenotype, emerges as an electrophysiological variable with verified associations with molecular genetic variants. To move the field forward, investigations designed to discover novel variants associated with endophenotypes will need extremely large samples best obtained by forming consortia and sharing data obtained from genome wide arrays. In addition, endophenotype research can benefit from successful molecular genetic studies of psychopathology by examining the degree to which these verified psychopathology-relevant variants are also associated with an endophenotype, and by using knowledge about the functional significance of these variants to generate new endophenotypes. Even without molecular genetic associations, endophenotypes still have value in studying the development of disorders in unaffected individuals at high genetic risk, constructing animal models, and gaining insight into neural mechanisms that are relevant to clinical disorder. PMID:27473600

  8. Genetic Variability of the Neogregarine Apicystis bombi, an Etiological Agent of an Emergent Bumblebee Disease

    PubMed Central

    Maebe, Kevin; Arbetman, Marina; Morales, Carolina; Graystock, Peter; Hughes, William O. H.; Plischuk, Santiago; Lange, Carlos E.; de Graaf, Dirk C.; Zapata, Nelson; de la Rosa, Jose Javier Perez; Murray, Tomás E.; Brown, Mark J. F.; Smagghe, Guy

    2013-01-01

    The worldwide spread of diseases is considered a major threat to biodiversity and a possible driver of the decline of pollinator populations, particularly when novel species or strains of parasites emerge. Previous studies have suggested that populations of introduced European honeybee (Apis mellifera) and bumblebee species (Bombus terrestris and Bombus ruderatus) in Argentina share the neogregarine parasite Apicystis bombi with the native bumblebee (Bombus dahlbomii). In this study we investigated whether A. bombi is acting as an emergent parasite in the non-native populations. Specifically, we asked whether A. bombi, recently identified in Argentina, was introduced by European, non-native bees. Using ITS1 and ITS2 to assess the parasite’s intraspecific genetic variation in bees from Argentina and Europe, we found a largely unstructured parasite population, with only 15% of the genetic variation being explained by geographic location. The most abundant haplotype in Argentina (found in all 9 specimens of non-native species) was identical to the most abundant haplotype in Europe (found in 6 out of 8 specimens). Similarly, there was no evidence of structuring by host species, with this factor explaining only 17% of the genetic variation. Interestingly, parasites in native Bombus ephippiatus from Mexico were genetically distant from the Argentine and European samples, suggesting that sufficient variability does exist in the ITS region to identify continent-level genetic structure in the parasite. Thus, the data suggest that A. bombi from Argentina and Europe share a common, relatively recent origin. Although our data did not provide information on the direction of transfer, the absence of genetic structure across space and host species suggests that A. bombi may be acting as an emergent infectious disease across bee taxa and continents. PMID:24324696

  9. Impact of climate change on cold hardiness of Douglas-fir (Pseudotsuga menziesii): Environmental and genetic considerations

    Treesearch

    Sheel Bansal; Bradley J. St. Clair; Constance A. Harrington; Peter J. Gould

    2015-01-01

    The success of conifers over much of the world’s terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer-dominated forests. The expression of cold...

  10. Development of variable microsatellite loci and range-wide characterization of nuclear genetic diversity in the important dryland shrub antelope bitterbrush (Purshia tridentata)

    Treesearch

    M.E. Horning; R.C. Cronn

    2009-01-01

    Antelope bitterbrush (Purshia tridentata Pursh DC; Rosaceae) is an arid-land shrub that occupies an important ecological niche in various fire-dominated communities across much of the Western United States. Because of its importance as a browse for large mammals and a food source for granivores, P. tridentata is frequently planted...

  11. Transcriptional Regulation of CYP2D6 Expression

    PubMed Central

    Pan, Xian; Ning, Miaoran

    2017-01-01

    CYP2D6-mediated drug metabolism exhibits large interindividual variability. Although genetic variations in the CYP2D6 gene are well known contributors to the variability, the sources of CYP2D6 variability in individuals of the same genotype remain unexplained. Accumulating data indicate that transcriptional regulation of CYP2D6 may account for part of CYP2D6 variability. Yet, our understanding of factors governing transcriptional regulation of CYP2D6 is limited. Recently, mechanistic studies of increased CYP2D6-mediated drug metabolism in pregnancy revealed two transcription factors, small heterodimer partner (SHP) and Krüppel-like factor 9, as a transcriptional repressor and an activator, respectively, of CYP2D6. Chemicals that increase SHP expression (e.g., retinoids and activators of farnesoid X receptor) were shown to downregulate CYP2D6 expression in the humanized mice as well as in human hepatocytes. This review summarizes the series of studies on the transcriptional regulation of CYP2D6 expression, potentially providing a basis to better understand the large interindividual variability in CYP2D6-mediated drug metabolism. PMID:27698228

  12. Genetic screening of male patients with primary hypogammaglobulinemia can guide diagnosis and clinical management.

    PubMed

    Vince, Nicolas; Mouillot, Gaël; Malphettes, Marion; Limou, Sophie; Boutboul, David; Guignet, Angélique; Bertrand, Véronique; Pellet, Philippe; Gourraud, Pierre-Antoine; Debré, Patrice; Oksenhendler, Eric; Théodorou, Ioannis; Fieschi, Claire

    2018-04-27

    The precise diagnosis of an immunodeficiency is sometimes difficult to assess, especially due to the large spectrum of phenotypic variation reported among patients. Common variable immunodeficiency disorders (CVID) do not have, for a large part, an identified genetic cause. The identification of a causal genetic mutation is important to confirm, or in some cases correct, the diagnosis. We screened >150 male patients with hypogammaglobulinemia for mutations in three genes involved in pediatric X-linked primary immunoglobulin deficiency: CD40LG, SH2D1A and BTK. The SH2D1A screening allowed to reclassify two individuals with an initial CVID presentation as XLP after mutations identification. All these mutations were associated with a lack of protein expression. In addition, 4 patients with a primary diagnosis of CVID and one with a primary IgG subclass deficiency were requalified as XLA after identifying BTK mutations. Interestingly, two out of these 5 patients carried a damaging coding BTK mutation associated with a lower, but detectable, BTK expression in monocytes, suggesting that a dysfunctional protein explains the disease phenotype in these patients. In conclusion, our results advocate to include SH2D1A and BTK in newly developed targeted NGS genetic testing, to contribute to providing the most appropriate medical treatment and genetic counselling. Copyright © 2018 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  13. Geographic origin is not supported by the genetic variability found in a large living collection of Jatropha curcas with accessions from three continents

    PubMed Central

    Maghuly, Fatemeh; Jankowicz-Cieslak, Joanna; Pabinger, Stephan; Till, Bradley J; Laimer, Margit

    2015-01-01

    Increasing economic interest in Jatropha curcas requires a major research focus on the genetic background and geographic origin of this non-edible biofuel crop. To determine the worldwide genetic structure of this species, amplified fragment length polymorphisms, inter simple sequence repeats, and novel single nucleotide polymorphisms (SNPs) were employed for a large collection of 907 J. curcas accessions and related species (RS) from three continents, 15 countries and 53 regions. PCoA, phenogram, and cophenetic analyses separated RS from two J. curcas groups. Accessions from Mexico, Bolivia, Paraguay, Kenya, and Ethiopia with unknown origins were found in both groups. In general, there was a considerable overlap between individuals from different regions and countries. The Bayesian approach using structure demonstrated two groups with a low genetic variation. Analysis of molecular varience revealed significant variation among individuals within populations. SNPs found by in silico analyses of Δ12 fatty acid desaturase indicated possible changes in gene expression and thus in fatty acid profiles. SNP variation was higher in the curcin gene compared to genes involved in oil production. Novel SNPs allowed separating toxic, non-toxic, and Mexican accessions. The present study confirms that human activities had a major influence on the genetic diversity of J. curcas, not only because of domestication, but also because of biased selection. PMID:25511658

  14. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  15. Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow.

    PubMed

    van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine

    2014-03-01

    For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (< 3 km), we calculated several measures of landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.

  16. [Genetic and environmental contributions to body mass index in a Spanish adolescent twin sample].

    PubMed

    Iranzo-Tatay, Carmen; Gimeno-Clemente, Natalia; Livianos-Aldana, Lorenzo; Rojo-Moreno, Luis

    2015-08-21

    Twin and family studies support large genetic influences on variability in body mass index (BMI), with heritability estimates ranging from 47% to over 90%. Our objective was to study the relative contributions of genetics and environment to BMI, evaluating sex differences, in an adolescent twin sample from Valencia, Spain. Five hundred eighty-four pairs of adolescent twins between 13 and 18 years of age completed the study (82 monozygotic [MZ] and 87 dizygotic [DZ] pairs of male twins, 118 MZ and 102 DZ pairs of female twins, and 195 opposite-sex pairs of DZ twins). To determine zygosity, teachers responded a questionnaire on physical similarity. They also measured the participant's height and weight. BMI was calculated and weight status was determined according to age. We used twin models to assess genetic and environmental (common and unique) factors affecting BMI. There was a 7.1% frequency of overweight and 2.8% of obesity. The estimated heritability of BMI was 88.0% in boys and 72.1% in girls, with the remaining variance attributable to non-shared environment in boys (12.0%) and 8.8% in girls. It was only in girls that common environment had an effect on BMI. Genetics appears to play an important role in explaining the variability in BMI in the adolescence, with slight variations between boys and girls. Common environmental factors exert their influence on BMI only in girls. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  17. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution).

  18. High levels of genetic variability and inbreeding in two Neotropical dioecious palms with contrasting life histories.

    PubMed

    Luna, R; Epperson, B K; Oyama, K

    2007-10-01

    We characterized the population genetics of two Neotropical dioecious palm species of Chamaedorea with contrasting life strategies from the region that is both the northernmost extent and most species rich of the genus. Chamaedorea tepejilote is a common, wind-pollinated arboreal understory palm. Although most adult plants reproduce each year, only a few individuals produce the majority of flowers and seeds. Chamaedorea elatior, conversely, is an uncommon climbing subcanopy palm with entomophilous flowers (insect-pollinated characteristics). Most of the mature palms do not reproduce in consecutive years and fruiting is episodic. Isozymes with a total of 107 alleles for 27 loci of 17 enzymes from six populations were assessed. For both species, co-occurrence of high levels of genetic variation and homozygosity was observed (C. tepejilote: He: 0.385-0.442, f: 0.431-0.486; C. elatior: He: 0.278-0.342, f: 0.466-0.535). Genetic differentiation of C. elatior was much lower (theta=0.0315) than that for C. tepejilote (theta=0.152). The contrast in differentiation may be influenced by differences in the spatial scale of the genetic neighborhoods of the two species. The simultaneous maintenance of inbreeding and of a large number of alleles within the populations is attributable to the low and variable number of mating pairs. Demographic studies indicate that this pattern could be explained by low reproductive frequency among individuals and over years in C. elatior and by reproductive dominance in C. tepejilote.

  19. An Underlying Common Factor, Influenced by Genetics and Unique Environment, Explains the Covariation Between Major Depressive Disorder, Generalized Anxiety Disorder, and Burnout: A Swedish Twin Study.

    PubMed

    Mather, Lisa; Blom, Victoria; Bergström, Gunnar; Svedberg, Pia

    2016-12-01

    Depression and anxiety are highly comorbid due to shared genetic risk factors, but less is known about whether burnout shares these risk factors. We aimed to examine whether the covariation between major depressive disorder (MDD), generalized anxiety disorder (GAD), and burnout is explained by common genetic and/or environmental factors. This cross-sectional study included 25,378 Swedish twins responding to a survey in 2005-2006. Structural equation models were used to analyze whether the trait variances and covariances were due to additive genetics, non-additive genetics, shared environment, and unique environment. Univariate analyses tested sex limitation models and multivariate analysis tested Cholesky, independent pathway, and common pathway models. The phenotypic correlations were 0.71 (0.69-0.74) between MDD and GAD, 0.58 (0.56-0.60) between MDD and burnout, and 0.53 (0.50-0.56) between GAD and burnout. Heritabilities were 45% for MDD, 49% for GAD, and 38% for burnout; no statistically significant sex differences were found. A common pathway model was chosen as the final model. The common factor was influenced by genetics (58%) and unique environment (42%), and explained 77% of the variation in MDD, 69% in GAD, and 44% in burnout. GAD and burnout had additive genetic factors unique to the phenotypes (11% each), while MDD did not. Unique environment explained 23% of the variability in MDD, 20% in GAD, and 45% in burnout. In conclusion, the covariation was explained by an underlying common factor, largely influenced by genetics. Burnout was to a large degree influenced by unique environmental factors not shared with MDD and GAD.

  20. Effective number of breeding adults in Bufo bufo estimated from age-specific variation at minisatellite loci

    USGS Publications Warehouse

    Scribner, K.T.; Arntzen, J.W.; Burke, T.

    1997-01-01

    Estimates of the effective number of breeding adults were derived for three semi-isolated populations of the common toad Bufo bufo based on temporal (i.e. adult-progeny) variance in allele frequency for three highly polymorphic minisatellite loci. Estimates of spatial variance in allele frequency among populations and of age-specific measures of genetic variability are also described. Each population was characterized by a low effective adult breeding number (N(b)) based on a large age-specific variance in minisatellite allele frequency. Estimates of N(b) (range 21-46 for population means across three loci) were ??? 55-230-fold lower than estimates of total adult census size. The implications of low effective breeding numbers for long-term maintenance of genetic variability and population viability are discussed relative to the species' reproductive ecology, current land-use practices, and present and historical habitat modification and loss. The utility of indirect measures of population parameters such as N(b) and N(e) based on time-series data of minisatellite allele frequencies is discussed relative to similar measures estimated from commonly used genetic markers such as protein allozymes.

  1. Population Structure and Gene Flow of the Yellow Anaconda (Eunectes notaeus) in Northern Argentina

    PubMed Central

    McCartney-Melstad, Evan; Waller, Tomás; Micucci, Patricio A.; Barros, Mariano; Draque, Juan; Amato, George; Mendez, Martin

    2012-01-01

    Yellow anacondas (Eunectes notaeus) are large, semiaquatic boid snakes found in wetland systems in South America. These snakes are commercially harvested under a sustainable management plan in Argentina, so information regarding population structuring can be helpful for determination of management units. We evaluated genetic structure and migration using partial sequences from the mitochondrial control region and mitochondrial genes cyt-b and ND4 for 183 samples collected within northern Argentina. A group of landscape features and environmental variables including several treatments of temperature and precipitation were explored as potential drivers of observed genetic patterns. We found significant population structure between most putative population comparisons and bidirectional but asymmetric migration in several cases. The configuration of rivers and wetlands was found to be significantly associated with yellow anaconda population structure (IBD), and important for gene flow, although genetic distances were not significantly correlated with the environmental variables used here. More in-depth analyses of environmental data may be needed to fully understand the importance of environmental conditions on population structure and migration. These analyses indicate that our putative populations are demographically distinct and should be treated as such in Argentina's management plan for the harvesting of yellow anacondas. PMID:22675425

  2. Looking for variable molecular markers in the chestnut gall wasp Dryocosmus kuriphilus: first comparison across genes.

    PubMed

    Bonal, Raúl; Vargas-Osuna, Enrique; Mena, Juan Diego; Aparicio, José Miguel; Santoro, María; Martín, Angela

    2018-04-04

    The quick spread of the chestnut gall wasp Dryocosmus kuriphilus in Europe constitutes an outstanding example of recent human-aided biological invasion with dramatic economic losses. We screened for the first time a set of five nuclear and mitochondrial genes from D. kuriphilus collected in the Iberian Peninsula, and compared the sequences with those available from the native and invasive range of the species. We found no genetic variability in Iberia in none of the five genes, moreover, the three genes compared with other European samples showed no variability either. We recorded four cytochrome b haplotypes in Europe; one was genuine mitochondrial DNA and the rest nuclear copies of mitDNA (numts), what stresses the need of careful in silico analyses. The numts formed a separate cluster in the gene tree and at least two of them might be orthologous, what suggests that the invasion might have started with more than one individual. Our results point at a low initial population size in Europe followed by a quick population growth. Future studies assessing the expansion of this pest should include a large number of sampling sites and use powerful nuclear markers (e. g. Single Nucleotide Polymorphisms) to detect genetic variability.

  3. Genes, Race and Research Ethics: Who’s Minding the Store?

    PubMed Central

    Hunt, Linda M.; Megyesi, Mary S.

    2015-01-01

    BACKGROUND The search for genetic variants between racial/ethnic groups to explain differential disease susceptibility and drug response has provoked sharp criticisms, challenging the appropriateness of using race/ethnicity as a variable in genetics research, because such categories are social constructs and not biological classifications. OBJECTIVES To gain insight into how a group of genetic scientists conceptualize and use racial/ethnic variables in their work, and their strategies for managing the ethical issues and consequences of this practice. METHODS In-depth semi-structured interviews were conducted with a purposive sample of 30 genetic researchers who use racial/ethnic variables in their research. Standard qualitative methods of content analysis were used. RESULTS Most of the genetic researchers viewed racial/ethnic variables as arbitrary and very poorly defined, and in turn as scientifically inadequate. However, most defended their use, describing them as useful proxy variables on a road to Imminent Medical Progress. None had developed overt strategies for addressing these inadequacies, with many instead asserting that science will inevitably correct itself, and saying that meanwhile researchers should “be careful” in the language chosen for reporting findings. CONCLUSIONS While the legitimacy and consequences of using racial/ethnic variables in genetics research has been widely criticized, ethical oversight is left to genetic researchers themselves. Given the general vagueness and imprecision we found amongst these researchers regarding their use of these variables, they do not seem well equipped for such an undertaking. It would seem imperative that research ethicist move forward to develop specific policies and practices to assure the scientific integrity of genetic research on biological differences between population groups. PMID:18511627

  4. Prenatal molecular diagnosis of oculocutaneous albinism (OCA) in a large cohort of Israeli families.

    PubMed

    Rosenmann, Ada; Bejarano-Achache, Idit; Eli, Dalia; Maftsir, Genia; Mizrahi-Meissonnier, Liliana; Blumenfeld, Anat

    2009-10-01

    To present our accumulated data on prenatal molecular diagnosis of oculocutaneous albinism (OCA) in a large cohort of Israeli albino families. Albinism consists of variable phenotypes, but only families with predicted severely handicapped albino offspring, who declared their wish to terminate a pregnancy of such a fetus, are eligible for prenatal testing. Prenatal testing is not offered otherwise. Following detailed genetic investigation and counseling, molecular prenatal testing was performed using the combination of mutation screening, direct sequencing, and haplotype analysis. A total of 55 prenatal tests were performed in 37 families; in 26 families the propositus was the child, and in 11, a parent or a close relative. In 32 families tyrosinase (TYR) mutations were diagnosed. In 5 families a P gene mutation was detected. Twelve albino fetuses were diagnosed. Following further genetic counseling, all couples elected to terminate the pregnancy. Three additional pregnancies were terminated for other reasons. Families with increased risk for an albino child with severe visual handicap, seek premarital and prenatal genetic counseling and testing, for the prevention of affected offspring. Our combined methods of molecular genetic testing enable a nationwide approach for prevention of albinism. The same paradigm can be applied to other populations affected with albinism.

  5. Alzheimer disease genetic risk factor APOE e4 and cognitive abilities in 111,739 UK Biobank participants.

    PubMed

    Lyall, Donald M; Ward, Joey; Ritchie, Stuart J; Davies, Gail; Cullen, Breda; Celis, Carlos; Bailey, Mark E S; Anderson, Jana; Evans, Jon; Mckay, Daniel F; Mcintosh, Andrew M; Sattar, Naveed; Smith, Daniel J; Deary, Ian J; Pell, Jill P

    2016-07-01

    the apolipoprotein (APOE) e4 locus is a genetic risk factor for dementia. Carriers of the e4 allele may be more vulnerable to conditions that are independent risk factors for cognitive decline, such as cardiometabolic diseases. we tested whether any association with APOE e4 status on cognitive ability was larger in older ages or in those with cardiometabolic diseases. UK Biobank includes over 500,000 middle- and older aged adults who have undergone detailed medical and cognitive phenotypic assessment. Around 150,000 currently have genetic data. We examined 111,739 participants with complete genetic and cognitive data. baseline cognitive data relating to information processing speed, memory and reasoning were used. We tested for interactions with age and with the presence versus absence of type 2 diabetes (T2D), coronary artery disease (CAD) and hypertension. in several instances, APOE e4 dosage interacted with older age and disease presence to affect cognitive scores. When adjusted for potentially confounding variables, there was no APOE e4 effect on the outcome variables. future research in large independent cohorts should continue to investigate this important question, which has potential implications for aetiology related to dementia and cognitive impairment. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Heritability of the melatonin synthesis variability in autism spectrum disorders.

    PubMed

    Benabou, Marion; Rolland, Thomas; Leblond, Claire S; Millot, Gaël A; Huguet, Guillaume; Delorme, Richard; Leboyer, Marion; Pagan, Cécile; Callebert, Jacques; Maronde, Erik; Bourgeron, Thomas

    2017-12-18

    Autism Spectrum Disorders (ASD) are heterogeneous neurodevelopmental disorders with a complex genetic architecture. They are characterized by impaired social communication, stereotyped behaviors and restricted interests and are frequently associated with comorbidities such as intellectual disability, epilepsy and severe sleep disorders. Hyperserotonemia and low melatonin levels are among the most replicated endophenotypes reported in ASD, but their genetic causes remain largely unknown. Based on the biochemical profile of 717 individuals including 213 children with ASD, 128 unaffected siblings and 376 parents and other relatives, we estimated the heritability of whole-blood serotonin, platelet N-acetylserotonin (NAS) and plasma melatonin levels, as well as the two enzymes arylalkylamine N-acetyltransferase (AANAT) and acetylserotonin O-methyltransferase (ASMT) activities measured in platelets. Overall, heritability was higher for NAS (0.72 ± 0.091) and ASMT (0.59 ± 0.097) compared with serotonin (0.31 ± 0.078), AANAT (0.34 ± 0.077) and melatonin (0.22 ± 0.071). Bivariate analyses showed high phenotypic and genetic correlations between traits of the second step of the metabolic pathway (NAS, ASMT and melatonin) indicating the contribution of shared genetic factors. A better knowledge of the heritability of the melatonin synthesis variability constitutes an important step to identify the factors that perturb this pathway in individuals with ASD.

  7. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species.

    PubMed

    Choupina, A B; Martins, I M

    2014-08-01

    Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia), are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal), there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates), as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as "glochidia" hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  8. Multidisciplinary design optimization using genetic algorithms

    NASA Technical Reports Server (NTRS)

    Unal, Resit

    1994-01-01

    Multidisciplinary design optimization (MDO) is an important step in the conceptual design and evaluation of launch vehicles since it can have a significant impact on performance and life cycle cost. The objective is to search the system design space to determine values of design variables that optimize the performance characteristic subject to system constraints. Gradient-based optimization routines have been used extensively for aerospace design optimization. However, one limitation of gradient based optimizers is their need for gradient information. Therefore, design problems which include discrete variables can not be studied. Such problems are common in launch vehicle design. For example, the number of engines and material choices must be integer values or assume only a few discrete values. In this study, genetic algorithms are investigated as an approach to MDO problems involving discrete variables and discontinuous domains. Optimization by genetic algorithms (GA) uses a search procedure which is fundamentally different from those gradient based methods. Genetic algorithms seek to find good solutions in an efficient and timely manner rather than finding the best solution. GA are designed to mimic evolutionary selection. A population of candidate designs is evaluated at each iteration, and each individual's probability of reproduction (existence in the next generation) depends on its fitness value (related to the value of the objective function). Progress toward the optimum is achieved by the crossover and mutation operations. GA is attractive since it uses only objective function values in the search process, so gradient calculations are avoided. Hence, GA are able to deal with discrete variables. Studies report success in the use of GA for aircraft design optimization studies, trajectory analysis, space structure design and control systems design. In these studies reliable convergence was achieved, but the number of function evaluations was large compared with efficient gradient methods. Applicaiton of GA is underway for a cost optimization study for a launch-vehicle fuel-tank and structural design of a wing. The strengths and limitations of GA for launch vehicle design optimization is studied.

  9. Genetic algorithm approaches for conceptual design of spacecraft systems including multi-objective optimization and design under uncertainty

    NASA Astrophysics Data System (ADS)

    Hassan, Rania A.

    In the design of complex large-scale spacecraft systems that involve a large number of components and subsystems, many specialized state-of-the-art design tools are employed to optimize the performance of various subsystems. However, there is no structured system-level concept-architecting process. Currently, spacecraft design is heavily based on the heritage of the industry. Old spacecraft designs are modified to adapt to new mission requirements, and feasible solutions---rather than optimal ones---are often all that is achieved. During the conceptual phase of the design, the choices available to designers are predominantly discrete variables describing major subsystems' technology options and redundancy levels. The complexity of spacecraft configurations makes the number of the system design variables that need to be traded off in an optimization process prohibitive when manual techniques are used. Such a discrete problem is well suited for solution with a Genetic Algorithm, which is a global search technique that performs optimization-like tasks. This research presents a systems engineering framework that places design requirements at the core of the design activities and transforms the design paradigm for spacecraft systems to a top-down approach rather than the current bottom-up approach. To facilitate decision-making in the early phases of the design process, the population-based search nature of the Genetic Algorithm is exploited to provide computationally inexpensive---compared to the state-of-the-practice---tools for both multi-objective design optimization and design optimization under uncertainty. In terms of computational cost, those tools are nearly on the same order of magnitude as that of standard single-objective deterministic Genetic Algorithm. The use of a multi-objective design approach provides system designers with a clear tradeoff optimization surface that allows them to understand the effect of their decisions on all the design objectives under consideration simultaneously. Incorporating uncertainties avoids large safety margins and unnecessary high redundancy levels. The focus on low computational cost for the optimization tools stems from the objective that improving the design of complex systems should not be achieved at the expense of a costly design methodology.

  10. EFFECT OF RADIOACTIVE ISOTOPE ON THE FLOWERING BEHAVIOUR OF JUTE (CORCHORUS OLITORIUS LINN.)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, A.; Choudhury, A.K.R.

    1962-03-01

    Following irradiation with S/sup 35/, the dispersion of the flowering time of jute was increased in the first generation. The genetic variability of the treated population in the second generation was found to be greater than that of control population by two and a half times. But owing to the largeness of environmental variation, poor heritability of the flowering time was noticed. (auth)

  11. X-linked juvenile retinoschisis (XLRS): a review of genotype-phenotype relationships.

    PubMed

    Kim, David Y; Mukai, Shizuo

    2013-01-01

    X-linked juvenile retinoschisis (XLRS) is one of the most common genetic causes of juvenile progressive retinal-vitreal degeneration in males. To date, more than 196 different mutations of the RS1 gene have been associated with XLRS. The mutation spectrum is large and the phenotype variable. This review will focus on the clinical features of XLRS and examine the relationship between phenotype and genotype.

  12. Population Genetics of Jaguars (Panthera onca) in the Brazilian Pantanal: Molecular Evidence for Demographic Connectivity on a Regional Scale.

    PubMed

    Valdez, Fernanda Pedone; Haag, Taiana; Azevedo, Fernando C C; Silveira, Leandro; Cavalcanti, Sandra M C; Salzano, Francisco M; Eizirik, Eduardo

    2015-01-01

    Habitat loss and fragmentation are important threats to carnivores worldwide, and can be especially intense for large predators. Jaguars have already been extirpated from over half of their original area of distribution, and few regions still maintain large populations. For these, detailed understanding is crucial for setting appropriate recovery targets in impacted areas. The Pantanal is among the best examples of a region with a large jaguar population in a healthy environment. Here, we analyzed 12 microsatellite loci to characterize genetic diversity and population structure of 52 jaguars sampled in 4 localities of the southern Pantanal, and compared them with prior studies of heavily fragmented populations of the Atlantic Forest. Although we observed some internal structure among the Pantanal localities, our results indicated that this area comprises a single population with high genetic variability. Moreover, our comparative analyses supported the hypothesis that the strong population structure observed in the Atlantic Forest derives from recent, anthropogenic fragmentation. We also observed significant but low levels of genetic differentiation between the Pantanal and Atlantic Forest populations, indicating recent connectivity between jaguars occurring in these biomes. Evidence for admixture between the Pantanal and a population on the western boundary of the Atlantic Forest corroborates the transitional nature of the latter area, where the jaguar population has already been extirpated. Our results can be used to understand jaguar population dynamics in a region that is less disturbed than the Atlantic forest, and to support the design of conservation strategies that maintain and restore natural connectivity among currently isolated areas. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Revisiting the Evolution of Mycobacterium bovis

    PubMed Central

    Mostowy, Serge; Inwald, Jackie; Gordon, Steve; Martin, Carlos; Warren, Rob; Kremer, Kristin; Cousins, Debby; Behr, Marcel A.

    2005-01-01

    Though careful consideration has been placed towards genetic characterization of tubercle bacillus isolates causing disease in humans, those causing disease predominantly among wild and domesticated mammals have received less attention. In contrast to Mycobacterium tuberculosis, whose host range is largely specific to humans, M. bovis and “M bovis-like” organisms infect a broad range of animal species beyond their most prominent host in cattle. To determine whether strains of variable genomic content are associated with distinct distributions of disease, the DNA contents of M. bovis or M. bovis-like isolates from a variety of hosts were investigated via Affymetrix GeneChip. Consistent with previous genomic analysis of the M. tuberculosis complex (MTC), large sequence polymorphisms of putative diagnostic and biological consequence were able to unambiguously distinguish interrogated isolates. The distribution of deleted regions indicates organisms genomically removed from M. bovis and also points to structured genomic variability within M. bovis. Certain genomic profiles spanned a variety of hosts but were clustered by geography, while others associated primarily with host type. In contrast to the prevailing assumption that M. bovis has broad host capacity, genomic profiles suggest that distinct MTC lineages differentially infect a variety of mammals. From this, a phylogenetic stratification of genotypes offers a predictive framework upon which to base future genetic and phenotypic studies of the MTC. PMID:16159772

  14. SPSmart: adapting population based SNP genotype databases for fast and comprehensive web access.

    PubMed

    Amigo, Jorge; Salas, Antonio; Phillips, Christopher; Carracedo, Angel

    2008-10-10

    In the last five years large online resources of human variability have appeared, notably HapMap, Perlegen and the CEPH foundation. These databases of genotypes with population information act as catalogues of human diversity, and are widely used as reference sources for population genetics studies. Although many useful conclusions may be extracted by querying databases individually, the lack of flexibility for combining data from within and between each database does not allow the calculation of key population variability statistics. We have developed a novel tool for accessing and combining large-scale genomic databases of single nucleotide polymorphisms (SNPs) in widespread use in human population genetics: SPSmart (SNPs for Population Studies). A fast pipeline creates and maintains a data mart from the most commonly accessed databases of genotypes containing population information: data is mined, summarized into the standard statistical reference indices, and stored into a relational database that currently handles as many as 4 x 10(9) genotypes and that can be easily extended to new database initiatives. We have also built a web interface to the data mart that allows the browsing of underlying data indexed by population and the combining of populations, allowing intuitive and straightforward comparison of population groups. All the information served is optimized for web display, and most of the computations are already pre-processed in the data mart to speed up the data browsing and any computational treatment requested. In practice, SPSmart allows populations to be combined into user-defined groups, while multiple databases can be accessed and compared in a few simple steps from a single query. It performs the queries rapidly and gives straightforward graphical summaries of SNP population variability through visual inspection of allele frequencies outlined in standard pie-chart format. In addition, full numerical description of the data is output in statistical results panels that include common population genetics metrics such as heterozygosity, Fst and In.

  15. Downscaling GCM Output with Genetic Programming Model

    NASA Astrophysics Data System (ADS)

    Shi, X.; Dibike, Y. B.; Coulibaly, P.

    2004-05-01

    Climate change impact studies on watershed hydrology require reliable data at appropriate spatial and temporal resolution. However, the outputs of the current global climate models (GCMs) cannot be used directly because GCM do not provide hourly or daily precipitation and temperature reliable enough for hydrological modeling. Nevertheless, we can get more reliable data corresponding to future climate scenarios derived from GCM outputs using the so called 'downscaling techniques'. This study applies Genetic Programming (GP) based technique to downscale daily precipitation and temperature values at the Chute-du-Diable basin of the Saguenay watershed in Canada. In applying GP downscaling technique, the objective is to find a relationship between the large-scale predictor variables (NCEP data which provide daily information concerning the observed large-scale state of the atmosphere) and the predictand (meteorological data which describes conditions at the site scale). The selection of the most relevant predictor variables is achieved using the Pearson's coefficient of determination ( R2) (between the large-scale predictor variables and the daily meteorological data). In this case, the period (1961 - 2000) is identified to represent the current climate condition. For the forty years of data, the first 30 years (1961-1990) are considered for calibrating the models while the remaining ten years of data (1991-2000) are used to validate those models. In general, the R2 between the predictor variables and each predictand is very low in case of precipitation compared to that of maximum and minimum temperature. Moreover, the strength of individual predictors varies for every month and for each GP grammar. Therefore, the most appropriate combination of predictors has to be chosen by looking at the output analysis of all the twelve months and the different GP grammars. During the calibration of the GP model for precipitation downscaling, in addition to the mean daily precipitation and daily precipitation variability for each month, monthly average dry and wet-spell lengths are also considered as performance criteria. For the cases of Tmax and Tmin, means and variances of these variables corresponding to each month were considered as performance criteria. The GP downscaling results show satisfactory agreement between the observed daily temperature (Tmax and Tmin) and the simulated temperature. However, the downscaling results for the daily precipitation still require some improvement - suggesting further investigation of other grammars. KEY WORDS: Climate change; GP downscaling; GCM.

  16. Gene flow and genetic diversity of a broadcast-spawning coral in northern peripheral populations.

    PubMed

    Nakajima, Yuichi; Nishikawa, Akira; Iguchi, Akira; Sakai, Kazuhiko

    2010-06-16

    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadcast-spawning coral Acropora digitifera at 19 sites in seven regions along the 1,000 km long island chain of Nansei Islands, Japan. This area includes both subtropical and temperate habitats. Thus, the coral populations around the Nansei Islands in Japan are northern peripheral populations that would be subjected to environmental stresses different from those in tropical areas. The existence of high genetic connectivity across this large geographic area was suggested for all sites (F(ST) < or = 0.033) although small but significant genetic differentiation was detected among populations in geographically close sites and regions. In addition, A. digitifera appears to be distributed throughout the Nansei Islands without losing genetic diversity. Therefore, A. digitifera populations in the Nansei Islands may be able to recover relatively rapidly even when high disturbances of coral communities occur locally if populations on other reefs are properly maintained.

  17. Computational Integration of Human Genetic Data to Evaluate AOP-Specific Susceptibility

    EPA Science Inventory

    There is a need for approaches to efficiently evaluate human genetic variability and susceptibility related to environmental chemical exposure. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special ca...

  18. Genetic structure of tree and shrubby species among anthropogenic edges, natural edges, and interior of an atlantic forest fragment.

    PubMed

    Ramos, Flavio Nunes; de Lima, Paula Feliciano; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Solferini, Vera Nisaka

    2010-04-01

    Two species, Psychotria tenuinervis (shrub, Rubiaceae) and Guarea guidonia (tree, Meliaceae), were used as models to compare the genetic structure of tree and shrubby species among natural edges, anthropogenic edges, and a fragment interior. There were significant differences between two genetic markers. For isozymes, P. tenuinervis presented greater heterozygosity (expected and observed) and a higher percentage of polymorphic loci and median number of alleles than G. guidonia. For microsatellites, there was no difference in genetic variability between the species. Only P. tenuinervis, for isozymes, showed differences in genetic variability among the three habitats. There was no genetic structure (F (ST) < 0.05) among habitats in both plant species for both genetic markers. Isozymes showed great endogamy for both plant species, but not microsatellites. The forest fragmentation may have negative effects on both spatial (among edges and interior) and temporal genetic variability.

  19. Experimental Population Genetics in the Introductory Genetics Laboratory Using "Drosophila" as a Model Organism

    ERIC Educational Resources Information Center

    Johnson, Ronald; Kennon, Tillman

    2009-01-01

    Hypotheses of population genetics are derived and tested by students in the introductory genetics laboratory classroom as they explore the effects of biotic variables (physical traits of fruit flies) and abiotic variables (island size and distance) on fruit fly populations. In addition to this hypothesis-driven experiment, the development of…

  20. Variability and population genetic structure in Achyrocline flaccida (Weinm.) DC., a species with high value in folk medicine in South America.

    PubMed

    Rosa, Juliana da; Weber, Gabriela Gomes; Cardoso, Rafaela; Górski, Felipe; Da-Silva, Paulo Roberto

    2017-01-01

    Better knowledge of medicinal plant species and their conservation is an urgent need worldwide. Decision making for conservation strategies can be based on the knowledge of the variability and population genetic structure of the species and on the events that may influence these genetic parameters. Achyrocline flaccida (Weinm.) DC. is a native plant from the grassy fields of South America with high value in folk medicine. In spite of its importance, no genetic and conservation studies are available for the species. In this work, microsatellite and ISSR (inter-simple sequence repeat) markers were used to estimate the genetic variability and structure of seven populations of A. flaccida from southern Brazil. The microsatellite markers were inefficient in A. flaccida owing to a high number of null alleles. After the evaluation of 42 ISSR primers on one population, 10 were selected for further analysis of seven A. flaccida populations. The results of ISSR showed that the high number of exclusive absence of loci might contribute to the inter-population differentiation. Genetic variability of the species was high (Nei's diversity of 0.23 and Shannon diversity of 0.37). AMOVA indicated higher genetic variability within (64.7%) than among (33.96%) populations, and the variability was unevenly distributed (FST 0.33). Gene flow among populations ranged from 1.68 to 5.2 migrants per generation, with an average of 1.39. The results of PCoA and Bayesian analyses corroborated and indicated that the populations are structured. The observed genetic variability and population structure of A. flaccida are discussed in the context of the vegetation formation history in southern Brazil, as well as the possible anthropogenic effects. Additionally, we discuss the implications of the results in the conservation of the species.

  1. Little genetic variability in resilience among cattle exists for a range of performance traits across herds in Ireland differing in Fasciola hepatica prevalence.

    PubMed

    Twomey, Alan J; Graham, David A; Doherty, Michael L; Blom, Astrid; Berry, Donagh P

    2018-06-04

    It is anticipated that in the future, livestock will be exposed to a greater risk of infection from parasitic diseases. Therefore, future breeding strategies for livestock, which are generally long-term strategies for change, should target animals adaptable to environments with a high parasitic load. Covariance components were estimated in the present study for a selection of dairy and beef performance traits over herd-years differing in Fasciola hepatica load using random regression sire models. Herd-year prevalence of F. hepatica was determined by using F. hepatica-damaged liver phenotypes which were recorded in abattoirs nationally. The data analyzed consisted up to 83,821 lactation records from dairy cows for a range of milk production and fertility traits, as well as 105,054 young animals with carcass-related information obtained at slaughter. Reaction norms for individual sires were derived from the random regression coefficients. The heritability and additive genetic standard deviations for all traits analyzed remained relatively constant as herd-year F. hepatica prevalence gradient increased up to a prevalence level of 0.7; although there was a large increase in heritability and additive genetic standard deviation for milk and fertility traits in the observed F. hepatica prevalence levels >0.7, only 5% of the data existed in herd-year prevalence levels >0.7. Very little rescaling, therefore, exists across differing herd-year F. hepatica prevalence levels. Within-trait genetic correlations among the performance traits across different herd-year F. hepatica prevalence levels were less than unity for all traits. Nevertheless, within-trait genetic correlations for milk production and carcass traits were all >0.8 for F. hepatica prevalence levels between 0.2 and 0.8. The lowest estimate of within-trait genetic correlations for the different fertility traits ranged from -0.03 (SE = 1.09) in age of first calving to 0.54 (SE = 0.22) for calving to first service interval. Therefore, there was reranking of sires for fertility traits across different F. hepatica prevalence levels. In conclusion, there was little or no genetic variability in sensitivity to F. hepatica prevalence levels among cattle for milk production and carcass traits. But, some genetic variability in sensitivity among dairy cows did exist for fertility traits measured across herds differing in F. hepatica prevalence.

  2. Population structure and genetic diversity of the giant anteater (Myrmecophaga tridactyla: Myrmecophagidae, Pilosa) in Brazil.

    PubMed

    Clozato, Camila L; Miranda, Flávia R; Lara-Ruiz, Paula; Collevatti, Rosane G; Santos, Fabrício R

    2017-01-01

    The giant anteater (Myrmecophaga tridactyla, Pilosa, Linnaeus 1758) belongs to the mammalian order Pilosa and presents a large distribution along South America, occupying a great variety of habitats. It is listed in the IUCN Red List of threatened species as Vulnerable. Despite threatened, there is a lack of studies regarding its genetic variability. The aim of this study was to examine the genetic diversity and patterns of genetic structure within remaining populations. We analyzed 77 individuals from seven different populations distributed in four biomes across Brazil: Cerrado, Pantanal, Atlantic Forest and Amazon Forest. We sequenced two mitochondrial markers (control region and Cyt-b) and two nuclear markers (AMELY and RAG2). We found high genetic diversity within subpopulations from National Parks of Serra da Canastra and Emas, both within the Cerrado biome, with signs of population expansion. Besides, we found a notable population structure between populations from the Cerrado/Pantanal and Amazon Forest biomes. This data is a major contribution to the knowledge of the evolutionary history of the species and to future management actions concerning its conservation.

  3. Combined model of intrinsic and extrinsic variability for computational network design with application to synthetic biology.

    PubMed

    Toni, Tina; Tidor, Bruce

    2013-01-01

    Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We derived the following design principles to guide the design of circuits that best suppress variability: (i) high protein cooperativity and low miRNA cooperativity, (ii) imperfect complementarity between miRNA and mRNA was preferred to perfect complementarity, and (iii) correlated expression of mRNA and miRNA--for example, on the same transcript--was best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same principles as variability in the steady state. Our model and findings provide a general framework to guide design principles in synthetic biology.

  4. Combined Model of Intrinsic and Extrinsic Variability for Computational Network Design with Application to Synthetic Biology

    PubMed Central

    Toni, Tina; Tidor, Bruce

    2013-01-01

    Biological systems are inherently variable, with their dynamics influenced by intrinsic and extrinsic sources. These systems are often only partially characterized, with large uncertainties about specific sources of extrinsic variability and biochemical properties. Moreover, it is not yet well understood how different sources of variability combine and affect biological systems in concert. To successfully design biomedical therapies or synthetic circuits with robust performance, it is crucial to account for uncertainty and effects of variability. Here we introduce an efficient modeling and simulation framework to study systems that are simultaneously subject to multiple sources of variability, and apply it to make design decisions on small genetic networks that play a role of basic design elements of synthetic circuits. Specifically, the framework was used to explore the effect of transcriptional and post-transcriptional autoregulation on fluctuations in protein expression in simple genetic networks. We found that autoregulation could either suppress or increase the output variability, depending on specific noise sources and network parameters. We showed that transcriptional autoregulation was more successful than post-transcriptional in suppressing variability across a wide range of intrinsic and extrinsic magnitudes and sources. We derived the following design principles to guide the design of circuits that best suppress variability: (i) high protein cooperativity and low miRNA cooperativity, (ii) imperfect complementarity between miRNA and mRNA was preferred to perfect complementarity, and (iii) correlated expression of mRNA and miRNA – for example, on the same transcript – was best for suppression of protein variability. Results further showed that correlations in kinetic parameters between cells affected the ability to suppress variability, and that variability in transient states did not necessarily follow the same principles as variability in the steady state. Our model and findings provide a general framework to guide design principles in synthetic biology. PMID:23555205

  5. Genetic variation in threshold reaction norms for alternative reproductive tactics in male Atlantic salmon, Salmo salar.

    PubMed

    Piché, Jacinthe; Hutchings, Jeffrey A; Blanchard, Wade

    2008-07-07

    Alternative reproductive tactics may be a product of adaptive phenotypic plasticity, such that discontinuous variation in life history depends on both the genotype and the environment. Phenotypes that fall below a genetically determined threshold adopt one tactic, while those exceeding the threshold adopt the alternative tactic. We report evidence of genetic variability in maturation thresholds for male Atlantic salmon (Salmo salar) that mature either as large (more than 1 kg) anadromous males or as small (10-150 g) parr. Using a common-garden experimental protocol, we find that the growth rate at which the sneaker parr phenotype is expressed differs among pure- and mixed-population crosses. Maturation thresholds of hybrids were intermediate to those of pure crosses, consistent with the hypothesis that the life-history switch points are heritable. Our work provides evidence, for a vertebrate, that thresholds for alternative reproductive tactics differ genetically among populations and can be modelled as discontinuous reaction norms for age and size at maturity.

  6. Statistical Analysis of Big Data on Pharmacogenomics

    PubMed Central

    Fan, Jianqing; Liu, Han

    2013-01-01

    This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905

  7. NSP2 gene variation of the North American genotype of the Thai PRRSV in central Thailand.

    PubMed

    Kedkovid, Roongtham; Nuntawan Na Ayudhya, Suparlark; Amonsin, Alongkorn; Thanawongnuwech, Roongroje

    2010-11-24

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a major swine pathogen causing economic losses in the swine industry almost worldwide. PRRSV has been divided into 2 genotypes, the European (Type 1) and North American (Type 2) genotype, respectively and displays a large degree of genetic variability, particularly at the nonstructural protein (nsp) 2 gene. This is the first study determining genetic variation of the nsp2 of Thai PRRSV isolates. The results showed that 9 out of 10 Thai PRRSV isolates were nsp2-truncated viruses that might have evolved from a virus previously introduced in the past, but not from one recently introduced.

  8. The Molecular Genetic Architecture of Self-Employment

    PubMed Central

    van der Loos, Matthijs J. H. M.; Rietveld, Cornelius A.; Eklund, Niina; Koellinger, Philipp D.; Rivadeneira, Fernando; Abecasis, Gonçalo R.; Ankra-Badu, Georgina A.; Baumeister, Sebastian E.; Benjamin, Daniel J.; Biffar, Reiner; Blankenberg, Stefan; Boomsma, Dorret I.; Cesarini, David; Cucca, Francesco; de Geus, Eco J. C.; Dedoussis, George; Deloukas, Panos; Dimitriou, Maria; Eiriksdottir, Guðny; Eriksson, Johan; Gieger, Christian; Gudnason, Vilmundur; Höhne, Birgit; Holle, Rolf; Hottenga, Jouke-Jan; Isaacs, Aaron; Järvelin, Marjo-Riitta; Johannesson, Magnus; Kaakinen, Marika; Kähönen, Mika; Kanoni, Stavroula; Laaksonen, Maarit A.; Lahti, Jari; Launer, Lenore J.; Lehtimäki, Terho; Loitfelder, Marisa; Magnusson, Patrik K. E.; Naitza, Silvia; Oostra, Ben A.; Perola, Markus; Petrovic, Katja; Quaye, Lydia; Raitakari, Olli; Ripatti, Samuli; Scheet, Paul; Schlessinger, David; Schmidt, Carsten O.; Schmidt, Helena; Schmidt, Reinhold; Senft, Andrea; Smith, Albert V.; Spector, Timothy D.; Surakka, Ida; Svento, Rauli; Terracciano, Antonio; Tikkanen, Emmi; van Duijn, Cornelia M.; Viikari, Jorma; Völzke, Henry; Wichmann, H. -Erich; Wild, Philipp S.; Willems, Sara M.; Willemsen, Gonneke; van Rooij, Frank J. A.; Groenen, Patrick J. F.; Uitterlinden, André G.; Hofman, Albert; Thurik, A. Roy

    2013-01-01

    Economic variables such as income, education, and occupation are known to affect mortality and morbidity, such as cardiovascular disease, and have also been shown to be partly heritable. However, very little is known about which genes influence economic variables, although these genes may have both a direct and an indirect effect on health. We report results from the first large-scale collaboration that studies the molecular genetic architecture of an economic variable–entrepreneurship–that was operationalized using self-employment, a widely-available proxy. Our results suggest that common SNPs when considered jointly explain about half of the narrow-sense heritability of self-employment estimated in twin data (σg 2/σP 2 = 25%, h 2 = 55%). However, a meta-analysis of genome-wide association studies across sixteen studies comprising 50,627 participants did not identify genome-wide significant SNPs. 58 SNPs with p<10−5 were tested in a replication sample (n = 3,271), but none replicated. Furthermore, a gene-based test shows that none of the genes that were previously suggested in the literature to influence entrepreneurship reveal significant associations. Finally, SNP-based genetic scores that use results from the meta-analysis capture less than 0.2% of the variance in self-employment in an independent sample (p≥0.039). Our results are consistent with a highly polygenic molecular genetic architecture of self-employment, with many genetic variants of small effect. Although self-employment is a multi-faceted, heavily environmentally influenced, and biologically distal trait, our results are similar to those for other genetically complex and biologically more proximate outcomes, such as height, intelligence, personality, and several diseases. PMID:23593239

  9. Characterization of Genomic Island 3 and Genetic Variability of Chilean Field Strains of Brucella abortus▿

    PubMed Central

    Céspedes, Sandra; Salgado, Paulina; Valenzuela, Patricio; Vidal, Roberto; Oñate, Angel A.

    2011-01-01

    One of the capabilities developed by bacteria is the ability to gain large fragments of DNA from other bacteria or to lose portions of their own genomes. Among these exchangeable fragments are the genomic islands (GIs). Nine GIs have been identified in Brucella, and genomic island 3 (GI-3) is shared by two pathogenic species, B. melitensis and B. abortus. GI-3 encodes mostly unknown proteins. One of the aims of this study was to perform pulsed-field gel electrophoresis (PFGE) on field isolates of B. abortus from Chile to determine whether these isolates are clonally related. Furthermore, we focused on the characterization of GI-3, studying its organization and the genetic conservation of the GI-3 sequence using techniques such as tiling-path PCR (TP-PCR) and restriction fragment length polymorphism-PCR (RFLP-PCR). Our results, after PFGE was performed on 69 field isolates of B. abortus from Chile, showed that the strains were genetically homogeneous. To increase the power of genetic discrimination among these strains, we used multiple locus variable-number tandem-repeat (VNTR) analysis with 16 loci (MLVA-16). The results obtained by MLVA-16 showed that the strains of B. abortus were genetically heterogeneous and that most of them clustered according to their geographic origin. Of the genetic loci studied, panel 2B was the one describing the highest diversity in the analysis, as well as locus Bruce19 in panel 2A. In relation to the study of GI-3, our experimental analysis by TP-PCR identified and confirmed that GI-3 is present in all wild strains of B. abortus, demonstrating the high stability of gene cluster GI-3 in Chilean field strains. PMID:21543580

  10. Genetic structure of red-handed howler monkey populations in the fragmented landscape of Eastern Brazilian Amazonia

    PubMed Central

    2010-01-01

    We genotyped 15 microsatellite loci in order to evaluate the effects of habitat fragmentation, caused by flooding of the Tucuruí reservoir, on the genetic structure of Alouatta belzebul in eastern Amazonia. The analysis included two populations sampled in 1984, representing both margins of the Tocantins river, and three populations sampled 18 years later. Minimal differences in the diversity levels between present-day (Ho = 0.62-0.69 and AR = 6.07-7.21) and pre-flooding (Ho = 0.60-0.62 and A R = 6.27-6.77) populations indicated there was no significant loss of genetic variability, possibly because of successful management strategies applied during the flooding. The changes observed were limited to shifts in the composition of alleles, which presumably reflect the admixture of subpopulations during flooding. Given this, there were significant differences in the Rst values (p = 0.05) in all but one between-site comparison. Both present-day and original populations showed a deficit of heterozygotes, which suggests that this may be typical of the species, at least at a local level, perhaps because of specific ecological characteristics. The relatively large number of private alleles recorded in all populations may be a consequence of the Wahlund effect resulting from population admixture or a process of expansion rather than the loss of rare alleles through genetic drift. Additionally, the levels of genetic variability observed in this study were higher than those reported for other species of Neotropical primates, suggesting good fitness levels in these A. belzebul populations. Regular genetic monitoring of remnant populations, especially on islands, should nevertheless be an integral component of long-term management strategies. PMID:21637590

  11. The death(s) of close friends and family moderate genetic influences on symptoms of major depressive disorder in adolescents.

    PubMed

    Gheyara, S; Klump, K L; McGue, M; Iacono, W G; Burt, S A

    2011-04-01

    Prior work has suggested that genetic influences on major depressive disorder (MDD) may be activated by the experience of negative life events. However, it is unclear whether these results persist when controlling for the possibility of confounding active gene-environment correlations (rGE). We examined a sample of 1230 adopted and biological siblings between the ages of 10 and 20 years from the Sibling Interaction and Behavior Study. MDD was measured via a lifetime DSM-IV symptom count. Number of deaths experienced served as our environmental risk experience. Because this variable is largely independent of the individual's choices/behaviors, we were able to examine gene-environment interactions while circumventing possible rGE confounds. Biometric analyses revealed pronounced linear increases in the magnitude of genetic influences on symptoms of MDD with the number of deaths experienced, such that genetic influences were estimated to be near-zero for those who had experienced no deaths but were quite large in those who had experienced two or more deaths (i.e. accounting for roughly two-thirds of the phenotypic variance). By contrast, shared and non-shared environmental influences on symptoms of MDD were not meaningfully moderated by the number of deaths experienced. Such results constructively replicate prior findings of genetic moderation of depressive symptoms by negative life events, thereby suggesting that this effect is not a function of active rGE confounds. Our findings are thus consistent with the notion that exposure to specific negative life events may serve to activate genetic risk for depression during adolescence.

  12. Genetic Influences on Response to Alcohol and Response to Pharmacotherapies for Alcoholism

    PubMed Central

    Enoch, Mary-Anne

    2014-01-01

    Although very many individuals drink alcohol at safe levels, a significant proportion escalates their consumption with addiction as the end result. Alcoholism is a common, moderately heritable, psychiatric disorder that is accompanied by considerable morbidity and mortality. Variation in clinical presentation suggests inter-individual variation in mechanisms of vulnerability including genetic risk factors. The development of addiction is likely to involve numerous functional genetic variants of small effects. The first part of this review will focus on genetic factors underlying inter-individual variability in response to alcohol consumption, including variants in alcohol metabolizing genes that produce an aversive response (the flushing syndrome) and variants that predict the level of subjective and physiological response to alcohol. The second part of this review will report on genetic variants that identify subgroups of alcoholics who are more likely to respond to pharmacotherapy to reduce levels of drinking or maintain abstinence. Genetic analyses of the level of response to alcohol, particularly of the functional OPRM1 A118G polymorphism and 5′ and 3′ functional polymorphisms in SLC6A4, are beginning to provide insights into the etiology of alcoholism and also genotype-stratified subgroup responses to naltrexone and SSRIs / ondansetron respectively. Because of large inter-ethnic variation in allele frequencies, the relevance of these functional polymorphisms will vary between ethnic groups. However there are relatively few published studies in this field, particularly with large sample sizes in pharmacogenetic studies, therefore it is premature to draw any conclusions at this stage. PMID:24220019

  13. Genetic influences on response to alcohol and response to pharmacotherapies for alcoholism.

    PubMed

    Enoch, Mary-Anne

    2014-08-01

    Although very many individuals drink alcohol at safe levels, a significant proportion escalates their consumption with addiction as the end result. Alcoholism is a common, moderately heritable, psychiatric disorder that is accompanied by considerable morbidity and mortality. Variation in clinical presentation suggests inter-individual variation in mechanisms of vulnerability including genetic risk factors. The development of addiction is likely to involve numerous functional genetic variants of small effects. The first part of this review will focus on genetic factors underlying inter-individual variability in response to alcohol consumption, including variants in alcohol metabolizing genes that produce an aversive response (the flushing syndrome) and variants that predict the level of subjective and physiological response to alcohol. The second part of this review will report on genetic variants that identify subgroups of alcoholics who are more likely to respond to pharmacotherapy to reduce levels of drinking or maintain abstinence. Genetic analyses of the level of response to alcohol, particularly of the functional OPRM1 A118G polymorphism and 5' and 3' functional polymorphisms in SLC6A4, are beginning to provide insights into the etiology of alcoholism and also genotype-stratified subgroup responses to naltrexone and SSRIs/ondansetron respectively. Because of large inter-ethnic variation in allele frequencies, the relevance of these functional polymorphisms will vary between ethnic groups. However there are relatively few published studies in this field, particularly with large sample sizes in pharmacogenetic studies, therefore it is premature to draw any conclusions at this stage. Published by Elsevier Inc.

  14. Stochastic model search with binary outcomes for genome-wide association studies.

    PubMed

    Russu, Alberto; Malovini, Alberto; Puca, Annibale A; Bellazzi, Riccardo

    2012-06-01

    The spread of case-control genome-wide association studies (GWASs) has stimulated the development of new variable selection methods and predictive models. We introduce a novel Bayesian model search algorithm, Binary Outcome Stochastic Search (BOSS), which addresses the model selection problem when the number of predictors far exceeds the number of binary responses. Our method is based on a latent variable model that links the observed outcomes to the underlying genetic variables. A Markov Chain Monte Carlo approach is used for model search and to evaluate the posterior probability of each predictor. BOSS is compared with three established methods (stepwise regression, logistic lasso, and elastic net) in a simulated benchmark. Two real case studies are also investigated: a GWAS on the genetic bases of longevity, and the type 2 diabetes study from the Wellcome Trust Case Control Consortium. Simulations show that BOSS achieves higher precisions than the reference methods while preserving good recall rates. In both experimental studies, BOSS successfully detects genetic polymorphisms previously reported to be associated with the analyzed phenotypes. BOSS outperforms the other methods in terms of F-measure on simulated data. In the two real studies, BOSS successfully detects biologically relevant features, some of which are missed by univariate analysis and the three reference techniques. The proposed algorithm is an advance in the methodology for model selection with a large number of features. Our simulated and experimental results showed that BOSS proves effective in detecting relevant markers while providing a parsimonious model.

  15. A comparison of genetic ariation between an anadromous steelhead, Oncorhynchus mykiss, population and seven derived populations sequestered in freshwater for 70 years

    USGS Publications Warehouse

    Thrower, Frank; Guthrie, Charles; Nielsen, Jennifer L.; Joyce, John

    2004-01-01

    In 1926 cannery workers from the Wakefield Fisheries Plant at Little Port Walter in Southeast Alaska captured small trout, Oncorhynchus mykiss, from a portion of Sashin Creek populated with a wild steelhead (anadromous O. mykiss) run. They planted them into Sashin Lake which had been fishless to that time and separated from the lower stream by two large waterfalls that prevented upstream migration of any fish. In 1996 we sampled adult steelhead from the lower creek and juvenile O. mykiss from an intermediate portion of the creek, Sashin Lake, and five lakes that had been stocked with fish from Sashin Lake in 1938. Tissue samples from these eight populations were compared for variation in: microsatellite DNA at 10 loci; D-loop sequences in mitochondrial DNA; and allozymes at 73 loci known to be variable in steelhead. Genetic variability was consistently less in the Sashin Lake population and all derived populations than in the source anadromous population. The cause of this reduction is unknown but it is likely that very few fish survived to reproduce from the initial transplant in 1926. Stockings of 50–85 fish into five other fishless lakes in 1938 from Sashin Lake did not result in a similar dramatic reduction in variability. We discuss potential explanations for the observed patterns of genetic diversity in relation to the maintenance of endangered anadromous O. mykiss populations in freshwater refugia.

  16. Hybrid genetic algorithm with an adaptive penalty function for fitting multimodal experimental data: application to exchange-coupled non-Kramers binuclear iron active sites.

    PubMed

    Beaser, Eric; Schwartz, Jennifer K; Bell, Caleb B; Solomon, Edward I

    2011-09-26

    A Genetic Algorithm (GA) is a stochastic optimization technique based on the mechanisms of biological evolution. These algorithms have been successfully applied in many fields to solve a variety of complex nonlinear problems. While they have been used with some success in chemical problems such as fitting spectroscopic and kinetic data, many have avoided their use due to the unconstrained nature of the fitting process. In engineering, this problem is now being addressed through incorporation of adaptive penalty functions, but their transfer to other fields has been slow. This study updates the Nanakorrn Adaptive Penalty function theory, expanding its validity beyond maximization problems to minimization as well. The expanded theory, using a hybrid genetic algorithm with an adaptive penalty function, was applied to analyze variable temperature variable field magnetic circular dichroism (VTVH MCD) spectroscopic data collected on exchange coupled Fe(II)Fe(II) enzyme active sites. The data obtained are described by a complex nonlinear multimodal solution space with at least 6 to 13 interdependent variables and are costly to search efficiently. The use of the hybrid GA is shown to improve the probability of detecting the global optimum. It also provides large gains in computational and user efficiency. This method allows a full search of a multimodal solution space, greatly improving the quality and confidence in the final solution obtained, and can be applied to other complex systems such as fitting of other spectroscopic or kinetics data.

  17. Abraham's children in the genome era: major Jewish diaspora populations comprise distinct genetic clusters with shared Middle Eastern Ancestry.

    PubMed

    Atzmon, Gil; Hao, Li; Pe'er, Itsik; Velez, Christopher; Pearlman, Alexander; Palamara, Pier Francesco; Morrow, Bernice; Friedman, Eitan; Oddoux, Carole; Burns, Edward; Ostrer, Harry

    2010-06-11

    For more than a century, Jews and non-Jews alike have tried to define the relatedness of contemporary Jewish people. Previous genetic studies of blood group and serum markers suggested that Jewish groups had Middle Eastern origin with greater genetic similarity between paired Jewish populations. However, these and successor studies of monoallelic Y chromosomal and mitochondrial genetic markers did not resolve the issues of within and between-group Jewish genetic identity. Here, genome-wide analysis of seven Jewish groups (Iranian, Iraqi, Syrian, Italian, Turkish, Greek, and Ashkenazi) and comparison with non-Jewish groups demonstrated distinctive Jewish population clusters, each with shared Middle Eastern ancestry, proximity to contemporary Middle Eastern populations, and variable degrees of European and North African admixture. Two major groups were identified by principal component, phylogenetic, and identity by descent (IBD) analysis: Middle Eastern Jews and European/Syrian Jews. The IBD segment sharing and the proximity of European Jews to each other and to southern European populations suggested similar origins for European Jewry and refuted large-scale genetic contributions of Central and Eastern European and Slavic populations to the formation of Ashkenazi Jewry. Rapid decay of IBD in Ashkenazi Jewish genomes was consistent with a severe bottleneck followed by large expansion, such as occurred with the so-called demographic miracle of population expansion from 50,000 people at the beginning of the 15th century to 5,000,000 people at the beginning of the 19th century. Thus, this study demonstrates that European/Syrian and Middle Eastern Jews represent a series of geographical isolates or clusters woven together by shared IBD genetic threads.

  18. Abraham's Children in the Genome Era: Major Jewish Diaspora Populations Comprise Distinct Genetic Clusters with Shared Middle Eastern Ancestry

    PubMed Central

    Atzmon, Gil; Hao, Li; Pe'er, Itsik; Velez, Christopher; Pearlman, Alexander; Palamara, Pier Francesco; Morrow, Bernice; Friedman, Eitan; Oddoux, Carole; Burns, Edward; Ostrer, Harry

    2010-01-01

    For more than a century, Jews and non-Jews alike have tried to define the relatedness of contemporary Jewish people. Previous genetic studies of blood group and serum markers suggested that Jewish groups had Middle Eastern origin with greater genetic similarity between paired Jewish populations. However, these and successor studies of monoallelic Y chromosomal and mitochondrial genetic markers did not resolve the issues of within and between-group Jewish genetic identity. Here, genome-wide analysis of seven Jewish groups (Iranian, Iraqi, Syrian, Italian, Turkish, Greek, and Ashkenazi) and comparison with non-Jewish groups demonstrated distinctive Jewish population clusters, each with shared Middle Eastern ancestry, proximity to contemporary Middle Eastern populations, and variable degrees of European and North African admixture. Two major groups were identified by principal component, phylogenetic, and identity by descent (IBD) analysis: Middle Eastern Jews and European/Syrian Jews. The IBD segment sharing and the proximity of European Jews to each other and to southern European populations suggested similar origins for European Jewry and refuted large-scale genetic contributions of Central and Eastern European and Slavic populations to the formation of Ashkenazi Jewry. Rapid decay of IBD in Ashkenazi Jewish genomes was consistent with a severe bottleneck followed by large expansion, such as occurred with the so-called demographic miracle of population expansion from 50,000 people at the beginning of the 15th century to 5,000,000 people at the beginning of the 19th century. Thus, this study demonstrates that European/Syrian and Middle Eastern Jews represent a series of geographical isolates or clusters woven together by shared IBD genetic threads. PMID:20560205

  19. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    USGS Publications Warehouse

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  20. Applying landscape genetics to the microbial world.

    PubMed

    Dudaniec, Rachael Y; Tesson, Sylvie V M

    2016-07-01

    Landscape genetics, which explicitly quantifies landscape effects on gene flow and adaptation, has largely focused on macroorganisms, with little attention given to microorganisms. This is despite overwhelming evidence that microorganisms exhibit spatial genetic structuring in relation to environmental variables. The increasing accessibility of genomic data has opened up the opportunity for landscape genetics to embrace the world of microorganisms, which may be thought of as 'the invisible regulators' of the macroecological world. Recent developments in bioinformatics and increased data accessibility have accelerated our ability to identify microbial taxa and characterize their genetic diversity. However, the influence of the landscape matrix and dynamic environmental factors on microorganism genetic dispersal and adaptation has been little explored. Also, because many microorganisms coinhabit or codisperse with macroorganisms, landscape genomic approaches may improve insights into how micro- and macroorganisms reciprocally interact to create spatial genetic structure. Conducting landscape genetic analyses on microorganisms requires that we accommodate shifts in spatial and temporal scales, presenting new conceptual and methodological challenges not yet explored in 'macro'-landscape genetics. We argue that there is much value to be gained for microbial ecologists from embracing landscape genetic approaches. We provide a case for integrating landscape genetic methods into microecological studies and discuss specific considerations associated with the novel challenges this brings. We anticipate that microorganism landscape genetic studies will provide new insights into both micro- and macroecological processes and expand our knowledge of species' distributions, adaptive mechanisms and species' interactions in changing environments. © 2016 John Wiley & Sons Ltd.

  1. Genomewide search and genetic localization of a second gene associated with autosomal dominant branchio-oto-renal syndrome: clinical and genetic implications.

    PubMed Central

    Kumar, S; Deffenbacher, K; Marres, H A; Cremers, C W; Kimberling, W J

    2000-01-01

    Branchio-oto-renal (BOR) syndrome is characterized by ear malformations, cervical fistulas, hearing loss, and renal anomalies. It is an autosomal dominant disorder with variable clinical manifestations. The most common features of BOR syndrome are branchial, hearing, and renal anomalies. However, many affected subjects have been observed with branchial-cleft anomalies and hearing loss but without renal anomalies, a condition called "branchio-otic" (BO) syndrome. It is logical to question whether the BOR and BO syndromes are allelic or whether they represent distinct genetic entities. We identified a very large extended family whose members had branchial and hearing anomalies associated with commissural lip pits that segregated in an autosomal dominant fashion. Using a genomewide search strategy, we identified genetic linkage, with a maximum LOD score of 4.81 at recombination fraction 0, between the BO phenotype and polymorphic marker D1S2757 in the genetic region of chromosome 1q31. This is the first report of linkage for a second gene associated with BOR syndrome. The findings have important clinical implications and will provide insight into the genetic basis of BOR syndrome. PMID:10762556

  2. Dissection of Host Susceptibility to Bacterial Infections and Its Toxins.

    PubMed

    Nashef, Aysar; Agbaria, Mahmoud; Shusterman, Ariel; Lorè, Nicola Ivan; Bragonzi, Alessandra; Wiess, Ervin; Houri-Haddad, Yael; Iraqi, Fuad A

    2017-01-01

    Infection is one of the leading causes of human mortality and morbidity. Exposure to microbial agents is obviously required. However, also non-microbial environmental and host factors play a key role in the onset, development and outcome of infectious disease, resulting in large of clinical variability between individuals in a population infected with the same microbe. Controlled and standardized investigations of the genetics of susceptibility to infectious disease are almost impossible to perform in humans whereas mouse models allow application of powerful genomic techniques to identify and validate causative genes underlying human diseases with complex etiologies. Most of current animal models used in complex traits diseases genetic mapping have limited genetic diversity. This limitation impedes the ability to create incorporated network using genetic interactions, epigenetics, environmental factors, microbiota, and other phenotypes. A novel mouse genetic reference population for high-resolution mapping and subsequently identifying genes underlying the QTL, namely the Collaborative Cross (CC) mouse genetic reference population (GRP) was recently developed. In this chapter, we discuss a variety of approaches using CC mice for mapping genes underlying quantitative trait loci (QTL) to dissect the host response to polygenic traits, including infectious disease caused by bacterial agents and its toxins.

  3. Temperature-dependent behaviours are genetically variable in the nematode Caenorhabditis briggsae.

    PubMed

    Stegeman, Gregory W; de Mesquita, Matthew Bueno; Ryu, William S; Cutter, Asher D

    2013-03-01

    Temperature-dependent behaviours in Caenorhabditis elegans, such as thermotaxis and isothermal tracking, are complex behavioural responses that integrate sensation, foraging and learning, and have driven investigations to discover many essential genetic and neural pathways. The ease of manipulation of the Caenorhabditis model system also has encouraged its application to comparative analyses of phenotypic evolution, particularly contrasts of the classic model C. elegans with C. briggsae. And yet few studies have investigated natural genetic variation in behaviour in any nematode. Here we measure thermotaxis and isothermal tracking behaviour in genetically distinct strains of C. briggsae, further motivated by the latitudinal differentiation in C. briggsae that is associated with temperature-dependent fitness differences in this species. We demonstrate that C. briggsae performs thermotaxis and isothermal tracking largely similar to that of C. elegans, with a tendency to prefer its rearing temperature. Comparisons of these behaviours among strains reveal substantial heritable natural variation within each species that corresponds to three general patterns of behavioural response. However, intraspecific genetic differences in thermal behaviour often exceed interspecific differences. These patterns of temperature-dependent behaviour motivate further development of C. briggsae as a model system for dissecting the genetic underpinnings of complex behavioural traits.

  4. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    PubMed Central

    2012-01-01

    Background Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR% suggested that the MC provides a good representation of the genetic diversity of the original CC. The MC was more genetically diverse with higher diversity indices and a higher PIC value than the CC. A MC may aid in reasonably and efficiently selecting materials for sesame breeding and for genotypic biological studies, and may also be used as a population for association mapping in sesame. PMID:23153260

  5. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection.

    PubMed

    Zhang, Yanxin; Zhang, Xiurong; Che, Zhuo; Wang, Linhai; Wei, Wenliang; Li, Donghua

    2012-11-15

    Sesame (Sesamum indicum L.) is one of the four major oil crops in China. A sesame core collection (CC) was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC). Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525). The Shannon-Weaver diversity index (I) and Nei genetic diversity index (h) were higher (I = 0.9537, h = 0.5490) when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218). A mini-core collection (MC) containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%), low variance difference percentage (VD, 22.58%), large variable rate of coefficient of variance (VR, 114.86%), and large coincidence rate of range (CR, 95.76%). For molecular data, the diversity indices and the polymorphism information content (PIC) for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and large VR% and CR% suggested that the MC provides a good representation of the genetic diversity of the original CC. The MC was more genetically diverse with higher diversity indices and a higher PIC value than the CC. A MC may aid in reasonably and efficiently selecting materials for sesame breeding and for genotypic biological studies, and may also be used as a population for association mapping in sesame.

  6. An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts

    PubMed Central

    2012-01-01

    Background The turbot (Scophthalmus maximus) is a relevant species in European aquaculture. The small turbot genome provides a source for genomics strategies to use in order to understand the genetic basis of productive traits, particularly those related to sex, growth and pathogen resistance. Genetic maps represent essential genomic screening tools allowing to localize quantitative trait loci (QTL) and to identify candidate genes through comparative mapping. This information is the backbone to develop marker-assisted selection (MAS) programs in aquaculture. Expressed sequenced tag (EST) resources have largely increased in turbot, thus supplying numerous type I markers suitable for extending the previous linkage map, which was mostly based on anonymous loci. The aim of this study was to construct a higher-resolution turbot genetic map using EST-linked markers, which will turn out to be useful for comparative mapping studies. Results A consensus gene-enriched genetic map of the turbot was constructed using 463 SNP and microsatellite markers in nine reference families. This map contains 438 markers, 180 EST-linked, clustered at 24 linkage groups. Linkage and comparative genomics evidences suggested additional linkage group fusions toward the consolidation of turbot map according to karyotype information. The linkage map showed a total length of 1402.7 cM with low average intermarker distance (3.7 cM; ~2 Mb). A global 1.6:1 female-to-male recombination frequency (RF) ratio was observed, although largely variable among linkage groups and chromosome regions. Comparative sequence analysis revealed large macrosyntenic patterns against model teleost genomes, significant hits decreasing from stickleback (54%) to zebrafish (20%). Comparative mapping supported particular chromosome rearrangements within Acanthopterygii and aided to assign unallocated markers to specific turbot linkage groups. Conclusions The new gene-enriched high-resolution turbot map represents a useful genomic tool for QTL identification, positional cloning strategies, and future genome assembling. This map showed large synteny conservation against model teleost genomes. Comparative genomics and data mining from landmarks will provide straightforward access to candidate genes, which will be the basis for genetic breeding programs and evolutionary studies in this species. PMID:22747677

  7. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems.

    PubMed

    Lê Cao, Kim-Anh; Boitard, Simon; Besse, Philippe

    2011-06-22

    Variable selection on high throughput biological data, such as gene expression or single nucleotide polymorphisms (SNPs), becomes inevitable to select relevant information and, therefore, to better characterize diseases or assess genetic structure. There are different ways to perform variable selection in large data sets. Statistical tests are commonly used to identify differentially expressed features for explanatory purposes, whereas Machine Learning wrapper approaches can be used for predictive purposes. In the case of multiple highly correlated variables, another option is to use multivariate exploratory approaches to give more insight into cell biology, biological pathways or complex traits. A simple extension of a sparse PLS exploratory approach is proposed to perform variable selection in a multiclass classification framework. sPLS-DA has a classification performance similar to other wrapper or sparse discriminant analysis approaches on public microarray and SNP data sets. More importantly, sPLS-DA is clearly competitive in terms of computational efficiency and superior in terms of interpretability of the results via valuable graphical outputs. sPLS-DA is available in the R package mixOmics, which is dedicated to the analysis of large biological data sets.

  8. Phylogenetic congruence of lichenised fungi and algae is affected by spatial scale and taxonomic diversity.

    PubMed

    Buckley, Hannah L; Rafat, Arash; Ridden, Johnathon D; Cruickshank, Robert H; Ridgway, Hayley J; Paterson, Adrian M

    2014-01-01

    The role of species' interactions in structuring biological communities remains unclear. Mutualistic symbioses, involving close positive interactions between two distinct organismal lineages, provide an excellent means to explore the roles of both evolutionary and ecological processes in determining how positive interactions affect community structure. In this study, we investigate patterns of co-diversification between fungi and algae for a range of New Zealand lichens at the community, genus, and species levels and explore explanations for possible patterns related to spatial scale and pattern, taxonomic diversity of the lichens considered, and the level sampling replication. We assembled six independent datasets to compare patterns in phylogenetic congruence with varied spatial extent of sampling, taxonomic diversity and level of specimen replication. For each dataset, we used the DNA sequences from the ITS regions of both the fungal and algal genomes from lichen specimens to produce genetic distance matrices. Phylogenetic congruence between fungi and algae was quantified using distance-based redundancy analysis and we used geographic distance matrices in Moran's eigenvector mapping and variance partitioning to evaluate the effects of spatial variation on the quantification of phylogenetic congruence. Phylogenetic congruence was highly significant for all datasets and a large proportion of variance in both algal and fungal genetic distances was explained by partner genetic variation. Spatial variables, primarily at large and intermediate scales, were also important for explaining genetic diversity patterns in all datasets. Interestingly, spatial structuring was stronger for fungal than algal genetic variation. As the spatial extent of the samples increased, so too did the proportion of explained variation that was shared between the spatial variables and the partners' genetic variation. Different lichen taxa showed some variation in their phylogenetic congruence and spatial genetic patterns and where greater sample replication was used, the amount of variation explained by partner genetic variation increased. Our results suggest that the phylogenetic congruence pattern, at least at small spatial scales, is likely due to reciprocal co-adaptation or co-dispersal. However, the detection of these patterns varies among different lichen taxa, across spatial scales and with different levels of sample replication. This work provides insight into the complexities faced in determining how evolutionary and ecological processes may interact to generate diversity in symbiotic association patterns at the population and community levels. Further, it highlights the critical importance of considering sample replication, taxonomic diversity and spatial scale in designing studies of co-diversification.

  9. Vulnerability to cavitation, hydraulic efficiency, growth and survival in an insular pine (Pinus canariensis)

    PubMed Central

    López, Rosana; López de Heredia, Unai; Collada, Carmen; Cano, Francisco Javier; Emerson, Brent C.; Cochard, Hervé; Gil, Luis

    2013-01-01

    Background and Aims It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. Methods A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. Key Results The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = –0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth. Conclusions The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions. PMID:23644361

  10. Physicochemical characteristics and sensory attributes of meat from heavy-weight Iberian and F1 Large White x Landrace pigs finished intensively or in free-range conditions.

    PubMed

    Almeida, J; Bressan, M C; Santos-Silva, J; Moreira, O; Bettencourt, C; Gama, L T

    2018-05-15

    Iberian (IB, n=60) and crossbred Large White*Landrace (F1, n=58) pigs were slaughtered at 160 kg, after finishing under intensive conditions or on pasture and acorns. The study was carried out as a factorial arrangement of treatments, and physicochemical properties and sensory attributes of meat were assessed in L. thoracis samples. Physical characteristics included the assessment of drip loss, cooking loss, shear force and color coordinates in meat samples processed at 2 d and 9 d post mortem. The interactions of genetic group and finishing system were significant (P<0.05) for cooking loss in meat aged for 9 d and for sensorial tenderness and global acceptability of meat, but none of the other physicochemical, color coordinates and sensory variables analyzed showed a significant interaction. Genetic group was the main factor influencing the variables analyzed, with a major (P<0.01) influence on all meat physicochemical characteristics and sensory attributes. Relative to F1 pigs, the IB produced meat with higher IMF content and marbling score, more appealing color coordinates, lower shear force and higher sensorial tenderness. The finishing systems affected (P<0.05) most physical characteristics, but not chemical composition of meat and their impact on sensory properties was small. The tenderness, juiciness and global acceptability of meat were much higher in IB, and flavor was also more desirable, but the difference was smaller. The differences in sensory properties between meats originating from the 2 genetic groups were largely explained by the higher fat deposition in IB pigs, such that a higher level of marbling was positively associated with all the sensory attributes evaluated. Ageing meat for up to 9 d post mortem benefited pork quality, improving meat tenderness and color, particularly in crossbred pigs and those finished intensively.

  11. The structure of cross-cultural musical diversity.

    PubMed

    Rzeszutek, Tom; Savage, Patrick E; Brown, Steven

    2012-04-22

    Human cultural traits, such as languages, musics, rituals and material objects, vary widely across cultures. However, the majority of comparative analyses of human cultural diversity focus on between-culture variation without consideration for within-culture variation. In contrast, biological approaches to genetic diversity, such as the analysis of molecular variance (AMOVA) framework, partition genetic diversity into both within- and between-population components. We attempt here for the first time to quantify both components of cultural diversity by applying the AMOVA model to music. By employing this approach with 421 traditional songs from 16 Austronesian-speaking populations, we show that the vast majority of musical variability is due to differences within populations rather than differences between. This demonstrates a striking parallel to the structure of genetic diversity in humans. A neighbour-net analysis of pairwise population musical divergence shows a large amount of reticulation, indicating the pervasive occurrence of borrowing and/or convergent evolution of musical features across populations.

  12. Smoking and Body Weight: Evidence using Genetic Instruments

    PubMed Central

    Wehby, George; Murray, Jeffrey C.; Wilcox, Allen; Lie, Rolv T.

    2011-01-01

    Several studies have evaluated whether the high and rising obesity rates over the past three decades may be due to the declining smoking rates. There is mixed evidence across studies – some find negative smoking effects and positive cigarette cost effects on body weight, while others find opposite effects. This study applies a unique approach to identify the smoking effects on body weight and to evaluate the heterogeneity in these effects across the body mass index (BMI) distribution by utilizing genetic instruments for smoking. Using a data sample of 1,057 mothers from Norway, the study finds heterogeneous effects of cigarette smoking on BMI – smoking increases BMI at low/moderate BMI levels and decreases BMI at high BMI levels. The study highlights the potential advantages and challenges of employing genetic instrumental variables to identify behavior effects including the importance of qualifying the instruments and the need for large samples. PMID:22024417

  13. The structure of cross-cultural musical diversity

    PubMed Central

    Rzeszutek, Tom; Savage, Patrick E.; Brown, Steven

    2012-01-01

    Human cultural traits, such as languages, musics, rituals and material objects, vary widely across cultures. However, the majority of comparative analyses of human cultural diversity focus on between-culture variation without consideration for within-culture variation. In contrast, biological approaches to genetic diversity, such as the analysis of molecular variance (AMOVA) framework, partition genetic diversity into both within- and between-population components. We attempt here for the first time to quantify both components of cultural diversity by applying the AMOVA model to music. By employing this approach with 421 traditional songs from 16 Austronesian-speaking populations, we show that the vast majority of musical variability is due to differences within populations rather than differences between. This demonstrates a striking parallel to the structure of genetic diversity in humans. A neighbour-net analysis of pairwise population musical divergence shows a large amount of reticulation, indicating the pervasive occurrence of borrowing and/or convergent evolution of musical features across populations. PMID:22072606

  14. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma

    NASA Astrophysics Data System (ADS)

    Zhai, Weiwei; Lim, Tony Kiat-Hon; Zhang, Tong; Phang, Su-Ting; Tiang, Zenia; Guan, Peiyong; Ng, Ming-Hwee; Lim, Jia Qi; Yao, Fei; Li, Zheng; Ng, Poh Yong; Yan, Jie; Goh, Brian K.; Chung, Alexander Yaw-Fui; Choo, Su-Pin; Khor, Chiea Chuen; Soon, Wendy Wei-Jia; Sung, Ken Wing-Kin; Foo, Roger Sik-Yin; Chow, Pierce Kah-Hoe

    2017-02-01

    Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy.

  15. Dynamics of genetic variability in Anastrepha fraterculus (Diptera: Tephritidae) during adaptation to laboratory rearing conditions.

    PubMed

    Parreño, María A; Scannapieco, Alejandra C; Remis, María I; Juri, Marianela; Vera, María T; Segura, Diego F; Cladera, Jorge L; Lanzavecchia, Silvia B

    2014-01-01

    Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed.

  16. Dynamics of genetic variability in Anastrepha fraterculus (Diptera: Tephritidae) during adaptation to laboratory rearing conditions

    PubMed Central

    2014-01-01

    Background Anastrepha fraterculus is one of the most important fruit fly plagues in the American continent and only chemical control is applied in the field to diminish its population densities. A better understanding of the genetic variability during the introduction and adaptation of wild A. fraterculus populations to laboratory conditions is required for the development of stable and vigorous experimental colonies and mass-reared strains in support of successful Sterile Insect Technique (SIT) efforts. Methods The present study aims to analyze the dynamics of changes in genetic variability during the first six generations under artificial rearing conditions in two populations: a) a wild population recently introduced to laboratory culture, named TW and, b) a long-established control line, named CL. Results Results showed a declining tendency of genetic variability in TW. In CL, the relatively high values of genetic variability appear to be maintained across generations and could denote an intrinsic capacity to avoid the loss of genetic diversity in time. Discussion The impact of evolutionary forces on this species during the adaptation process as well as the best approach to choose strategies to introduce experimental and mass-reared A. fraterculus strains for SIT programs are discussed. PMID:25471362

  17. Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population.

    PubMed

    Ortego, Joaquín; Yannic, Glenn; Shafer, Aaron B A; Mainguy, Julien; Festa-Bianchet, Marco; Coltman, David W; Côté, Steeve D

    2011-04-01

    The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms. © 2011 Blackwell Publishing Ltd.

  18. Human Facial Shape and Size Heritability and Genetic Correlations.

    PubMed

    Cole, Joanne B; Manyama, Mange; Larson, Jacinda R; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Li, Mao; Mio, Washington; Klein, Ophir D; Santorico, Stephanie A; Hallgrímsson, Benedikt; Spritz, Richard A

    2017-02-01

    The human face is an array of variable physical features that together make each of us unique and distinguishable. Striking familial facial similarities underscore a genetic component, but little is known of the genes that underlie facial shape differences. Numerous studies have estimated facial shape heritability using various methods. Here, we used advanced three-dimensional imaging technology and quantitative human genetics analysis to estimate narrow-sense heritability, heritability explained by common genetic variation, and pairwise genetic correlations of 38 measures of facial shape and size in normal African Bantu children from Tanzania. Specifically, we fit a linear mixed model of genetic relatedness between close and distant relatives to jointly estimate variance components that correspond to heritability explained by genome-wide common genetic variation and variance explained by uncaptured genetic variation, the sum representing total narrow-sense heritability. Our significant estimates for narrow-sense heritability of specific facial traits range from 28 to 67%, with horizontal measures being slightly more heritable than vertical or depth measures. Furthermore, for over half of facial traits, >90% of narrow-sense heritability can be explained by common genetic variation. We also find high absolute genetic correlation between most traits, indicating large overlap in underlying genetic loci. Not surprisingly, traits measured in the same physical orientation (i.e., both horizontal or both vertical) have high positive genetic correlations, whereas traits in opposite orientations have high negative correlations. The complex genetic architecture of facial shape informs our understanding of the intricate relationships among different facial features as well as overall facial development. Copyright © 2017 by the Genetics Society of America.

  19. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification

    PubMed Central

    Weisberg, Steven M.; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes—conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people’s attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification. PMID:28589120

  20. The influence of climatic niche preferences on the population genetic structure of a mistletoe species complex.

    PubMed

    Ramírez-Barahona, Santiago; González, Clementina; González-Rodríguez, Antonio; Ornelas, Juan Francisco

    2017-06-01

    The prevalent view on genetic structuring in parasitic plants is that host-race formation is caused by varying degrees of host specificity. However, the relative importance of ecological niche divergence and host specificity to population differentiation remains poorly understood. We evaluated the factors associated with population differentiation in mistletoes of the Psittacanthus schiedeanus complex (Loranthaceae) in Mexico. We used genetic data from chloroplast sequences and nuclear microsatellites to study population genetic structure and tested its association with host preferences and climatic niche variables. Pairwise genetic differentiation was associated with environmental and host preferences, independent of geography. However, environmental predictors appeared to be more important than host preferences to explain genetic structure, supporting the hypothesis that the occurrence of the parasite is largely determined by its own climatic niche and, to a lesser degree, by host specificity. Genetic structure is significant within this mistletoe species complex, but the processes associated with this structure appear to be more complex than previously thought. Although host specificity was not supported as the major determinant of population differentiation, we consider this to be part of a more comprehensive ecological model of mistletoe host-race formation that incorporates the effects of climatic niche evolution. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. A CRISPR New World: Attitudes in the Public toward Innovations in Human Genetic Modification.

    PubMed

    Weisberg, Steven M; Badgio, Daniel; Chatterjee, Anjan

    2017-01-01

    The potential to genetically modify human germlines has reached a critical tipping point with recent applications of CRISPR-Cas9. Even as researchers, clinicians, and ethicists weigh the scientific and ethical repercussions of these advances, we know virtually nothing about public attitudes on the topic. Understanding such attitudes will be critical to determining the degree of broad support there might be for any public policy or regulation developed for genetic modification research. To fill this gap, we gave an online survey to a large (2,493 subjects) and diverse sample of Americans. Respondents supported genetic modification research, although demographic variables influenced these attitudes-conservatives, women, African-Americans, and older respondents, while supportive, were more cautious than liberals, men, other ethnicities, and younger respondents. Support was also was slightly muted when the risks (unanticipated mutations and possibility of eugenics) were made explicit. The information about genetic modification was also presented as contrasting vignettes, using one of five frames: genetic editing, engineering, hacking, modification, or surgery. Despite the fact that the media and academic use of frames describing the technology varies, these frames did not influence people's attitudes. These data contribute a current snapshot of public attitudes to inform policy with regard to human genetic modification.

  2. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    PubMed

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and structure in stone marten. Analysis of local barriers that reduced dispersal and large scale analyses of genetic structure and demographic history highlight the importance of isolation by distance and forest cover for the past colonization of central Europe by stone marten. This confirmed the hypothesis that human-landscape changes (deforestation) accelerated stone marten expansion, to which climate warming probably has also been contributing over the last few decades.

  3. Variable Virulence and Efficacy of BCG Vaccine Strains in Mice and Correlation With Genome Polymorphisms

    PubMed Central

    Zhang, Lu; Ru, Huan-wei; Chen, Fu-zeng; Jin, Chun-yan; Sun, Rui-feng; Fan, Xiao-yong; Guo, Ming; Mai, Jun-tao; Xu, Wen-xi; Lin, Qing-xia; Liu, Jun

    2016-01-01

    Bacille Calmette–Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development. PMID:26643797

  4. Variable Virulence and Efficacy of BCG Vaccine Strains in Mice and Correlation With Genome Polymorphisms.

    PubMed

    Zhang, Lu; Ru, Huan-Wei; Chen, Fu-Zeng; Jin, Chun-Yan; Sun, Rui-Feng; Fan, Xiao-Yong; Guo, Ming; Mai, Jun-Tao; Xu, Wen-Xi; Lin, Qing-Xia; Liu, Jun

    2016-02-01

    Bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is the only vaccine available for tuberculosis (TB) control. However, BCG is not an ideal vaccine and has two major limitations: BCG exhibits highly variable effectiveness against the development of TB both in pediatric and adult populations and can cause disseminated BCG disease in immunocompromised individuals. BCG comprises a number of substrains that are genetically distinct. Whether and how these genetic differences affect BCG efficacy remains largely unknown. In this study, we performed comparative analyses of the virulence and efficacy of 13 BCG strains, representing different genetic lineages, in SCID and BALB/c mice. Our results show that BCG strains of the DU2 group IV (BCG-Phipps, BCG-Frappier, BCG-Pasteur, and BCG-Tice) exhibit the highest levels of virulence, and BCG strains of the DU2 group II (BCG-Sweden, BCG-Birkhaug) are among the least virulent group. These distinct levels of virulence may be explained by strain-specific duplications and deletions of genomic DNA. There appears to be a general trend that more virulent BCG strains are also more effective in protection against Mycobacterium tuberculosis challenge. Our findings have important implications for current BCG vaccine programs and for future TB vaccine development.

  5. Plasmodium relictum infection and MHC diversity in the house sparrow (Passer domesticus)

    PubMed Central

    Loiseau, Claire; Zoorob, Rima; Robert, Alexandre; Chastel, Olivier; Julliard, Romain; Sorci, Gabriele

    2011-01-01

    Antagonistic coevolution between hosts and parasites has been proposed as a mechanism maintaining genetic diversity in both host and parasite populations. In particular, the high level of genetic diversity usually observed at the major histocompatibility complex (MHC) is generally thought to be maintained by parasite-driven selection. Among the possible ways through which parasites can maintain MHC diversity, diversifying selection has received relatively less attention. This hypothesis is based on the idea that parasites exert spatially variable selection pressures because of heterogeneity in parasite genetic structure, abundance or virulence. Variable selection pressures should select for different host allelic lineages resulting in population-specific associations between MHC alleles and risk of infection. In this study, we took advantage of a large survey of avian malaria in 13 populations of the house sparrow (Passer domesticus) to test this hypothesis. We found that (i) several MHC alleles were either associated with increased or decreased risk to be infected with Plasmodium relictum, (ii) the effects were population specific, and (iii) some alleles had antagonistic effects across populations. Overall, these results support the hypothesis that diversifying selection in space can maintain MHC variation and suggest a pattern of local adaptation where MHC alleles are selected at the local host population level. PMID:20943698

  6. Polygenic risk for psychiatric disorders correlates with executive function in typical development.

    PubMed

    Schork, A J; Brown, T T; Hagler, D J; Thompson, W K; Chen, C-H; Dale, A M; Jernigan, T L; Akshoomoff, N

    2018-04-16

    Executive functions are a diverse and critical suite of cognitive abilities that are often disrupted in individuals with psychiatric disorders. Despite their moderate to high heritability, little is known about the molecular genetic factors that contribute to variability in executive functions and how these factors may be related to those that predispose to psychiatric disorders. We examined the relationship between polygenic risk scores built from large genome-wide association studies of psychiatric disorders and executive functioning in typically developing children. In our discovery sample (N = 417), consistent with previous reports on general cognitive abilities, polygenic risk for autism spectrum disorder was associated with better performance on the Dimensional Change Card Sort test from the NIH Cognition Toolbox, with the largest effect in the youngest children. Polygenic risk for major depressive disorder was associated with poorer performance on the Flanker test in the same sample. This second association replicated for performance on the Penn Conditional Exclusion Test in an independent cohort (N = 3681). Our results suggest that the molecular genetic factors contributing to variability in executive function during typical development are at least partially overlapping with those associated with psychiatric disorders, although larger studies and further replication are needed. © 2018 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Mitochondrial genetic variability of Didelphis albiventris (Didelphimorphia, Didelphidae) in Brazilian localities

    PubMed Central

    Sousa, Luciene C.C.; Gontijo, Célia M.F.; Botelho, Helbert A.; Fonseca, Cleusa G.

    2012-01-01

    Didelphis albiventris is a well-known and common marsupial. Due to its high adaptability, this very widespread generalist species occurs under various environmental conditions, this even including protected regions and disturbed urban areas. We studied a 653 bp fragment of cytochrome oxidase c (COI) from 93 biological samples from seven Brazilian localities, with linear distances ranging between 58 and about 1800 km to analyze the effects of geographic distances on variability and genetic differentiation. The haplotype network presented nine haplotypes and two genetic clusters compatible with the two most distant geographic areas of the states of Minas Gerais, in the southeast, and Rio Grande do Sul, in the extreme south. As each cluster was characterized by low nucleotide and high haplotype diversities, their populations were obviously composed of closely related haplotypes. Surprisingly, moderate to high FST differentiation values and a very weak phylogeographic signal characterizes interpopulation comparisons within Minas Gerais interdemes, these being correlated with the presence of privative haplotypes. On a large rgeographic scale, a comparison between demes from Minas Gerais and Rio Grande do Sul presented high FST values and a robust phylogeographic pattern. This unexpected scenario implies that mtDNA gene flow was insufficient to maintain population cohesion, reflected by the observed high differentiation. PMID:22888303

  8. Ecosensitivity and genetic polymorphism of somatic traits in the perinatal development of twins.

    PubMed

    Waszak, Małgorzata; Cieślik, Krystyna; Skrzypczak-Zielińska, Marzena; Szalata, Marlena; Wielgus, Karolina; Kempiak, Joanna; Bręborowicz, Grzegorz; Słomski, Ryszard

    2016-04-01

    In view of criticism regarding the usefulness of heritability coefficients, the aim of this study was to analyze separately the information on genetic and environmental variability. Such an approach, based on the normalization of trait's variability for its value, is determined by the coefficients of genetic polymorphism (Pg) and ecosensitivity (De). The studied material included 1263 twin pairs of both sexes (among them 424 pairs of monozygotic twins and 839 pairs of dizygotic twins) born between the 22nd and 41st week of gestation. Variability of six somatic traits was analyzed. The zygosity of same-sex twins was determined based on the polymorphism of DNA from lymphocytes of the umbilical cord blood, obtained at birth. The coefficients of genetic polymorphism and ecosensitivity for analyzed traits of male and female twins born at various months of gestation were calculated. Our study revealed that a contribution of the genetic component predominated over that of the environmental component in determining the phenotypic variability of somatic traits of newborns from twin pregnancies. The genetically determined phenotypic variability in male twins was greater than in the females. The genetic polymorphism and ecosensitivity of somatic traits were relatively stable during the period of fetal ontogeny analyzed in this study. Only in the case of body weight, a slight increase in the genetic contribution of polygenes to the phenotypic variance could be observed with gestational age, along with a slight decrease in the influence of environmental factors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. A Genotypic-Oriented View of CFTR Genetics Highlights Specific Mutational Patterns Underlying Clinical Macrocategories of Cystic Fibrosis

    PubMed Central

    Lucarelli, Marco; Bruno, Sabina Maria; Pierandrei, Silvia; Ferraguti, Giampiero; Stamato, Antonella; Narzi, Fabiana; Amato, Annalisa; Cimino, Giuseppe; Bertasi, Serenella; Quattrucci, Serena; Strom, Roberto

    2015-01-01

    Cystic fibrosis (CF) is a monogenic disease caused by mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The genotype–phenotype relationship in this disease is still unclear, and diagnostic, prognostic and therapeutic challenges persist. We enrolled 610 patients with different forms of CF and studied them from a clinical, biochemical, microbiological and genetic point of view. Overall, there were 125 different mutated alleles (11 with novel mutations and 10 with complex mutations) and 225 genotypes. A strong correlation between mutational patterns at the genotypic level and phenotypic macrocategories emerged. This specificity appears to largely depend on rare and individual mutations, as well as on the varying prevalence of common alleles in different clinical macrocategories. However, 19 genotypes appeared to underlie different clinical forms of the disease. The dissection of the pathway from the CFTR mutated genotype to the clinical phenotype allowed to identify at least two components of the variability usually found in the genotype–phenotype relationship. One component seems to depend on the genetic variation of CFTR, the other component on the cumulative effect of variations in other genes and cellular pathways independent from CFTR. The experimental dissection of the overall biological CFTR pathway appears to be a powerful approach for a better comprehension of the genotype–phenotype relationship. However, a change from an allele-oriented to a genotypic-oriented view of CFTR genetics is mandatory, as well as a better assessment of sources of variability within the CFTR pathway. PMID:25910067

  10. Genetic damage in human cells exposed to non-ionizing radiofrequency fields: a meta-analysis of the data from 88 publications (1990-2011).

    PubMed

    Vijayalaxmi; Prihoda, Thomas J

    2012-12-12

    Based on the 'limited' evidence suggesting an association between exposure to radiofrequency fields (RF) emitted from mobile phones and two types of brain cancer, glioma and acoustic neuroma, the International Agency for Research on Cancer has classified RF as 'possibly carcinogenic to humans' in group 2B. In view of this classification and the positive correlation between increased genetic damage and carcinogenesis, a meta-analysis was conducted to determine whether a significant increase in genetic damage in human cells exposed to RF provides a potential mechanism for its carcinogenic potential. The extent of genetic damage in human cells, assessed from various end-points, viz., single-/double-strand breaks in the DNA, incidence of chromosomal aberrations, micronuclei and sister chromatid exchanges, reported in a total of 88 peer-reviewed scientific publications during 1990-2011 was considered in the meta-analysis. Among the several variables in the experimental protocols used, the influence of five specific variables related to RF exposure characteristics was investigated: (i) frequency, (ii) specific absorption rate, (iii) exposure as continuous wave, pulsed wave and occupationally exposed/mobile phone users, (iv) duration of exposure, and (v) different cell types. The data indicated the following. (1) The magnitude of difference between RF-exposed and sham-/un-exposed controls was small with some exceptions. (2) In certain RF exposure conditions there was a statistically significant increase in genotoxicity assessed from some end-points: the effect was observed in studies with small sample size and was largely influenced by publication bias. Studies conducted within the generally recommended RF exposure guidelines showed a smaller effect. (3) The multiple regression analyses and heterogeneity goodness of fit data indicated that factors other than the above five variables as well as the quality of publications have contributed to the overall results. (4) More importantly, the mean indices for chromosomal aberrations, micronuclei and sister chromatid exchange end-points in RF-exposed and sham-/un-exposed controls were within the spontaneous levels reported in a large data-base. Thus, the classification of RF as possibly carcinogenic to humans in group 2B was not supported by genotoxicity-based mechanistic evidence. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Immunoglobulin Heavy Chain Variable Region and Major Histocompatibility Region Genes Are Linked to Induced Graves' Disease in Females From Two Very Large Families of Recombinant Inbred Mice

    PubMed Central

    Aliesky, Holly; Banuelos, Bianca; Magana, Jessica; Williams, Robert W.; Rapoport, Basil

    2014-01-01

    Graves' hyperthyroidism is caused by antibodies to the TSH receptor (TSHR) that mimic thyroid stimulation by TSH. Stimulating TSHR antibodies and hyperthyroidism can be induced by immunizing mice with adenovirus expressing the human TSHR A-subunit. Prior analysis of induced Graves' disease in small families of recombinant inbred (RI) female mice demonstrated strong genetic control but did not resolve trait loci for TSHR antibodies or elevated serum T4. We investigated the genetic basis for induced Graves' disease in female mice of two large RI families and combined data with earlier findings to provide phenotypes for 178 genotypes. TSHR antibodies measured by inhibition of TSH binding to its receptor were highly significantly linked in the BXD set to the major histocompatibility region (chromosome 17), consistent with observations in 3 other RI families. In the LXS family, we detected linkage between T4 levels after TSHR-adenovirus immunization and the Ig heavy chain variable region (Igvh, chromosome 12). This observation is a key finding because components of the antigen binding region of Igs determine antibody specificity and have been previously linked to induced thyroid-stimulating antibodies. Data from the LXS family provide the first evidence in mice of a direct link between induced hyperthyroidism and Igvh genes. A role for major histocompatibility genes has now been established for genetic susceptibility to Graves' disease in both humans and mice. Future studies using arrays incorporating variation in the complex human Ig gene locus will be necessary to determine whether Igvh genes are also linked to Graves' disease in humans. PMID:25051451

  12. Multi-period response management to contaminated water distribution networks: dynamic programming versus genetic algorithms

    NASA Astrophysics Data System (ADS)

    Bashi-Azghadi, Seyyed Nasser; Afshar, Abbas; Afshar, Mohammad Hadi

    2018-03-01

    Previous studies on consequence management assume that the selected response action including valve closure and/or hydrant opening remains unchanged during the entire management period. This study presents a new embedded simulation-optimization methodology for deriving time-varying operational response actions in which the network topology may change from one stage to another. Dynamic programming (DP) and genetic algorithm (GA) are used in order to minimize selected objective functions. Two networks of small and large sizes are used in order to illustrate the performance of the proposed modelling schemes if a time-dependent consequence management strategy is to be implemented. The results show that for a small number of decision variables even in large-scale networks, DP is superior in terms of accuracy and computer runtime. However, as the number of potential actions grows, DP loses its merit over the GA approach. This study clearly proves the priority of the proposed dynamic operation strategy over the commonly used static strategy.

  13. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE PAGES

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.; ...

    2017-02-21

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  14. Field-based high throughput phenotyping rapidly identifies genomic regions controlling yield components in rice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanger, Paul; Klassen, Stephen; Mojica, Julius P.

    In order to ensure food security in the face of population growth, decreasing water and land for agriculture, and increasing climate variability, crop yields must increase faster than the current rates. Increased yields will require implementing novel approaches in genetic discovery and breeding. We demonstrate the potential of field-based high throughput phenotyping (HTP) on a large recombinant population of rice to identify genetic variation underlying important traits. We find that detecting quantitative trait loci (QTL) with HTP phenotyping is as accurate and effective as traditional labor- intensive measures of flowering time, height, biomass, grain yield, and harvest index. Furthermore, geneticmore » mapping in this population, derived from a cross of an modern cultivar (IR64) with a landrace (Aswina), identified four alleles with negative effect on grain yield that are fixed in IR64, demonstrating the potential for HTP of large populations as a strategy for the second green revolution.« less

  15. Transposable elements as agents of rapid adaptation may explain the genetic paradox of invasive species.

    PubMed

    Stapley, Jessica; Santure, Anna W; Dennis, Stuart R

    2015-05-01

    Rapid adaptation of invasive species to novel habitats has puzzled evolutionary biologists for decades, especially as this often occurs in the face of limited genetic variability. Although some ecological traits common to invasive species have been identified, little is known about the possible genomic/genetic mechanisms that may underlie their success. A common scenario in many introductions is that small founder population sizes will often lead to reduced genetic diversity, but that invading populations experience large environmental perturbations, such as changes in habitat and environmental stress. Although sudden and intense stress is usually considered in a negative context, these perturbations may actually facilitate rapid adaptation by affecting genome structure, organization and function via interactions with transposable elements (TEs), especially in populations with low genetic diversity. Stress-induced changes in TE activity can alter gene action and can promote structural variation that may facilitate the rapid adaptation observed in new environments. We focus here on the adaptive potential of TEs in relation to invasive species and highlight their role as powerful mutational forces that can rapidly create genetic diversity. We hypothesize that activity of transposable elements can explain rapid adaptation despite low genetic variation (the genetic paradox of invasive species), and provide a framework under which this hypothesis can be tested using recently developed and emerging genomic technologies. © 2015 John Wiley & Sons Ltd.

  16. Physical punishment and childhood aggression: the role of gender and gene-environment interplay.

    PubMed

    Boutwell, Brian B; Franklin, Cortney A; Barnes, J C; Beaver, Kevin M

    2011-01-01

    A large body of research has linked spanking with a range of adverse outcomes in children, including aggression, psychopathology, and criminal involvement. Despite evidence concerning the association of spanking with antisocial behavior, not all children who are spanked develop antisocial traits. Given the heterogeneous effects of spanking on behavior, it is possible that a third variable may condition the influence of corporal punishment on child development. We test this possibility using data drawn from a nationally representative dataset of twin siblings. Our findings suggest that genetic risk factors condition the effects of spanking on antisocial behavior. Moreover, our results provide evidence that the interaction between genetic risk factors and corporal punishment may be particularly salient for males. © 2011 Wiley Periodicals, Inc.

  17. Application of response surface methodology (RSM) and genetic algorithm in minimizing warpage on side arm

    NASA Astrophysics Data System (ADS)

    Raimee, N. A.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    The plastic injection moulding process produces large numbers of parts of high quality with great accuracy and quickly. It has widely used for production of plastic part with various shapes and geometries. Side arm is one of the product using injection moulding to manufacture it. However, there are some difficulties in adjusting the parameter variables which are mould temperature, melt temperature, packing pressure, packing time and cooling time as there are warpage happen at the tip part of side arm. Therefore, the work reported herein is about minimizing warpage on side arm product by optimizing the process parameter using Response Surface Methodology (RSM) and with additional artificial intelligence (AI) method which is Genetic Algorithm (GA).

  18. The use of genomic coancestry matrices in the optimisation of contributions to maintain genetic diversity at specific regions of the genome.

    PubMed

    Gómez-Romano, Fernando; Villanueva, Beatriz; Fernández, Jesús; Woolliams, John A; Pong-Wong, Ricardo

    2016-01-13

    Optimal contribution methods have proved to be very efficient for controlling the rates at which coancestry and inbreeding increase and therefore, for maintaining genetic diversity. These methods have usually relied on pedigree information for estimating genetic relationships between animals. However, with the large amount of genomic information now available such as high-density single nucleotide polymorphism (SNP) chips that contain thousands of SNPs, it becomes possible to calculate more accurate estimates of relationships and to target specific regions in the genome where there is a particular interest in maximising genetic diversity. The objective of this study was to investigate the effectiveness of using genomic coancestry matrices for: (1) minimising the loss of genetic variability at specific genomic regions while restricting the overall loss in the rest of the genome; or (2) maximising the overall genetic diversity while restricting the loss of diversity at specific genomic regions. Our study shows that the use of genomic coancestry was very successful at minimising the loss of diversity and outperformed the use of pedigree-based coancestry (genetic diversity even increased in some scenarios). The results also show that genomic information allows a targeted optimisation to maintain diversity at specific genomic regions, whether they are linked or not. The level of variability maintained increased when the targeted regions were closely linked. However, such targeted management leads to an important loss of diversity in the rest of the genome and, thus, it is necessary to take further actions to constrain this loss. Optimal contribution methods also proved to be effective at restricting the loss of diversity in the rest of the genome, although the resulting rate of coancestry was higher than the constraint imposed. The use of genomic matrices when optimising contributions permits the control of genetic diversity and inbreeding at specific regions of the genome through the minimisation of partial genomic coancestry matrices. The formula used to predict coancestry in the next generation produces biased results and therefore it is necessary to refine the theory of genetic contributions when genomic matrices are used to optimise contributions.

  19. Comparison of statistical tests for association between rare variants and binary traits.

    PubMed

    Bacanu, Silviu-Alin; Nelson, Matthew R; Whittaker, John C

    2012-01-01

    Genome-wide association studies have found thousands of common genetic variants associated with a wide variety of diseases and other complex traits. However, a large portion of the predicted genetic contribution to many traits remains unknown. One plausible explanation is that some of the missing variation is due to the effects of rare variants. Nonetheless, the statistical analysis of rare variants is challenging. A commonly used method is to contrast, within the same region (gene), the frequency of minor alleles at rare variants between cases and controls. However, this strategy is most useful under the assumption that the tested variants have similar effects. We previously proposed a method that can accommodate heterogeneous effects in the analysis of quantitative traits. Here we extend this method to include binary traits that can accommodate covariates. We use simulations for a variety of causal and covariate impact scenarios to compare the performance of the proposed method to standard logistic regression, C-alpha, SKAT, and EREC. We found that i) logistic regression methods perform well when the heterogeneity of the effects is not extreme and ii) SKAT and EREC have good performance under all tested scenarios but they can be computationally intensive. Consequently, it would be more computationally desirable to use a two-step strategy by (i) selecting promising genes by faster methods and ii) analyzing selected genes using SKAT/EREC. To select promising genes one can use (1) regression methods when effect heterogeneity is assumed to be low and the covariates explain a non-negligible part of trait variability, (2) C-alpha when heterogeneity is assumed to be large and covariates explain a small fraction of trait's variability and (3) the proposed trend and heterogeneity test when the heterogeneity is assumed to be non-trivial and the covariates explain a large fraction of trait variability.

  20. Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function

    PubMed Central

    Wild, Philipp S.; Felix, Janine F.; Schillert, Arne; Chen, Ming-Huei; Leening, Maarten J.G.; Völker, Uwe; Großmann, Vera; Brody, Jennifer A.; Irvin, Marguerite R.; Shah, Sanjiv J.; Pramana, Setia; Lieb, Wolfgang; Schmidt, Reinhold; Stanton, Alice V.; Malzahn, Dörthe; Lyytikäinen, Leo-Pekka; Tiller, Daniel; Smith, J. Gustav; Di Tullio, Marco R.; Musani, Solomon K.; Morrison, Alanna C.; Pers, Tune H.; Morley, Michael; Kleber, Marcus E.; Aragam, Jayashri; Bis, Joshua C.; Bisping, Egbert; Broeckel, Ulrich; Cheng, Susan; Deckers, Jaap W.; Del Greco M, Fabiola; Edelmann, Frank; Fornage, Myriam; Franke, Lude; Friedrich, Nele; Harris, Tamara B.; Hofer, Edith; Hofman, Albert; Huang, Jie; Hughes, Alun D.; Kähönen, Mika; investigators, KNHI; Kruppa, Jochen; Lackner, Karl J.; Lannfelt, Lars; Laskowski, Rafael; Launer, Lenore J.; Lindgren, Cecilia M.; Loley, Christina; Mayet, Jamil; Medenwald, Daniel; Morris, Andrew P.; Müller, Christian; Müller-Nurasyid, Martina; Nappo, Stefania; Nilsson, Peter M.; Nuding, Sebastian; Nutile, Teresa; Peters, Annette; Pfeufer, Arne; Pietzner, Diana; Pramstaller, Peter P.; Raitakari, Olli T.; Rice, Kenneth M.; Rotter, Jerome I.; Ruohonen, Saku T.; Sacco, Ralph L.; Samdarshi, Tandaw E.; Sharp, Andrew S.P.; Shields, Denis C.; Sorice, Rossella; Sotoodehnia, Nona; Stricker, Bruno H.; Surendran, Praveen; Töglhofer, Anna M.; Uitterlinden, André G.; Völzke, Henry; Ziegler, Andreas; Münzel, Thomas; März, Winfried; Cappola, Thomas P.; Hirschhorn, Joel N.; Mitchell, Gary F.; Smith, Nicholas L.; Fox, Ervin R.; Dueker, Nicole D.; Jaddoe, Vincent W.V.; Melander, Olle; Lehtimäki, Terho; Ciullo, Marina; Hicks, Andrew A.; Lind, Lars; Gudnason, Vilmundur; Pieske, Burkert; Barron, Anthony J.; Zweiker, Robert; Schunkert, Heribert; Ingelsson, Erik; Liu, Kiang; Arnett, Donna K.; Psaty, Bruce M.; Blankenberg, Stefan; Larson, Martin G.; Felix, Stephan B.; Franco, Oscar H.; Zeller, Tanja; Vasan, Ramachandran S.; Dörr, Marcus

    2017-01-01

    BACKGROUND. Understanding the genetic architecture of cardiac structure and function may help to prevent and treat heart disease. This investigation sought to identify common genetic variations associated with inter-individual variability in cardiac structure and function. METHODS. A GWAS meta-analysis of echocardiographic traits was performed, including 46,533 individuals from 30 studies (EchoGen consortium). The analysis included 16 traits of left ventricular (LV) structure, and systolic and diastolic function. RESULTS. The discovery analysis included 21 cohorts for structural and systolic function traits (n = 32,212) and 17 cohorts for diastolic function traits (n = 21,852). Replication was performed in 5 cohorts (n = 14,321) and 6 cohorts (n = 16,308), respectively. Besides 5 previously reported loci, the combined meta-analysis identified 10 additional genome-wide significant SNPs: rs12541595 near MTSS1 and rs10774625 in ATXN2 for LV end-diastolic internal dimension; rs806322 near KCNRG, rs4765663 in CACNA1C, rs6702619 near PALMD, rs7127129 in TMEM16A, rs11207426 near FGGY, rs17608766 in GOSR2, and rs17696696 in CFDP1 for aortic root diameter; and rs12440869 in IQCH for Doppler transmitral A-wave peak velocity. Findings were in part validated in other cohorts and in GWAS of related disease traits. The genetic loci showed associations with putative signaling pathways, and with gene expression in whole blood, monocytes, and myocardial tissue. CONCLUSION. The additional genetic loci identified in this large meta-analysis of cardiac structure and function provide insights into the underlying genetic architecture of cardiac structure and warrant follow-up in future functional studies. FUNDING. For detailed information per study, see Acknowledgments. PMID:28394258

  1. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis.

    PubMed

    Estoup, Arnaud; Jarne, Philippe; Cornuet, Jean-Marie

    2002-09-01

    Homoplasy has recently attracted the attention of population geneticists, as a consequence of the popularity of highly variable stepwise mutating markers such as microsatellites. Microsatellite alleles generally refer to DNA fragments of different size (electromorphs). Electromorphs are identical in state (i.e. have identical size), but are not necessarily identical by descent due to convergent mutation(s). Homoplasy occurring at microsatellites is thus referred to as size homoplasy. Using new analytical developments and computer simulations, we first evaluate the effect of the mutation rate, the mutation model, the effective population size and the time of divergence between populations on size homoplasy at the within and between population levels. We then review the few experimental studies that used various molecular techniques to detect size homoplasious events at some microsatellite loci. The relationship between this molecularly accessible size homoplasy size and the actual amount of size homoplasy is not trivial, the former being considerably influenced by the molecular structure of microsatellite core sequences. In a third section, we show that homoplasy at microsatellite electromorphs does not represent a significant problem for many types of population genetics analyses realized by molecular ecologists, the large amount of variability at microsatellite loci often compensating for their homoplasious evolution. The situations where size homoplasy may be more problematic involve high mutation rates and large population sizes together with strong allele size constraints.

  2. Nest size is predicted by female identity and the local environment in the blue tit (Cyanistes caeruleus), but is not related to the nest size of the genetic or foster mother

    PubMed Central

    Parker, Timothy H.; Griffith, Simon C.

    2018-01-01

    The potential for animals to respond to changing climates has sparked interest in intraspecific variation in avian nest structure since this may influence nest microclimate and protect eggs and offspring from inclement weather. However, there have been relatively few large-scale attempts to examine variation in nests or the determinates of individual variation in nest structure within populations. Using a set of mostly pre-registered analyses, we studied potential predictors of variation in the size of a large sample (803) of blue tit (Cyanistes caeruleus) nests across three breeding seasons at Wytham Woods, UK. While our pre-registered analyses found that individual females built very similar nests across years, there was no evidence in follow-up (post hoc) analyses that their nest size correlated to that of their genetic mother or, in a cross-fostering experiment, to the nest where they were reared. In further pre-registered analyses, spatial environmental variability explained nest size variability at relatively broad spatial scales, and especially strongly at the scale of individual nest boxes. Our study indicates that nest structure is a characteristic of individuals, but is not strongly heritable, indicating that it will not respond rapidly to selection. Explaining the within-individual and within-location repeatability we observed requires further study. PMID:29765658

  3. Genetic characterization of Colombian Bahman cattle using microsatellites markers.

    PubMed

    Gómez, Y M; Fernandez, M; Rivera, D; Gómez, G; Bernal, J E

    2013-07-01

    Genetic structure and diversity of 3789 animals of the Brahman breed from 23 Colombian regions were assessed. Considering the Brahman Zebu cattle as a single population, the multilocus test based on the HW equilibrium, shows significant differences (P < 0.001). Genetic characterization made on the cattle population allowed to examine the genetic variability, calculating a H(o) = 0.6621. Brahman population in Colombia was a small subdivision within populations (F(it) = 0.045), a geographic subdivision almost non-existent or low differentiation (F(st) = 0.003) and the F(is) calculated (0.042) indicates no detriment to the variability in the population, despite the narrow mating takes place or there is a force that causes the variability is sustained without inbreeding actually affect the cattle population. The outcomes of multivariate analyses, Bayesian inferences and interindividual genetic distances suggested that there is no genetic sub-structure in the population, because of the high rate of animal migration among regions.

  4. Stochastic model search with binary outcomes for genome-wide association studies

    PubMed Central

    Malovini, Alberto; Puca, Annibale A; Bellazzi, Riccardo

    2012-01-01

    Objective The spread of case–control genome-wide association studies (GWASs) has stimulated the development of new variable selection methods and predictive models. We introduce a novel Bayesian model search algorithm, Binary Outcome Stochastic Search (BOSS), which addresses the model selection problem when the number of predictors far exceeds the number of binary responses. Materials and methods Our method is based on a latent variable model that links the observed outcomes to the underlying genetic variables. A Markov Chain Monte Carlo approach is used for model search and to evaluate the posterior probability of each predictor. Results BOSS is compared with three established methods (stepwise regression, logistic lasso, and elastic net) in a simulated benchmark. Two real case studies are also investigated: a GWAS on the genetic bases of longevity, and the type 2 diabetes study from the Wellcome Trust Case Control Consortium. Simulations show that BOSS achieves higher precisions than the reference methods while preserving good recall rates. In both experimental studies, BOSS successfully detects genetic polymorphisms previously reported to be associated with the analyzed phenotypes. Discussion BOSS outperforms the other methods in terms of F-measure on simulated data. In the two real studies, BOSS successfully detects biologically relevant features, some of which are missed by univariate analysis and the three reference techniques. Conclusion The proposed algorithm is an advance in the methodology for model selection with a large number of features. Our simulated and experimental results showed that BOSS proves effective in detecting relevant markers while providing a parsimonious model. PMID:22534080

  5. Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.)

    PubMed Central

    You, Frank M.; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D.; Rashid, Khalid Y.; Booker, Helen M.; Cloutier, Sylvie

    2017-01-01

    Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m−2, oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding. PMID:28993783

  6. The Variable Regions of Lactobacillus rhamnosus Genomes Reveal the Dynamic Evolution of Metabolic and Host-Adaptation Repertoires

    PubMed Central

    Ceapa, Corina; Davids, Mark; Ritari, Jarmo; Lambert, Jolanda; Wels, Michiel; Douillard, François P.; Smokvina, Tamara; de Vos, Willem M.; Knol, Jan; Kleerebezem, Michiel

    2016-01-01

    Lactobacillus rhamnosus is a diverse Gram-positive species with strains isolated from different ecological niches. Here, we report the genome sequence analysis of 40 diverse strains of L. rhamnosus and their genomic comparison, with a focus on the variable genome. Genomic comparison of 40 L. rhamnosus strains discriminated the conserved genes (core genome) and regions of plasticity involving frequent rearrangements and horizontal transfer (variome). The L. rhamnosus core genome encompasses 2,164 genes, out of 4,711 genes in total (the pan-genome). The accessory genome is dominated by genes encoding carbohydrate transport and metabolism, extracellular polysaccharides (EPS) biosynthesis, bacteriocin production, pili production, the cas system, and the associated clustered regularly interspaced short palindromic repeat (CRISPR) loci, and more than 100 transporter functions and mobile genetic elements like phages, plasmid genes, and transposons. A clade distribution based on amino acid differences between core (shared) proteins matched with the clade distribution obtained from the presence–absence of variable genes. The phylogenetic and variome tree overlap indicated that frequent events of gene acquisition and loss dominated the evolutionary segregation of the strains within this species, which is paralleled by evolutionary diversification of core gene functions. The CRISPR-Cas system could have contributed to this evolutionary segregation. Lactobacillus rhamnosus strains contain the genetic and metabolic machinery with strain-specific gene functions required to adapt to a large range of environments. A remarkable congruency of the evolutionary relatedness of the strains’ core and variome functions, possibly favoring interspecies genetic exchanges, underlines the importance of gene-acquisition and loss within the L. rhamnosus strain diversification. PMID:27358423

  7. Genetic Variability of 27 Traits in a Core Collection of Flax (Linum usitatissimum L.).

    PubMed

    You, Frank M; Jia, Gaofeng; Xiao, Jin; Duguid, Scott D; Rashid, Khalid Y; Booker, Helen M; Cloutier, Sylvie

    2017-01-01

    Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m -2 , oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding.

  8. A Darwinian approach to control-structure design

    NASA Technical Reports Server (NTRS)

    Zimmerman, David C.

    1993-01-01

    Genetic algorithms (GA's), as introduced by Holland (1975), are one form of directed random search. The form of direction is based on Darwin's 'survival of the fittest' theories. GA's are radically different from the more traditional design optimization techniques. GA's work with a coding of the design variables, as opposed to working with the design variables directly. The search is conducted from a population of designs (i.e., from a large number of points in the design space), unlike the traditional algorithms which search from a single design point. The GA requires only objective function information, as opposed to gradient or other auxiliary information. Finally, the GA is based on probabilistic transition rules, as opposed to deterministic rules. These features allow the GA to attack problems with local-global minima, discontinuous design spaces and mixed variable problems, all in a single, consistent framework.

  9. Large-scale discovery of novel genetic causes of developmental disorders.

    PubMed

    2015-03-12

    Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.

  10. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints.

    PubMed

    Mouchet, Maud A; Bouvier, Corinne; Bouvier, Thierry; Troussellier, Marc; Escalas, Arthur; Mouillot, David

    2012-03-01

    Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment. © European Union 2011.

  11. Gene-by-Psychosocial Factor Interactions Influence Diastolic Blood Pressure in European and African Ancestry Populations: Meta-Analysis of Four Cohort Studies.

    PubMed

    Smith, Jennifer A; Zhao, Wei; Yasutake, Kalyn; August, Carmella; Ratliff, Scott M; Faul, Jessica D; Boerwinkle, Eric; Chakravarti, Aravinda; Diez Roux, Ana V; Gao, Yan; Griswold, Michael E; Heiss, Gerardo; Kardia, Sharon L R; Morrison, Alanna C; Musani, Solomon K; Mwasongwe, Stanford; North, Kari E; Rose, Kathryn M; Sims, Mario; Sun, Yan V; Weir, David R; Needham, Belinda L

    2017-12-18

    Inter-individual variability in blood pressure (BP) is influenced by both genetic and non-genetic factors including socioeconomic and psychosocial stressors. A deeper understanding of the gene-by-socioeconomic/psychosocial factor interactions on BP may help to identify individuals that are genetically susceptible to high BP in specific social contexts. In this study, we used a genomic region-based method for longitudinal analysis, Longitudinal Gene-Environment-Wide Interaction Studies (LGEWIS), to evaluate the effects of interactions between known socioeconomic/psychosocial and genetic risk factors on systolic and diastolic BP in four large epidemiologic cohorts of European and/or African ancestry. After correction for multiple testing, two interactions were significantly associated with diastolic BP. In European ancestry participants, outward/trait anger score had a significant interaction with the C10orf107 genomic region ( p = 0.0019). In African ancestry participants, depressive symptom score had a significant interaction with the HFE genomic region ( p = 0.0048). This study provides a foundation for using genomic region-based longitudinal analysis to identify subgroups of the population that may be at greater risk of elevated BP due to the combined influence of genetic and socioeconomic/psychosocial risk factors.

  12. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae)

    PubMed Central

    Acosta, M. Cristina; Cofré, Noelia; Domínguez, Laura S.; Bidartondo, Martin I.; Sérsic, Alicia N.

    2017-01-01

    Abstract Background and Aims Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Methods Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Key Results Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Conclusions Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. PMID:28398457

  13. Genetic variability of VEGF pathway genes in six randomized phase III trials assessing the addition of bevacizumab to standard therapy.

    PubMed

    de Haas, Sanne; Delmar, Paul; Bansal, Aruna T; Moisse, Matthieu; Miles, David W; Leighl, Natasha; Escudier, Bernard; Van Cutsem, Eric; Carmeliet, Peter; Scherer, Stefan J; Pallaud, Celine; Lambrechts, Diether

    2014-10-01

    Despite extensive translational research, no validated biomarkers predictive of bevacizumab treatment outcome have been identified. We performed a meta-analysis of individual patient data from six randomized phase III trials in colorectal, pancreatic, lung, renal, breast, and gastric cancer to explore the potential relationships between 195 common genetic variants in the vascular endothelial growth factor (VEGF) pathway and bevacizumab treatment outcome. The analysis included 1,402 patients (716 bevacizumab-treated and 686 placebo-treated). Twenty variants were associated (P < 0.05) with progression-free survival (PFS) in bevacizumab-treated patients. Of these, 4 variants in EPAS1 survived correction for multiple testing (q < 0.05). Genotype-by-treatment interaction tests revealed that, across these 20 variants, 3 variants in VEGF-C (rs12510099), EPAS1 (rs4953344), and IL8RA (rs2234671) were potentially predictive (P < 0.05), but not resistant to multiple testing (q > 0.05). A weak genotype-by-treatment interaction effect was also observed for rs699946 in VEGF-A, whereas Bayesian genewise analysis revealed that genetic variability in VHL was associated with PFS in the bevacizumab arm (q < 0.05). Variants in VEGF-A, EPAS1, and VHL were located in expression quantitative loci derived from lymphoblastoid cell lines, indicating that they affect the expression levels of their respective gene. This large genetic analysis suggests that variants in VEGF-A, EPAS1, IL8RA, VHL, and VEGF-C have potential value in predicting bevacizumab treatment outcome across tumor types. Although these associations did not survive correction for multiple testing in a genotype-by-interaction analysis, they are among the strongest predictive effects reported to date for genetic variants and bevacizumab efficacy.

  14. Genetic population structure in an equatorial sparrow: roles for culture and geography.

    PubMed

    Danner, J E; Fleischer, R C; Danner, R M; Moore, I T

    2017-06-01

    Female preference for local cultural traits has been proposed as a barrier to breeding among animal populations. As such, several studies have found correlations between male bird song dialects and population genetics over relatively large distances. To investigate whether female choice for local dialects could act as a barrier to breeding between nearby and contiguous populations, we tested whether variation in male song dialects explains genetic structure among eight populations of rufous-collared sparrows (Zonotrichia capensis) in Ecuador. Our study sites lay along a transect, and adjacent study sites were separated by approximately 25 km, an order of magnitude less than previously examined for this and most other species. This transect crossed an Andean ridge and through the Quijos River Valley, both of which may be barriers to gene flow. Using a variance partitioning approach, we show that song dialect is important in explaining population genetics, independent of the geographic variables: distance, the river valley and the Andean Ridge. This result is consistent with the hypothesis that song acts as a barrier to breeding among populations in close proximity. In addition, songs of contiguous populations differed by the same degree or more than between two populations previously shown to exhibit female preference for local dialect, suggesting that birds from these populations would also breed preferentially with locals. As expected, all geographic variables (distance, the river valley and the Andean Ridge) also predicted population genetic structure. Our results have important implications for the understanding whether, and at what spatial scale, culture can affect population divergence. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  15. GWAS-based pathway analysis differentiates between fluid and crystallized intelligence.

    PubMed

    Christoforou, A; Espeseth, T; Davies, G; Fernandes, C P D; Giddaluru, S; Mattheisen, M; Tenesa, A; Harris, S E; Liewald, D C; Payton, A; Ollier, W; Horan, M; Pendleton, N; Haggarty, P; Djurovic, S; Herms, S; Hoffman, P; Cichon, S; Starr, J M; Lundervold, A; Reinvang, I; Steen, V M; Deary, I J; Le Hellard, S

    2014-09-01

    Cognitive abilities vary among people. About 40-50% of this variability is due to general intelligence (g), which reflects the positive correlation among individuals' scores on diverse cognitive ability tests. g is positively correlated with many life outcomes, such as education, occupational status and health, motivating the investigation of its underlying biology. In psychometric research, a distinction is made between general fluid intelligence (gF) - the ability to reason in novel situations - and general crystallized intelligence (gC) - the ability to apply acquired knowledge. This distinction is supported by developmental and cognitive neuroscience studies. Classical epidemiological studies and recent genome-wide association studies (GWASs) have established that these cognitive traits have a large genetic component. However, no robust genetic associations have been published thus far due largely to the known polygenic nature of these traits and insufficient sample sizes. Here, using two GWAS datasets, in which the polygenicity of gF and gC traits was previously confirmed, a gene- and pathway-based approach was undertaken with the aim of characterizing and differentiating their genetic architecture. Pathway analysis, using genes selected on the basis of relaxed criteria, revealed notable differences between these two traits. gF appeared to be characterized by genes affecting the quantity and quality of neurons and therefore neuronal efficiency, whereas long-term depression (LTD) seemed to underlie gC. Thus, this study supports the gF-gC distinction at the genetic level and identifies functional annotations and pathways worthy of further investigation. © 2014 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

  16. Novel mutation in TSPAN12 leads to autosomal recessive inheritance of congenital vitreoretinal disease with intra-familial phenotypic variability.

    PubMed

    Gal, Moran; Levanon, Erez Y; Hujeirat, Yasir; Khayat, Morad; Pe'er, Jacob; Shalev, Stavit

    2014-12-01

    Developmental malformations of the vitreoretinal vasculature are a heterogeneous group of conditions with various modes of inheritance, and include familial exudative vitreoretinopathy (FEVR), persistent fetal vasculature (PFV), and Norrie disease. We investigated a large consanguineous kindred with multiple affected individuals exhibiting variable phenotypes of abnormal vitreoretinal vasculature, consistent with the three above-mentioned conditions and compatible with autosomal recessive inheritance. Exome sequencing identified a novel c.542G > T (p.C181F) apparently mutation in the TSPAN12 gene that segregated with the ocular disease in the family. The TSPAN12 gene was previously reported to cause dominant and recessive FEVR, but has not yet been associated with other vitreoretinal manifestations. The intra-familial clinical variability caused by a single mutation in the TSPAN12 gene underscores the complicated phenotype-genotype correlation of mutations in this gene, and suggests that there are additional genetic and environmental factors involved in the complex process of ocular vascularization during embryonic development. Our study supports considering PFV, FEVR, and Norrie disease a spectrum of disorders, with clinical and genetic overlap, caused by mutations in distinct genes acting in the Norrin/β-catenin signaling pathway. © 2014 Wiley Periodicals, Inc.

  17. Has the plant genetic variability any role in models of water transfer in the soil-plant-atmosphere continuum ?

    NASA Astrophysics Data System (ADS)

    Tardieu, F.

    2012-04-01

    Water transfer in the SPAC is essentially linked to environmental conditions such as evaporative demand or soil water potential, and physical parameters such as soil hydraulic capacity or hydraulic conductivity. Models used in soil science most often represent the plant via a small number of variables such as the water flux that crosses the base of the stem or the root length (or area) in each soil layer. Because there is an increasing demand for computer simulations of plants that would perform better under water deficit, models of SPA water transfer are needed that could better take into account the genetic variability of traits involved in plant hydraulics. (i) The water flux through the plant is essentially limited by stomata, which present a much higher resistance to water flow than those in the soil - root continuum. This can lead to unexpected relations between flux, leaf water potential and root hydraulic conductance. (ii) A large genetic variability exists within and between species for stomatal control, with important consequences for the minimum soil water potential that is accessible to the plant. In particular, isohydric plants that maintain leaf water potential in a narrow range via stomatal control have a higher (nearer to 0) 'wilting point' than anisohydric plants that allow leaf water potential to reach very low values. (iii) The conductivity for water transfer in roots and shoots is controlled by plants via aquaporins. It largely varies with time of the day, water and nutrient status, in particular via plant hormones and circadian rhythms. Models of SPA water transfer with a time definition of minutes to hour should probably not ignore this, while those with longer time steps are probably less sensitive to changes in plant hydraulic conductivity. (iv) The "dogma" that dense root systems provide tolerance to water deficit is profoundly affected when the balance "H2O gain vs C investment" is taken into account. At least three programmes of recurrent selection for drought tolerance have resulted in a decrease in root biomass. Overall, it is now crucial to take into account the rapid progress in plant hydraulics in SPA models of water transfer. Several projects aim at this objective, in particular the EU project DROPS that gathers geneticists, plant modellers and soil modellers.

  18. Genetic variability of Brazilian isolates of Alternaria alternata detected by AFLP and RAPD techniques

    PubMed Central

    Dini-Andreote, Francisco; Pietrobon, Vivian Cristina; Andreote, Fernando Dini; Romão, Aline Silva; Spósito, Marcel Bellato; Araújo, Welington Luiz

    2009-01-01

    The Alternaria brown spot (ABS) is a disease caused in tangerine plants and its hybrids by the fungus Alternaria alternata f. sp. citri which has been found in Brazil since 2001. Due to the recent occurrence in Brazilian orchards, the epidemiology and genetic variability of this pathogen is still an issue to be addressed. Here it is presented a survey about the genetic variability of this fungus by the characterization of twenty four pathogenic isolates of A. alternata f. sp. citri from citrus plants and four endophytic isolates from mango (one Alternaria tenuissima and three Alternaria arborescens). The application of two molecular markers Random Amplified Polymorphic DNA (RAPD) and Amplified Fragment Length Polymorphism (AFLP) had revealed the isolates clustering in distinct groups when fingerprintings were analyzed by Principal Components Analysis (PCA). Despite the better assessment of the genetic variability through the AFLP, significant modifications in clusters components were not observed, and only slight shifts in the positioning of isolates LRS 39/3 and 25M were observed in PCA plots. Furthermore, in both analyses, only the isolates from lemon plants revealed to be clustered, differently from the absence of clustering for other hosts or plant tissues. Summarizing, both RAPD and AFLP analyses were both efficient to detect the genetic variability within the population of the pathogenic fungus Alternaria spp., supplying information on the genetic variability of this species as a basis for further studies aiming the disease control. PMID:24031413

  19. Mitochondrial DNA variability among eight Tikúna villages: evidence for an intratribal genetic heterogeneity pattern.

    PubMed

    Mendes-Junior, Celso Teixeira; Simões, Aguinaldo Luiz

    2009-11-01

    To study the genetic structure of the Tikúna tribe, four major Native American mitochondrial DNA (mtDNA) founder haplogroups were analyzed in 187 Amerindians from eight Tikúna villages located in the Brazilian Amazon. The central position of these villages in the continent makes them relevant for attempts to reconstruct population movements in South America. In this geographic region, there is particular concern regarding the genetic structure of the Tikúna tribe, formerly designated "enigmatic" due to its remarkable degree of intratribal homogeneity and the scarcity of private protein variants. In spite of its large population size and geographic distribution, the Tikúna tribe presents marked genetic and linguistic isolation. All individuals presented indigenous mtDNA haplogroups. An intratribal genetic heterogeneity pattern characterized by two highly homogeneous Tikúna groups that differ considerably from each other was observed. Such a finding was unexpected, since the Tikúna tribe is characterized by a social system that favors intratribal exogamy and patrilocality that would lead to a higher female migration rate and homogenization of the mtDNA gene pool. Demographic explosions and religious events, which significantly changed the sizes and compositions of many Tikúna villages, may be reflected in the genetic results presented here.

  20. New Multilocus Variable-Number Tandem-Repeat Analysis (MLVA) Scheme for Fine-Scale Monitoring and Microevolution-Related Study of Ralstonia pseudosolanacearum Phylotype I Populations

    PubMed Central

    Guinard, Jérémy; Latreille, Anne; Guérin, Fabien; Poussier, Stéphane

    2016-01-01

    ABSTRACT Bacterial wilt caused by the Ralstonia solanacearum species complex (RSSC) is considered one of the most harmful plant diseases in the world. Special attention should be paid to R. pseudosolanacearum phylotype I due to its large host range, its worldwide distribution, and its high evolutionary potential. So far, the molecular epidemiology and population genetics of this bacterium are poorly understood. Until now, the genetic structure of the RSSC has been analyzed on the worldwide and regional scales. Emerging questions regarding evolutionary forces in RSSC adaptation to hosts now require genetic markers that are able to monitor RSSC field populations. In this study, we aimed to evaluate the multilocus variable-number tandem-repeat analysis (MLVA) approach for its ability to discriminate genetically close phylotype I strains and for population genetics studies. We developed a new MLVA scheme (MLVA-7) allowing us to genotype 580 R. pseudosolanacearum phylotype I strains extracted from susceptible and resistant hosts and from different habitats (stem, soil, and rhizosphere). Based on specificity, polymorphism, and the amplification success rate, we selected seven fast-evolving variable-number tandem-repeat (VNTR) markers. The newly developed MLVA-7 scheme showed higher discriminatory power than the previously published MLVA-13 scheme when applied to collections sampled from the same location on different dates and to collections from different locations on very small scales. Our study provides a valuable tool for fine-scale monitoring and microevolution-related study of R. pseudosolanacearum phylotype I populations. IMPORTANCE Understanding the evolutionary dynamics of adaptation of plant pathogens to new hosts or ecological niches has become a key point for the development of innovative disease management strategies, including durable resistance. Whereas the molecular mechanisms underlying virulence or pathogenicity changes have been studied thoroughly, the population genetics of plant pathogen adaptation remains an open, unexplored field, especially for plant-pathogenic bacteria. MLVA has become increasingly popular for epidemiosurveillance and molecular epidemiology studies of plant pathogens. However, this method has been used mostly for genotyping and identification on a regional or global scale. In this study, we developed a new MLVA scheme, targeting phylotype I of the soilborne Ralstonia solanacearum species complex (RSSC), specifically to address the bacterial population genetics on the field scale. Such a MLVA scheme, based on fast-evolving loci, may be a tool of choice for field experimental evolution and spatial genetics studies. PMID:28003195

  1. Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles.

    PubMed

    Lu, Chenqi; Liu, Xiaoqin; Wang, Lin; Jiang, Ning; Yu, Jun; Zhao, Xiaobo; Hu, Hairong; Zheng, Saihua; Li, Xuelian; Wang, Guiying

    2017-01-10

    Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.

  2. Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni.

    PubMed

    Sternes, Peter R; Borneman, Anthony R

    2016-04-27

    Oenococcus oeni is a lactic acid bacterium that is specialised for growth in the ecological niche of wine, where it is noted for its ability to perform the secondary, malolactic fermentation that is often required for many types of wine. Expanding the understanding of strain-dependent genetic variations in its small and streamlined genome is important for realising its full potential in industrial fermentation processes. Whole genome comparison was performed on 191 strains of O. oeni; from this rich source of genomic information consensus pan-genome assemblies of the invariant (core) and variable (flexible) regions of this organism were established. Genetic variation in amino acid biosynthesis and sugar transport and utilisation was found to be common between strains. Furthermore, we characterised previously-unreported intra-specific genetic variations in the natural competence of this microbe. By assembling a consensus pan-genome from a large number of strains, this study provides a tool for researchers to readily compare protein-coding genes across strains and infer functional relationships between genes in conserved syntenic regions. This establishes a foundation for further genetic, and thus phenotypic, research of this industrially-important species.

  3. Cryptic biodiversity loss linked to global climate change

    NASA Astrophysics Data System (ADS)

    Bálint, M.; Domisch, S.; Engelhardt, C. H. M.; Haase, P.; Lehrian, S.; Sauer, J.; Theissinger, K.; Pauls, S. U.; Nowak, C.

    2011-09-01

    Global climate change (GCC) significantly affects distributional patterns of organisms, and considerable impacts on biodiversity are predicted for the next decades. Inferred effects include large-scale range shifts towards higher altitudes and latitudes, facilitation of biological invasions and species extinctions. Alterations of biotic patterns caused by GCC have usually been predicted on the scale of taxonomically recognized morphospecies. However, the effects of climate change at the most fundamental level of biodiversity--intraspecific genetic diversity--remain elusive. Here we show that the use of morphospecies-based assessments of GCC effects will result in underestimations of the true scale of biodiversity loss. Species distribution modelling and assessments of mitochondrial DNA variability in nine montane aquatic insect species in Europe indicate that future range contractions will be accompanied by severe losses of cryptic evolutionary lineages and genetic diversity within these lineages. These losses greatly exceed those at the scale of morphospecies. We also document that the extent of range reduction may be a useful proxy when predicting losses of genetic diversity. Our results demonstrate that intraspecific patterns of genetic diversity should be considered when estimating the effects of climate change on biodiversity.

  4. New approaches to optimization in aerospace conceptual design

    NASA Technical Reports Server (NTRS)

    Gage, Peter J.

    1995-01-01

    Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.

  5. Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale

    PubMed Central

    Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Grégoire

    2013-01-01

    Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average of −0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges. PMID:23630596

  6. Evidence for parasite-mediated selection during short-lasting toxic algal blooms.

    PubMed

    Blanquart, François; Valero, Myriam; Alves-de-Souza, Catharina; Dia, Aliou; Lepelletier, Frédéric; Bigeard, Estelle; Jeanthon, Christian; Destombe, Christophe; Guillou, Laure

    2016-10-26

    Parasites play a role in the control of transient algal blooms, but it is not known whether parasite-mediated selection results in coevolution of the host and the parasites over this short time span. We investigated the presence of coevolution between the toxic dinoflagellate Alexandrium minutum and two naturally occurring endoparasites during blooms lasting a month in two river estuaries, using cross-inoculation experiments across time and space. Higher parasite abundance was associated with a large daily reduction in relative A. minutum abundances, demonstrating strong parasite-mediated selection. There was genetic variability in infectivity in both parasite species, and in resistance in the host. We found no evidence for coevolution in one estuary; however, in the other estuary, we found high genetic diversity in the two parasite species, fluctuations in infectivity and suggestion that the two parasites are well adapted to their host, as in 'Red Queen' dynamics. Thus, coevolution is possible over the short time span of a bloom, but geographically variable, and may feedback on community dynamics. © 2016 The Authors.

  7. Is child intelligence associated with parent and sibling intelligence in individuals with developmental disorders? An investigation in youth with 22q11.2 deletion (velo-cardio-facial) syndrome.

    PubMed

    Olszewski, Amy K; Radoeva, Petya D; Fremont, Wanda; Kates, Wendy R; Antshel, Kevin M

    2014-12-01

    Children with 22q11.2 deletion syndrome (22q11DS), a copy-number variation (CNV) genetic disorder, demonstrate a great deal of variability in IQ scores and are at particular risk for cognitive difficulties, with up to 45% experiencing intellectual disability. This study explored the IQ relationship between individuals with 22q11DS, their parents and their siblings. Participants included individuals with 22q11DS, unaffected siblings and community controls, who participated in a longitudinal study of 22q11DS. Significant associations between proband and relative (parent, sibling) IQ scores were found. Results suggest that the cognitive functioning of first-degree relatives could be a useful marker of general genetic background and/or environmental effects, and can explain some of the large phenotypic variability in 22q11DS. These findings underscore the importance of including siblings and parents in studies of 22q11DS whenever possible. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Genetic polymorphisms of LPL and HL and their association with the performance of Chinese sturgeons fed a formulated diet.

    PubMed

    He, Y; Shen, D; Liang, X F; Lu, R H; Xiao, H

    2013-10-15

    It is very important to investigate the reasons for the large individual differences in individual performance of food acceptance when using formulated diets for the successful culture of larvae and juveniles of the Chinese sturgeon Acipenser sinensis. Genetic differences of the mitochondrial control region were investigated by direct sequencing in two groups of Chinese sturgeon, which were apt to accept or refuse formulated diets. Among 968-bp sequences, 111 variable sites were identified. One variable site showed close association with the individual performance of specimens fed with formulated diets. The commercial diet for Chinese sturgeons usually contains high levels of lipids. Lipoprotein lipase (LPL) and hepatic lipase (HL) are two members of the lipase gene family, which are essential for the utilization of dietary lipid. Single nucleotide polymorphisms (SNPs) in intron 7 were detected in the two experimental groups of Chinese sturgeons. We were able to demonstrate that one SNP in the LPL gene and one SNP in the HL gene showed close association with the performance of sturgeons on the formulated diet.

  9. A Neuron-Based Screening Platform for Optimizing Genetically-Encoded Calcium Indicators

    PubMed Central

    Schreiter, Eric R.; Hasseman, Jeremy P.; Tsegaye, Getahun; Fosque, Benjamin F.; Behnam, Reza; Shields, Brenda C.; Ramirez, Melissa; Kimmel, Bruce E.; Kerr, Rex A.; Jayaraman, Vivek; Looger, Loren L.; Svoboda, Karel; Kim, Douglas S.

    2013-01-01

    Fluorescent protein-based sensors for detecting neuronal activity have been developed largely based on non-neuronal screening systems. However, the dynamics of neuronal state variables (e.g., voltage, calcium, etc.) are typically very rapid compared to those of non-excitable cells. We developed an electrical stimulation and fluorescence imaging platform based on dissociated rat primary neuronal cultures. We describe its use in testing genetically-encoded calcium indicators (GECIs). Efficient neuronal GECI expression was achieved using lentiviruses containing a neuronal-selective gene promoter. Action potentials (APs) and thus neuronal calcium levels were quantitatively controlled by electrical field stimulation, and fluorescence images were recorded. Images were segmented to extract fluorescence signals corresponding to individual GECI-expressing neurons, which improved sensitivity over full-field measurements. We demonstrate the superiority of screening GECIs in neurons compared with solution measurements. Neuronal screening was useful for efficient identification of variants with both improved response kinetics and high signal amplitudes. This platform can be used to screen many types of sensors with cellular resolution under realistic conditions where neuronal state variables are in relevant ranges with respect to timing and amplitude. PMID:24155972

  10. North-South Colonization Associated with Local Adaptation of the Wild Tomato Species Solanum chilense.

    PubMed

    Böndel, Katharina B; Lainer, Hilde; Nosenko, Tetyana; Mboup, Mamadou; Tellier, Aurélien; Stephan, Wolfgang

    2015-11-01

    After colonization population sizes may vary across the species range depending on environmental conditions and following colonizations. An interesting question is whether local adaptation occurs more frequently in large ancestral populations or in small derived populations. A higher number of new mutations and a lower effect of genetic drift should favor selection in large populations, whereas small derived populations may require an initial local adaptation event to facilitate the colonization of new habitats. Wild tomatoes are native to a broad range of different habitats characterized by variable abiotic conditions in South America, and represent an ideal system to study this interplay between demography and natural selection. Population genetic analyses and statistical inference of past demography were conducted on pooled-sequencing data from 30 genes (8,080 single nucleotide polymorphisms) from an extensive sampling of 23 Solanum chilense populations over Chile and Peru. We reveal first a north-south colonization associated with relaxed purifying selection in the south as shown by a decrease of genetic variation and an increasing proportion of nonsynonymous polymorphism from north to south, and population substructure with at least four genetic groups. Second, we uncover a dual picture of adaptation consisting of 1) a decreasing proportion of adaptive amino acid substitutions from north to south suggesting that adaptation is favored in large populations, whereas 2) signatures of local adaptation predominantly occur in the smaller populations from the marginal ranges in the south. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    PubMed

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-07-14

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system.

  12. Genetic characterization of Uruguayan Pampa Rocha pigs with microsatellite markers

    PubMed Central

    Montenegro, M; Llambí, S; Castro, G; Barlocco, N; Vadell, A; Landi, V; Delgado, JV; Martínez, A

    2015-01-01

    In this study, we genetically characterized the Uruguayan pig breed Pampa Rocha. Genetic variability was assessed by analyzing a panel of 25 microsatellite markers from a sample of 39 individuals. Pampa Rocha pigs showed high genetic variability with observed and expected heterozygosities of 0.583 and 0.603, respectively. The mean number of alleles was 5.72. Twenty-four markers were polymorphic, with 95.8% of them in Hardy Weinberg equilibrium. The level of endogamy was low (FIS = 0.0475). A factorial analysis of correspondence was used to assess the genetic differences between Pampa Rocha and other pig breeds; genetic distances were calculated, and a tree was designed to reflect the distance matrix. Individuals were also allocated into clusters. This analysis showed that the Pampa Rocha breed was separated from the other breeds along the first and second axes. The neighbour-joining tree generated by the genetic distances DA showed clustering of Pampa Rocha with the Meishan breed. The allocation of individuals to clusters showed a clear separation of Pampa Rocha pigs. These results provide insights into the genetic variability of Pampa Rocha pigs and indicate that this breed is a well-defined genetic entity. PMID:25983624

  13. Genetic Influence on Slope Variability in a Childhood Reflexive Attention Task.

    PubMed

    Lundwall, Rebecca A; Watkins, Jeffrey K

    2015-01-01

    Individuals are not perfectly consistent, and interindividual variability is a common feature in all varieties of human behavior. Some individuals respond more variably than others, however, and this difference may be important to understanding how the brain works. In this paper, we explore genetic contributions to response time (RT) slope variability on a reflexive attention task. We are interested in such variability because we believe it is an important part of the overall picture of attention that, if understood, has the potential to improve intervention for those with attentional deficits. Genetic association studies are valuable in discovering biological pathways of variability and several studies have found such associations with a sustained attention task. Here, we expand our knowledge to include a reflexive attention task. We ask whether specific candidate genes are associated with interindividual variability on a childhood reflexive attention task in 9-16 year olds. The genetic makers considered are on 11 genes: APOE, BDNF, CHRNA4, COMT, DRD4, HTR4, IGF2, MAOA, SLC5A7, SLC6A3, and SNAP25. We find significant associations with variability with markers on nine and we discuss the results in terms of neurotransmitters associated with each gene and the characteristics of the associated measures from the reflexive attention task.

  14. Genetic causes of intellectual disability in a birth cohort: a population-based study.

    PubMed

    Karam, Simone M; Riegel, Mariluce; Segal, Sandra L; Félix, Têmis M; Barros, Aluísio J D; Santos, Iná S; Matijasevich, Alicia; Giugliani, Roberto; Black, Maureen

    2015-06-01

    Intellectual disability affects approximately 1-3% of the population and can be caused by genetic and environmental factors. Although many studies have investigated the etiology of intellectual disability in different populations, few studies have been performed in middle-income countries. The present study estimated the prevalence of genetic causes related to intellectual disability in a cohort of children from a city in south Brazil who were followed from birth. Children who showed poor performance in development and intelligence tests at the ages of 2 and 4 were included. Out of 4,231 liveborns enrolled in the cohort, 214 children fulfilled the inclusion criteria. A diagnosis was established in approximately 90% of the children evaluated. Genetic causes were determined in 31 of the children and 19 cases remained unexplained even after extensive investigation. The overall prevalence of intellectual disability in this cohort due to genetic causes was 0.82%. Because this study was nested in a cohort, there were a large number of variables related to early childhood and the likelihood of information bias was minimized by collecting information with a short recall time. This study was not influenced by selection bias, allowing identification of intellectual disability and estimation of the prevalence of genetic causes in this population, thereby increasing the possibility of providing appropriate management and/or genetic counseling. © 2015 Wiley Periodicals, Inc.

  15. The prosocial personality and its facets: genetic and environmental architecture of mother-reported behavior of 7-year-old twins

    PubMed Central

    Knafo-Noam, Ariel; Uzefovsky, Florina; Israel, Salomon; Davidov, Maayan; Zahn-Waxler, Caroyln

    2015-01-01

    Children vary markedly in their tendency to behave prosocially, and recent research has implicated both genetic and environmental factors in this variability. Yet, little is known about the extent to which different aspects of prosociality constitute a single dimension (the prosocial personality), and to the extent they are intercorrelated, whether these aspects share their genetic and environmental origins. As part of the Longitudinal Israeli Study of Twins (LIST), mothers of 183 monozygotic (MZ) and dizygotic (DZ) 7-year-old twin pairs (51.6% male) reported regarding their children’s prosociality using questionnaires. Five prosociality facets (sharing, social concern, kindness, helping, and empathic concern) were identified. All five facets intercorrelated positively (r > 0.39) suggesting a single-factor structure to the data, consistent with the theoretical idea of a single prosociality trait. Higher MZ than DZ twin correlations indicated genetic contributions to each prosociality facet. A common-factor-common-pathway multivariate model estimated high (69%) heritability for the common prosociality factor, with the non-shared environment and error accounting for the remaining variance. For each facet, unique genetic and environmental contributions were identified as well. The results point to the presence of a broad prosociality phenotype, largely affected by genetics; whereas additional genetic and environmental factors contribute to different aspects of prosociality, such as helping and sharing. PMID:25762952

  16. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster).

    PubMed

    Budde, Katharina B; Heuertz, Myriam; Hernández-Serrano, Ana; Pausas, Juli G; Vendramin, Giovanni G; Verdú, Miguel; González-Martínez, Santiago C

    2014-01-01

    Wildfire is a major ecological driver of plant evolution. Understanding the genetic basis of plant adaptation to wildfire is crucial, because impending climate change will involve fire regime changes worldwide. We studied the molecular genetic basis of serotiny, a fire-related trait, in Mediterranean maritime pine using association genetics. A single nucleotide polymorphism (SNP) set was used to identify genotype : phenotype associations in situ in an unstructured natural population of maritime pine (eastern Iberian Peninsula) under a mixed-effects model framework. RR-BLUP was used to build predictive models for serotiny in this region. Model prediction power outside the focal region was tested using independent range-wide serotiny data. Seventeen SNPs were potentially associated with serotiny, explaining approximately 29% of the trait phenotypic variation in the eastern Iberian Peninsula. Similar prediction power was found for nearby geographical regions from the same maternal lineage, but not for other genetic lineages. Association genetics for ecologically relevant traits evaluated in situ is an attractive approach for forest trees provided that traits are under strong genetic control and populations are unstructured, with large phenotypic variability. This will help to extend the research focus to ecological keystone non-model species in their natural environments, where polymorphisms acquired their adaptive value. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  17. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome.

    PubMed

    Dato, Serena; Rose, Giuseppina; Crocco, Paolina; Monti, Daniela; Garagnani, Paolo; Franceschi, Claudio; Passarino, Giuseppe

    2017-07-01

    Approximately one-quarter of the variation in lifespan in developed countries can be attributed to genetic factors. However, even large population based studies investigating genetic influence on human lifespan have been disappointing, identifying only a few genes accounting for genetic susceptibility to longevity. Some environmental and lifestyle determinants associated with longevity have been identified, which interplay with genetic factors in an intricate way. The study of gene-environment and gene-gene interactions can significantly improve our chance to disentangle this complex scenario. In this review, we first describe the most recent approaches for genetic studies of longevity, from those enriched with health parameters and frailty measures to pathway-based and SNP-SNP interaction analyses. Then, we go deeper into the concept of "environmental influences" in human aging and longevity, focusing on the contribution of life style changes, social and cultural influences, as important determinants of survival differences among individuals in a population. Finally, we discuss the contribution of the microbiome in human longevity, as an example of complex interaction between organism and environment. In conclusion, evidences collected from the latest studies on human longevity provide a support for the collection of life-long genetic and environmental/lifestyle variables with beneficial or detrimental effects on health, to improve our understanding of the determinants of human lifespan. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage.

    PubMed

    Prior, Steven J; Roth, Stephen M; Wang, Xiaojing; Kammerer, Candace; Miljkovic-Gacic, Iva; Bunker, Clareann H; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2007-10-01

    The aim of this study was to estimate the heritability of and environmental contributions to skeletal muscle phenotypes (appendicular lean mass and calf muscle cross-sectional area) in subjects of African descent and to determine whether heritability estimates are impacted by sex or age. Body composition was measured by dual-energy X-ray absorptiometry and computed tomography in 444 men and women aged 18 yr and older (mean: 43 yr) from eight large, multigenerational Afro-Caribbean families (family size range: 21-112). Using quantitative genetic methods, we estimated heritability and the association of anthropometric, lifestyle, and medical variables with skeletal muscle phenotypes. In the overall group, we estimated the heritability of lean mass and calf muscle cross-sectional area (h(2) = 0.18-0.23, P < 0.01) and contribution of environmental factors to these phenotypes (r(2) = 0.27-0.55, P < 0.05). In our age-specific analysis, the heritability of leg lean mass was lower in older vs. younger individuals (h(2) = 0.05 vs. 0.23, respectively, P = 0.1). Sex was a significant covariate in our models (P < 0.001), although sex-specific differences in heritability varied depending on the lean mass phenotype analyzed. High genetic correlations (rho(G) = 0.69-0.81; P < 0.01) between different lean mass measures suggest these traits share a large proportion of genetic components. Our results demonstrate the heritability of skeletal muscle traits in individuals of African heritage and that heritability may differ as a function of sex and age. As the loss of skeletal muscle mass is related to metabolic abnormalities, disability, and mortality in older individuals, further research is warranted to identify specific genetic loci that contribute to these traits in general and in a sex- and age-specific manner.

  19. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans.

    PubMed

    Gingras, Bruno; Mohandesan, Elmira; Boko, Drasko; Fitch, W Tecumseh

    2013-07-01

    Anuran vocalizations, especially their advertisement calls, are largely species-specific and can be used to identify taxonomic affiliations. Because anurans are not vocal learners, their vocalizations are generally assumed to have a strong genetic component. This suggests that the degree of similarity between advertisement calls may be related to large-scale phylogenetic relationships. To test this hypothesis, advertisement calls from 90 species belonging to four large clades (Bufo, Hylinae, Leptodactylus, and Rana) were analyzed. Phylogenetic distances were estimated based on the DNA sequences of the 12S mitochondrial ribosomal RNA gene, and, for a subset of 49 species, on the rhodopsin gene. Mean values for five acoustic parameters (coefficient of variation of root-mean-square amplitude, dominant frequency, spectral flux, spectral irregularity, and spectral flatness) were computed for each species. We then tested for phylogenetic signal on the body-size-corrected residuals of these five parameters, using three statistical tests (Moran's I, Mantel, and Blomberg's K) and three models of genetic distance (pairwise distances, Abouheif's proximities, and the variance-covariance matrix derived from the phylogenetic tree). A significant phylogenetic signal was detected for most acoustic parameters on the 12S dataset, across statistical tests and genetic distance models, both for the entire sample of 90 species and within clades in several cases. A further analysis on a subset of 49 species using genetic distances derived from rhodopsin and from 12S broadly confirmed the results obtained on the larger sample, indicating that the phylogenetic signals observed in these acoustic parameters can be detected using a variety of genetic distance models derived either from a variable mitochondrial sequence or from a conserved nuclear gene. We found a robust relationship, in a large number of species, between anuran phylogenetic relatedness and acoustic similarity in the advertisement calls in a taxon with no evidence for vocal learning, even after correcting for the effect of body size. This finding, covering a broad sample of species whose vocalizations are fairly diverse, indicates that the intense selection on certain call characteristics observed in many anurans does not eliminate all acoustic indicators of relatedness. Our approach could potentially be applied to other vocal taxa.

  20. Heritability of mandibular cephalometric variables in twins with completed craniofacial growth.

    PubMed

    Šidlauskas, Mantas; Šalomskienė, Loreta; Andriuškevičiūtė, Irena; Šidlauskienė, Monika; Labanauskas, Žygimantas; Vasiliauskas, Arūnas; Kupčinskas, Limas; Juzėnas, Simonas; Šidlauskas, Antanas

    2016-10-01

    To determine genetic and environmental impact on mandibular morphology using lateral cephalometric analysis of twins with completed mandibular growth and deoxyribonucleic acid (DNA) based zygosity determination. The 39 cephalometric variables of 141 same gender adult pair of twins were analysed. Zygosity was determined using 15 specific DNA markers and cervical vertebral maturation method was used to assess completion of the mandibular growth. A genetic analysis was performed using maximum likelihood genetic structural equation modelling (GSEM). The genetic heritability estimates of angular variables describing horizontal mandibular position in relationship to cranial base and maxilla were considerably higher than in those describing vertical position. The mandibular skeletal cephalometric variables also showed high heritability estimates with angular measurements being considerably higher than linear ones. Results of this study indicate that the angular measurements representing mandibular skeletal morphology (mandibular form) have greater genetic determination than the linear measurements (mandibular size). The shape and sagittal position of the mandible is under stronger genetic control, than is its size and vertical relationship to cranial base. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. The impact of self-reported ethnicity versus genetic ancestry on phenotypic characteristics of polycystic ovary syndrome (PCOS).

    PubMed

    Louwers, Y V; Lao, O; Fauser, B C J M; Kayser, M; Laven, J S E

    2014-10-01

    It is well established that ethnicity is associated with the phenotype of polycystic ovary syndrome (PCOS). Self-reported ethnicity was shown to be an inaccurate proxy for ethnic origin in other disease traits, and it remains unclear how in PCOS patients self-reported ethnicity compares with a biological proxy such as genetic ancestry. We compared the impact of self-reported ethnicity versus genetic ancestry on PCOS and tested which of these 2 classifications better predicts the variability in phenotypic characteristics of PCOS. A total of 1499 PCOS patients from The Netherlands, comprising 11 self-reported ethnic groups of European, African, American, and Asian descent were genotyped with the Illumina 610K Quad BeadChip and merged with the data genotyped with the Illumina HumanHap650K available for the reference panel collected by the Human Genome Diversity Project (HGDP), in a collaboration with the Centre Etude Polymorphism Humain (CEPH), including 53 populations for ancestry reference. Algorithms for inferring genetic relationships among individuals, including multidimensional scaling and ADMIXTURE, were applied to recover genetic ancestry for each individual. Regression analysis was used to determine the best predictor for the variability in PCOS characteristics. The association between self-reported ethnicity and genetic ancestry was moderate. For amenorrhea, total follicle count, body mass index, SHBG, dehydroepiandrosterone sulfate, and insulin, mainly genetic ancestry clusters ended up in the final models (P values < .004), indicating that they explain a larger proportion of variability of these PCOS characteristics compared with self-reported ethnicity. Especially variability of insulin levels seems predominantly explained by genetic ancestry. Self-reported ancestry is not a perfect proxy for genetic ancestry in patients with PCOS, emphasizing that by using genetic ancestry data instead of self-reported ethnicity, PCOS-relevant misclassification can be avoided. Moreover, because genetic ancestry explained a larger proportion of phenotypic variability associated with PCOS than self-reported ethnicity, future studies should focus on genetic ancestry verification of PCOS patients for research questions and treatment as well as preventive strategies in these women.

  2. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation

    PubMed Central

    Xu, Man K.; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J. S.; Croudace, Tim J.; Barnett, Jennifer H.; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B.

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene (MAOA) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = −0.167; CI: −0.289, −0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits. PMID:29075213

  3. Monoamine Oxidase A (MAOA) Gene and Personality Traits from Late Adolescence through Early Adulthood: A Latent Variable Investigation.

    PubMed

    Xu, Man K; Gaysina, Darya; Tsonaka, Roula; Morin, Alexandre J S; Croudace, Tim J; Barnett, Jennifer H; Houwing-Duistermaat, Jeanine; Richards, Marcus; Jones, Peter B

    2017-01-01

    Very few molecular genetic studies of personality traits have used longitudinal phenotypic data, therefore molecular basis for developmental change and stability of personality remains to be explored. We examined the role of the monoamine oxidase A gene ( MAOA ) on extraversion and neuroticism from adolescence to adulthood, using modern latent variable methods. A sample of 1,160 male and 1,180 female participants with complete genotyping data was drawn from a British national birth cohort, the MRC National Survey of Health and Development (NSHD). The predictor variable was based on a latent variable representing genetic variations of the MAOA gene measured by three SNPs (rs3788862, rs5906957, and rs979606). Latent phenotype variables were constructed using psychometric methods to represent cross-sectional and longitudinal phenotypes of extraversion and neuroticism measured at ages 16 and 26. In males, the MAOA genetic latent variable (AAG) was associated with lower extraversion score at age 16 (β = -0.167; CI: -0.289, -0.045; p = 0.007, FDRp = 0.042), as well as greater increase in extraversion score from 16 to 26 years (β = 0.197; CI: 0.067, 0.328; p = 0.003, FDRp = 0.036). No genetic association was found for neuroticism after adjustment for multiple testing. Although, we did not find statistically significant associations after multiple testing correction in females, this result needs to be interpreted with caution due to issues related to x-inactivation in females. The latent variable method is an effective way of modeling phenotype- and genetic-based variances and may therefore improve the methodology of molecular genetic studies of complex psychological traits.

  4. An evidence-based approach to globally assess the covariate-dependent effect of the MTHFR single nucleotide polymorphism rs1801133 on blood homocysteine: a systematic review and meta-analysis.

    PubMed

    Jin, Huifeng; Cheng, Haojie; Chen, Wei; Sheng, Xiaoming; Levy, Mark A; Brown, Mark J; Tian, Junqiang

    2018-05-01

    The single nucleotide polymorphism of the gene 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T (or rs1801133) is the most established genetic factor that increases plasma total homocysteine (tHcy) and consequently results in hyperhomocysteinemia. Yet, given the limited penetrance of this genetic variant, it is necessary to individually predict the risk of hyperhomocysteinemia for an rs1801133 carrier. We hypothesized that variability in this genetic risk is largely due to the presence of factors (covariates) that serve as effect modifiers, confounders, or both, such as folic acid (FA) intake, and aimed to assess this risk in the complex context of these covariates. We systematically extracted from published studies the data on tHcy, rs1801133, and any previously reported rs1801133 covariates. The resulting metadata set was first used to analyze the covariates' modifying effect by meta-regression and other statistical means. Subsequently, we controlled for this modifying effect by genotype-stratifying tHcy data and analyzed the variability in the risk resulting from the confounding of covariates. The data set contains data on 36 rs1801133 covariates that were collected from 114,799 participants and 256 qualified studies, among which 6 covariates (sex, age, race, FA intake, smoking, and alcohol consumption) are the most frequently informed and therefore included for statistical analysis. The effect of rs1801133 on tHcy exhibits significant variability that can be attributed to effect modification as well as confounding by these covariates. Via statistical modeling, we predicted the covariate-dependent risk of tHcy elevation and hyperhomocysteinemia in a systematic manner. We showed an evidence-based approach that globally assesses the covariate-dependent effect of rs1801133 on tHcy. The results should assist clinicians in interpreting the rs1801133 data from genetic testing for their patients. Such information is also important for the public, who increasingly receive genetic data from commercial services without interpretation of its clinical relevance. This study was registered at Research Registry with the registration number reviewregistry328.

  5. Foot-and-mouth disease virus serotype O phylodynamics: genetic variability associated with epidemiological factors in Pakistan

    USDA-ARS?s Scientific Manuscript database

    One of the most challenging aspects of foot-and-mouth disease (FMD) control is the high genetic variability of the FMD virus (FMDV). In endemic settings such as the Indian subcontinent, this variability has resulted in the emergence of pandemic strains that have spread widely and caused devastating ...

  6. Population genetic structure of a California endemic Branchiopod, Branchinecta sandiegonensis

    USGS Publications Warehouse

    Davies, Cathleen P.; Simovich, Marie A.; Hathaway, Stacie A.

    1997-01-01

    Branchinecta sandiegonensis (Crustacea: Anostraca) is a narrow range endemic fairy shrimp discontinuously distributed in ephemeral pools on coastal mesas in San Diego County, USA. Ten populations across the range of the species were subjected to allozyme analysis for eleven loci. The species exhibits low variability (P95 =9.1–45.5) and one third of the loci tested did not conform to Hardy-Weinberg equilibrium expectations. The species also exhibited a high degree of genetic differentiation between populations. F ST values (fixation index) for most pairs of populations were above 0.25 (0.036–0.889).Low genetic variability and high genetic structure may result from low gene flow and founder effects due to habitat fragmentation and the lack of potential vectors for cyst dispersal. The unpredictable rainfall of the region also creates potential for variable population sizes which could affect structure and variability.

  7. Heritability of brain activity related to response inhibition: A longitudinal genetic study in adolescent twins.

    PubMed

    Anokhin, Andrey P; Golosheykin, Simon; Grant, Julia D; Heath, Andrew C

    2017-05-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Genetic variation and comparison of orchardgrass (Dactylis glomerata L.) cultivars and wild accessions as revealed by SSR markers.

    PubMed

    Xie, W G; Lu, X F; Zhang, X Q; Huang, L K; Cheng, L

    2012-02-24

    Orchardgrass is a highly variable, perennial forage grass that is cultivated throughout temperate and subtropical regions of the world. Despite its economic importance, the genetic relationship and distance among and within cultivars are largely unknown but would be of great interest for breeding programs. We investigated the molecular variation and structure of cultivar populations, compared the level of genetic diversity among cultivars (Baoxing, Anba, Bote, and Kaimo), subspecies (Dactylis glomerata ssp Woronowii) and advanced breeding line (YA02-116) to determine whether there is still sufficient genetic diversity within presently used cultivars for future breeding progress in China. Twenty individuals were analyzed from each of six accessions using SSR markers; 114 easily scored bands were generated from 15 SSR primer pairs, with an average of 7.6 alleles per locus. The polymorphic rate was 100% among the 120 individuals, reflecting a high degree of genetic diversity. Among the six accessions, the highest genetic diversity was observed in Kaimo (H = 0.2518; I = 0.3916; P = 87.3%) and 02-116 had a lower level of genetic diversity (H = 0.1806; I = 0.2788; P = 58.73%) compared with other cultivars tested. An of molecular variance revealed a much larger genetic variation within accessions (65%) than between them (35%). This observation suggests that these cultivars have potential for providing rich genetic resource for further breeding program. Furthermore, the study also indicated that Chinese orchardgrass breeding has involved strong selection for adaptation to forage production, which may result in restricted genetic base of orchardgrass cultivar.

  9. Heritability of brain activity related to response inhibition: a longitudinal genetic study in adolescent twins

    PubMed Central

    Anokhin, Andrey P.; Golosheykin, Simon; Grant, Julia D.; Heath, Andrew C.

    2017-01-01

    The ability to inhibit prepotent but context- or goal-inappropriate responses is essential for adaptive self-regulation of behavior. Deficits in response inhibition, a key component of impulsivity, have been implicated as a core dysfunction in a range of neuropsychiatric disorders such as ADHD and addictions. Identification of genetically transmitted variation in the neural underpinnings of response inhibition can help to elucidate etiological pathways to these disorders and establish the links between genes, brain, and behavior. However, little is known about genetic influences on the neural mechanisms of response inhibition during adolescence, a developmental period characterized by weak self-regulation of behavior. Here we investigated heritability of ERPs elicited in a Go/No-Go task in a large sample of adolescent twins assessed longitudinally at ages 12, 14, and 16. Genetic analyses showed significant heritability of inhibition-related frontal N2 and P3 components at all three ages, with 50 to 60% of inter-individual variability being attributable to genetic factors. These genetic influences included both common genetic factors active at different ages and novel genetic influences emerging during development. Finally, individual differences in the rate of developmental changes from age 12 to age 16 were significantly influenced by genetic factors. In conclusion, the present study provides the first evidence for genetic influences on neural correlates of response inhibition during adolescence and suggests that ERPs elicited in the Go/No-Go task can serve as intermediate neurophysiological phenotypes (endophenotypes) for the study of disinhibition and impulse control disorders. PMID:28300615

  10. Prasinoviruses reveal a complex evolutionary history and a patchy environmental distribution

    NASA Astrophysics Data System (ADS)

    Finke, J. F.; Suttle, C.

    2016-02-01

    Prasinophytes constitute a group of eukaryotic phytoplankton that has a global distribution and is a major component of coastal and oceanic communities. Members of this group are infected by large double-stranded DNA viruses that can be significant agents of mortality, and which show evidence of substantial horizontal transfer of genes from their hosts and other organisms. However, information on the genetic diversity of these viruses and their environmental distribution is limited. This study examines the genetic repertoire, phylogeny and environmental distribution of large double-stranded DNA viruses infecting Micromonas pusilla and other prasinophytes. The genomes of viruses infecting M. pusilla were sequenced and compared to those of viruses infecting other prasinophytes, revealing a relatively small set of core genes and a larger flexible pan genome. Comparing genomes among prasinoviruses highlights their variable genetic content and complex evolutionary history. While some of the pan genome is clearly host derived, many open reading frames are most similar to those found in other eukaryotes and bacteria. Gene content of the viruses is is congruent with phylogenetic analysis of viral DNA polymerase sequences and indicates that two clades of M. pusilla viruses are less related to each other than to other prasinoviruses. Moreover, the environmental distribution of prasinovirus DNA polymerase sequences indicates a complex pattern of virus-host interactions in nature. Ultimately, these patterns are influenced by the genetic repertoire encoded by prasinoviruses, and the distribution of the hosts they infect.

  11. Spanish genetic admixture is associated with larger V(O2) max decrement from sea level to 4338 m in Peruvian Quechua.

    PubMed

    Brutsaert, Tom D; Parra, Esteban J; Shriver, Mark D; Gamboa, Alfredo; Palacios, Jose-Antonio; Rivera, Maria; Rodriguez, Ivette; León-Velarde, Fabiola

    2003-08-01

    Quechua in the Andes may be genetically adapted to altitude and able to resist decrements in maximal O2 consumption in hypoxia (DeltaVo2 max). This hypothesis was tested via repeated measures of Vo2 max (sea level vs. 4338 m) in 30 men of mixed Spanish and Quechua origins. Individual genetic admixture level (%Spanish ancestry) was estimated by using ancestry-informative DNA markers. Genetic admixture explained a significant proportion of the variability in DeltaVo2 max after control for covariate effects, including sea level Vo2 max and the decrement in arterial O2 saturation measured at Vo2 max (DeltaSpO2 max) (R2 for admixture and covariate effects approximately 0.80). The genetic effect reflected a main effect of admixture on DeltaVo2 max (P = 0.041) and an interaction between admixture and DeltaSpO2 max (P = 0.018). Admixture predicted DeltaVo2 max only in subjects with a large DeltaSpO2 max (P = 0.031). In such subjects, DeltaVo2 max was 12-18% larger in a subgroup of subjects with high vs. low Spanish ancestry, with least squares mean values (+/-SE) of 739 +/- 71 vs. 606 +/- 68 ml/min, respectively. A trend for interaction (P = 0.095) was also noted between admixture and the decrease in ventilatory threshold at 4338 m. As previously, admixture predicted DeltaVo2 max only in subjects with a large decrease in ventilatory threshold. These findings suggest that the genetic effect on DeltaVo2 max depends on a subject's aerobic fitness. Genetic effects may be more important (or easier to detect) in athletic subjects who are more likely to show gas-exchange impairment during exercise. The results of this study are consistent with the evolutionary hypothesis and point to a better gas-exchange system in Quechua.

  12. Joseph Adams (1756-1818).

    PubMed

    Emery, A E

    1989-02-01

    Joseph Adams was eclectic in his interests and wrote on a variety of medical subjects. His last book published in 1814 was on hereditary disease and based on a lifetime's careful clinical observations. In it he distinguished between what would now be defined as dominant and recessive disorders; defined the term congenital; emphasised the role of inbreeding in producing clustering of certain inherited disorders; introduced concepts now known as founder effect, incomplete penetrance, and variable age at onset; emphasised the importance of environmental factors in precipitating disease in certain genetic disorders; and, finally, recommended the establishment of registers for the purpose of preventing genetic disease. But because he proposed no scientific explanation for these various ideas, they were largely ignored by his contemporaries. Nevertheless, it would seem right to regard Joseph Adams as perhaps the first clinical geneticist.

  13. Genetics and intelligence differences: five special findings.

    PubMed

    Plomin, R; Deary, I J

    2015-02-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for 'positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century-Genome-wide Complex Trait Analysis (GCTA)-which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the 'missing heritability' gap.

  14. Genetics and intelligence differences: five special findings

    PubMed Central

    Plomin, R; Deary, I J

    2015-01-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for ‘positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century—Genome-wide Complex Trait Analysis (GCTA)—which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture of intelligence that are relevant to attempts to narrow the ‘missing heritability' gap. PMID:25224258

  15. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis

    DOE PAGES

    Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.

    2017-10-13

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less

  16. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakhanenko, Nikita A.; Kunert-Graf, James; Galas, David J.

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. Here, we present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discretemore » variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis—that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. Finally, we illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.« less

  17. The Information Content of Discrete Functions and Their Application in Genetic Data Analysis.

    PubMed

    Sakhanenko, Nikita A; Kunert-Graf, James; Galas, David J

    2017-12-01

    The complex of central problems in data analysis consists of three components: (1) detecting the dependence of variables using quantitative measures, (2) defining the significance of these dependence measures, and (3) inferring the functional relationships among dependent variables. We have argued previously that an information theory approach allows separation of the detection problem from the inference of functional form problem. We approach here the third component of inferring functional forms based on information encoded in the functions. We present here a direct method for classifying the functional forms of discrete functions of three variables represented in data sets. Discrete variables are frequently encountered in data analysis, both as the result of inherently categorical variables and from the binning of continuous numerical variables into discrete alphabets of values. The fundamental question of how much information is contained in a given function is answered for these discrete functions, and their surprisingly complex relationships are illustrated. The all-important effect of noise on the inference of function classes is found to be highly heterogeneous and reveals some unexpected patterns. We apply this classification approach to an important area of biological data analysis-that of inference of genetic interactions. Genetic analysis provides a rich source of real and complex biological data analysis problems, and our general methods provide an analytical basis and tools for characterizing genetic problems and for analyzing genetic data. We illustrate the functional description and the classes of a number of common genetic interaction modes and also show how different modes vary widely in their sensitivity to noise.

  18. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1

    PubMed Central

    Choquet, Hélène; Trapani, Eliana; Goitre, Luca; Trabalzini, Lorenza; Akers, Amy; Fontanella, Marco; Hart, Blaine L.; Morrison, Leslie A.; Pawlikowska, Ludmila; Kim, Helen; Retta, Saverio Francesco

    2016-01-01

    Background Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease. Methods Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5 mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 ‘common Hispanic mutation’ (CCM1–CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually. Results The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity. Conclusions Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment. PMID:26795600

  19. Cytochrome P450 and matrix metalloproteinase genetic modifiers of disease severity in Cerebral Cavernous Malformation type 1.

    PubMed

    Choquet, Hélène; Trapani, Eliana; Goitre, Luca; Trabalzini, Lorenza; Akers, Amy; Fontanella, Marco; Hart, Blaine L; Morrison, Leslie A; Pawlikowska, Ludmila; Kim, Helen; Retta, Saverio Francesco

    2016-03-01

    Familial Cerebral Cavernous Malformation type 1 (CCM1) is an autosomal dominant disease caused by mutations in the Krev Interaction Trapped 1 (KRIT1/CCM1) gene, and characterized by multiple brain lesions. CCM lesions manifest across a range of different phenotypes, including wide differences in lesion number, size and susceptibility to intracerebral hemorrhage (ICH). Oxidative stress plays an important role in cerebrovascular disease pathogenesis, raising the possibility that inter-individual variability in genes related to oxidative stress may contribute to the phenotypic differences observed in CCM1 disease. Here, we investigated whether candidate oxidative stress-related cytochrome P450 (CYP) and matrix metalloproteinase (MMP) genetic markers grouped by superfamilies, families or genes, or analyzed individually influence the severity of CCM1 disease. Clinical assessment and cerebral susceptibility-weighted magnetic resonance imaging (SWI) were performed to determine total and large (≥5mm in diameter) lesion counts as well as ICH in 188 Hispanic CCM1 patients harboring the founder KRIT1/CCM1 'common Hispanic mutation' (CCM1-CHM). Samples were genotyped on the Affymetrix Axiom Genome-Wide LAT1 Human Array. We analyzed 1,122 genetic markers (both single nucleotide polymorphisms (SNPs) and insertion/deletions) grouped by CYP and MMP superfamily, family or gene for association with total or large lesion count and ICH adjusted for age at enrollment and gender. Genetic markers bearing the associations were then analyzed individually. The CYP superfamily showed a trend toward association with total lesion count (P=0.057) and large lesion count (P=0.088) in contrast to the MMP superfamily. The CYP4 and CYP8 families were associated with either large lesion count or total lesion count (P=0.014), and two other families (CYP46 and the MMP Stromelysins) were associated with ICH (P=0.011 and 0.007, respectively). CYP4F12 rs11085971, CYP8A1 rs5628, CYP46A1 rs10151332, and MMP3 rs117153070 single SNPs, mainly bearing the above-mentioned associations, were also individually associated with CCM1 disease severity. Overall, our candidate oxidative stress-related genetic markers set approach outlined CYP and MMP families and identified suggestive SNPs that may impact the severity of CCM1 disease, including the development of numerous and large CCM lesions and ICH. These novel genetic risk factors of prognostic value could serve as early objective predictors of disease outcome and might ultimately provide better options for disease prevention and treatment. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Genetic structuring of remnant forest patches in an endangered medicinal tree in North-western Ethiopia

    PubMed Central

    2014-01-01

    Background Habitat loss and fragmentation may have detrimental impacts on genetic diversity, population structure and overall viability of tropical trees. The response of tropical trees to fragmentation processes may, however, be species, cohort or region-specific. Here we test the hypothesis that forest fragmentation is associated with lower genetic variability and higher genetic differentiation in adult and seedling populations of Prunus africana in North-western Ethiopia. This is a floristically impoverished region where all but a few remnant forest patches have been destroyed, mostly by anthropogenic means. Results Genetic diversity (based on allelic richness) was significantly greater in large and less-isolated forest patches as well as in adults than seedlings. Nearly all pairwise FST comparisons showed evidence for significant population genetic differentiation. Mean FST values were significantly greater in seedlings than adults, even after correction for within population diversity, but varied little with patch size or isolation. Conclusions Analysis of long-lived adult trees suggests the formerly contiguous forest in North-western Ethiopia probably exhibited strong spatial patterns of genetic structure. This means that protecting a range of patches including small and isolated ones is needed to conserve the extant genetic resources of the valuable forests in this region. However, given the high livelihood dependence of the local community and the high impact of foreign investors on forest resources of this region, in situ conservation efforts alone may not be helpful. Therefore, these efforts should be supported with ex situ gene conservation actions. PMID:24602239

  1. Genetic causes of intellectual disability in a birth cohort: A population‐based study

    PubMed Central

    Riegel, Mariluce; Segal, Sandra L.; Félix, Têmis M.; Barros, Aluísio J. D.; Santos, Iná S.; Matijasevich, Alicia; Giugliani, Roberto; Black, Maureen

    2015-01-01

    Intellectual disability affects approximately 1–3% of the population and can be caused by genetic and environmental factors. Although many studies have investigated the etiology of intellectual disability in different populations, few studies have been performed in middle‐income countries. The present study estimated the prevalence of genetic causes related to intellectual disability in a cohort of children from a city in south Brazil who were followed from birth. Children who showed poor performance in development and intelligence tests at the ages of 2 and 4 were included. Out of 4,231 liveborns enrolled in the cohort, 214 children fulfilled the inclusion criteria. A diagnosis was established in approximately 90% of the children evaluated. Genetic causes were determined in 31 of the children and 19 cases remained unexplained even after extensive investigation. The overall prevalence of intellectual disability in this cohort due to genetic causes was 0.82%. Because this study was nested in a cohort, there were a large number of variables related to early childhood and the likelihood of information bias was minimized by collecting information with a short recall time. This study was not influenced by selection bias, allowing identification of intellectual disability and estimation of the prevalence of genetic causes in this population, thereby increasing the possibility of providing appropriate management and/or genetic counseling. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:25728503

  2. Genetic patterns of habitat fragmentation and past climate-change effects in the Mediterranean high-mountain plant Armeria caespitosa (Plumbaginaceae).

    PubMed

    García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto

    2013-08-01

    Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.

  3. A Multivariate Twin Study of the DSM-IV Criteria for Antisocial Personality Disorder

    PubMed Central

    Kendler, Kenneth S.; Aggen, Steven H.; Patrick, Christopher J.

    2012-01-01

    BACKGROUND Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). METHODS Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4,291 twins (including both members of 1,647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. RESULTS Phenotypic factor analysis produced evidence for 2 correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. CONCLUSION From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. PMID:21762879

  4. Epigenetic Diversity of Clonal White Poplar (Populus alba L.) Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy?

    PubMed

    Guarino, Francesco; Cicatelli, Angela; Brundu, Giuseppe; Heinze, Berthold; Castiglione, Stefano

    2015-01-01

    The widespread poplar populations of Sardinia are vegetatively propagated and live in different natural environments forming large monoclonal stands. The main goals of the present study were: i) to investigate/measure the epigenetic diversity of the poplar populations by determining their DNA methylation status; ii) to assess if and how methylation status influences population clustering; iii) to shed light on the changes that occur in the epigenome of ramets of the same poplar clone. To these purposes, 83 white poplar trees were sampled at different locations on the island of Sardinia. Methylation sensitive amplified polymorphism analysis was carried out on the genomic DNA extracted from leaves at the same juvenile stage. The study showed that the genetic biodiversity of poplars is quite limited but it is counterbalanced by epigenetic inter-population molecular variability. The comparison between MspI and HpaII DNA fragmentation profiles revealed that environmental conditions strongly influence hemi-methylation of the inner cytosine. The variable epigenetic status of Sardinian white poplars revealed a decreased number of population clusters. Landscape genetics analyses clearly demonstrated that ramets of the same clone were differentially methylated in relation to their geographic position. Therefore, our data support the notion that studies on plant biodiversity should no longer be restricted to genetic aspects, especially in the case of vegetatively propagated plant species.

  5. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape

    PubMed Central

    Gascuel, Quentin; Diretto, Gianfranco; Monforte, Antonio J.; Fortes, Ana M.; Granell, Antonio

    2017-01-01

    Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices. PMID:28553296

  6. Genetic distance estimates and variable factors distinguishing between goat Kacang, Muara and Samosir

    NASA Astrophysics Data System (ADS)

    Hamdan; Saputra, H.; Mirwandhono, E.; Hasnudi; Sembiring, I.; Umar, S.; Ginting, N.; Alwiyah

    2018-02-01

    The purpose of this research was to look the genetic distance and factors distinguishing variable betwen types of goats in North Sumatera. This research have been conducted in PayaBakung, Hamparan Perak and Klambir Lima village, Deli Serdang district, Batu Binumbun, Aritonang, HutaGinjang village, Muarasubdistrict, North Tapanuli district and ParbabaDolok, Siopat Sosor, Sinabulan village, Ronggur Nihuta Pangururan village, Sitonggi-tonggi village in the subdistrict RonggurNihuta, Samosir district of the month of July 2016. The data was analyzed using descriptive, discriminants, canonical, Principal Component Analysis, Distance genetic and Tree Phylogenetic. The result showed that the nearest genetic distance goat found in Kacang and Samosir (1.973), and the farthest genetic distnace find in Samosir and Muara (8.671). The variables made it difference was goat race Base Rim Horn (0.856) and Long Horn (0.878). Genetic distance values most far between Muaragoat with Samosir goat was (8.671). The conclude that the crossing superior result, must be cross between two goat types with value genetics most distance. It will have a better chance heterosis in cross result.

  7. Give 'til it hurts: trade-offs between immunity and male reproductive effort in the decorated cricket, Gryllodes sigillatus.

    PubMed

    Gershman, S N; Barnett, C A; Pettinger, A M; Weddle, C B; Hunt, J; Sakaluk, S K

    2010-04-01

    Trade-offs between life-history variables can be manifested at either the phenotypic or genetic level, with vastly different evolutionary consequences. Here, we examined whether male decorated crickets (Gryllodes sigillatus) from eight inbred lines and the outbred founder population from which they were derived, trade-off immune effort [lytic activity, phenoloxidase (PO) activity or encapsulation] to produce spermatophylaxes: costly nuptial food gifts essential for successful sperm transfer. Canonical correlation analysis of the outbred population revealed a trade-off between spermatophylax mass and lytic activity. Analysis of our inbred lines, however, revealed that although PO activity, encapsulation, body mass, spermatophylax mass and ampulla (sperm capsule) mass were all highly heritable, lytic activity was not, and there was, therefore, no negative genetic correlation between lytic activity and spermatophylax mass. Thus, males showed a phenotypic but not a genetic trade-off between spermatophylax mass and lytic activity, suggesting that this trade-off is mediated largely by environmental factors.

  8. Acoustic, genetic and morphological variations within the katydid Gampsocleis sedakovii (Orthoptera, Tettigonioidea)

    PubMed Central

    Zhang, Xue; Wen, Ming; Li, Junjian; Zhu, Hui; Wang, Yinliang; Ren, Bingzhong

    2015-01-01

    Abstract In an attempt to explain the variation within this species and clarify the subspecies classification, an analysis of the genetic, calling songs, and morphological variations within the species Gampsocleis sedakovii is presented from Inner Mongolia, China. Recordings were compared of the male calling songs and analysis performed of selected acoustic variables. This analysis is combined with sequencing of mtDNA - COI and examination of morphological traits to perform cluster analyses. The trees constructed from different datasets were structurally similar, bisecting the six geographical populations studied. Based on two large branches in the analysis, the species Gampsocleis sedakovii was partitioned into two subspecies, Gampsocleis sedakovii sedakovii (Fischer von Waldheim, 1846) and Gampsocleis sedakovii obscura (Walker, 1869). Comparing all the traits, the individual of Elunchun (ELC) was the intermediate type in this species according to the acoustic, genetic, and morphological characteristics. This study provides evidence for insect acoustic signal divergence and the process of subspeciation. PMID:26692795

  9. The spatial organization of intra-tumour heterogeneity and evolutionary trajectories of metastases in hepatocellular carcinoma

    PubMed Central

    Zhai, Weiwei; Lim, Tony Kiat-Hon; Zhang, Tong; Phang, Su-Ting; Tiang, Zenia; Guan, Peiyong; Ng, Ming-Hwee; Lim, Jia Qi; Yao, Fei; Li, Zheng; Ng, Poh Yong; Yan, Jie; Goh, Brian K.; Chung, Alexander Yaw-Fui; Choo, Su-Pin; Khor, Chiea Chuen; Soon, Wendy Wei-Jia; Sung, Ken Wing-Kin; Foo, Roger Sik-Yin; Chow, Pierce Kah-Hoe

    2017-01-01

    Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy. PMID:28240289

  10. A Genetic Instrumental Variables Analysis of the Effects of Prenatal Smoking on Birth Weight: Evidence from Two Samples

    PubMed Central

    Lehrer, Steven F.; Moreno, Lina M.; Murray, Jeffrey C.; Wilcox, Allen; Lie, Rolv T.

    2011-01-01

    There is a large literature showing the detrimental effects of prenatal smoking on birth and childhood health outcomes. It is somewhat unclear, though, whether these effects are causal or reflect other characteristics and choices by mothers who choose to smoke that may also affect child health outcomes or biased reporting of smoking. In this paper, we use genetic markers that predict smoking behaviors as instruments in order to address the endogeneity of smoking choices in the production of birth and childhood health outcomes. Our results indicate that prenatal smoking produces more dramatic declines in birth weight than estimates that ignore the endogeneity of prenatal smoking, which is consistent with previous studies with non-genetic instruments. We use data from two distinct samples from Norway and the US with different measured instruments and find nearly identical results. The study provides a novel application that can be extended to study several behavioral impacts on health, social and economic outcomes. PMID:21845925

  11. Pearson marrow pancreas syndrome in patients suspected to have Diamond-Blackfan anemia.

    PubMed

    Gagne, Katelyn E; Ghazvinian, Roxanne; Yuan, Daniel; Zon, Rebecca L; Storm, Kelsie; Mazur-Popinska, Magdalena; Andolina, Laura; Bubala, Halina; Golebiowska, Sydonia; Higman, Meghan A; Kalwak, Krzysztof; Kurre, Peter; Matysiak, Michal; Niewiadomska, Edyta; Pels, Salley; Petruzzi, Mary Jane; Pobudejska-Pieniazek, Aneta; Szczepanski, Tomasz; Fleming, Mark D; Gazda, Hanna T; Agarwal, Suneet

    2014-07-17

    Pearson marrow pancreas syndrome (PS) is a multisystem disorder caused by mitochondrial DNA (mtDNA) deletions. Diamond-Blackfan anemia (DBA) is a congenital hypoproliferative anemia in which mutations in ribosomal protein genes and GATA1 have been implicated. Both syndromes share several features including early onset of severe anemia, variable nonhematologic manifestations, sporadic genetic occurrence, and occasional spontaneous hematologic improvement. Because of the overlapping features and relative rarity of PS, we hypothesized that some patients in whom the leading clinical diagnosis is DBA actually have PS. Here, we evaluated patient DNA samples submitted for DBA genetic studies and found that 8 (4.6%) of 173 genetically uncharacterized patients contained large mtDNA deletions. Only 2 (25%) of the patients had been diagnosed with PS on clinical grounds subsequent to sample submission. We conclude that PS can be overlooked, and that mtDNA deletion testing should be performed in the diagnostic evaluation of patients with congenital anemia. © 2014 by The American Society of Hematology.

  12. Sex Differences in Magical Ideation: A Community-Based Twin Study

    PubMed Central

    Karcher, Nicole R.; Slutske, Wendy S.; Kerns, John G.; Piasecki, Thomas M.; Martin, Nicholas G.

    2014-01-01

    Two questions regarding sex differences in magical ideation were investigated in this study: (1) whether there are mean level sex differences on the Magical Ideation Scale (MIS), and (2) whether there are quantitative and/or qualitative sex differences in the genetic contributions to variation on this scale. These questions were evaluated using data obtained from a large community sample of adult Australian twins (N=4,355) that included opposite-sex pairs. Participants completed a modified 15-item version of the MIS within a larger assessment battery. Women reported both higher means and variability on the MIS than men; this was also observed within families (in opposite-sex twin pairs). Biometric modeling indicated that the proportion of variation in MIS scores due to genetic influences (indicating quantitative sex differences) and the specific latent genetic contributions to this variation (indicating qualitative sex differences) were the same in men and women. These findings clarify the nature of sex differences in magical ideation and point to avenues for future research. PMID:24364500

  13. Neolithic mitochondrial haplogroup H genomes and the genetic origins of Europeans

    PubMed Central

    Templeton, Jennifer; Brandt, Guido; Soubrier, Julien; Jane Adler, Christina; Richards, Stephen M.; Der Sarkissian, Clio; Ganslmeier, Robert; Friederich, Susanne; Dresely, Veit; van Oven, Mannis; Kenyon, Rosalie; Van der Hoek, Mark B.; Korlach, Jonas; Luong, Khai; Ho, Simon Y. W.; Quintana-Murci, Lluis; Behar, Doron M.; Meller, Harald; Alt, Kurt W.; Cooper, Alan

    2014-01-01

    Haplogroup (hg) H dominates present-day Western European mitochondrial (mt) DNA variability (>40%), yet was less common (~19%) amongst Early Neolithic farmers (~5450 BC) and virtually absent in Mesolithic hunter-gatherers. Here we investigate this major component of the maternal population history of modern Europeans and sequence 39 complete hg H mitochondrial genomes from ancient human remains. We then compare this ‘real-time’ genetic data with cultural changes taking place between the Early Neolithic (~5450 BC) and Bronze Age (~2200 BC) in Central Europe. Our results reveal that the current diversity and distribution of hg H were largely established by the Mid-Neolithic (~4000 BC), but with substantial genetic contributions from subsequent pan-European cultures such as the Bell Beakers expanding out of Iberia in the Late Neolithic (~2800 BC). Dated hg H genomes allow us to reconstruct the recent evolutionary history of hg H and reveal a mutation rate 45% higher than current estimates for human mitochondria. PMID:23612305

  14. Exotic becomes erotic: interpreting the biological correlates of sexual orientation.

    PubMed

    Bem, D J

    2000-12-01

    Although biological findings currently dominate the research literature on the determinants of sexual orientation, biological theorizing has not yet spelled out a developmental path by which any of the various biological correlates so far identified might lead to a particular sexual orientation. The Exotic-Becomes-Erotic (EBE) theory of sexual orientation (Bem, 1996) attempts to do just that, by suggesting how biological variables might interact with experiential and sociocultural factors to influence an individual's sexual orientation. Evidence for the theory is reviewed, and a path analysis of data from a large sample of twins is presented which yields preliminary support for the theory's claim that correlations between genetic variables and sexual orientation are mediated by childhood gender nonconformity.

  15. Statistics of optimal information flow in ensembles of regulatory motifs

    NASA Astrophysics Data System (ADS)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  16. Mitochondria and the non-genetic origins of cell-to-cell variability: More is different.

    PubMed

    Guantes, Raúl; Díaz-Colunga, Juan; Iborra, Francisco J

    2016-01-01

    Gene expression activity is heterogeneous in a population of isogenic cells. Identifying the molecular basis of this variability will improve our understanding of phenomena like tumor resistance to drugs, virus infection, or cell fate choice. The complexity of the molecular steps and machines involved in transcription and translation could introduce sources of randomness at many levels, but a common constraint to most of these processes is its energy dependence. In eukaryotic cells, most of this energy is provided by mitochondria. A clonal population of cells may show a large variability in the number and functionality of mitochondria. Here, we discuss how differences in the mitochondrial content of each cell contribute to heterogeneity in gene products. Changes in the amount of mitochondria can also entail drastic alterations of a cell's gene expression program, which ultimately leads to phenotypic diversity. Also watch the Video Abstract. © 2015 WILEY Periodicals, Inc.

  17. Variable Selection for Regression Models of Percentile Flows

    NASA Astrophysics Data System (ADS)

    Fouad, G.

    2017-12-01

    Percentile flows describe the flow magnitude equaled or exceeded for a given percent of time, and are widely used in water resource management. However, these statistics are normally unavailable since most basins are ungauged. Percentile flows of ungauged basins are often predicted using regression models based on readily observable basin characteristics, such as mean elevation. The number of these independent variables is too large to evaluate all possible models. A subset of models is typically evaluated using automatic procedures, like stepwise regression. This ignores a large variety of methods from the field of feature (variable) selection and physical understanding of percentile flows. A study of 918 basins in the United States was conducted to compare an automatic regression procedure to the following variable selection methods: (1) principal component analysis, (2) correlation analysis, (3) random forests, (4) genetic programming, (5) Bayesian networks, and (6) physical understanding. The automatic regression procedure only performed better than principal component analysis. Poor performance of the regression procedure was due to a commonly used filter for multicollinearity, which rejected the strongest models because they had cross-correlated independent variables. Multicollinearity did not decrease model performance in validation because of a representative set of calibration basins. Variable selection methods based strictly on predictive power (numbers 2-5 from above) performed similarly, likely indicating a limit to the predictive power of the variables. Similar performance was also reached using variables selected based on physical understanding, a finding that substantiates recent calls to emphasize physical understanding in modeling for predictions in ungauged basins. The strongest variables highlighted the importance of geology and land cover, whereas widely used topographic variables were the weakest predictors. Variables suffered from a high degree of multicollinearity, possibly illustrating the co-evolution of climatic and physiographic conditions. Given the ineffectiveness of many variables used here, future work should develop new variables that target specific processes associated with percentile flows.

  18. Genetic erosion in wild populations makes resistance to a pathogen more costly.

    PubMed

    Luquet, Emilien; Garner, Trenton W J; Léna, Jean-Paul; Bruel, Christophe; Joly, Pierre; Lengagne, Thierry; Grolet, Odile; Plénet, Sandrine

    2012-06-01

    Populations that have suffered from genetic erosion are expected to exhibit reduced average trait values or decreased variation in adaptive traits when experiencing periodic or emergent stressors such as infectious disease. Genetic erosion may consequentially modify the ability of a potential host population to cope with infectious disease emergence. We experimentally investigate this relationship between genetic variability and host response to exposure to an infectious agent both in terms of susceptibility to infection and indirect parasite-mediated responses that also impact fitness. We hypothesized that the deleterious consequences of exposure to the pathogen (Batrachochytrium dendrobatidis) would be more severe for tadpoles descended from European treefrog (Hyla arborea) populations lacking genetic variability. Although all exposed tadpoles lacked detectable infection, we detected this relationship for some indirect host responses, predominantly in genetically depleted animals, as well as an interaction between genetic variability and pathogen dose on life span during the postmetamorphic period. Lack of infection and a decreased mass and postmetamorphic life span in low genetic diversity tadpoles lead us to conclude that genetic erosion, while not affecting the ability to mount effective resistance strategies, also erodes the capacity to invest in resistance, increased tadpole growth rate, and metamorphosis relatively simultaneously. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  19. Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds (Open Access publication)

    PubMed Central

    Palhiere, Isabelle; Brochard, Mickaël; Moazami-Goudarzi, Katayoun; Laloë, Denis; Amigues, Yves; Bed'hom, Bertrand; Neuts, Étienne; Leymarie, Cyril; Pantano, Thais; Cribiu, Edmond Paul; Bibé, Bernard; Verrier, Étienne

    2008-01-01

    Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3–4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers). The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies) and on the selection strategies for improving scrapie resistance while carrying out selection for production traits. PMID:18990357

  20. Pelvic incidence variation among individuals: functional influence versus genetic determinism.

    PubMed

    Chen, Hong-Fang; Zhao, Chang-Qing

    2018-03-20

    Pelvic incidence has become one of the most important sagittal parameters in spinal surgery. Despite its great importance, pelvic incidence can vary from 33° to 85° in the normal population. The reasons for this great variability in pelvic incidence remain unexplored. The objective of this article is to present some possible interpretations for the great variability in pelvic incidence under both normal and pathological conditions and to further understand the determinants of pelvic incidence from the perspective of the functional requirements for bipedalism and genetic backgrounds via a literature review. We postulate that both pelvic incidence and pelvic morphology may be genetically predetermined, and a great variability in pelvic incidence may already exist even before birth. This great variability may also serve as a further reminder that the sagittal profile, bipedal locomotion mode, and genetic background of every individual are unique and specific, and clinicians should avoid making universally applying broad generalizations of pelvic incidence. Although PI is an important parameter and there are many theories behind its variability, we still do not have clear mechanistic answers.

  1. Discovering the desirable alleles contributing to the lignocellulosic biomass traits in Saccharum germplasm collections for energy cane improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianping; Sandhu, Hardev

    1) The success in crop improvement programs depends largely on the extent of genetic variability available. Germplasm collections assembles all the available genetic resources and are critical for long-term crop improvement. This world sugarcane germplasm collection contains enormous genetic variability for various morphological traits, biomass yield components, adaptation and many quality traits, prospectively imbeds a large number of valuable alleles for biofuel traits such as high biomass yield, quantity and quality of lignocelluloses, stress tolerance, and nutrient use efficiency. The germplasm collection is of little value unless it is characterized and utilized for crop improvement. In this project, we phenotypicallymore » and genotypically characterized the sugarcane world germplasm collection (The results were published in two papers already and another two papers are to be published). This data will be made available for public to refer to for germplasm unitization specifically in the sugarcane and energy cane breeding programs. In addition, we are identifying the alleles contributing to the biomass traits in sugarcane germplasm. This part of project is very challenging due to the large genome and highly polyploid level of this crop. We firstly established a high throughput sugarcane genotyping pipeline in the genome and bioinformatics era (a paper is published in 2016). We identified and modified a software for genome-wide association analysis of polyploid species. The results of the alleles associated to the biomass traits will be published soon, which will help the scientific community understand the genetic makeup of the biomass components of sugarcane. Molecular breeders can develop markers for marker assisted selection of biomass traits improvement. Further, the development and release of new energy cane cultivars through this project not only improved genetic diversity but also improved dry biomass yields and resistance to diseases. These new cultivars were tested on marginal soils in Florida and showed very promising yield potential that is important for the successful use of energy cane as a dedicated feedstock for lignocellulosic ethanol production. 2) Multiple techniques at different project progress stages were utilized. For example, for the whole world germplasm accession genotyping, a cheap widely used SSR marker genotyping platform was utilized due to the large number of samples (over thousand). But the throughput of this technique is low in generating data points. However, the purpose the genotyping is to form a core collection for further high throughput genotyping. Thus the results from the SSR genotyping was quite good enough to generated the core collection. To genotype the few hundred core collection accessions, an target enrichment sequencing technology was used, which is not only high throughput in generating large number of genotyping data, but also has the candidate genes targeted to genotyping. The data generated would be sufficient in identifying the alleles contributing to the traits of interests. All the techniques used in this project are effective though extensive time was invested specifically for establish the pipeline in the experimental design, data analysis, and different approach comparison. 3) the research can benefit to the public in polyploid genotyping and new and cost efficient genotyping platform development« less

  2. MRJP microsatellite markers in Africanized Apis mellifera colonies selected on the basis of royal jelly production.

    PubMed

    Parpinelli, R S; Ruvolo-Takasusuki, M C C; Toledo, V A A

    2014-08-28

    It is important to select the best honeybees that produce royal jelly to identify important molecular markers, such as major royal jelly proteins (MRJPs), and hence contribute to the development of new breeding strategies to improve the production of this substance. Therefore, this study focused on evaluating the genetic variability of mrjp3, mrjp5, and mrjp8 and associated allele maintenance during the process of selective reproduction in Africanized Apis mellifera individuals, which were chosen based on royal jelly production. The three loci analyzed were polymorphic, and produced a total of 16 alleles, with 4 new alleles, which were identified at mrjp5. The effective number of alleles at mrjp3 was 3.81. The observed average heterozygosity was 0.4905, indicating a high degree of genetic variability at these loci. The elevated FIS values for mrjp3, mrjp5, and mrjp8 (0.4188, 0.1077, and 0.2847, respectively) indicate an excess of homozygotes. The selection of Africanized A. mellifera queens for royal jelly production has maintained the mrjp3 C, D, and E alleles; although, the C allele occurred at a low frequency. The heterozygosity and FIS values show that the genetic variability of the queens is decreasing at the analyzed loci, generating an excess of homozygotes. However, the large numbers of drones that fertilize the queens make it difficult to develop homozygotes at mrjp3. Mating through instrumental insemination using the drones of known genotypes is required to increase the efficiency of Africanized A. mellifera-breeding programs, and to improve the quality and efficiency of commercial royal jelly apiaries.

  3. Characterizing the genetic structure of a forensic DNA database using a latent variable approach.

    PubMed

    Kruijver, Maarten

    2016-07-01

    Several problems in forensic genetics require a representative model of a forensic DNA database. Obtaining an accurate representation of the offender database can be difficult, since databases typically contain groups of persons with unregistered ethnic origins in unknown proportions. We propose to estimate the allele frequencies of the subpopulations comprising the offender database and their proportions from the database itself using a latent variable approach. We present a model for which parameters can be estimated using the expectation maximization (EM) algorithm. This approach does not rely on relatively small and possibly unrepresentative population surveys, but is driven by the actual genetic composition of the database only. We fit the model to a snapshot of the Dutch offender database (2014), which contains close to 180,000 profiles, and find that three subpopulations suffice to describe a large fraction of the heterogeneity in the database. We demonstrate the utility and reliability of the approach with three applications. First, we use the model to predict the number of false leads obtained in database searches. We assess how well the model predicts the number of false leads obtained in mock searches in the Dutch offender database, both for the case of familial searching for first degree relatives of a donor and searching for contributors to three-person mixtures. Second, we study the degree of partial matching between all pairs of profiles in the Dutch database and compare this to what is predicted using the latent variable approach. Third, we use the model to provide evidence to support that the Dutch practice of estimating match probabilities using the Balding-Nichols formula with a native Dutch reference database and θ=0.03 is conservative. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Improving machine learning reproducibility in genetic association studies with proportional instance cross validation (PICV).

    PubMed

    Piette, Elizabeth R; Moore, Jason H

    2018-01-01

    Machine learning methods and conventions are increasingly employed for the analysis of large, complex biomedical data sets, including genome-wide association studies (GWAS). Reproducibility of machine learning analyses of GWAS can be hampered by biological and statistical factors, particularly so for the investigation of non-additive genetic interactions. Application of traditional cross validation to a GWAS data set may result in poor consistency between the training and testing data set splits due to an imbalance of the interaction genotypes relative to the data as a whole. We propose a new cross validation method, proportional instance cross validation (PICV), that preserves the original distribution of an independent variable when splitting the data set into training and testing partitions. We apply PICV to simulated GWAS data with epistatic interactions of varying minor allele frequencies and prevalences and compare performance to that of a traditional cross validation procedure in which individuals are randomly allocated to training and testing partitions. Sensitivity and positive predictive value are significantly improved across all tested scenarios for PICV compared to traditional cross validation. We also apply PICV to GWAS data from a study of primary open-angle glaucoma to investigate a previously-reported interaction, which fails to significantly replicate; PICV however improves the consistency of testing and training results. Application of traditional machine learning procedures to biomedical data may require modifications to better suit intrinsic characteristics of the data, such as the potential for highly imbalanced genotype distributions in the case of epistasis detection. The reproducibility of genetic interaction findings can be improved by considering this variable imbalance in cross validation implementation, such as with PICV. This approach may be extended to problems in other domains in which imbalanced variable distributions are a concern.

  5. Potential benefits of genomic selection on genetic gain of small ruminant breeding programs.

    PubMed

    Shumbusho, F; Raoul, J; Astruc, J M; Palhiere, I; Elsen, J M

    2013-08-01

    In conventional small ruminant breeding programs, only pedigree and phenotype records are used to make selection decisions but prospects of including genomic information are now under consideration. The objective of this study was to assess the potential benefits of genomic selection on the genetic gain in French sheep and goat breeding designs of today. Traditional and genomic scenarios were modeled with deterministic methods for 3 breeding programs. The models included decisional variables related to male selection candidates, progeny testing capacity, and economic weights that were optimized to maximize annual genetic gain (AGG) of i) a meat sheep breeding program that improved a meat trait of heritability (h(2)) = 0.30 and a maternal trait of h(2) = 0.09 and ii) dairy sheep and goat breeding programs that improved a milk trait of h(2) = 0.30. Values of ±0.20 of genetic correlation between meat and maternal traits were considered to study their effects on AGG. The Bulmer effect was accounted for and the results presented here are the averages of AGG after 10 generations of selection. Results showed that current traditional breeding programs provide an AGG of 0.095 genetic standard deviation (σa) for meat and 0.061 σa for maternal trait in meat breed and 0.147 σa and 0.120 σa in sheep and goat dairy breeds, respectively. By optimizing decisional variables, the AGG with traditional selection methods increased to 0.139 σa for meat and 0.096 σa for maternal traits in meat breeding programs and to 0.174 σa and 0.183 σa in dairy sheep and goat breeding programs, respectively. With a medium-sized reference population (nref) of 2,000 individuals, the best genomic scenarios gave an AGG that was 17.9% greater than with traditional selection methods with optimized values of decisional variables for combined meat and maternal traits in meat sheep, 51.7% in dairy sheep, and 26.2% in dairy goats. The superiority of genomic schemes increased with the size of the reference population and genomic selection gave the best results when nref > 1,000 individuals for dairy breeds and nref > 2,000 individuals for meat breed. Genetic correlation between meat and maternal traits had a large impact on the genetic gain of both traits. Changes in AGG due to correlation were greatest for low heritable maternal traits. As a general rule, AGG was increased both by optimizing selection designs and including genomic information.

  6. Intelligence in DSM-IV combined type attention-deficit/hyperactivity disorder is not predicted by either dopamine receptor/transporter genes or other previously identified risk alleles for attention-deficit/hyperactivity disorder.

    PubMed

    Sonuga-Barke, Edmund J S; Brookes, Keeley-Joanne; Buitelaar, Jan; Anney, Richard; Bitsakou, Paraskevi; Baeyens, Dieter; Buschgens, Cathelijne; Chen, Wai; Christiansen, Hanna; Eisenberg, Jacques; Kuntsi, Jonna; Manor, Iris; Meliá, Amanda; Mulligan, Aisling; Rommelse, Nanda; Müller, Ueli C; Uebel, Henrik; Banaschewski, Tobias; Ebstein, Richard; Franke, Barbara; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph; Steinhausen, Hans Christoph; Thompson, Margaret; Taylor, Eric; Asherson, Philip; Faraone, Stephen V

    2008-04-05

    A major goal of genetic studies of attention deficit hyperactivity disorder (ADHD) is to identify individual characteristics that might help segregate the disorder's inherent heterogeneity. [Mill et al. (2006); Arch Ger Psychiatry 63:462-469] recently reported a potentially important association between two dopamine-related risk polymorphisms (DRD4 variable number tandem repeat (VNTR) in exon 3 and DAT1 VNTR in the 3' UTR) and lowered IQ in ADHD. The objective of the current study was to replicate the [Mill et al. (2006); Arch Ger Psychiatry 63:462-469] findings in a clinical sample and to extend the analysis to a large range of alternative SNP markers of putative ADHD risk alleles identified in a recent study [Brookes et al. (2006); Mol Genet 11:934-953]. Participants were 1081 children and adolescents with a research-confirmed combined type ADHD diagnosis and 1300 unaffected siblings who took part in the International Multi-centre ADHD Genetics (IMAGE) project. They were recruited from multiple settings from across Europe: Belgium, Britain, Germany, Ireland, Israel, Netherlands, Spain and Switzerland. The results were that ADHD was associated with reduced IQ. However, there was no association between the two dopamine-related risk polymorphisms and IQ in either the probands or their siblings. Furthermore, other selected genetic markers previously demonstrated to be associated with ADHD in this sample were not associated with IQ. This large scale study with a clinically ascertained and regorously diagnosed sample failed to replicate the association between genetic polymorphisms in the dopamine system and IQ in ADHD. We also observed no association of other SNPs with IQ in ADHD. Copyright 2007 Wiley-Liss, Inc.

  7. Synechococcus diversity in the California current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains.

    PubMed Central

    Toledo, G; Palenik, B

    1997-01-01

    Because they are ubiquitous in a range of aquatic environments and culture methods are relatively advanced, cyanobacteria may be useful models for understanding the extent of evolutionary adaptation of prokaryotes in general to environmental gradients. The roles of environmental variables such as light and nutrients in influencing cyanobacterial genetic diversity are still poorly characterized, however. In this study, a total of 15 Synechococcus strains were isolated from the oligotrophic edge of the California Current from two depths (5 and 95 m) with large differences in light intensity, light quality, and nutrient concentrations. RNA polymerase gene (rpoC1) fragment sequences of the strains revealed two major genetic lineages, distinct from other marine or freshwater cyanobacterial isolates or groups seen in shotgun-cloned sequences from the oligotrophic Atlantic Ocean. The California Current low-phycourobilin (CCLPUB) group represented by six isolates in a single lineage was less diverse than the California Current high-phycourobilin (CCHPUB) group with nine isolates in three relatively divergent lineages. The former was found to be the closest known genetic group to Prochlorococcus spp., a chlorophyll b-containing cyanobacterial group. Having an isolate from this group will be valuable for looking at the molecular changes necessary for the transition from the use of phycobiliproteins to chlorophyll b as light-harvesting pigments. Both of the CCHPUB and CCLPUB groups included strains obtained from surface (5 m) and deep (95 m) samples. Thus, contrary to expectations, there was no clear correlation between sampling depth and isolation of genetic groups, despite the large environmental gradients present. To our knowledge, this is the first demonstration with isolates that genetically divergent Synechococcus groups coexist in the same seawater sample. PMID:9361417

  8. Geographic origin is not supported by the genetic variability found in a large living collection of Jatropha curcas with accessions from three continents.

    PubMed

    Maghuly, Fatemeh; Jankowicz-Cieslak, Joanna; Pabinger, Stephan; Till, Bradley J; Laimer, Margit

    2015-04-01

    Increasing economic interest in Jatropha curcas requires a major research focus on the genetic background and geographic origin of this non-edible biofuel crop. To determine the worldwide genetic structure of this species, amplified fragment length polymorphisms, inter simple sequence repeats, and novel single nucleotide polymorphisms (SNPs) were employed for a large collection of 907 J. curcas accessions and related species (RS) from three continents, 15 countries and 53 regions. PCoA, phenogram, and cophenetic analyses separated RS from two J. curcas groups. Accessions from Mexico, Bolivia, Paraguay, Kenya, and Ethiopia with unknown origins were found in both groups. In general, there was a considerable overlap between individuals from different regions and countries. The Bayesian approach using STRUCTURE demonstrated two groups with a low genetic variation. Analysis of molecular varience revealed significant variation among individuals within populations. SNPs found by in silico analyses of Δ12 fatty acid desaturase indicated possible changes in gene expression and thus in fatty acid profiles. SNP variation was higher in the curcin gene compared to genes involved in oil production. Novel SNPs allowed separating toxic, non-toxic, and Mexican accessions. The present study confirms that human activities had a major influence on the genetic diversity of J. curcas, not only because of domestication, but also because of biased selection. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  9. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human immune responses to microbial challenges.

    PubMed

    Piasecka, Barbara; Duffy, Darragh; Urrutia, Alejandra; Quach, Hélène; Patin, Etienne; Posseme, Céline; Bergstedt, Jacob; Charbit, Bruno; Rouilly, Vincent; MacPherson, Cameron R; Hasan, Milena; Albaud, Benoit; Gentien, David; Fellay, Jacques; Albert, Matthew L; Quintana-Murci, Lluis

    2018-01-16

    The contribution of host genetic and nongenetic factors to immunological differences in humans remains largely undefined. Here, we generated bacterial-, fungal-, and viral-induced immune transcriptional profiles in an age- and sex-balanced cohort of 1,000 healthy individuals and searched for the determinants of immune response variation. We found that age and sex affected the transcriptional response of most immune-related genes, with age effects being more stimulus-specific relative to sex effects, which were largely shared across conditions. Although specific cell populations mediated the effects of age and sex on gene expression, including CD8 + T cells for age and CD4 + T cells and monocytes for sex, we detected a direct effect of these intrinsic factors for the majority of immune genes. The mapping of expression quantitative trait loci (eQTLs) revealed that genetic factors had a stronger effect on immune gene regulation than age and sex, yet they affected a smaller number of genes. Importantly, we identified numerous genetic variants that manifested their regulatory effects exclusively on immune stimulation, including a Candida albicans -specific master regulator at the CR1 locus. These response eQTLs were enriched in disease-associated variants, particularly for autoimmune and inflammatory disorders, indicating that differences in disease risk may result from regulatory variants exerting their effects only in the presence of immune stress. Together, this study quantifies the respective effects of age, sex, genetics, and cellular heterogeneity on the interindividual variability of immune responses and constitutes a valuable resource for further exploration in the context of different infection risks or disease outcomes. Copyright © 2018 the Author(s). Published by PNAS.

  10. Clinical Applications of Molecular Genetic Discoveries

    PubMed Central

    Marian, A.J.

    2015-01-01

    Genome-wide association studies (GWAS) of complex traits have mapped more than 15,000 common single nucleotide variants (SNVs). Likewise, applications of massively parallel nucleic acid sequencing technologies often referred to as Next Generation Sequencing, to molecular genetic studies of complex traits have catalogued a large number of rare variants (population frequency of <0.01) in cases with complex traits. Moreover, high throughput nucleic acid sequencing, variant burden analysis, and linkage studies are illuminating the presence of large number of SNVs in cases and families with single gene disorders. The plethora of the genetic variants has exposed the formidable challenge of identifying the causal and pathogenic variants from the enormous number of innocuous common and rare variants that exist in the population as well as in an individual genome. The arduous task of identifying the causal and pathogenic variants is further compounded by the pleiotropic effects of the variants, complexity of cis and trans interactions in the genome, variability in phenotypic expression of the disease, as well as phenotypic plasticity, and the multifarious determinants of the phenotype. Population genetic studies offer the initial roadmaps and have the potential to elucidate novel pathways involved in the pathogenesis of the disease. However, the genome of an individual is unique, rendering unambiguous identification of the causal or pathogenic variant in a single individual exceedingly challenging. Yet, the focus of the practice of medicine is on the individual, as Sir William Osler elegantly expressed in his insightful quotation: “The good physician treats the disease; the great physician treats the patient who has the disease.” The daunting task facing physicians, patients, and researchers alike is to apply the modern genetic discoveries to care of the individual with or at risk of the disease. PMID:26548329

  11. Breeding system and demography shape population genetic structure across ecological and climatic zones in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata), intermediate host for schistosomes.

    PubMed

    Gow, J L; Noble, L R; Rollinson, D; Mimpfoundi, R; Jones, C S

    2004-11-01

    The role of breeding system and population bottlenecks in shaping the distribution of neutral genetic variation among populations inhabiting patchily distributed, ephemeral water bodies was examined for the hermaphroditic freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma guineensis. Levels of genetic variation at 11 microsatellite loci were assessed for 600 individuals sampled from 19 populations that span three ecological and climatic zones (ecozones) in Cameroon, West Africa. Significant heterozygote deficiencies and linkage disequilibria indicated very high selfing rates in these populations. Despite this and the large genetic differentiation detected between populations, high levels of genetic variation were harboured within these populations. The high level of gene flow inferred from assignment tests may be responsible for this pattern. Indeed, metapopulation dynamics, including high levels of gene flow as well as extinction/contraction and recolonization events, are invoked to account for the observed population structuring, which was not a consequence of isolation-by-distance. Because B. forskalii populations inhabiting the northern, Sahelian area are subject to more pronounced annual cycles of drought and flood than the southern equatorial ones, they were expected to be subject to population bottlenecks of increased frequency and severity and, therefore, show reduced genetic variability and elevated population differentiation. Contrary to predictions, the populations inhabiting the most northerly ecozone exhibited higher genetic diversity and lower genetic differentiation than those in the most southerly one, suggesting that elevated gene flow in this region is counteracting genetic drift.

  12. Environmental and genetic correlates of allocation to sexual reproduction in the circumpolar plant Bistorta vivipara.

    PubMed

    Bills, John W; Roalson, Eric H; Busch, Jeremiah W; Eidesen, Pernille B

    2015-07-01

    • Sexual reproduction often requires more energy and time than clonal reproduction. In marginal arctic conditions, species that can reproduce both sexually and clonally dominate. Plants with this capacity may thrive because they can alter reproduction depending on environmental conditions. Bistorta vivipara is a circumpolar herb that predominately reproduces clonally, but certain environmental conditions promote higher investment in flowers (and possible sexual reproduction). Despite largely reproducing clonally, the herb has high levels of genetic variation, and the processes underlying this paradoxical pattern of variation remain unclear. Here we identified environmental factors associated with sexual investment and examined whether sexual reproduction is associated with higher levels of genetic variation.• We sampled 20 populations of B. vivipara across the high Arctic archipelago of Svalbard. In each population, we measured reproductive traits, environmental variables, and collected samples for genetic analyses. These samples permitted hypotheses to be tested regarding sexual investment and ecological and genetic correlates.• Increased soil nitrogen and organic matter content and decreased elevation were positively associated with investment in flowers. Increased investment in flowers significantly correlated with more genotypes per population. Linkage disequilibrium was consistent with predominant clonality, but several populations showed higher genetic variation and lower differentiation than expected. There was no geographical genetic structure.• In B. vivipara, sexual investment is positively associated with habitat quality. Bistorta vivipara predominantly reproduces clonally, but occasional outcrossing, efficient clonal reproduction, and dispersal by bulbils can explain the considerable genetic variation and weak genetic structure in B. vivipara. © 2015 Botanical Society of America, Inc.

  13. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    PubMed

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  14. A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene.

    PubMed

    Beel, Karolien; Cotter, Melanie M; Blatny, Jan; Bond, Jonathan; Lucas, Geoff; Green, Frances; Vanduppen, Vik; Leung, Daisy W; Rooney, Sean; Smith, Owen P; Rosen, Michael K; Vandenberghe, Peter

    2009-01-01

    X-linked neutropenia (XLN, OMIM #300299) is a rare form of severe congenital neutropenia. It was originally described in a three-generation family with five affected members that had an L270P mutation in the GTP-ase binding domain (GBD) of the Wiskott-Aldrich syndrome protein (WASP) [Devriendt et al (2001) Nature Genetics, Vol. 27, 313-317]. Here, we report and describe a large three-generation family with XLN, with 10 affected males and eight female carriers. A c.882T>C mutation was identified in the WAS gene, resulting in an I294T mutation. The infectious course is variable and mild in view of the profound neutropenia. In addition to the original description, low-normal IgA levels, low to low-normal platelet counts and reduced natural killer (NK)-cell counts also appear as consistent XLN features. However, inverted CD4/CD8 ratios were not found in this family, nor were cases identified with myelodysplastic syndrome or acute myeloid leukaemia. Female carriers exhibited a variable attenuated phenotype. Like L270P WASP, I294T WASP is constitutively active towards actin polymerization. In conclusion, this largest XLN kindred identified to date provides new independent genetic evidence that mutations disrupting the auto-inhibitory GBD of WASP are the cause of XLN. Reduced NK cells, low to low normal platelet counts and low to low-normal IgA levels are also features of XLN.

  15. Transfer of intracolonial genetic variability through gametes in Acropora hyacinthus corals

    NASA Astrophysics Data System (ADS)

    Schweinsberg, M.; González Pech, R. A.; Tollrian, R.; Lampert, K. P.

    2014-03-01

    In recent years, the new phenomenon of intracolonial genetic variability within a single coral colony has been described. This connotes that coral colonies do not necessarily consist of only a single genotype, but may contain several distinct genotypes. Harboring more than one genotype could improve survival under stressful environmental conditions, e.g., climate change. However, so far it remained unclear whether the intracolonial genetic variability of the adult coral is also present in the gametes. We investigated the occurrence of intracolonial genetic variability in 14 mature colonies of the coral Acropora hyacinthus using eight microsatellite loci. A grid was placed over each colony before spawning, and the emerging egg/sperm bundles were collected separately in each grid. The underlying tissues as well as the egg/sperm bundles were genotyped to determine whether different genotypes were present. Within the 14 mature colonies, we detected 10 colonies with more than one genotype (intracolonial genetic variability). Four out of these 10 mature colonies showed a transfer of different genotypes via the eggs to the next generation. In two out of these four cases, we found additional alleles, and in the two other cases, we found only a subset of alleles in the unfertilized eggs. Our results suggest that during reproduction of A. hyacinthus, more than one genotype per colony is able to reproduce. We discuss the occurrence of different genotypes within a single coral colony and the ability for those to release eggs which are genetically distinct.

  16. Maintaining evolvability.

    PubMed

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy is yet to be determined. It is likely that only a case-by-case analysis will provide the answers. Despite the difficulties that complex interactions cause for evolution in Mendelian populations, such populations nevertheless evolve very well. Longlasting species must have evolved mechanisms for coping with such problems. Since such difficulties do not arise in asexual populations, a comparison of epistatic patterns in closely related sexual and asexual species might provide some important insights.

  17. Abundance and Genetic Diversity of Aerobic Anoxygenic Phototrophic Bacteria of Coastal Regions of the Pacific Ocean

    PubMed Central

    Ritchie, Anna E.

    2012-01-01

    Aerobic anoxygenic phototrophic (AAP) bacteria are photoheterotrophic microbes that are found in a broad range of aquatic environments. Although potentially significant to the microbial ecology and biogeochemistry of marine ecosystems, their abundance and genetic diversity and the environmental variables that regulate these properties are poorly understood. Using samples along nearshore/offshore transects from five disparate islands in the Pacific Ocean (Oahu, Molokai, Futuna, Aniwa, and Lord Howe) and off California, we show that AAP bacteria, as quantified by the pufM gene biomarker, are most abundant near shore and in areas with high chlorophyll or Synechococcus abundance. These AAP bacterial populations are genetically diverse, with most members belonging to the alpha- or gammaproteobacterial groups and with subclades that are associated with specific environmental variables. The genetic diversity of AAP bacteria is structured along the nearshore/offshore transects in relation to environmental variables, and uncultured pufM gene libraries suggest that nearshore communities are distinct from those offshore. AAP bacterial communities are also genetically distinct between islands, such that the stations that are most distantly separated are the most genetically distinct. Together, these results demonstrate that environmental variables regulate both the abundance and diversity of AAP bacteria but that endemism may also be a contributing factor in structuring these communities. PMID:22307290

  18. Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs.

    PubMed

    Dekkers, Jack; Rowland, Raymond R R; Lunney, Joan K; Plastow, Graham

    2017-09-01

    PRRS is the most costly disease in the US pig industry. While vaccination, biosecurity and eradication effort have had some success, the variability and infectiousness of PRRS virus strains have hampered the effectiveness of these measures. We propose the use of genetic selection of pigs as an additional and complementary effort. Several studies have shown that host response to PRRS infection has a sizeable genetic component and recent advances in genomics provide opportunities to capitalize on these genetic differences and improve our understanding of host response to PRRS. While work is also ongoing to understand the genetic basis of host response to reproductive PRRS, the focus of this review is on research conducted on host response to PRRS in the nursery and grow-finish phase as part of the PRRS Host Genetics Consortium. Using experimental infection of large numbers of commercial nursery pigs, combined with deep phenotyping and genomics, this research has identified a major gene that is associated with host response to PRRS. Further functional genomics work identified the GBP5 gene as harboring the putative causative mutation. GBP5 is associated with innate immune response. Subsequent work has validated the effect of this genomic region on host response to a second PRRSV strain and to PRRS vaccination and co-infection of nursery pigs with PRRSV and PCV2b. A genetic marker near GBP5 is available to the industry for use in selection. Genetic differences in host response beyond GBP5 appear to be highly polygenic, i.e. controlled by many genes across the genome, each with a small effect. Such effects can by capitalized on in a selection program using genomic prediction on large numbers of genetic markers across the genome. Additional work has also identified the genetic basis of antibody response to PRRS, which could lead to the use of vaccine response as an indicator trait to select for host response to PRRS. Other genomic analyses, including gene expression analyses, have identified genes and modules of genes that are associated with differences in host response to PRRS and can be used to further understand and utilize differences in host response. Together, these results demonstrate that genetic selection can be an additional and complementary tool to combat PRRS in the swine industry. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The Use of Race Variables in Genetic Studies of Complex Traits and the Goal of Reducing Health Disparities: A Transdisciplinary Perspective

    ERIC Educational Resources Information Center

    Shields, Alexandra E.; Fortun, Michael; Hammonds, Evelynn M.; King, Patricia A.; Lerman, Caryn; Rapp, Rayna; Sullivan, Patrick F.

    2005-01-01

    The use of racial variables in genetic studies has become a matter of intense public debate, with implications for research design and translation into practice. Using research on smoking as a springboard, the authors examine the history of racial categories, current research practices, and arguments for and against using race variables in genetic…

  20. Ethnicity-dependent influence of innate immune genetic markers on morphine PCA requirements and adverse effects in postoperative pain.

    PubMed

    Somogyi, Andrew A; Sia, Alex T; Tan, Ene-Choo; Coller, Janet K; Hutchinson, Mark R; Barratt, Daniel T

    2016-11-01

    Although several genetic factors have been associated with postsurgical morphine requirements, those involving the innate immune system and cytokines have not been well investigated. The aim of this study was to investigate the contribution of genetic variability in innate immune signalling pathways to variability in morphine dosage after elective caesarean section under spinal anaesthesia in 133 Indian, 230 Malay, and 598 Han Chinese women previously studied. Twenty single nucleotide polymorphisms in 14 genes involved in glial activation (TLR2, TLR4, MYD88, MD2), inflammatory signalling (IL2, IL6, IL10, IL1B, IL6R, TNFA, TGFB1, CRP, CASP1), and neuronal regulation (BDNF) were newly investigated, in addition to OPRM1, COMT, and ABCB1 genetic variability identified previously. Postsurgical patient-controlled analgesia morphine use (mg/24 hours) was binned into 6 normally distributed groups and scored 0 to 5 to facilitate step-down multiple linear regression analysis of genetic predictors, controlling for ethnicity and nongenetic variables. Ethnicity, OPRM1 rs1799971 (increased), TLR2 rs3804100 (decreased), and an interaction between ethnicity and IL1B rs1143634 (increased), predicted 9.8% of variability in morphine use scores in the entire cohort. In the Indian cohort, 14.5% of the variance in morphine use score was explained by IL1B rs1143634 (increased) and TGFB1 rs1800469 (decreased). In Chinese patients, the incidence of postsurgical pain was significantly higher in variant COMT rs4680 genotypes (P = 0.0007) but not in the Malay or Indian cohorts. Innate immune genetics may contribute to variability in postsurgical opioid requirements in an ethnicity-dependent manner.

  1. The importance of copy number variation in congenital heart disease

    PubMed Central

    Costain, Gregory; Silversides, Candice K; Bassett, Anne S

    2016-01-01

    Congenital heart disease (CHD) is the most common class of major malformations in humans. The historical association with large chromosomal abnormalities foreshadowed the role of submicroscopic rare copy number variations (CNVs) as important genetic causes of CHD. Recent studies have provided robust evidence for these structural variants as genome-wide contributors to all forms of CHD, including CHD that appears isolated without extra-cardiac features. Overall, a CNV-related molecular diagnosis can be made in up to one in eight patients with CHD. These include de novo and inherited variants at established (chromosome 22q11.2), emerging (chromosome 1q21.1), and novel loci across the genome. Variable expression of rare CNVs provides support for the notion of a genetic spectrum of CHD that crosses traditional anatomic classification boundaries. Clinical genetic testing using genome-wide technologies (e.g., chromosomal microarray analysis) is increasingly employed in prenatal, paediatric and adult settings. CNV discoveries in CHD have translated to changes to clinical management, prognostication and genetic counselling. The convergence of findings at individual gene and at pathway levels is shedding light on the mechanisms that govern human cardiac morphogenesis. These clinical and research advances are helping to inform whole-genome sequencing, the next logical step in delineating the genetic architecture of CHD. PMID:28706735

  2. Preliminary Genetic Analysis Supports Cave Populations as Targets for Conservation in the Endemic Endangered Puerto Rican Boa (Boidae: Epicrates inornatus)

    PubMed Central

    Revell, Liam J.

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas. PMID:23691110

  3. Preliminary genetic analysis supports cave populations as targets for conservation in the endemic endangered Puerto Rican boa (Boidae: Epicrates inornatus).

    PubMed

    Puente-Rolón, Alberto R; Reynolds, R Graham; Revell, Liam J

    2013-01-01

    The endemic Puerto Rican boa (Epicrates inornatus) has spent 42 years on the Endangered Species List with little evidence for recovery. One significant impediment to effective conservation planning has been a lack of knowledge of the distribution of genetic variability in the species. It has previously been suggested that boas might best be protected around caves that harbor large populations of bats. Prior study has found Puerto Rican boas at relatively high densities in and around bat caves, which they use both to feed and seek shelter. However, it is unknown whether these behaviorally distinctive populations represent a distinct evolutionary lineage, or (conversely) whether caves harbor representative genetic diversity for the species across the island. We provide the first genetic study of the Puerto Rican boa, and we examine and compare genetic diversity and divergence among two cave populations and two surface populations of boas. We find three haplogroups and an apparent lack of phylogeographic structure across the island. In addition, we find that the two cave populations appear no less diverse than the two surface populations, and harbor multiple mtDNA lineages. We discuss the conservation implications of these findings, including a call for the immediate protection of the remaining cave-associated populations of boas.

  4. Subspecies genetic assignments of worldwide captive tigers increase conservation value of captive populations.

    PubMed

    Luo, Shu-Jin; Johnson, Warren E; Martenson, Janice; Antunes, Agostinho; Martelli, Paolo; Uphyrkina, Olga; Traylor-Holzer, Kathy; Smith, James L D; O'Brien, Stephen J

    2008-04-22

    Tigers (Panthera tigris) are disappearing rapidly from the wild, from over 100,000 in the 1900s to as few as 3000. Javan (P.t. sondaica), Bali (P.t. balica), and Caspian (P.t. virgata) subspecies are extinct, whereas the South China tiger (P.t. amoyensis) persists only in zoos. By contrast, captive tigers are flourishing, with 15,000-20,000 individuals worldwide, outnumbering their wild relatives five to seven times. We assessed subspecies genetic ancestry of 105 captive tigers from 14 countries and regions by using Bayesian analysis and diagnostic genetic markers defined by a prior analysis of 134 voucher tigers of significant genetic distinctiveness. We assigned 49 tigers to one of five subspecies (Bengal P.t. tigris, Sumatran P.t. sumatrae, Indochinese P.t. corbetti, Amur P.t. altaica, and Malayan P.t. jacksoni tigers) and determined 52 had admixed subspecies origins. The tested captive tigers retain appreciable genomic diversity unobserved in their wild counterparts, perhaps a consequence of large population size, century-long introduction of new founders, and managed-breeding strategies to retain genetic variability. Assessment of verified subspecies ancestry offers a powerful tool that, if applied to tigers of uncertain background, may considerably increase the number of purebred tigers suitable for conservation management.

  5. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae).

    PubMed

    Renny, Mauricio; Acosta, M Cristina; Cofré, Noelia; Domínguez, Laura S; Bidartondo, Martin I; Sérsic, Alicia N

    2017-06-01

    Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton.

    PubMed

    Xiang, Xian-ling; Xi, Yi-long; Wen, Xin-li; Zhang, Gen; Wang, Jin-xia; Hu, Ke

    2011-05-01

    Elucidating the evolutionary patterns and processes of extant species is an important objective of any research program that seeks to understand population divergence and, ultimately, speciation. The island-like nature and temporal fluctuation of limnetic habitats create opportunities for genetic differentiation in rotifers through space and time. To gain further understanding of spatio-temporal patterns of genetic differentiation in rotifers other than the well-studied Brachionus plicatilis complex in brackish water, a total of 318 nrDNA ITS sequences from the B. calyciflorus complex in freshwater were analysed using phylogenetic and phylogeographic methods. DNA taxonomy conducted by both the sequence divergence and the GMYC model suggested the occurrence of six potential cryptic species, supported also by reproductive isolation among the tested lineages. The significant genetic differentiation and non-significant correlation between geographic and genetic distances existed in the most abundant cryptic species, BcI-W and Bc-SW. The large proportion of genetic variability for cryptic species Bc-SW was due to differences between sampling localities within seasons, rather than between different seasons. Nested Clade Analysis suggested allopatric or past fragmentation, contiguous range expansion and long-distance colonization possibly coupled with subsequent fragmentation as the probable main forces shaping the present-day phylogeographic structure of the B. calyciflorus species complex. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Genetic Population Structure Accounts for Contemporary Ecogeographic Patterns in Tropic and Subtropic-Dwelling Humans

    PubMed Central

    Hruschka, Daniel J.; Hadley, Craig; Brewis, Alexandra A.; Stojanowski, Christopher M.

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments. PMID:25816235

  8. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    PubMed

    Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  9. Genetic diversity among Puccinia melanocephala isolates from Brazil assessed using simple sequence repeat markers.

    PubMed

    Peixoto-Junior, R F; Creste, S; Landell, M G A; Nunes, D S; Sanguino, A; Campos, M F; Vencovsky, R; Tambarussi, E V; Figueira, A

    2014-09-26

    Brown rust (causal agent Puccinia melanocephala) is an important sugarcane disease that is responsible for large losses in yield worldwide. Despite its importance, little is known regarding the genetic diversity of this pathogen in the main Brazilian sugarcane cultivation areas. In this study, we characterized the genetic diversity of 34 P. melanocephala isolates from 4 Brazilian states using loci identified from an enriched simple sequence repeat (SSR) library. The aggressiveness of 3 isolates from major sugarcane cultivation areas was evaluated by inoculating an intermediately resistant and a susceptible cultivar. From the enriched library, 16 SSR-specific primers were developed, which produced scorable alleles. Of these, 4 loci were polymorphic and 12 were monomorphic for all isolates evaluated. The molecular characterization of the 34 isolates of P. melanocephala conducted using 16 SSR loci revealed the existence of low genetic variability among the isolates. The average estimated genetic distance was 0.12. Phenetic analysis based on Nei's genetic distance clustered the isolates into 2 major groups. Groups I and II included 18 and 14 isolates, respectively, and both groups contained isolates from all 4 geographic regions studied. Two isolates did not cluster with these groups. It was not possible to obtain clusters according to location or state of origin. Analysis of disease severity data revealed that the isolates did not show significant differences in aggressiveness between regions.

  10. Genetic diversity and structure of Brazilian ginger germplasm (Zingiber officinale) revealed by AFLP markers.

    PubMed

    Blanco, Eleonora Zambrano; Bajay, Miklos Maximiliano; Siqueira, Marcos Vinícius Bohrer Monteiro; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2016-12-01

    Ginger is a vegetable with medicinal and culinary properties widely cultivated in the Southern and Southeastern Brazil. The knowledge of ginger species' genetic variability is essential to direct correctly future studies of conservation and genetic improvement, but in Brazil, little is known about this species' genetic variability. In this study, we analyzed the genetic diversity and structure of 55 Brazilian accessions and 6 Colombian accessions of ginger, using AFLP (Amplified Fragment Length Polymorphism) molecular markers. The molecular characterization was based on 13 primers combinations, which generated an average of 113.5 polymorphic loci. The genetic diversity estimates of Nei (Hj), Shannon-Weiner index (I) and an effective number of alleles (n e ) were greater in the Colombian accessions in relation to the Brazilian accessions. The analysis of molecular variance showed that most of the genetic variation occurred between the two countries while in the Brazilian populations there is no genetic structure and probably each region harbors 100 % of genetic variation found in the samples. The bayesian model-based clustering and the dendrogram using the dissimilarity's coefficient of Jaccard were congruent with each other and showed that the Brazilian accessions are highly similar between themselves, regardless of the geographic region of origin. We suggested that the exploration of the interspecific variability and the introduction of new varieties of Z.officinale are viable alternatives for generating diversity in breeding programs in Brazil. The introduction of new genetic materials will certainly contribute to a higher genetic basis of such crop.

  11. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords.

    PubMed

    Canales-Aguirre, Cristian B; Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA.

  12. Differences in seminal plasma and spermatozoa antioxidative systems and seminal plasma lipid and protein levels among boar breeds and hybrid genetic traits.

    PubMed

    Žura Žaja, Ivona; Samardžija, Marko; Vince, Silvijo; Vilić, Marinko; Majić-Balić, Ivanka; Đuričić, Dražen; Milinković-Tur, Suzana

    2016-07-01

    The objectives of this study were to determine the influence of breed and hybrid genetic traits of boars on lipid and protein concentrations and antioxidative system variables in seminal plasma (SP) and spermatozoa and their correlations with semen quality variables. Semen samples from 27 boars: Swedish Landraces (SL), German Landraces (GL), Large Whites (LW), Pietrains (P) and Pig Improvement Company hybrids (PIC-hybrid), aged from 1.5 to 3 years old, were collected. SP was spectrophotometrically analyzed to determine total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triacylglycerol (TAG), total protein (TP), albumin, and zinc concentrations. The antioxidative system in SP and spermatozoa was established spectrophotometrically by determining total antioxidative status (TAS), total superoxide dismutase (TSOD) and glutathione peroxidase (GSH-Px) parameters, as well as copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) activity in spermatozoa. The hybrid boars had higher (P<0.05) SP concentrations of: TC, LDL-C and TAG than P and GL; HDL-C than P, GL and SL; and TP than P and LW. PIC-hybrid had lower values (P<0.05) in spermatozoa of: TAS and CuZnSOD than SL; TSOD and GSH-Px than SL and P; and MnSOD than SL and LW. Differences in SP and spermatozoa antioxidative system variables and the significant differences in SP protein and lipid variables exist among boars of different breeds and hybrid. Novel data and observed differences in semen variables among boar breeds and hybrids and their correlations with semen quality parameters in this study could contribute to better assessment of boar semen quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. On measures of association among genetic variables

    PubMed Central

    Gianola, Daniel; Manfredi, Eduardo; Simianer, Henner

    2012-01-01

    Summary Systems involving many variables are important in population and quantitative genetics, for example, in multi-trait prediction of breeding values and in exploration of multi-locus associations. We studied departures of the joint distribution of sets of genetic variables from independence. New measures of association based on notions of statistical distance between distributions are presented. These are more general than correlations, which are pairwise measures, and lack a clear interpretation beyond the bivariate normal distribution. Our measures are based on logarithmic (Kullback-Leibler) and on relative ‘distances’ between distributions. Indexes of association are developed and illustrated for quantitative genetics settings in which the joint distribution of the variables is either multivariate normal or multivariate-t, and we show how the indexes can be used to study linkage disequilibrium in a two-locus system with multiple alleles and present applications to systems of correlated beta distributions. Two multivariate beta and multivariate beta-binomial processes are examined, and new distributions are introduced: the GMS-Sarmanov multivariate beta and its beta-binomial counterpart. PMID:22742500

  14. High Genetic Diversity Revealed by Variable-Number Tandem Repeat Genotyping and Analysis of hsp65 Gene Polymorphism in a Large Collection of “Mycobacterium canettii” Strains Indicates that the M. tuberculosis Complex Is a Recently Emerged Clone of “M. canettii”

    PubMed Central

    Fabre, Michel; Koeck, Jean-Louis; Le Flèche, Philippe; Simon, Fabrice; Hervé, Vincent; Vergnaud, Gilles; Pourcel, Christine

    2004-01-01

    We have analyzed, using complementary molecular methods, the diversity of 43 strains of “Mycobacterium canettii” originating from the Republic of Djibouti, on the Horn of Africa, from 1998 to 2003. Genotyping by multiple-locus variable-number tandem repeat analysis shows that all the strains belong to a single but very distant group when compared to strains of the Mycobacterium tuberculosis complex (MTBC). Thirty-one strains cluster into one large group with little variability and five strains form another group, whereas the other seven are more diverged. In total, 14 genotypes are observed. The DR locus analysis reveals additional variability, some strains being devoid of a direct repeat locus and others having unique spacers. The hsp65 gene polymorphism was investigated by restriction enzyme analysis and sequencing of PCR amplicons. Four new single nucleotide polymorphisms were discovered. One strain was characterized by three nucleotide changes in 441 bp, creating new restriction enzyme polymorphisms. As no sequence variability was found for hsp65 in the whole MTBC, and as a single point mutation separates M. tuberculosis from the closest “M. canettii” strains, this diversity within “M. canettii” subspecies strongly suggests that it is the most probable source species of the MTBC rather than just another branch of the MTBC. PMID:15243089

  15. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus

    PubMed Central

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics. PMID:27015281

  16. Present status of understanding on the genetic etiology of polycystic ovary syndrome.

    PubMed

    Dasgupta, S; Reddy, B Mohan

    2008-01-01

    Polycystic ovary syndrome (PCOS) is the most common endocrinopathy in women of reproductive age with a prevalence of approximately 7-10% worldwide. PCOS reflects multiple potential aetiologies and variable clinical manifestations. This syndrome is characterized by serious health implications such as diabetes, coronary heart diseases and cancer and also leads to infertility. PCOS can be viewed as a heterogeneous androgen excess disorder with varying degrees of reproductive and metabolic abnormalities determined by the interaction of multiple genetic and environmental factors. In this paper, we have attempted a comprehensive review of primarily molecular genetic studies done so far on PCOS. We have also covered the studies focusing on the environmental factors and impact of ethnicity on the presentation of this syndrome. A large number of studies have been attempted to understand the aetiological mechanisms behind PCOS both at the clinical and molecular genetic levels. In the Indian context, majority of the PCOS studies have been confined to the clinical dimensions. However, a concrete genetic mechanism behind the manifestation of PCOS is yet to be ascertained. Understanding of this complex disorder requires comprehensive studies incorporating relatively larger homogenous samples for genetic analysis and taking into account the ethnicity and the environmental conditions of the population/cohort under study. Research focused on these aspects may provide better understanding on the genetic etiology and the interaction between genes and environment, which may help develop new treatment methods and possible prevention of the syndrome.

  17. Macrogeographic and microgeographic genetic structure of the Chagas' disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina.

    PubMed

    Pérez de Rosas, Alicia R; Segura, Elsa L; Fichera, Laura; García, Beatriz Alicia

    2008-07-01

    The genetic structure in populations of the Chagas' disease vector Triatoma infestans from six localities belonging to areas under the same insecticide treatment conditions of Catamarca province (Argentina) was examined at macrogeographical and microgeographical scales. A total of 238 insects were typed for 10 polymorphic microsatellite loci. The average observed and expected heterozygosities ranged from 0.319 to 0.549 and from 0.389 to 0.689, respectively. The present results confirm that populations of T. infestans are highly structured. Spatial genetic structure was detectable at macrogeographical and microgeographical levels. Comparisons of the levels of genetic variability between two temporal samples were carried out to assess the impact of the insecticide treatment. The genetic diversity of the population was not significantly affected after insecticide use since different genetic parameters (allele number, observed and expected heterozygosities) remained stable. However, loss of low frequency alleles and not previously found alleles were detected. The effective population size (N(e)) estimated was substantially lower in the second temporal sample than in the first; nevertheless, it is possible that the size of the remnant population after insecticide treatment was still large enough to retain the genetic diversity. Very few individuals did not belong to the local T. infestans populations as determined by assignment analyses, suggesting a low level of immigration in the population. The results of the assignment and first-generation migrant tests suggest male-biased dispersal at microgeographical level.

  18. Population Genetic Structure of a Widespread Bat-Pollinated Columnar Cactus.

    PubMed

    Bustamante, Enriquena; Búrquez, Alberto; Scheinvar, Enrique; Eguiarte, Luis Enrique

    2016-01-01

    Bats are the main pollinators and seed dispersers of Stenocereus thurberi, a xenogamous columnar cactus of northwestern Mexico and a good model to illustrate spatial dynamics of gene flow in long-lived species. Previous studies in this cactus showed differences among populations in the type and abundance of pollinators, and in the timing of flowering and fruiting. In this study we analyzed genetic variability and population differentiation among populations. We used three primers of ISSR to analyze within and among populations genetic variation from eight widely separated populations of S. thurberi in Sonora, Mexico. Sixty-six out of 99 of the ISSR bands (P = 66.7%) were polymorphic. Total heterozygosity for all populations sampled revealed high genetic diversity (Hsp = 0.207, HBT = 0.224). The AMOVA showed that most of the genetic variation was within populations (80.5%). At the species level, estimates of population differentiation, θ = 0.175 and θB = 0.194, indicated moderate gene flow among populations. The absence of a significant correlation between genetic and geographic distances indicated little isolation by geographic distance. The large genetic variation and diversity found in S. thurberi is consistent with its open reproductive system and the high mobility of bats, a major pollinator. However, small changes in number or kind of pollinators and seed dispersal agents, in the directionality of migratory routes, and/or in the timing of flowering and fruiting among populations, can critically affect gene flow dynamics.

  19. Intensive Management and Natural Genetic Variation in Red Deer (Cervus elaphus).

    PubMed

    Galarza, Juan A; Sánchez-Fernández, Beatriz; Fandos, Paulino; Soriguer, Ramón

    2017-07-01

    The current magnitude of big-game hunting has outpaced the natural growth of populations, making artificial breeding necessary to rapidly boost hunted populations. In this study, we evaluated if the rapid increase of red deer (Cervus elaphus) abundance, caused by the growing popularity of big-game hunting, has impacted the natural genetic diversity of the species. We compared several genetic diversity metrics between 37 fenced populations subject to intensive management and 21 wild free-ranging populations. We also included a historically protected population from a national park as a baseline for comparisons. Contrary to expectations, our results showed no significant differences in genetic diversity between wild and fenced populations. Relatively lower genetic diversity was observed in the protected population, although differences were not significant in most cases. Bottlenecks were detected in both wild and fenced populations, as well as in the protected population. Assignment tests identified individuals that did not belong to their population of origin, indicating anthropogenic movement. We discuss the most likely processes, which could have led to the observed high levels of genetic variability and lack of differentiation between wild and fenced populations and suggest cautionary points for future conservation. We illustrate our comparative approach in red deer. However, our results and interpretations can be largely applicable to most ungulates subject to big-game hunting as most of them share a common exploitation-recovery history as well as many ecological traits. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Variables selection methods in near-infrared spectroscopy.

    PubMed

    Xiaobo, Zou; Jiewen, Zhao; Povey, Malcolm J W; Holmes, Mel; Hanpin, Mao

    2010-05-14

    Near-infrared (NIR) spectroscopy has increasingly been adopted as an analytical tool in various fields, such as the petrochemical, pharmaceutical, environmental, clinical, agricultural, food and biomedical sectors during the past 15 years. A NIR spectrum of a sample is typically measured by modern scanning instruments at hundreds of equally spaced wavelengths. The large number of spectral variables in most data sets encountered in NIR spectral chemometrics often renders the prediction of a dependent variable unreliable. Recently, considerable effort has been directed towards developing and evaluating different procedures that objectively identify variables which contribute useful information and/or eliminate variables containing mostly noise. This review focuses on the variable selection methods in NIR spectroscopy. Selection methods include some classical approaches, such as manual approach (knowledge based selection), "Univariate" and "Sequential" selection methods; sophisticated methods such as successive projections algorithm (SPA) and uninformative variable elimination (UVE), elaborate search-based strategies such as simulated annealing (SA), artificial neural networks (ANN) and genetic algorithms (GAs) and interval base algorithms such as interval partial least squares (iPLS), windows PLS and iterative PLS. Wavelength selection with B-spline, Kalman filtering, Fisher's weights and Bayesian are also mentioned. Finally, the websites of some variable selection software and toolboxes for non-commercial use are given. Copyright 2010 Elsevier B.V. All rights reserved.

  1. The Genetic Overlap of Attention-Deficit/Hyperactivity Disorder and Autistic-like Traits: an Investigation of Individual Symptom Scales and Cognitive markers.

    PubMed

    Pinto, Rebecca; Rijsdijk, Fruhling; Ronald, Angelica; Asherson, Philip; Kuntsi, Jonna

    2016-02-01

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASDs) frequently co-occur. However, due to previous exclusionary diagnostic criteria, little is known about the underlying causes of this covariation. Twin studies assessing ADHD symptoms and autistic-like traits (ALTs) suggest substantial genetic overlap, but have largely failed to take into account the genetic heterogeneity of symptom subscales. This study aimed to clarify the phenotypic and genetic relations between ADHD and ASD by distinguishing between symptom subscales that characterise the two disorders. Moreover, we aimed to investigate whether ADHD-related cognitive impairments show a relationship with ALT symptom subscales; and whether potential shared cognitive impairments underlie the genetic risk shared between the ADHD and ALT symptoms. Multivariate structural equation modelling was conducted on a population-based sample of 1312 twins aged 7-10. Social-communication ALTs correlated moderately with both ADHD symptom domains (phenotypic correlations around 0.30) and showed substantial genetic overlap with both inattention and hyperactivity-impulsivity (genetic correlation = 0.52 and 0.44, respectively). In addition to previously reported associations with ADHD traits, reaction time variability (RTV) showed significant phenotypic (0.18) and genetic (0.32) association with social-communication ALTs. RTV captured a significant proportion (24 %) of the genetic influences shared between inattention and social-communication ALTs. Our findings suggest that social-communication ALTs underlie the previously observed phenotypic and genetic covariation between ALTs and ADHD symptoms. RTV is not specific to ADHD symptoms, but is also associated with social-communication ALTs and can, in part, contribute to an explanation of the co-occurrence of ASD and ADHD.

  2. Is the Effect of Parental Education on Offspring Biased or Moderated by Genotype?

    PubMed Central

    Conley, Dalton; Domingue, Benjamin W.; Cesarini, David; Dawes, Christopher; Rietveld, Cornelius A.; Boardman, Jason D.

    2017-01-01

    Parental education is the strongest measured predictor of offspring education, and thus many scholars see the parent–child correlation in educational attainment as an important measure of social mobility. But if social changes or policy interventions are going to have dynastic effects, we need to know what accounts for this intergenerational association, that is, whether it is primarily environmental or genetic in origin. Thus, to understand whether the estimated social influence of parental education on offspring education is biased owing to genetic inheritance (or moderated by it), we exploit the findings from a recent large genome-wide association study of educational attainment to construct a genetic score designed to predict educational attainment. Using data from two independent samples, we find that our genetic score significantly predicts years of schooling in both between-family and within-family analyses. We report three findings that should be of interest to scholars in the stratification and education fields. First, raw parent–child correlations in education may reflect one-sixth genetic transmission and five-sixths social inheritance. Second, conditional on a child’s genetic score, a parental genetic score has no statistically significant relationship to the child’s educational attainment. Third, the effects of offspring genotype do not seem to be moderated by measured sociodemographic variables at the parental level (but parent–child genetic interaction effects are significant). These results are consistent with the existence of two separate systems of ascription: genetic inheritance (a random lottery within families) and social inheritance (across-family ascription). We caution, however, that at the presently attainable levels of explanatory power, these results are preliminary and may change when better-powered genetic risk scores are developed. PMID:29051911

  3. Population-environment drivers of H5N1 avian influenza molecular change in Vietnam

    PubMed Central

    Carrel, Margaret A.; Emch, Michael; Nguyen, Tung; Jobe, R. Todd; Wan, Xiu-Feng

    2013-01-01

    This study identifies population and environment drivers of genetic change in H5N1 avian influenza viruses (AIV) in Vietnam using a landscape genetics approach. While prior work has examined how combinations of local-level environmental variables influence H5N1 occurrence, this research expands the analysis to the complex genetic characteristics of H5N1 viruses. A dataset of 125 highly pathogenic H5N1 AIV isolated in Vietnam from 2003–2007 is used to explore which population and environment variables are correlated with increased genetic change among viruses. Results from non-parametric multidimensional scaling and regression analyses indicate that variables relating to both the environmental and social ecology of humans and birds in Vietnam interact to affect the genetic character of viruses. These findings suggest that it is a combination of suitable environments for species mixing, the presence of high numbers of potential hosts, and in particular the temporal characteristics of viral occurrence, that drive genetic change among H5N1 AIV in Vietnam. PMID:22652510

  4. Population-environment drivers of H5N1 avian influenza molecular change in Vietnam.

    PubMed

    Carrel, Margaret A; Emch, Michael; Nguyen, Tung; Todd Jobe, R; Wan, Xiu-Feng

    2012-09-01

    This study identifies population and environment drivers of genetic change in H5N1 avian influenza viruses (AIV) in Vietnam using a landscape genetics approach. While prior work has examined how combinations of local-level environmental variables influence H5N1 occurrence, this research expands the analysis to the complex genetic characteristics of H5N1 viruses. A dataset of 125 highly pathogenic H5N1 AIV isolated in Vietnam from 2003 to 2007 is used to explore which population and environment variables are correlated with increased genetic change among viruses. Results from non-parametric multidimensional scaling and regression analyses indicate that variables relating to both the environmental and social ecology of humans and birds in Vietnam interact to affect the genetic character of viruses. These findings suggest that it is a combination of suitable environments for species mixing, the presence of high numbers of potential hosts, and in particular the temporal characteristics of viral occurrence, that drive genetic change among H5N1 AIV in Vietnam. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Disease-modifying genetic factors in cystic fibrosis.

    PubMed

    Marson, Fernando A L

    2018-05-01

    To compile data from the past 10 years regarding the role of modifying genes in cystic fibrosis (CF). CF is a model disease for understanding of the action of modifying genes. Although it is a monogenic (CFTR) autosomal recessive disease, CF presents with wide phenotypic variability. In CF, variability occurs with different intensity among patients by each organ, being organ-specific, resulting from the mutual interaction of environmental and genetic factors, including CFTR mutations and various other genes, most of which are associated with inflammatory processes. In individuals, using precision medicine, gene modification studies have revealed individualized responses to drugs depending on particular CFTR mutations and modifying genes, most of which are alternative ion channels. Studies of modifying genes in CF allow: understanding of clinical variability among patients with the same CFTR genotype; evaluation of precision medicine; understanding of environmental and genetic effects at the organ level; understanding the involvement of genetic variants in inflammatory responses; improvements in genetic counseling; understanding the involvement of genetic variants in inflammatory responses in lung diseases, such as asthma; and understanding the individuality of the person with the disease.

  6. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview.

    PubMed

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-18

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive "feedback" to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the "window of susceptibility" in the human health risks due to mercury exposure.

  7. Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus.

    PubMed

    Schmidt, Thomas L; Rašić, Gordana; Zhang, Dongjing; Zheng, Xiaoying; Xi, Zhiyong; Hoffmann, Ary A

    2017-10-01

    Aedes albopictus is a highly invasive disease vector with an expanding worldwide distribution. Genetic assays using low to medium resolution markers have found little evidence of spatial genetic structure even at broad geographic scales, suggesting frequent passive movement along human transportation networks. Here we analysed genetic structure of Aedes albopictus collected from 12 sample sites in Guangzhou, China, using thousands of genome-wide single nucleotide polymorphisms (SNPs). We found evidence for passive gene flow, with distance from shipping terminals being the strongest predictor of genetic distance among mosquitoes. As further evidence of passive dispersal, we found multiple pairs of full-siblings distributed between two sample sites 3.7 km apart. After accounting for geographical variability, we also found evidence for isolation by distance, previously undetectable in Ae. albopictus. These findings demonstrate how large SNP datasets and spatially-explicit hypothesis testing can be used to decipher processes at finer geographic scales than formerly possible. Our approach can be used to help predict new invasion pathways of Ae. albopictus and to refine strategies for vector control that involve the transformation or suppression of mosquito populations.

  8. Genetics of the First Seven Proprotein Convertase Enzymes in Health and Disease

    PubMed Central

    Turpeinen, Hannu; Ortutay, Zsuzsanna; Pesu, Marko

    2013-01-01

    Members of the substilisin/kexin like proprotein convertase (PCSK) protease family cleave and convert immature pro-proteins into their biologically active forms. By cleaving for example prohormones, cytokines and cell membrane proteins, PCSKs participate in maintaining the homeostasis in a healthy human body. Conversely, erratic enzymatic function is thought to contribute to the pathogenesis of a wide variety of diseases, including obesity and hypercholestrolemia. The first characterized seven PCSK enzymes (PCSK1-2, FURIN, PCSK4-7) process their substrates at a motif made up of paired basic amino acid residues. This feature results in a variable degree of biochemical redundancy in vitro, and consequently, shared substrate molecules between the different PCSK enzymes. This redundancy has confounded our understanding of the specific biological functions of PCSKs. The physiological roles of these enzymes have been best illustrated by the phenotypes of genetically engineered mice and patients that carry mutations in the PCSK genes. Recent developments in genome-wide methodology have generated a large amount of novel information on the genetics of the first seven proprotein convertases. In this review we summarize the reported genetic alterations and their associated phenotypes. PMID:24396277

  9. Genetic Aspects of Susceptibility to Mercury Toxicity: An Overview

    PubMed Central

    Andreoli, Virginia; Sprovieri, Francesca

    2017-01-01

    Human exposure to mercury is still a major public health concern. In this context, children have a higher susceptibility to adverse neurological mercury effects, compared to adults with similar exposures. Moreover, there exists a marked variability of personal response to detrimental mercury action, in particular among population groups with significant mercury exposure. New scientific evidence on genetic backgrounds has raised the issue of whether candidate susceptibility genes can make certain individuals more or less vulnerable to mercury toxicity. In this review, the aim is to evaluate a new genetic dimension and its involvement in mercury risk assessment, focusing on the important role played by relevant polymorphisms, located in attractive gene targets for mercury toxicity. Existing original articles on epidemiologic research which report a direct link between the genetic basis of personal vulnerability and different mercury repercussions on human health will be reviewed. Based on this evidence, a careful evaluation of the significant markers of susceptibility will be suggested, in order to obtain a powerful positive “feedback” to improve the quality of life. Large consortia of studies with clear phenotypic assessments will help clarify the “window of susceptibility” in the human health risks due to mercury exposure. PMID:28106810

  10. Mitochondrial DNA Reveals Genetic Structuring of Pinna nobilis across the Mediterranean Sea

    PubMed Central

    Sanna, Daria; Cossu, Piero; Dedola, Gian Luca; Scarpa, Fabio; Maltagliati, Ferruccio; Castelli, Alberto; Franzoi, Piero; Lai, Tiziana; Cristo, Benedetto; Curini-Galletti, Marco; Francalacci, Paolo; Casu, Marco

    2013-01-01

    Pinna nobilis is the largest endemic Mediterranean marine bivalve. During past centuries, various human activities have promoted the regression of its populations. As a consequence of stringent standards of protection, demographic expansions are currently reported in many sites. The aim of this study was to provide the first large broad-scale insight into the genetic variability of P. nobilis in the area that encompasses the western Mediterranean, Ionian Sea, and Adriatic Sea marine ecoregions. To accomplish this objective twenty-five populations from this area were surveyed using two mitochondrial DNA markers (COI and 16S). Our dataset was then merged with those obtained in other studies for the Aegean and Tunisian populations (eastern Mediterranean), and statistical analyses (Bayesian model-based clustering, median-joining network, AMOVA, mismatch distribution, Tajima’s and Fu’s neutrality tests and Bayesian skyline plots) were performed. The results revealed genetic divergence among three distinguishable areas: (1) western Mediterranean and Ionian Sea; (2) Adriatic Sea; and (3) Aegean Sea and Tunisian coastal areas. From a conservational point of view, populations from the three genetically divergent groups found may be considered as different management units. PMID:23840684

  11. Characterization of spaC-type Erysipelothrix sp. isolates causing systemic disease in ornamental fish.

    PubMed

    Pomaranski, E K; Reichley, S R; Yanong, R; Shelley, J; Pouder, D B; Wolf, J C; Kenelty, K V; Van Bonn, B; Oliaro, F; Byrne, B; Clothier, K A; Griffin, M J; Camus, A C; Soto, E

    2018-01-01

    Since 2012, low-to-moderate mortality associated with an Erysipelothrix sp. bacterium has been reported in ornamental fish. Histological findings have included facial cellulitis, necrotizing dermatitis and myositis, and disseminated coelomitis with abundant intralesional Gram-positive bacterial colonies. Sixteen Erysipelothrix sp. isolates identified phenotypically as E. rhusiopathiae were recovered from diseased cyprinid and characid fish. Similar clinical and histological changes were also observed in zebrafish, Danio rerio, challenged by intracoelomic injection. The Erysipelothrix sp. isolates from ornamental fish were compared phenotypically and genetically to E. rhusiopathiae and E. tonsillarum isolates recovered from aquatic and terrestrial animals from multiple facilities. Results demonstrated that isolates from diseased fish were largely clonal and divergent from E. rhusiopathiae and E. tonsillarum isolates from normal fish skin, marine mammals and terrestrial animals. All ornamental fish isolates were PCR positive for spaC, with marked genetic divergence (<92% similarity at gyrB, <60% similarity by rep-PCR) between the ornamental fish isolates and other Erysipelothrix spp. isolates. This study supports previous work citing the genetic variability of Erysipelothrix spp. spa types and suggests isolates from diseased ornamental fish may represent a genetically distinct species. © 2017 John Wiley & Sons Ltd.

  12. Genetic variation among wild lake trout populations: the 'wanted' and the 'unwanted'

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Kallemeyn, Larry W.; Bronte, Charles R.; Greswell, Robert E.; Dwyer, Pat; Hamre, R.H.

    1997-01-01

    In this study we examine genetic variation within and among self-sustaining lake trout populations from the Great Lakes basin, the Rainy Lake basin, and Yellowstone Lake. We used RFLP analysis and direct sequencing to examine DNA sequence variation among several mitochondrial and nuclear genes, including highly conserved loci (e.g. cytochrome b, nuclear exon regions) and highly variable loci (e.g. mitochondrial d-loop and nuclear intron regions). Native Lake Superior lake trout populations show high levels of genetic diversity, while populations from the Rainy Lake basin show little or none. The lake trout population sampled from Yellowstone Lake shows moderate genetic diversity, possibly representative of a relatively large source population closely related to lake trout from Lewis Lake, Wyoming. There has been significant social and management controversy involving these lake trout populations, particularly those that are located in National Parks. In the Great Lakes and Rainy Lake basins, the controversy involves the degree to which hatchery supplementation can contribute to or negatively impact self-sustaining populations which are highly desired by recreational and commercial fisheries. In Yellowstone Lake, the lake trout are viewed as an undesirable intruder that may interfere with resident populations of highly prized native cutthroat trout.

  13. Reading Self-Perceived Ability, Enjoyment and Achievement: A Genetically Informative Study of Their Reciprocal Links Over Time

    PubMed Central

    2017-01-01

    Extant literature has established a consistent association between aspects of reading motivation, such as enjoyment and self-perceived ability, and reading achievement, in that more motivated readers are generally more skilled readers. However, the developmental etiology of this relation is yet to be investigated. The present study explores the development of the motivation–achievement association and its genetic and environmental underpinnings. Applying cross-lagged design in a sample of 13,825 twins, we examined the relative contribution of genetic and environmental factors to the association between reading enjoyment and self-perceived ability and reading achievement. Children completed a reading comprehension task and self-reported their reading enjoyment and perceived ability twice in middle childhood: when they were 9–10 and 12 years old. Results showed a modest reciprocal association over time between reading motivation (enjoyment and perceived ability) and reading achievement. Reading motivation at age 9–10 statistically predicted the development of later achievement, and similarly, reading achievement at age 9–10 predicted the development of later motivation. This reciprocal association was observed beyond the stability of the variables and their contemporaneous correlation and was largely explained by genetic factors. PMID:28333527

  14. Evaluating the genetic impact of South and Southeast Asia on the peopling of Bangladesh.

    PubMed

    Sultana, Gazi Nurun Nahar; Sharif, Mohd Istiaq; Asaduzzaman, Md; Chaubey, Gyaneshwer

    2015-11-01

    Despite rapidly growing understandings and dependency on single nucleotide polymorphisms (SNPs), highly variable autosomal short tandem repeats (STRs) are still regarded as the most established method to differentiate individuals at forensic level. Here with large number of various ethnic groups we undertook this study to reveal the genetic structure of the most densely populated part of South Asia i.e. the Bangladesh. The purpose of this work was to estimate population parameters based on the allele frequencies obtained for 15 polymorphic autosomal STR loci investigated in caste and tribal populations from Bangladesh (n=706). We compared the results in a broader context by merging 24 different populations of Asia to pertain their affinity. Various statistical analyses suggested a clear cut demarcation of tribal and non-tribal in Bangladesh. Moreover, beside the phylogenetic structure of the studied populations, it is found that the mean heterozygosity value was highest among the populations of Bangladesh, likely because of gene flow from different directions. However, Tonchangya, Adi and Khumi showed sign of genetic isolation and reduced diversity, possibly as a result of genetic drift and/or strong founder effects working on small endogamous populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Genetic history of the population of Corsica (western Mediterranean) as inferred from autosomal STR analysis.

    PubMed

    Tofanelli, Sergio; Taglioli, Luca; Varesi, Laurent; Paoli, Giorgio

    2004-04-01

    To genetically reconstruct the demographic history of the human population of Corsica (western Mediterranean), we analyzed the variability at eight autosomal STR loci (FES, VWA, CSF1PO, TH01, F13A1, TPOX, CD4, and D3S1358) in a sample of 179 native blood donors from 4 out of the 5 administrative districts. The main line of genetic discontinuity inferred from the spatial distribution of STR variability overlapped the linguistic and geographic boundaries. In the innermost areas (Corte district) several estimators had larger stochastic effects on allele frequencies. Genetic distance measures underlying different evolutionary models all pointed to a higher variability within Corsicans than within the rest of the Mediterranean reference populations. All Corsican subsamples showed the highest distance with a pooled sample from central Sardinia, thus making recent gene flow between the two neighboring islands unlikely. Hierarchical AMOVA and distance-based multivariate genetic spaces stressed the closeness of Tuscan and Corsican frequency distributions, which could reflect peopling events with different time depths. Anyway, estimated separation times well support the linguistic hypothesis that Neolithic/Chalcolithic events have been far more important than Paleolithic or historical processes in the shaping of present Corsican variability.

  16. Mating tactics determine patterns of condition dependence in a dimorphic horned beetle.

    PubMed

    Knell, Robert J; Simmons, Leigh W

    2010-08-07

    The persistence of genetic variability in performance traits such as strength is surprising given the directional selection that such traits experience, which should cause the fixation of the best genetic variants. One possible explanation is 'genic capture' which is usually considered as a candidate mechanism for the maintenance of high genetic variability in sexual signalling traits. This states that if a trait is 'condition dependent', with expression being strongly influenced by the bearer's overall viability, then genetic variability can be maintained via mutation-selection balance. Using a species of dimorphic beetle with males that gain matings either by fighting or by 'sneaking', we tested the prediction of strong condition dependence for strength, walking speed and testes mass. Strength was strongly condition dependent only in those beetles that fight for access to females. Walking speed, with less of an obvious selective advantage, showed no condition dependence, and testes mass was more condition dependent in sneaks, which engage in higher levels of sperm competition. Within a species, therefore, condition dependent expression varies between morphs, and corresponds to the specific selection pressures experienced by that morph. These results support genic capture as a general explanation for the maintenance of genetic variability in traits under directional selection.

  17. Genetic variability of an endangered Bromeliaceae species (Pitcairnia albiflos) from the Brazilian Atlantic rainforest.

    PubMed

    Domingues, R; Machado, M A; Forzza, R C; Melo, T D; Wohlres-Viana, S; Viccini, L F

    2011-10-13

    Pitcairnia albiflos is a Bromeliaceae species endemic to Brazil that has been included as data-deficient in the extinction risk list of Brazilian flora. We analyzed genetic variability in P. albiflos populations using RAPD markers to investigate population structure and reproductive mechanisms and also to evaluate the actual extinction risk level of this species. Leaves of 56 individuals of P. albiflos from three populations were collected: Urca Hill (UH, 20 individuals), Chacrinha State Park (CSP, 24 individuals) and Tijuca National Park (TNP, 12 individuals). The RAPD technique was effective in characterizing the genetic diversity in the P. albiflos populations since it was possible to differentiate the populations and to identify exclusive bands for at least two of them. Even if there is low genetic diversity among them (CSP-UH = 0.463; CSP-TNP = 0.440; UH-TNP = 0.524), the populations seem to be isolated according to the low genetic diversity observed within them (H(pop) CSP = 0.060; H(pop) UH = 0.042; H(pop) TNP = 0.130). This fact might be the result of clonal and self-reproduction predominance and also from environmental degradation around the collection areas. Consequently, it would be important to protect all populations both in situ and ex situ to prevent the decrease of genetic variability. The low genetic variability among individuals of the same population confirms the inclusion of this species as critically endangered in the risk list for Brazilian flora.

  18. Disentangling the effects of genetic, prenatal and parenting influences on children's cortisol variability.

    PubMed

    Marceau, Kristine; Ram, Nilam; Neiderhiser, Jenae M; Laurent, Heidemarie K; Shaw, Daniel S; Fisher, Phil; Natsuaki, Misaki N; Leve, Leslie D

    2013-11-01

    Developmental plasticity models hypothesize the role of genetic and prenatal environmental influences on the development of the hypothalamic-pituitary-adrenal (HPA) axis and highlight that genes and the prenatal environment may moderate early postnatal environmental influences on HPA functioning. This article examines the interplay of genetic, prenatal and parenting influences across the first 4.5 years of life on a novel index of children's cortisol variability. Repeated measures data were obtained from 134 adoption-linked families, adopted children and both their adoptive parents and birth mothers, who participated in a longitudinal, prospective US domestic adoption study. Genetic and prenatal influences moderated associations between inconsistency in overreactive parenting from child age 9 months to 4.5 years and children's cortisol variability at 4.5 years differently for mothers and fathers. Among children whose birth mothers had high morning cortisol, adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children with low birth mother morning cortisol adoptive fathers' inconsistent overreactive parenting predicted lower cortisol variability. Among children who experienced high levels of prenatal risk, adoptive mothers' inconsistent overreactive parenting predicted lower cortisol variability and adoptive fathers' inconsistent overreactive parenting predicted higher cortisol variability, whereas among children who experienced low levels of prenatal risk there were no associations between inconsistent overreactive parenting and children's cortisol variability. Findings supported developmental plasticity models and uncovered novel developmental, gene × environment and prenatal × environment influences on children's cortisol functioning.

  19. Genetics and variation

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...

  20. Pharmacogenetics and pharmacogenomics: a bridge to individualized cancer therapy

    PubMed Central

    Weng, Liming; Zhang, Li; Peng, Yan; Huang, R Stephanie

    2013-01-01

    In the past decade, advances in pharmacogenetics and pharmacogenomics (PGx) have gradually unveiled the genetic basis of interindividual differences in drug responses. A large portion of these advances have been made in the field of anticancer therapy. Currently, the US FDA has updated the package inserts of approximately 30 anticancer agents to include PGx information. Given the complexity of this genetic information (e.g., tumor mutation and gene overexpression, chromosomal translocation and germline variations), as well as the variable level of scientific evidence, the FDA recommendation and potential action needed varies among drugs. In this review, we have highlighted some of these PGx discoveries for their scientific values and utility in improving therapeutic efficacy and reducing side effects. Furthermore, examples are also provided for the role of PGx in new anticancer drug development by revealing novel druggable targets. PMID:23394393

  1. Meta-analysis of gene-level tests for rare variant association.

    PubMed

    Liu, Dajiang J; Peloso, Gina M; Zhan, Xiaowei; Holmen, Oddgeir L; Zawistowski, Matthew; Feng, Shuang; Nikpay, Majid; Auer, Paul L; Goel, Anuj; Zhang, He; Peters, Ulrike; Farrall, Martin; Orho-Melander, Marju; Kooperberg, Charles; McPherson, Ruth; Watkins, Hugh; Willer, Cristen J; Hveem, Kristian; Melander, Olle; Kathiresan, Sekar; Abecasis, Gonçalo R

    2014-02-01

    The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays.

  2. Role of Pharmacogenetics in Hematopoietic Stem Cell Transplantation Outcome in Children

    PubMed Central

    Franca, Raffaella; Stocco, Gabriele; Favretto, Diego; Giurici, Nagua; Decorti, Giuliana; Rabusin, Marco

    2015-01-01

    Hematopoietic stem cell transplantation (HSCT) is an established therapeutic procedure for several congenital and acquired disorders, both malignant and nonmalignant. Despite the great improvements in HSCT clinical practices over the last few decades, complications, such as graft vs. host disease (GVHD) and sinusoidal obstructive syndrome (SOS), are still largely unpredictable and remain the major causes of morbidity and mortality. Both donor and patient genetic background might influence the success of bone marrow transplantation and could at least partially explain the inter-individual variability in HSCT outcome. This review summarizes some of the recent studies on candidate gene polymorphisms in HSCT, with particular reference to pediatric cohorts. The interest is especially focused on pharmacogenetic variants affecting myeloablative and immunosuppressive drugs, although genetic traits involved in SOS susceptibility and transplant-related mortality are also reviewed. PMID:26266406

  3. Gene-diet interactions and aging in C. elegans

    PubMed Central

    Yen, Chia An; Curran, Sean P.

    2016-01-01

    Diet is the most variable aspect of life history, as most individuals have a large diversity of food choices, varying in the type and amount that they ingest. In the short-term, diet can affect metabolism and energy levels. However, in the long run, the net deficiency or excess of calories from diet can influence the progression and severity of age-related diseases. An old and yet still debated question is: how do specific dietary choices impact health- and lifespan? It is clear that genetics can play a critical role — perhaps just as important as diet choices. For example, poor diet in combination with genetic susceptibility can lead to metabolic disorders, such as obesity and type 2 diabetes. Recent work in Caenorhabditis elegans has identified the existence of diet-gene pairs, where the consequence of mutating a specific gene is only realized on specific diets. Many core metabolic pathways are conserved from worm to human. Although only a handful of these diet-gene pairs has been characterized, there are potentially hundreds, if not thousands, of such interactions, which may explain the variability in the rates of aging in humans and the incidence and severity of age-related diseases. PMID:26924670

  4. Variability in the efficacy of psychopharmaceuticals: contributions from pharmacogenomics, ethnopsychopharmacology, and psychological and psychiatric anthropologies.

    PubMed

    Ninnemann, Kristi M

    2012-03-01

    Psychological and psychiatric anthropology have long questioned the universality of psychiatric diagnoses, bringing to light the fluidity of mental disorder, and recognizing that the experience and expression of psychopathology is influenced by complex and interacting genetic, environmental, and cultural factors. The majority of our discussions, however, have remained centered around the role of culture in shaping mental illness: drawing attention to subjective experiences of mental illness and culturally patterned modes of symptom presentation, and interrogating the cogency of universal diagnostic rubrics. Psychological and psychiatric anthropology have yet to robustly engage the broadly assumed universal validity of psychiatric medications and the ways in which they are prescribed and experienced. This article provides an introduction into the fields of pharmacogenomics and ethnopsychopharmacology, areas of inquiry seeking to understand the ways in which genetic variability occurring between, and within, large population groups influences individual ability to metabolize psychotropic medications. This piece further addresses the complex issue of psychopharmaceutical efficacy, stressing the ways in which, just as with psychopathology, medications and their outcomes are likewise influenced by the complex interactions of genes, environment, and culture. Lastly, ways in which anthropology can and should engage with the growing fields of pharmacogenomics and ethnopsychopharmacology are suggested.

  5. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations

    PubMed Central

    Scheikl, Daniela; Tellier, Aurélien

    2017-01-01

    Wild tomatoes are a valuable source of disease resistance germplasm for tomato (Solanum lycopersicum) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense, both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense. We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens (Alternaria solani, Phytophthora infestans and a Fusarium sp.) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense, resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved. PMID:28133579

  6. The wild tomato species Solanum chilense shows variation in pathogen resistance between geographically distinct populations.

    PubMed

    Stam, Remco; Scheikl, Daniela; Tellier, Aurélien

    2017-01-01

    Wild tomatoes are a valuable source of disease resistance germplasm for tomato ( Solanum lycopersicum ) breeders. Many species are known to possess a certain degree of resistance against certain pathogens; however, evolution of resistance traits is yet poorly understood. For some species, like Solanum chilense , both differences in habitat and within species genetic diversity are very large. Here we aim to investigate the occurrence of spatially heterogeneous coevolutionary pressures between populations of S. chilense . We investigate the phenotypic differences in disease resistance within S. chilense against three common tomato pathogens ( Alternaria solani , Phytophthora infestans and a Fusarium sp .) and confirm high degrees of variability in resistance properties between selected populations. Using generalised linear mixed models, we show that disease resistance does not follow the known demographic patterns of the species. Models with up to five available climatic and geographic variables are required to best describe resistance differences, confirming the complexity of factors involved in local resistance variation. We confirm that within S. chilense , resistance properties against various pathogens show a mosaic pattern and do not follow environmental patterns, indicating the strength of local pathogen pressures. Our study can form the basis for further investigations of the genetic traits involved.

  7. Is rigorous retrospective harmonization possible? Application of the DataSHaPER approach across 53 large studies

    PubMed Central

    Fortier, Isabel; Doiron, Dany; Little, Julian; Ferretti, Vincent; L’Heureux, François; Stolk, Ronald P; Knoppers, Bartha M; Hudson, Thomas J; Burton, Paul R

    2011-01-01

    Background Proper understanding of the roles of, and interactions between genetic, lifestyle, environmental and psycho-social factors in determining the risk of development and/or progression of chronic diseases requires access to very large high-quality databases. Because of the financial, technical and time burdens related to developing and maintaining very large studies, the scientific community is increasingly synthesizing data from multiple studies to construct large databases. However, the data items collected by individual studies must be inferentially equivalent to be meaningfully synthesized. The DataSchema and Harmonization Platform for Epidemiological Research (DataSHaPER; http://www.datashaper.org) was developed to enable the rigorous assessment of the inferential equivalence, i.e. the potential for harmonization, of selected information from individual studies. Methods This article examines the value of using the DataSHaPER for retrospective harmonization of established studies. Using the DataSHaPER approach, the potential to generate 148 harmonized variables from the questionnaires and physical measures collected in 53 large population-based studies (6.9 million participants) was assessed. Variable and study characteristics that might influence the potential for data synthesis were also explored. Results Out of all assessment items evaluated (148 variables for each of the 53 studies), 38% could be harmonized. Certain characteristics of variables (i.e. relative importance, individual targeted, reference period) and of studies (i.e. observational units, data collection start date and mode of questionnaire administration) were associated with the potential for harmonization. For example, for variables deemed to be essential, 62% of assessment items paired could be harmonized. Conclusion The current article shows that the DataSHaPER provides an effective and flexible approach for the retrospective harmonization of information across studies. To implement data synthesis, some additional scientific, ethico-legal and technical considerations must be addressed. The success of the DataSHaPER as a harmonization approach will depend on its continuing development and on the rigour and extent of its use. The DataSHaPER has the potential to take us closer to a truly collaborative epidemiology and offers the promise of enhanced research potential generated through synthesized databases. PMID:21804097

  8. Single and simultaneous binary mergers in Wright-Fisher genealogies.

    PubMed

    Melfi, Andrew; Viswanath, Divakar

    2018-05-01

    The Kingman coalescent is a commonly used model in genetics, which is often justified with reference to the Wright-Fisher (WF) model. Current proofs of convergence of WF and other models to the Kingman coalescent assume a constant sample size. However, sample sizes have become quite large in human genetics. Therefore, we develop a convergence theory that allows the sample size to increase with population size. If the haploid population size is N and the sample size is N 1∕3-ϵ , ϵ>0, we prove that Wright-Fisher genealogies involve at most a single binary merger in each generation with probability converging to 1 in the limit of large N. Single binary merger or no merger in each generation of the genealogy implies that the Kingman partition distribution is obtained exactly. If the sample size is N 1∕2-ϵ , Wright-Fisher genealogies may involve simultaneous binary mergers in a single generation but do not involve triple mergers in the large N limit. The asymptotic theory is verified using numerical calculations. Variable population sizes are handled algorithmically. It is found that even distant bottlenecks can increase the probability of triple mergers as well as simultaneous binary mergers in WF genealogies. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The mediating effect of parental neglect on adolescent and young adult anti-sociality: a longitudinal study of twins and their parents.

    PubMed

    Eaves, Lindon J; Prom, Elizabeth C; Silberg, Judy L

    2010-07-01

    The causes of correlation between parental treatment and offspring behavior are ambiguous since genetic and social factors are correlated in typical family studies. The problem is complicated by the need to characterize the effects of genes and environment on both juvenile and adult behavioral outcomes. A model is developed for the resemblance between juvenile and adult twins and their parents that allows some of these effects to be resolved. Data on childhood adversity, parental anti-social behavior, and longitudinal adult and juvenile anti-social behavior were obtained from 1,412 families of adolescent and young adult twins. A structural model is fitted that allows for the effects of genetic and social transmission of information from parents to children. Environmental effects of parents may be mediated through measured features of the home environment. Parameters were estimated by diagonal weighted least squares applied to the 33 distinct polychoric correlations between relatives and between variables within and between ages. Sub-hypotheses were tested. Results confirmed that effects of genes and environment were both highly significant. Genetic effects were large in juveniles and largely age and sex-specific. Approximately 30% of the variation due to the shared environment was due to the effect of childhood adversity. The remaining shared environmental effects are unexplained. Adversity is affected significantly by maternal anti-social behavior. The correlation between paternal ASP and adversity may be explained by antisocial fathers selecting (or creating) antisocial mothers. All significant environmental effects of parental ASP are mediated through the measure of adversity. Though transmission of ASP is both genetic and social, passive genotype-environment correlation is very small. Assortative mating for ASP has barely detectable consequence for the genetic correlation between siblings. The longitudinal study of twins and their parents makes it possible to demonstrate there is a direct causal effect of childhood adversity on child conduct disorder over and above any indirect genetic correlation.

  10. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: multi-factorial analysis of a large data set.

    PubMed

    Kurome, Mayuko; Geistlinger, Ludwig; Kessler, Barbara; Zakhartchenko, Valeri; Klymiuk, Nikolai; Wuensch, Annegret; Richter, Anne; Baehr, Andrea; Kraehe, Katrin; Burkhardt, Katinka; Flisikowski, Krzysztof; Flisikowska, Tatiana; Merkl, Claudia; Landmann, Martina; Durkovic, Marina; Tschukes, Alexander; Kraner, Simone; Schindelhauer, Dirk; Petri, Tobias; Kind, Alexander; Nagashima, Hiroshi; Schnieke, Angelika; Zimmer, Ralf; Wolf, Eckhard

    2013-05-20

    Somatic cell nuclear transfer (SCNT) using genetically engineered donor cells is currently the most widely used strategy to generate tailored pig models for biomedical research. Although this approach facilitates a similar spectrum of genetic modifications as in rodent models, the outcome in terms of live cloned piglets is quite variable. In this study, we aimed at a comprehensive analysis of environmental and experimental factors that are substantially influencing the efficiency of generating genetically engineered pigs. Based on a considerably large data set from 274 SCNT experiments (in total 18,649 reconstructed embryos transferred into 193 recipients), performed over a period of three years, we assessed the relative contribution of season, type of genetic modification, donor cell source, number of cloning rounds, and pre-selection of cloned embryos for early development to the cloning efficiency. 109 (56%) recipients became pregnant and 85 (78%) of them gave birth to offspring. Out of 318 cloned piglets, 243 (76%) were alive, but only 97 (40%) were clinically healthy and showed normal development. The proportion of stillborn piglets was 24% (75/318), and another 31% (100/318) of the cloned piglets died soon after birth. The overall cloning efficiency, defined as the number of offspring born per SCNT embryos transferred, including only recipients that delivered, was 3.95%. SCNT experiments performed during winter using fetal fibroblasts or kidney cells after additive gene transfer resulted in the highest number of live and healthy offspring, while two or more rounds of cloning and nuclear transfer experiments performed during summer decreased the number of healthy offspring. Although the effects of individual factors may be different between various laboratories, our results and analysis strategy will help to identify and optimize the factors, which are most critical to cloning success in programs aiming at the generation of genetically engineered pig models.

  11. Global Population Structure of a Worldwide Pest and Virus Vector: Genetic Diversity and Population History of the Bemisia tabaci Sibling Species Group

    PubMed Central

    2016-01-01

    The whitefly Bemisia tabaci sibling species (sibsp.) group comprises morphologically indiscernible lineages of well-known exemplars referred to as biotypes. It is distributed throughout tropical and subtropical latitudes and includes the contemporary invasive haplotypes, termed B and Q. Several well-studied B. tabaci biotypes exhibit ecological and biological diversity, however, most members are poorly studied or completely uncharacterized. Genetic studies have revealed substantial diversity within the group based on a fragment of the mitochondrial cytochrome oxidase I (mtCOI) sequence (haplotypes), with other tested markers being less useful for deep phylogenetic comparisons. The view of global relationships within the B. tabaci sibsp. group is largely derived from this single marker, making assessment of gene flow and genetic structure difficult at the population level. Here, the population structure was explored for B. tabaci in a global context using nuclear data from variable microsatellite markers. Worldwide collections were examined representing most of the available diversity, including known monophagous, polyphagous, invasive, and indigenous haplotypes. Well-characterized biotypes and other related geographic lineages discovered represented highly differentiated genetic clusters with little or no evidence of gene flow. The invasive B and Q biotypes exhibited moderate to high levels of genetic diversity, suggesting that they stemmed from large founding populations that have maintained ancestral variation, despite homogenizing effects, possibly due to human-mediated among-population gene flow. Results of the microsatellite analyses are in general agreement with published mtCOI phylogenies; however, notable conflicts exist between the nuclear and mitochondrial relationships, highlighting the need for a multifaceted approach to delineate the evolutionary history of the group. This study supports the hypothesis that the extant B. tabaci sibsp. group contains ancient genetic entities and highlights the vast cryptic diversity throughout the genome in the group. PMID:27855173

  12. A multivariate twin study of the DSM-IV criteria for antisocial personality disorder.

    PubMed

    Kendler, Kenneth S; Aggen, Steven H; Patrick, Christopher J

    2012-02-01

    Many assessment instruments for psychopathy are multidimensional, suggesting that distinguishable factors are needed to effectively capture variation in this personality domain. However, no prior study has examined the factor structure of the DSM-IV criteria for antisocial personality disorder (ASPD). Self-report questionnaire items reflecting all A criteria for DSM-IV ASPD were available from 4291 twins (including both members of 1647 pairs) from the Virginia Adult Study of Psychiatric and Substance Use Disorders. Exploratory factor analysis and twin model fitting were performed using, respectively, Mplus and Mx. Phenotypic factor analysis produced evidence for two correlated factors: aggressive-disregard and disinhibition. The best-fitting multivariate twin model included two genetic and one unique environmental common factor, along with criteria-specific genetic and environmental effects. The two genetic factors closely resembled the phenotypic factors and varied in their prediction of a range of relevant criterion variables. Scores on the genetic aggressive-disregard factor score were more strongly associated with risk for conduct disorder, early and heavy alcohol use, and low educational status, whereas scores on the genetic disinhibition factor score were more strongly associated with younger age, novelty seeking, and major depression. From a genetic perspective, the DSM-IV criteria for ASPD do not reflect a single dimension of liability but rather are influenced by two dimensions of genetic risk reflecting aggressive-disregard and disinhibition. The phenotypic structure of the ASPD criteria results largely from genetic and not from environmental influences. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Individual variability of human olfactory sensitivity to volatile steroids: Environmental and genetic factors.

    PubMed

    Voznessenskaya, V V; Klyuchnikova, M A

    2017-03-01

    The sensitivity to androstenone and possible factors, determining the sensitivity were investigated for the large sample of inhabitants of central Russia (n = 860). Specific anosmia was detected in 48.8% of subjects. Women were more sensitive to androstenone than men. The proportion of men, but not women perceiving the smell of androstenone as a strong one in the concentration used decreased with age. Smoking, blood group, or ethnicity had no significant effect on the expression of specific anosmia and the perception of androstenone odor intensity.

  14. Variability among Capsicum baccatum accessions from Goiás, Brazil, assessed by morphological traits and molecular markers.

    PubMed

    Martinez, A L A; Araújo, J S P; Ragassi, C F; Buso, G S C; Reifschneider, F J B

    2017-07-06

    Capsicum peppers are native to the Americas, with Brazil being a significant diversity center. Capsicum baccatum accessions at Instituto Federal (IF) Goiano represent a portion of the species genetic resources from central Brazil. We aimed to characterize a C. baccatum working collection comprising 27 accessions and 3 commercial cultivars using morphological traits and molecular markers to describe its genetic and morphological variability and verify the occurrence of duplicates. This set included 1 C. baccatum var. praetermissum and 29 C. baccatum var. pendulum with potential for use in breeding programs. Twenty-two morphological descriptors, 57 inter-simple sequence repeat, and 34 random amplified polymorphic DNA markers were used. Genetic distance was calculated through the Jaccard similarity index and genetic variability through cluster analysis using the unweighted pair group method with arithmetic mean, resulting in dendrograms for both morphological analysis and molecular analysis. Genetic variability was found among C. baccatum var. pendulum accessions, and the distinction between the two C. baccatum varieties was evident in both the morphological and molecular analyses. The 29 C. baccatum var. pendulum genotypes clustered in four groups according to fruit type in the morphological analysis. They formed seven groups in the molecular analysis, without a clear correspondence with morphology. No duplicates were found. The results describe the genetic and morphological variability, provide a detailed characterization of genotypes, and discard the possibility of duplicates within the IF Goiano C. baccatum L. collection. This study will foment the use of this germplasm collection in C. baccatum breeding programs.

  15. Potential cognitive endophenotypes in multigenerational families: segregating ADHD from a genetic isolate

    PubMed Central

    Pineda, David A.; Lopera, Francisco; Puerta, Isabel C.; Trujillo-Orrego, Natalia; Aguirre-Acevedo, Daniel C.; Hincapié-Henao, Liliana; Arango, Clara P.; Acosta, Maria T.; Holzinger, Sandra I.; Palacio, Juan David; Pineda-Alvarez, Daniel E.; Velez, Jorge I.; Martinez, Ariel F.; Lewis, John E.

    2014-01-01

    Endophenotypes are neurobiological markers cosegregating and associated with illness. These biomarkers represent a promising strategy to dissect ADHD biological causes. This study was aimed at contrasting the genetics of neuropsychological tasks for intelligence, attention, memory, visual-motor skills, and executive function in children from multigenerational and extended pedigrees that cluster ADHD in a genetic isolate. In a sample of 288 children and adolescents, 194 (67.4%) ADHD affected and 94 (32.6%) unaffected, a battery of neuropsychological tests was utilized to assess the association between genetic transmission and the ADHD phenotype. We found significant differences between affected and unaffected children in the WISC block design, PIQ and FSIQ, continuous vigilance, and visual-motor skills, and these variables exhibited a significant heritability. Given the association between these neuropsychological variables and ADHD, and also the high genetic component underlying their transmission in the studied pedigrees, we suggest that these variables be considered as potential cognitive endophenotypes suitable as quantitative trait loci (QTLs) in future studies of linkage and association. PMID:21779842

  16. Molecular and morphologic approaches to discrimination of variability patterns in chub mackerel, Scomber japonicus.

    PubMed

    Roldán; Perrotta; Cortey; Pla

    2000-10-05

    The systematic status and the evolutionary biology of chub mackerel (Scomber japonicus) in the South West Atlantic Ocean is confusing with an unknown degree of genetic differentiation and reproductive isolation between units. Simultaneous genetic and morphologic analyses were made on 227 fish collected from two areas of the South West Atlantic Ocean and one from the Mediterranean Sea. The genetic analysis was based on 36 protein-coding loci, 16 of which were variable. The morphologic analyses include six morphometric length measurements and a meristic character. Correspondence between genetic and morphologic variability patterns indicates isolated Mediterranean and Southwest Atlantic subgroups of S. japonicus and, less clearly, possible additional divergence in two regional stocks within the latter group. The most conservative approach to management is to manage the stocks independently of one another.

  17. Wild and aquaculture populations of the eastern oyster compared using microsatellites

    USGS Publications Warehouse

    Carlsson, J.; Morrison, C.L.; Reece, K.S.

    2006-01-01

    Five new microsatellite markers were developed for the eastern oyster (Crassostrea virginica), and allelic variability was compared between a wild Chesapeake Bay population (James River) and a hatchery strain (DEBY???). All loci amplified readily and demonstrated allelic variability with the number of alleles ranging from 16 to 36 in the wild population and from 11 to 19 in the DEBY??? strain. Average observed and expected heterozygosities were estimated at 0.66 and 0.80 in the hatchery sample. The corresponding estimates were 0.91 and 0.75 in the wild sample. Results indicated lower genetic variability in the DEBY??? strain and significant genetic differentiation between the wild population and hatchery strain. These microsatellite loci will prove valuable for future population genetic studies and in tracking of hatchery strains used in restoration. ?? The American Genetic Association. 2006. All rights reserved.

  18. Genetic variability in five populations of Partamona helleri (Hymenoptera, Apidae) from Minas Gerais State, Brazil

    PubMed Central

    2010-01-01

    Partamona is a Neotropical genus of stingless bees that comprises 33 species distributed from Mexico to southern Brazil. These bees are well-adapted to anthropic environments and build their nests in several substrates. In this study, 66 colonies of Partamona helleri from five localities in the Brazilian state of Minas Gerais (São Miguel do Anta, Teixeiras, Porto Firme, Viçosa and Rio Vermelho) were analyzed using nine microsatellite loci in order to assess their genetic variability. Low levels of observed (Ho = 0.099-0.137) and expected (H e = 0.128-0.145) heterozygosity were encountered and revealed discrete genetic differentiation among the populations (F ST = 0.025). AMOVA further showed that most of the total genetic variation (94.24%) in P. helleri was explained by the variability within local populations. PMID:21637591

  19. New insights into the origin and the genetic status of the Balkan donkey from Serbia.

    PubMed

    Stanisic, L J; Aleksic, J M; Dimitrijevic, V; Simeunovic, P; Glavinic, U; Stevanovic, J; Stanimirovic, Z

    2017-10-01

    The Balkan donkey (Equus asinus L.) is commonly regarded as a large-sized, unselected, unstructured and traditionally managed donkey breed. We assessed the current genetic status of the three largest E. asinus populations in the central Balkans (Serbia) by analysing the variability of nuclear microsatellites and the mitochondrial (mtDNA) control region of 77 and 49 individuals respectively. We further analysed our mtDNA dataset along with 209 published mtDNA sequences of ancient and modern individuals from 19 European and African populations to provide new insights into the origin and the history of the Balkan donkey. Serbian donkey populations are highly genetically diverse at both the nuclear and mtDNA levels despite severe population decline. Traditional Balkan donkeys in Serbia are rather heterogeneous; we found two groups of individuals with similar phenotypic features, somewhat distinct nuclear backgrounds and different proportions of mtDNA haplotypes belonging to matrilineal Clades 1 and 2. Another group, characterized by larger body size, different coat colour, distinct nuclear gene pool and predominantly Clade 2 haplotypes, was delineated as the Banat donkey breed. The maternal landscape of the large Balkan donkey population is highly heterogeneous and more complex than previously thought. Given the two independent domestication events in donkeys, multiple waves of introductions into the Balkans from Greece are hypothesized. Clade 2 donkeys probably appeared in Greece prior to those belonging to Clade 1, whereas expansion and diversification of Clade 1 donkeys within the Balkans predated that of Clade 2 donkeys. © 2017 Stichting International Foundation for Animal Genetics.

  20. Genetic diversity of Pinus nigra Arn. populations in Southern Spain and Northern Morocco revealed by inter-simple sequence repeat profiles.

    PubMed

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E; Tiscar, Pedro A; Viñegla, Benjamin; Linares, Juan C; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei's genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei's genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups-Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco-while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra.

  1. Genetic Diversity of Pinus nigra Arn. Populations in Southern Spain and Northern Morocco Revealed By Inter-Simple Sequence Repeat Profiles †

    PubMed Central

    Rubio-Moraga, Angela; Candel-Perez, David; Lucas-Borja, Manuel E.; Tiscar, Pedro A.; Viñegla, Benjamin; Linares, Juan C.; Gómez-Gómez, Lourdes; Ahrazem, Oussama

    2012-01-01

    Eight Pinus nigra Arn. populations from Southern Spain and Northern Morocco were examined using inter-simple sequence repeat markers to characterize the genetic variability amongst populations. Pair-wise population genetic distance ranged from 0.031 to 0.283, with a mean of 0.150 between populations. The highest inter-population average distance was between PaCU from Cuenca and YeCA from Cazorla, while the lowest distance was between TaMO from Morocco and MA Sierra Mágina populations. Analysis of molecular variance (AMOVA) and Nei’s genetic diversity analyses revealed higher genetic variation within the same population than among different populations. Genetic differentiation (Gst) was 0.233. Cuenca showed the highest Nei’s genetic diversity followed by the Moroccan region, Sierra Mágina, and Cazorla region. However, clustering of populations was not in accordance with their geographical locations. Principal component analysis showed the presence of two major groups—Group 1 contained all populations from Cuenca while Group 2 contained populations from Cazorla, Sierra Mágina and Morocco—while Bayesian analysis revealed the presence of three clusters. The low genetic diversity observed in PaCU and YeCA is probably a consequence of inappropriate management since no estimation of genetic variability was performed before the silvicultural treatments. Data indicates that the inter-simple sequence repeat (ISSR) method is sufficiently informative and powerful to assess genetic variability among populations of P. nigra. PMID:22754321

  2. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data

    PubMed Central

    Gogoshin, Grigoriy; Boerwinkle, Eric

    2017-01-01

    Abstract Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology—type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types—single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc. PMID:27681505

  3. Low genetic variability, female-biased dispersal and high movement rates in an urban population of Eurasian badgers Meles meles.

    PubMed

    Reeve, John D; Frantz, Alain C; Dawson, Deborah A; Burke, Terry; Roper, Timothy J

    2008-09-01

    1. Urban and rural populations of animals can differ in their behaviour, both in order to meet their ecological requirements and due to the constraints imposed by different environments. The study of urban populations can therefore offer useful insights into the behavioural flexibility of a species as a whole, as well as indicating how the species in question adapts to a specifically urban environment. 2. The genetic structure of a population can provide information about social structure and movement patterns that is difficult to obtain by other means. Using non-invasively collected hair samples, we estimated the population size of Eurasian badgers Meles meles in the city of Brighton, England, and calculated population-specific parameters of genetic variability and sex-specific rates of outbreeding and dispersal. 3. Population density was high in the context of badger densities reported throughout their range. This was due to a high density of social groups rather than large numbers of individuals per group. 4. The allelic richness of the population was low compared with other British populations. However, the rate of extra-group paternity and the relatively frequent (mainly temporary) intergroup movements suggest that, on a local scale, the population was outbred. Although members of both sexes visited other groups, there was a trend for more females to make intergroup movements. 5. The results reveal that urban badgers can achieve high densities and suggest that while some population parameters are similar between urban and rural populations, the frequency of intergroup movements is higher among urban badgers. In a wider context, these results demonstrate the ability of non-invasive genetic sampling to provide information about the population density, social structure and behaviour of urban wildlife.

  4. New Algorithm and Software (BNOmics) for Inferring and Visualizing Bayesian Networks from Heterogeneous Big Biological and Genetic Data.

    PubMed

    Gogoshin, Grigoriy; Boerwinkle, Eric; Rodin, Andrei S

    2017-04-01

    Bayesian network (BN) reconstruction is a prototypical systems biology data analysis approach that has been successfully used to reverse engineer and model networks reflecting different layers of biological organization (ranging from genetic to epigenetic to cellular pathway to metabolomic). It is especially relevant in the context of modern (ongoing and prospective) studies that generate heterogeneous high-throughput omics datasets. However, there are both theoretical and practical obstacles to the seamless application of BN modeling to such big data, including computational inefficiency of optimal BN structure search algorithms, ambiguity in data discretization, mixing data types, imputation and validation, and, in general, limited scalability in both reconstruction and visualization of BNs. To overcome these and other obstacles, we present BNOmics, an improved algorithm and software toolkit for inferring and analyzing BNs from omics datasets. BNOmics aims at comprehensive systems biology-type data exploration, including both generating new biological hypothesis and testing and validating the existing ones. Novel aspects of the algorithm center around increasing scalability and applicability to varying data types (with different explicit and implicit distributional assumptions) within the same analysis framework. An output and visualization interface to widely available graph-rendering software is also included. Three diverse applications are detailed. BNOmics was originally developed in the context of genetic epidemiology data and is being continuously optimized to keep pace with the ever-increasing inflow of available large-scale omics datasets. As such, the software scalability and usability on the less than exotic computer hardware are a priority, as well as the applicability of the algorithm and software to the heterogeneous datasets containing many data types-single-nucleotide polymorphisms and other genetic/epigenetic/transcriptome variables, metabolite levels, epidemiological variables, endpoints, and phenotypes, etc.

  5. Efficient mitochondrial biogenesis drives incomplete penetrance in Leber’s hereditary optic neuropathy

    PubMed Central

    Iommarini, Luisa; Giordano, Luca; Maresca, Alessandra; Pisano, Annalinda; Valentino, Maria Lucia; Caporali, Leonardo; Liguori, Rocco; Deceglie, Stefania; Roberti, Marina; Fanelli, Francesca; Fracasso, Flavio; Ross-Cisneros, Fred N.; D’Adamo, Pio; Hudson, Gavin; Pyle, Angela; Yu-Wai-Man, Patrick; Chinnery, Patrick F.; Zeviani, Massimo; Salomao, Solange R.; Berezovsky, Adriana; Belfort, Rubens; Ventura, Dora Fix; Moraes, Milton; Moraes Filho, Milton; Barboni, Piero; Sadun, Federico; De Negri, Annamaria; Sadun, Alfredo A.; Tancredi, Andrea; Mancini, Massimiliano; d’Amati, Giulia; Loguercio Polosa, Paola; Cantatore, Palmiro

    2014-01-01

    Leber’s hereditary optic neuropathy is a maternally inherited blinding disease caused as a result of homoplasmic point mutations in complex I subunit genes of mitochondrial DNA. It is characterized by incomplete penetrance, as only some mutation carriers become affected. Thus, the mitochondrial DNA mutation is necessary but not sufficient to cause optic neuropathy. Environmental triggers and genetic modifying factors have been considered to explain its variable penetrance. We measured the mitochondrial DNA copy number and mitochondrial mass indicators in blood cells from affected and carrier individuals, screening three large pedigrees and 39 independently collected smaller families with Leber’s hereditary optic neuropathy, as well as muscle biopsies and cells isolated by laser capturing from post-mortem specimens of retina and optic nerves, the latter being the disease targets. We show that unaffected mutation carriers have a significantly higher mitochondrial DNA copy number and mitochondrial mass compared with their affected relatives and control individuals. Comparative studies of fibroblasts from affected, carriers and controls, under different paradigms of metabolic demand, show that carriers display the highest capacity for activating mitochondrial biogenesis. Therefore we postulate that the increased mitochondrial biogenesis in carriers may overcome some of the pathogenic effect of mitochondrial DNA mutations. Screening of a few selected genetic variants in candidate genes involved in mitochondrial biogenesis failed to reveal any significant association. Our study provides a valuable mechanism to explain variability of penetrance in Leber’s hereditary optic neuropathy and clues for high throughput genetic screening to identify the nuclear modifying gene(s), opening an avenue to develop predictive genetic tests on disease risk and therapeutic strategies. PMID:24369379

  6. Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies.

    PubMed

    Nimptsch, Katharina; Song, Mingyang; Aleksandrova, Krasimira; Katsoulis, Michail; Freisling, Heinz; Jenab, Mazda; Gunter, Marc J; Tsilidis, Konstantinos K; Weiderpass, Elisabete; Bueno-De-Mesquita, H Bas; Chong, Dawn Q; Jensen, Majken K; Wu, Chunsen; Overvad, Kim; Kühn, Tilman; Barrdahl, Myrto; Melander, Olle; Jirström, Karin; Peeters, Petra H; Sieri, Sabina; Panico, Salvatore; Cross, Amanda J; Riboli, Elio; Van Guelpen, Bethany; Myte, Robin; Huerta, José María; Rodriguez-Barranco, Miguel; Quirós, José Ramón; Dorronsoro, Miren; Tjønneland, Anne; Olsen, Anja; Travis, Ruth; Boutron-Ruault, Marie-Christine; Carbonnel, Franck; Severi, Gianluca; Bonet, Catalina; Palli, Domenico; Janke, Jürgen; Lee, Young-Ae; Boeing, Heiner; Giovannucci, Edward L; Ogino, Shuji; Fuchs, Charles S; Rimm, Eric; Wu, Kana; Chan, Andrew T; Pischon, Tobias

    2017-05-01

    Higher levels of circulating adiponectin have been related to lower risk of colorectal cancer in several prospective cohort studies, but it remains unclear whether this association may be causal. We aimed to improve causal inference in a Mendelian Randomization meta-analysis using nested case-control studies of the European Prospective Investigation into Cancer and Nutrition (EPIC, 623 cases, 623 matched controls), the Health Professionals Follow-up Study (HPFS, 231 cases, 230 controls) and the Nurses' Health Study (NHS, 399 cases, 774 controls) with available data on pre-diagnostic adiponectin concentrations and selected single nucleotide polymorphisms in the ADIPOQ gene. We created an ADIPOQ allele score that explained approximately 3% of the interindividual variation in adiponectin concentrations. The ADIPOQ allele score was not associated with risk of colorectal cancer in logistic regression analyses (pooled OR per score-unit unit 0.97, 95% CI 0.91, 1.04). Genetically determined twofold higher adiponectin was not significantly associated with risk of colorectal cancer using the ADIPOQ allele score as instrumental variable (pooled OR 0.73, 95% CI 0.40, 1.34). In a summary instrumental variable analysis (based on previously published data) with higher statistical power, no association between genetically determined twofold higher adiponectin and risk of colorectal cancer was observed (0.99, 95% CI 0.93, 1.06 in women and 0.94, 95% CI 0.88, 1.01 in men). Thus, our study does not support a causal effect of circulating adiponectin on colorectal cancer risk. Due to the limited genetic determination of adiponectin, larger Mendelian Randomization studies are necessary to clarify whether adiponectin is causally related to lower risk of colorectal cancer.

  7. A New Targeted CFTR Mutation Panel Based on Next-Generation Sequencing Technology.

    PubMed

    Lucarelli, Marco; Porcaro, Luigi; Biffignandi, Alice; Costantino, Lucy; Giannone, Valentina; Alberti, Luisella; Bruno, Sabina Maria; Corbetta, Carlo; Torresani, Erminio; Colombo, Carla; Seia, Manuela

    2017-09-01

    Searching for mutations in the cystic fibrosis transmembrane conductance regulator gene (CFTR) is a key step in the diagnosis of and neonatal and carrier screening for cystic fibrosis (CF), and it has implications for prognosis and personalized therapy. The large number of mutations and genetic and phenotypic variability make this search a complex task. Herein, we developed, validated, and tested a laboratory assay for an extended search for mutations in CFTR using a next-generation sequencing-based method, with a panel of 188 CFTR mutations customized for the Italian population. Overall, 1426 dried blood spots from neonatal screening, 402 genomic DNA samples from various origins, and 1138 genomic DNA samples from patients with CF were analyzed. The assay showed excellent analytical and diagnostic operative characteristics. We identified and experimentally validated 159 (of 188) CFTR mutations. The assay achieved detection rates of 95.0% and 95.6% in two large-scale case series of CF patients from central and northern Italy, respectively. These detection rates are among the highest reported so far with a genetic test for CF based on a mutation panel. This assay appears to be well suited for diagnostics, neonatal and carrier screening, and assisted reproduction, and it represents a considerable advantage in CF genetic counseling. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. Genome-wide interactions with dairy intake for body mass index in adults of European descent

    USDA-ARS?s Scientific Manuscript database

    Scope: Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. Methods and results: We conducted a genome-wide interaction study to discover genetic variants that account f...

  9. Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow. PMID:25853707

  10. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  11. Update on the therapy of Behçet disease

    PubMed Central

    Saleh, Zeinab

    2014-01-01

    Behçet disease is a chronic inflammatory systemic disorder, characterized by a relapsing and remitting course. It manifests with oral and genital ulcerations, skin lesions, uveitis, and vascular, central nervous system and gastrointestinal involvement. The main histopathological finding is a widespread vasculitis of the arteries and veins of any size. The cause of this disease is presumed to be multifactorial involving infectious triggers, genetic predisposition, and dysregulation of the immune system. As the clinical expression of Behçet disease is heterogeneous, pharmacological therapy is variable and depends largely on the severity of the disease and organ involvement. Treatment of Behçet disease continues to be based largely on anecdotal case reports, case series, and a few randomized clinical trials. PMID:24790727

  12. Estimation of genetic effects in the presence of multicollinearity in multibreed beef cattle evaluation.

    PubMed

    Roso, V M; Schenkel, F S; Miller, S P; Schaeffer, L R

    2005-08-01

    Breed additive, dominance, and epistatic loss effects are of concern in the genetic evaluation of a multibreed population. Multiple regression equations used for fitting these effects may show a high degree of multicollinearity among predictor variables. Typically, when strong linear relationships exist, the regression coefficients have large SE and are sensitive to changes in the data file and to the addition or deletion of variables in the model. Generalized ridge regression methods were applied to obtain stable estimates of direct and maternal breed additive, dominance, and epistatic loss effects in the presence of multicollinearity among predictor variables. Preweaning weight gains of beef calves in Ontario, Canada, from 1986 to 1999 were analyzed. The genetic model included fixed direct and maternal breed additive, dominance, and epistatic loss effects, fixed environmental effects of age of the calf, contemporary group, and age of the dam x sex of the calf, random additive direct and maternal genetic effects, and random maternal permanent environment effect. The degree and the nature of the multicollinearity were identified and ridge regression methods were used as an alternative to ordinary least squares (LS). Ridge parameters were obtained using two different objective methods: 1) generalized ridge estimator of Hoerl and Kennard (R1); and 2) bootstrap in combination with cross-validation (R2). Both ridge regression methods outperformed the LS estimator with respect to mean squared error of predictions (MSEP) and variance inflation factors (VIF) computed over 100 bootstrap samples. The MSEP of R1 and R2 were similar, and they were 3% less than the MSEP of LS. The average VIF of LS, R1, and R2 were equal to 26.81, 6.10, and 4.18, respectively. Ridge regression methods were particularly effective in decreasing the multicollinearity involving predictor variables of breed additive effects. Because of a high degree of confounding between estimates of maternal dominance and direct epistatic loss effects, it was not possible to compare the relative importance of these effects with a high level of confidence. The inclusion of epistatic loss effects in the additive-dominance model did not cause noticeable reranking of sires, dams, and calves based on across-breed EBV. More precise estimates of breed effects as a result of this study may result in more stable across-breed estimated breeding values over the years.

  13. Variability in triactinomyxon production from Tubifex tubifex populations from the same mitochondrial DNA lineage infected with Myxobolus cerebralis, the causative agent of whirling disease in salmonids

    USGS Publications Warehouse

    Rasmussen, C.; Zickovich, J.; Winton, J.R.; Kerans, B.L.

    2008-01-01

    Myxobolus cerebralis, the causative agent of whirling disease, infects both salmonid fish and an aquatic oligochaete, Tubifex tubifex. Although M. cerebralis has been detected in river drainages throughout the United States, disease severity among wild fish populations has been highly variable. Tubifex tubifex populations have been genetically characterized using sequences from the 16S mitochondrial DNA (mtDNA) gene, the 18S ribosomal RNA gene, the internal transcribed spacer region 1 (ITS1), and randomly amplified polymorphic DNA (RAPD). Our earlier work indicated that large differences in compatibility between the parasite and populations of T. tubifex may play a substantial role in the distribution of whirling disease and resulting mortality in different watersheds. In the present study, we examined 4 laboratory populations of T. tubifex belonging to 16S mtDNA lineage III and 1 population belonging to 16S mtDNA lineage I for triactinomyxon (TAM) production after infection with M. cerebralis myxospores. All 4 16S mtDNA lineage III populations produced TAMs, but statistically significant differences in TAM production were observed. Most individuals in the 16S mtDNA lineage III-infected populations produced TAMs. The 16S mtDNA lineage I population produced few TAMs. Further genetic characterization of the 16S mtDNA lineage III populations with RAPD markers indicated that populations producing similar levels of TAMs had more genetic similarity. ?? American Society of Parasitologists 2008.

  14. Genetic variability and effective population size when local extinction and recolonization of subpopulations are frequent

    PubMed Central

    Maruyama, Takeo; Kimura, Motoo

    1980-01-01

    If a population (species) consists of n haploid lines (subpopulations) which reproduce asexually and each of which is subject to random extinction and subsequent replacement, it is shown that, at equilibrium in which mutational production of new alleles and their random extinction balance each other, the genetic diversity (1 minus the sum of squares of allelic frequencies) is given by 2Nev/(1 + 2Nev), where [Formula: see text] in which Ñ is the harmonic mean of the population size per line, n is the number of lines (assumed to be large), λ is the rate of line extinction, and v is the mutation rate (assuming the infinite neutral allele model). In a diploid population (species) consisting of n colonies, if migration takes place between colonies at the rate m (the island model) in addition to extinction and recolonization of colonies, it is shown that effective population size is [Formula: see text] If the rate of colony extinction (λ) is much larger than the migration rate of individuals, the effective population size is greatly reduced compared with the case in which no colony extinctions occur (in which case Ne = nÑ). The stepping-stone type of recolonization scheme is also considered. Bearing of these results on the interpretation of the level of genetic variability at the enzyme level observed in natural populations is discussed from the standpoint of the neutral mutation-random drift hypothesis. PMID:16592920

  15. Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile.

    PubMed

    Fuentes-Contreras, Eduardo; Espinoza, Juan L; Lavandero, Blas; Ramírez, Claudio C

    2008-02-01

    Codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), is the main pest of pome fruits worldwide. Despite its economic importance, little is known about the genetic structure and patterns of dispersal at the local and regional scale, which are important aspects for establishing a control strategy for this pest. An analysis of genetic variability using microsatellites was performed for 11 codling moth populations in the two major apple (Malus domestica Borkh) cropping regions in central Chile. Despite the geographical distances between some populations (approximately 185 km), there was low genetic differentiation among populations (F(ST) = 0.002176), with only slight isolation by distance. Only approximately 0.2% of the genetic variability was found among the populations. Geographically structured genetic variation was independent of apple orchard management (production or abandoned). These results suggest a high genetic exchange of codling moth between orchards, possibly mediated by human activities related to fruit production.

  16. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins.

    PubMed

    Hur, Y-M; Kaprio, J; Iacono, W G; Boomsma, D I; McGue, M; Silventoinen, K; Martin, N G; Luciano, M; Visscher, P M; Rose, R J; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, C C H; Lajunen, H R; Cornes, B K; Bartels, M; van Beijsterveldt, C E M; Cherny, S S; Mitchell, K

    2008-10-01

    Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13-15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups.

  17. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins

    PubMed Central

    Hur, Y-M; Kaprio, J; Iacono, WG; Boomsma, DI; McGue, M; Silventoinen, K; Martin, NG; Luciano, M; Visscher, PM; Rose, RJ; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, CCH; Lajunen, HR; Cornes, BK; Bartels, M; van Beijsterveldt, CEM; Cherny, SS; Mitchell, K

    2008-01-01

    Objective Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Design Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13–15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. Results The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Conclusion Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups. PMID:18779828

  18. Domestication to Crop Improvement: Genetic Resources for Sorghum and Saccharum (Andropogoneae)

    PubMed Central

    Dillon, Sally L.; Shapter, Frances M.; Henry, Robert J.; Cordeiro, Giovanni; Izquierdo, Liz; Lee, L. Slade

    2007-01-01

    Background Both sorghum (Sorghum bicolor) and sugarcane (Saccharum officinarum) are members of the Andropogoneae tribe in the Poaceae and are each other's closest relatives amongst cultivated plants. Both are relatively recent domesticates and comparatively little of the genetic potential of these taxa and their wild relatives has been captured by breeding programmes to date. This review assesses the genetic gains made by plant breeders since domestication and the progress in the characterization of genetic resources and their utilization in crop improvement for these two related species. Genetic Resources The genome of sorghum has recently been sequenced providing a great boost to our knowledge of the evolution of grass genomes and the wealth of diversity within S. bicolor taxa. Molecular analysis of the Sorghum genus has identified close relatives of S. bicolor with novel traits, endosperm structure and composition that may be used to expand the cultivated gene pool. Mutant populations (including TILLING populations) provide a useful addition to genetic resources for this species. Sugarcane is a complex polyploid with a large and variable number of copies of each gene. The wild relatives of sugarcane represent a reservoir of genetic diversity for use in sugarcane improvement. Techniques for quantitative molecular analysis of gene or allele copy number in this genetically complex crop have been developed. SNP discovery and mapping in sugarcane has been advanced by the development of high-throughput techniques for ecoTILLING in sugarcane. Genetic linkage maps of the sugarcane genome are being improved for use in breeding selection. The improvement of both sorghum and sugarcane will be accelerated by the incorporation of more diverse germplasm into the domesticated gene pools using molecular tools and the improved knowledge of these genomes. PMID:17766842

  19. Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L.

    PubMed

    Sujatha, M; Reddy, T P; Mahasi, M J

    2008-01-01

    Castor and Jatropha belong to the Euphorbiaceae family. This review highlights the role of biotechnological tools in the genetic improvement of castor and jatropha. Castor is monotypic and breeding programmes have mostly relied on the variability available in the primary gene pool. The major constraints limiting profitable cultivation are: vulnerability to insect pests and diseases, and the press cake is toxic which restrict its use as cattle feed. Conventional breeding techniques have limited scope in improvement of resistance to biotic stresses and in quality improvement owing to low genetic variability for these traits. Genetic diversity was assessed using protein based markers while use of molecular markers is at infancy. In vitro studies in castor have been successful in shoot proliferation from meristematic explants, but not callus-mediated regeneration. Genetic transformation experiments have been initiated for development of insect resistant and ricin-free transgenics with very low transformation frequency. In tropical and subtropical countries jatropha is viewed as a potential biofuel crop. The limitations in available germplasm include; lack of knowledge of the genetic base, poor yields, low genetic diversity and vulnerability to a wide array of insects and diseases. Great scope exists for genetic improvement through conventional methods, induced mutations, interspecific hybridization and genetic transformation. Reliable and highly efficient tissue culture protocols for direct and callus-mediated shoot regeneration and somatic embryogenesis are established for jatropha which indicates potential for widening the genetic base through biotechnological tools. Assessment of genetic diversity using molecular markers disclosed low interaccessional variability in local Jatropha curcas germplasm. The current status and future prospects of in vitro regeneration, genetic transformation and the role of molecular tools in the genetic enhancement of the two-oilseed crops are discussed.

  20. The Genetic Diversity of the Americas.

    PubMed

    Adhikari, Kaustubh; Chacón-Duque, Juan Camilo; Mendoza-Revilla, Javier; Fuentes-Guajardo, Macarena; Ruiz-Linares, Andrés

    2017-08-31

    The history of the Americas involved the encounter of millions of Native Americans, Europeans, and Africans. A variable admixture of these three continental groups has taken place throughout the continent, influenced by demography and a range of social factors. This variable admixture has had a major influence on the genetic makeup of populations across the continent. Here, we summarize the demographic history of the region, highlight some social factors that affected historical admixture, and review major patterns of ancestry across the Western Hemisphere based on genetic data.

  1. Genetic variation, climate models and the ecological genetics of Larix occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehfeldt, G.E.

    1995-12-31

    Provenance tests of 138 populations of Larix occidentalis revealed genetic differentiation for eight variables describing growth, phenology, tolerance to spring frosts, effects of Meria laricis needle cast, and survival. Geographic variables accounted for as much as 34% of the variance among Rocky Mountain populations. Patterns of genetic variation were dominated by the effects of latitude and elevation, with populations from the north and from high elevations having the lowest growth potential, the least tolerance to the needle cast, and the lowest survival. However, the slope of the geographic clines was relatively flat. Populations in the same geographic area, for instance,more » need to be separated by about 500 m in elevation before genetic differentiation can be expected.« less

  2. [Characterization of patients with skeletal genetic diseases in a Colombian referral center].

    PubMed

    Velasco, Harvy Mauricio; Buelvas, Lina Patricia

    2017-06-01

    Short height in Colombia has an estimated prevalence of 10%. The 2009 Nosology and Classification of Skeletal Genetic Diseases described 456 clinical conditions using biochemical, molecular and radiological criteria for diagnosis. To analyze demographic, epidemiological and clinical variables in a group of patients with skeletal genetic diseases referred to the Instituto de Ortopedia Infantil Roosevelt. Patients referred between 2008 and 2014 were analyzed filtering 167 diagnoses of the International Classification of Diseases, 10th revision (ICD 10), related to skeletal genetic diseases. Demographic, epidemiological and clinical variables were explored using descriptive statistics. An intervention score was generated contemplating different combinations of treatments. An inferential statistical analysis using Student's t test was performed on such variables. The most frequent reason for consultation was suspicion of a genetic skeletal disorder. The types of treatments considered included support, surgical, pharmacological and orthotics, and it was established that genetic skeletal disorders were associated with higher intervention scores while tall and short height showed a lower score. Most referred patients were classified with genetic bone diseases, short stature and other monogenic genetic diseases. Significant differences were found between the age at symptoms onset and the age of diagnosis. Diversity was found in the therapeutic approach among different groups of pathologies. Patients with tall and short height showed lower intervention scores, which may warn on the need to reassess the therapeutic requirements of these groups.

  3. Gene variants associated with antisocial behaviour: A latent variable approach

    PubMed Central

    Bentley, Mary Jane; Lin, Haiqun; Fernandez, Thomas V.; Lee, Maria; Yrigollen, Carolyn M.; Pakstis, Andrew J.; Katsovich, Liliya; Olds, David L.; Grigorenko, Elena L.; Leckman, James F.

    2013-01-01

    Objective The aim of this study was to determine if a latent variable approach might be useful in identifying shared variance across genetic risk alleles that is associated with antisocial behaviour at age 15 years. Methods Using a conventional latent variable approach, we derived an antisocial phenotype in 328 adolescents utilizing data from a 15-year follow-up of a randomized trial of a prenatal and infancy nurse-home visitation program in Elmira, New York. We then investigated, via a novel latent variable approach, 450 informative genetic polymorphisms in 71 genes previously associated with antisocial behaviour, drug use, affiliative behaviours, and stress response in 241 consenting individuals for whom DNA was available. Haplotype and Pathway analyses were also performed. Results Eight single-nucleotide polymorphisms (SNPs) from 8 genes contributed to the latent genetic variable that in turn accounted for 16.0% of the variance within the latent antisocial phenotype. The number of risk alleles was linearly related to the latent antisocial variable scores. Haplotypes that included the putative risk alleles for all 8 genes were also associated with higher latent antisocial variable scores. In addition, 33 SNPs from 63 of the remaining genes were also significant when added to the final model. Many of these genes interact on a molecular level, forming molecular networks. The results support a role for genes related to dopamine, norepinephrine, serotonin, glutamate, opioid, and cholinergic signaling as well as stress response pathways in mediating susceptibility to antisocial behaviour. Conclusions This preliminary study supports use of relevant behavioural indicators and latent variable approaches to study the potential “co-action” of gene variants associated with antisocial behaviour. It also underscores the cumulative relevance of common genetic variants for understanding the etiology of complex behaviour. If replicated in future studies, this approach may allow the identification of a ‘shared’ variance across genetic risk alleles associated with complex neuropsychiatric dimensional phenotypes using relatively small numbers of well-characterized research participants. PMID:23822756

  4. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes.

    PubMed

    Barluenga, Marta; Meyer, Axel

    2010-10-26

    Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phylogeographic analysis of the complete Midas Cichlid species complex in Nicaragua (> 2000 individuals) covering the entire distributional range, using two types of molecular markers (the mitochondrial DNA control region and 15 microsatellites). We investigated the majority of known lake populations of this species complex and reconstructed their colonization history in order to distinguish between alternative speciation scenarios. We found that the large lakes contain older and more diverse Midas Cichlid populations, while all crater lakes hold younger and genetically less variable species assemblages. The large lakes appear to have repeatedly acted as source populations for all crater lakes, and our data indicate that faunal exchange among crater lakes is extremely unlikely. Despite their very recent (often only a few thousand years old) and common origin from the two large Nicaraguan lakes, all crater lake Midas Cichlid radiations underwent independent, but parallel, evolution, and comprise distinct genetic units. Indeed several of these crater lakes contain multiple genetically distinct incipient species that most likely arose through sympatric speciation. Several crater lake radiations can be traced back to a single ancestral line, but some appear to have more than one founding lineage. The timing of the colonization(s) of each crater lake differs, although most of them occurred more (probably much more) recently than 20,000 years ago. The genetic differentiation of the crater lake populations is directly related to the number of founding lineages, but independent of the timing of colonization. Interestingly, levels of phenotypic differentiation, and speciation events, appeared independent of both factors.

  5. Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning

    PubMed Central

    Mets, David G; Brainard, Michael S

    2018-01-01

    Abstract Background Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. Findings To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. Conclusions We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior. PMID:29618046

  6. Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning.

    PubMed

    Colquitt, Bradley M; Mets, David G; Brainard, Michael S

    2018-03-01

    Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior.

  7. Exome sequence analysis suggests genetic burden contributes to phenotypic variability and complex neuropathy

    PubMed Central

    Gonzaga-Jauregui, Claudia; Harel, Tamar; Gambin, Tomasz; Kousi, Maria; Griffin, Laurie B.; Francescatto, Ludmila; Ozes, Burcak; Karaca, Ender; Jhangiani, Shalini; Bainbridge, Matthew N.; Lawson, Kim S.; Pehlivan, Davut; Okamoto, Yuji; Withers, Marjorie; Mancias, Pedro; Slavotinek, Anne; Reitnauer, Pamela J; Goksungur, Meryem T.; Shy, Michael; Crawford, Thomas O.; Koenig, Michel; Willer, Jason; Flores, Brittany N.; Pediaditrakis, Igor; Us, Onder; Wiszniewski, Wojciech; Parman, Yesim; Antonellis, Anthony; Muzny, Donna M.; Katsanis, Nicholas; Battaloglu, Esra; Boerwinkle, Eric; Gibbs, Richard A.; Lupski, James R.

    2015-01-01

    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous distal symmetric polyneuropathy. Whole-exome sequencing (WES) of 40 individuals from 37 unrelated families with CMT-like peripheral neuropathy refractory to molecular diagnosis identified apparent causal mutations in ~45% (17/37) of families. Three candidate disease genes are proposed, supported by a combination of genetic and in vivo studies. Aggregate analysis of mutation data revealed a significantly increased number of rare variants across 58 neuropathy associated genes in subjects versus controls; confirmed in a second ethnically discrete neuropathy cohort, suggesting mutation burden potentially contributes to phenotypic variability. Neuropathy genes shown to have highly penetrant Mendelizing variants (HMPVs) and implicated by burden in families were shown to interact genetically in a zebrafish assay exacerbating the phenotype established by the suppression of single genes. Our findings suggest that the combinatorial effect of rare variants contributes to disease burden and variable expressivity. PMID:26257172

  8. Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm

    PubMed Central

    da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G

    2015-01-01

    Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150

  9. Genetic variation and early performance of Giant Sequoia in plantations

    Treesearch

    W. J. Libby

    1986-01-01

    Giant sequoia (Sequoiadendron giganteum [Lindl.] Buchholz) is genetically less variable than expected; furthermore, it is less variable and its populations are less structured than are several associated or related conifers. Giant sequoia seedlings from open-pollinated seeds of isolated trees or from small outlier groves do not survive and grow as...

  10. Genetic variability of spined soldier bugs (Hemiptera: Pentatomidae) sampled from distinct field sites and laboratory colonies in the United States

    USDA-ARS?s Scientific Manuscript database

    The spined soldier bug, Podisus maculiventris (Say), is an important biological control agent for agricultural and forest pests that preys on eggs and larvae of lepidopteran and coleopteran species. Genetic variability among field collected samples from Michigan, Mississippi, Missouri, and Florida, ...

  11. Genome-wide interactions with dairy intake for body mass index in adults of European descent

    USDA-ARS?s Scientific Manuscript database

    Body weight responds variably to the intake of dairy foods. Genetic variation may contribute to inter-individual variability in associations between body weight and dairy consumption. We conducted a genome-wide interaction study to discover genetic variants that account for variation in BMI in the c...

  12. Individual Differences in Pain: Understanding the Mosaic that Makes Pain Personal

    PubMed Central

    Fillingim, Roger B.

    2016-01-01

    The experience of pain is characterized by tremendous inter-individual variability. Multiple biological and psychosocial variables contribute to these individual differences in pain, including demographic variables, genetic factors, and psychosocial processes. For example, sex, age and ethnic group differences in the prevalence of chronic pain conditions have been widely reported. Moreover, these demographic factors have been associated with responses to experimentally-induced pain. Similarly, both genetic and psychosocial factors contribute to clinical and experimental pain responses. Importantly, these different biopsychosocial influences interact with each other in complex ways to sculpt the experience of pain. Some genetic associations with pain have been found to vary across sex and ethnic group. Moreover, genetic factors also interact with psychosocial factors, including stress and pain catastrophizing, to influence pain. The individual and combined influences of these biological and psychosocial variables results in a unique mosaic of factors that contributes pain in each individual. Understanding these mosaics is critically important in order to provide optimal pain treatment, and future research to further elucidate the nature of these biopsychosocial interactions is needed in order to provide more informed and personalized pain care. PMID:27902569

  13. A multiple-alignment based primer design algorithm for genetically highly variable DNA targets

    PubMed Central

    2013-01-01

    Background Primer design for highly variable DNA sequences is difficult, and experimental success requires attention to many interacting constraints. The advent of next-generation sequencing methods allows the investigation of rare variants otherwise hidden deep in large populations, but requires attention to population diversity and primer localization in relatively conserved regions, in addition to recognized constraints typically considered in primer design. Results Design constraints include degenerate sites to maximize population coverage, matching of melting temperatures, optimizing de novo sequence length, finding optimal bio-barcodes to allow efficient downstream analyses, and minimizing risk of dimerization. To facilitate primer design addressing these and other constraints, we created a novel computer program (PrimerDesign) that automates this complex procedure. We show its powers and limitations and give examples of successful designs for the analysis of HIV-1 populations. Conclusions PrimerDesign is useful for researchers who want to design DNA primers and probes for analyzing highly variable DNA populations. It can be used to design primers for PCR, RT-PCR, Sanger sequencing, next-generation sequencing, and other experimental protocols targeting highly variable DNA samples. PMID:23965160

  14. Multiscale landscape genomic models to detect signatures of selection in the alpine plant Biscutella laevigata.

    PubMed

    Leempoel, Kevin; Parisod, Christian; Geiser, Céline; Joost, Stéphane

    2018-02-01

    Plant species are known to adapt locally to their environment, particularly in mountainous areas where conditions can vary drastically over short distances. The climate of such landscapes being largely influenced by topography, using fine-scale models to evaluate environmental heterogeneity may help detecting adaptation to micro-habitats. Here, we applied a multiscale landscape genomic approach to detect evidence of local adaptation in the alpine plant Biscutella laevigata . The two gene pools identified, experiencing limited gene flow along a 1-km ridge, were different in regard to several habitat features derived from a very high resolution (VHR) digital elevation model (DEM). A correlative approach detected signatures of selection along environmental gradients such as altitude, wind exposure, and solar radiation, indicating adaptive pressures likely driven by fine-scale topography. Using a large panel of DEM-derived variables as ecologically relevant proxies, our results highlighted the critical role of spatial resolution. These high-resolution multiscale variables indeed indicate that the robustness of associations between genetic loci and environmental features depends on spatial parameters that are poorly documented. We argue that the scale issue is critical in landscape genomics and that multiscale ecological variables are key to improve our understanding of local adaptation in highly heterogeneous landscapes.

  15. Genetic markers as instrumental variables.

    PubMed

    von Hinke, Stephanie; Davey Smith, George; Lawlor, Debbie A; Propper, Carol; Windmeijer, Frank

    2016-01-01

    The use of genetic markers as instrumental variables (IV) is receiving increasing attention from economists, statisticians, epidemiologists and social scientists. Although IV is commonly used in economics, the appropriate conditions for the use of genetic variants as instruments have not been well defined. The increasing availability of biomedical data, however, makes understanding of these conditions crucial to the successful use of genotypes as instruments. We combine the econometric IV literature with that from genetic epidemiology, and discuss the biological conditions and IV assumptions within the statistical potential outcomes framework. We review this in the context of two illustrative applications. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Nuclear and mitochondrial rDNA variability in Crinipellis perniciosa from different geographic origins and hosts.

    PubMed

    de Arruda, Maricília C C; Ferreira, Marisa A S V; Miller, Robert N G; Resende, Mário Lúcio V; Felipe, Maria Sueli S

    2003-01-01

    Genetic variability in Crinipellis perniciosa, the causal organism of witches' broom disease in Theobroma cacao, was determined in strains originating from T. cacao and other susceptible host species Heteropterys acutifolia and Solanum lycocarpum in Brazil, in order to clarify host specificity and geographical variability. RFLP analysis of the ribosomal DNA ITS regions (rDNA ITS), and the mitochondrial DNA small subunit ribosomal DNA gene (mtDNA SSU rDNA) did not reveal any genetic variability in 120 tested strains, possibly serving only as species level markers. Genetic variability was observed in the ribosomal DNA IGS spacer region, in terms of IGS size, RFLPs and sequence data. Phylogenetic analyses (using CLUSTAL W, PHYLIP and TREEVIEW) indicated considerable differences between C. perniciosa strains from T. cacao and those from H. acutifolia (85-86%) and S. lycocarpum (95-96%). Sequence differences also indicated that C. perniciosa from T. cacao in Bahia is less variable (98%) when compared to the pathogen on T. cacao in Amazonas (97-98%), perhaps reflecting a recent introduction to T. cacao in Bahia.

  17. Killer whale call frequency is similar across the oceans, but varies across sympatric ecotypes.

    PubMed

    Filatova, Olga A; Miller, Patrick J O; Yurk, Harald; Samarra, Filipa I P; Hoyt, Erich; Ford, John K B; Matkin, Craig O; Barrett-Lennard, Lance G

    2015-07-01

    Killer whale populations may differ in genetics, morphology, ecology, and behavior. In the North Pacific, two sympatric populations ("resident" and "transient") specialize on different prey (fish and marine mammals) and retain reproductive isolation. In the eastern North Atlantic, whales from the same populations have been observed feeding on both fish and marine mammals. Fish-eating North Pacific "residents" are more genetically related to eastern North Atlantic killer whales than to sympatric mammal-eating "transients." In this paper, a comparison of frequency variables in killer whale calls recorded from four North Pacific resident, two North Pacific transient, and two eastern North Atlantic populations is reported to assess which factors drive the large-scale changes in call structure. Both low-frequency and high-frequency components of North Pacific transient killer whale calls have significantly lower frequencies than those of the North Pacific resident and North Atlantic populations. The difference in frequencies could be related to ecological specialization or to the phylogenetic history of these populations. North Pacific transient killer whales may have genetically inherited predisposition toward lower frequencies that may shape their learned repertoires.

  18. Methods for identifying SNP interactions: a review on variations of Logic Regression, Random Forest and Bayesian logistic regression.

    PubMed

    Chen, Carla Chia-Ming; Schwender, Holger; Keith, Jonathan; Nunkesser, Robin; Mengersen, Kerrie; Macrossan, Paula

    2011-01-01

    Due to advancements in computational ability, enhanced technology and a reduction in the price of genotyping, more data are being generated for understanding genetic associations with diseases and disorders. However, with the availability of large data sets comes the inherent challenges of new methods of statistical analysis and modeling. Considering a complex phenotype may be the effect of a combination of multiple loci, various statistical methods have been developed for identifying genetic epistasis effects. Among these methods, logic regression (LR) is an intriguing approach incorporating tree-like structures. Various methods have built on the original LR to improve different aspects of the model. In this study, we review four variations of LR, namely Logic Feature Selection, Monte Carlo Logic Regression, Genetic Programming for Association Studies, and Modified Logic Regression-Gene Expression Programming, and investigate the performance of each method using simulated and real genotype data. We contrast these with another tree-like approach, namely Random Forests, and a Bayesian logistic regression with stochastic search variable selection.

  19. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    PubMed

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  20. Positive perception of pharmacogenetic testing for psychotropic medications

    PubMed Central

    Lanktree, Matthew B; Zai, Gwyneth; VanderBeek, Laura E; Giuffra, Daniel E; Smithson, David S; Kipp, Lucas B; Dalseg, Timothy R; Speechley, Mark; Kennedy, James L

    2014-01-01

    Introduction Pharmacogenetics attempts to identify inter-individual genetic differences that are predictive of variable drug response and propensity to side effects, with the prospect of assisting physicians to select the most appropriate drug and dosage for treatment. However, many concerns regarding genetic tests exist. We sought to test the opinions of undergraduate science and medical students in southern Ontario universities toward pharmacogenetic testing. Methods and Results Questionnaires were completed by 910 undergraduate medicine and science students from 2005 to 2007. Despite students' concerns that the results of genetic tests may be used for other purposes without consent (71%) or lead to discrimination (78%), an overwhelming number of students were in favor of pharmacogenetic testing (90%). Discussion To our knowledge, this study is the first to survey a large sample for their attitude toward pharmacogenetic testing for psychotropic medications. Our results indicate that, although concerns remain and scientific advancements are required, respondents were in support of pharmacogenetic testing for medications used to treat schizophrenia. © 2014 The Authors. Human Psychopharmacology: Clinical and Experimental published by John Wiley & Sons, Ltd. PMID:24604560

  1. Modeling multilayer x-ray reflectivity using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Sánchez del Río, M.; Pareschi, G.; Michetschläger, C.

    2000-06-01

    The x-ray reflectivity of a multilayer is a non-linear function of many parameters (materials, layer thickness, density, roughness). Non-linear fitting of experimental data with simulations requires the use of initial values sufficiently close to the optimum value. This is a difficult task when the topology of the space of the variables is highly structured. We apply global optimization methods to fit multilayer reflectivity. Genetic algorithms are stochastic methods based on the model of natural evolution: the improvement of a population along successive generations. A complete set of initial parameters constitutes an individual. The population is a collection of individuals. Each generation is built from the parent generation by applying some operators (selection, crossover, mutation, etc.) on the members of the parent generation. The pressure of selection drives the population to include "good" individuals. For large number of generations, the best individuals will approximate the optimum parameters. Some results on fitting experimental hard x-ray reflectivity data for Ni/C and W/Si multilayers using genetic algorithms are presented. This method can also be applied to design multilayers optimized for a target application.

  2. The threshold hypothesis: solving the equation of nurture vs nature in type 1 diabetes.

    PubMed

    Wasserfall, C; Nead, K; Mathews, C; Atkinson, M A

    2011-09-01

    For more than 40 years, the contributions of nurture (i.e. the environment) and nature (i.e. genetics) have been touted for their aetiological importance in type 1 diabetes. Disappointingly, knowledge gains in these areas, while individually successful, have to a large extent occurred in isolation from each other. One reason underlying this divide is the lack of a testable model that simultaneously considers the contributions of genetic and environmental determinants in the formation of this and potentially other disorders that are subject to these variables. To address this void, we have designed a model based on the hypothesis that the aetiological influences of genetics and environment, when evaluated as intersecting and reciprocal trend lines based on odds ratios, result in a method of concurrently evaluating both facets and defining the attributable risk of clinical onset of type 1 diabetes. The model, which we have elected to term the 'threshold hypothesis', also provides a novel means of conceptualising the complex interactions of nurture with nature in type 1 diabetes across various geographical populations.

  3. Transcript expression and genetic variability analysis of caspases in breast carcinomas suggests CASP9 as the most interesting target.

    PubMed

    Brynychova, Veronika; Hlavac, Viktor; Ehrlichova, Marie; Vaclavikova, Radka; Nemcova-Furstova, Vlasta; Pecha, Vaclav; Trnkova, Marketa; Mrhalova, Marcela; Kodet, Roman; Vrana, David; Gatek, Jiri; Bendova, Marie; Vernerova, Zdenka; Kovar, Jan; Soucek, Pavel

    2017-01-01

    Apoptosis plays a critical role in cancer cell survival and tumor development. We provide a hypothesis-generating screen for further research by exploring the expression profile and genetic variability of caspases (2, 3, 7, 8, 9, and 10) in breast carcinoma patients. This study addressed isoform-specific caspase transcript expression and genetic variability in regulatory sequences of caspases 2 and 9. Gene expression profiling was performed by quantitative real-time PCR in tumor and paired non-malignant tissues of two independent groups of patients. Genetic variability was determined by high resolution melting, allelic discrimination, and sequencing analysis in tumor and peripheral blood lymphocyte DNA of the patients. CASP3 A+B and S isoforms were over-expressed in tumors of both patient groups. The CASP9 transcript was down-regulated in tumors of both groups of patients and significantly associated with expression of hormonal receptors and with the presence of rs4645978-rs2020903-rs4646034 haplotype in the CASP9 gene. Patients with a low intratumoral CASP9A/B isoform expression ratio (predicted to shift equilibrium towards anti-apoptotic isoform) subsequently treated with adjuvant chemotherapy had a significantly shorter disease-free survival than those with the high ratio (p=0.04). Inheritance of CC genotype of rs2020903 in CASP9 was associated with progesterone receptor expression in tumors (p=0.003). Genetic variability in CASP9 and expression of its splicing variants present targets for further study.

  4. Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility

    PubMed Central

    Zeller, Tanja; Wild, Philipp; Szymczak, Silke; Rotival, Maxime; Schillert, Arne; Castagne, Raphaele; Maouche, Seraya; Germain, Marine; Lackner, Karl; Rossmann, Heidi; Eleftheriadis, Medea; Sinning, Christoph R.; Schnabel, Renate B.; Lubos, Edith; Mennerich, Detlev; Rust, Werner; Perret, Claire; Proust, Carole; Nicaud, Viviane; Loscalzo, Joseph; Hübner, Norbert; Tregouet, David; Münzel, Thomas; Ziegler, Andreas; Tiret, Laurence

    2010-01-01

    Background Variability of gene expression in human may link gene sequence variability and phenotypes; however, non-genetic variations, alone or in combination with genetics, may also influence expression traits and have a critical role in physiological and disease processes. Methodology/Principal Findings To get better insight into the overall variability of gene expression, we assessed the transcriptome of circulating monocytes, a key cell involved in immunity-related diseases and atherosclerosis, in 1,490 unrelated individuals and investigated its association with >675,000 SNPs and 10 common cardiovascular risk factors. Out of 12,808 expressed genes, 2,745 expression quantitative trait loci were detected (P<5.78×10−12), most of them (90%) being cis-modulated. Extensive analyses showed that associations identified by genome-wide association studies of lipids, body mass index or blood pressure were rarely compatible with a mediation by monocyte expression level at the locus. At a study-wide level (P<3.9×10−7), 1,662 expression traits (13.0%) were significantly associated with at least one risk factor. Genome-wide interaction analyses suggested that genetic variability and risk factors mostly acted additively on gene expression. Because of the structure of correlation among expression traits, the variability of risk factors could be characterized by a limited set of independent gene expressions which may have biological and clinical relevance. For example expression traits associated with cigarette smoking were more strongly associated with carotid atherosclerosis than smoking itself. Conclusions/Significance This study demonstrates that the monocyte transcriptome is a potent integrator of genetic and non-genetic influences of relevance for disease pathophysiology and risk assessment. PMID:20502693

  5. Population structure of Pneumocystis jirovecii isolated from immunodeficiency virus-positive patients.

    PubMed

    Esteves, Francisco; Gaspar, Jorge; Tavares, Adélcia; Moser, Inês; Antunes, Francisco; Mansinho, Kamal; Matos, Olga

    2010-03-01

    Pneumocystis jirovecii pneumonia (PcP) is an important opportunistic infection among immunocompromised patients. Genetic characterization of P. jirovecii isolated from HIV-positive patients, based on identification of multiple nucleotide sequences at eight distinct loci, was achieved by using PCR with DNA sequencing and RFLP. The present study showed that the mitochondrial large-subunit rRNA (mtLSU rRNA), the cytochrome b (CYB), the superoxide dismutase (SOD), the beta-tubulin (beta-tub), the dihydrofolate reductase (DHFR) and the dihydropteroate synthase (DHPS) loci sequences were more variable and therefore giving additional information than the thioredoxin reductase (Trr1) and the thymidylate synthase (TS) genes. Genotyping at those six most informative loci enabled the identification of 48 different P. jirovecii multilocus genotypes (MLGs). Significant statistical associations between infecting P. jirovecii genotypes and patients' age groups or PcP clinical status were found. Also, mtLSU rRNA sequences and specific genotypes from other three loci (CYB, SOD, and DHFR) were statistically associated. The results suggested large recombination between most P. jirovecii MLGs. However, one MLG occurred at a higher frequency than would be expected according to panmictic expectations, suggesting linkage disequilibrium and clonal propagation. The persistence of this specific MLG may be a consequence of clonal reproduction of this successful genotypic array in a P. jirovecii population with epidemic structure. The present study provided the description of multiple genomic regions of P. jirovecii, improving the understanding of genetic variability and frequency distribution of polymorphic genotypes, and exploring the criteria of clonality by testing over-representation of MLGs.

  6. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes

    PubMed Central

    2013-01-01

    Motivation Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. Results We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. Availability The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana. PMID:24564704

  7. Random forests on Hadoop for genome-wide association studies of multivariate neuroimaging phenotypes.

    PubMed

    Wang, Yue; Goh, Wilson; Wong, Limsoon; Montana, Giovanni

    2013-01-01

    Multivariate quantitative traits arise naturally in recent neuroimaging genetics studies, in which both structural and functional variability of the human brain is measured non-invasively through techniques such as magnetic resonance imaging (MRI). There is growing interest in detecting genetic variants associated with such multivariate traits, especially in genome-wide studies. Random forests (RFs) classifiers, which are ensembles of decision trees, are amongst the best performing machine learning algorithms and have been successfully employed for the prioritisation of genetic variants in case-control studies. RFs can also be applied to produce gene rankings in association studies with multivariate quantitative traits, and to estimate genetic similarities measures that are predictive of the trait. However, in studies involving hundreds of thousands of SNPs and high-dimensional traits, a very large ensemble of trees must be inferred from the data in order to obtain reliable rankings, which makes the application of these algorithms computationally prohibitive. We have developed a parallel version of the RF algorithm for regression and genetic similarity learning tasks in large-scale population genetic association studies involving multivariate traits, called PaRFR (Parallel Random Forest Regression). Our implementation takes advantage of the MapReduce programming model and is deployed on Hadoop, an open-source software framework that supports data-intensive distributed applications. Notable speed-ups are obtained by introducing a distance-based criterion for node splitting in the tree estimation process. PaRFR has been applied to a genome-wide association study on Alzheimer's disease (AD) in which the quantitative trait consists of a high-dimensional neuroimaging phenotype describing longitudinal changes in the human brain structure. PaRFR provides a ranking of SNPs associated to this trait, and produces pair-wise measures of genetic proximity that can be directly compared to pair-wise measures of phenotypic proximity. Several known AD-related variants have been identified, including APOE4 and TOMM40. We also present experimental evidence supporting the hypothesis of a linear relationship between the number of top-ranked mutated states, or frequent mutation patterns, and an indicator of disease severity. The Java codes are freely available at http://www2.imperial.ac.uk/~gmontana.

  8. Diversification in continental island archipelagos: new evidence on the roles of fragmentation, colonization and gene flow on the genetic divergence of Aegean Nigella (Ranunculaceae).

    PubMed

    Jaros, Ursula; Tribsch, Andreas; Comes, Hans Peter

    2018-02-12

    Disentangling the relative roles of past fragmentation (vicariance), colonization (dispersal) and post-divergence gene flow in the genetic divergence of continental island organisms remains a formidable challenge. Amplified fragment length polymorphisms (AFLPs) were used to (1) gain further insights into the biogeographical processes underlying the Pleistocene diversification of the Aegean Nigella arvensis complex; (2) evaluate the role of potential key factors driving patterns of population genetic variability (mating system, geographical isolation and historical contingencies); and (3) test the robustness of conclusions previously drawn from chloroplast (cp) DNA. Genetic diversity was analysed for 235 AFLP markers from 48 populations (497 individuals) representing 11 taxa of the complex using population genetic methods and Bayesian assignment tests. Most designated taxa are identifiable as genetically distinct units. Both fragmentation and dispersal-driven diversification processes occurred at different geological time scales, from Early to Late Pleistocene, specifically (1) sea barrier-induced vicariant speciation in the Cyclades, the Western Cretan Strait and Ikaria; and (2) bi-regional colonizations of the 'Southern Aegean Island Arc' from the Western vs. Eastern Aegean mainland, followed by allopatric divergences in Crete vs. Rhodos and Karpathos/Kasos. Outcrossing island taxa experienced drift-related demographic processes that are magnified in the two insular selfing species. Population genetic differentiation on the mainland seems largely driven by dispersal limitation, while in the Central Aegean it may still be influenced by historical events (island fragmentation and sporadic long-distance colonization). The biogeographical history of Aegean Nigella is more complex than expected for a strictly allopatric vicariant model of divergence. Nonetheless, the major phylogeographical boundaries of this radiation are largely congruent with the geography and history of islands, with little evidence for ongoing gene exchange between divergent taxa. The present results emphasize the need to investigate further biological and landscape features and contemporary vs. historical processes in driving population divergence and taxon diversification in Aegean plant radiations. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Molecular characterization of high performance inbred lines of Brazilian common beans.

    PubMed

    Cardoso, P C B; Veiga, M M; de Menezes, I P P; Valdisser, P A M R; Borba, T C O; Melo, L C; Del Peloso, M J; Brondani, C; Vianello, R P

    2013-02-06

    The identification of germplasm genetic variability in breeding programs of the common bean (Phaseolus vulgaris) is essential for determining the potential of each combination of parent plants to obtain superior genotypes. The present study aimed to estimated the extent of genetic diversity in 172 lineages and cultivars of the common bean by integrating five tests of value for cultivation and use (VCU) that were conducted over the last eight years by the breeding program of Embrapa Arroz e Feijão in Brazil. Nine multilocus genotyping systems composed of 36 fluorescent microsatellite markers distributed across 11 different chromosomes of the common bean were used, of which 24 were polymorphic in all trials. One hundred and eighty-seven alleles were identified, with an average of 7.79 alleles per locus and an average gene diversity of 0.65. The combined probability of identity for all loci was 1.32 x 10(-16). Lineages that are more genetically divergent between the selection cycles were identified, allowing the breeding program to develop a crossbreed between elite genotypes with a low degree of genetic relatedness. HE values ranged from 0.31 to 0.63, with a large reduction in the genetic base over successive selection cycles. The test showed a significant degree of differentiation (FST = 0.159). Private alleles (26%) were identified and can be directly incorporated into the gene pool of cultivated germplasm, thereby contributing effectively to the expansion of genetic diversity in this bean-breeding program.

  10. The accumulation of genetic diversity within a canopy-stored seed bank.

    PubMed

    Ayre, David; O'Brien, Eleanor; Ottewell, Kym; Whelan, Rob

    2010-07-01

    Many plants regenerate after fire from a canopy-stored seed bank, in which seed are housed in fire resistant confructescences (cones) that remain on maternal plants. This strategy would be favoured if plants accumulate a sufficiently large and genetically diverse seed bank during interfire intervals. We use a 16-year demographic study and surveys of microsatellite variation to quantify and explain the rate of accumulation of genetic diversity within the canopy seed bank of the shrub Banksia spinulosa. Flowering and fruit set were highly variable. An initial sample in 1991 of 354 reproductively mature plants generated 426 cones over 16 years, of which only 55 cones from 40 maternal plants persisted until 2005. By genotyping seed from these 55 cones we demonstrated that genetic diversity accumulated rapidly within the seed bank. Resampling revealed that diversity was determined by the number, not the age, of cones. Cones were widely distributed among plants, outcrossing rates were high (mean t(m) = 1.00 +/- 0.04) and biparental inbreeding low. Adults displayed little evidence of isolation by distance and the genotypic diversity of seed cohorts was independent of the density of neighbouring potential sires. We therefore estimate that within at least 13 individual years the number of cones produced per year (14-63) would have contained 100% of the adult genetic diversity. We conclude that a highly outcrossed mating system and relatively widespread pollen dispersal ensure the rapid development of a genetically diverse and spatially and temporally homogeneous seed bank.

  11. Mitochondrial DNA variability among six South American Amerindian villages from the Pano linguistic group.

    PubMed

    Mendes-Junior, Celso T; Simoes, Aguinaldo L

    2014-01-01

    Although scattered throughout a large geographic area, the members of the Pano linguistic group present strong ethnic, linguistic, and cultural homogeneity, a feature that causes them to be considered components of a same "Pano" tribe. Nevertheless, the genetic homogeneity between Pano villages has not yet been examined. To study the genetic structure of the Pano linguistic group, four major Native American mitochondrial DNA (mtDNA) founder haplogroups were analyzed in 77 Amerindians from six villages of four Pano tribes (Katukina, Kaxináwa, Marúbo, and Yaminawa) located in the Brazilian Amazon. The central position of these tribes in the continent makes them relevant for attempts to reconstruct population movements in South America. Except for a single individual that presented an African haplogroup L, all remaining individuals presented one of the four Native American haplogroups. Significant heterogeneity was observed across the six Pano villages. Although Amerindian populations are usually characterized by considerable interpopulational diversity, the high heterogeneity level observed is unexpected if the strong ethnic, linguistic, and cultural homogeneity of the Pano linguistic group is taken into account. The present findings indicate that the ethnic, linguistic, and cultural homogeneity does not imply genetic homogeneity. Even though the genetic heterogeneity uncovered may be a female-specific process, the most probable explanation for that is the joint action of isolation and genetic drift as major factors influencing the genetic structure of the Pano linguistic group. Copyright © 2014 Wayne State University Press, Detroit, Michigan 48201-1309.

  12. A fifth major genetic group among honeybees revealed in Syria.

    PubMed

    Alburaki, Mohamed; Bertrand, Bénédicte; Legout, Hélène; Moulin, Sibyle; Alburaki, Ali; Sheppard, Walter Steven; Garnery, Lionel

    2013-12-06

    Apiculture has been practiced in North Africa and the Middle-East from antiquity. Several thousand years of selective breeding have left a mosaic of Apis mellifera subspecies in the Middle-East, many uniquely adapted and survived to local environmental conditions. In this study we explore the genetic diversity of A. mellifera from Syria (n = 1258), Lebanon (n = 169) and Iraq (n = 35) based on 14 short tandem repeat (STR) loci in the context of reference populations from throughout the Old World (n = 732). Our data suggest that the Syrian honeybee Apis mellifera syriaca occurs in both Syrian and Lebanese territories, with no significant genetic variability between respective populations from Syria and Lebanon. All studied populations clustered within a new fifth independent nuclear cluster, congruent with an mtDNA Z haplotype identified in a previous study. Syrian honeybee populations are not associated with Oriental lineage O, except for sporadic introgression into some populations close to the Turkish and Iraqi borders. Southern Syrian and Lebanese populations demonstrated high levels of genetic diversity compared to the northern populations. This study revealed the effects of foreign queen importations on Syrian bee populations, especially for the region of Tartus, where extensive introgression of A. m. anatolica and/or A. m. caucasica alleles were identified. The policy of creating genetic conservation centers for the Syrian subspecies should take into consideration the influence of the oriental lineage O from the northern Syrian border and the large population of genetically divergent indigenous honeybees located in southern Syria.

  13. Genome-wide regression and prediction with the BGLR statistical package.

    PubMed

    Pérez, Paulino; de los Campos, Gustavo

    2014-10-01

    Many modern genomic data analyses require implementing regressions where the number of parameters (p, e.g., the number of marker effects) exceeds sample size (n). Implementing these large-p-with-small-n regressions poses several statistical and computational challenges, some of which can be confronted using Bayesian methods. This approach allows integrating various parametric and nonparametric shrinkage and variable selection procedures in a unified and consistent manner. The BGLR R-package implements a large collection of Bayesian regression models, including parametric variable selection and shrinkage methods and semiparametric procedures (Bayesian reproducing kernel Hilbert spaces regressions, RKHS). The software was originally developed for genomic applications; however, the methods implemented are useful for many nongenomic applications as well. The response can be continuous (censored or not) or categorical (either binary or ordinal). The algorithm is based on a Gibbs sampler with scalar updates and the implementation takes advantage of efficient compiled C and Fortran routines. In this article we describe the methods implemented in BGLR, present examples of the use of the package, and discuss practical issues emerging in real-data analysis. Copyright © 2014 by the Genetics Society of America.

  14. Variability of Virgin Olive Oil Phenolic Compounds in a Segregating Progeny from a Single Cross in Olea europaea L. and Sensory and Nutritional Quality Implications

    PubMed Central

    Pérez, Ana G.; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos

    2014-01-01

    Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil. PMID:24651694

  15. Variability of virgin olive oil phenolic compounds in a segregating progeny from a single cross in Olea europaea L. and sensory and nutritional quality implications.

    PubMed

    Pérez, Ana G; León, Lorenzo; Pascual, Mar; Romero-Segura, Carmen; Sánchez-Ortiz, Araceli; de la Rosa, Raúl; Sanz, Carlos

    2014-01-01

    Virgin olive oil phenolic compounds are responsible for its nutritional and sensory quality. The synthesis of phenolic compounds occurs when enzymes and substrates meet as olive fruit is crushed during the industrial process to obtain the oil. The genetic variability of the major phenolic compounds of virgin olive oil was studied in a progeny of the cross of Picual x Arbequina olive cultivars (Olea europaea L.). They belong to four different groups: compounds that included tyrosol or hydroxytyrosol in their molecules, lignans, flavonoids, and phenolic acids. Data of phenolics in the oils showed that the progeny displayed a large degree of variability, widely transgressing the genitor levels. This high variability can be of interest on breeding programs. Thus, multivariate analysis allowed to identify genotypes within the progeny particularly interesting in terms of phenolic composition and deduced organoleptic and nutritional quality. The present study has demonstrated that it is possible to obtain enough degree of variability with a single cross of olive cultivars for compounds related to the nutritional and organoleptic properties of virgin olive oil.

  16. Genetic and Psychosocial Predictors of Aggression: Variable Selection and Model Building With Component-Wise Gradient Boosting.

    PubMed

    Suchting, Robert; Gowin, Joshua L; Green, Charles E; Walss-Bass, Consuelo; Lane, Scott D

    2018-01-01

    Rationale : Given datasets with a large or diverse set of predictors of aggression, machine learning (ML) provides efficient tools for identifying the most salient variables and building a parsimonious statistical model. ML techniques permit efficient exploration of data, have not been widely used in aggression research, and may have utility for those seeking prediction of aggressive behavior. Objectives : The present study examined predictors of aggression and constructed an optimized model using ML techniques. Predictors were derived from a dataset that included demographic, psychometric and genetic predictors, specifically FK506 binding protein 5 (FKBP5) polymorphisms, which have been shown to alter response to threatening stimuli, but have not been tested as predictors of aggressive behavior in adults. Methods : The data analysis approach utilized component-wise gradient boosting and model reduction via backward elimination to: (a) select variables from an initial set of 20 to build a model of trait aggression; and then (b) reduce that model to maximize parsimony and generalizability. Results : From a dataset of N = 47 participants, component-wise gradient boosting selected 8 of 20 possible predictors to model Buss-Perry Aggression Questionnaire (BPAQ) total score, with R 2 = 0.66. This model was simplified using backward elimination, retaining six predictors: smoking status, psychopathy (interpersonal manipulation and callous affect), childhood trauma (physical abuse and neglect), and the FKBP5_13 gene (rs1360780). The six-factor model approximated the initial eight-factor model at 99.4% of R 2 . Conclusions : Using an inductive data science approach, the gradient boosting model identified predictors consistent with previous experimental work in aggression; specifically psychopathy and trauma exposure. Additionally, allelic variants in FKBP5 were identified for the first time, but the relatively small sample size limits generality of results and calls for replication. This approach provides utility for the prediction of aggression behavior, particularly in the context of large multivariate datasets.

  17. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial.

    PubMed

    Ouellette, Catherine; Rudkowska, Iwona; Lemieux, Simone; Lamarche, Benoit; Couture, Patrick; Vohl, Marie-Claude

    2014-05-24

    Omega-3 (n-3) polyunsaturated fatty acid (PUFA) consumption increases low-density lipoprotein (LDL) cholesterol (C) concentrations and particle size. Studies showed that individuals with large, buoyant LDL particles have decreased risk of cardiovascular diseases. However, a large inter-individual variability is observed in LDL particle size. Genetic factors may explain the variability of LDL-C concentrations and particle size after an n-3 PUFA supplementation. The monoglyceride lipase (MGLL) enzyme, encoded by the MGLL gene, plays an important role in lipid metabolism, especially lipoprotein metabolism. The aim of this study was to investigate if polymorphisms (SNPs) of the MGLL gene influence the variability of LDL-C and LDL particle size in response to an n-3 PUFA supplementation. 210 subjects completed the study. They consumed 5 g/d of a fish oil supplement (1.9-2.2 g eicosapentaenoic acid and 1.1 g docosaexaenoic acid) during 6 weeks. Plasma lipids were measured before and after the supplementation period and 18 SNPs of the MGLL gene, covering 100% of common genetic variations (minor allele frequency ≥0.05), have been genotyped using TaqMan technology (Life Technologies Inc., Burlington, ON, CA). Following the n-3 PUFA supplementation, 55% of subjects increased their LDL-C levels. In a model including the supplementation, genotype and supplementation*genotype effects, gene-diet interaction effects on LDL-C concentrations (rs782440, rs6776142, rs555183, rs6780384, rs6787155 and rs1466571) and LDL particle size (rs9877819 and rs13076593) were observed for the MGLL gene SNPs (p < 0.05). SNPs within the MGLL gene may modulate plasma LDL-C levels and particle size following an n-3 PUFA supplementation. This trial was registered at clinicaltrials.gov as NCT01343342.

  18. MpSaci is a widespread gypsy-Ty3 retrotransposon highly represented by non-autonomous copies in the Moniliophthora perniciosa genome.

    PubMed

    Pereira, Jorge F; Araújo, Elza F; Brommonschenkel, Sérgio H; Queiroz, Casley B; Costa, Gustavo G L; Carazzolle, Marcelo F; Pereira, Gonçalo A G; Queiroz, Marisa V

    2015-05-01

    Transposons are an important source of genetic variation. The phytopathogen Moniliophthora perniciosa shows high level of variability but little is known about the role of class I elements in shaping its genome. In this work, we aimed the characterization of a new gypsy/Ty3 retrotransposon species, named MpSaci, in the M. perniciosa genome. These elements are largely variable in size, ranging from 4 to 15 kb, and harbor direct long terminal repeats (LTRs) with varying degrees of similarity. Approximately, all of the copies are non-autonomous as shifts in the reading frame and stop codons were detected. Only two elements (MpSaci6 and MpSaci9) code for GAG and POL proteins that possess functional domains. Conserved domains that are typically not found in retrotransposons were detected and could potentially impact the expression of neighbor genes. Solo LTRs and several LARDs (large retrotransposon derivative) were detected. Unusual elements containing small sequences with or without interruptions that are similar to gag or different pol domains and presenting LTRs with different levels of similarities were identified. Methylation was observed in MpSaci reverse transcriptase sequences. Distribution analysis indicates that MpSaci elements are present in high copy number in the genomes of C-, S- and L-biotypes of M. perniciosa. In addition, C-biotype isolates originating from the state of Bahia have fragments in common with isolates from the Amazon region and two hybridization profiles related to two chromosomal groups. RT-PCR analysis reveals that the gag gene is constitutively expressed and that the expression is increased at least three-fold with nutrient depravation even though no new insertion were observed. These findings point out that MpSaci collaborated and, even though is primarily represented by non-autonomous elements, still might contribute to the generation of genetic variability in the most important cacao pathogen in Brazil.

  19. Genomic Characterization of the Evolutionary Potential of the Sea Urchin Strongylocentrotus droebachiensis Facing Ocean Acidification

    PubMed Central

    Dorey, Narimane; Garfield, David A.; Stumpp, Meike; Dupont, Sam; Wray, Gregory A.

    2016-01-01

    Abstract Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change. PMID:28082601

  20. Genetic architecture for susceptibility to gout in the KARE cohort study.

    PubMed

    Shin, Jimin; Kim, Younyoung; Kong, Minyoung; Lee, Chaeyoung

    2012-06-01

    This study aimed to identify functional associations of cis-regulatory regions with gout susceptibility using data resulted from a genome-wide association study (GWAS), and to show a genetic architecture for gout with interaction effects among genes within each of the identified functions. The GWAS was conducted with 8314 control subjects and 520 patients with gout in the Korea Association REsource cohort. However, genetic associations with any individual nucleotide variants were not discovered by Bonferroni multiple testing in the GWAS (P>1.42 × 10(-7)). Genomic regions enrichment analysis was employed to identify functional associations of cis-regulatory regions. This analysis revealed several biological processes associated with gout susceptibility, and they were quite different from those with serum uric acid level. Epistasis for susceptibility to gout was estimated using entropy decomposition with selected genes within each biological process identified by the genomic regions enrichment analysis. Some epistases among nucleotide sequence variants for gout susceptibility were found to be larger than their individual effects. This study provided the first evidence that genetic factors for gout susceptibility greatly differed from those for serum uric acid level, which may suggest that research endeavors for identifying genetic factors for gout susceptibility should not be heavily dependent on pathogenesis of uric acid. Interaction effects between genes should be examined to explain a large portion of phenotypic variability for gout susceptibility.

Top