Science.gov

Sample records for large hawt wake

  1. Large HAWT wake measurement and analysis

    NASA Technical Reports Server (NTRS)

    Miller, A. H.; Wegley, H. L.; Buck, J. W.

    1995-01-01

    From the theoretical fluid dynamics point of view, the wake region of a large horizontal-axis wind turbine has been defined and described, and numerical models of wake behavior have been developed. Wind tunnel studies of single turbine wakes and turbine array wakes have been used to verify the theory and further refine the numerical models. However, the effects of scaling, rotor solidity, and topography on wake behavior are questions that remain unanswered. In the wind tunnel studies, turbines were represented by anything from scaled models to tea strainers or wire mesh disks whose solidity was equivalent to that of a typical wind turbine. The scale factor compensation for the difference in Reynolds number between the scale model and an actual turbine is complex, and not typically accounted for. Though it is wise to study the simpler case of wakes in flat topography, which can be easily duplicated in the wind tunnel, current indications are that wind turbine farm development is actually occurring in somewhat more complex terrain. Empirical wake studies using large horizontal-axis wind turbines have not been thoroughly composited, and, therefore, the results have not been applied to the well-developed theory of wake structure. The measurement programs have made use of both in situ sensor systems, such as instrumented towers, and remote sensors, such as kites and tethered, balloonborne anemometers. We present a concise overview of the work that has been performed, including our own, which is based on the philosophy that the MOD-2 turbines are probably their own best detector of both the momentum deficit and the induced turbulence effect downwind. Only the momentum deficit aspects of the wake/machine interactions have been addressed. Both turbine power output deficits and wind energy deficits as measured by the onsite meteorological towers have been analyzed from a composite data set. The analysis has also evidenced certain topographic influences on the operation of

  2. Performance and wake predictions of HAWTs in wind farms

    SciTech Connect

    Leclerc, C.; Masson, C.; Paraschivoiu, I.

    1997-12-31

    The present contribution proposes and describes a promising way towards performance prediction of an arbitrary array of turbines. It is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The turbines are represented by distributions of momentum sources in the Navier-Stokes equations. In this paper, the applicability and viability of the proposed methodology is demonstrated using an axisymmetric implementation. The k-{epsilon} model has been chosen for the closure of the time-averaged, turbulent flow equations and the properties of the incident flow correspond to those of a neutral atmospheric boundary layer. The proposed mathematical model is solved using a Control-Volume Finite Element Method (CVFEM). Detailed results have been obtained using the proposed method for an isolated wind turbine and for two turbines one behind another. In the case of an isolated turbine, accurate wake velocity deficit predictions are obtained and an increase in power due to atmospheric turbulence is found in agreement with measurements. In the case of two turbines, the proposed methodology provides an appropriate modelling of the wind-turbine wake and a realistic prediction of the performance degradation of the downstream turbine.

  3. A fully unsteady prescribed wake model for HAWT performance prediction in yawed flow

    SciTech Connect

    Coton, F.N.; Tongguang, Wang; Galbraith, R.A.M.; Lee, D.

    1997-12-31

    This paper describes the development of a fast, accurate, aerodynamic prediction scheme for yawed flow on horizontal axis wind turbines (HAWTs). The method is a fully unsteady three-dimensional model which has been developed over several years and is still being enhanced in a number of key areas. The paper illustrates the current ability of the method by comparison with field data from the NREL combined experiment and also describes the developmental work in progress. In particular, an experimental test programme designed to yield quantitative wake convection information is summarised together with modifications to the numerical model which are necessary for meaningful comparison with the experiments. Finally, current and future work on aspects such as tower-shadow and improved unsteady aerodynamic modelling are discussed.

  4. Numerical analysis of the wake of a 10kW HAWT

    NASA Astrophysics Data System (ADS)

    Gong, S. G.; Deng, Y. B.; Xie, G. L.; Zhang, J. P.

    2017-01-01

    With the rising of wind power industry and the ever-growing scale of wind farm, the research for the wake performance of wind turbine has an important guiding significance for the overall arrangement of wind turbines in the large wind farm. The wake simulation model of 10kW horizontal-axis wind turbine is presented on the basis of Averaged Navier-Stokes (RANS) equations and the RNG k-ε turbulence model for applying to the rotational fluid flow. The sliding mesh technique in ANSYS CFX software is used to solve the coupling equation of velocity and pressure. The characters of the average velocity in the wake zone under rated inlet wind speed and different rotor rotational speeds have been investigated. Based on the analysis results, it is proposed that the horizontal spacing between the wind turbines is less than two times radius of rotor, and its longitudinal spacing is less than five times of radius. And other results have also been obtained, which are of great importance for large wind farms.

  5. A Large-eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2016-04-01

    Vertical axis wind turbines (VAWTs) offer some advantages over their horizontal axis counterparts, and are being considered as a viable alternative to conventional horizontal axis wind turbines (HAWTs). Nevertheless, a relative shortage of scientific, academic and technical investigations of VAWTs is observed in the wind energy community with respect to HAWTs. Having this in mind, in this work, we aim to study the wake of a single VAWT, placed in the atmospheric boundary layer, using large-eddy simulation (LES) coupled with actuator line model (ALM). It is noteworthy that this is the first time that such a study is being performed. To do this, for a typical 1 MW VAWT design, first, the variation of power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed using LES-ALM, and an optimum combination of chord length and tip-speed ratio is obtained. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulent wake flow statistics. Keywords: vertical axis wind turbine (VAWT); VAWT wake; Atmospheric Boundary Layer (ABL); large eddy simulation (LES); actuator line model (ALM); turbulence.

  6. A Large-Eddy Simulation Study of Vertical Axis Wind Turbine Wakes in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2017-04-01

    In a future sustainable energy vision, in which diversified conversion of renewable energies is essential, vertical axis wind turbines (VAWTs) exhibit some potential as a reliable means of wind energy extraction alongside conventional horizontal axis wind turbines (HAWTs). Nevertheless, there is currently a relative shortage of scientific, academic and technical investigations of VAWTs as compared to HAWTs. Having this in mind, in this work, we aim to, for the first time, study the wake of a single VAWT placed in the atmospheric boundary layer using large-eddy simulation (LES). To do this, we use a previously-validated LES framework in which an actuator line model (ALM) is incorporated. First, for a typical three- and straight-bladed 1-MW VAWT design, the variation of the power coefficient with both the chord length of the blades and the tip-speed ratio is analyzed by performing 117 simulations using LES-ALM. The optimum combination of solidity (defined as Nc/R, where N is the number of blades, c is the chord length and R is the rotor radius) and tip-speed ratio is found to be 0.18 and 4.5, respectively. Subsequently, the wake of a VAWT with these optimum specifications is thoroughly examined by showing different relevant mean and turbulence wake flow statistics. It is found that for this case, the maximum velocity deficit at the equator height of the turbine occurs 2.7 rotor diameters downstream of the center of the turbine, and only after that point, the wake starts to recover. Moreover, it is observed that the maximum turbulence intensity (TI) at the equator height of the turbine occurs at a distance of about 3.8 rotor diameters downstream of the turbine. As we move towards the upper and lower edges of the turbine, the maximum TI (at a certain height) increases, and its location moves relatively closer to the turbine. Furthermore, whereas both TI and turbulent momentum flux fields show clear vertical asymmetries (with larger magnitudes at the upper wake edge

  7. Large-Eddy Simulation of turbine wake in complex terrain

    NASA Astrophysics Data System (ADS)

    Berg, J.; Troldborg, N.; Sørensen, N. N.; Patton, E. G.; Sullivan, P. P.

    2017-05-01

    We present Large-Eddy Simulation results of a turbine wake in realistic complex terrain with slopes above 0.5. By comparing simulations including and without the wind turbine we can estimate the induction factor, a, and we show how the presence of a strong recirculation zone in the terrain dictates the positioning of the wake. This last finding is in contrast to what would happen in gentle terrain with no substantial increase of turbulent kinetic energy in the terrain induced wakes.

  8. HAWT performance with dynamic stall

    SciTech Connect

    Hibbs, B.D.

    1986-02-01

    In this report we calculated the effects of flow nonuniformities (wing shear, tower wake, yaw, and large-scale turbulence) on the performance of a horizontal axis wind turbine, accounting for dynamic stall. We modified the PROP program to incorporate and compare these effects with the uniform flow case. The MIT model, which predicts dynamic lift coefficients substantially higher than the static maximum values and includes a crude model of the vortex roll-off phenomenon, represented dynamic stall. As associated model for drag was also used. The dynamic stall model was tested against experimental data for three typical reduced frequencies. Good instantaneous correlation was obtained. The effects of nonuniformities with and without the dynamic stall were calculated using the Westinghouse Mod O and Enertech 44/25 turbines. Modeling the dynamic stall has little effect on performance. Furthermore, the performance with nonuniform flow differed only slightly from the uniform flow case. Thus the now PROP model provides a powerful general capability to handle nonuniform flows.

  9. NREL airfoil families for HAWTs

    SciTech Connect

    Tangler, J.L.; Somers, D.M.

    1995-12-31

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time nine airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub 1,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  10. NREL airfoil families for HAWTs

    SciTech Connect

    Tangler, J L; Somers, D M

    1995-01-01

    The development of special-purpose airfoils for horizontal-axis wind turbines (HAWTs) began in 1984 as a joint effort between the National Renewable Energy Laboratory (NREL), formerly the Solar Energy Research Institute (SERI), and Airfoils, Incorporated. Since that time seven airfoil families have been designed for various size rotors using the Eppler Airfoil Design and Analysis Code. A general performance requirement of the new airfoil families is that they exhibit a maximum lift coefficient (c{sub l,max}) which is relatively insensitive to roughness effects. The airfoil families address the needs of stall-regulated, variable-pitch, and variable-rpm wind turbines. For stall-regulated rotors, better peak-power control is achieved through the design of tip airfoils that restrain the maximum lift coefficient. Restrained maximum lift coefficient allows the use of more swept disc area for a given generator size. Also, for stall-regulated rotors, tip airfoils with high thickness are used to accommodate overspeed control devices. For variable-pitch and variable-rpm rotors, tip airfoils having a high maximum lift coefficient lend themselves to lightweight blades with low solidity. Tip airfoils having low thickness result in less drag for blades having full-span pitch control. Annual energy improvements from the NREL airfoil families are projected to be 23% to 35% for stall-regulated turbines, 8% to 20% for variable-pitch turbines, and 8% to 10% for variable-rpm turbines. The improvement for stall-regulated turbines has been verified in field tests.

  11. Counter-rotating vortex pairs in the wake of a vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2017-04-01

    Despite the rising popularity of vertical axis wind turbines, or VAWTs, the wakes behind these machines is much less well understood than those behind horizontal axis wind turbines, or HAWTs. A thorough understanding of wakes is important as they can cause turbines in wind farms to produce less power than anticipated and increase the fatigue loading on turbines due to vibrations. In order to gain a deeper understanding of the wake behind a vertical axis wind turbine in atmospheric flow stereo-PIV is implemented in a boundary-layer wind tunnel to produce snapshots of the 3-component velocity field in the wake at various downstream positions. The boundaries of the wake are readily observed due to the high velocity gradients and turbulence present here. Two pairs of counter-rotating vortices similar to those in the wake of yawed HAWTs are also observed. An examination of the momentum fluxes behind the turbine demonstrates that the mean flow induced by these vortices entrains a large quantity of momentum from the unperturbed boundary layer flow above the wake. This effect proves to play an even more significant role than turbulence in reintroducing momentum into the wake. In order to comprehend why the VAWT produces these vortices we modify the double-multiple stream-tube model typically used to predict VAWT performance to incorporate crosswind forces. The similarity between VAWT and yawed HAWT wakes is found not to be coincidental as both cases feature rotors which exert a lateral thrust on the incoming wind which leads to the creation of counter-rotating vortex pairs.

  12. Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.

    2002-01-01

    In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.

  13. Large-eddy simulation of a plane wake

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip; Rogers, M. M.

    1994-01-01

    Previously the theoretical development leading to the dynamic localization model (DLM) for large-eddy simulation (LES) was presented. The method has been successfully applied to isotropic turbulence, channel flow, and the flow over a backward-facing step. Here we apply the model to the computation of the temporally developing place wake. The two main objectives of this project are: (1) Use the model to perform an LES of a time developing plane wake and compare the results with direction numerical simulation (DNS) data to see if important statistical measures can be readily predicted, and to provide a relative evaluation of the several versions of the model in terms of predictive capability and cost; and (2) If the tests in (1) show that the model generates reliable predictions, then use the LES to study various aspects of the physics of turbulent wakes and mixing layers.

  14. Large Eddy Simulation of Vertical Axis Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Shamsoddin, Sina; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the wake behind a vertical-axis wind turbine (VAWT) in a three dimensional turbulent flow. Two methods are used to model the subgrid-scale (SGS) stresses: (a) the Smagorinsky model, and (b) the modulated gradient model. To parameterize the effects of the VAWT on the flow, two VAWT models are developed: (a) the actuator surface model (ASM), in which the time-averaged turbine-induced forces are distributed on a surface swept by the turbine blades, i.e. the actuator surface, and (b) the actuator line model (ALM), in which the instantaneous blade forces are only spatially distributed on lines representing the blades, i.e. the actuator lines. This is the first time that LES is applied and validated for simulation of VAWT wakes by using either the ASM or the ALM techniques. In both models, blade-element theory is used to calculate the lift and drag forces on the blades. The results are compared with flow measurements in the wake of a model straight-bladed VAWT, carried out in the Institute de Méchanique et Statistique de la Turbulence (IMST) water channel. Different combinations of SGS models with VAWT models are studied and a fairly good overall agreement between simulation results and measurement data is observed. In general, the ALM is found to better capture the unsteady-periodic nature of the wake and shows a better agreement with the experimental data compared with the ASM. The modulated gradient model is also found to be a more reliable SGS stress modeling technique, compared with the Smagorinsky model, and it yields reasonable predictions of the mean flow and turbulence characteristics of a VAWT wake using its theoretically-determined model coefficient. Keywords: Vertical-axis wind turbines (VAWTs); VAWT wake; Large-eddy simulation; Actuator surface model; Actuator line model; Smagorinsky model; Modulated gradient model

  15. Demonstrations to Wake Up Large Classes.

    ERIC Educational Resources Information Center

    Howes, Ruth; Watson, James

    1982-01-01

    A general strategy and specific examples for demonstrations in large physics classes are given. Such "action" demonstrations may involve students moving around the class to demonstrate molecular behavior in different states of matter, and effect of heat in changing state. (JN)

  16. Demonstrations to Wake Up Large Classes.

    ERIC Educational Resources Information Center

    Howes, Ruth; Watson, James

    1982-01-01

    A general strategy and specific examples for demonstrations in large physics classes are given. Such "action" demonstrations may involve students moving around the class to demonstrate molecular behavior in different states of matter, and effect of heat in changing state. (JN)

  17. Large Eddy Simulation of Aircraft Wake Vortices: Atmospheric Turbulence Effects

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Kao, C.-T.

    1997-01-01

    Crow instability can develop in most atmospheric turbulence levels, however, the ring vortices may not form in extremely strong turbulence cases due to strong dissipation of the vortices. It appears that strong turbulence tends to accelerate the occurrences of Crow instability. The wavelength of the most unstable mode is estimated to be about 5b(sub 0), which is less than the theoretical value of 8.6b(sub 0) (Crow, 1970) and may be due to limited domain size and highly nonlinear turbulent flow characteristics. Three-dimensional turbulence can decay wake vortices more rapidly. Axial velocity may be developed by vertical distortion of a vortex pair due to Crow instability or large turbulent eddy motion. More experiments with various non-dimensional turbulence levels are necessary to get useful statistics of wake vortex behavior due to turbulence. Need to investigate larger turbulence length scale effects by enlarging domain size or using grid nesting.

  18. Cosmic string wakes and large-scale structure

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.

    1988-01-01

    The formation of structure from infinite cosmic string wakes is modeled for a universe dominated by cold dark matter (CDM). Cross-sectional slices through the wake distribution tend to outline empty regions with diameters which are not inconsistent with the range of sizes of the voids in the CfA slice of the universe. The topology of the wake distribution is found to be spongy rather than cell-like. Correlations between CDM wakes do not extend much beyond a horizon length, so it is unlikely that CDM wakes are responsible for the correlations between clusters of galaxies. An estimate of the fraction of matter to accrete onto CDM wakes indicates that wakes could be more important in galaxy formation than previously anticipated.

  19. Wakes and differential charging of large bodies in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1985-01-01

    Highlights of earlier results using the Inside-Out WAKE code on wake structures of LEO spacecraft are reviewed. For conducting bodies of radius large compared with the Debye length, a high Mach number wake develops a negative potential well. Quasineutrality is violated in the very near wake region, and the wake is relatively empty for a distance downstream of about one half of a Mach number of radii. There is also a suggestion of a core of high density along the axis. A comparison of rigorous numerical solutions with in situ wake data from the AE-C satellite suggests that the so called neutral approximation for ions (straight line trajectories, independent of fields) may be a reasonable approximation except near the center of the near wake. This approximation is adopted for very large bodies. Work concerned with the wake point potential of very large nonconducting bodies such as the shuttle orbiter is described. Using a cylindrical model for bodies of this size or larger in LEO (body radius up to 10 to the 5th power Debye lengths), approximate solutions are presented based on the neutral approximation (but with rigorous trajectory calculations for surface current balance). There is a negative potential well if the body is conducting, and no well if the body is nonconducting. In the latter case the wake surface itself becomes highly negative. The wake point potential is governed by the ion drift energy.

  20. Study of large-scale mixing in developing wakes behind streamlined bodies

    NASA Technical Reports Server (NTRS)

    Ramaprian, B. R.; Kalale, K. P. L.; Jovic, S.; Kaushik, S.

    1984-01-01

    Heat-tagging and conditional sampling techniques were used to study the large scale mixing process in the developing wake behind a streamlined body. The results were used to understand the manner in which the large eddy length scale evolves from a value appropriate to a boundary layer to that appropriate to the asymptotic far-wake.

  1. Wind turbine wake stability investigations using a vortex ring modelling approach

    NASA Astrophysics Data System (ADS)

    Baldacchino, Daniel; van Bussel, Gerard J. W.

    2014-12-01

    In the present study, a simple inviscid vortex ring (VR) modelling approach is used to represent the developing rotor wake. This allows a straightforward investigation and comparison of the impact of uniform, yawed and sheared flow conditions on the development of the rotor wake, with the additional possibility of including ground effect. The effect of instabilities on the development of the wake is manually introduced in the form of perturbations of strength, ring position and size. The phenomenon of vortex filament interaction or leapfrogging, could play a role in the observation of unsteady phenomena and is therefore also addressed. Such a study is hence performed in light of recent conflicting views on the causes of wake meandering: is the observed dynamic wake behaviour a result of large scale turbulent forcing or do more subtle and intrinsic wake instabilities play a role? This study concludes that the presence of the ground and external perturbations, most notably changes in the wake pitch and the rotor thrust coefficient, can significantly affect the steady development of the wake. The mutual vortex pairing instability, whilst displaying interesting periodic behaviour, does not correlate with periodic wake behaviour reported by Medici et al. [1]. However, in the absence of unsteady inflow, it is shown that the wake of a Horizontal Axis Wind Turbine (HAWT) is certainly prone to displaying unstable, dynamic behaviour caused by these additional factors.

  2. Large-Eddy Simulations of Wind Turbine Wakes Subject to Different Atmospheric Stabilities

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Lundquist, J. K.; Lee, S.; Clifton, A.

    2014-12-01

    As a byproduct of energy extraction, wind turbines create a low-speed, turbulent wake that propagate downwind. When wind turbines are situated in a group, as in a wind plant, the interactions of these wakes with other turbines are important because wake effects decrease the efficiency of the wind plant, and they increase mechanical loads on individual turbines. Wakes propagate downstream differently depending on the inflow conditions, and these conditions are heavily dominated by atmospheric stability. For example, we know that wakes are more persistent in stable conditions than in unstable conditions. Also, stable conditions often have significant wind veer which skews wakes laterally. Different levels of turbulence intensity are associated with different atmospheric stability levels, and turbulence intensity acts to diffuse wakes and to cause wake meandering. Wake physics are complex, and to understand them better, a high-resolution representation of the flow is necessary. Measurements are difficult with current sensing equipment because of the sheer size of wakes and the unsteady atmospheric environment in which they are found. Numerical simulations complement measurements and provide a high-resolution representation of the entire three-dimensional, unsteady flow field. In this work, we use large-eddy simulation (LES), the highest fidelity type of computational fluid dynamics (CFD) feasible for high-Reynolds-number wake flow. LES directly resolves the larger, energy-containing turbulent scales and models the effects of the subgrid scales that the computational mesh cannot resolve. Our solver is based on the OpenFOAM open-source CFD toolbox. Turbines are modeled using rotating actuator lines. Here, we present our LES of the wake behind a modern 1.5 MW turbine subject to different inflow atmospheric stability. We will present results of wakes subject to stable (strongly and weakly stable), neutral, and unstable conditions. We are particularly interested in how

  3. Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2016-08-01

    Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.

  4. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2015-03-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric thermal stability on wind-turbine wakes. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulence statistics in the wake region as well as the wake meandering characteristics downwind of the turbine. In particular, the enhanced turbulence level associated with positive buoyancy under the convective condition leads to a relatively larger flow entrainment and, thus, a faster wake recovery. For the particular cases considered in this study, the growth rate of the wake is about 2.4 times larger for the convective case than for the stable one. Consistent with this result, for a given distance downwind of the turbine, wake meandering is also stronger under the convective condition compared with the neutral and stable cases. It is also shown that, for all the stability cases, the growth rate of the wake and wake meandering in the vertical direction is smaller compared with the ones in the lateral direction. This is mainly related to the different turbulence levels of the incoming wind in the different directions, together with the anisotropy imposed by the presence of the ground. It is also found that the wake velocity deficit is well characterized by a modified version of a recently proposed analytical model that is based on mass and momentum conservation and the assumption of a self-similar Gaussian distribution of the velocity deficit. Specifically, using a two-dimensional elliptical (instead of axisymmetric) Gaussian distribution allows to account for the different lateral and vertical growth rates, particularly in the convective case, where the non-axisymmetry of the wake is stronger. Detailed analysis of the resolved turbulent kinetic energy budget in the wake reveals also that thermal stratification considerably affects the magnitude and spatial distribution

  5. Exploring the wakes of large offshore wind farms

    NASA Astrophysics Data System (ADS)

    Emeis, S.; Siedersleben, S.; Lampert, A.; Platis, A.; Bange, J.; Djath, B.; Schulz-Stellenfleth, J.; Neumann, T.

    2016-09-01

    Offshore meteorological characteristics set specific conditions for the operation of offshore wind farms. One specific feature is low turbulence intensity which on the one hand reduces loads on turbines but on the other hand is the reason for much longer turbine and farm wakes than over land. The German Government is presently funding a research project called WIPAFF (Wind PArk Far Field) which heads for the analysis of properties and impacts of offshore wind park far fields. The focus is on the analysis of wind farm wakes, their interaction among each other and their regional climate impact. This is done by in-situ, extensive aircraft and satellite measurements and by operating meso-scale wind field models and an analytical wind farm model.

  6. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface

  7. On the large-scale structure of the turbulent wake of a flat plate

    NASA Technical Reports Server (NTRS)

    Jovic, S.; Ramaprian, B. R.

    1989-01-01

    A simple heat-tagging technique was used to isolate and analyze the large-scale coherent structures present in the two-dimensional wake of a flat plate. The results indicate the presence of these coherent structures even at 250 momentum thicknesses downstream of the trailing edge. These structures have a vortexlike topology and carry a significant amount of the total shear stress. The present results for the flat-plate wake seem to be in general agreement with those that have been obtained in cylinder wakes by other comtemporary investigators using more complex techniques of eduction and signal enhancement.

  8. On the large-scale structures formed by wakes of open cosmic strings

    NASA Technical Reports Server (NTRS)

    Hara, Tetsuya; Morioka, Shoji; Miyoshi, Shigeru

    1990-01-01

    Large-scale structures of the universe have been variously described as sheetlike, filamentary, cellular, bubbles or spongelike. Recently cosmic strings became one of viable candidates for a galaxy formation scenario, and some of the large-scale structures seem to be simply explained by the open cosmic strings. According to this scenario, sheets are wakes which are traces of moving open cosmic strings where dark matter and baryonic matter have accumulated. Filaments are intersections of such wakes and high density regions are places where three wakes intersect almost orthogonally. The wakes formed at t sub eq become the largest surface density among all wakes, where t sub eq is the epoch when matter density equals to radiation density. If we assume that there is one open cosmic string per each horizon, then it can be explained that the typical distances among wakes, filaments and clusters are also approx. 10(exp 2) Mpc. This model does not exclude a much more large scale structure. Open cosmic string may move even now and accumulate cold dark matter after its traces. However, the surface density is much smaller than the ones formed at t sub eq. From this model, it is expected that the typical high density region will have extended features such as six filaments and three sheets and be surrounded by eight empty regions (voids). Here, the authors are mainly concerned with such structures and have made numerical simulations for the formation of such large scale structures.

  9. Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.

    1998-01-01

    Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.

  10. Large-Eddy Simulations and Lidar Measurements of Vortex-Pair Breakup in Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Poole, L. R.; DeCoursey, R. J.; Hansen, G. M.; Hostetler, C. A.; Kent, G. S.

    1998-01-01

    Results of large-eddy simulations of an aircraft wake are compared with results from ground-based lidar measurements made at NASA Langley Research Center during the Subsonic Assessment Near-Field Interaction Flight Experiment field tests. Brief reviews of the design of the field test for obtaining the evolution of wake dispersion behind a Boeing 737 and of the model developed for simulating such wakes are given. Both the measurements and the simulations concentrate on the period from a few seconds to a few minutes after the wake is generated, during which the essentially two-dimensional vortex pair is broken up into a variety of three-dimensional eddies. The model and experiment show similar distinctive breakup eddies induced by the mutual interactions of the vortices, after perturbation by the atmospheric motions.

  11. The effect of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-06-01

    In this study, large-eddy simulation is used to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, tuning-free Lagrangian scale- dependent dynamic models are used to model the subgrid-scale turbulent fluxes, while the turbine-induced forces are parameterized with an actuator-disk model. Emphasis is placed on studying the structure and characteristics of turbine wake in the cases where the incident flow to the turbine has the same mean velocity at the hub height but different thermal stability condition. The simulation results show that the atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, in the convective boundary layer, the wake recovers faster, and the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine compared with the neutral and stable cases.

  12. Large-eddy simulation of propeller wake at design operating conditions

    NASA Astrophysics Data System (ADS)

    Kumar, Praveen; Mahesh, Krishnan

    2016-11-01

    Understanding the propeller wake is crucial for efficient design and optimized performance. The dynamics of the propeller wake are also central to physical phenomena such as cavitation and acoustics. Large-eddy simulation is used to study the evolution of the wake of a five-bladed marine propeller from near to far field at design operating condition. The computed mean loads and phase-averaged flow field show good agreement with experiments. The propeller wake consisting of tip and hub vortices undergoes streamtube contraction, which is followed by the onset of instabilities as evident from the oscillations of the tip vortices. Simulation results reveal a mutual induction mechanism of instability where instead of the tip vortices interacting among themselves, they interact with the smaller vortices generated by the roll-up of the blade trailing edge wake in the near wake. Phase-averaged and ensemble-averaged flow fields are analyzed to explain the flow physics. This work is supported by ONR.

  13. Wind-tunnel modelling of the tip-speed ratio influence on the wake evolution

    NASA Astrophysics Data System (ADS)

    Stein, Victor P.; Kaltenbach, Hans-Jakob

    2016-09-01

    Wind-tunnel measurements on the near-wake evolution of a three bladed horizontal axis wind turbine model (HAWT) in the scale 1:O(350) operating in uniform flow conditions and within a turbulent boundary layer at different tip speed ratios are presented. Operational conditions are chosen to exclude Reynolds number effects regarding the turbulent boundary layer as well as the rotor performance. Triple-wire anemometry is used to measure all three velocity components in the mid-vertical and mid-horizontal plane, covering the range from the near- to the far-wake region. In order to analyse wake properties systematically, power and thrust coefficients of the turbine were measured additionally. It is confirmed that realistic modelling of the wake evolution is not possible in a low-turbulence uniform approach flow. Profiles of mean velocity and turbulence intensity exhibit large deviations between the low-turbulence uniform flow and the turbulent boundary layer, especially in the far-wake region. For nearly constant thrust coefficients differences in the evolution of the near-wake can be identified for tip speed ratios in the range from 6.5 to 10.5. It is shown that with increasing downstream distances mean velocity profiles become indistinguishable whereas for turbulence statistics a subtle dependency on the tip speed ratio is still noticeable in the far-wake region.

  14. Large-eddy simulations of wind farm production and long distance wakes

    NASA Astrophysics Data System (ADS)

    Eriksson, O.; Nilsson, K.; Breton, S.-P.; Ivanell, S.

    2015-06-01

    The future development of offshore wind power will include many wind farms built in the same areas. It is known that wind farms produce long distance wakes, which means that we will see more occasions of farm to farm interaction, namely one wind farm operating in the wake of another wind farm. This study investigates how to perform accurate power predictions on large wind farms and how to assess the long distance wakes generated by these farms. The focus of this paper is the production's and wake's sensitivity to the extension of the grid as well as the turbulence when using Large-eddy simulations (LES) with pregenerated Mann turbulence. The aim is to determine an optimal grid which minimizes blockage effects and ensures constant resolution in the entire wake region at the lowest computational cost. The simulations are first performed in the absence of wind turbines in order to assess how the atmospheric turbulence and wind profile are evolving downstream (up to 12,000 m behind the position where the turbulence is imposed). In the second step, 10 turbines are added in the domain (using an actuator disc method) and their production is analyzed alongside the mean velocities in the domain. The blockage effects are tested using grids with different vertical extents. An equidistant region is used in order to ensure high resolution in the wake region. The importance of covering the entire wake structure inside the equidistant region is analyzed by decreasing the size of this region. In this step, the importance of the lateral size of the Mann turbulence box is also analyzed. In the results it can be seen that the flow is acceptably preserved through the empty domain if a larger turbulence box is used. The relative production is increased (due to blockage effects) for the last turbines using a smaller vertical domain, increased for a lower or narrower equidistant region (due to the smearing of the wake in the stretched area) and decreased when using a smaller turbulence

  15. Preliminary assessment of the vacuum environment in the wake of large space vehicles

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Naumann, R. J.

    1977-01-01

    The vacuum environment in the wake region of presently planned large space vehicles is calculated using simplified models of the particle fluxes from the various sources. The fluxes which are calculated come directly from the ambient, are due to ambient particles backscattered from spacecraft emissions, and are due to self scattering of spacecraft emissions. Using nominal values for the surface emissions, the flux density environment behind a large unmanned craft at 550 km altitude is calculated. Calculations indicate that the flux density on a wake vacuum experiment conducted in the vicinity of the shuttle is substantially greater than that behind unmanned craft.

  16. Investigation of modified AD/RANS models for wind turbine wake predictions in large wind farm

    NASA Astrophysics Data System (ADS)

    Tian, L. L.; Zhu, W. J.; Shen, W. Z.; Sørensen, J. N.; Zhao, N.

    2014-06-01

    Average power losses due to multiple wind turbine wakes in the large offshore wind farm is studied in this paper using properly modified k-ω SST turbulence models. The numerical simulations are carried out by the actuator disc methodology implemented in the flow solver EllipSys3D. In these simulations, the influence of different inflow conditions such as wind direction sectors are considered and discussed. Comparisons with measurements in terms of wake speed ratio and the corresponding power outputs show that the modified turbulence models had significant improvements; especially the SST-Csust model reflects the best ability in predicting the wake defect. The investigations of various inflow angles reveal that the agreement between predicted and measured data is improved for the wider sector case than the narrow case because of the wind direction uncertainty.

  17. Vortex Particle-Mesh methods for large scale LES of aircraft wakes

    NASA Astrophysics Data System (ADS)

    Chatelain, Philippe; Duponcheel, Matthieu; Marichal, Yves; Winckelmans, Grégoire

    2015-11-01

    Vortex methods solve the NS equations in vorticity-velocity formulation. The present Particle-Mesh variant exploits the advantages of a hybrid approach: advection is handled by the particles while the mesh allows the evaluation of the differential operators and the use of fast Poisson solvers (here a Fourier-based solver which allows for unbounded directions and inlet/outlet boundaries). A lifting line approach models the vorticity sources in the flow; its immersed treatment efficiently captures the development of vorticity from thin sheets into 3-D field. Large scale simulations of aircraft wakes (including ``encounter'' cases where a following aircraft flies into the wake) are presented, which also demonstrate the performance of the methodology: the adequate treatment of particle distortion, the high-order discretization, and the multiscale subgrid models allow to capture wake dynamics with minimal spurious dispersion and diffusion.

  18. The impact of wakes on power output at large offshore wind farms

    NASA Astrophysics Data System (ADS)

    Barthelmie, R. J.; Frandsen, S.; Hansen, K.; Schepers, G.; Rados, K.; Schlez, W.; Cabezon, D.; Jensen, L.; Neckelmann, S.

    2010-12-01

    The size of planned offshore wind farms is in the range 100 MW to 1 GW requiring tens to hundreds of wind turbines typically arranged in a large array. As wind farms offshore increase in size, one of the research challenges is to model interactions between the individual turbines, the atmosphere and neighbouring turbines to accurately predict power output before wind farm construction in addition to evaluation during the operation phase. The aim of the research described (part of the UpWind project) is to improve wind farm modelling and address the issue of providing more accurate power output predictions accounting for wind turbine wakes. DONG Energy and Vattenfall have allowed data from a number of cases studies to be used in this project. Detailed case studies of power losses due to wakes at the large wind farms at Nysted and Horns Rev have been analysed and are presented. A focus of the data analysis has been to understand the importance of turbulence and atmospheric stability at these offshore sites. It is evident that the magnitude of wake losses is primarily driven by wind speed but that signals from turbine spacing, turbulence and atmospheric stability can be determined. The case studies are simulated with a range of wind farm and computational fluid dynamics (CFD) models. The UpWind project presents a unique platform for model evaluation because the co-operation of a number of groups means that more models can be evaluated on standardised cases. Results shown indicate power losses due to wakes can be modelled, provided that the standard models are subject to some modifications. We also present some of the first full simulations of large offshore wind farms using CFD. Despite this progress, wake modelling of large wind farms is still subject to an unacceptably high degree of uncertainty requiring further work to understand the physical flow processes within and downwind of large wind farms.

  19. Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2014-05-01

    In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the

  20. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  1. Effect of Large Finite-Size Wind Farms and Their Wakes on Atmospheric Boundary Layer Dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Ka Ling; Porté-Agel, Fernando

    2016-04-01

    Through the use of large-eddy simulation, the effect of large finite-size wind farms and their wakes on conventionally-neutral atmospheric boundary layer (ABL) dynamics and power extraction is investigated. Specifically, this study focuses on a wind farm that comprises 25 rows of wind turbines, spanning a distance of 10 km. It is shown that large wind farms have a significant effect on internal boundary layer growth both inside and downwind of the wind farms. If the wind farm is large enough, the internal boundary layer interacts with the thermally-stratified free atmosphere above, leading to a modification of the ABL height and power extraction. In addition, it is shown that large wind farms create extensive wakes, which could have an effect on potential downwind wind farms. Specifically, for the case considered here, a power deficit as large as 8% is found at a distance of 10 km downwind from the wind farm. Furthermore, this study compares the wind farm wake dynamics for cases in which the conventionally neutral ABLs are driven by a unidirectional pressure gradient and Coriolis forces.

  2. Large Eddy Simulation of Wake Vortices in the Convective Boundary Layer

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Han, Jongil; Zhang, Jing; Ding, Feng; Arya, S. Pal; Proctor, Fred H.

    2000-01-01

    The behavior of wake vortices in a convective boundary layer is investigated using a validated large eddy simulation model. Our results show that the vortices are largely deformed due to strong turbulent eddy motion while a sinusoidal Crow instability develops. Vortex rising is found to be caused by the updrafts (thermals) during daytime convective conditions and increases with increasing nondimensional turbulence intensity eta. In the downdraft region of the convective boundary layer, vortex sinking is found to be accelerated proportional to increasing eta, with faster speed than that in an ideal line vortex pair in an inviscid fluid. Wake vortices are also shown to be laterally transported over a significant distance due to large turbulent eddy motion. On the other hand, the decay rate of the, vortices in the convective boundary layer that increases with increasing eta, is larger in the updraft region than in the downdraft region because of stronger turbulence in the updraft region.

  3. Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterizations

    NASA Astrophysics Data System (ADS)

    Porté-Agel, F.; Wu, Y.-T.; Lu, H.; Chamorro, L.

    2010-09-01

    Large-eddy simulation (LES) offers a great potential to study the effects of turbulent atmospheric boundary layer flow on the performance of wind turbines and wind farms. The accuracy of the simulations, however, hinges on our ability to parameterize subgrid-scale (SGS) turbulent fluxes as well as turbine-induced forces. In this study, we investigate the performance of LES in simulations of wind-turbine wakes in neutrally stratified boundary layer flows. The subgrid-scale stress tensor is parameterized using the scale-dependent Lagrangian dynamic model (Stoll and Porte-Agel, 2006). This model optimizes the local value of the Smagorinsky coefficient based on the dynamics of the resolved scales. The turbine-induced lift and drag forces are parameterized using two types of models: an actuator disk model (ADM) that distributes the force loading uniformly on the rotor disk; and an actuator line model (ALM) that distributes the forces on lines that follow the position of the blades. Simulation results are compared to wind-tunnel measurements collected with hot-wire anemometry in the wake of a miniature 3-blade wind turbine at the St. Anthony Falls Laboratory atmospheric boundary layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements. The ALM is better able to capture vortical structures such as helicoidal tip vortices, which are induced by the blades in the near-wake region. Our results also show that accounting for rotation in the ADM leads to a more realistic turbine wake structure.

  4. Large-eddy simulation of wind-turbine wakes: Evaluation of turbine parameterizations

    NASA Astrophysics Data System (ADS)

    Porte-Agel, Fernando; Wu, Yu-Tin; Lu, Hao; Chamorro, Leonardo

    2010-05-01

    Large-eddy simulation (LES) offers a great potential to study the effects of turbulent atmospheric boundary layer flow on the performance of wind turbines and wind farms. The accuracy of the simulations, however, hinges on our ability to parameterize subgrid-scale (SGS) turbulent fluxes as well as turbine-induced forces. In this study, we investigate the performance of LES in simulations of wind-turbine wakes in neutrally stratified boundary layer flows. The subgrid-scale stress tensor is parameterized using the scale-dependent Lagrangian dynamic model (Stoll and Porte-Agel, 2006). This model optimizes the local value of the Smagorinsky coefficient based on the dynamics of the resolved scales. The turbine-induced lift and drag forces are parameterized using two types of models: an actuator disk model (ADM) that distributes the force loading uniformly on the rotor disk; and an actuator line model (ALM) that distributes the forces on lines that follow the position of the blades. Simulation results are compared to wind-tunnel measurements collected with hot-wire anemometry in the wake of a miniature 3-blade wind turbine at the St. Anthony Falls Laboratory atmospheric boundary layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements. The ALM is better able to capture vortical structures such as helicoidal tip vortices, which are induced by the blades in the near-wake region. Our results also show that accounting for rotation in the ADM leads to a more realistic turbine wake structure.

  5. Chaotic dynamics of large-scale structures in a turbulent wake

    NASA Astrophysics Data System (ADS)

    Varon, Eliott; Eulalie, Yoann; Edwige, Stephie; Gilotte, Philippe; Aider, Jean-Luc

    2017-03-01

    The dynamics of a three-dimensional (3D) bimodal turbulent wake downstream of a square-back Ahmed body are experimentally studied in a wind tunnel through high-frequency wall-pressure probes mapping the rear of the model and a horizontal two-dimensional (2D) velocity field. The barycenters of the pressure distribution over the rear part of the model and the intensity recirculation are found highly correlated. Both described the most energetic large-scale structures dynamics, confirming the relation between the large-scale recirculation bubble and its wall-pressure footprint. Focusing on the pressure, its barycenter trajectory has a stochastic behavior but its low-frequency dynamics exhibit the same characteristics as a weak strange chaotic attractor system, with two well-defined attractors. The low-frequency dynamics associated to the large-scale structures are then analyzed. The largest Lyapunov exponent is first estimated, leading to a low positive value characteristic of strange attractors and weak chaotic systems. Afterwards, analyzing the autocorrelation function of the timeseries, we compute the correlation dimension, larger than two. The signal is finally transformed and analyzed as a telegraph signal, showing that its dynamics correspond to a quasirandom telegraph signal. This is the first demonstration that the low-frequency dynamics of a turbulent 3D wake are not a purely stochastic process but rather a weak chaotic process exhibiting strange attractors. From the flow control point of view, it also opens the path to more simple closed-loop flow-control strategies aiming at the stabilization of the wake and the control of the dynamics of the wake barycenter.

  6. Large-scale coherent structures in fractal-generated, axisymmetric wakes

    NASA Astrophysics Data System (ADS)

    Nedic, Jovan; Supponen, Outi; Ganapathisubramani, Bharathram; Vassilicos, John Christos

    2013-11-01

    The coherence and energy of large-scale structures in turbulent axisymmetric wakes are known to play a role on the drag coefficient of the body. Specifically, there is an expectation that drag can be reduced by reducing the energy of the vortex shedding. We use fractal plates which have been shown to have higher drag coefficients than square plates and disks with the same frontal area (Nedic, Ganapathisubramani & Vassilicos FDR 2013), yet show that the energy of the large-scale vortices shed from these plates is reduced by 15% to 60% compared to non-fractal plates. Fractal plates can reduce wake size and alter dissipation scalings [see DFD13-2013-000126] and the relation CD =CVCɛ between the drag coefficient and coefficients of wake volume and average turbulent dissipation rate can be used to explore consequences on drag. Furthermore, the azimuthal mode associated with the vortex shedding (m = 1) is still found to be dominant for all plates, however its coherence is slightly altered by the fractals, whilst mode m = 2 has been dramatically altered.

  7. Aeroelastic behavior of twist-coupled HAWT blades

    SciTech Connect

    Lobitz, D.W.; Veers, P.S.

    1998-12-31

    As the technology for horizontal axis wind turbines (HAWT) development matures, more novel techniques are required for the capture of additional amounts of energy, alleviation of loads and control of the rotor. One such technique employs the use of an adaptive blade that could sense the wind velocity or rotational speed in some fashion and accordingly modify its aerodynamic configuration to meet a desired objective. This could be achieved in either an active or passive manner, although the passive approach is much more attractive due to its simplicity and economy. As an example, a blade design might employ coupling between bending and/or extension, and twisting so that, as it bends and extends due to the action of the aerodynamic and inertial loads, it also twists modifying the aerodynamic performance in some way. These performance modifications also have associated aeroelastic effects, including effects on aeroelastic instability. To address the scope and magnitude of these effects a tool has been developed for investigating classical flutter and divergence of HAWT blades. As a starting point, an adaptive version of the uniform Combined Experiment Blade will be investigated. Flutter and divergence airspeeds will be reported as a function of the strength of the coupling and also be compared to those of generic blade counterparts.

  8. Study on wake structure characteristics of a slotted micro-ramp with large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Dong, Xiangrui; Chen, Yaohui; Dong, Gang; Liu, Yixin

    2017-06-01

    In this paper, a novel slotted ramp-type micro vortex generator (slotted micro-ramp) for flow separation control is simulated in the supersonic flow of Ma = 1.5, based on large eddy simulation combined with the finite volume method. The wake structure characteristics and control mechanisms of both slotted and standard micro-ramps are presented and discussed. The results show that the wake of standard micro-ramp includes a primary counter-rotating streamwise vortex pair, a train of vortex rings, and secondary vortices. The slotted micro-ramp has more complicated wake structures, which contain a confluent counter-rotating streamwise vortex pair and additional streamwise vortices, with the same rotation generated by slot and the vortex rings enveloping the vortex pair. The additional vortices generated by the slot of the micro-ramp can mix with the primary counter-rotating vortex pair, extend the life time, and strengthen the vortex intensity of primary vortex pair. Moreover, the slot can effectively alleviate, or even eliminate the backflow and decrease the profile drag induced by the standard micro-ramp, therefore improving the efficiency of separation control.

  9. Design, analysis and testing of small, affordable HAWT rotors

    NASA Astrophysics Data System (ADS)

    Pricop, Mihai V.; Niculescu, Mihai L.; Cojocaru, Marius G.; Barsan, Dorin

    2012-09-01

    The paper presents affordable technologies dedicated to design, CAD modelling and manufacturing of the small-medium HAWT rotors. Three numerical tools are developed: blade/rotor design, blade modelling for industry CATIA(CATScript) and blade modelling for small scale developers. Numerical analysis of the rotors is accomplished for both performance and noise level estimation using XFLOW (LES) and an in-house code (URANS). Results are presented for a 5KW rotor at the design point only, since computations are expensive. Developement examples are included as two rotors are designed, manufactured and tested for 1.5 and 5KW. A third one, rated for 20KW is under developement. Basic testing results are also included.

  10. Evaluation of Large-Scale Wing Vortex Wakes from Multi-Camera PIV Measurements in Free-Flight Laboratory

    NASA Astrophysics Data System (ADS)

    Carmer, Carl F. v.; Heider, André; Schröder, Andreas; Konrath, Robert; Agocs, Janos; Gilliot, Anne; Monnier, Jean-Claude

    Multiple-vortex systems of aircraft wakes have been investigated experimentally in a unique large-scale laboratory facility, the free-flight B20 catapult bench, ONERA Lille. 2D/2C PIV measurements have been performed in a translating reference frame, which provided time-resolved crossvelocity observations of the vortex systems in a Lagrangian frame normal to the wake axis. A PIV setup using a moving multiple-camera array and a variable double-frame time delay has been employed successfully. The large-scale quasi-2D structures of the wake-vortex system have been identified using the QW criterion based on the 2D velocity gradient tensor ∇H u, thus illustrating the temporal development of unequal-strength corotating vortex pairs in aircraft wakes for nondimensional times tU0/b≲45.

  11. Large Eddy Simulation of Aircraft Wake Vortices in a Homogeneous Atmospheric Turbulence: Vortex Decay and Descent

    NASA Technical Reports Server (NTRS)

    Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    The effects of ambient turbulence on decay and descent of aircraft wake vortices are studied using a validated, three-dimensional: large-eddy simulation model. Numerical simulations are performed in order to isolate the effect of ambient turbulence on the wake vortex decay rate within a neutrally-stratified atmosphere. Simulations are conducted for a range of turbulence intensities, by injecting wake vortex pairs into an approximately homogeneous and isotropic turbulence field. The decay rate of the vortex circulation increases clearly with increasing ambient turbulence level, which is consistent with field observations. Based on the results from the numerical simulations, simple decay models are proposed as functions of dimensionless ambient turbulence intensity (eta) and dimensionless time (T) for the circulation averaged over a range of radial distances. With good agreement with the numerical results, a Gaussian type of vortex decay model is proposed for weak turbulence: while an exponential type of Tortex decay model can be applied for strong turbulence. A relationship for the vortex descent based on above vortex decay model is also proposed. Although the proposed models are based on simulations assuming neutral stratification, the model predictions are compared to Lidar vortex measurements observed during stable, neutral, and unstable atmospheric conditions. In the neutral and unstable atmosphere, the model predictions appear to be in reasonable agreement with the observational data, while in the stably-stratified atmosphere, they largely underestimate the observed circulation decay with consistent overestimation of the observed vortex descent. The underestimation of vortex decay during stably-stratified conditions suggests that stratification has an important influence on vortex decay when ambient levels of turbulence are weak.

  12. Large-eddy simulation of wind turbine wake interactions on locally refined Cartesian grids

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2014-11-01

    Performing high-fidelity numerical simulations of turbulent flow in wind farms remains a challenging issue mainly because of the large computational resources required to accurately simulate the turbine wakes and turbine/turbine interactions. The discretization of the governing equations on structured grids for mesoscale calculations may not be the most efficient approach for resolving the large disparity of spatial scales. A 3D Cartesian grid refinement method enabling the efficient coupling of the Actuator Line Model (ALM) with locally refined unstructured Cartesian grids adapted to accurately resolve tip vortices and multi-turbine interactions, is presented. Second order schemes are employed for the discretization of the incompressible Navier-Stokes equations in a hybrid staggered/non-staggered formulation coupled with a fractional step method that ensures the satisfaction of local mass conservation to machine zero. The current approach enables multi-resolution LES of turbulent flow in multi-turbine wind farms. The numerical simulations are in good agreement with experimental measurements and are able to resolve the rich dynamics of turbine wakes on grids containing only a small fraction of the grid nodes that would be required in simulations without local mesh refinement. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the National Science Foundation under Award number NSF PFI:BIC 1318201.

  13. Large eddy simulation of the gas-particle turbulent wake flow.

    PubMed

    Luo, Kun; Jin, Han-hui; Fan, Jian-ren; Cen, Ke-fa

    2004-01-01

    To find out the detailed characteristics of the coherent structures and associated particle dispersion in free shear flow, large eddy simulation method was adopted to investigate a two-dimensional particle-laden wake flow. The well-known Sub-grid Scale mode introduced by Smagorinsky was employed to simulate the gas flow field and Lagrangian approach was used to trace the particles. The results showed that the typical large-scale vortex structures exhibit a stable counter rotating arrangement of opposite sign, and alternately form from the near wall region, shed and move towards the downstream positions of the wake with the development of the flow. For particle dispersion, the Stokes number of particles is a key parameter. At the Stokes numbers of 1.4 and 3.8 the particles concentrate highly in the outer boundary regions. While the particles congregate densely in the vortex core regions at the Stokes number of 0.15, and the particles at Stokes number of 15 assemble in the vortex braid regions and the rib regions between the adjoining vortex structures.

  14. Wind flow characteristics in the wakes of large wind turbines. Volume 1: Analytical model development

    NASA Technical Reports Server (NTRS)

    Eberle, W. R.

    1981-01-01

    A computer program to calculate the wake downwind of a wind turbine was developed. Turbine wake characteristics are useful for determining optimum arrays for wind turbine farms. The analytical model is based on the characteristics of a turbulent coflowing jet with modification for the effects of atmospheric turbulence. The program calculates overall wake characteristics, wind profiles, and power recovery for a wind turbine directly in the wake of another turbine, as functions of distance downwind of the turbine. The calculation procedure is described in detail, and sample results are presented to illustrate the general behavior of the wake and the effects of principal input parameters.

  15. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    NASA Astrophysics Data System (ADS)

    Sessarego, Matias; Ramos-García, Néstor; Shen, Wen Zhong; Nørkær Sørensen, Jens

    2016-09-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor design by incorporating a higher-fidelity free-wake panel aero-elastic coupling code called MIRAS-FLEX. The optimization procedure includes a series of design load cases and a simple structural design code. Due to the heavy MIRAS-FLEX computations, a surrogate-modeling approach is applied to mitigate the overall computational cost of the optimization. Improvements in cost of energy, annual energy production, maximum flap-wise root bending moment, and blade mass were obtained for the NREL 5MW baseline wind turbine.

  16. Large-scale structures in the wake of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Yamane, Ryuichiro; Mochimaru, Yoshihiro; Yagita, Miki; Tanaka, Yutaka; Shirakashi, Masataka

    1986-11-01

    The authors have reported (1984) that the two-dimensional Karman vortices behind a circular cylinder with diameter d are broken into lengths of about 8(d) and they form chains of spoon-shaped vortex couples. In the present experiment, disks were attached to the cylinder so that the Karman vortices were artificially cut to fixed lengths of 4(d), 6(d), 8(d), and 10(d). The structures with 8(d) were most stable forming a vortex chain with least irregularities, and the wake was much wider than without the disks, while the neighboring vortices with a length 4(d) merged to a scale of 8(d). These results show that the length 8(d) is a unique scale in the deformation of the Karman vortices to a three-dimensional large scale structure.

  17. Effects of the canopy created velocity inflection in the wake development in a large wind turbine array

    NASA Astrophysics Data System (ADS)

    Agafonova, Oxana; Avramenko, Anna; Chaudhari, Ashvinkumar; Hellsten, Antti

    2016-09-01

    Large Eddy Simulations (LES) are carried out using OpenFOAM to investigate the canopy created velocity inflection in the wake development of a large wind turbine array. Simulations are performed for two cases with and without forest separately. Results of the simulations are further compared to clearly show the changes in the wake and turbulence structure due to the forest. Moreover, the actual mechanical shaft power produced by a single turbine in the array is calculated for both cases. Aerodynamic efficiency and power losses due to the forest are discussed as well.

  18. Arrangements for enhanced measurements of a large turbine near-wake using LiDAR from the nacelle

    NASA Astrophysics Data System (ADS)

    Trujillo, J. J.; Rettenmeier, A.; Schlipf, D.

    2008-05-01

    New LiDAR techniques are being tested and developed to support the development of large offshore wind turbines. Our interest in this paper is concentrated in wake measurements; therefore, a pulsed standard LiDAR is adapted for fullscale wind field measurements from the nacelle of a large wind turbine. We show the conceptual framework for planned adaptations to a Windcube® LiDAR for operation at the nacelle of a 5 MW wind turbine. The standard scanning mode is to be modified to properly obtain downstream and also upstream wind speeds. The wind field measurements are intended for verification of models for near-wake wind speed, wake meandering and new predictive control estrategies.

  19. A Complete Procedure for Predicting and Improving the Performance of HAWT's

    NASA Astrophysics Data System (ADS)

    Al-Abadi, Ali; Ertunç, Özgür; Sittig, Florian; Delgado, Antonio

    2014-06-01

    A complete procedure for predicting and improving the performance of the horizontal axis wind turbine (HAWT) has been developed. The first process is predicting the power extracted by the turbine and the derived rotor torque, which should be identical to that of the drive unit. The BEM method and a developed post-stall treatment for resolving stall-regulated HAWT is incorporated in the prediction. For that, a modified stall-regulated prediction model, which can predict the HAWT performance over the operating range of oncoming wind velocity, is derived from existing models. The model involves radius and chord, which has made it more general in applications for predicting the performance of different scales and rotor shapes of HAWTs. The second process is modifying the rotor shape by an optimization process, which can be applied to any existing HAWT, to improve its performance. A gradient- based optimization is used for adjusting the chord and twist angle distribution of the rotor blade to increase the extraction of the power while keeping the drive torque constant, thus the same drive unit can be kept. The final process is testing the modified turbine to predict its enhanced performance. The procedure is applied to NREL phase-VI 10kW as a baseline turbine. The study has proven the applicability of the developed model in predicting the performance of the baseline as well as the optimized turbine. In addition, the optimization method has shown that the power coefficient can be increased while keeping same design rotational speed.

  20. Large-eddy simulation of the diurnal variation of wake flows in a finite-size wind farm

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Sharifi, Ahmad; Porté-Agel, Fernando

    2015-06-01

    In this study, large-eddy simulation (LES) is used to study the evolution of the wind-turbine wakes and their effects on power losses inside an idealized finite-size wind farm in the course of a full diurnal cycle. In the LES, turbulent subgrid-scale stresses are modeled using tuning-free Lagrangian scale-dependent dynamic models, while the turbine-induced forces are parameterized using a dynamic actuator disk model with rotation. The simulation results show a strong effect of atmospheric stability on the wind farm wakes and associated power losses. During the night, the relatively low turbulence intensity of the ambient ABL flow results in a relatively slow rate of entrainment of momentum into the wake and, consequently, a slow wake recovery. In contrast, during the day the positive buoyancy flux and associated turbulence production lead to a relatively high turbulence level in the background ABL flow, which enhances turbulent mixing and wake recovery. As a result, the averaged power deficit in the wind farm is found to increase with increasing thermal stability. In particular for that day, the averaged power deficit increased from 28% under the most convective condition to about 57% under the most stable condition.

  1. A Numerical Study of Self-Similarity in a Turbulent Plane Wake Using Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip; Rogers, Michael M.

    1996-01-01

    Turbulent wakes are known to develop self-similarly sufficiently far downstream from obstacles that generate them. It has long been assumed that the spreading rate of the wake in the self-similar regime is independent of the details of the body generating the wake, being dependent only on the total drag (or momentum deficit). This assumption seems to be in contradiction with some recent experiments. In this study we attempt to complement these experimental investigations through a numerical study of a time-developing wake. A numerical study has the advantage of eliminating many of the uncontrolled factors present in experiments and allowing precise control of initial conditions. Large-eddy simulations employing the recently developed dynamic localization model are used to extend previous results from direct numerical simulations. The large-eddy simulation results are compared to the direct numerical simulation database, wherever such comparisons are feasible, as a check of the method. Like the experiments, the large-eddy simulations suggest that non-unique self-similar states, characterized by different spreading rates and turbulent statistics, are possible and that they can be maintained for significant time periods. The study also demonstrates the predictive capability of the dynamic localization subgrid model.

  2. A Numerical Study of Self-Similarity in a Turbulent Plane Wake Using Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    Ghosal, Sandip; Rogers, Michael M.

    1996-01-01

    Turbulent wakes are known to develop self-similarly sufficiently far downstream from obstacles that generate them. It has long been assumed that the spreading rate of the wake in the self-similar regime is independent of the details of the body generating the wake, being dependent only on the total drag (or momentum deficit). This assumption seems to be in contradiction with some recent experiments. In this study we attempt to complement these experimental investigations through a numerical study of a time-developing wake. A numerical study has the advantage of eliminating many of the uncontrolled factors present in experiments and allowing precise control of initial conditions. Large-eddy simulations employing the recently developed dynamic localization model are used to extend previous results from direct numerical simulations. The large-eddy simulation results are compared to the direct numerical simulation database, wherever such comparisons are feasible, as a check of the method. Like the experiments, the large-eddy simulations suggest that non-unique self-similar states, characterized by different spreading rates and turbulent statistics, are possible and that they can be maintained for significant time periods. The study also demonstrates the predictive capability of the dynamic localization subgrid model.

  3. Large Eddy Simulation of Vertical Axis Wind Turbines

    NASA Astrophysics Data System (ADS)

    Hezaveh, Seyed Hossein

    Due to several design advantages and operational characteristics, particularly in offshore farms, vertical axis wind turbines (VAWTs) are being reconsidered as a complementary technology to horizontal axial turbines (HAWTs). However, considerable gaps remain in our understanding of VAWT performance since they have been significantly less studied than HAWTs. This thesis examines the performance of isolated VAWTs based on different design parameters and evaluates their characteristics in large wind farms. An actuator line model (ALM) is implemented in an atmospheric boundary layer large eddy simulation (LES) code, with offline coupling to a high-resolution blade-scale unsteady Reynolds-averaged Navier-Stokes (URANS) model. The LES captures the turbine-to-farm scale dynamics, while the URANS captures the blade-to-turbine scale flow. The simulation results are found to be in good agreement with existing experimental datasets. Subsequently, a parametric study of the flow over an isolated VAWT is carried out by varying solidities, height-to-diameter aspect ratios, and tip speed ratios. The analyses of the wake area and power deficits yield an improved understanding of the evolution of VAWT wakes, which in turn enables a more informed selection of turbine designs for wind farms. One of the most important advantages of VAWTs compared to HAWTs is their potential synergistic interactions that increase their performance when placed in close proximity. Field experiments have confirmed that unlike HAWTs, VAWTs can enhance and increase the total power production when placed near each other. Based on these experiments and using ALM-LES, we also present and test new approaches for VAWT farm configuration. We first design clusters with three turbines then configure farms consisting of clusters of VAWTs rather than individual turbines. The results confirm that by using a cluster design, the average power density of wind farms can be increased by as much as 60% relative to regular

  4. Large Structure in the Far Wakes of Two-Dimensional Bluff Bodies,

    DTIC Science & Technology

    1984-01-01

    top to bottom of the test section through the tunnel walls. The top end of the wire passed through a No. 27G hypodermic needle and then into a 3.2 mmn...dimensional locally-parallel Inviscid linear stability theory is adequate to explain the growth of downstream struc- ture. Namely, measured prominent...frequencies In the cylinder wake are in close agreement with those predicted by the theory , when streamwise growth of wake O width is taken into account

  5. Attenuation of the wake of a sphere in an intense incident turbulence with large length scales

    NASA Astrophysics Data System (ADS)

    Amoura, Zouhir; Roig, Véronique; Risso, Frédéric; Billet, Anne-Marie

    2010-05-01

    We report an investigation of the wake of a sphere immersed in a uniform turbulent flow for sphere Reynolds numbers ranging from 100 to 1000. An original experimental setup has been designed to generate a uniform flow convecting an isotropic turbulence. At variance with previous works, the integral length scale of the turbulence is of the same order as the sphere diameter and the turbulence intensity is large. In consequence, the most intense turbulent eddies are capable of influencing the flow in the close vicinity of the sphere. Except in the attached region downstream of the sphere where the perturbation of the mean velocity is larger than the standard deviation of the incident turbulence, the flow is controlled by the incident turbulence. The distortion of the turbulence while the flow goes round the sphere leads to an increase in the longitudinal fluctuation and a decrease in the transversal one. The attenuation of the transversal fluctuations is still significant at 30 radii downstream of the sphere whereas the longitudinal fluctuations relax more rapidly toward the incident value. The more striking result however concerns the evolution of the mean velocity defect with the distance x from the sphere. It decays as x-2 and scales with the standard deviation of the incident turbulence instead of scaling with the mean incident velocity.

  6. Comparison of the Dynamic Wake Meandering Model, Large-Eddy Simulation, and Field Data at the Egmond aan Zee Offshore Wind Plant: Preprint

    SciTech Connect

    Churchfield, M. J.; Moriarty, P. J.; Hao, Y.; Lackner, M. A.; Barthelmie, R.; Lundquist, J.; Oxley, G. S.

    2014-12-01

    The focus of this work is the comparison of the dynamic wake meandering model and large-eddy simulation with field data from the Egmond aan Zee offshore wind plant composed of 36 3-MW turbines. The field data includes meteorological mast measurements, SCADA information from all turbines, and strain-gauge data from two turbines. The dynamic wake meandering model and large-eddy simulation are means of computing unsteady wind plant aerodynamics, including the important unsteady meandering of wakes as they convect downstream and interact with other turbines and wakes. Both of these models are coupled to a turbine model such that power and mechanical loads of each turbine in the wind plant are computed. We are interested in how accurately different types of waking (e.g., direct versus partial waking), can be modeled, and how background turbulence level affects these loads. We show that both the dynamic wake meandering model and large-eddy simulation appear to underpredict power and overpredict fatigue loads because of wake effects, but it is unclear that they are really in error. This discrepancy may be caused by wind-direction uncertainty in the field data, which tends to make wake effects appear less pronounced.

  7. Spatial large-eddy simulations of contrail formation in the wake of an airliner

    NASA Astrophysics Data System (ADS)

    Paoli, R.

    2015-12-01

    Contrails and contrail-cirrus are the most uncertain contributors to aviation radiative forcing. In order to reduce this uncertainty one needs to gain more knowledge on the physicochemical processes occurring in the aircraft plume, which eventually lead to the transformation of contrails into cirrus. To that end, the accurate prediction of the number of activated particles and their spatial and size distributions at the end of the jet regime may be helpful to initialize simulations in the following vortex regime. We present the results from spatial large-eddy simulations (LES) of contrail formation in the near-field wake of a generic (but full-scale) airliner that is representative of those used in long-haul flights in current fleets. The flow around the aircraft has been computed using a RANS code taking into account the full geometry that include the engines and the aerodynamic set-up for cruise conditions. The data have been reconstructed at a plane closely behind the trailing edge of the wing and used as inflow boundary conditions for the LES. We employ fully compressible 3D LES coupled to Lagrangian microphysical module that tracks parcels of ice particles individually. The ice microphysical model is simple yet it contains the basic thermodynamic ingredients to model soot activation and water vapor deposition. Compared to one-dimensional models or even RANS, LES allow for more accurate predictions of the mixing between exhaust and ambient air. Hence, the number of activated particles and the ice growth rate can be also determined with higher accuracy. This is particularly crucial for particles located at the edge of the jet that experience large gradients of temperature and humidity. The results of the fully coupled LES (where the gas phase and the particles are solved together) are compared to offline simulations where the ice microphysics model is run using thermodynamic data from pre-calculated particle trajectories extracted from inert LES (where ice

  8. Large Eddy Simulation of Wind Turbine Wake Dynamics in the Stable Boundary Layer Using the Weather Research and Forecasting Model

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Kosovic, B.; Mirocha, J. D.; Lundquist, J. K.

    2014-12-01

    To thoroughly verify the actuator disk model recently implemented in WRF for large eddy simulation (LES) of wind turbine wakes, simulations of various types of turbines and atmospheric conditions must be compared to full-scale field measurements of the real atmosphere. Here, numerical simulations are compared to nacelle-based scanning lidar measurements taken in stable atmospheric conditions during a field campaign conducted at a wind farm in the western United States. Using several wake characteristics—such as the velocity deficit, centerline location, and wake width—as metrics for model verification, the simulations show good agreement with the observations. Notably, the average velocity deficit was seen to be quite high in both the experiment and simulation, resulting from a low average wind speed and therefore high average turbine thrust coefficient. Moreover, new features—namely rotor tilt and drag from the nacelle and tower—were added to the existing actuator disk model in WRF-LES. Compared to the rotor, the effect of the tower and nacelle on the flow is relatively small but nevertheless important for an accurate representation of the entire turbine. Adding rotor tilt to the model causes the vertical location of the wake center to shift upward. Continued advancement of the actuator disk model in WRF-LES will help lead to optimized turbine siting and controls at wind farms.

  9. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2

    PubMed Central

    Zorick, Todd; Mandelkern, Mark A.

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness. PMID:26696860

  10. Discrete Scale Invariance of Human Large EEG Voltage Deflections is More Prominent in Waking than Sleep Stage 2.

    PubMed

    Zorick, Todd; Mandelkern, Mark A

    2015-01-01

    Electroencephalography (EEG) is typically viewed through the lens of spectral analysis. Recently, multiple lines of evidence have demonstrated that the underlying neuronal dynamics are characterized by scale-free avalanches. These results suggest that techniques from statistical physics may be used to analyze EEG signals. We utilized a publicly available database of fourteen subjects with waking and sleep stage 2 EEG tracings per subject, and observe that power-law dynamics of critical-state neuronal avalanches are not sufficient to fully describe essential features of EEG signals. We hypothesized that this could reflect the phenomenon of discrete scale invariance (DSI) in EEG large voltage deflections (LVDs) as being more prominent in waking consciousness. We isolated LVDs, and analyzed logarithmically transformed LVD size probability density functions (PDF) to assess for DSI. We find evidence of increased DSI in waking, as opposed to sleep stage 2 consciousness. We also show that the signatures of DSI are specific for EEG LVDs, and not a general feature of fractal simulations with similar statistical properties to EEG. Removing only LVDs from waking EEG produces a reduction in power in the alpha and beta frequency bands. These findings may represent a new insight into the understanding of the cortical dynamics underlying consciousness.

  11. Toward Understanding Wake Vortices and Atmospheric Turbulence Interactions Using Large-Eddy Simulation

    NASA Technical Reports Server (NTRS)

    DeCroix, David; Lin, Yuh-Lang; Arya, S. Pal; Kao, C.-T.; Shen, S.

    1997-01-01

    The vortices produced by an aircraft in flight are a complex phenomena created from a 'sheet of vorticity' leaving the trailing edge of the aircraft surfaces. This sheet tends to roll-up into two counter-rotating vortices. After a few spans downstream of the aircraft, the roll-up process is complete and the vortex pair may be characterized in a simple manner for modeling purposes. Our research will focus on what happens to these post roll-up vortices in the vicinity of an airport terminal. As the aircraft wake vortices descend, they are transported by the air mass which they are embedded and are decayed by both internal and external processes. In the vicinity of the airport, these external influences are usually due to planetary boundary layer (PBL) turbulence. Using large-eddy simulation (LES), one may simulate a variety of PBL conditions. In the LES method, turbulence is generated in the PBL as a response to surface heat flux, horizontal pressure gradient, wind shear, and/or stratification, and may produce convective or unstably stratified, neutral, or stably stratified PBL's. Each of these PBL types can occur during a typical diurnal cycle of the PBL. Thus it is important to be able to characterize these conditions with the LES method. Once this turbulent environment has been generated, a vortex pair will be introduced and the interactions are observed. The objective is to be able to quantify the PBL turbulence vortex interaction and be able to draw some conclusions of vortex behavior from the various scale interactions. This research is ongoing, and we will focus on what has been accomplished to date and the future direction of this research. We will discuss the model being used, show results that validate its use in the PBL, and present a nested-grid method proposed to analyze the entire PBL and vortex pair simultaneously.

  12. Large Eddy Simulation of wind turbine wakes: detailed comparisons of two codes focusing on effects of numerics and subgrid modeling

    NASA Astrophysics Data System (ADS)

    Martínez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-01

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  13. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    SciTech Connect

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to be unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.

  14. Large Eddy Simulation of Wind Turbine Wakes. Detailed Comparisons of Two Codes Focusing on Effects of Numerics and Subgrid Modeling

    DOE PAGES

    Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles

    2015-06-18

    In this work we report on results from a detailed comparative numerical study from two Large Eddy Simulation (LES) codes using the Actuator Line Model (ALM). The study focuses on prediction of wind turbine wakes and their breakdown when subject to uniform inflow. Previous studies have shown relative insensitivity to subgrid modeling in the context of a finite-volume code. The present study uses the low dissipation pseudo-spectral LES code from Johns Hopkins University (LESGO) and the second-order, finite-volume OpenFOAMcode (SOWFA) from the National Renewable Energy Laboratory. When subject to uniform inflow, the loads on the blades are found to bemore » unaffected by subgrid models or numerics, as expected. The turbulence in the wake and the location of transition to a turbulent state are affected by the subgrid-scale model and the numerics.« less

  15. Coalescing Wind Turbine Wakes

    DOE PAGES

    Lee, S.; Churchfield, M.; Sirnivas, S.; ...

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the globalmore » meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions« less

  16. Coalescing Wind Turbine Wakes

    SciTech Connect

    Lee, S.; Churchfield, M.; Sirnivas, S.; Moriarty, P.; Nielsen, F. G.; Skaare, B.; Byklum, E.

    2015-06-18

    A team of researchers from the National Renewable Energy Laboratory and Statoil used large-eddy simulations to numerically investigate the merging wakes from upstream offshore wind turbines. Merging wakes are typical phenomena in wind farm flows in which neighboring turbine wakes consolidate to form complex flow patterns that are as yet not well understood. In the present study, three 6-MW turbines in a row were subjected to a neutrally stable atmospheric boundary layer flow. As a result, the wake from the farthest upstream turbine conjoined the downstream wake, which significantly altered the subsequent velocity deficit structures, turbulence intensity, and the global meandering behavior. The complexity increased even more when the combined wakes from the two upstream turbines mixed with the wake generated by the last turbine, thereby forming a "triplet" structure. Although the influence of the wake generated by the first turbine decayed with downstream distance, the mutated wakes from the second turbine continued to influence the downstream wake. Two mirror-image angles of wind directions that yielded partial wakes impinging on the downstream turbines yielded asymmetric wake profiles that could be attributed to the changing flow directions in the rotor plane induced by the Coriolis force. In conclusion, the turbine wakes persisted for extended distances in the present study, which is a result of low aerodynamic surface roughness typically found in offshore conditions

  17. Transitional flow in the wake of a moderate to large height cylindrical roughness element

    NASA Astrophysics Data System (ADS)

    Plogmann, B.; Würz, W.; Krämer, E.

    2015-12-01

    The effect of an isolated, cylindrical roughness on the stability of an airfoil boundary layer has been studied based on particle image velocimetry and hot-wire anemometry. The investigated roughness elements range from a sub-critical to a super-critical behavior with regard to the critical roughness Reynolds number. For the sub-critical case, the nonlinear disturbance growth in the near wake is governed by oblique Tollmien-Schlichting (TS) type modes. Further downstream, these disturbance modes are, however, damped with the mean flow stabilization and no dominant modes persist in the far wake. By contrast, in the transitional configuration the disturbance growth is increased, but still associated with a TS-type instability in the near-wake centerline region of the low-aspect (height-to-diameter) ratio element. That is, the disturbances in the centerline region show a similar behavior as known for 2D elements, whereas in the outer spanwise domain a Kelvin-Helmholtz (KH) type, shear-layer instability is found, as previously reported for larger aspect ratio isolated elements. With increasing height and, thereby, aspect ratio of the roughness, the KH-type instability domain extends toward the centerline and, accordingly, the TS-type instability domain decreases. For high super-critical cases, transition is already triggered in the wall-normal and spanwise shear layers upstream and around the roughness. In the immediate wake, periodic shear-layer disturbances roll up into a—for isolated elements characteristic—shedding of vortices, which was not present at the lower roughness Reynolds number cases due to the decreased aspect ratio and, thereby, different instability mechanism.

  18. A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines.

    PubMed

    Churchfield, Matthew J; Li, Ye; Moriarty, Patrick J

    2013-02-28

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally periodic precursor simulation is performed to create turbulent flow data. Then those data are used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modelled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. We found that staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement. For example, using a larger precursor domain would better capture elongated turbulent structures, and including salinity and temperature equations would account for density stratification and its effect on turbulence. Additionally, the wall shear stress modelling could be improved, and more array configurations could be examined.

  19. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2012-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used as inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modelling, and the examination of more array configurations.

  20. Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines: Preprint

    SciTech Connect

    Churchfield, M. J.; Li, Y.; Moriarty, P. J.

    2011-07-01

    This paper presents our initial work in performing large-eddy simulations of tidal turbine array flows. First, a horizontally-periodic precursor simulation is performed to create turbulent flow data. Then that data is used to determine the inflow into a tidal turbine array two rows deep and infinitely wide. The turbines are modeled using rotating actuator lines, and the finite-volume method is used to solve the governing equations. In studying the wakes created by the turbines, we observed that the vertical shear of the inflow combined with wake rotation causes lateral wake asymmetry. Also, various turbine configurations are simulated, and the total power production relative to isolated turbines is examined. Staggering consecutive rows of turbines in the simulated configurations allows the greatest efficiency using the least downstream row spacing. Counter-rotating consecutive downstream turbines in a non-staggered array shows a small benefit. This work has identified areas for improvement, such as the use of a larger precursor domain to better capture elongated turbulent structures, the inclusion of salinity and temperature equations to account for density stratification and its effect on turbulence, improved wall shear stress modeling, and the examination of more array configurations.

  1. Wake Flow Simulation of a Vertical Axis Wind Turbine Under the Influence of Wind Shear

    NASA Astrophysics Data System (ADS)

    Mendoza, Victor; Goude, Anders

    2017-05-01

    The current trend of the wind energy industry aims for large scale turbines installed in wind farms. This brings a renewed interest in vertical axis wind turbines (VAWTs) since they have several advantages over the traditional Horizontal Axis Wind Tubines (HAWTs) for mitigating the new challenges. However, operating VAWTs are characterized by complex aerodynamics phenomena, presenting considerable challenges for modeling tools. An accurate and reliable simulation tool for predicting the interaction between the obtained wake of an operating VAWT and the flow in atmospheric open sites is fundamental for optimizing the design and location of wind energy facility projects. The present work studies the wake produced by a VAWT and how it is affected by the surface roughness of the terrain, without considering the effects of the ambient turbulence intensity. This study was carried out using an actuator line model (ALM), and it was implemented using the open-source CFD library OpenFOAM to solve the governing equations and to compute the resulting flow fields. An operational H-shaped VAWT model was tested, for which experimental activity has been performed at an open site north of Uppsala-Sweden. Different terrains with similar inflow velocities have been evaluated. Simulated velocity and vorticity of representative sections have been analyzed. Numerical results were validated using normal forces measurements, showing reasonable agreement.

  2. Wind-Tunnel Simulation of the Wake of a Large Wind Turbine in a Stable Boundary Layer: Part 2, the Wake Flow

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Pascheke, Frauke

    2014-04-01

    Measurements have been made in the wake of a model wind turbine in both a neutral and a stable atmospheric boundary layer, in the EnFlo stratified-flow wind tunnel, between 0.5 and 10 rotor diameters from the turbine, as part of an investigation of wakes in offshore winds. In the stable case the velocity deficit decreased more slowly than in the neutral case, partly because the boundary-layer turbulence levels are lower and the consequentially reduced level of mixing, an `indirect' effect of stratification. A correlation for velocity deficit showed the effect of stratification to be the same over the whole of the measured extent, following a polynomial form from about five diameters. After about this distance (for the present stratification) the vertical growth of the wake became almost completely suppressed, though with an increased lateral growth; the wake in effect became `squashed', with peaks of quantities occurring at a lower height, a `direct' effect of stratification. Generally, the Reynolds stresses were lower in magnitude, though the effect of stratification was larger in the streamwise fluctuation than on the vertical fluctuations. The vertical heat flux did not change much from the undisturbed level in the first part of the wake, but became much larger in the later part, from about five diameters onwards, and exceeded the surface level at a point above hub height.

  3. Large-Eddy Simulation of Waked Turbines in a Scaled Wind Farm Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; McLean, D.; Campagnolo, F.; Yu, T.; Bottasso, C. L.

    2017-05-01

    The aim of this paper is to present the numerical simulation of waked scaled wind turbines operating in a boundary layer wind tunnel. The simulation uses a LES-lifting-line numerical model. An immersed boundary method in conjunction with an adequate wall model is used to represent the effects of both the wind turbine nacelle and tower, which are shown to have a considerable effect on the wake behavior. Multi-airfoil data calibrated at different Reynolds numbers are used to account for the lift and drag characteristics at the low and varying Reynolds conditions encountered in the experiments. The present study focuses on low turbulence inflow conditions and inflow non-uniformity due to wind tunnel characteristics, while higher turbulence conditions are considered in a separate study. The numerical model is validated by using experimental data obtained during test campaigns conducted with the scaled wind farm facility. The simulation and experimental results are compared in terms of power capture, rotor thrust, downstream velocity profiles and turbulence intensity.

  4. A large-domain approach for calculating ship boundary layers and wakes and wave fields for nonzero Froude number

    SciTech Connect

    Tahara, Y.; Stern, F.

    1996-09-01

    A large-domain approach is developed for calculating ship boundary layers and wakes and wave fields for nonzero Froude number. The Reynolds-averaged Navier-Stokes and continuity equations are solved with the Baldwin-Lomax turbulence model, exact nonlinear kinematic and approximate dynamic free-surface boundary conditions, and a body/free-surface conforming grid. The results are validated through comparisons with data for the Series 60 C{sub B} = 0.6 ship model at low and high Froude numbers and results of a precursory interactive approach. Both approaches yield satisfactory results; however, the large-domain results indicate improved resolution of the flow close to the hull and wake centerplane and of the Froucle number differences due to near-wall turbulence modeling and non-linear free-surface boundary conditions. Additional evaluation is provided through discussion of the recent CFD Workshop Tokyo 1994, where both methods were among the best. Last, some concluding remarks are made. 20 refs., 7 figs.

  5. Modeling turbine wakes and power losses within the Horns Rev offshore wind farm using large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Porte-Agel, Fernando

    2013-04-01

    A recently-developed large-eddy simulations (LES) framework is implemented to predict multiple wake flows and the associated power losses within the Horns Rev offshore wind farm under near-neutral stability conditions. A tuning-free Lagrangian scale-dependent dynamic subgrid-scale (SGS) model is used for the parametrization of the SGS stresses. The turbine-generated power outputs and the turbine-induced forces (e.g., thrust, lift, drag) are parameterized using two models: (a) the traditional actuator-disk model without rotation (ADM-NR), which uses the 1D momentum theory to relate the power output and the thrust force with a representative velocity over the rotor (e.g., the disk-averaged velocity); and (b) the actuator-disk model with rotation (ADM-R), which adopts blade element theory to calculate the lift and drag forces (that produce thrust, rotor shaft torque, and power) based on the local blade and flow characteristics. In general, the predicted power outputs obtained using the ADM-R are in good agreement with observed power data from the Horns Rev wind farm. The ADM-NR tends to underestimate the power output. A similar under-prediction is obtained using industry-standard wind-farm models such as the Wind Atlas Analysis and Application Program (WAsP). Simulations using different inflow conditions show that the mean wind direction has a strong effect on the spatial distributions of the time-averaged velocity and the turbulence intensity within the farm. These, in turn, affect the power output and the fatigue loads on the turbines. When the prevailing wind direction is parallel to the turbine rows (i.e., a full wake condition), the velocity deficit and the power losses are largest, and the turbulence intensity levels are highest and have a symmetric pattern (dual-peak at hub height) on both sides of the turbine wakes. A detailed analysis of the turbulence kinetic energy budget in the full wake condition shows an important effect of the increased turbulence level

  6. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  7. Disaster, Deprivation and Death: Large but delayed infant mortality in the wake of Filipino tropical cyclones

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.; Hsiang, S. M.

    2011-12-01

    Tropical cyclones are some of the most disastrous and damaging of climate events, and estimates of their destructive potential abound in the natural and social sciences. Nonetheless, there have been few systematic estimates of cyclones' impact on children's health. This is concerning because cyclones leave in their wake a swath of asset losses and economic deprivation, both known to be strong drivers of poor health outcomes among children. In this paper we provide a household-level estimate of the effect of tropical cyclones on infant mortality in the Philippines, a country with one of the most active cyclone climatologies in the world. We reconstruct historical cyclones with detailed spatial and temporal resolution, allowing us to estimate the multi-year effects of cyclones on individuals living in specific locations. We combine the cyclone reconstruction with woman-level fertility and mortality data from four waves of the Filipino Demographic and Health Survey, providing birth histories for over 55,000 women. In multiple regressions that control for year and region fixed effects as well as intra-annual climate variation, we find that there is a pronounced and robust increase in female infant mortality among poor families in the 12-24 months after storms hit. The estimated mortality rate among this demographic subgroup is much larger than official mortality rates reported by the Filipino government immediately after storms, implying that much of a cyclone's human cost arrives well after the storm has passed. We find that high infant mortality rates are associated with declines in poor families' income and expenditures, including consumption of food and medical services, suggesting that the mechanism by which these deaths are effected may be economic deprivation. These results indicate that a major health and welfare impact of storms has been thus far overlooked, but may be easily prevented through appropriately targeted income support policies.

  8. The Long distance wake behind Horns Rev I studied using large eddy simulations and a wind turbine parameterization in WRF

    NASA Astrophysics Data System (ADS)

    Eriksson, O.; Baltscheffsky, M.; Breton, S.-P.; Söderberg, S.; Ivanell, S.

    2017-05-01

    The aim of the present paper is to obtain a better understanding of long distance wakes generated by wind farms as a first step towards a better understanding of farm to farm interaction. The Horns Rev I (HR) wind farm is considered for this purpose, where comparisons are performed between microscale Large Eddy Simulations (LES) using an Actuator Disc model (ACD), mesoscale simulations in the Weather Research and Forecasting Model (WRF) using a wind turbine parameterization, production data as well as wind measurements in the wind farm wake. The LES is manually set up according to the wind conditions obtained from the mesoscale simulation as a first step towards a meso/microscale coupling. The LES using an ACD are performed in the EllipSys3D code. A forced boundary layer (FBL) approach is used to introduce the desired wind shear and the atmospheric turbulence field from the Mann model. The WRF uses a wind turbine parameterization based on momentum sink. To make comparisons with the LESs and the site data possible an idealized setup of WRF is used in this study. The case studied here considers a westerly wind direction sector (at hub height) of 270 ± 2.5 degrees and a wind speed of 8 ± 0.5 m/s. For both the simulations and the site data a neutral atmosphere is considered. The simulation results for the relative production as well as the wind speed 2 km and 6 km downstream from the wind farm are compared to site data. Further comparisons between LES and WRF are also performed regarding the wake recovery and expansion. The results are also compared to an earlier study of HR using LES as well as an earlier comparison of LES and WRF. Overall the results in this study show a better agreement between LES and WRF as well as better agreement between simulations and site data. The procedure of using the profile from WRF as inlet to LES can be seen as a simplified coupling of the models that could be developed further to combine the methods for cases of farm to farm

  9. An experimental investigation on wind turbine aeromechanics and wake interferences among multiple wind turbines

    NASA Astrophysics Data System (ADS)

    Ozbay, Ahmet

    A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV

  10. Operational model updating of spinning finite element models for HAWT blades

    NASA Astrophysics Data System (ADS)

    Velazquez, Antonio; Swartz, R. Andrew; Loh, Kenneth J.; Zhao, Yingjun; La Saponara, Valeria; Kamisky, Robert J.; van Dam, Cornelis P.

    2014-04-01

    Structural health monitoring (SHM) relies on collection and interrogation of operational data from the monitored structure. To make this data meaningful, a means of understanding how damage sensitive data features relate to the physical condition of the structure is required. Model-driven SHM applications achieve this goal through model updating. This study proposed a novel approach for updating of aero-elastic turbine blade vibrational models for operational horizontal-axis wind turbines (HAWTs). The proposed approach updates estimates of modal properties for spinning HAWT blades intended for use in SHM and load estimation of these structures. Spinning structures present additional challenges for model updating due to spinning effects, dependence of modal properties on rotational velocity, and gyroscopic effects that lead to complex mode shapes. A cyclo-stationary stochastic-based eigensystem realization algorithm (ERA) is applied to operational turbine data to identify data-driven modal properties including frequencies and mode shapes. Model-driven modal properties are derived through modal condensation of spinning finite element models with variable physical parameters. Complex modes are converted into equivalent real modes through reduction transformation. Model updating is achieved through use of an adaptive simulated annealing search process, via Modal Assurance Criterion (MAC) with complex-conjugate modes, to find the physical parameters that best match the experimentally derived data.

  11. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE PAGES

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; ...

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  12. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  13. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  14. Evaluation of dynamic subgrid-scale models and wind-turbine models in large-eddy simulations of wind-turbine wakes in boundary layer flows

    NASA Astrophysics Data System (ADS)

    Wu, Y.-T.; Porté-Agel, F.

    2010-09-01

    Large-eddy simulation (LES), coupled with a wind turbine model, is used to investigate the characteristics of wind-turbine wakes in a neutrally stratified boundary layer flow. Three different subgrid-scale (SGS) models for the SGS stresses are tested: (1) the Smagorinsky model, (2) the Lagrangian dynamic model, and (3) the scaledependent Lagrangian dynamic model (Stoll and Porté-Agel, 2006). The turbine-induced forces (lift and drag) are parameterized using blade element momentum theory. Three wind-turbine models, using different force integration over temporal and spatial resolutions, are applied: (a) the standard actuator-disk model without rotation (ADMNR), (b) the actuator-disk model with rotation (ADM-R), and (c) the actuator line model (ALM). Simulation results obtained with all SGS models together with wind turbine models are compared to wind-tunnel measurements collected with hot-wire and cold-wire anemometry in the wake of a miniature 3-blade wind turbine at the St. Anthony Falls Laboratory atmospheric boundary layer wind tunnel. In general, the scale-dependent Lagrangian dynamic model is able to account (without tuning) for the local changes in the eddy- viscosity model coefficient at different positions in the wake. It can also capture the scale dependence of this coefficient associated with flow anisotropy in regions of the flow with strong mean shear. The characteristics of the wakes simulated with the proposed LES framework using the scale-dependent Lagrangian dynamic model together with the ADM-R and the ALM are in good agreement with the measurements. However, the ALM is better able to capture vortical structures induced by the blades in the near-wake region.

  15. Evaluation of dynamic subgrid-scale models and wind-turbine models in large-eddy simulations of wind-turbine wakes in boundary layer flows

    NASA Astrophysics Data System (ADS)

    Wu, Yu Ting; Porte-Agel, Fernando

    2010-05-01

    Large-eddy simulation (LES), coupled with a wind turbine model, is used to investigate the characteristics of wind-turbine wakes in a neutrally stratified boundary layer flow. Three different subgrid-scale (SGS) models for the SGS stresses are tested: (1) the Smagorinsky model, (2) the Lagrangian dynamic model, and (3) the scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, 2006). The turbine-induced forces (lift and drag) are parameterized using blade element momentum theory. Three wind-turbine models, using different force integration over temporal and spatial resolutions, are applied: (a) the standard actuator-disk model without rotation (ADM-NR), (b) the actuator-disk model with rotation (ADM-R), and (c) the actuator line model (ALM). Simulation results obtained with all SGS models together with wind turbine models are compared to wind-tunnel measurements collected with hot-wire and cold-wire anemometry in the wake of a miniature 3-blade wind turbine at the St. Anthony Falls Laboratory atmospheric boundary layer wind tunnel. In general, the scale-dependent Lagrangian dynamic model is able to account (without tuning) for the local changes in the eddy- viscosity model coefficient at different positions in the wake. It can also capture the scale dependence of this coefficient associated with flow anisotropy in regions of the flow with strong mean shear. The characteristics of the wakes simulated with the proposed LES framework using the scale-dependent Lagrangian dynamic model together with the ADM-R and the ALM are in good agreement with the measurements. However, the ALM is better able to capture vortical structures induced by the blades in the near-wake region.

  16. Examples of the Influence of Turbine Wakes on Downwind Power Output, Surface Wind Speed, Turbulence and Flow Convergence in Large Wind Farms

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Doorenbos, R. K.

    2014-12-01

    We have analyzed turbine power and concurrent wind speed, direction and turbulence data from surface 10-m flux towers in a large wind farm for experiments during four summer periods as part of the Crop Wind Energy Experiment (CWEX). We use these data to analyze surface differences for a near-wake (within 2.5 D of the turbine line), far wake (17 D downwind of the turbine line), and double wake (impacted by two lines of turbines about 34 D downwind of the first turbine line) locations. Composites are categorized by10 degree directional intervals and three ambient stability categories as defined by Rajewski et al. (2013): neutral (|z/L|<0.05), stable (z/L>0.05) and unstable (z/L<-0.05), where z is the height of the measurement and L is the Monin-Obhukov length. The dominant influence of the turbines is under stably stratified conditions (i. e., mostly at night). A 25% to 40% increase in mean wind speed occurs when turbine wakes are moving over the downwind station at a distance of 2.8 D and 5.4 D (D = fan diameter). For the double wake condition (flux station leeward of two lines of turbines) we find a daytime (unstable conditions) speed reduction of 20% for southerly wind, but for nighttime (stable conditions) the surface speeds are enhancedby 40-60% for SSW-SW winds. The speedup is reduced as wind directions shift to the west. We interpret these speed variations as due to the rotation of the wake and interaction (or not) with higher speed air above the rotor layer in highly sheared nocturnal low-level jet conditions. From a cluster of flux stations and three profiling lidars deployed within and around a cluster of turbines in 2013 (CWEX-13) we found evidence of mesoscale influences. In particular, surface convergence (wind direction deflection of 10-20 degrees) was observed during periods of low nighttime winds (hub-height winds of 4-6 m/s) with power reduction of 50-75%. This is consistent with a similar range of deflection observed from a line of turbines in CWEX

  17. Comparison of the far wake behind dual rotor and dual disk configurations

    NASA Astrophysics Data System (ADS)

    Okulov, V. L.; Mikkelsen, R. F.; Naumov, I. V.; Litvinov, I. V.; Gesheva, E.; Sørensen, J. N.

    2016-09-01

    There is an increasing interest in studying the development of far wakes behind two or more interacting wind turbines in order to determine the influence of wake interaction in relation to the design of wind farms. The focus of this experimental study is to understand and describe the resulting wake features for two rotors subjected to different operating and spatial conditions. As a part of this, a comparison with the wake development behind two disks replacing the rotor models was performed to determine the difference between the two wake systems. LDA and Stereo PIV experiments were carried out to study the development of far wakes behind configurations of dual HAWT wind turbine rotors and dual circular disks. The setups were placed in the middle of a water flume. The initial flow in the flume is subjected to a very low turbulence level, limiting the influence of all external disturbances in order to focus the study to the inherent wake instability. As a result of the investigation, we obtained decays of profiles for the velocity deficit and turbulent pulsations in the far wakes behind both dual rotor and dual disk configurations. By using regression techniques to fit the obtained velocity profiles the experimental data were approximated by identical analytical models and compared to each other. An identical rational dependence with the same powers, but with different coefficients, was found for the two configurations.

  18. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  19. Simulations of Large Temperature Fluctuations on the Lee Side of a Mountain due to Interactions between an Orographic Wake and a Cold Air Pool

    NASA Astrophysics Data System (ADS)

    Anderson-Connolly, A.; Chow, F. K.; Hoch, S.

    2016-12-01

    Large-eddy simulations are performed with the Weather Research and Forecasting (WRF) model to aid the understanding of temperature fluctuations observed on the lee slope of Utah's Granite Peak during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project. The observed temperature fluctuations are characterized by a drop in near-surface temperature of several Kelvin followed by partial recovery of temperature within about a half hour. These fluctuations can occur several times in a given night and are accompanied by bursts of turbulent kinetic energy in the otherwise calm nocturnal boundary layer. Dynamical explanations of these large temperature fluctuations focus on the role of upstream blocking in the formation of vertical axis eddies in the orographic wake (Jeglum et al., J. Appl. Meteor. Climatol., submitted). In addition to the orographic wake, a cold air pool must be present for the vertical axis eddies to effect large temperature fluctuations that are distinguishable from other sources of temperature variation. The ability of the model to reproduce this cold air pool is sensitive to the initial state of the soil moisture field and the parameterization of the soil thermal conductivity. Additionally, the model is sensitive to choice in turbulence closure and numerical configurations including resolution, domain size, and the steepness of model topography. With an appropriate setup, the WRF model results show good qualitative agreement with the MATERHORN observation data.

  20. Measurement of Unsteady Blade Surface Pressure on a Single Rotation Large Scale Advanced Prop-fan with Angular and Wake Inflow at Mach Numbers from 0.02 to 0.70

    NASA Technical Reports Server (NTRS)

    Bushnell, P.; Gruber, M.; Parzych, D.

    1988-01-01

    Unsteady blade surface pressure data for the Large-Scale Advanced Prop-Fan (LAP) blade operation with angular inflow, wake inflow and uniform flow over a range of inflow Mach numbers of 0.02 to 0.70 is provided. The data are presented as Fourier coefficients for the first 35 harmonics of shaft rotational frequency. Also presented is a brief discussion of the unsteady blade response observed at takeoff and cruise conditions with angular and wake inflow.

  1. PREFACE: Wake Conference 2015

    NASA Astrophysics Data System (ADS)

    Barney, Andrew; Nørkær Sørensen, Jens; Ivanell, Stefan

    2015-06-01

    The 44 papers in this volume constitute the proceedings of the 2015 Wake Conference, held in Visby on the island of Gotland in Sweden. It is the fourth time this conference has been held. The Wake Conference series started in Visby, where it was held in 2009 and 2011. In 2013 it took place in Copenhagen where it was combined with the International Conference on Offshore Wind Energy and Ocean Energy. In 2015 it is back where it started in Visby, where it takes place at Uppsala University Campus Gotland, June 9th-11th. The global yearly production of electrical energy by wind turbines has grown tremendously in the past decade and it now comprises more than 3% of the global electrical power consumption. Today the wind power industry has a global annual turnover of more than 50 billion USD and an annual average growth rate of more than 20%. State-of-the-art wind turbines have rotor diameters of up to 150 m and 8 MW installed capacity. These turbines are often placed in large wind farms that have a total production capacity corresponding to that of a nuclear power plant. In order to make a substantial impact on one of the most significant challenges of our time, global warming, the industry's growth has to continue for a decade or two yet. This in turn requires research into the physics of wind turbine wakes and wind farms. Modern wind turbines are today clustered in wind farms in which the turbines are fully or partially influenced by the wake of upstream turbines. As a consequence, the wake behind the wind turbines has a lower mean wind speed and an increased turbulence level, as compared to the undisturbed flow outside the farm. Hence, wake interaction results in decreased total production of power, caused by lower kinetic energy in the wind, and an increase in the turbulence intensity. Therefore, understanding the physical nature of the vortices and their dynamics in the wake of a turbine is important for the optimal design of a wind farm. This conference is aimed

  2. Power augmentation of a horizontal axis wind turbine using a Mie type tip vane: Velocity distribution around the tip of a HAWT blade with and without a Mie type tip vane

    SciTech Connect

    Shimizu, Y.; Imamura, H.; Matsumura, S.; Maeda, T.; Bussel, G.J.W. van

    1995-11-01

    Power augmentation and velocity measurements in the wake of a HAWT blade with Mie type tip vane (a tip device on the main blade) are presented. The maximum C{sub p} with a Mie type tip vane is found to be 15% larger than that without the Mie type tip vane. Power augmentation caused by the Mie type tip vane is mainly due to the reduction of tip vortex and the diffusing effect by the Mie type tip vane. The effects of a Mie type tip vane are quantitatively verified by the velocity distributions around the tip of the main blade. The velocity distribution was measured by three-dimensional hot wire probes, which measured the axial, radial, and tangential velocity components. The circulation distributions along the main blade with a Mie type tip vane and without a Mie type tip vane were obtained from the measured velocity distributions. A strong reduction of bound vorticity is found for the main blade tip without the Mie type tip vane, whereas the bound vorticity persists on the main blade tip with the Mie type tip vane.

  3. Analytical study on different blade-shape design of HAWT for wasted kinetic energy recovery system (WKERS)

    NASA Astrophysics Data System (ADS)

    Goh, J. B.; Jamaludin, Z.; Jafar, F. A.; Mat Ali, M.; Mokhtar, M. N. Ali; Tan, C. H.

    2017-06-01

    Wasted kinetic energy recovery system (WKERS) is a wind renewable gadget installed above a cooling tower outlet to harvest the discharged wind for electrical regeneration purpose. The previous WKERS is operated by a horizontal axis wind turbine (HAWT) with delta blade design but the performance is still not at the optimum level. Perhaps, a better blade-shape design should be determined to obtain the optimal performance, as it is believed that the blade-shape design plays a critical role in HAWT. Hence, to determine a better blade-shape design for a new generation of WKERS, elliptical blade, swept blade and NREL Phase IV blade are selected for this benchmarking process. NREL Phase IV blade is a modern HAWT’s blade design by National Renewable Energy Laboratory (NREL) research lab. During the process of benchmarking, Computational Fluid Dynamics (CFD) analysis was ran by using SolidWorks design software, where all the designs are simulated with linear flow simulation. The wind speed in the simulation is set at 10.0 m/s, which is compatible with the average wind speed produced by a standard size cooling tower. The result is obtained by flow trajectories of air motion, surface plot and cut plot of the applied blade-shape. Besides, the aspect ratio of each blade is calculated and included as one of the reference in the comparison. Hence, the final selection of the best blade-shape design will bring to the new generation of WKERS.

  4. Effects of blade bending on aerodynamic control of fluctuating loads on teetered HAWT rotors

    SciTech Connect

    Eggers, A.J. Jr.; Ashley, H.; Rock, S.M.; Chaney, K.; Digumarthi, R.

    1996-11-01

    Active aerodynamic control, in the form of closed-loop actuation of blade-tip ailerons or all-movable blades, is investigated as a means of increasing the structural fatigue life of HAWT rotors. The rotor considered is upwind and teetered, with two blades of diameter 29.2 m., fiberglass construction and other properties representative of modern light-weight construction. The paper begins with a review of prior work which studied the problem for an essentially rigid structure. For that and the present research, two loading conditions were invoked: exposure to a Rayleigh distribution of operating winds with vertical shear and a 15 percent superimposed spectrum of turbulence; and occasional exposure to 62 m/s hurricanes. Accounted for herein is the effect of flatwise bending flexibility on the loads spectra of root flatwise bending moment, thrust, and torque (both open loop and closed loop). Using Miner`s rule, the moments are converted to fatigue lives. With aerodynamic control, RMS flatwise moments for the flexible blade in turbulence are found to be less than {1/2} of those without control. At a fixed blade weight of 540 kg when hurricane loads are added, the aileron-controlled blade is designed by that limit-load condition. In contrast, the all-movable blade can be feather controlled in the high wind so that its life is dominated by turbulent loads. Simplified fatigue analysis permits weight reductions to be estimated which yield controlled blades capable of 30 years` operation with a safety factor of 11. The resulting weights are about 400 kg for the aileron-controlled blade, and 230 kg for the all-movable blade. However, such light-weight rotors require attention to other design considerations, such as start-stop cycles. Apart from limit loads, the methods of analysis are linearized (locally for aerodynamic loads). It follows that the results are likely to be meaningful in terms of comparative, rather than absolute, values of fatigue life and weight.

  5. Near wakes of advanced turbopropellers

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.; Patrick, W. P.

    1989-01-01

    The flow in the wake of a model single rotation Prop-Fan rotor operating in a wind tunnel was traversed with a hot-wire anemometer system designed to determine the 3 periodic velocity components. Special data acquisition and data reduction methods were required to deal with the high data frequency, narrow wakes, and large fluctuating air angles in the tip vortex region. The model tip helical Mach number was 1.17, simulating the cruise condition. Although the flow field is complex, flow features such as viscous velocity defects, vortex sheets, tip vortices, and propagating acoustic pulses are clearly identified with the aid of a simple analytical wake theory.

  6. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  7. A stochastic wind turbine wake model based on new metrics for wake characterization: A stochastic wind turbine wake model based on new metrics for wake characterization

    SciTech Connect

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; Churchfield, Matthew J.

    2016-08-04

    Understanding the detailed dynamics of wind turbine wakes is critical to predicting the performance and maximizing the efficiency of wind farms. This knowledge requires atmospheric data at a high spatial and temporal resolution, which are not easily obtained from direct measurements. Therefore, research is often based on numerical models, which vary in fidelity and computational cost. The simplest models produce axisymmetric wakes and are only valid beyond the near wake. Higher-fidelity results can be obtained by solving the filtered Navier-Stokes equations at a resolution that is sufficient to resolve the relevant turbulence scales. This work addresses the gap between these two extremes by proposing a stochastic model that produces an unsteady asymmetric wake. The model is developed based on a large-eddy simulation (LES) of an offshore wind farm. Because there are several ways of characterizing wakes, the first part of this work explores different approaches to defining global wake characteristics. From these, a model is developed that captures essential features of a LES-generated wake at a small fraction of the cost. The synthetic wake successfully reproduces the mean characteristics of the original LES wake, including its area and stretching patterns, and statistics of the mean azimuthal radius. The mean and standard deviation of the wake width and height are also reproduced. This preliminary study focuses on reproducing the wake shape, while future work will incorporate velocity deficit and meandering, as well as different stability scenarios.

  8. Ionospheric plasma flow over large high-voltage space platforms. I - Ion-plasma-time scale interactions of a plate at zero angle of attack. II - The formation and structure of plasma wake

    NASA Technical Reports Server (NTRS)

    Wang, J.; Hastings, D. E.

    1992-01-01

    The paper presents the theory and particle simulation results for the ionospheric plasma flow over a large high-voltage space platform at a zero angle of attack and at a large angle of attack. Emphasis is placed on the structures in the large, high-voltage regime and the transient plasma response on the ion-plasma time scale. Special consideration is given to the transient formation of the space-charge wake and its steady-state structure.

  9. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel

    NASA Astrophysics Data System (ADS)

    Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya

    2017-04-01

    The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.

  10. Preliminary results from the dynamic response testing of the Howden 330-kw HAWT (horizontal-axis wind turbine)

    SciTech Connect

    Hock, S M; Hausfeld, T E; Hampson, G; Thresher, R W

    1987-10-01

    As part of the Department of Energy (DOE) Cooperative Field Test Program, Southern California Edison (SCE) and the Solar Energy Research Institute (SERI) performed a comprehensive dynamic response test on the 330-kW, horizontal-axis wind turbine (HAWT) manufactured by the James Howden Company. This paper presents a preliminary analysis of some data from the test. The data were analyzed using different statistical approaches. First, the mean turbine operating conditions were analyzed using the method of bins. In addition, azimuth averaging was used to separate the deterministic responses from the stochastic responses. The results presented include comparisons of mean power and load versus wind speed. Deterministic rotor-bending loads are plotted as a function of blade azimuth position. Auto-spectral density plots are also computed for the stochastic portion of the rotor blade root-bending moments to determine their dynamic responses to turbulent wind inputs. 2 refs., 14 figs., 5 tabs.

  11. Wake fields and wake field acceleration

    SciTech Connect

    Bane, K.L.F.; Wilson, P.B.; Weiland, T.

    1984-12-01

    In this lecture we introduce the concepts of wake fields and wake potentials, examine some basic properties of these functions, show how they can be calculated, and look briefly at a few important applications. One such application is wake field acceleration. The wake field accelerator is capable of producing the high gradients required for future very high energy e/sup +/e/sup -/ linear colliders. The principles of wake field acceleration, and a brief description of experiments in progress in this area, are presented in the concluding section. 40 references, 27 figures.

  12. Evolution of Rotor Wake in Swirling Flow

    NASA Technical Reports Server (NTRS)

    El-Haldidi, Basman; Atassi, Hafiz; Envia, Edmane; Podboy, Gary

    2000-01-01

    A theory is presented for modeling the evolution of rotor wakes as a function of axial distance in swirling mean flows. The theory, which extends an earlier work to include arbitrary radial distributions of mean swirl, indicates that swirl can significantly alter the wake structure of the rotor especially at large downstream distances (i.e., for moderate to large rotor-stator spacings). Using measured wakes of a representative scale model fan stage to define the mean swirl and initial wake perturbations, the theory is used to predict the subsequent evolution of the wakes. The results indicate the sensitivity of the wake evolution to the initial profile and the need to have complete and consistent initial definition of both velocity and pressure perturbations.

  13. PIV and Hotwire Measurement and Analysis of Tip Vortices and Turbulent Wake Generated by a Model Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Green, D.; Tan, Y. M.; Chamorro, L. P.; Arndt, R.; Sotiropoulos, F.; Sheng, J.

    2011-12-01

    Understanding vortical flow structures and turbulence in the wake flow behind a Horizontal Axis Wind Turbine (HAWT) has widespread applications in efficient blade design. Moreover, the knowledge of wake-turbine interactions allows us to devise optimal operational parameters, such as the spatial allocation and control algorithms of wind turbines, for a densely populated wind farm. To understand the influence of tip vortices on energy containing mean flow and turbulence, characteristics of vortical structures and turbulence must be quantified thoroughly. In this study, we conduct phase-locked Particle Image Velocimetry (PIV) measurements of the flow before and after a model HAWT, which is located in a zero-pressure gradient wind tunnel with a cross section of 1.7 × 1.7 m and a test section of 16 m in length. A three-blade model HAWT with a diameter of 605 mm and tip-speed ratio of 5 is used. PIV images are recorded by a 2048 × 2048 CCD camera and streamed at 6 Hz continuously; and phased locked with the passage of the blade at its vertical position. Each PIV measurement covers a 0.13 × 0.13 m2 sample area with the spatial resolution of 63 μm and a vector spacing of 0.5 mm. All experiments are conducted at the free-stream wind speed of 10 m/s. Flow fields at thirty consecutive downstream locations up to six rotor diameters and 144 mid chord lengths are measured. At each location, we obtain at least 10,000 instantaneous PIV realizations or 20,000 images. Three different configurations: single, dual, and trio turbines located at 5 rotor diameter upstream to each other, are examined experimentally. The flow statistics include mean wake velocity distributions, characteristics of tip vortices evolving downstream, fluctuation velocity, turbulent kinetic energy, stresses, and energy spectra. We find that tip vortices decay much faster in the wake of the upstream turbines (multiple-turbine configurations), whereas they maintain the coherence and strength behind a single

  14. Simulation of wind turbine wakes using the actuator line technique

    PubMed Central

    Sørensen, Jens N.; Mikkelsen, Robert F.; Henningson, Dan S.; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J.

    2015-01-01

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. PMID:25583862

  15. Airloads, wakes, and aeroelasticity

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    1990-01-01

    Fundamental considerations regarding the theory of modeling of rotary wing airloads, wakes, and aeroelasticity are presented. The topics covered are: airloads and wakes, including lifting-line theory, wake models and nonuniform inflow, free wake geometry, and blade-vortex interaction; aerodynamic and wake models for aeroelasticity, including two-dimensional unsteady aerodynamics and dynamic inflow; and airloads and structural dynamics, including comprehensive airload prediction programs. Results of calculations and correlations are presented.

  16. Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine.

    PubMed

    Hong, Jiarong; Toloui, Mostafa; Chamorro, Leonardo P; Guala, Michele; Howard, Kevin; Riley, Sean; Tucker, James; Sotiropoulos, Fotis

    2014-06-24

    To improve power production and structural reliability of wind turbines, there is a pressing need to understand how turbines interact with the atmospheric boundary layer. However, experimental techniques capable of quantifying or even qualitatively visualizing the large-scale turbulent flow structures around full-scale turbines do not exist today. Here we use snowflakes from a winter snowstorm as flow tracers to obtain velocity fields downwind of a 2.5-MW wind turbine in a sampling area of ~36 × 36 m(2). The spatial and temporal resolutions of the measurements are sufficiently high to quantify the evolution of blade-generated coherent motions, such as the tip and trailing sheet vortices, identify their instability mechanisms and correlate them with turbine operation, control and performance. Our experiment provides an unprecedented in situ characterization of flow structures around utility-scale turbines, and yields significant insights into the Reynolds number similarity issues presented in wind energy applications.

  17. Large-eddy simulation of circular cylinder flow at subcritical Reynolds number: Turbulent wake and sound radiation

    NASA Astrophysics Data System (ADS)

    Guo, Li; Zhang, Xing; He, Guowei

    2016-02-01

    The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier-Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.

  18. Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Shope, James B.; Storlazzi, Curt D.; Hoeke, Ron K.

    2017-10-01

    reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.

  19. Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands

    USGS Publications Warehouse

    Shope, James B.; Storlazzi, Curt; Hoeke, Ron

    2017-01-01

    reef flat-fronted seaward shorelines became more accretive as all oceanographic forcing parameters increased in magnitude and exhibited large run-up increases following increasing wave heights. Island end shorelines became subject to increased flooding, erosion at Wake, and accretion at Midway with SLR. Under future conditions, windward and leeward islands are projected to become thinner as ocean facing and lagoonal shorelines erode, with leeward islands becoming more elongate. Island shorelines will change dramatically over the next century as SLR and altered wave climates drive new erosional regimes. It is vital to the sustainability of island communities that the relative magnitudes of these effects are addressed when planning for projected future climates.

  20. Aerial observations of Hawaii`s wake

    SciTech Connect

    Smith, R.B.; Grubisic, V.

    1993-11-01

    Under the influence of the east-northeasterly trade winds, the island of Hawaii generates a wake that extends about 200 km to the west-southwest. During the Hawaiian Rain Band Project (NCAR) Electra. The patterns of wind aerosol concentration revealed by these flights suggest that Hawaii`s wake consists of two large quasi-steady conterrotating eddies. The southern clockwise-rotating eddy carries a heavy aerosol load due to input from the Kilauea volcano. At the eastern end of the wake, the eddies are potentially warmer and more humid than the surrounding trade wind air. Several other features are discussed: sharp shear lines near the northern and southern tips of the island, dry and warm air bands along the shear lines, a small embedded wake behind the Kohala peninsula, wake centerline clouds, hydraulic jumps to the north and south of the island, a descending inversion connected with accelerating trade winds, and evidence for side-to-side wake movement.

  1. Wind turbine wake measurement in complex terrain

    NASA Astrophysics Data System (ADS)

    Hansen, KS; Larsen, GC; Menke, R.; Vasiljevic, N.; Angelou, N.; Feng, J.; Zhu, WJ; Vignaroli, A.; W, W. Liu; Xu, C.; Shen, WZ

    2016-09-01

    SCADA data from a wind farm and high frequency time series measurements obtained with remote scanning systems have been analysed with focus on identification of wind turbine wake properties in complex terrain. The analysis indicates that within the flow regime characterized by medium to large downstream distances (more than 5 diameters) from the wake generating turbine, the wake changes according to local atmospheric conditions e.g. vertical wind speed. In very complex terrain the wake effects are often “overruled” by distortion effects due to the terrain complexity or topology.

  2. Wake Vortex Free Flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A 10% scale B-737-100 model was tested in the vicinity of a vortex wake generated by a wing mounted on a support in the forward section of the NASA-Langley 30 x 60 ft. Wind Tunnel. The wing span, angle of attack, and generating wing location were varied to provide vortex strengths consistent with a large variety of combinations of leader-follower aircraft pairs during vortex encounters. The test, conducted as part of the AST Terminal Area Productivity Program, will provide data for validation of aerodynamic models which will be used for developing safe separate standards to apply to aircraft in terminal areas while increasing airport capacity.

  3. 3-D Time-Accurate CFD Simulations of a Multi-Megawatt Slender Bladed HAWT under Yawed Inflow Conditions

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.

    2016-09-01

    In the present study numerical investigations of a generic Multi-Megawatt slender bladed Horizontal-Axis Wind Turbine (HAWT) under yawed inflow conditions were conducted. A three-dimensional URANS flow solver based on structured overlapping meshes was used. The simulations were conducted at wind speeds of 7m/sec, 11 m/sec and 15 m/sec for different yaw angles ranging from +60° to -60°. It was concluded that, for below rated wind speeds, under small yaw angles (below ±15°) the magnitudes of the blade forces are slightly increased, while under high yaw angles (above ±15°) there is a significant decrease. Moreover, the load fluctuations, for the different yaw angles, have the same frequency but different amplitude and oscillation shape. It was concluded that at the above rated wind speed of 15 m/sec, the blade aerodynamic loads are significantly affected by the yaw inflow conditions and the magnitude values of the loads are decreased with increasing yaw angle. It can be concluded that the angle of attack and the tower interference are the utmost variables affecting the yawed turbines.

  4. Status of wake and array loss research

    SciTech Connect

    Elliott, D.L.

    1991-09-01

    In recent years, many projects have evaluated wind turbine wake effects and resultant array losses in both Europe and the United States. This paper examines the status of current knowledge about wake effects and array losses and suggests future research. Single-turbine wake characteristics have been studied extensively and are generally described well by existing theoretical models. Field measurements of wake effects in wind turbine arrays are largely limited to small arrays, with 2 to 4 rows of turbines. Few data have been published on wake effects within large arrays. Measurements of wake deficits downwind of large arrays that deficits are substantially larger and extend farther downwind than expected. Although array design models have been developed, these models have been tested and verified using only limited data from a few rows of wind turbines in complex terrain, whereas some of the largest arrays have more than 40 rows of wind turbines. Planned cooperative efforts with the wind industry will obtain existing data relevant to analyzing energy deficits within large arrays and identifying data sets for potential use in array model verification efforts. Future research being considered include a cooperative research experiment to obtain more definitive data on wake deficits and turbulence within and downwind of large arrays. 16 refs., 9 figs., 1 tab.

  5. Statistical analyses of a screen cylinder wake

    NASA Astrophysics Data System (ADS)

    Mohd Azmi, Azlin; Zhou, Tongming; Zhou, Yu; Cheng, Liang

    2017-02-01

    The evolution of a screen cylinder wake was studied by analysing its statistical properties over a streamwise range of x/d={10-60}. The screen cylinder was made of a stainless steel screen mesh of 67% porosity. The experiments were conducted in a wind tunnel at a Reynolds number of 7000 using an X-probe. The results were compared with those obtained in the wake generated by a solid cylinder. It was observed that the evolution of the statistics in the wake of the screen cylinder was different from that of a solid cylinder, reflecting the differences in the formation of the organized large-scale vortices in both wakes. The streamwise evolution of the Reynolds stresses, energy spectra and cross-correlation coefficients indicated that there exists a critical location that differentiates the screen cylinder wake into two regions over the measured streamwise range. The formation of the fully formed large-scale vortices was delayed until this critical location. Comparison with existing results for screen strips showed that although the near-wake characteristics and the vortex formation mechanism were similar between the two wake generators, variation in the Strouhal frequencies was observed and the self-preservation states were non-universal, reconfirming the dependence of a wake on its initial condition.

  6. Wind Turbine Wakes

    SciTech Connect

    Kelley, Christopher Lee; Maniaci, David Charles; Resor, Brian R.

    2015-10-01

    The total energy produced by a wind farm depends on the complex interaction of many wind turbines operating in proximity with the turbulent atmosphere. Sometimes, the unsteady forces associated with wind negatively influence power production, causing damage and increasing the cost of producing energy associated with wind power. Wakes and the motion of air generated by rotating blades need to be better understood. Predicting wakes and other wind forces could lead to more effective wind turbine designs and farm layouts, thereby reducing the cost of energy, allowing the United States to increase the installed capacity of wind energy. The Wind Energy Technologies Department at Sandia has collaborated with the University of Minnesota to simulate the interaction of multiple wind turbines. By combining the validated, large-eddy simulation code with Sandia’s HPC capability, this consortium has improved its ability to predict unsteady forces and the electrical power generated by an array of wind turbines. The array of wind turbines simulated were specifically those at the Sandia Scaled Wind Farm Testbed (SWiFT) site which aided the design of new wind turbine blades being manufactured as part of the National Rotor Testbed project with the Department of Energy.

  7. High lift wake investigation

    NASA Technical Reports Server (NTRS)

    Sullivan, J. P.; Schneider, S. P.; Hoffenberg, R.

    1996-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although known to be important for high-lift systems, few studies of such decelerated wakes exist. In this study, the wake of a flat plate has been subjected to an adverse pressure gradient in a two-dimensional diffuser, whose panels were forced to remain attached by use of slot blowing. Pitot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  8. CONTROL OF SLEEP AND WAKEFULNESS

    PubMed Central

    Brown, Ritchie E.; Basheer, Radhika; McKenna, James T.; Strecker, Robert E.; McCarley, Robert W.

    2013-01-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making. PMID:22811426

  9. Control of sleep and wakefulness.

    PubMed

    Brown, Ritchie E; Basheer, Radhika; McKenna, James T; Strecker, Robert E; McCarley, Robert W

    2012-07-01

    This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.

  10. Review of Idealized Aircraft Wake Vortex Models

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; Proctor, Fred H.; Duparcmeur, Fanny M. Limon; Jacob, Don

    2014-01-01

    Properties of three aircraft wake vortex models, Lamb-Oseen, Burnham-Hallock, and Proctor are reviewed. These idealized models are often used to initialize the aircraft wake vortex pair in large eddy simulations and in wake encounter hazard models, as well as to define matched filters for processing lidar observations of aircraft wake vortices. Basic parameters for each vortex model, such as peak tangential velocity and circulation strength as a function of vortex core radius size, are examined. The models are also compared using different vortex characterizations, such as the vorticity magnitude. Results of Euler and large eddy simulations are presented. The application of vortex models in the postprocessing of lidar observations is discussed.

  11. Persistence and decay of wake vorticity

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1976-01-01

    Some recent research relating to the nature of the lift-induced vortex wakes behind large aircraft was reviewed and the scaling laws that permit a comparison of results from ground facilities with those from flight test were provided. The maximum rotational velocities in the wake are shown to depend on a span loading shape parameter and on a characteristic length of persistence behind the aircraft. The effects of Reynolds number are also shown.

  12. Blade design trade-offs using low-lift airfoils for stall-regulated HAWTs

    SciTech Connect

    Giguere, P.; Selig, M.S.; Tangler, J.L.

    1999-11-01

    A systematic blade design study was conducted to explore the trade-offs in using low-lift airfoils for a 750-kilowatt stall-regulated wind turbine. Tip-region airfoils having a maximum-lift coefficient ranging from 0.7--1.2 were considered in this study, with the main objective of identifying the practical lower limit for the maximum-life coefficient. Blades were optimized for both maximum annual energy production and minimum cost of energy using a method that takes into account aerodynamic and structural considerations. The results indicate that the effect of the maximum-lift coefficient on the cost of energy is small with a slight advantage to the highest maximum lift coefficient airfoils for the tip-region of the blade become more desirable as machine size increases, provided the airfoils yield acceptable stall characteristics. The conclusions are applicable to large wind turbines that use passive or active stall to regulate peak power.

  13. Blade Design Trade-Offs Using Low-Lift Airfoils for Stall-Regulated HAWTs

    SciTech Connect

    Giguere, P.; Selig, M. S.; Tangler, J. L.

    1999-04-08

    A systematic blade design study was conducted to explore the trade-offs in using low-lift airfoils for a 750-kilowatt stall-regulated wind turbine. Tip-region airfoils having a maximum lift coefficient ranging from 0.7-1.2 were considered in this study, with the main objective of identifying the practical lower limit for the maximum lift coefficient. Blades were optimized for both maximum annual energy production and minimum cost of energy using a method that takes into account aerodynamic and structural considerations. The results indicate that reducing the maximum lift coefficient below the upper limit considered in this study increases the cost of energy independently of the wind regime. As a consequence, higher maximum lift coefficient airfoils for the tip-region of the blade become more desirable as machine size increases, as long as they provide gentle stall characteristics. The conclusions are applicable to large wind turbines that use passive or active stall to regulate peak power.

  14. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  15. NASA Wake Vortex Research for Aircraft Spacing

    NASA Technical Reports Server (NTRS)

    Perry, R. Brad; Hinton, David A.; Stuever, Robert A.

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is addressing airport capacity enhancements during instrument meteorological conditions through the Terminal Area Productivity (TAP) program. Within TAP, the Reduced Spacing Operations (RSO) subelement at the NASA Langley Research Center is developing an Aircraft Vortex Spacing System (AVOSS). AVOSS will integrate the output of several inter-related areas to produce weather dependent, dynamic wake vortex spacing criteria. These areas include current and predicted weather conditions, models of wake vortex transport and decay in these weather conditions, real-time feedback of wake vortex behavior from sensors, and operationally acceptable aircraft/wake interaction criteria. In today's ATC system, the AVOSS could inform ATC controllers when a fixed reduced separation becomes safe to apply to large and heavy aircraft categories. With appropriate integration into the Center/TRACON Automation System (CTAS), AVOSS dynamic spacing could be tailored to actual generator/follower aircraft pairs rather than a few broad aircraft categories.

  16. Analysis of vortex wake encounter upsets

    NASA Technical Reports Server (NTRS)

    Johnson, W. A.; Teper, G. L.

    1974-01-01

    The problem of an airplane being upset by encountering the vortex wake of a large transport on takeoff or landing is currently receiving considerable attention. This report describes the technique and results of a study to assess the effectiveness of automatic control systems in alleviating vortex wake upsets. A six-degree-of-freedom nonlinear digital simulation was used for this purpose. The analysis included establishing the disturbance input due to penetrating a vortex wake from an arbitrary position and angle. Simulations were computed for both a general aviation airplane and a commercial jet transport. Dynamic responses were obtained for the penetrating aircraft with no augmentation, and with various command augmentation systems, as well as with human pilot control. The results of this preliminary study indicate that attitude command augmentation systems can provide significant alleviation of vortex wake upsets; and can do it better than a human pilot.

  17. Wakes in Inertial Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Ellis, Ian Norman

    simulation particles are accounted for. Linear gain spectra including both effects are discussed. Extending the PIC simulations past when the seed exits the simulation domain reveals bursts of large-amplitude scattering in many cases, which do not occur in simulations without the seed pulse. These bursts can have amplitudes several times greater than the amplified seed pulse, and an examination of the orbits of particles trapped in the wake illustrates that the bursts are caused by a reduction of Landau damping due to particle trapping. This large-amplitude scattering is caused by the seed inducing a wake earlier in the simulation, thus modifying the distribution function. Performing simulations with longer duration seeds leads to parts of the seeds reaching amplitudes several times more than the steady-state linear theory results, similarly caused by a reduction of Landau damping. Simulations with continuous seeds demonstrate that the onset of inflation depends on the seed wavelength and incident intensity, and oscillations in the reflectivity are observed at a frequency equal to the difference between the seed frequency and the frequency at which the inflationary SRS grows. In the electron beam stopping studies, 3D PIC simulations are performed of relativistic electrons with a momentum of 10mec propagating in a cold FI core plasma. Some of the simulations use one simulation particle per real particle, and particle sizes much smaller than the interparitcle spacing. The wake made by a single electron is compared against that calculated using cold fluid theory assuming the phase velocity of the wake is near the speed of light. The results agree for the first wavelength of the wake. However, the shape of the wake changes for succeeding wavelengths and depends on the background plasma temperature, with the concavity pointing in the direction the electron is moving in cold plasmas and in the opposite direction as the plasma temperature increases. In the warm plasma the curvature

  18. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  19. Dissipation of turbulence in the wake of a wind turbine

    SciTech Connect

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-rate turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.

  20. Dissipation of turbulence in the wake of a wind turbine

    DOE PAGES

    Lundquist, J. K.; Bariteau, L.

    2014-11-06

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behaviour of an individual wake as it merges with other wakes and propagates downwind is critical in assessing wind-farm power production. This evolution depends on the rate of turbulence dissipation in the wind-turbine wake, which has not been previously quantified in field-scale measurements. In situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine were collected using a tethered lifting system (TLS) carrying a payload of high-ratemore » turbulence probes. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located near the turbine. Good agreement between the tower measurements and the TLS measurements was established for a case without a wind-turbine wake. When an operating wind turbine is located between the tower and the TLS so that the wake propagates to the TLS, the TLS measures dissipation rates one to two orders of magnitude higher in the wake than outside of the wake. These data, collected between two and three rotor diameters D downwind of the turbine, document the significant enhancement of turbulent kinetic energy dissipation rate within the wind-turbine wake. These wake measurements suggest that it may be useful to pursue modelling approaches that account for enhanced dissipation. Furthermore. comparisons of wake and non-wake dissipation rates to mean wind speed, wind-speed variance, and turbulence intensity are presented to facilitate the inclusion of these measurements in wake modelling schemes.« less

  1. Evaluation of Wind Turbine Wake Interaction Models in a RANS Framework

    NASA Astrophysics Data System (ADS)

    Wilson, Jordan; Venayagamoorthy, Karan

    2012-11-01

    Wind energy produced from horizontal axis wind turbines (HAWTs) remains the most cost effective source of renewable energy production. Computational fluid dynamics (CFD) model studies are widely used as an a priori means to study wind farm environments for adequacy of wind resources and optimal configurations. This body of research explores the velocity deficit effect and flow fluctuations created by turbine wakes in a RANS framework for National Renewable Energy Laboratory (NREL) 5MW reference turbines. Various turbine models are explored to determine the most computationally efficient model that accurately captures the physics of interest. While only neutral ABL conditions are simulated in this study, consideration is also given to future work looking at the stable ABL and a full diurnal cycle when selecting a closure model. The objective of this current research is to further understand the development and resolution of turbine wakes for power optimization in neutral ABL conditions with a mind toward fatigue load minimization. Funded by the Clean Energy Supercluster, CSU.

  2. NASA wake vortex research

    NASA Technical Reports Server (NTRS)

    Stough, H. P., III; Greene, George C.; Stewart, Eric C.; Stuever, Robert A.; Jordan, Frank L., Jr.; Rivers, Robert A.; Vicroy, Dan D.

    1993-01-01

    NASA is conducting research that will enable safe improvements in the capacity of the nation's air transportation system. The wake-vortex hazard is a factor in establishing the minimum safe spacing between aircraft during landing and takeoff operations and, thus, impacts airport capacity. The ability to accurately model the wake hazard and determine safe separation distances for a wide range of aircraft and operational scenarios may provide the basis for significant increases in airport capacity. Current and planned NASA research is described which is focused on increasing airport capacity by safely reducing wake-hazard-imposed aircraft separations through advances in a number of technologies including vortex motion and decay prediction, vortex encounter modeling, wake-vortex hazard characterization, and in situ flow sensing.

  3. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  4. Contributions of the Stochastic Shape Wake Model to Predictions of Aerodynamic Loads and Power under Single Wake Conditions

    NASA Astrophysics Data System (ADS)

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; Churchfield, M. J.

    2016-09-01

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. These results indicate that the stochastic shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.

  5. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    DOE PAGES

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; ...

    2016-10-03

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochasticmore » shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.« less

  6. Contributions of the stochastic shape wake model to predictions of aerodynamic loads and power under single wake conditions

    SciTech Connect

    Doubrawa, P.; Barthelmie, R. J.; Wang, H.; Churchfield, M. J.

    2016-10-03

    The contribution of wake meandering and shape asymmetry to load and power estimates is quantified by comparing aeroelastic simulations initialized with different inflow conditions: an axisymmetric base wake, an unsteady stochastic shape wake, and a large-eddy simulation with rotating actuator-line turbine representation. Time series of blade-root and tower base bending moments are analyzed. We find that meandering has a large contribution to the fluctuation of the loads. Moreover, considering the wake edge intermittence via the stochastic shape model improves the simulation of load and power fluctuations and of the fatigue damage equivalent loads. Furthermore, these results indicate that the stochastic shape wake simulator is a valuable addition to simplified wake models when seeking to obtain higher-fidelity computationally inexpensive predictions of loads and power.

  7. Preliminary comparison of model and prototype wakes. [building wake effects on atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Camp, D. W.

    1978-01-01

    Velocity and turbulence profiles previously measured in the wake of a long building 3.2 m high, located in the field, transverse to the wind and in an atmospheric boundary layer several hundred meters thick are compared with wake profiles at corresponding longitudinal stations for a scale model of the building located in a large meteorological wind tunnel having a boundary layer thickness of 0.61 m to assess the accuracy of full scale wake profile predictions based on model tests. Results are presented which show that disparities in nondimensional profiles result from differences in relative depth of logarithmic layers and in surface conditions.

  8. Aircraft Wake RCS Measurement

    NASA Technical Reports Server (NTRS)

    Gilson, William H.

    1994-01-01

    A series of multi-frequency radar measurements of aircraft wakes at altitudes of 5,000 to 25,00 ft. were performed at Kwajalein, R.M.I., in May and June of 1990. Two aircraft were tested, a Learjet 35 and a Lockheed C-5A. The cross-section of the wake of the Learjet was too small for detection at Kwajalein. The wake of the C-5A, although also very small, was detected and measured at VHF, UHF, L-, S-, and C-bands, at distances behind the aircraft ranging from about one hundred meters to tens of kilometers. The data suggest that the mechanism by which aircraft wakes have detectable radar signatures is, contrary to previous expectations, unrelated to engine exhaust but instead due to turbulent mixing by the wake vortices of pre-existing index of refraction gradients in the ambient atmosphere. These measurements were of necessity performed with extremely powerful and sensitive instrumentation radars, and the wake cross-section is too small for most practical applications.

  9. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  10. Vertical Axis Wind Turbine flows using a Vortex Particle-Mesh method: from near to very far wakes

    NASA Astrophysics Data System (ADS)

    Backaert, Stephane; Chatelain, Philippe; Winckelmans, Gregoire; Kern, Stefan; Maeder, Thierry; von Terzi, Dominic; van Rees, Wim; Koumoutsakos, Petros

    2012-11-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. The vorticity-velocity formulation of the NS equations is treated in a hybrid way: particles handle advection while the mesh is used to evaluate the differential operators and for the fast Poisson solvers (here a Fourier-based solver which simultaneously allows for unbounded directions and inlet/outlet boundaries). Both discretizations communicate through high order interpolation. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed, with a relatively fine resolution (128 and 160 grid points per blade) and for computational domains extending up to 6 D and 14 D downstream of the rotor. The wake complex development is captured in details, from the blades to the near wake coherent vortices, to the transitional ones, to the fully developed turbulent far wake. Mean flow statistics in planes (horizontal, vertical and cross) are also presented. A case with a realistic turbulent wind inflow is also considered. The physics are more complex than for HAWT flows. Computational resources provided by a PRACE award.

  11. Nonlinear Kinetic Instabilities in Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.

    2015-12-01

    Relative motion of a plasma and an embedded perturbing solid objectproduces a plasma wake, which is kinetically unstable. For moons,asteroids, spacecraft, probes, and planets without a magnetosphere theresponse is dominantly electrostatic, although generally with abackground magnetic field. Using high-fidelity particle-in-cellsimulations, we have observed the development of kinetic instabilitiesand their non-linear consequences in representative wakes. We havealso explained the observations with semi-analytical non-lineartheory. The ion and electron distribution function shapes are stronglyperturbed in the wake region. The ions form two opposite beamsdirected inward along the guiding magnetic field, in part because ofthe attraction of the wake's electric potential well. The electrondistribution forms a notch or dimple (of reduced phase space density)localized in velocity to orbits that dwell near the wake axis (becauseof repulsion). Those orbits are de-energized by cross-field drift downthe potential-energy ridge. The resulting Langmuir instability spawnselectron holes. The holes that move faster than the ion beams areaccelerated out of the wake by its electrostatic field without growingsubstantially. Some holes, however, remain in the wake at essentiallyzero parallel velocity. They grow, as a result of the same mechanismthat formed the notch: cross-field drift from a lower to a higherdensity. When the density rises by a factor of order two or three,they grow large enough to perturb the ions, tap their free energy, anddisrupt the ion streams well before they would become ion-ionunstable. Crucially, these processes depend strongly on theion/electron mass ratio and require close to physical ratio (1836) insimulations, to reveal their characteristics. Electron holes arisingfrom these processes may be widely present and observable in spaceplasma wakes.

  12. THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS

    PubMed Central

    Schwartz, Michael D.; Kilduff, Thomas S.

    2015-01-01

    SYNOPSIS Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-REM (NREM) sleep has been an active area of investigation. Synchronization and desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic nuclei are also involved in REM sleep regulation. These wake-promoting systems receive excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. Although the pons is critical for the expression of REM sleep, recent research has suggested that melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. The temporal distribution of sleep and wakefulness is due to interaction between the circadian system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial sources, which is an important feedback molecule for the sleep homeostatic system. Cortical neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/wake dysfunction that may

  13. Wakes of Maneuvering Bodies in Stratified Fluids

    NASA Astrophysics Data System (ADS)

    Voropayev, S. I.; Fernando, H. J.

    2007-05-01

    We present the results of experimental/theoretical studies on large momentum eddies generated in late wakes of unsteady moving self-propelled bodies in stratified fluids. The experiments were conducted with scaled submarine model at high Reynolds numbers (50,000), corresponding to the fully turbulent flow regime. Dye visualization and PIV were used for flow diagnostics. When a self-propelled body makes a maneuver, e.g. accelerates, it imparts net momentum on the surrounding fluid. We show that in a stratified fluid this leads to impulsive momentum wakes with large, long-lived coherent vortices in the late flows, which may be used as a signature for identification of submarine wakes in oceanic thermocline. First, we consider dynamics and properties of such wakes in a linearly stratified fluid and present a model that permits to predict the main flow characteristics. Second, we consider wakes in a two layer stratified fluid (analog of the upper ocean) and show that such wakes may penetrate to the water surface; we present a model for this phenomenon and propose criteria for the penetration of wake signatures to the water surface in terms of main governing parameters (signature contrast versus confinement number). Finally, we consider the evolution of such momentum wake eddies in the field of decaying background turbulence, which mimics the oceanic thermocline, and show that for the flow configuration studied the contrast number remains sufficiently large and detectable wake imprints survive for a long period of time. Some pertinent estimates for submarines cruising in the upper ocean are also given. For more details see [1-3]. This study was supported by grant from the Office of Naval Research. 1. Voropayev S.I., Fernando H.J.S., Smirnov S.A. & Morrison R.J. 2006. On surface signatures generated by submersed momentum sources. Phys. Fluids, under revision. 2. Voropayev S.I., Fernando H.J.S. & Morrison R.J. 2006. Dipolar eddies in a stratified turbulent flow. J. Fluid

  14. Wind tunnel measurements for dispersion modelling of vehicle wakes

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Kumar, Prashant; Robins, Alan

    2012-12-01

    Wind tunnel measurements downwind of reduced scale car models have been made to study the wake regions in detail, test the usefulness of existing vehicle wake models, and draw key information needed for dispersion modelling in vehicle wakes. The experiments simulated a car moving in still air. This is achieved by (i) the experimental characterisation of the flow, turbulence and concentration fields in both the near and far wake regions, (ii) the preliminary assessment of existing wake models using the experimental database, and (iii) the comparison of previous field measurements in the wake of a real diesel car with the wind tunnel measurements. The experiments highlighted very large gradients of velocities and concentrations existing, in particular, in the near-wake. Of course, the measured fields are strongly dependent on the geometry of the modelled vehicle and a generalisation for other vehicles may prove to be difficult. The methodology applied in the present study, although improvable, could constitute a first step towards the development of mathematical parameterisations. Experimental results were also compared with the estimates from two wake models. It was found that they can adequately describe the far-wake of a vehicle in terms of velocities, but a better characterisation in terms of turbulence and pollutant dispersion is needed. Parameterised models able to predict velocity and concentrations with fine enough details at the near-wake scale do not exist.

  15. Approaches to Measuring the Effects of Wake-Promoting Drugs: A Focus on Cognitive Function

    PubMed Central

    Edgar, Christopher J.; Pace-Schott, Edward F.; Wesnes, Keith A.

    2009-01-01

    Objectives In clinical drug development, wakefulness and wake-promotion maybe assessed by a large number of scales and questionnaires. Objective assessment of wakefulness is most commonly made using sleep latency/maintenance of wakefulness tests, polysomnography and/or behavioral measures. The purpose of the present review is to highlight the degree of overlap in the assessment of wakefulness and cognition, with consideration of assessment techniques and the underlying neurobiology of both concepts. Design Reviews of four key areas were conducted: commonly used techniques in the assessment of wakefulness; neurobiology of sleep/wake and cognition; targets of wake promoting and/or cognition enhancing drugs; and ongoing clinical trials investigating wake promoting effects. Results There is clear overlap between the assessment of wakefulness and cognition. There are common techniques which may be used to assess both concepts; aspects of the neurobiology of both concepts may be closely related; and wake promoting drugs may have nootropic properties (and vice-versa). Clinical trials of wake promoting drugs often, though not routinely, assess aspects of cognition. Conclusions Routine and broad assessment of cognition in the development of wake promoting drugs may reveal important nootropic effects, which are not secondary to alertness/wakefulness, whilst existing cognitive enhancers may have under explored or unknown wake promoting properties. PMID:19565524

  16. Impact of Wake Dispersion on Axial Compressor Performance

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2017-01-01

    Detailed development of wakes and their impact on the performance of a low-speed one and half stage axial compressor are investigated with a large eddy simulation (LES). To investigate effects of wake mixing recovery and wake interaction with the boundary layer of the downstream blade, spacing between the rotor blade and the stator is varied. The calculated LES flow fields based on a fine computational grid are compared with related measurements and analyzed in detail at several radial locations. The current LES calculates the effects of wake recovery very well. The effects of wake recovery vary significantly in the radial direction. Loss generation is higher on the pressure side at the stator exit at both near design and near stall condition. The current investigation indicates that better management of wake development can be achieved for improved compressor performance.

  17. Quantitative three-dimensional low-speed wake surveys

    NASA Technical Reports Server (NTRS)

    Brune, G. W.

    1992-01-01

    Theoretical and practical aspects of conducting three-dimensional wake measurements in large wind tunnels are reviewed with emphasis on applications in low-speed aerodynamics. Such quantitative wake surveys furnish separate values for the components of drag, such as profile drag and induced drag, but also measure lift without the use of a balance. In addition to global data, details of the wake flowfield as well as spanwise distributions of lift and drag are obtained. The paper demonstrates the value of this measurement technique using data from wake measurements conducted by Boeing on a variety of low-speed configurations including the complex high-lift system of a transport aircraft.

  18. Direct Simulation and Theoretical Study of Sub- and Supersonic Wakes

    NASA Astrophysics Data System (ADS)

    Hickey, Jean-Pierre

    Wakes are constitutive components of engineering, aeronautical and geophysical flows. Despite their canonical nature, many fundamental questions surrounding wakes remain unanswered. The present work studies the nature of archetypal planar splitter-plate wakes in the sub- and supersonic regimes from a theoretical as well as a numerical perspective. A highly-parallelizable computational fluid dynamic solver was developed, from scratch, for the very-large scale direct numerical simulations of high-speed free shear flows. Wakes maintain a near indelible memory of their origins; thus, changes to the state of the flow on the generating body lead to multiple self-similar states in the far wake. To understand the source of the lack of universality, three distinct wake evolution scenarios are investigated in the incompressible limit: the Kelvin-Helmholtz transition, the bypass transition in an asymmetric wake and the initially turbulent wake. The multiplicity of self-similar states is the result of a plurality of far wake structural organizations, which maintains the memory of the flow. The structural organization is predicated on the presence or absence of near wake anti-symmetric perturbations (as a result of shedding, instability modes and/or trailing edge receptivity). The plurality of large-scale structural organization contrasts with the commonality observed in the mid-sized structures, which are dominated by inclined vortical rods, and not, as previously assumed, by horseshoe structures. The compressibility effects are a direct function of the maximal velocity defect in the wake and are therefore only important in the transitional region - the far wake having an essentially incompressible character. The compressibility simultaneously modifies the growth rate and wavelength of the primary instability mode with a concomitant effect on the emerging transitional structures. As a direct result, the spanwise rollers have an increasing ellipticity and cross-wake domain of

  19. Simulation of wind turbine wakes using the actuator line technique.

    PubMed

    Sørensen, Jens N; Mikkelsen, Robert F; Henningson, Dan S; Ivanell, Stefan; Sarmast, Sasan; Andersen, Søren J

    2015-02-28

    The actuator line technique was introduced as a numerical tool to be employed in combination with large eddy simulations to enable the study of wakes and wake interaction in wind farms. The technique is today largely used for studying basic features of wakes as well as for making performance predictions of wind farms. In this paper, we give a short introduction to the wake problem and the actuator line methodology and present a study in which the technique is employed to determine the near-wake properties of wind turbines. The presented results include a comparison of experimental results of the wake characteristics of the flow around a three-bladed model wind turbine, the development of a simple analytical formula for determining the near-wake length behind a wind turbine and a detailed investigation of wake structures based on proper orthogonal decomposition analysis of numerically generated snapshots of the wake. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Meteorological Controls on Wind Turbine Wakes

    SciTech Connect

    Barthelmie, RJ; Hansen, KS; Pryor, SC

    2013-04-01

    The primary control on the magnitude of the power losses induced by wind turbine wakes in large wind farms is the hub-height wind speed via its link to the turbine thrust coefficient. Hence, at low to moderate wind speeds (between cut-in and rated turbine wind speeds) when the thrust coefficient is high, wake losses are proportionally larger and decrease to be virtually undetectable at wind speeds above rated wind speeds. Wind direction is also critical. Not only does it determine the effective spacing between turbines but also the wind speed distribution is primarily determined by synoptic forcing and typically has a predominant direction from which wind speeds tend to be higher (from southwest for much of the central United States and northern Europe). Two other interlinked variables, turbulence intensity (TI), and atmospheric stability also dictate wake losses. Quantifying, understanding, modeling, and predicting this complex and interdependent system is therefore critical to understanding and modeling wind farm power losses due to wakes, and to optimizing wind farm layout. This paper quantifies the impact of these variables on the power loss due to wakes using data from the large offshore wind farms located at Horns Rev and Nysted in Denmark.

  1. Modeled atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Hoeke, R. K.

    2016-12-01

    Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. With sea level and wave climates projected to change over the next century, it is unclear how shoreline wave runup and erosion patterns along these low elevation islands will respond, making it difficult for communities to prepare for the future. To investigate this, extreme boreal winter and summer wave conditions under a variety of future sea-level rise (SLR) scenarios were modeled at two atolls, Wake and Midway, using Delft3D. Nearshore wave conditions were used to find the potential longshore sediment flux, and wave-driven shoreline erosion was calculated as the divergence of the longshore drift; runup and the locations where runup exceed the berm elevation were also found. Of the aforementioned parameters, SLR is projected to be the dominant force driving future island morphological change and flooding. Increased sea level reduces depth-limited breaking by the atoll reef, allowing larger waves to reach the shoreline, increasing runup height and driving greater inland flooding along most coastlines. Previously protected shorelines, such as lagoon shorelines or shorelines with comparably wide reef flats, are projected see the greatest relative increases in runup. Increases in inland flooding extent were greatest along seaward shorelines due to increases in runup. Changes in incident wave directions had a smaller effect on runup, and the projected changes to incident wave heights had a negligible effect. SLR also drove the greatest changes to island shoreline morphology. Windward islands are projected to become thinner as seaward and lagoonal shorelines erode, accreting toward more leeward shorelines and shorelines with comparably wider reef flats. Similarly, leeward islands are anticipated to become thinner and longer, accreting towards their longitudinal ends. The shorelines of these islands will likely change dramatically over the next century as SLR and

  2. Wake Studies of Ornithopters

    NASA Astrophysics Data System (ADS)

    Juarez, Alfredo; Harlow, Jacob; Allen, James; Ferreira de Sousa, Paulo

    2006-11-01

    This paper details experiments using a mechanical ornithopter flying in a low speed wind tunnel. Experiments were conducted for a Strouhal number of 0.3 and Reynolds number of 2300, Particle Image Velocimetry (PIV) and flow visualization was used to develop quantitative and qualitative information about the nature of the wake. The data shows that the wake is made of a series of discrete vortex rings. The impulse of these rings has been estimated with PIV data and the results correlate well with the lift required to sustain the ornithopter in flight.

  3. Hypersonic rarefied wake characterization

    NASA Technical Reports Server (NTRS)

    Brewer, E. B.

    1993-01-01

    Results of a numerical study using the direct simulation Monte Carlo (DSMC) method are presented for hypersonic rarefied flow over an aeroassisted space transfer vehicle (ASTV). The emphasis of the study is the characterization of the near wake region which includes the ASTV payload. The study covered the transitional flow regime from near continuum to free molecular. Calculations show that the character of the near wake is significantly affected by the presence of the payload. Flow separation occurs when an afterbody is present throughout the transitional flow regime. In contrast, when no afterbody is present, no separation is observed until the flow approaches continuum.

  4. Analysis of rotor wake aerodynamics during maneuvering flight using a free-vortex wake methodology

    NASA Astrophysics Data System (ADS)

    Ananthan, Shreyas

    contributing to impulsive rotor noise. Several free-flight maneuver simulations were analyzed to gain better insight into the unsteady, nonlinear wake development under high-rate, large-amplitude maneuvers such as roll to starboard or port, roll reversals, and the quickstop maneuver. It is shown that the rotor wake response in almost all maneuvering flight conditions is highly nonlinear and emphasizes the need to accurately predict the transient wake aerodynamics to obtain accurate estimates of the unsteady rotor airloads and the resulting rotor acoustics.

  5. Dynamical features of the wake behind a pitching foil.

    PubMed

    Deng, Jian; Sun, Liping; Shao, Xueming

    2015-12-01

    As an extension of the previous study on the three-dimensional transition of the wake behind a pitching foil [Deng and Caulfield, Phys. Rev. E 91, 043017 (2015)], this investigation draws a comprehensive map on the pitching frequency-amplitude phase space. First, by fixing the Reynolds number at Re=1700 and varying the pitching frequency and amplitude, we identify three key dynamical features of the wake: first, the transition from Bénard-von Kármán (BvK) vortex streets to reverse BvK vortex streets, and second, the symmetry breaking of this reverse BvK wake leading to a deflected wake, and a further transition from two-dimensional (2D) wakes to three-dimensional (3D) wakes. The transition boundary between the 2D and 3D wakes lies top right of the wake deflection boundary, implying a correlation between the wake deflection and the 2D to 3D wake transition, confirming that this transition occurs after the wake deflection. This paper supports the previous extensive numerical studies under two-dimensional assumption at low Reynolds number, since it is indeed two dimensional except for the cases at very high pitching frequencies or large amplitudes. Furthermore, by three-dimensional direct numerical simulations (DNSs), we confirm the previous statement about the physical realizability of the short wavelength mode at β=30 (or λ(z)=0.21) for Re=1500. By comparing the three-dimensional vortical structures by DNSs with that from the reconstruction of Floquet modes, we find a good consistency between them, both exhibiting clear streamwise structures in the wake.

  6. Spectral coherence in windturbine wakes

    SciTech Connect

    Hojstrup, J.

    1996-12-31

    This paper describes an experiment at a Danish wind farm to investigate the lateral and vertical coherences in the nonequilibrium turbulence of a wind turbine wake. Two meteorological masts were instrumented for measuring profiles of mean speed, turbulence, and temperature. Results are provided graphically for turbulence intensities, velocity spectra, lateral coherence, and vertical coherence. The turbulence was somewhat influenced by the wake, or possibly from aggregated wakes further upstream, even at 14.5 diameters. Lateral coherence (separation 5m) seemed to be unaffected by the wake at 7.5 diameters, but the flow was less coherent in the near wake. The wake appeared to have little influence on vertical coherence (separation 13m). Simple, conventional models for coherence appeared to be adequate descriptions for wake turbulence except for the near wake situation. 3 refs., 7 figs., 1 tab.

  7. Wake Vortex Sensors Requirements Overview

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1997-01-01

    The presentation includes discussions of primary wake vortex system requirements, evolution models, sensor evolution, site specific sensor tradeoffs, wake sensor functions, deployment considerations, the operational test bed system and additional sensor requirements.

  8. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    SciTech Connect

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjoholm, M.

    2016-10-03

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.

  9. Using High-Fidelity Computational Fluid Dynamics to Help Design a Wind Turbine Wake Measurement Experiment

    NASA Astrophysics Data System (ADS)

    Churchfield, M.; Wang, Q.; Scholbrock, A.; Herges, T.; Mikkelsen, T.; Sjöholm, M.

    2016-09-01

    We describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensure better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a “simulation-in-the-loop” measurement campaign.

  10. Wake Shield Facility (WSF)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Wake Shield Facility (WSF) is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers.

  11. Waking Up to Waste

    ERIC Educational Resources Information Center

    Vrdlovcova, Jill

    2005-01-01

    All homes and schools produce waste. Children may have been astonished at how much people throw away, and this could be the "wake-up call" that arouses their interest. At Carymoor Environmental Centre (an Eco-Centre in South Somerset) getting children involved in active waste reduction and recycling is a priority. Carymoor tries to model…

  12. Waking Up to Waste

    ERIC Educational Resources Information Center

    Vrdlovcova, Jill

    2005-01-01

    All homes and schools produce waste. Children may have been astonished at how much people throw away, and this could be the "wake-up call" that arouses their interest. At Carymoor Environmental Centre (an Eco-Centre in South Somerset) getting children involved in active waste reduction and recycling is a priority. Carymoor tries to model…

  13. Vortex structure in the Venus plasma wake

    NASA Astrophysics Data System (ADS)

    Perez-de-Tejada, H.; Lundin, R. N. A.

    2016-12-01

    Measurements conducted with the ASPERA-4 instrument of the Venus Express spacecraft in orbit around Venus show velocity distributions of the H+ ions that describe a large scale vortex flow structure in the Venus wake (Lundin et al., GRL, 40, 1273, 2013). Such structure is in agreement with that reported from the early Pioneer Venus Orbiter plasma data (Pérez-de-Tejada et al., INTECH, ISBN 978-953-51-0880-1, p. 317, 2012) and suggests that the solar wind around the Venus ionosphere is forced back into the planet from the wake. Measurements also show that a vortex circulation flow rather than local magnetic forces is responsible for the deviated direction of motion of the solar wind in the Venus wake.

  14. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    NASA Astrophysics Data System (ADS)

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-01

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions. Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.

  15. Three-dimensional structure of wind turbine wakes as measured by scanning lidar

    DOE PAGES

    Bodini, Nicola; Zardi, Dino; Lundquist, Julie K.

    2017-08-14

    The lower wind speeds and increased turbulence that are characteristic of turbine wakes have considerable consequences on large wind farms: turbines located downwind generate less power and experience increased turbulent loads. The structures of wakes and their downwind impacts are sensitive to wind speed and atmospheric variability. Wake characterization can provide important insights for turbine layout optimization in view of decreasing the cost of wind energy. The CWEX-13 field campaign, which took place between June and September 2013 in a wind farm in Iowa, was designed to explore the interaction of multiple wakes in a range of atmospheric stability conditions.more » Based on lidar wind measurements, we extend, present, and apply a quantitative algorithm to assess wake parameters such as the velocity deficits, the size of the wake boundaries, and the location of the wake centerlines. We focus on wakes from a row of four turbines at the leading edge of the wind farm to explore variations between wakes from the edge of the row (outer wakes) and those from turbines in the center of the row (inner wakes). Using multiple horizontal scans at different elevations, a three-dimensional structure of wakes from the row of turbines can be created. Wakes erode very quickly during unstable conditions and can in fact be detected primarily in stable conditions in the conditions measured here. During stable conditions, important differences emerge between the wakes of inner turbines and the wakes of outer turbines. Further, the strong wind veer associated with stable conditions results in a stretching of the wake structures, and this stretching manifests differently for inner and outer wakes. These insights can be incorporated into low-order wake models for wind farm layout optimization or for wind power forecasting.« less

  16. Wake Vortex Advisory System (WakeVAS) Concept of Operations

    NASA Technical Reports Server (NTRS)

    Rutishauser, David; Lohr, Gary; Hamilton, David; Powers, Robert; McKissick, Burnell; Adams, Catherine; Norris, Edward

    2003-01-01

    NASA Langley Research Center has a long history of aircraft wake vortex research, with the most recent accomplishment of demonstrating the Aircraft VOrtex Spacing System (AVOSS) at Dallas/Forth Worth International Airport in July 2000. The AVOSS was a concept for an integration of technologies applied to providing dynamic wake-safe reduced spacing for single runway arrivals, as compared to current separation standards applied during instrument approaches. AVOSS included state-of-the-art weather sensors, wake sensors, and a wake behavior prediction algorithm. Using real-time data AVOSS averaged a 6% potential throughput increase over current standards. This report describes a Concept of Operations for applying the technologies demonstrated in the AVOSS to a variety of terminal operations to mitigate wake vortex capacity constraints. A discussion of the technological issues and open research questions that must be addressed to design a Wake Vortex Advisory System (WakeVAS) is included.

  17. An exploratory investigation of a wake disruption technique for studying wake reestablishment time

    NASA Technical Reports Server (NTRS)

    Clark, L. E.; Jones, R. A.

    1974-01-01

    An exploratory investigation was made of a wake disruption technique for studying the hypersonic-wake reestablishment time in a blowdown wind tunnel. In this technique, a highly underexpanded jet issuing from the base of a 10 deg half-angle cone totally disrupts and displaces the conventional wake. The jet was rapidly shut off by an explosively actuated valve and the time for wake reestablishment was measured. The tests were conducted in the Mach 6 high Reynolds number tunnel at a stagnation temperature of 506 K and stagnation pressure of 2.86 MPa. The model base jet stagnation pressure was 3.55 MPa at room temperature. High-speed schlieren motion pictures indicated that disappearance of the disrupting jet and reestablishment of the wake-recompression shock were probably occurring simultaneously and that the time disruptive-jet-air shutoff to wake recompression shock reestablishment was probably between 200 and 450 microseconds (flow lengths from 1.8 to 4.2). The values of flow lengths are about one-thord to one-half the values measured in impulse facilities in a previous study. This shorter time is believed to be largely due to difference in flow conditions between the jet disruption technique and impulse facilities.

  18. Mach-like capillary-gravity wakes

    NASA Astrophysics Data System (ADS)

    Rabaud, Marc; Moisy, Frederic

    2014-11-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers BoD = D /λc ranging between 0.1 and 4.2, where D is the cylinder diameter and λc the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α U-1 , but with different prefactors depending on the value of BoD . For small BoD (large capillary effects), the wake angle approximately follows the law α =cg , min / U , where cg , min is the minimum group velocity of capillary-gravity waves. For larger BoD (weak capillary effects), we recover the law α √{ gD } / U found for ship wakes at large velocity. Using the general property of dispersive waves that the characteristic wavelength of the wavepacket emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in good agreement with experimental measurements.

  19. Effect of nacelle on wake meandering in a laboratory scale wind turbine using LES

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Wake meandering, large scale motion in the wind turbine wakes, has considerable effects on the velocity deficit and turbulence intensity in the turbine wake from the laboratory scale to utility scale wind turbines. In the dynamic wake meandering model, the wake meandering is assumed to be caused by large-scale atmospheric turbulence. On the other hand, Kang et al. (J. Fluid Mech., 2014) demonstrated that the nacelle geometry has a significant effect on the wake meandering of a hydrokinetic turbine, through the interaction of the inner wake of the nacelle vortex with the outer wake of the tip vortices. In this work, the significance of the nacelle on the wake meandering of a miniature wind turbine previously used in experiments (Howard et al., Phys. Fluid, 2015) is demonstrated with large eddy simulations (LES) using immersed boundary method with fine enough grids to resolve the turbine geometric characteristics. The three dimensionality of the wake meandering is analyzed in detail through turbulent spectra and meander reconstruction. The computed flow fields exhibit wake dynamics similar to those observed in the wind tunnel experiments and are analyzed to shed new light into the role of the energetic nacelle vortex on wake meandering. This work was supported by Department of Energy DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories. Computational resources were provided by Sandia National Laboratories and the University of Minnesota Supercomputing.

  20. Passive Wake Vortex Control

    SciTech Connect

    Ortega, J M

    2001-10-18

    The collapse of the Soviet Union and ending of the Cold War brought about many significant changes in military submarine operations. The enemies that the US Navy faces today and in the future will not likely be superpowers armed with nuclear submarines, but rather smaller, rogue nations employing cheaper diesel/electric submarines with advanced air-independent propulsion systems. Unlike Cold War submarine operations, which occurred in deep-water environments, future submarine conflicts are anticipated to occur in shallow, littoral regions that are complex and noisy. Consequently, non-acoustic signatures will become increasingly important and the submarine stealth technology designed for deep-water operations may not be effective in these environments. One such non-acoustic signature is the surface detection of a submarine's trailing vortex wake. If a submarine runs in a slightly buoyant condition, its diving planes must be inclined at a negative angle of attack to generate sufficient downforce, which keeps the submarine from rising to the surface. As a result, the diving planes produce a pair of counter-rotating trailing vortices that propagate to the water surface. In previous deep-water operations, this was not an issue since the submarines could dive deep enough so that the vortex pair became incoherent before it reached the water surface. However, in shallow, littoral environments, submarines do not have the option of diving deep and, hence, the vortex pair can rise to the surface and leave a distinct signature that might be detectable by synthetic aperture radar. Such detection would jeopardize not only the mission of the submarine, but also the lives of military personnel on board. There has been another attempt to solve this problem and reduce the intensity of trailing vortices in the wakes of military submarines. The research of Quackenbush et al. over the past few years has been directed towards an idea called ''vortex leveraging.'' This active concept

  1. Dissipation of turbulence in the wake of a wind turbine

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Bariteau, L.

    2013-12-01

    The wake of a wind turbine is characterized by increased turbulence and decreased wind speed. Turbines are generally deployed in large groups in wind farms, and so the behavior of an individual wake as it merges with other wakes and propagates downwind is of great importance in assessing wind farm power production as well as impacts of wind energy deployment on local and regional environments. The rate of turbulence dissipation in the wake quantifies the wake behavior as it propagates. In situ field measurements of turbulence dissipation rate in the wake of wind turbines have not been previously collected although correct modeling of dissipation rate is required for accurate simulations of wake evolution. In Fall 2012, we collected in situ measurements of winds and turbulence dissipation from the wake region of a multi-MW turbine, using the University of Colorado at Boulder's Tethered Lifting System (TLS). The TLS is a unique state-of-the-art tethersonde, proven in numerous boundary-layer field experiments to be able to measure turbulence kinetic energy dissipation rates. Ambient flow measurements were provided from sonic anemometers on a meteorological tower located upwind of the turbine, from a profiling lidar upwind, and from a scanning lidar measuring both inflow to and wake from the turbine. Measurements collected within the wake indicate that dissipation rates are higher in the turbine wake than in the ambient flow. Profiles of dissipation and turbulence throughout the rotor disk suggest that dissipation peaks near the hub height of the turbine. Suggestions for incorporating this information into wind turbine modeling approaches will be provided.

  2. Development of a Wake Vortex Spacing System for Airport Capacity Enhancement and Delay Reduction

    NASA Technical Reports Server (NTRS)

    Hinton, David A.; OConnor, Cornelius J.

    2000-01-01

    The Terminal Area Productivity project has developed the technologies required (weather measurement, wake prediction, and wake measurement) to determine the aircraft spacing needed to prevent wake vortex encounters in various weather conditions. The system performs weather measurements, predicts bounds on wake vortex behavior in those conditions, derives safe wake spacing criteria, and validates the wake predictions with wake vortex measurements. System performance to date indicates that the potential runway arrival rate increase with Aircraft VOrtex Spacing System (AVOSS), considering common path effects and ATC delivery variance, is 5% to 12% depending on the ratio of large and heavy aircraft. The concept demonstration system, using early generation algorithms and minimal optimization, is performing the wake predictions with adequate robustness such that only 4 hard exceedances have been observed in 1235 wake validation cases. This performance demonstrates the feasibility of predicting wake behavior bounds with multiple uncertainties present, including the unknown aircraft weight and speed, weather persistence between the wake prediction and the observations, and the location of the weather sensors several kilometers from the approach location. A concept for the use of the AVOSS system for parallel runway operations has been suggested, and an initial study at the JFK International Airport suggests that a simplified AVOSS system can be successfully operated using only a single lidar as both the weather sensor and the wake validation instrument. Such a selfcontained AVOSS would be suitable for wake separation close to the airport, as is required for parallel approach concepts such as SOIA.

  3. EEG microstates of wakefulness and NREM sleep.

    PubMed

    Brodbeck, Verena; Kuhn, Alena; von Wegner, Frederic; Morzelewski, Astrid; Tagliazucchi, Enzo; Borisov, Sergey; Michel, Christoph M; Laufs, Helmut

    2012-09-01

    classes in all NREM sleep stages might speak in favor of an in principle maintained large scale spatial brain organization from wakeful rest to NREM sleep. In N1 and N3 sleep, despite spectral EEG differences, the microstate maps and characteristics were surprisingly close to wakefulness. This supports the notion that EEG microstates might reflect a large scale resting state network architecture similar to preserved fMRI resting state connectivity. We speculate that the incisive functional alterations which can be observed during the transition to deep sleep might be driven by changes in the level and timing of activity within this architecture.

  4. The Wake of St. Vincent.

    NASA Astrophysics Data System (ADS)

    Smith, Ronald B.; Gleason, Arthur C.; Gluhosky, Paul A.; Grubii, Vanda

    1997-03-01

    The island of St. Vincent and the other Windward Islands in the southeastern Caribbean were chosen as a field site for the study of weak mountain wakes. By the authors' definition, a `weak wake' forms when the potential vorticity generated by a mountain is not strong enough to advect itself into eddies; rather, it is simply advected downstream by the ambient flow. GOES-8 and Landsat sunglint images unambiguously revealed that the mountainous Windward Islands have remarkably long straight wakes. The length of St. Vincent's wake exceeds 300 km although its width is only 20 km. Near the islands, the wake structures reflect the details of the island topography. These wakes do not exhibit any obvious diurnal effect.Boat surveys in the lee of St. Vincent confirmed the existence of features seen in the images: the sharp wake boundary, the small valley-induced jet embedded in the near wake, and the absence of any reverse flow. Aircraft surveys gave evidence of descent over the island and showed that the wake air is relatively warm and dry. The length of the wake (L) agrees with the formula L = H/2CD (where H is the wake depth and CD is the surface drag coefficient), implying that the reacceleration of the wake air is caused by the ambient streamwise pressure gradient rather than by lateral entrainment of momentum or geostrophic adjustment.Two numerical models were used to simulate St. Vincent's wake, a single-layer hydrostatic model and a 3D nonhydrostatic model. Both models indicated that air descent, acceleration, wave breaking, and weak potential vorticity generation occur over the island, causing a long straight wake.

  5. Evaluation of wake detection probability of underwater vehicle by IR

    NASA Astrophysics Data System (ADS)

    Kou, Wei; Chen, Xuan; Yang, Li; Jin, Fang-yuan

    2016-10-01

    The thermal or cold wake of the underwater vehicles will be formed at the sea surface in different region during sailing, then the underwater vehicles will be detected by airborne or space borne infrared detectors easily, which will imperil their security. A model between the detection probability and the Noise Equivalent Temperature Difference (NETD) of the detectors, and the temperature difference between the wake and the sea surface, etc., was established and the evaluation of detection probability in different discrimination levels and other parameters, such as time, location, atmosphere, sea, detector performance, wake temperature, etc., was realized, and a software named Wake Detection of Underwater Vehicle by Infrared (WDPUV-IR) was developed. The results showed that the detection probability to the wake with high detector performance or large temperature difference or short detection distance or low discrimination level was relatively high, but it was difficult to detect targets with small temperature difference and size when the atmospheric transmittance value was low.

  6. Wake field acceleration experiments

    SciTech Connect

    Simpson, J.D.

    1988-01-01

    Where and how will wake field acceleration devices find use for other than, possibly, accelerators for high energy physics. I don't know that this can be responsibly answered at this time. What I can do is describe some recent results from an ongoing experimental program at Argonne which support the idea that wake field techniques and devices are potentially important for future accelerators. Perhaps this will spawn expanded interest and even new ideas for the use of this new technology. The Argonne program, and in particular the Advanced Accelerator Test Facility (AATF), has been reported in several fairly recent papers and reports. But because this is a substantially new audience for the subject, I will include a brief review of the program and the facility before describing experiments. 10 refs., 7 figs.

  7. Experiments in Developing Wakes

    DTIC Science & Technology

    2014-04-27

    Government Agencies and private individuals or enterprises eligible to obtain export-controlled technical data in accordance with DoDD 5230.25; (date of...confined to the NEQ and Q2D regimes. There have been no actual observations in the 3D regime because hitherto optically-based methods such as PIV ...stereo- PIV data behind the wake-generator (a sphere or grid) to obtain 3 velocity components in selected planes, and hence all components of the

  8. Direct Numerical Simulation of a Weakly Stratified Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Redford, J. A.; Lund, T. S.; Coleman, Gary N.

    2014-01-01

    Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.

  9. Characteristics of lightly loaded fan rotor blade wakes

    NASA Technical Reports Server (NTRS)

    Reynolds, B.; Lakshminarayana, B.

    1979-01-01

    Low subsonic and incompressible wake flow downstream of lightly loaded rotor was studied. Measurements of mean velocity, turbulence intensity, Reynolds stress, and static variations across the rotor wake at various axial and radial locations were investigated. Wakes were measured at various rotor blade incidences to discern the effect of blade loading on the rotor wake. Mean velocity and turbulence measurements were carried out with a triaxial hot wire probe both rotating with the rotor and stationary behind the rotor. Results indicate that increased loading slows the decay rates of axial and tangential mean velocity defects and radial velocities in the wake. The presence of large radial velocities in the rotor wake indicate the extent of the interactions between one radius and another. Appreciable static pressure variations across the rotor wake were found in the near wake region. Similarity in the profile shape was found for the axial and tangential components of the mean velocity and in the outer layer for axial, tangential, and radial turbulence intensities.

  10. Interaction of Aircraft Wakes From Laterally Spaced Aircraft

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    2009-01-01

    Large Eddy Simulations are used to examine wake interactions from aircraft on closely spaced parallel paths. Two sets of experiments are conducted, with the first set examining wake interactions out of ground effect (OGE) and the second set for in ground effect (IGE). The initial wake field for each aircraft represents a rolled-up wake vortex pair generated by a B-747. Parametric sets include wake interactions from aircraft pairs with lateral separations of 400, 500, 600, and 750 ft. The simulation of a wake from a single aircraft is used as baseline. The study shows that wake vortices from either a pair or a formation of B-747 s that fly with very close lateral spacing, last longer than those from an isolated B-747. For OGE, the inner vortices between the pair of aircraft, ascend, link and quickly dissipate, leaving the outer vortices to decay and descend slowly. For the IGE scenario, the inner vortices ascend and last longer, while the outer vortices decay from ground interaction at a rate similar to that expected from an isolated aircraft. Both OGE and IGE scenarios produce longer-lasting wakes for aircraft with separations less than 600 ft. The results are significant because concepts to increase airport capacity have been proposed that assume either aircraft formations and/or aircraft pairs landing on very closely spaced runways.

  11. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction

    PubMed Central

    Jiang, Da-Yong; Motani, Ryosuke; Huang, Jian-Dong; Tintori, Andrea; Hu, Yuan-Chao; Rieppel, Olivier; Fraser, Nicholas C.; Ji, Cheng; Kelley, Neil P.; Fu, Wan-Lu; Zhang, Rong

    2016-01-01

    Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation. PMID:27211319

  12. A large aberrant stem ichthyosauriform indicating early rise and demise of ichthyosauromorphs in the wake of the end-Permian extinction.

    PubMed

    Jiang, Da-Yong; Motani, Ryosuke; Huang, Jian-Dong; Tintori, Andrea; Hu, Yuan-Chao; Rieppel, Olivier; Fraser, Nicholas C; Ji, Cheng; Kelley, Neil P; Fu, Wan-Lu; Zhang, Rong

    2016-05-23

    Contrary to the fast radiation of most metazoans after the end-Permian mass extinction, it is believed that early marine reptiles evolved slowly during the same time interval. However, emerging discoveries of Early Triassic marine reptiles are questioning this traditional view. Here we present an aberrant basal ichthyosauriform with a hitherto unknown body design that suggests a fast radiation of early marine reptiles. The new species is larger than coeval marine reptiles and has an extremely small head and a long tail without a fluke. Its heavily-built body bears flattened and overlapping gastral elements reminiscent of hupehsuchians. A phylogenetic analysis places the new species at the base of ichthyosauriforms, as the sister taxon of Cartorhynchus with which it shares a short snout with rostrally extended nasals. It now appears that ichthyosauriforms evolved rapidly within the first one million years of their evolution, in the Spathian (Early Triassic), and their true diversity has yet to be fully uncovered. Early ichthyosauromorphs quickly became extinct near the Early-Middle Triassic boundary, during the last large environmental perturbation after the end-Permian extinction involving redox fluctuations, sea level changes and volcanism. Marine reptile faunas shifted from ichthyosauromorph-dominated to sauropterygian-dominated composition after the perturbation.

  13. Strongly Stratified Turbulence Wakes and Mixing Produced by Fractal Wakes

    NASA Astrophysics Data System (ADS)

    Dimitrieva, Natalia; Redondo, Jose Manuel; Chashechkin, Yuli; Fraunie, Philippe; Velascos, David

    2017-04-01

    This paper describes Shliering and Shadowgraph experiments of the wake induced mixing produced by tranversing a vertical or horizontal fractal grid through the interfase between two miscible fluids at low Atwood and Reynolds numbers. This is a configuration design to models the mixing across isopycnals in stably-stratified flows in many environmental relevant situations (either in the atmosphere or in the ocean. The initial unstable stratification is characterized by a reduced gravity: g' = gΔρ ρ where g is gravity, Δρ being the initial density step and ρ the reference density. Here the Atwood number is A = g' _ 2 g . The topology of the fractal wake within the strong stratification, and the internal wave field produces both a turbulent cascade and a wave cascade, with frecuen parametric resonances, the envelope of the mixing front is found to follow a complex non steady 3rd order polinomial function with a maximum at about 4-5 Brunt-Vaisalla non-dimensional time scales: t/N δ = c1(t/N) + c2g Δρ ρ (t/N)2 -c3(t/N)3. Conductivity probes and Shliering and Shadowgraph visual techniques, including CIV with (Laser induced fluorescence and digitization of the light attenuation across the tank) are used in order to investigate the density gradients and the three-dimensionality of the expanding and contracting wake. Fractal analysis is also used in order to estimate the fastest and slowest growing wavelengths. The large scale structures are observed to increase in wave-length as the mixing progresses, and the processes involved in this increase in scale are also examined.Measurements of the pointwise and horizontally averaged concentrations confirm the picture obtained from past flow visualization studies. They show that the fluid passes through the mixing region with relatively small amounts of molecular mixing,and the molecular effects only dominate on longer time scales when the small scales have penetrated through the large scale structures. The Non

  14. Linear instability of supersonic plane wakes

    NASA Technical Reports Server (NTRS)

    Papageorgiou, D. T.

    1989-01-01

    In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high-Reynolds-number and laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake-profiles which satisfy the steady equations of motion. The initial growth of near wake perturbation is governed by the compressible Rayleigh equation which is studied analytically for long- and short-waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing-edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large-hypersonic) the absolute instability region seems to disappear and the maximum available growth-rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth-rates.

  15. Wake in faint television meteors

    NASA Technical Reports Server (NTRS)

    Robertson, M. C.; Hawkes, Robert L.

    1992-01-01

    The two component dustball model was used in numerical lag computation. Detached grain lag is typically less than 2 km, with expected wakes of a few hundred meters. True wake in television meteors is masked by apparent wake due to the combined effects of image persistence and blooming. To partially circumvent this problem, we modified a dual MCP intensified CID video system by addition of a rotating shutter to reduce the effective exposure time to about 2.0 ms. Preliminary observations showed that only 2 of 27 analyzed meteors displayed statistically significant wake.

  16. [Sleep-wake transition disorders].

    PubMed

    Honma, H; Kobayashi, R; Koyama, T

    1998-02-01

    The term sleep-wake transition disorders refers to a group of parasomnias that occur during the transition from wakefulness to sleep or from one sleep stage to another. Rhythmic movement disorder, sleep starts, sleep talking, and nocturnal leg cramps--these four disorders belong to sleep-wake transition disorders in the International Classification of Sleep Disorders. Although these are common disorders, little attention is given to them and their mechanisms are remain unclear. The majority of patients are not so severe as to require any treatment. Their prognosis are usually well. This article describes sleep-wake transition disorders concerning the clinical features, differential diagnosis, treatment, etc.

  17. Rotating Wheel Wake

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Xu, Hui; Moxey, Dave; Sherwin, Spencer

    2016-11-01

    For open wheel race-cars, such as Formula One, or IndyCar, the wheels are responsible for 40 % of the total drag. For road cars, drag associated to the wheels and under-carriage can represent 20 - 60 % of total drag at highway cruise speeds. Experimental observations have reported two, three or more pairs of counter rotating vortices, the relative strength of which still remains an open question. The near wake of an unsteady rotating wheel. The numerical investigation by means of direct numerical simulation at ReD =400-1000 is presented here to further the understanding of bifurcations the flow undergoes as the Reynolds number is increased. Direct numerical simulation is performed using Nektar++, the results of which are compared to those of Pirozzoli et al. (2012). Both proper orthogonal decomposition and dynamic mode decomposition, as well as spectral analysis are leveraged to gain unprecedented insight into the bifurcations and subsequent topological differences of the wake as the Reynolds number is increased.

  18. Wake Shield Facility

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Wake Shield Facility is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers. The WSF Free-Flyer is a 12-foot-diameter stainless steel disk that, while traveling in orbit at approximately 18,000 mph, leaves in its wake a vacuum 1,000 to 10,000 times better than the best vacuums currently achieved on Earth. While it is carried into orbit by the Space Shuttle, the WSF is a fully equipped spacecraft in its own right, with cold gas propulsion for separation from the orbiter and a momentum bias attitude control system. All WSF functions are undertaken by a spacecraft computer with the WSF remotely controlled from the ground. The ultra vacuum, nearly empty of all molecules, is then used to conduct a series of thin film growths by a process called epitaxy which produces exceptionally pure and atomically ordered thin films of semiconductor compounds such as gallium arsenide. Using this process, the WSF offers the potential of producing thin film materials, and the devices they will make possible.

  19. Large Eddy Simulation of Bubbly Ship Wakes

    DTIC Science & Technology

    2005-08-01

    simplified variants of a spectral method, in which Fourier harmonics are generated with the appropriate statistics and assembled into a random flow-field...was achieved by using Fourier harmonics with a random phase shift. This is a rather efficient method to generate the inflow turbulence with pre

  20. Modeled Atoll Shoreline and Run-up Changes in Response to Sea-level Rise and Changing Wave Directions under Large Wave Conditions: Wake and Midway Atolls, Northwestern Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Hoeke, R. K.

    2016-02-01

    Low-lying atoll islands are dynamic features expected to respond to changes in waves and sea level in a changing climate. Increased run-up and/or island erosion would threaten infrastructure and island communities. However, it is unclear how island erosion and run-up patterns will respond to climate change, making it difficult to prepare for the future. Large winter and summer wave conditions were modeled at two atolls, Wake and Midway in the Northwestern Hawaiian Islands, using Delft3D where sea level was varied at intervals between 0.0 to +2.0 m and incident wave directions from -15.0° to +15.0° from current conditions, to simulate potential climate change effects. The longshore sediment flux was calculated using the CERC empirical formulation and resulting potential erosion rates were calculated by the divergence of the longshore drift between scenarios; similarly, changes in run-up between scenarios were calculated using an empirical approach. The results are variable, but generally the ends of islands exhibit the most change under sea-level rise or rotating wave directions. Islands are projected to accrete on seaward, leeward, and lagoon shorelines due to sea-level rise, whereas island ends predominantly erode. Increases in run-up are greatest along island ends and smallest along seaward shorelines. Shorelines at the ends of islands show the greatest response to incident wave direction changes, whereas seaward and leeward shorelines become predominantly accretionary with an increasing wave angle. Run-up increases as shorelines become more directly exposed to incident waves; however, this response is greatest at the ends of islands. These simulations suggest island ends will experience the most morphological change and run-up increases due to climate change.

  1. Effects of Aircraft Wake Dynamics on Measured and Simulated NO(x) and HO(x) Wake Chemistry. Appendix B

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.

    2001-01-01

    High-resolution numerical large-eddy simulations of the near wake of a B757 including simplified NOx and HOx chemistry were performed to explore the effects of dynamics on chemistry in wakes of ages from a few seconds to several minutes. Dilution plays an important basic role in the NOx-O3 chemistry in the wake, while a more interesting interaction between the chemistry and dynamics occurs for the HOx species. These simulation results are compared with published measurements of OH and HO2 within a B757 wake under cruise conditions in the upper troposphere taken during the Subsonic Aircraft Contrail and Cloud Effects Special Study (SUCCESS) mission in May 1996. The simulation provides a much finer grained representation of the chemistry and dynamics of the early wake than is possible from the 1 s data samples taken in situ. The comparison suggests that the previously reported discrepancy of up to a factor of 20 - 50 between the SUCCESS measurements of the [HO2]/[OH] ratio and that predicted by simplified theoretical computations is due to the combined effects of large mixing rates around the wake plume edges and averaging over volumes containing large species fluctuations. The results demonstrate the feasibility of using three-dimensional unsteady large-eddy simulations with coupled chemistry to study such phenomena.

  2. Wake Island Supplemental Environmental Assessment

    DTIC Science & Technology

    2007-02-01

    offers limited basking opportunities. The Federally endangered Hawksbill sea turtle (Eretmochelys irnbricata) has been suspected to occur at Wake...could be found in the literature reviewed. No observations of Hawksbill sea turtles were recorded at Wake Atoll during the 1998 marine survey...provide marine feeding grounds for green and perhaps hawksbill turtles .”2 2 National Marine

  3. Experiments on the global instability of confined axisymmetric dense wakes.

    NASA Astrophysics Data System (ADS)

    Li, Larry; Juniper, Matthew

    2007-11-01

    Recent theoretical studies [M. Juniper, J. Fluid Mech. 565, 171-195 (2006); M. Juniper and S. Candel, J. Fluid Mech. 482, 257-269 (2003)] predict that confinement increases the hydrodynamic instability of wakes by causing the transition from convective to absolute instability to occur at lower values of shear. Experimental evidence supporting this prediction is presented here for a confined, axisymmetric wake at density ratios, S ≡ ρ1 /ρ2> 1 (i.e. dense wake). The wake was produced by a pair of convergent nozzles mounted concentrically, one within the other, in a low-turbulence wind tunnel facility. Variations in S were achieved by employing two high density gases (S = 1.53 and 5.11) in the inner flow with air in the outer flow. For a fixed S, there existed a critical value of shear above which dominant peaks appeared abruptly in the near-wake velocity spectra, as quantified by hot-wire anemometry. Corresponding high-speed video sequences revealed large-scale, sinuous wake motions. Results on the confined wake's response to externally-applied, acoustic forcing are also presented. The presence of discrete spectral peaks and coordinated instability oscillations suggests the emergence of a self-sustained, global mode.

  4. Wake Measurements in ECN's Scaled Wind Farm

    NASA Astrophysics Data System (ADS)

    Wagenaar, J. W.; Schepers, J. G.

    2014-12-01

    In ECN's scaled wind farm the wake evolution is studied in two different situations. A single wake is studied at two different locations downstream of a turbine and a single wake is studied in conjunction with a triple wake. Here, the wake is characterized by the relative wind speed, the turbulence intensity, the vertical wind speed and the turbulence (an)isotropy. Per situation all wake measurements are taken simultaneously together with the inflow conditions.

  5. Wind farm array wake losses

    SciTech Connect

    Baker, R.W.; McCarthy, E.F.

    1997-12-31

    A wind turbine wake study was conducted in the summer of 1987 at an Altamont Pass wind electric generating facility. The wind speed deficits, turbulence, and power deficits from an array consisting of several rows of wind turbines is discussed. A total of nine different test configurations were evaluated for a downwind spacing ranging from 7 rotor diameters (RD) to 34 RD and a cross wind spacing of 1.3 RD and 2.7 RD. Wake power deficits of 15% were measured at 16 RD and power losses of a few percent were even measurable at 27 RD for the closer cross wind spacing. For several rows of turbines separated by 7-9 RD the wake zones overlapped and formed compound wakes with higher velocity deficits. The wind speed and direction turbulence in the wake was much higher than the ambient turbulence. The results from this study are compared to the findings from other similar field measurements.

  6. A comparison of two- and three-dimensional S809 airfoil properties for rough and smooth HAWT (horizontal-axis wind turbine) rotor operation

    SciTech Connect

    Musial, W.D.; Butterfield, C.P.; Jenks, M.D.

    1990-02-01

    At the Solar Energy Research Institute (SERI), we carried out tests to measure the effects of leading-edge roughness on an S809 airfoil using a 10-m, three-bladed, horizontal-axis wind turbine (HAWT). The rotor employed a constant-chord (.457 m) blade geometry with zero twist. Blade structural loads were measured with strain gages mounted at 9 spanwise locations. Airfoil pressure measurements were taken at the 80% spanwise station using 32 pressure taps distributed around the airfoil surface. Detailed inflow measurements were taken using nine R.M. Young Model 8002 propvane anemometers on a vertical plane array (VPA) located 10 m upwind of the test turbine in the prevailing wind direction. The major objective of this test was to determine the sensitivity of the S809 airfoil to roughness on a rotating wind turbine blade. We examined this effect by comparing several parameters. We compared power curves to show the sensitivity of whole rotor performance to roughness. We used pressure measurements to generate pressure distributions at the 80% span which operates at a Reynolds number (Re) of 800,000. We then integrated these distributions to determine the effect of roughness on the section's lift and pressure-drag coefficients. We also used the shapes of these distributions to understand how roughness affects the aerodynamic forces on the airfoil. We also compared rough and smooth wind tunnel data to the rotating blade data to study the effects of blade rotation on the aerodynamic behavior of the airfoil below, near, and beyond stall. 13 refs., 11 figs.

  7. Mach-like capillary-gravity wakes.

    PubMed

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers Bo(D)=D/λ(c) ranging between 0.1 and 4.2, where D is the cylinder diameter and λ(c) the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α∼U(-1), but with different prefactors depending on the value of Bo(D). For small Bo(D) (large capillary effects), the wake angle approximately follows the law α≃c(g,min)/U, where c(g,min) is the minimum group velocity of capillary-gravity waves. For larger Bo(D) (weak capillary effects), we recover a law α∼√[gD]/U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013)]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α≃c(g,min)/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  8. Mach-like capillary-gravity wakes

    NASA Astrophysics Data System (ADS)

    Moisy, Frédéric; Rabaud, Marc

    2014-08-01

    We determine experimentally the angle α of maximum wave amplitude in the far-field wake behind a vertical surface-piercing cylinder translated at constant velocity U for Bond numbers BoD=D/λc ranging between 0.1 and 4.2, where D is the cylinder diameter and λc the capillary length. In all cases the wake angle is found to follow a Mach-like law at large velocity, α ˜U-1, but with different prefactors depending on the value of BoD. For small BoD (large capillary effects), the wake angle approximately follows the law α ≃cg ,min/U, where cg ,min is the minimum group velocity of capillary-gravity waves. For larger BoD (weak capillary effects), we recover a law α ˜√gD /U similar to that found for ship wakes at large velocity [Rabaud and Moisy, Phys. Rev. Lett. 110, 214503 (2013), 10.1103/PhysRevLett.110.214503]. Using the general property of dispersive waves that the characteristic wavelength of the wave packet emitted by a disturbance is of order of the disturbance size, we propose a simple model that describes the transition between these two Mach-like regimes as the Bond number is varied. We show that the new capillary law α ≃cg ,min/U originates from the presence of a capillary cusp angle (distinct from the usual gravity cusp angle), along which the energy radiated by the disturbance accumulates for Bond numbers of order of unity. This model, complemented by numerical simulations of the surface elevation induced by a moving Gaussian pressure disturbance, is in qualitative agreement with experimental measurements.

  9. The hydrodynamics of eel swimming: I. Wake structure.

    PubMed

    Tytell, Eric D; Lauder, George V

    2004-05-01

    Eels undulate a larger portion of their bodies while swimming than many other fishes, but the hydrodynamic consequences of this swimming mode are poorly understood. In this study, we examine in detail the hydrodynamics of American eels (Anguilla rostrata) swimming steadily at 1.4 L s(-1) and compare them with previous results from other fishes. We performed high-resolution particle image velocimetry (PIV) to quantify the wake structure, measure the swimming efficiency, and force and power output. The wake consists of jets of fluid that point almost directly laterally, separated by an unstable shear layer that rolls up into two or more vortices over time. Previously, the wake of swimming eels was hypothesized to consist of unlinked vortex rings, resulting from a phase offset between vorticity distributed along the body and vorticity shed at the tail. Our high-resolution flow data suggest that the body anterior to the tail tip produces relatively low vorticity, and instead the wake structure results from the instability of the shear layers separating the lateral jets, reflecting pulses of high vorticity shed at the tail tip. We compare the wake structure to large-amplitude elongated body theory and to a previous computational fluid dynamic model and note several discrepancies between the models and the measured values. The wake of steadily swimming eels differs substantially in structure from the wake of previously studied carangiform fishes in that it lacks any significant downstream flow, previously interpreted as signifying thrust. We infer that the lack of downstream flow results from a spatial and temporal balance of momentum removal (drag) and thrust generated along the body, due to the relatively uniform shape of eels. Carangiform swimmers typically have a narrow caudal peduncle, which probably allows them to separate thrust from drag both spatially and temporally. Eels seem to lack this separation, which may explain why they produce a wake with little

  10. The near and far wake of Pallas' long tongued bat (Glossophaga soricina).

    PubMed

    Johansson, L Christoffer; Wolf, Marta; von Busse, Rhea; Winter, York; Spedding, Geoffrey R; Hedenström, Anders

    2008-09-01

    The wake structures of a bat in flight have a number of characteristics not associated with any of the bird species studied to this point. Unique features include discrete vortex rings generating negative lift at the end of the upstroke at medium and high speeds, each wing generating its own vortex loop, and a systematic variation in the circulation of the start and stop vortices along the wingspan, with increasing strength towards the wing tips. Here we analyse in further detail some previously published data from quantitative measurements of the wake behind a small bat species flying at speeds ranging from 1.5 to 7 m s(-1) in a wind tunnel. The data are extended to include both near- and far-wake measurements. The near-/far-wake comparisons show that although the measured peak vorticity of the start and stop vortices decreases with increasing downstream distance from the wing, the total circulation remains approximately constant. As the wake evolves, the diffuse stop vortex shed at the inner wing forms a more concentrated vortex in the far wake. Taken together, the results show that studying the far wake, which has been the standard procedure, nevertheless risks missing details of the wake. Although study of the far wake alone can lead to the misinterpretation of the wake topology, the net, overall circulation of the main wake vortices can be preserved so that approximate momentum balance calculations are not unreasonable within the inevitably large experimental uncertainties.

  11. A new methodology for free wake analysis using curved vortex elements

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.; Teske, Milton E.; Quackenbush, Todd R.

    1987-01-01

    A method using curved vortex elements was developed for helicopter rotor free wake calculations. The Basic Curve Vortex Element (BCVE) is derived from the approximate Biot-Savart integration for a parabolic arc filament. When used in conjunction with a scheme to fit the elements along a vortex filament contour, this method has a significant advantage in overall accuracy and efficiency when compared to the traditional straight-line element approach. A theoretical and numerical analysis shows that free wake flows involving close interactions between filaments should utilize curved vortex elements in order to guarantee a consistent level of accuracy. The curved element method was implemented into a forward flight free wake analysis, featuring an adaptive far wake model that utilizes free wake information to extend the vortex filaments beyond the free wake regions. The curved vortex element free wake, coupled with this far wake model, exhibited rapid convergence, even in regions where the free wake and far wake turns are interlaced. Sample calculations are presented for tip vortex motion at various advance ratios for single and multiple blade rotors. Cross-flow plots reveal that the overall downstream wake flow resembles a trailing vortex pair. A preliminary assessment shows that the rotor downwash field is insensitive to element size, even for relatively large curved elements.

  12. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST WITH PHOTO SCALE CENTERED ON BUILDING (12/30/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  13. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHWEST AT SOUTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHWEST AT SOUTHEAST CORNER OF LOBBY OF BUILDING (12/29/2007) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  14. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING SOUTHEAST AT NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING SOUTHEAST AT NORTHWEST CORNER FROM ACROSS TARMAC (12/25/2007) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  15. SOUTHWEST CORNER OF WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHWEST CORNER OF WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING EAST AT WEST FAÇADE WITH SCALE POLE (01/02/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  16. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHEAST AT WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHEAST AT WEST SIDE SHOWING FLAG, GUN, ENGINES (12/29/2007) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  17. WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHEAST AT SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHEAST AT SOUTHWEST CORNER FROM BEHIND CONTROL TOWER (12/28/2007) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  18. WEST SIDE OF WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WEST SIDE OF WAKE ISLAND AIRFIELD TERMINAL, BUILDING 1502 LOOKING NORTHEAST AT SOUTHWEST CORNER SHOWING OVERHANGS (01/02/2008) - Wake Island Airfield, Terminal Building, West Side of Wake Avenue, Wake Island, Wake Island, UM

  19. Large-scale wind turbine structures

    NASA Technical Reports Server (NTRS)

    Spera, David A.

    1988-01-01

    The purpose of this presentation is to show how structural technology was applied in the design of modern wind turbines, which were recently brought to an advanced stage of development as sources of renewable power. Wind turbine structures present many difficult problems because they are relatively slender and flexible; subject to vibration and aeroelastic instabilities; acted upon by loads which are often nondeterministic; operated continuously with little maintenance in all weather; and dominated by life-cycle cost considerations. Progress in horizontal-axis wind turbines (HAWT) development was paced by progress in the understanding of structural loads, modeling of structural dynamic response, and designing of innovative structural response. During the past 15 years a series of large HAWTs was developed. This has culminated in the recent completion of the world's largest operating wind turbine, the 3.2 MW Mod-5B power plane installed on the island of Oahu, Hawaii. Some of the applications of structures technology to wind turbine will be illustrated by referring to the Mod-5B design. First, a video overview will be presented to provide familiarization with the Mod-5B project and the important components of the wind turbine system. Next, the structural requirements for large-scale wind turbines will be discussed, emphasizing the difficult fatigue-life requirements. Finally, the procedures used to design the structure will be presented, including the use of the fracture mechanics approach for determining allowable fatigue stresses.

  20. Wake Turbulence Mitigation for Arrivals (WTMA)

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Lohr, Gary W.; Trujillo, Anna C.

    2008-01-01

    The preliminary Wake Turbulence Mitigation for Arrivals (WTMA) concept of operations is described in this paper. The WTMA concept provides further detail to work initiated by the Wake Vortex Avoidance System Concept Evaluation Team and is an evolution of the Wake Turbulence Mitigation for Departure concept. Anticipated benefits about reducing wake turbulence separation standards in crosswind conditions, and candidate WTMA system considerations are discussed.

  1. Droplet depinning in a wake

    NASA Astrophysics Data System (ADS)

    Hooshanginejad, Alireza; Lee, Sungyon

    2017-03-01

    Pinning and depinning of a windswept droplet on a surface is familiar yet deceptively complex for it depends on the interaction of the contact line with the microscopic features of the solid substrate. This physical picture is further compounded when wind of the Reynolds number greater than 100 blows over pinned drops, leading to the boundary layer separation and wake generation. In this Rapid Communication, we incorporate the well-developed ideas of the classical boundary layer to study partially wetting droplets in a wake created by a leader object. Depending on its distance from the leader, the droplet is observed to exhibit drafting, upstream motion, and splitting, due to the wake-induced hydrodynamic coupling that is analogous to drafting of moving bodies. We successfully rationalize the onset of the upstream motion regime using a reduced model that computes the droplet shape governed by the pressure field inside the wake.

  2. Atmospheric-wake vortex interactions

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Hirsh, J. E.; Teske, M. E.; Hecht, A. M.

    1978-01-01

    The interactions of a vortex wake with a turbulent stratified atmosphere are investigated with the computer code WAKE. It is shown that atmospheric shear, turbulence, and stratification can provide the dominant mechanisms by which vortex wakes decay. Computations included the interaction of a vortex wake with a viscous ground plane. The observed phenomenon of vortex bounce is explained in terms of secondary vorticity produced on the ground. This vorticity is swept off the ground and advected about the vortex pair, thereby altering the classic hyperbolic trajectory. The phenomenon of the solitary vortex is explained as an interaction of a vortex with crosswind shear. Here, the vortex having the sign opposite that of the sign of the vorticity in the shear is dispersed by a convective instability. This instability results in the rapid production of turbulence which in turn disperses the smoke marking the vortex.

  3. Diagnosis, Cause, and Treatment Approaches for Delayed Sleep-Wake Phase Disorder.

    PubMed

    Magee, Michelle; Marbas, Emily M; Wright, Kenneth P; Rajaratnam, Shantha M W; Broussard, Josiane L

    2016-09-01

    Delayed sleep-wake phase disorder (DSWPD) is commonly defined as an inability to fall asleep and wake at societal times resulting in excessive daytime sleepiness. Although the cause is multifaceted, delays in sleep time are largely driven by misalignment between the circadian pacemaker and the desired sleep-wake timing schedule. Current treatment approaches focus on correcting the circadian delay; however, there is a lack of data investigating combined therapies for treatment of DSWPD. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. On the field anomaly of near wakes in a collisionless plasma.

    NASA Technical Reports Server (NTRS)

    Liu, V. C.; Jew, H.

    1973-01-01

    A variational approach is presented for determining the electric field induced by charge separation in the near wake of a large negatively charged body moving at mesothermal speeds in a tenuous plasma. It is shown that the presence of a potential well in the wake is due to the charge separation resulting from the unequal mass motions with which the ambient electrons and ions move into the wake.

  5. Analysis of Ring Wake Simulations

    NASA Astrophysics Data System (ADS)

    Lewis, M. C.; Stewart, G. R.

    1999-09-01

    indent=20pt Collisional N-body simulations at the edge of a perturbed planetary ring are used to model the edges of the Encke gap in Saturn's rings. A small satellite, Pan, orbits inside the Encke gap and excites forced eccentricities and density wakes on both edges of the gap. The simulations use a local cell method to model a narrow ring using particles of the appropriate size for the A-ring at the proper optical depth. In the simulations we see evidence for shear reversal at the wake peaks. Our results imply that the most significant factor in the damping of the wakes is the reduction of the forced eccentricity and not randomization of the phase angles of the particles. The reduction of the forced eccentricity occurs in an orderly fashion with steep drops at each successive wake maximum following the highest density wake peak. indent=20pt At the inner edge (that nearer the perturber) we see phase shifts visible as bending of the line wake maxima. Because the simulations are actually of narrow rings, we also see a number of interesting phenomena at the outer edge. A strong boundary layer forms at that edge, which becomes partially detached from the rest of the ring. The wake patterns persist much further downstream in this boundary layer than they do in the rest of the ring. We also observe that in the less dense region between the main section of the ring and the boundary layer the magnitude of the forced eccentricities reverse their behavior in the main part and increase at each wake maxima. indent=20pt At the talk we will compare our results to the various analytic theories of Borderies, Goldreich, and Tremaine.

  6. Plasma Wakes in Space and Laboratory

    NASA Astrophysics Data System (ADS)

    Sauer, K.; Fussmann, G.

    Obstacles in plasma flows may create different types of wake structures depending on the parameters of both the flow (as Mach number), and the body (e.g. size, features of surrounding atmosphere). Such situation exists at planets and their moons in the solar wind, but also for moons of giant planets due to their relative motion with respect to the co-rotating magnetosphere. Several plasma boundaries may be formed as result of the plasma-body interaction. Another signature is the generation of coherent waves in different frequency ranges which arise due to the free energy in a counter-streaming plasma configuration. Wake structures are also of interest in fusion-oriented devices, in particular near divertors. Relevant studies have been done in the plasma experiment PSI-2 in Berlin where "shadow" effects have been produced by probes placed into a dense, sub-Alfvenic flow. Downstream of these probes dark areas can be observed over large distances with the naked eye. Spacecraft measurements near planetary bodies, starting from the Moon up to the moons of Jupiter and Saturn, are discussed together with the simulation results and comparative analysis is made to find out main signatures of plasma wake formation.

  7. Use of Plasma Actuators as a Moving-Wake Generator

    NASA Technical Reports Server (NTRS)

    Corke, Thomas C.; Thomas, Flint O.; Klapetzky Michael J.

    2007-01-01

    The work documented in this report tests the concept of using plasma actuators as a simple and easy way to generate a simulated moving-wake and the disturbances associated with it in turbines. This wake is caused by the blades of the upstream stages of the turbine. Two types of devices, one constructed of arrays of NACA 0018 airfoils, and the one constructed of flat plates were studied. The airfoils or plates were equipped with surface mounted dielectric barrier discharge (DBD) plasma actuators, which were used to generate flow disturbances resembling moving-wakes. CTA hot-wire anemometry and flow visualization using a smoke-wire were used to investigate the wake independence at various spacings and downstream locations. The flat plates were found to produce better results than the airfoils in creating large velocity fluctuations in the free-stream flow. Different dielectric materials, plasma actuator locations, leading edge contours, angles of attack and plate spacings were investigated, some with positive results. The magnitudes of the velocity fluctuations were found to be comparable to existing mechanical moving-wake generators, thus proving the feasibility of using plasma actuators as a moving-wake generator.

  8. Properties of wind turbine wakes under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Xie, Shengbai; Archer, Cristina

    2015-11-01

    Large-eddy simulations (LES) are performed to study the properties of wind turbine wakes under various atmospheric stability conditions. The Wind Turbine and Turbulence Simulator (WiTTS), a 4th-order finite-difference LES code is used for stable, neutral, and unstable conditions. The Coriolis forcing is also considered. Three cases are studied: isolated turbine, finite-size turbine array, and infinite wind farm. The results show strong correlations with stability. For the stable condition, the power extraction by an isolated turbine is highest, but the wake is also longest, thus the relative performance inside the array is lowest. In contrast, although the single-turbine power extraction is low for the unstable condition, the performance of downstream turbines is improved due to faster wake recovery. The wake shape is distorted by the stability-related wind veering. Therefore, the self-similar Gaussian wake deficit is not accurate. Here, a new wake model is proposed for correction. The infinite wind-farm case shows that the temperature near the ground is warmed by about 1 K for the stable condition, but the influence is almost negligible for the unstable and neutral conditions. For all conditions, the near-ground shear stress is reduced.

  9. An Analytic Parameterization of Self-Gravity Wakes

    NASA Astrophysics Data System (ADS)

    Tiscareno, Matthew S.; Perrine, R. P.; Richardson, D. C.; Hedman, M. M.; Burns, J. A.; Weiss, J. W.; Porco, C. C.

    2008-09-01

    Saturn's dense A and B rings are pervaded by a microstructure dubbed "self-gravity wakes," which arise due to a rough balance between the clumping together of particles under their mutual self-gravity and their shearing apart again due to tidal forces (Julian and Toomre 1966; Salo 1995). This effect causes azimuthal variations in the rings' brightness as seen in images (Franklin et al. 1987; Dones and Porco 1989; Salo et al. 2004; Porco et al. 2008) and in the optical depth as probed by occultations (Colwell et al. 2006; Hedman et al. 2007). The latter papers explain the occultation observations with models that assume widely separated elongated structures that have an optical-depth dichotomy, with nearly-opaque wakes (with optical depth κwake) and a low but relatively constant optical depth in the spaces between the wakes (κgap). However, it is not known whether simulated wakes (not to mention real ones) can be so characterized, nor, if they can, how κwake and κgap respond to environmental parameters such as optical depth and coefficient of restitution. What do observed values of κgap (Colwell et al. 2006; Hedman et al. 2007) tell us about the conditions under which wakes occur? To this end, we determine the distribution of densities in simulated wake cells. Our method uses an adaptive bin size to simultaneously accommodate low-density regions, where particles are sparse (large bins required), and the sharp boundaries between high- and low-density regions (small bins required). The result is a histogram of the local densities within simulated patches of the ring. We apply this method to a suite of simulated wake cells, and will present our results. We further plan to use our results to address the question of whether local disruption of self-gravity wakes can explain the observed brightness of "propeller" structures (Tiscareno et al. 2008, AJ).

  10. Wake Mitigation Strategies for Optimizing Wind Farm Power Production

    NASA Astrophysics Data System (ADS)

    Dilip, Deepu; Porté-Agel, Fernando

    2016-04-01

    Although wind turbines are designed individually for optimum power production, they are often arranged into groups of closely spaced turbines in a wind farm rather than in isolation. Consequently, most turbines in a wind farm do not operate in unobstructed wind flows, but are affected by the wakes of turbines in front of them. Such wake interference significantly reduces the overall power generation from wind farms and hence, development of effective wake mitigation strategies is critical for improving wind farm efficiency. One approach towards this end is based on the notion that the operation of each turbine in a wind farm at its optimum efficiency might not lead to optimum power generation from the wind farm as a whole. This entails a down regulation of individual turbines from its optimum operating point, which can be achieved through different methods such as pitching the turbine blades, changing the turbine tip speed ratio or yawing of the turbine, to name a few. In this study, large-eddy simulations of a two-turbine arrangement with the second turbine fully in the wake of the first are performed. Different wake mitigation techniques are applied to the upstream turbine, and the effects of these on its wake characteristics are investigated. Results for the combined power from the two turbines for each of these methods are compared to a baseline scenario where no wake mitigation strategies are employed. Analysis of the results shows the potential for improved power production from such wake control methods. It should be noted, however, that the magnitude of the improvement is strongly affected by the level of turbulence in the incoming atmospheric flow.

  11. Wind turbine wake characterization using long-range Doppler lidar

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Lundquist, J. K.; Hestmark, K.; Banta, R. M.; Pichugina, Y.; Brewer, A.

    2012-12-01

    Wind turbines extract energy from the freestream flow, resulting in a waked region behind the rotor which is characterized by reduced wind speed and increased turbulence. The velocity deficit in the wake diminishes with distance, as faster-moving air outside is gradually entrained. In a concentrated group of turbines, then, downwind machines experience very different inflow conditions compared to those in the front row. As utility-scale turbines rarely exist in isolation, detailed knowledge of the mean flow and turbulence structure inside wakes is needed to correctly model both power production and turbine loading at modern wind farms. To this end, the Turbine Wake and Inflow Characterization Study (TWICS) was conducted in the spring of 2011 to determine the reduction in wind speeds downstream from a multi-MW turbine located at the National Renewable Energy Laboratory's National Wind Technology Center (NWTC) near Boulder, Colorado. Full-scale measurements of wake dynamics are hardly practical or even possible with conventional sensors, such as cup anemometers mounted on meteorological (met) masts. Accordingly, the High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration's Earth System Research Laboratory was employed to investigate the formation and propagation of wakes under varying levels of ambient wind speed, shear, atmospheric stability, and turbulence. HRDL remotely senses line-of-sight wind velocities and has been used in several previous studies of boundary layer aerodynamics. With a fully steerable beam and a maximum range up to about 5 km, depending on atmospheric conditions, HRDL performed a comprehensive survey of the wind flow in front of and behind the turbine to study the shape, meandering, and attenuation of wakes. Due in large part to limited experimental data availability, wind farm wake modeling is still subject to an unacceptable amount of uncertainty, particularly in complex terrain. Here, analytical

  12. Extended Wakefulness: Compromised Metabolics in and Degeneration of Locus Ceruleus Neurons

    PubMed Central

    Zhang, Jing; Zhu, Yan; Zhan, Guanxia; Fenik, Polina; Panossian, Lori; Wang, Maxime M.; Reid, Shayla; Lai, David; Davis, James G.; Baur, Joseph A.

    2014-01-01

    Modern society enables a shortening of sleep times, yet long-term consequences of extended wakefulness on the brain are largely unknown. Essential for optimal alertness, locus ceruleus neurons (LCns) are metabolically active neurons that fire at increased rates across sustained wakefulness. We hypothesized that wakefulness is a metabolic stressor to LCns and that, with extended wakefulness, adaptive mitochondrial metabolic responses fail and injury ensues. The nicotinamide adenine dinucleotide-dependent deacetylase sirtuin type 3 (SirT3) coordinates mitochondrial energy production and redox homeostasis. We find that brief wakefulness upregulates SirT3 and antioxidants in LCns, protecting metabolic homeostasis. Strikingly, mice lacking SirT3 lose the adaptive antioxidant response and incur oxidative injury in LCns across brief wakefulness. When wakefulness is extended for longer durations in wild-type mice, SirT3 protein declines in LCns, while oxidative stress and acetylation of mitochondrial proteins, including electron transport chain complex I proteins, increase. In parallel with metabolic dyshomeostasis, apoptosis is activated and LCns are lost. This work identifies mitochondrial stress in LCns upon wakefulness, highlights an essential role for SirT3 activation in maintaining metabolic homeostasis in LCns across wakefulness, and demonstrates that extended wakefulness results in reduced SirT3 activity and, ultimately, degeneration of LCns. PMID:24647961

  13. High-voltage interactions in plasma wakes: Simulation and flight measurements from the Charge Hazards and Wake Studies (CHAWS) experiment

    NASA Astrophysics Data System (ADS)

    Davis, V. A.; Mandell, M. J.; Cooke, D. L.; Enloe, C. L.

    1999-06-01

    The Charge Hazards and Wake Studies (CHAWS) flight experiment flew on the Wake Shield Facility (WSF) aboard STS-60 and STS-69. The experiment studied high-voltage current collection within the spacecraft wake. The wake-side sensor was a 45-cm-long, biasable cylindrical probe mounted on the 3.66-m-diameter WSF. Operations were performed in free flight and at various attitudes while on the shuttle orbiter remote manipulator system (RMS) arm. Preflight and postflight simulations were performed using the programs Potentials of Large Objects in the Auroral Region (POLAR) and Dynamic Plasma Analysis Code (DynaPAC) and are compared here with the flight results. Both programs perform three-dimensional, self-consistent, steady state plasma simulations. During high-voltage operations the wake-side probe collected current consistent with preflight predictions. In both the flight data and the steady state simulations the current collected has a power law dependence on the potential and has a less than linear dependence on density. Growth of the sheath beyond the WSF edge controls the high-voltage current collection, and kinematic and space charge effects both play important roles in attracting ions into the wake region. Measurements made at low voltage differ from the calculations. The preflight calculations for a pure oxygen plasma predict a collection threshold at -100 V bias. The flight data show little or no threshold, implying a source of ions not accounted for in the simulations. Possible sources for these ions are discussed.

  14. Measurements in 80- by 120-foot wind tunnel of hazard posed by lift-generated wakes

    NASA Technical Reports Server (NTRS)

    Rossow, V. J.; Sacco, J. N.; Askins, P. A.; Bisbee, L. S.; Smith, S. M.

    1993-01-01

    The large, low speed wind tunnel at NASA-Ames has been used to study the characteristics of lift-generated vortices involved in the definition of aircraft-separation criteria, in order to enhance airport capacity without compromising safety. Attention is given to the potential hazard caused by the vortex wake of several configurations of a subsonic transport. Measured downwash distributions in the wake of three different wake-generator configurations are obtained by means of a vortex-lattice method, in order to predict the lift and rolling moment on several models of wake-following aircraft.

  15. Geometrical Wake of a Smooth Flat Collimator

    SciTech Connect

    Stupakov, G.V.; /SLAC

    2011-09-09

    A transverse geometrical wake generated by a beam passing through a smooth flat collimator with a gradually varying gap between the upper and lower walls is considered. Based on generalization of the approach recently developed for a smooth circular taper we reduce the electromagnetic problem of the impedance calculation to the solution of two much simpler static problems - a magnetostatic and an electrostatic ones. The solution shows that in the limit of not very large frequencies, the impedance increases with the ratio h/d where h is the width and d is the distance between the collimating jaws. Numerical results are presented for the NLC Post Linac collimator.

  16. An Improved Wake Vortex Tracking Algorithm for Multiple Aircraft

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Proctor, Fred H.; Ahmad, Nashat N.; LimonDuparcmeur, Fanny M.

    2010-01-01

    The accurate tracking of vortex evolution from Large Eddy Simulation (LES) data is a complex and computationally intensive problem. The vortex tracking requires the analysis of very large three-dimensional and time-varying datasets. The complexity of the problem is further compounded by the fact that these vortices are embedded in a background turbulence field, and they may interact with the ground surface. Another level of complication can arise, if vortices from multiple aircrafts are simulated. This paper presents a new technique for post-processing LES data to obtain wake vortex tracks and wake intensities. The new approach isolates vortices by defining "regions of interest" (ROI) around each vortex and has the ability to identify vortex pairs from multiple aircraft. The paper describes the new methodology for tracking wake vortices and presents application of the technique for single and multiple aircraft.

  17. Sleep and waking in a time-free environment

    NASA Technical Reports Server (NTRS)

    Webb, W. B.; Agnew, H. W., Jr.

    1974-01-01

    The sleep and waking of 14 subjects in time-free environments were studied for 14 days. Half of the subjects had a heavy exercise regime. All subjects exhibited a longer-than-24-hr rhythm, but the groups did not differ from each other in this extension of the rhythm. There were large individual differences between subjects and large variations from the projected sleep and waking times. The overall amount of sleep increased in the environment, and there were marked increases in both shorter and longer sleep and waking period lengths. Exercise did not increase the overall amount of sleep but did increase the variability in the distribution of sleep. The overall distribution of sleep stages during sleep did not differ from baseline measures or between groups.

  18. Wind turbine wake characterization from temporally disjunct 3-D measurements

    DOE PAGES

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; ...

    2016-11-10

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes tomore » probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.« less

  19. Wind turbine wake characterization from temporally disjunct 3-D measurements

    SciTech Connect

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; Pryor, S. C.; Churchfield, Matthew

    2016-11-10

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. Lastly, we find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  20. Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements

    SciTech Connect

    Doubrawa, Paula; Barthelmie, Rebecca J.; Wang, Hui; Pryor, S. C.; Churchfield, Matthew

    2016-11-01

    Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES) data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  1. Meteorology and Wake Vortex Influence on American Airlines FL-587 Accident

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Hamilton, David W.; Rutishauser, David K.; Switzer, George F.

    2004-01-01

    The atmospheric environment surrounding the crash of American Airlines Flight 587 is investigated. Examined are evidence for any unusual atmospheric conditions and the potential for encounters with aircraft wake vortices. Computer simulations are carried out with two different vortex prediction models and a Large Eddy Simulation model. Wind models are proposed for studying aircraft and pilot response to the wake vortex encounter.

  2. Conformal FDTD modeling wake fields

    SciTech Connect

    Jurgens, T.; Harfoush, F.

    1991-05-01

    Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.

  3. Formation and Recovery of Cold Wake during Typhoon Fanapi (2010)

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jin, H.; Black, P. G.; Chen, S.; Doyle, J.; O'Neill, L. W.

    2012-12-01

    Cold anomaly of sea surface temperature (SST) is often created after the passage of a moving hurricane or typhoon. The SST reduction within these cold anomalies or cold wakes may reach 2C to 4C. The cold wakes may have important impact on the development of a tropical cyclone due to their control on the surface energy fluxes. This work is aimed at understanding the evolution of cold wake and its impacts on the boundary layers on both sides of the air-sea interface. During 2010 typhoon season, coupled Naval Research Laboratory COAMPS-Tropical Cyclone was used to provide real-time forecasts for ITOP (Impact of Typhoons on the Ocean in the Pacific) field experiment. Typhoon Fanapi started as a tropical depression on September 14, and turned into a Category 4 typhoon on September 18. Along its passage, Typhoon Fanapi produced a large area of cold wake, leading to about 2 degree C reductions in SST. The coupled COAMPS-TC realistically predicted the cold wake formation and recovery as well as the typhoon's track and intensity in general. We use combined coupled COAMPS-TC prediction and observation data collected during the ITOP IOP to investigate the characteristics of the cold wake evolution, evolution of atmospheric as well as oceanic boundary layers. The cold wake was predicted by the model on the right hand side of the storm track; it is driven by the strong shear mixing in the ocean mixed layer. The predicted maximum SST reduction within the wake is 2.5 C, a value very close to the AXBT and satellite observations. Because of this decrease in SST, a stable atmospheric boundary layer is formed, leading to decreases in the surface wind speed, sensible and latent heat fluxes. The predicted warming rate in the cold wake recovery process is comparable with the satellite observation, even though diurnal signal is much more significant in the model prediction. An important question is what determines the recovery time scale. Given the similar solar warming rate between the

  4. Research on aircraft/vortex-wake interactions to determine acceptable level of wake intensity

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; Tinling, Bruce E.

    1988-01-01

    An evaluation of the literature on large aircraft wake-vortex encounters in flight and in flight simulators has furnished an estimate of the level to which the vortex-induced rolling moments must be reduced in order to be perceived as nonhazardous at a 2-n.mi. separation distance. The criteria are based on the ratio of the vortex-induced acceleration in roll to the aileron-induced roll acceleration. A wake is acceptably alleviated if the ratio of vortex-to-aileron rolling moments is less than about 0.5. When a satisfactory alleviation scheme is identified, the alleviated vortex structure should be inserted into a simulator to ascertain whether the maximum bank angles induced are within tolerable limits.

  5. Direct Numerical Simulations of Transitional/Turbulent Wakes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan

    2011-01-01

    The interest in transitional/turbulent wakes spans the spectrum from an intellectual pursuit to understand the complex underlying physics to a critical need in aeronautical engineering and other disciplines to predict component/system performance and reliability. Cylinder wakes have been studied extensively over several decades to gain a better understanding of the basic flow phenomena that are encountered in such flows. Experimental, computational and theoretical means have been employed in this effort. While much has been accomplished there are many important issues that need to be resolved. The physics of the very near wake of the cylinder (less than three diameters downstream) is perhaps the most challenging of them all. This region comprises the two detached shear layers, the recirculation region and wake flow. The interaction amongst these three components is to some extent still a matter of conjecture. Experimental techniques have generated a large percentage of the data that have provided us with the current state of understanding of the subject. More recently computational techniques have been used to simulate cylinder wakes, and the data from such simulations are being used to both refine our understanding of such flows as well as provide new insights. A few large eddy and direct numerical simulations (LES and DNS) of cylinder wakes have appeared in the literature in the recent past. These investigations focus on the low Reynolds number range where the cylinder boundary layer is laminar (sub-critical range). However, from an engineering point of view, there is considerable interest in the situation where the upper and/or lower boundary layer of an airfoil is turbulent, and these turbulent boundary layers separate from the airfoil to contribute to the formation of the wake downstream. In the case of cylinders, this only occurs at relatively large unit Reynolds numbers. However, in the case of airfoils, the boundary layer has the opportunity to transition

  6. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    NASA Astrophysics Data System (ADS)

    Tian, W.; Ozbay, A.; Wang, X. D.; Hu, H.

    2017-08-01

    We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.

  7. Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering

    NASA Astrophysics Data System (ADS)

    Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.

    2016-12-01

    Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.

  8. Experimental investigation on the wake interference among wind turbines sited in atmospheric boundary layer winds

    NASA Astrophysics Data System (ADS)

    Tian, W.; Ozbay, A.; Wang, X. D.; Hu, H.

    2017-06-01

    We examined experimentally the effects of incoming surface wind on the turbine wake and the wake interference among upstream and downstream wind turbines sited in atmospheric boundary layer (ABL) winds. The experiment was conducted in a large-scale ABL wind tunnel with scaled wind turbine models mounted in different incoming surface winds simulating the ABL winds over typical offshore/onshore wind farms. Power outputs and dynamic loadings acting on the turbine models and the wake flow characteristics behind the turbine models were quantified. The results revealed that the incoming surface winds significantly affect the turbine wake characteristics and wake interference between the upstream and downstream turbines. The velocity deficits in the turbine wakes recover faster in the incoming surface winds with relatively high turbulence levels. Variations of the power outputs and dynamic wind loadings acting on the downstream turbines sited in the wakes of upstream turbines are correlated well with the turbine wakes characteristics. At the same downstream locations, the downstream turbines have higher power outputs and experience greater static and fatigue loadings in the inflow with relatively high turbulence level, suggesting a smaller effect of wake interference for the turbines sited in onshore wind farms.

  9. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake... are held on Wake Island or Hawaii at times and places designated by the Chief Judge. ...

  10. Wake effects between two neighbouring wind farms

    NASA Astrophysics Data System (ADS)

    Gayle Nygaard, Nicolai; Damgaard Hansen, Sidse

    2016-09-01

    We address the issue of wake effects between two neighbouring offshore wind farms by analysing simultaneous production data from Rodsand II and Nysted. The upstream wind farm is found to not just perturb the flow in its wake, but also to cause speed-ups at the positions of some downstream turbines. We use the data to perform a validation of a simple wake model for flow cases corresponding to wind directions of maximum internal and external wake effects.

  11. Passive Wake Acoustics Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Wang, Frank Y.; Wassaf, Hadi; Dougherty, Robert P.; Clark, Kevin; Gulsrud, Andrew; Fenichel, Neil; Bryant, Wayne H.

    2004-01-01

    From August to September 2003, NASA conducted an extensive measurement campaign to characterize the acoustic signal of wake vortices. A large, both spatially as well as in number of elements, phased microphone array was deployed at Denver International Airport for this effort. This paper will briefly describe the program background, the microphone array, as well as the supporting ground-truth and meteorological sensor suite. Sample results to date are then presented and discussed. It is seen that, in the frequency range processed so far, wake noise is generated predominantly from a very confined area around the cores.

  12. Irregular sleep-wake syndrome

    MedlinePlus

    ... normal, but the body clock loses its normal circadian cycle. People with changing work shifts and travelers who ... Abbott SM, Reid KJ, Zee PC. Circadian disorders of the sleep-wake ... Medicine . 6th ed. Philadelphia, PA: Elsevier; 2017:chap 40. ...

  13. Cooling Signs in Wake Debate

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2011-01-01

    More than a year after dismantling a student-assignment policy based on socioeconomic diversity and setting off a wave of reaction that drew national attention, the Wake County, North Carolina, school board took a step that may turn down the temperature of the intense debate. The board, which has been deeply split on an assignment plan for the…

  14. Cooling Signs in Wake Debate

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2011-01-01

    More than a year after dismantling a student-assignment policy based on socioeconomic diversity and setting off a wave of reaction that drew national attention, the Wake County, North Carolina, school board took a step that may turn down the temperature of the intense debate. The board, which has been deeply split on an assignment plan for the…

  15. Wake Vortex Encounter Model Validation Experiments

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan; Brandon, Jay; Greene, George C.; Rivers, Robert; Shah, Gautam; Stewart, Eric; Stuever, Robert; Rossow, Vernon

    1997-01-01

    The goal of this current research is to establish a database that validate/calibrate wake encounter analysis methods for fleet-wide application; and measure/document atmospheric effects on wake decay. Two kinds of experiments, wind tunnel experiments and flight experiments, are performed. This paper discusses the different types of tests and compares their wake velocity measurement.

  16. Simulated driving under the influence of extended wake, time of day and sleep restriction.

    PubMed

    Matthews, Raymond W; Ferguson, Sally A; Zhou, Xuan; Kosmadopoulos, Anastasi; Kennaway, David J; Roach, Gregory D

    2012-03-01

    Around a fifth of all road accidents can be attributed to fatigued drivers. Previous studies indicate that driving performance is influenced by time of day and decreases with sustained wakefulness. However, these influences occur naturally in unison, confounding their effects. Typically, when people drive at a poor time of day and with extended wake, their sleep is also restricted. Hence, the aim of the current study was to determine the independent effects of prior wake and time of day on driving performance under conditions of sleep restriction. The driving performance of fourteen male participants (21.8 ± 3.8 years, mean ± SD) was assessed during a 10 min simulated driving task with speed/lane mean, variability and violations (speeding and crashes) measured. Participants were tested at 2.5h intervals after waking, across 7 × 28 h days with a sleep:wake ratio of 1:5. By forced desynchrony each driving session occurred at 9 doses of prior wake and within 6 divisions of the circadian cycle based on core body temperature. A mixed models ANOVA revealed significant main effects of circadian phase, prior wake and sleep debt on lane violations. In addition, three significant two-way interactions (circadian phase × prior wake, prior wake × sleep debt, sleep debt × circadian phase) and one three-way interaction (circadian × prior wake × sleep debt) were identified. The presence of the large interaction effects shows that the influence of each factor is largely dependent on the magnitude of the other factors. For example, the presence of the time of day influence on driving performance is dependent on the length of prior wake or the presence of sleep debt. The findings suggest that people are able to undertake a low-difficulty simulated drive safely, at least for a short period, during their circadian nadir provided that they have had sufficient sleep and have not been awake too long.

  17. Numerical Modeling Studies of Wake Vortices: Real Case Simulations

    NASA Technical Reports Server (NTRS)

    Shen, Shao-Hua; Ding, Feng; Han, Jongil; Lin, Yuh-Lang; Arya, S. Pal; Proctor, Fred H.

    1999-01-01

    A three-dimensional large-eddy simulation model, TASS, is used to simulate the behavior of aircraft wake vortices in a real atmosphere. The purpose for this study is to validate the use of TASS for simulating the decay and transport of wake vortices. Three simulations are performed and the results are compared with the observed data from the 1994-1995 Memphis field experiments. The selected cases have an atmospheric environment of weak turbulence and stable stratification. The model simulations are initialized with appropriate meteorological conditions and a post roll-up vortex system. The behavior of wake vortices as they descend within the atmospheric boundary layer and interact with the ground is discussed.

  18. Test Vehicle Forebody Wake Effects on CPAS Parachutes

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.

    2017-01-01

    Parachute drag performance has been reconstructed for a large number of Capsule Parachute Assembly System (CPAS) flight tests. This allows for determining forebody wake effects indirectly through statistical means. When data are available in a "clean" wake, such as behind a slender test vehicle, the relative degradation in performance for other test vehicles can be computed as a Pressure Recovery Fraction (PRF). All four CPAS parachute types were evaluated: Forward Bay Cover Parachutes (FBCPs), Drogues, Pilots, and Mains. Many tests used the missile-shaped Parachute Compartment Drop Test Vehicle (PCDTV) to obtain data at high airspeeds. Other tests used the Orion "boilerplate" Parachute Test Vehicle (PTV) to evaluate parachute performance in a representative heatshield wake. Drag data from both vehicles are normalized to a "capsule" forebody equivalent for Orion simulations. A separate database of PCDTV-specific performance is maintained to accurately predict flight tests. Data are shared among analogous parachutes whenever possible to maximize statistical significance.

  19. 'Wake sign': an important clue for the diagnosis of scabies.

    PubMed

    Yoshizumi, J; Harada, T

    2009-08-01

    Japan is currently experiencing many outbreaks of scabies, occurring mainly in long-term care facilities. Scabies burrows, the only pathognomonic lesion for scabies, often occur on the creases of the palms, and are followed by a pattern of scale reminiscent of the 'wake' left on the surface of water by a moving bird or a ship (wake sign).(1-4) The wake sign is useful because (i) it is specific for scabies, (ii) it is sufficiently large to be found by the naked eye and (iii) it points towards the location of the mite and its products. Examination of patients' palms to look for this sign is a simple and efficient way to make a diagnosis of scabies throughout the course of an infestation.

  20. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more Judges...

  1. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more Judges...

  2. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more Judges...

  3. 32 CFR 935.61 - Wake Island Court.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Wake Island Court. 935.61 Section 935.61... REGULATIONS WAKE ISLAND CODE Judiciary § 935.61 Wake Island Court. (a) The trial judicial authority for Wake Island is vested in the Wake Island Court. (b) The Wake Island Court consists of one or more Judges...

  4. Recent NASA Wake-Vortex Flight Tests, Flow-Physics Database and Wake-Development Analysis

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.; Vijgen, Paul M.; Reimer, Heidi M.; Gallegos, Joey L.; Spalart, Philippe R.

    1998-01-01

    A series of flight tests over the ocean of a four engine turboprop airplane in the cruise configuration have provided a data set for improved understanding of wake vortex physics and atmospheric interaction. An integrated database has been compiled for wake characterization and validation of wake-vortex computational models. This paper describes the wake-vortex flight tests, the data processing, the database development and access, and results obtained from preliminary wake-characterization analysis using the data sets.

  5. Genetic effects on sleep/wake variation of seizures

    PubMed Central

    Winawer, Melodie R.; Shih, Jerry; Beck, Erin S.; Hunter, Jessica E.; Epstein, Michael P.

    2016-01-01

    Summary Objective There is a complex bidirectional relationship between sleep and epilepsy. Sleep/wake timing of seizures has been investigated for several individual seizure types and syndromes, but few large-scale studies of the timing of seizures exist in people with varied epilepsy types. In addition, the genetic contributions to seizure timing have not been well studied. Methods Sleep/wake timing of seizures was determined for 1,395 subjects in 546 families enrolled in the Epilepsy Phenome/Genome Project (EPGP). We examined seizure timing among subjects with different epilepsy types, seizure types, epilepsy syndromes, and localization. We also examined the familial aggregation of sleep/wake occurrence of seizures. Results Seizures in nonacquired focal epilepsy (NAFE) were more likely to occur during sleep than seizures in generalized epilepsy (GE), for both convulsive (odds ratio [OR] 5.2, 95% confidence interval [CI] 3.59–7.52) and nonconvulsive seizures (OR 4.2, 95% CI 2.48–7.21). Seizures occurring within 1 h of awakening were more likely to occur in patients with GE than with NAFE for both convulsive (OR 2.3, 95% CI 1.54– 3.39) and nonconvulsive (OR 1.7, 95% CI 1.04–2.66) seizures. Frontal onset seizures were more likely than temporal onset seizures to occur during sleep. Sleep/wake timing of seizures in first-degree relatives predicted timing of seizures in the proband. Significance We found that sleep/wake timing of seizures is associated with both epilepsy syndrome and seizure type. In addition, we provide the first evidence for a genetic contribution to sleep/wake timing of seizures in a large group of individuals with common epilepsy syndromes. PMID:26948972

  6. High-Order Numerical Simulations of Wind Turbine Wakes

    NASA Astrophysics Data System (ADS)

    Kleusberg, E.; Mikkelsen, R. F.; Schlatter, P.; Ivanell, S.; Henningson, D. S.

    2017-05-01

    Previous attempts to describe the structure of wind turbine wakes and their mutual interaction were mostly limited to large-eddy and Reynolds-averaged Navier-Stokes simulations using finite-volume solvers. We employ the higher-order spectral-element code Nek5000 to study the influence of numerical aspects on the prediction of the wind turbine wake structure and the wake interaction between two turbines. The spectral-element method enables an accurate representation of the vortical structures, with lower numerical dissipation than the more commonly used finite-volume codes. The wind-turbine blades are modeled as body forces using the actuator-line method (ACL) in the incompressible Navier-Stokes equations. Both tower and nacelle are represented with appropriate body forces. An inflow boundary condition is used which emulates homogeneous isotropic turbulence of wind-tunnel flows. We validate the implementation with results from experimental campaigns undertaken at the Norwegian University of Science and Technology (NTNU Blind Tests), investigate parametric influences and compare computational aspects with existing numerical simulations. In general the results show good agreement between the experiments and the numerical simulations both for a single-turbine setup as well as a two-turbine setup where the turbines are offset in the spanwise direction. A shift in the wake center caused by the tower wake is detected similar to experiments. The additional velocity deficit caused by the tower agrees well with the experimental data. The wake is captured well by Nek5000 in comparison with experiments both for the single wind turbine and in the two-turbine setup. The blade loading however shows large discrepancies for the high-turbulence, two-turbine case. While the experiments predicted higher thrust for the downstream turbine than for the upstream turbine, the opposite case was observed in Nek5000.

  7. Genetic effects on sleep/wake variation of seizures.

    PubMed

    Winawer, Melodie R; Shih, Jerry; Beck, Erin S; Hunter, Jessica E; Epstein, Michael P

    2016-04-01

    There is a complex bidirectional relationship between sleep and epilepsy. Sleep/wake timing of seizures has been investigated for several individual seizure types and syndromes, but few large-scale studies of the timing of seizures exist in people with varied epilepsy types. In addition, the genetic contributions to seizure timing have not been well studied. Sleep/wake timing of seizures was determined for 1,395 subjects in 546 families enrolled in the Epilepsy Phenome/Genome Project (EPGP). We examined seizure timing among subjects with different epilepsy types, seizure types, epilepsy syndromes, and localization. We also examined the familial aggregation of sleep/wake occurrence of seizures. Seizures in nonacquired focal epilepsy (NAFE) were more likely to occur during sleep than seizures in generalized epilepsy (GE), for both convulsive (odds ratio [OR] 5.2, 95% confidence interval [CI] 3.59-7.52) and nonconvulsive seizures (OR 4.2, 95% CI 2.48-7.21). Seizures occurring within 1 h of awakening were more likely to occur in patients with GE than with NAFE for both convulsive (OR 2.3, 95% CI 1.54-3.39) and nonconvulsive (OR 1.7, 95% CI 1.04-2.66) seizures. Frontal onset seizures were more likely than temporal onset seizures to occur during sleep. Sleep/wake timing of seizures in first-degree relatives predicted timing of seizures in the proband. We found that sleep/wake timing of seizures is associated with both epilepsy syndrome and seizure type. In addition, we provide the first evidence for a genetic contribution to sleep/wake timing of seizures in a large group of individuals with common epilepsy syndromes. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  8. Using high-fidelity computational fluid dynamics to help design a wind turbine wake measurement experiment

    DOE PAGES

    Churchfield, M.; Wang, Q.; Scholbrock, A.; ...

    2016-10-03

    Here, we describe the process of using large-eddy simulations of wind turbine wake flow to help design a wake measurement campaign. The main goal of the experiment is to measure wakes and wake deflection that result from intentional yaw misalignment under a variety of atmospheric conditions at the Scaled Wind Farm Technology facility operated by Sandia National Laboratories in Lubbock, Texas. Prior simulation studies have shown that wake deflection may be used for wind-plant control that maximizes plant power output. In this study, simulations are performed to characterize wake deflection and general behavior before the experiment is performed to ensuremore » better upfront planning. Beyond characterizing the expected wake behavior, we also use the large-eddy simulation to test a virtual version of the lidar we plan to use to measure the wake and better understand our lidar scan strategy options. This work is an excellent example of a 'simulation-in-the-loop' measurement campaign.« less

  9. ASRS Reports on Wake Vortex Encounters

    NASA Technical Reports Server (NTRS)

    Connell, Linda J.; Taube, Elisa Ann; Drew, Charles Robert; Barclay, Tommy Earl

    2010-01-01

    ASRS is conducting a structured callback research project of wake vortex incidents reported to the ASRS at all US airports, as well as wake encounters in the enroute environment. This study has three objectives: (1) Utilize the established ASRS supplemental data collection methodology and provide ongoing analysis of wake vortex encounter reports; (2) Document event dynamics and contributing factors underlying wake vortex encounter events; and (3) Support ongoing FAA efforts to address pre-emptive wake vortex risk reduction by utilizing ASRS reporting contributions.

  10. Bifurcation analysis of an oscillating cylinder wake

    NASA Astrophysics Data System (ADS)

    Chu Cheong, Matthew; Tu, Jonathan; Rowley, Clarence

    2013-11-01

    The flow past a transversely oscillating cylinder gives rise to distinct vortex patterns in the wake, with the particular pattern depending on Reynolds number, Strouhal number, and reduced frequency. In this work, we perform a numerical bifurcation analysis of the transitions between 2S, P+S, and disordered wakes at Reynolds numbers 100. Due to the high dimensionality of fluid flow simulations, standard tools such as AUTO are not applicable. Instead, we turn to Krylov-subspace-based algorithms. The coherent wake patterns (2S, P+S) are stable periodic orbits whose common period is that of the forced oscillation. To identify bifurcations, we perform stability analyses of the Poincare map by stroboscopically sampling the flow. We find the following bifurcations as the reduced frequency is held constant and the Strouhal number is increased : (1) the transition from a 2S wake to a P+S wake is a supercritical pitchfork bifurcation, (2) the transition from a P+S wake back to a 2S wake is another supercritical pitchfork bifurcation, and (3) the transition from a 2S wake to a disorganized wake is a torus bifurcation. Consistent with these bifurcations, we confirm the existence of unstable 2S wakes at Strouhal numbers where P+S and disordered wakes are observed. This work was supported by the AFOSR and the National Science Foundation.

  11. Volumetric LiDAR scanning of a wind turbine wake and comparison with a 3D analytical wake model

    NASA Astrophysics Data System (ADS)

    Carbajo Fuertes, Fernando; Porté-Agel, Fernando

    2016-04-01

    and large-eddy simulation (LES) data of miniature wind turbine wakes, as well as LES data of real-scale wind-turbine wakes, but not yet with full-scale wind turbine wake measurements. [1] M. Bastankhah and F. Porté-Agel. A New Analytical Model For Wind-Turbine Wakes, in Renewable Energy, vol. 70, p. 116-123, 2014.

  12. Uniform distortion of a heated turbulent wake

    NASA Technical Reports Server (NTRS)

    Kawall, J. G.; Keffer, J. F.

    1978-01-01

    Digital sampling and processing techniques are used to assess the effect of a uniform and constant strain rate on a slightly heated cylinder-generated wake which had undergone a prestrain development distance of 115 cylinder diameters. The wake is generated by a circular heating element (6.6-mm-diam cylinder) mounted horizontally in the center of a low-speed open return wind tunnel. The strain field is produced by a distortion duct oriented in such a way as to accentuate any periodic interface structure which might be present in the undistorted wake. Interface statistics are presented for both the undistorted (near) wake and the uniformly strained wake, and conditional (point) averages of the streamwise velocity and passive temperature fields of the strained wake. The results suggest that the interface thickness is fairly uniform along the back but decreases along the front with distance from the wake center.

  13. Unsteady wake of a rotating tire

    NASA Astrophysics Data System (ADS)

    Lombard, Jean-Eloi; Moxey, Dave; Xu, Hui; Sherwin, Spencer; Sherwin Lab Team

    2015-11-01

    For open wheel race-cars, such as IndyCar and Formula One, the wheels are responsible for 40% of the total drag. For road cars drag associated to the wheels and under-carriage can represent 60% of total drag at highway cruise speeds. Experimental observations have reported two or three pairs of counter rotating vortices, the relative importance of which still remains an open question, that interact to form a complex wake. Traditional RANS based methods are typically not well equipped to deal with such highly unsteady flows which motivates research into more physical, unsteady models. Leveraging a high-fidelity spectral/hp element based method a Large Eddy Simulation is performed to give further insight into unsteady characteristics of the wake. In particular the unsteady nature of both the jetting and top vortex pair is reported as well as the time and length scales associated with the vortex core trajectories. Correlation with experimentally obtained particle image velocimetry is presented. The authors acknowledge support from the United Kingdom Turbulence Consortium (UKTC) as well as from the Engineering and Physical Sciences Research Council (EPSRC) for access to ARCHER UK National Supercomputing Service.

  14. Rainfall-enhanced blooming in typhoon wakes

    NASA Astrophysics Data System (ADS)

    Lin, Y.-C.; Oey, L.-Y.

    2016-08-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm.

  15. Rainfall-enhanced blooming in typhoon wakes

    PubMed Central

    Lin, Y.-C.; Oey, L.-Y.

    2016-01-01

    Strong phytoplankton blooming in tropical-cyclone (TC) wakes over the oligotrophic oceans potentially contributes to long-term changes in global biogeochemical cycles. Yet blooming has traditionally been discussed using anecdotal events and its biophysical mechanics remain poorly understood. Here we identify dominant blooming patterns using 16 years of ocean-color data in the wakes of 141 typhoons in western North Pacific. We observe right-side asymmetric blooming shortly after the storms, attributed previously to sub-mesoscale re-stratification, but thereafter a left-side asymmetry which coincides with the left-side preference in rainfall due to the large-scale wind shear. Biophysical model experiments and observations demonstrate that heavier rainfall freshens the near-surface water, leading to stronger stratification, decreased turbulence and enhanced blooming. Our results suggest that rainfall plays a previously unrecognized, critical role in TC-induced blooming, with potentially important implications for global biogeochemical cycles especially in view of the recent and projected increases in TC-intensity that harbingers stronger mixing and heavier rain under the storm. PMID:27545899

  16. Intermittent Short Sleep Results in Lasting Sleep Wake Disturbances and Degeneration of Locus Coeruleus and Orexinergic Neurons

    PubMed Central

    Zhu, Yan; Fenik, Polina; Zhan, Guanxia; Somach, Rebecca; Xin, Ryan; Veasey, Sigrid

    2016-01-01

    Study Objectives: Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. Methods: To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. Results: ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. Conclusions: Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence. Citation: Zhu Y, Fenik P, Zhan G, Somach R, Xin R, Veasey S. Intermittent short sleep results in lasting sleep wake disturbances and degeneration of locus coeruleus and orexinergic neurons. SLEEP 2016;39(8):1601–1611. PMID:27306266

  17. Wake surveys of different car-body shapes with coloured isopressure maps

    SciTech Connect

    Cogotti, A.

    1984-01-01

    A technique to map the wake behind passenger cars with different rear end configurations has been developed in the full-scale automotive wind tunnel ''Pininfarina''. It is based on the measurement of total pressure in the wake, using a probe which is driven by a large traversing gear. Results are presented as coloured isopressure maps. Tests have been carried out on a 1:2.5 scale car model with two different front ends and eight different rear ends. The attainable body configurations are likely to cover the majority of passenger car shapes. Wake surveys have been conducted at several distances behind each car model in order to see the wake development. The paper shows and analyzes the results obtained for these sixteen car model configurations; it also emphasizes what kind of information can be obtained by this wake survey technique.

  18. Reconstructing three-dimensional wake topology based on planar PIV measurements and pattern recognition analysis

    NASA Astrophysics Data System (ADS)

    Morton, C.; Yarusevych, S.

    2016-10-01

    The present study presents a new technique for reconstructing the salient aspects of three-dimensional wake topology based on time-resolved, planar, two-component particle image velocimetry data collected in multiple orthogonal planes. The technique produces conditionally averaged flow field reconstructions based on a pattern recognition analysis of velocity fields. It is validated on the wake of a low-aspect ratio dual step cylinder geometry, consisting of a large diameter cylinder ( D) with small aspect ratio ( L/ D) attached to the mid-span of a small diameter cylinder ( d). For a dual step cylinders with D/ d = 2, and L/ D = 1, numerical and experimental data are considered for ReD = 150 (laminar wake) and for ReD = 2100 (turbulent wake). The results show that the proposed technique successfully reconstructs the dominant periodic wake vortex interactions and can be extended to a wide range of turbulent flows.

  19. Motion of a Non-Newtonian Fluid in the Wake of a Flat Plate

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Ladeinde, Foluso; Bluestein, Danny

    2004-11-01

    A theoretical analysis of two-dimensional steady state laminar flow of a non-Newtonian fluid in the wake of a flat plate is presented. This is a simplified model for blood flow over the bi-leaflet of a mechanical heart valve. The present analysis is also intended to validate large eddy simulations, which are currently being carried out for a more elaborate model of the heart valve. By introducing the power-law model, the Goldstein's near wake solution and Tollmien's first asymptotic approximation in the far wake are extended for applicability to blood flow. On the symmetry line, two velocity distributions are obtained as functions of the distance behind the plate, one from the near wake and the other from the far wake. These are matched to form a continuous distribution. For the other regions, the velocity distribution could be determined by interpolation. The results are contrasted with previous work on Newtonian fluids.

  20. A quasi-three-dimensional model for intra-stator transport of rotor wakes

    NASA Astrophysics Data System (ADS)

    Ng, W. F.; Epstein, A. H.

    The time-resolved flowfield in a high thru-flow compressor stage has been studied using a higher frequency response angle probe and a newly developed time-resolved total temperature and pressure probe. The investigation revealed the presence of large gapwise nonuniformity (20C) in stagnation temperature at the stator exit. A quasi-three-dimensional wake transport model, modified from that developed by Kerrebrock and Mikolajczak, was used to investigate the transport of the wake fluid within the stator passage. The present model accounts for three-dimensional effect by including the radial velocity in the wake. In addition, the relative flow angle is not assumed to be uniform across the wake and the inviscid core. The model compares favorably with measurements taken at the stator exit plane. The loss associated with the recirculation of the rotor wake within the stator passage is also calculated.

  1. Kármán vortex and turbulent wake generation by wind park piles

    NASA Astrophysics Data System (ADS)

    Grashorn, Sebastian; Stanev, Emil V.

    2016-12-01

    Observational evidence of turbulent wakes behind wind parks' piles motivated a series of numerical experiments, aiming to identify the dynamic regimes associated with wakes' generation in tidal basins. We demonstrate that the obstacles such as piles of wind parks give rise to vortices similar to the known Kármán vortices which affect substantially the turbulent kinetic energy. The latter can be considered as the agent enhancing sediment remobilization from the ocean bottom, thus making wakes well visible in satellite data. The temporal and spatial variability of studied processes is analyzed under stationary and nonstationary conditions. The dependence of a vortex generation and evolution upon the environmental conditions is also studied, which demonstrates a large variety of appearances of turbulent wakes. The comparison between simulations using a suspended sediment model and satellite images demonstrated that the model is capable to realistically simulate sediment wakes observed in remote sensing data.

  2. Data-driven Reduced Order Model for prediction of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Santoni-Ortiz, C.; Abkar, M.; Porté-Agel, F.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In this paper a new paradigm for prediction of wind turbine wakes is proposed, which is based on a reduced order model (ROM) embedded in a Kalman filter. The ROM is evaluated by means of dynamic mode decomposition performed on high fidelity LES numerical simulations of wind turbines operating under different operational regimes. The ROM enables to capture the main physical processes underpinning the downstream evolution and dynamics of wind turbine wakes. The ROM is then embedded within a Kalman filter in order to produce a time-marching algorithm for prediction of wind turbine wake flows. This data-driven algorithm enables data assimilation of new measurements simultaneously to the wake prediction, which leads to an improved accuracy and a dynamic update of the ROM in presence of emerging coherent wake dynamics observed from new available data. Thanks to its low computational cost, this numerical tool is particularly suitable for real-time applications, control and optimization of large wind farms.

  3. Compressor and fan wake characteristics

    NASA Technical Reports Server (NTRS)

    Reynolds, B.; Hah, C.; Lakshminarayana, B.; Ravindranath, A.

    1978-01-01

    A triaxial probe and a rotating conventional probe, mounted on a traverse gear operated by two step motors were used to measure the mean velocities and turbulence quantities across a rotor wake at various radial locations and downstream stations. The data obtained was used in an analytical model developed to study how rotor flow and blade parameters and turbulence properties such as energy, velocity correlations, and length scale affect the rotor wake characteristics and its diffusion properties. The model, includes three dimensional attributes, can be used in predicting the discrete as well as broadband noise generated in a fan rotor, as well as in evaluating the aerodynamic losses, efficiency and optimum spacing between a rotor and stator in turbomachinery.

  4. CFD modeling of wind turbine wake in wind farms

    NASA Astrophysics Data System (ADS)

    Sun, Lijian

    Wind energy is one of the most common and preferred renewable energy sources. Accurate predictions of atmospheric boundary layer flow, wind turbine induced wakes and their interaction are essential to maximize wind power output and efficiently harness wind energy. In this dissertation, a computational fluid dynamics (CFD) flow model is developed utilizing a three dimensional weighted essentially non-oscillatory (WENO) high order Finite Volume Model system including Large Eddy Simulation (LES) and the Actuator Line Method (ALM). The developed model system is thus able to accurately capture and simulate wind turbine wakes and their interaction with the atmospheric boundary layer, thereby providing insight into the phenomenon of turbine wake interaction and its effect on the external aerodynamic loads on wind turbines. This enables the wind energy production to be maximized and also minimizes turbine fatigue loading in the evaluation of wind farm layouts. By using LES model to simulate the Atmospheric Boundary Layer flow rather than the Reynolds-Averaged Navier-Stokes (RANS) model, the error introduced by turbulence modeling is reduced. The Actuator Line Model, ALM, is used to model the rotor by replacing the rotor with radially distributed body forces. It is more accurate than the actuator disc method as it captures the influence of the blade tip vortices. It can focus on a larger portion of the wake without resolving the actual wind turbine blades' geometry, thereby reducing computational cost. It is suitable and a promising method for wind turbine wake simulation. Classic non-trivial turbulent benchmark cases are used to validate the high order LES algorithms. Simulation results are compared with available results whenever possible, with good agreement observed. Results for the atmospheric boundary layer under neutral conditions are presented. By using LES coupled with the Actuator Line model, simulation results are obtained for detailed wake flow features around

  5. Wake vortex alleviation using rapidly actuated segmented Gurney flaps

    NASA Astrophysics Data System (ADS)

    Matalanis, Claude G.

    All bodies that generate lift also generate circulation. The circulation generated by large commercial aircraft remains in their wake in the form of trailing vortices. These vortices can be hazardous to following aircraft due to their strength and persistence. To account for this, airports abide by spacing rules which govern the frequency with which aircraft can use their runways when operating in instrument flight rules. These spacing rules are the limiting factor on increasing airport capacity. We conducted an experimental and computational study to assess the potential for using rapidly actuated segmented Gurney flaps, also known as Miniature Trailing Edge Effectors (MiTEs), for active wake vortex alleviation. Wind tunnel tests were performed on a half-span model NACA 0012 wing equipped with an array of 13 independent MITE pairs. The chord-based Reynolds number was around 350,000. Each MiTE could extend 0.015 chord lengths perpendicular to the freestream on the pressure side of the wing. Pressure profiles and a five-hole probe survey in the near wake were used to examine the influence that the MiTEs had upon the wing aerodynamics and the vortex rollup process. Particle image velocimetry was used to measure the static and time-dependent response of the vortex in the intermediate wake to various MiTE actuation schemes. These results were used to form complete initial conditions for vortex filament computations of the far wake evolution. Results from these computations showed that the perturbations created by MiTEs could be used to excite a variety of three-dimensional inviscid vortex instabilities. Finally, the research performed on MiTEs led to the invention of a more practical wake alleviation device: the spanwise actuating Gurney flap. Prototype tests showed that this device could produce similar perturbations to the MiTEs.

  6. Oscillating airfoils and their wake

    NASA Technical Reports Server (NTRS)

    Send, W.

    1985-01-01

    The unsteady phenomena in the wake of an oscillating wing or rotor blade are examined theoretically using the Prandtl approximation of the vortex-transport equation. A mathematical model is developed and applied to such problems as the effect of winglets on the performance of fixed wings and the possibly of employing similar designs in rotor blades. Model predictions for several profiles are compared with published and experimental measurements, and good agreement is found. Graphs and diagrams are provided.

  7. Turbulent wakes of fractal objects.

    PubMed

    Staicu, Adrian; Mazzi, Biagio; Vassilicos, J C; van de Water, Willem

    2003-06-01

    Turbulence of a windtunnel flow is stirred using objects that have a fractal structure. The strong turbulent wakes resulting from three such objects which have different fractal dimensions are probed using multiprobe hot-wire anemometry in various configurations. Statistical turbulent quantities are studied within inertial and dissipative range scales in an attempt to relate changes in their self-similar behavior to the scaling of the fractal objects.

  8. Exercise Thermoregulation After Prolonged Wakefulness,

    DTIC Science & Technology

    1987-06-01

    temperature threshold for initiation of eccrine sweating and cutaneous vasodilation during exercise (15,15,17). It has also been suggested, in two widely...Local control of eccrine sweat gland function. Fed. Proc. 32:1583-1587, 1983. 4. Piorica, V., B.A. Higgins, P.F. lampietro, M.T. Lategola and A.W...reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP cutaneous blood flow, sleep loss, sweating , wakefulness 19. ABSTRACT (Continue on

  9. The Formation of Vortex Structures in a Screen Cylinder Wake

    NASA Astrophysics Data System (ADS)

    Azmi, Azlin Mohd; Lu, Yucen; Zhou, Tongming

    2017-09-01

    The formation of vortex structures in a screen cylinder wake was investigated in a wind tunnel at a Reynolds number of 7000. The screen cylinder was made of a stainless steel wire mesh with an open area ratio of 67%. The results showed that the screen cylinder wake could be classified into two distinct regions. The first region was characterised by the development of the shear layer vortices which resulted from Kelvin-Helmholtz instability. At about x/d = 2 0 (where d is the diameter of the cylinder) the shear layer vortices started to interact with each other across the centreline, and evolved downstream to form the alternately arranged ‘large-scale’ coherent structures. These structures were most pronounced at x/d = 40. The vortex formation region was therefore extended significantly downstream compared with that of the solid cylinder wake. The second region involved a gradual decay of the fully-formed large-scale structures, evidenced by the weak vorticity exchange across the wake centreline.

  10. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2017-03-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14 D ( D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  11. Effect of nacelle on the wake meandering in Horns Rev wind farm

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Foti, Daniel; Sotiropoulos, Fotis

    2016-11-01

    Turbine wake meandering has considerable effects on the velocity deficit and turbulence intensity in the wake. However, the mechanism for wake meandering is still not well understood and low-order models cannot take into account the wake meandering effects accurately. A recent work by Kang, Yang and Sotiropoulos showed that the nacelle has a significant effect on the wake meandering of a hydrokinetic turbine. To examine the nacelle contributions to wake meandering and wake interactions in utility-scale wind farms, we simulate the atmospheric turbulent flow over the Horns Rev wind farm using large-eddy simulation with actuator type models. In a preliminary simulation on a coarse grid using actuator line model for turbine blades without a nacelle model, the computed power shows overall good agreement with field measurements. Fine grid simulations using an actuator surface model for turbine blades with and without a nacelle model are being carried out. The corresponding results will be presented with analysis on wake meandering dynamics using the technique proposed by Horward et al. and Foti et al.. This work was supported by DOE (DE-AC04-94AL85000), Xcel Energy (Grant RD4-13) and Sandia National Laboratories. Computational resources were provided by National Renewable Energy Laboratory and University of Minnesota Supercomputing Institute.

  12. Impact of Neutral Boundary-Layer Turbulence on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2016-10-01

    The wake characteristics of a wind turbine in a turbulent boundary layer under neutral stratification are investigated systematically by means of large-eddy simulations. A methodology to maintain the turbulence of the background flow for simulations with open horizontal boundaries, without the necessity of the permanent import of turbulence data from a precursor simulation, was implemented in the geophysical flow solver EULAG. These requirements are fulfilled by applying the spectral energy distribution of a neutral boundary layer in the wind-turbine simulations. A detailed analysis of the wake response towards different turbulence levels of the background flow results in a more rapid recovery of the wake for a higher level of turbulence. A modified version of the Rankine-Froude actuator disc model and the blade element momentum method are tested as wind-turbine parametrizations resulting in a strong dependence of the near-wake wind field on the parametrization, whereas the far-wake flow is fairly insensitive to it. The wake characteristics are influenced by the two considered airfoils in the blade element momentum method up to a streamwise distance of 14D (D = rotor diameter). In addition, the swirl induced by the rotation has an impact on the velocity field of the wind turbine even in the far wake. Further, a wake response study reveals a considerable effect of different subgrid-scale closure models on the streamwise turbulent intensity.

  13. Internal Gravity Wave Fluxes Radiated by a Stably Stratified Turbulent Wake

    NASA Astrophysics Data System (ADS)

    Rowe, Kristopher; Diamessis, Peter

    2016-11-01

    The study of the turbulent wake generated by a bluff body moving through a stably stratified fluid has important applications for naval hydrodynamics as well as geophysical flows around topography. Significant progress has been made in terms of investigating the structure and dynamics of the turbulent wake core and the associated near and far-field spectral properties of the wake-radiated internal gravity wave (IGW) fields, namely in the context of high Reynolds stratified turbulence within the wake itself. Nevertheless, little has been done to quantify the amount of energy and momentum radiated away by the IGWs generated by the wake. Through analysis of a broad Large Eddy Simulation dataset, spanning values of body-based Reynolds and Froude numbers, Re = 5 ×103 ,105 and 4 ×105 and Fr = 4 , 16 and 64, we compute the energy and momentum fluxes of IGWs radiated by the stratified turbulent wake of a towed sphere and explore the relevant parametric dependence. The analysis further aims to determine the potential of the IGWs as a sink for energy and momentum relative to the dissipation of turbulent kinetic energy in the wake itself. Finally, we discuss the implications that for our findings for wake mean-flow self-similarity and turbulence subgrid scale models. Office of Naval Research Grants N00014-13-1-0665 and N00014-15-1-2513.

  14. Influence of Coriolis forces on the structure and evolution of wind-turbine wakes

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2015-11-01

    In this study, large-eddy simulation (LES) is combined with a turbine model to investigate the effect of Coriolis forces on the structure and evolution of wind-turbine wakes. In order to isolate the Coriolis effect on the turbulent wake flow, two set of simulations are performed. In the first set of simulations, atmospheric boundary layer (ABL) flow is driven by the geostrophic forces including the effect of Earth's rotation, while in the second case, the ABL flow is driven by a unidirectional pressure gradient forcing. Both cases have the same mean horizontal velocity and turbulence intensity at the hub height. The simulation results show that the Coriolis forces significantly affect the spatial distribution of the mean velocity deficit and turbulence statistics in the wake region. In particular, it is found that the Coriolis effect, responsible for vertical wind veer, has important lateral wake stretching effects, which in turn significantly impacts the wake recovery and wake meandering characteristics downwind of the turbines. We also apply the proper orthogonal decomposition (POD) to LES data of the wake. The results indicate a very high correlation between the most energetic modes and both maximum velocity deficit and wake meandering characteristics.

  15. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  16. Studies of aircraft wake chemistry and dispersion

    NASA Technical Reports Server (NTRS)

    Poppoff, I. G.; Farlow, N. H.; Anderson, L. B.

    1974-01-01

    Use of aerospace technology to study aircraft wakes is reviewed. It is shown how aerospace vehicles can be used to provide data for increased understanding of the atmosphere and of aircraft exhaust trails where knowledge is inadequate to evaluate fully the potential impact of the engine emissions. Models of aircraft near-field exhaust wakes are characterized by jet, vortex, and dispersion regimes. Wake growth in the jet regime is self-determined and rapid, whereas further spreading is inhibited in the vortex regime because of circulating vortex motion. Wake diffusion in the dispersion regime is initially influenced by aircraft induced turbulence but is dominated later by small-scale atmospheric turbulence. Computed fluid mechanical results show the importance of effects such as wake buoyancy, wind shear, turbulence, and traffic corridor exhaust buildup on dispersion of the wake. In the jet regime the exhaust characteristics and thermochemistry serve to illustrate initial chemical changes involving potential pollutant species.

  17. Intermittent Short Sleep Results in Lasting Sleep Wake Disturbances and Degeneration of Locus Coeruleus and Orexinergic Neurons.

    PubMed

    Zhu, Yan; Fenik, Polina; Zhan, Guanxia; Somach, Rebecca; Xin, Ryan; Veasey, Sigrid

    2016-08-01

    Intermittent short sleep (ISS) is pervasive among students and workers in modern societies, yet the lasting consequences of repeated short sleep on behavior and brain health are largely unexplored. Wake-activated neurons may be at increased risk of metabolic injury across sustained wakefulness. To examine the effects of ISS on wake-activated neurons and wake behavior, wild-type mice were randomized to ISS (a repeated pattern of short sleep on 3 consecutive days followed by 4 days of recovery sleep for 4 weeks) or rested control conditions. Subsets of both groups were allowed a recovery period consisting of 4-week unperturbed activity in home cages with littermates. Mice were examined for immediate and delayed (following recovery) effects of ISS on wake neuron cell metabolics, cell counts, and sleep/wake patterns. ISS resulted in sustained disruption of sleep/wake activity, with increased wakefulness during the lights-on period and reduced wake bout duration and wake time during the lights-off period. Noradrenergic locus coeruleus (LC) and orexinergic neurons showed persistent alterations in morphology, and reductions in both neuronal stereological cell counts and fronto-cortical projections. Surviving wake-activated neurons evidenced persistent reductions in sirtuins 1 and 3 and increased lipofuscin. In contrast, ISS resulted in no lasting injury to the sleep-activated melanin concentrating hormone neurons. Collectively these findings demonstrate for the first time that ISS imparts significant lasting disturbances in sleep/wake activity, degeneration of wake-activated LC and orexinergic neurons, and lasting metabolic changes in remaining neurons most consistent with premature senescence. © 2016 Associated Professional Sleep Societies, LLC.

  18. Wake Characteristics of a Single Turbine During the CWEX-10/11 Crop Wind-Energy EXperiments

    NASA Astrophysics Data System (ADS)

    Rajewski, D. A.; Takle, E. S.; Lundquist, J. K.; Rhodes, M. E.; Prueger, J. H.; Oncley, S. O.; Horst, T. W.; Pfeiffer, R.; Hatfield, J.; Spoth, K. K.; Doorenbos, R. K.

    2013-12-01

    In the summer of 2010 and 2011 for the Crop Wind-energy EXperiment (CWEX), flux stations measured differences in micrometeorology upstream and downstream of a single turbine within a large wind farm in Iowa. Profiling LiDARs were positioned upwind and downwind of a single turbine for two months in 2011 to document the wake profiles of mean wind speed and turbulent kinetic energy (TKE). Nacelle-based measurements of wind speed, wind direction, and power produced verified the likely presence of a wake above the downwind flux station. As described in the CWEX overview paper (Rajewski et al. 2013) the flux stations detected (1) turbine-wake events for wakes overhead but not intersecting the surface, (2) wakes with a direct surface influence, and (3) flow perturbations caused by the static pressure field around a line of turbines. We refine our conceptual model of wind turbine flow by comparing downwind-upwind flux and profile station differences for categories of waked and non-waked flow according to turbine hub-height speed and direction, ambient thermal stratification, and the operating status of the turbines. For nighttime stable conditions (some for which a low level jet is present) we measured both within the rotor depth and at the surface higher turbulence and stronger intermittency of the flow on the wake edges as compared to the wake core. We additionally observe frequent periods with 20-30° of directional shear from the surface to the top of the rotor as evidenced by a downwind flux station in non-waked flow with concurrent LiDAR measurement of a wake in the rotor layer. Momentum power spectra and co-spectra of 20-Hz surface data corroborate with previous wind tunnel and numerical simulations of wake turbulence with higher energy intensity but at reduced scales than for non-waked conditions. The spectra demonstrate a return to ambient flow when the wind farm is brought offline.

  19. Evaluation of Fast-Time Wake Vortex Models using Wake Encounter Flight Test Data

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.; VanValkenburg, Randal L.; Bowles, Roland L.; Limon Duparcmeur, Fanny M.; Gloudesman, Thijs; van Lochem, Sander; Ras, Eelco

    2014-01-01

    This paper describes a methodology for the integration and evaluation of fast-time wake models with flight data. The National Aeronautics and Space Administration conducted detailed flight tests in 1995 and 1997 under the Aircraft Vortex Spacing System Program to characterize wake vortex decay and wake encounter dynamics. In this study, data collected during Flight 705 were used to evaluate NASA's fast-time wake transport and decay models. Deterministic and Monte-Carlo simulations were conducted to define wake hazard bounds behind the wake generator. The methodology described in this paper can be used for further validation of fast-time wake models using en-route flight data, and for determining wake turbulence constraints in the design of air traffic management concepts.

  20. Feedback control of bimodal wake dynamics

    NASA Astrophysics Data System (ADS)

    Li, Ruiying; Barros, Diogo; Borée, Jacques; Cadot, Olivier; Noack, Bernd R.; Cordier, Laurent

    2016-10-01

    Feedback control is applied to symmetrize the bimodal dynamics of a turbulent blunt body wake. The flow is actuated with two lateral slit jets and monitored with pressure sensors at the rear surface. The physics-based controller is inferred from preliminary open-loop tests and is capable of symmetrizing the wake. A slight pressure recovery is achieved due to the net balance between the favourable effect of wake symmetrization and adverse effect of shear-layer mixing and vortex shedding amplification.

  1. Wake characteristics of a model ornithopter

    NASA Astrophysics Data System (ADS)

    Juarez, Alfredo; Harlow, Jacob; Allen, James; Ferreira de Sousa, Paulo

    2006-03-01

    This paper details unsteady wake measurements from a model Ornithopther flying in a wind tunnel at representative flight conditions. Testing over a range of Strouhal number, 0.1-0.3, shows that the unsteady wake is composed of coherent vortical structures that resemble vortex rings. A single ring is formed in the wake of each wing during one wing beat. Momentum balance from velocity field measurements are reconciled with unsteady lift and drag measurements from a drag balance.

  2. Multiple-LiDAR measurements of wind turbine wakes: effect of the atmospheric stability

    NASA Astrophysics Data System (ADS)

    Valerio Iungo, Giacomo; Porté-Agel, Fernando

    2013-04-01

    with varying wind direction, thus different turbine yaw angles. Moreover, a 3D characterization of the wind turbine wake was performed by scanning the LiDAR over a 3D measurement volume. However, the large sampling period required for the 3D scans does not allow the investigation of wake dynamics. The LiDAR measurements show that wake evolution is significantly affected by the stability conditions of the ABL, thus by the different turbulence characteristics of the incoming wind. In particular, a faster wake recovery is observed in the presence of an increased turbulence of the incoming wind and for more convective atmospheric flows.

  3. Determination of real-time predictors of the wind turbine wake meandering

    NASA Astrophysics Data System (ADS)

    Muller, Yann-Aël; Aubrun, Sandrine; Masson, Christian

    2015-03-01

    The present work proposes an experimental methodology to characterize the unsteady properties of a wind turbine wake, called meandering, and particularly its ability to follow the large-scale motions induced by large turbulent eddies contained in the approach flow. The measurements were made in an atmospheric boundary layer wind tunnel. The wind turbine model is based on the actuator disc concept. One part of the work has been dedicated to the development of a methodology for horizontal wake tracking by mean of a transverse hot wire rake, whose dynamic response is adequate for spectral analysis. Spectral coherence analysis shows that the horizontal position of the wake correlates well with the upstream transverse velocity, especially for wavelength larger than three times the diameter of the disc but less so for smaller scales. Therefore, it is concluded that the wake is actually a rather passive tracer of the large surrounding turbulent structures. The influence of the rotor size and downstream distance on the wake meandering is studied. The fluctuations of the lateral force and the yawing torque affecting the wind turbine model are also measured and correlated with the wake meandering. Two approach flow configurations are then tested: an undisturbed incoming flow (modelled atmospheric boundary layer) and a disturbed incoming flow, with a wind turbine model located upstream. Results showed that the meandering process is amplified by the presence of the upstream wake. It is shown that the coherence between the lateral force fluctuations and the horizontal wake position is significant up to length scales larger than twice the wind turbine model diameter. This leads to the conclusion that the lateral force is a better candidate than the upstream transverse velocity to predict in real time the meandering process, for either undisturbed (wake free) or disturbed incoming atmospheric flows.

  4. Pluto's plasma wake oriented away from the ecliptic plane

    NASA Astrophysics Data System (ADS)

    Pérez-de-Tejada, H.; Durand-Manterola, H.; Reyes-Ruiz, M.; Lundin, R.

    2015-01-01

    Conditions similar to those observed in the solar wind interaction with Venus and Mars where there is a planetary atmosphere in the absence of a global intrinsic magnetic field may also be applicable to Pluto. With up to 24 μbars inferred for the Pluto atmosphere it is possible that the feeble solar photon radiation flux that reaches by its orbit, equivalent to ∼10-3 that at Earth, is sufficient to produce an ionization component that can be eroded by the solar wind. In view of the reduced solar wind density (∼10-3 with respect to that at 1 AU) that should be available by Pluto its total kinetic energy will be significantly smaller than that at Earth. However, the parameter values that are implied for the interaction process between the solar wind and the local upper ionosphere are sufficient to produce a plasma wake that should extend downstream from Pluto. In view of its low gravity force the plasma wake should have a wider cross-section than that in the Venus and Mars plasma environment. Since Pluto rotates with the axis tilted ∼30° away from the ecliptic plane the plasma wake will be influenced by a Magnus force that has a large component is the north-south solar polar direction. That force will be responsible for propelling the plasma wake with a component that can be directed away from that plane. It is estimated that transport of solar wind momentum to the upper Pluto's ionosphere implies rotation periods smaller than that of the solid body, and thus large values of the Magnus force that can increase the orientation of the plasma wake away from the ecliptic plane.

  5. Ship wake signatures in radar/optical images of the sea surface: observations and physical mechanisms

    NASA Astrophysics Data System (ADS)

    Ermakov, S.; Kapustin, I.; Lazareva, T.

    2014-10-01

    Ship wakes can be clearly seen in satellite radar and optical images of the sea surface, and understanding of physical mechanisms responsible for the wake signatures is very important to develop methods of ship detection/identification. The wake surface signatures at small and intermediate stages are characterized by a smooth centerline area where surface waves are depressed due to the vessel turbulence and by a pair of rough bands at the sides of the centerline wake. At large wake ages two slick bands (a "railroad track" wake) appear instead of the rough bands, while the smooth centerline band is practically absent. In this paper results of field studies of the mean flow structure near the wake are presented. It is shown that two mean circulating currents ("rolls") rotating in the opposite directions are formed at two sides of the median vertical plane of the wake. Near the water surface the rolls result in diverging horizontal flows, decreasing near the wake edges. Wind waves propagating against the diverging currents are amplified due to a wave straining mechanism thus increasing the surface roughness. Film sampling was carried out when crossing the wakes and analysis of films collected within the "railroad" slick bands and outside the bands has revealed enhanced surface wave damping, obviously due to accumulation of surfactants in the slick bands; the surfactant compression is explained by the action of the diverging currents. The diverging currents as part of the rolls and the surfactant transport to the water surface are supposed to be associated with air bubbles generated by ship propellers.

  6. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b) The...

  7. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b) The...

  8. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b) The...

  9. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b) The...

  10. 32 CFR 935.60 - Wake Island Judicial Authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Wake Island Judicial Authority. 935.60 Section... INSULAR REGULATIONS WAKE ISLAND CODE Judiciary § 935.60 Wake Island Judicial Authority. (a) The judicial authority under this part is vested in the Wake Island Court and the Wake Island Court of Appeals. (b) The...

  11. Comparison study between wind turbine and power kite wakes

    NASA Astrophysics Data System (ADS)

    Haas, T.; Meyers, J.

    2017-05-01

    Airborne Wind Energy (AWE) is an emerging technology in the field of renewable energy that uses kites to harvest wind energy. However, unlike for conventional wind turbines, the wind environment in AWE systems has not yet been studied in much detail. We propose a simulation framework using Large Eddy Simulation to model the wakes of such kite systems and offer a comparison with turbine-like wakes. In order to model the kite effects on the flow, a lifting line technique is used. We investigate different wake configurations related to the operation modes of wind turbines and airborne systems in drag mode. In the turbine mode, the aerodynamic torque of the blades is directly added to the flow. In the kite drag mode, the aerodynamic torque of the wings is directly balanced by an opposite torque induced by on-board generators; this results in a total torque on the flow that is zero. We present the main differences in wake characteristics, especially flow induction and vorticity fields, for the depicted operation modes both with laminar and turbulent inflows.

  12. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  13. Computational examination of utility scale wind turbine wake interactions

    SciTech Connect

    Okosun, Tyamo; Zhou, Chenn Q.

    2015-07-14

    We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resulting in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.

  14. Computational examination of utility scale wind turbine wake interactions

    DOE PAGES

    Okosun, Tyamo; Zhou, Chenn Q.

    2015-07-14

    We performed numerical simulations of small, utility scale wind turbine groupings to determine how wakes generated by upstream turbines affect the performance of the small turbine group as a whole. Specifically, various wind turbine arrangements were simulated to better understand how turbine location influences small group wake interactions. The minimization of power losses due to wake interactions certainly plays a significant role in the optimization of wind farms. Since wind turbines extract kinetic energy from the wind, the air passing through a wind turbine decreases in velocity, and turbines downstream of the initial turbine experience flows of lower energy, resultingmore » in reduced power output. Our study proposes two arrangements of turbines that could generate more power by exploiting the momentum of the wind to increase velocity at downstream turbines, while maintaining low wake interactions at the same time. Furthermore, simulations using Computational Fluid Dynamics are used to obtain results much more quickly than methods requiring wind tunnel models or a large scale experimental test.« less

  15. LES of wind turbine wakes: Evaluation of turbine parameterizations

    NASA Astrophysics Data System (ADS)

    Porte-Agel, Fernando; Wu, Yu-Ting; Chamorro, Leonardo

    2009-11-01

    Large-eddy simulation (LES), coupled with a wind-turbine model, is used to investigate the characteristics of wind turbine wakes in turbulent boundary layers under different thermal stratification conditions. The subgrid-scale (SGS) stress and SGS heat flux are parameterized using scale-dependent Lagrangian dynamic models (Stoll and Porte-Agel, 2006). The turbine-induced lift and drag forces are parameterized using two models: an actuator disk model (ADM) that distributes the force loading on the rotor disk; and an actuator line model (ALM) that distributes the forces on lines that follow the position of the blades. Simulation results are compared to wind-tunnel measurements collected with hot-wire and cold-wire anemometry in the wake of a miniature 3-blade wind turbine at the St. Anthony Falls Laboratory atmospheric boundary layer wind tunnel. In general, the characteristics of the wakes simulated with the proposed LES framework are in good agreement with the measurements. The ALM is better able to capture vortical structures induced by the blades in the near-wake region. Our results also show that the scale-dependent Lagrangian dynamic SGS models are able to account, without tuning, for the effects of local shear and flow anisotropy on the distribution of the SGS model coefficients.

  16. Wake Survey of a Marine Current Turbine Under Steady Conditions

    NASA Astrophysics Data System (ADS)

    Lust, Ethan; Luznik, Luksa; Flack, Karen

    2016-11-01

    A submersible particle image velocimetry (PIV) system was used to study the wake of a horizontal axis marine current turbine. The turbine was tested in a large tow tank facility at the United States Naval Academy. The turbine is a 1/25th scale model of the U.S. National Renewable Energy Laboratory's Reference Model 1 (RM1) tidal turbine. It is a two-bladed turbine measuring 0.8 m in diameter and featuring a NACA 63-618 airfoil cross section. Separate wind tunnel testing has shown the foil section used on the turbine to be Reynolds number independent with respect to lift at the experimental parameters of tow carriage speed (Utow = 1 . 68 m/s) and tip speed ratio (TSR = 7). The wake survey was conducted over an area extending 0.25D forward of the turbine tip path to 2.0D aft, and to a depth of 1.0D beneath the turbine output shaft in the streamwise plane. Each field of view was approximately 30 cm by 30 cm, and each overlapped the adjacent fields of view by 5 cm. The entire flow field was then reconstructed into a single field of investigation. Results include streamwise and vertical ensemble average velocity fields averaged over approximately 1,000 realizations, as well as higher-order statistics. Turbine tip vortex centers were identified and plotted showing increasing aperiodicity with wake age. keywords: horizontal axis marine current turbine, particle image velocimetry, towing tank, wake survey

  17. Documentation of Atmospheric Conditions During Observed Rising Aircraft Wakes

    NASA Technical Reports Server (NTRS)

    Zak, J. Allen; Rodgers, William G., Jr.

    1997-01-01

    Flight tests were conducted in the fall of 1995 off the coast of Wallops Island, Virginia in order to determine characteristics of wake vortices at flight altitudes. A NASA Wallops Flight Facility C130 aircraft equipped with smoke generators produced visible wakes at altitudes ranging from 775 to 2225 m in a variety of atmospheric conditions, orientations (head wind, cross wind), and airspeeds. Meteorological and aircraft parameters were collected continuously from a Langley Research Center OV-10A aircraft as it flew alongside and through the wake vortices at varying distances behind the C130. Meteorological data were also obtained from special balloon observations made at Wallops. Differential GPS capabilities were on each aircraft from which accurate altitude profiles were obtained. Vortices were observed to rise at distances beyond a mile behind the C130. The maximum altitude was 150 m above the C130 in a near neutral atmosphere with significant turbulence. This occurred from large vertical oscillations in the wakes. There were several cases when vortices did not descend after a very short initial period and remained near generation altitude in a variety of moderately stable atmospheres and wind shears.

  18. Wind turbine wake interactions; results from blind tests

    NASA Astrophysics Data System (ADS)

    Krogstad, Per-Åge; Sætran, Lars

    2015-06-01

    Results from three "Blind test" Workshops on wind turbine wake modeling are presented. While the first "Blind test" (BT1, 2011) consisted of a single model turbine located in a large wind tunnel, the complexity was increased for each new test in order to see how various models performed. Thus the next "Blind test" (BT2, 2012) had two turbines mounted in-line. This is a crucial test for models intended to predict turbine performances in a wind farm. In the last "Blind test" (BT3, 2013) the two turbines were again mounted in-line, but offset sideways so that the rotor of the downstream turbine only intersected half the wake from the upstream turbine. This case produces high dynamic loads and strong asymmetry in the wake. For each "Blind test" the turbine geometry and wind tunnel environment was specified and the participants were asked to predict the turbine performances, as well as the wake development to five diameters downstream of the second turbine. For the first two tests axisymmetry could be assumed if the influence of the towers was neglected. This was not possible in BT3 and therefore only fully 3D methods could be applied. In all tests the prediction scatter was surprisingly high.

  19. Three-dimensional structure of a curved wake

    NASA Technical Reports Server (NTRS)

    Weygandt, J. H.; Mehta, R. D.

    1992-01-01

    The effects of streamwise curvature on the 3D structure of a plane wake are studied. Preliminary results indicate that the wake is initially grossly 3D with large spanwise distortions in the mean velocity and Reynolds stress contours. Local extrema distributed in a quasi-periodic manner are seen. The spanwise variations are caused by the presence of relatively strong quadrupoles of mean streamwise vorticity. Further downstream the mean vorticity decays at a rate lower on the unstable side of the wake so that only the unstable side row of vortices persist to the far-field region. As a result, the spanwise distortions and local extrema seem to persist with a relatively slow decay. The effects of curvature are also apparent in the Reynolds stress results. In particular, the shear stress is significantly affected by curvature right from the start such that significantly higher magnitudes are observed on the unstable side. The curved wake clearly develops a very 3D asymmetric structure which shows no signs of reaching an equilibrium state.

  20. Nonlinear growth of electron holes in cross-field wakes

    NASA Astrophysics Data System (ADS)

    Hutchinson, Ian; Haakonsen, C. B.; Zhou, C.

    2015-11-01

    Cross-field plasma flow past an obstacle is key to the physics underlying Mach-probes, space-craft charging, and the wakes of non-magnetic bodies: the solar-wind wake of the moon is a typical example. We report associated new nonlinear instability mechanisms. Ions are accelerated along the B-field into the wake, forming two beams, but they are not initially unstable to ion two-stream instabilities. Electron Langmuir waves become unstable much earlier because of an electron velocity-distribution distortion called the ``dimple''. The magnetic field, perpendicular to the flow, defines the 1-D direction of particle dynamics. In high-fidelity PIC simulations at realistic mass ratio, small electron holes--non-linearly self-binding electron density deficits--are spawned by the dimple in fe (v) near the phase-space separatrix. Most holes accelerate rapidly out of the wake, along B. However, some remain at very low speed, and grow until they are large enough to disrupt the two ion-streams, well before the ions are themselves linearly unstable. This non-linear hole growth is caused by the same mechanism that causes the dimple: cross-field drift from a lower to a higher density. Related mechanisms cause plasma near magnetized Langmuir probes to be unsteady. Partially supported by the NSF/DOE Basic Plasma Science Partnership grant DE-SC0010491.

  1. Non-uniqueness in wakes and boundary layers

    NASA Astrophysics Data System (ADS)

    Smith, F. T.

    1984-01-01

    In streamlined flow past a flat plate aligned with a uniform stream, it is shown that (a) the Goldstein near-wake and (b) the Blasius boundary layer are nonunique solutions locally for the classical boundary layer equations, whereas (c) the Rott-Hakkinen (1965) very-near-wake appears to be unique. In each of (a) and (b) an alternative solution exists, which has reversed flow and which apparently cannot be discounted on immediate grounds. So, depending mainly on how the alternatives for (a), (b) develop downstream, the symmetric flow at high Reynolds numbers could have two, four or more steady forms. Concerning nonstreamlined flow, for example past a bluff obstacle, new similarity forms are described for the pressure-free viscous symmetric closure of a predominantly slender long wake beyond a large-scale separation. Features arising include nonuniqueness, singularities and algebraic behavior, consistent with nonentraining shear layers with algebraic decay. Nonuniqueness also seems possible in reattachment onto a solid surface and for nonsymmetric or pressure-controlled flows including the wake of a symmetric cascade.

  2. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Ahmad, Nash'at N.; Holzaepfel, Frank; VanValkenburg, Randal L.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  3. Vorticity Field from Successive Wake Vortices

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two-dimensional version of the Terminal Area Simulation System (TASS) was used to numerically simulate the interaction of wake vortices from closely separated aircraft. The aircraft parameters and separations are taken from observed data at an actual airport. The wake vortices are generated near the runway threshold for four successive aircraft. The ambient conditions are characterized by light crosswinds and stable stratification. This movie shows the time sequence of the vorticity field from the successive wake vortices. Apparent are the interactions between each pair of successive wake vortices and the ground.

  4. Sleep Pharmacogenetics: Personalized Sleep-Wake Therapy.

    PubMed

    Holst, Sebastian C; Valomon, Amandine; Landolt, Hans-Peter

    2016-01-01

    Research spanning (genetically engineered) animal models, healthy volunteers, and sleep-disordered patients has identified the neurotransmitters and neuromodulators dopamine, serotonin, norepinephrine, histamine, hypocretin, melatonin, glutamate, acetylcholine, γ-amino-butyric acid, and adenosine as important players in the regulation and maintenance of sleep-wake-dependent changes in neuronal activity and the sleep-wake continuum. Dysregulation of these neurochemical systems leads to sleep-wake disorders. Most currently available pharmacological treatments are symptomatic rather than causal, and their beneficial and adverse effects are often variable and in part genetically determined. To evaluate opportunities for evidence-based personalized medicine with present and future sleep-wake therapeutics, we review here the impact of known genetic variants affecting exposure of and sensitivity to drugs targeting the neurochemistry of sleep-wake regulation and the pathophysiology of sleep-wake disturbances. Many functional polymorphisms modify drug response phenotypes relevant for sleep. To corroborate the importance of these and newly identified variants for personalized sleep-wake therapy, human sleep pharmacogenetics should be complemented with pharmacogenomic investigations, research about sleep-wake-dependent pharmacological actions, and studies in mice lacking specific genes. These strategies, together with future knowledge about epigenetic mechanisms affecting sleep-wake physiology and treatment outcomes, may lead to potent and safe novel therapies for the increasing number of sleep-disordered patients (e.g., in aged populations).

  5. Multi-Model Ensemble Wake Vortex Prediction

    NASA Technical Reports Server (NTRS)

    Koerner, Stephan; Holzaepfel, Frank; Ahmad, Nash'at N.

    2015-01-01

    Several multi-model ensemble methods are investigated for predicting wake vortex transport and decay. This study is a joint effort between National Aeronautics and Space Administration and Deutsches Zentrum fuer Luft- und Raumfahrt to develop a multi-model ensemble capability using their wake models. An overview of different multi-model ensemble methods and their feasibility for wake applications is presented. The methods include Reliability Ensemble Averaging, Bayesian Model Averaging, and Monte Carlo Simulations. The methodologies are evaluated using data from wake vortex field experiments.

  6. Vortex Wakes of Conventional Aircraft

    DTIC Science & Technology

    1975-05-01

    Lewellen and Milton Teske , have developed, under the sponsorship of the United States Navy, a digital computer code which allows one to obtain such...178, June 1972. 67. Lewellen, W.S., M.E. Teske , and C.duP. Donaldson: Turbulent Wakes in a Stratified Fluid. Aeronautical Research Associates of...Princeton, Inc. Report No. 226, September 1974. 68. Lewellen, W.S., M.E. Teske , R.M. Contiliano, G.R. Hilst, and C.duP. Donaldson: Invariant Modeling

  7. Neuropharmacology of Sleep and Wakefulness

    PubMed Central

    Watson, Christopher J.; Baghdoyan, Helen A.; Lydic, Ralph

    2010-01-01

    Synopsis The development of sedative/hypnotic molecules has been empiric rather than rational. The empiric approach has produced clinically useful drugs but for no drug is the mechanism of action completely understood. All available sedative/hypnotic medications have unwanted side effects and none of these medications creates a sleep architecture that is identical to the architecture of naturally occurring sleep. This chapter reviews recent advances in research aiming to elucidate the neurochemical mechanisms regulating sleep and wakefulness. One promise of rational drug design is that understanding the mechanisms of sedative/hypnotic action will significantly enhance drug safety and efficacy. PMID:21278831

  8. Sleep, Wakefulness and Circadian Rhythm

    DTIC Science & Technology

    1979-09-01

    sleep, wakefulness and circadian rhythms and the psychological correlates including performance relevant to personnel in.olved in skilld activity. The...HEALTHY ADULTS par A.Reinbeig I CIRCADIAN RHYTHMS OF HUMAN PERFORMANCE AND RESISTANCE: OPERATIONAL ASPECTS by K.E.Klein and H-M.Wegmann 2 SLEEP STAGE...ISOLATION FROM TIME CUES by E.D.Weitzman. C.A.Czeiser and M.C.Moore Ede 7 SLEEP DISTURBANCE AND PERFORMANCE by L.C.Iohnson 8 TOLERANCE DU TRAVAIL POSTE

  9. On the characteristics of the wake meandering of a marine hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Kang, S.

    2013-12-01

    Recently Kang et al. (Journal of Fluid Mechanics, submitted) showed that the hub vortex breakdown occurring downstream of a hydrokinetic turbine plays an important role in enhancing wake meandering. In this study the hub vortex breakdown and wake meandering phenomena are further examined using large-eddy simulation (Kang et al., Advances in Water Resources, 2012). Specifically, the effect of the incoming turbulence, the presence of hub and nacelle geometries, and the tip speed ratio of the rotor on the wake meandering and the hub vortex breakdown are examined.

  10. Using airborne and satellite SAR for wake mapping offshore

    NASA Astrophysics Data System (ADS)

    Christiansen, Merete B.; Hasager, Charlotte B.

    2006-09-01

    Offshore wind energy is progressing rapidly around Europe. One of the latest initiatives is the installation of multiple wind farms in clusters to share cables and maintenance costs and to fully exploit premium wind resource sites. For siting of multiple nearby wind farms, the wind turbine wake effect must be considered. Synthetic aperture radar (SAR) is an imaging remote sensing technique which offers a unique opportunity to describe spatial variations of wind speed offshore. For the first time an airborne SAR instrument was used for data acquisition over a large offshore wind farm. The aim was to identify the turbine wake effect from SAR-derived wind speed maps as a downstream region of reduced wind speed. The aircraft SAR campaign was conducted on 12 October 2003 over the wind farm at Horns Rev in the North Sea. Nearly simultaneous measurements were acquired over the area by the SAR on board the ERS-2 satellite. In addition, meteorological data were collected. Both aircraft and satellite SAR-derived wind speed maps showed significant velocity deficits downstream of the wind farm. Wind speed maps retrieved from aircraft SAR suggested deficits of up to 20% downstream of the last turbine, whereas satellite SAR-derived maps showed deficits of the order of 10%. The difference originated partly from the two different reference methods used for normalization of measured wind speeds. The detected region of reduced wind speed had the same width as the wind turbine array, indicating a low degree of horizontal wake dispersion. The downstream wake extent was approximately 10 km, which corresponds well with results from previous studies and with wake model predictions. Copyright

  11. LES Investigation of Wake Development in a Transonic Fan Stage for Aeroacoustic Analysis

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Romeo, Michael

    2017-01-01

    Detailed development of the rotor wake and its interaction with the stator are investigated with a large eddy simulation (LES). Typical steady and unsteady Navier-Stokes approaches (RANS and URANS) do not calculate wake development accurately and do not provide all the necessary information for an aeroacoustic analysis. It is generally believed that higher fidelity analysis tools are required for an aeroacoustic investigation of transonic fan stages.

  12. Wake Vortex Avoidance System and Method

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor); Knight, Howard K. (Inventor)

    2017-01-01

    A wake vortex avoidance system includes a microphone array configured to detect low frequency sounds. A signal processor determines a geometric mean coherence based on the detected low frequency sounds. A display displays wake vortices based on the determined geometric mean coherence.

  13. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    SciTech Connect

    Haakonsen, Christian Bernt Hutchinson, Ian H. Zhou, Chuteng

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  14. Investigation of wake characteristics in wind farm varying turbulent inflow condition

    NASA Astrophysics Data System (ADS)

    Na, Jisung; Koo, Eunmo; Domingo, Munoz-Esparza; Jin, Emilia Kyung; Linn, Rodman; Lee, Joon Sang

    2016-11-01

    In this study, we investigate the wake characteristics in wind farm varying turbulent property at inlet condition. To solve the flow with wind turbines and its wake, we use large eddy simulation (LES) technique with actuator line method (ALM). The wake characteristics in wind farm is important mainly in performance of wind farm because non-fully recovered wake induced by upstream wind turbines interferes power generation at downstream wind turbines. Turbulent inflow which contains the information of turbulence in atmospheric boundary layer is one of the key factors for describing the wake in wind farm accurately. We perform the quantitative analysis of velocity deficit and turbulent intensity in whole cases. In the comparison between cases with and without turbulent inflow, we observe that wake in case with turbulent inflow is more diffused to span-wise direction. And we analyze the coherent structures behind wind turbines at each row. Through above-analysis, we reveal how the wake is interacted with performance of wind farm. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No.2015R1A5A1037668).

  15. Effect of wakes from moving upstream rods on boundary layer separation from a high lift airfoil

    NASA Astrophysics Data System (ADS)

    Volino, Ralph J.

    2011-11-01

    Highly loaded airfoils in turbines allow power generation using fewer airfoils. High loading, however, can cause boundary layer separation, resulting in reduced lift and increased aerodynamic loss. Separation is affected by the interaction between rotating blades and stationary vanes. Wakes from upstream vanes periodically impinge on downstream blades, and can reduce separation. The wakes include elevated turbulence, which can induce transition, and a velocity deficit, which results in an impinging flow on the blade surface known as a ``negative jet.'' In the present study, flow through a linear cascade of very high lift airfoils is studied experimentally. Wakes are produced with moving rods which cut through the flow upstream of the airfoils, simulating the effect of upstream vanes. Pressure and velocity fields are documented. Wake spacing and velocity are varied. At low Reynolds numbers without wakes, the boundary layer separates and does not reattach. At high wake passing frequencies separation is largely suppressed. At lower frequencies, ensemble averaged velocity results show intermittent separation and reattachment during the wake passing cycle. Supported by NASA.

  16. Statistical meandering wake model and its application to yaw-angle optimisation of wind farms

    NASA Astrophysics Data System (ADS)

    Thøgersen, E.; Tranberg, B.; Herp, J.; Greiner, M.

    2017-05-01

    The wake produced by a wind turbine is dynamically meandering and of rather narrow nature. Only when looking at large time averages, the wake appears to be static and rather broad, and is then well described by simple engineering models like the Jensen wake model (JWM). We generalise the latter deterministic models to a statistical meandering wake model (SMWM), where a random directional deflection is assigned to a narrow wake in such a way that on average it resembles a broad Jensen wake. In a second step, the model is further generalised to wind-farm level, where the deflections of the multiple wakes are treated as independently and identically distributed random variables. When carefully calibrated to the Nysted wind farm, the ensemble average of the statistical model produces the same wind-direction dependence of the power efficiency as obtained from the standard Jensen model. Upon using the JWM to perform a yaw-angle optimisation of wind-farm power output, we find an optimisation gain of 6.7% for the Nysted wind farm when compared to zero yaw angles and averaged over all wind directions. When applying the obtained JWM-based optimised yaw angles to the SMWM, the ensemble-averaged gain is calculated to be 7.5%. This outcome indicates the possible operational robustness of an optimised yaw control for real-life wind farms.

  17. Three dimensional mean flow and turbulence characteristics of the near wake of a compressor rotor blade

    NASA Technical Reports Server (NTRS)

    Ravindranath, A.; Lakshminarayana, B.

    1980-01-01

    The investigation was carried out using the rotating hot wire technique. Measurements were taken inside the end wall boundary layer to discern the effect of annulus and hub wall boundary layer, secondary flow, and tip leakage on the wake structure. Static pressure gradients across the wake were measured using a static stagnation pressure probe insensitive to flow direction changes. The axial and the tangential velocity defects, the radial component of velocity, and turbulence intensities were found to be very large as compared to the near and far wake regions. The radial velocities in the trailing edge region exhibited characteristics prevalent in a trailing vortex system. Flow near the blade tips found to be highly complex due to interaction of the end wall boundary layers, secondary flows, and tip leakage flow with the wake. The streamwise curvature was found to be appreciable near the blade trailing edge. Flow properties in the trailing edge region are quite different compared to that in the near and far wake regions with respect to their decay characteristics, similarity, etc. Fourier decomposition of the rotor wake revealed that for a normalized wake only the first three coefficients are dominant.

  18. On the statistics of wind turbine wake meandering: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Howard, Kevin B.; Singh, Arvind; Sotiropoulos, Fotis; Guala, Michele

    2015-07-01

    Measurements of the instantaneous wake flow from a model wind turbine placed in a turbulent boundary layer were obtained by wall-parallel oriented particle image velocimetry (PIV) in the St. Anthony Falls Laboratory wind tunnel. PIV velocity vector fields were used to investigate mean (expansion angle, wavelength, and wake velocity) and higher order statistics (local slope, curvature, and correlation) describing meandering motions in the turbine wake. These statistics were used to compare the wakes produced by four different wind turbine operating configurations, which include a single turbine operating at two different tip-speed ratios and two turbines aligned with the mean flow. The origin of meandering motions was identified for all cases in the hub vortex signature, which evolved into a stretched or compressed low speed meander in the wall parallel plane, depending on the turbine operating conditions and on the interaction with the wake shear layer. Finally, both autocorrelation and scale-dependent statistics on the velocity minima fluctuations about the meander signature suggest that small scale vortices, found in the hub shear layer and in the wake shear layer, interact with the hub vortex and govern its spatial evolution into large scale wake meandering.

  19. Influence of the Coriolis force on the structure and evolution of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Porté-Agel, Fernando

    2016-10-01

    In this study, large-eddy simulation combined with a turbine model is used to investigate the effect of vertical wind veer associated with the Coriolis force on the structure and evolution of wind turbine wakes. In order to isolate the Coriolis effect on the wake, two cases are considered. In the first case, atmospheric boundary-layer flow is driven by a geostrophic wind, including the effect of Earth's rotation and the Coriolis force. In the second case, the boundary-layer flow is unidirectional and is forced by an imposed pressure gradient. Both cases have the same mean horizontal velocity and turbulence intensity at the hub height. The simulation results show that the Coriolis force significantly affects the aerodynamics of the wake including the mean velocity deficit, turbulence statistics, and wake-meandering characteristics downwind of the turbine. In particular, when the flow is forced by a geostrophic wind, vertical wind veer causes a skewed spatial structure in the wake. Moreover, the presence of lateral wind shear, in addition to the vertical one, enhances the shear production of turbulent kinetic energy and the turbulent momentum flux. This leads to a larger flow entrainment and, thus, a faster wake recovery compared to the case forced by unidirectional pressure gradient. Consistent with this result, wake meandering is also stronger in both lateral and vertical directions in the case of geostrophic forcing compared to the case with pressure-gradient forcing.

  20. Unsteady inflow effects on the wake shed from a high-lift LPT blade subjected to boundary layer laminar separation

    NASA Astrophysics Data System (ADS)

    Satta, Francesca; Ubaldi, Marina; Zunino, Pietro

    2012-04-01

    An experimental investigation on the near and far wake of a cascade of high-lift low-pressure turbine blades subjected to boundary layer separation over the suction side surface has been carried out, under steady and unsteady inflows. Two Reynolds number conditions, representative of take-off/landing and cruise operating conditions of the real engine, have been tested. The effect of upstream wake-boundary layer interaction on the wake shed from the profile has been investigated in a three-blade large-scale linear turbine cascade. The comparison between the wakes shed under steady and unsteady inflows has been performed through the analysis of mean velocity and Reynolds stress components measured at midspan of the central blade by means of a two-component crossed miniature hot-wire probe. The wake development has been analyzed in the region between 2% and 100% of the blade chord from the central blade trailing edge, aligned with the blade exit direction. Wake integral parameters, half-width and maximum velocity defects have been evaluated from the mean velocity distributions to quantify the modifications induced on the vane wake by the upstream wake. Moreover the thicknesses of the two wake shear layers have been considered separately in order to identify the effects of Reynolds number and incoming flow on the wake shape. The self-preserving state of the wake has been looked at, taking into account the different thicknesses of the two shear layers. The evaluation of the power density spectra of the velocity fluctuations allowed the study of the wake unsteady behavior, and the detection of the effects induced by the different operating conditions on the trailing edge vortex shedding.

  1. Dopaminergic Modulation of Sleep-Wake States.

    PubMed

    Herrera-Solis, Andrea; Herrera-Morales, Wendy; Nunez-Jaramillo, Luis; Arias-Carrion, Oscar

    2017-01-01

    The role of dopamine in sleep-wake regulation is considered as a wakefulness-promoting agent. For the clinical treatment of excessive daytime sleepiness, drugs have been commonly used to increase dopamine release. However, sleep disorders or lack of sleep are related to several dopaminerelated disorders. The effects of dopaminergic agents, nevertheless, are mediated by two families of dopamine receptors, D1 and D2-like receptors; the first family increases adenylyl cyclase activity and the second inhibits adenylyl cyclase. For this reason, the dopaminergic agonist effects on sleep-wake cycle are complex. Here, we review the state-of-the-art and discuss the different effects of dopaminergic agonists in sleep-wake states, and propose that these receptors account for the affinity, although not the specificity, of several effects on the sleep-wake cycle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Dreaming and waking: similarities and differences revisited.

    PubMed

    Kahan, Tracey L; LaBerge, Stephen P

    2011-09-01

    Dreaming is often characterized as lacking high-order cognitive (HOC) skills. In two studies, we test the alternative hypothesis that the dreaming mind is highly similar to the waking mind. Multiple experience samples were obtained from late-night REM sleep and waking, following a systematic protocol described in Kahan (2001). Results indicated that reported dreaming and waking experiences are surprisingly similar in their cognitive and sensory qualities. Concurrently, ratings of dreaming and waking experiences were markedly different on questions of general reality orientation and logical organization (e.g., the bizarreness or typicality of the events, actions, and locations). Consistent with other recent studies (e.g., Bulkeley & Kahan, 2008; Kozmová & Wolman, 2006), experiences sampled from dreaming and waking were more similar with respect to their process features than with respect to their structural features. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Detecting wind turbine wakes with nacelle lidars

    NASA Astrophysics Data System (ADS)

    Held, D. P.; Larvol, A.; Mann, J.

    2017-05-01

    Because the horizontal homogeneity assumption is violated in wakes flows, lidars face difficulties when reconstructing wind fields. Further, small-scale turbulence which is prevalent in wake flows causes Doppler spectrum widths to be broader than in the free stream. In this study the Doppler peak variance is used as a detection parameter for wakes. A one month long measurement campaign, where a continuous-wave lidar on a turbine has been exposed to multiple wake situations, is used to test the detection capabilities. The results show that it is possible to identify situation where a downstream turbine is in wake by comparing the peak widths. The used lidar is inexpensive and brings instalments on every turbine within economical reach. Thus, the information gathered by the lidars can be used for improved control at wind farm level.

  4. The Neurobiology of Sleep and Wakefulness.

    PubMed

    Schwartz, Michael D; Kilduff, Thomas S

    2015-12-01

    Cortical electroencephalographic activity arises from corticothalamocortical interactions, modulated by wake-promoting monoaminergic and cholinergic input. These wake-promoting systems are regulated by hypothalamic hypocretin/orexins, while GABAergic sleep-promoting nuclei are found in the preoptic area, brainstem and lateral hypothalamus. Although pontine acetylcholine is critical for REM sleep, hypothalamic melanin-concentrating hormone/GABAergic cells may "gate" REM sleep. Daily sleep-wake rhythms arise from interactions between a hypothalamic circadian pacemaker and a sleep homeostat whose anatomical locus has yet to be conclusively defined. Control of sleep and wakefulness involves multiple systems, each of which presents vulnerability to sleep/wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.

  5. Helicopter Rotor Wake Geometry and Its Influence in Forward Flight. Volume 1. Generalized Wake Geometry and Wake Effect on Rotor Airloads and Performance.

    DTIC Science & Technology

    1983-10-01

    performance. A first level generalized wake model was developed for a helicopter rotor operating in steady level forward flight based on theoretically...predicted wake geometries. The generalized wake model consists of wake geometry equations in which tip vortex distortions are generalized as displacements...of predicted rotor airloads and related rotor performanceand blade bending moments to various rotor inflow and wake geometry models are demonstrated

  6. Application of Three-Component PIV to a Hovering Rotor Wake

    NASA Technical Reports Server (NTRS)

    Yamauchi, Gloria K.; Lourenco, Luiz; Heineck, James T.; Wadcock, Alan J.; Abrego, Anita I.; Aiken, Edwin W. (Technical Monitor)

    2000-01-01

    The key to accurate predictions of rotorcraft aerodynamics, acoustics, and dynamics lies in the accurate representation of the rotor wake. The vortical wake computed by rotorcraft CFD analyses typically suffer from numerical dissipation before the first blade passage. With some a priori knowledge of the wake trajectory, grid points can be concentrated along the trajectory to minimize the dissipation. Comprehensive rotorcraft analyses based on lifting-line theory rely on classical vortex models and/or semi-empirical information about the tip vortex structure. Until the location, size, and strength of the trailed tip vortex can be measured over a range of wake ages, the analyses will continue to be adjusted on a trial and error basis in order to correctly predict blade airloads, acoustics, dynamics, and performance. Using the laser light sheet technique, tip vortex location can be acquired in a straightforward manner. Measuring wake velocities and vortex core size, however, has been difficult and tedious using point-measurement techniques such as laser velocimetry. Recently, the Particle Image Velocimetry (PIV) technique has proven to be an efficient method for acquiring velocity measurements over relatively large areas and volumes of a rotor wake. The work reported to date, however, has been restricted to 2-component velocity measurements of the rotor wake. Three-component velocity measurements of a hovering rotor wake were acquired at NASA Ames Research Center in May 1999. This experiment represents a major step toward understanding the detailed structure of a rotor wake. This paper will focus primarily on the experimental technique used in acquiring this data. The accuracy and limitations of the current technique will also be discussed. Representative velocity field measurements will be included.

  7. The role of turbulent mixing in wind turbine wake recovery and wind array performance

    NASA Astrophysics Data System (ADS)

    Fruh, Wolf-Gerrit; Creech, Angus; Maguire, Eoghan

    2014-05-01

    The effect of wind turbine wakes in large offshore wind energy arrays can be a substantial factor in affecting the performance of turbines inside the array. Turbulent mixing plays a key role in the wake recovery, having a significant effect on the length over which the wake is strong enough to affect the performance other turbines significantly. We aim to highlight how turbulence affects wind turbine wakes, first by examining a high resolution CFD model of a single turbine wake validated by LIDAR measurements [1], and secondly with a much larger CFD simulation of Lillgrund offshore wind farm, validated with SCADA data [2]. By comparing the decay rates behind single turbines in environments of different surrounding surface features, ranging from ideal free-slip wind tunnels to mixed-vegetation hills, we suggest that the decay rate of turbine wakes are enhanced by free-stream turbulence, created by topography and ground features. In the context of Lillgrund wind farm, observations and computational results suggest that the wakes created by the turbines in the leading row facing the wind decay much slower than those in second row, or further into the turbine array. This observation can be explained by the diffusive action of upwind turbulence breaking up the wake generated by a turbine rotor. Angus CW Creech, Wolf-Gerrit Früh, Peter Clive (2012). Actuator volumes and hradaptive methods for threedimensional simulation of wind turbine wakes and performance. Wind Energy Vol.15, 847 - 863. Angus C.W. Creech, Wolf-Gerrit Früh, A. Eoghan Maguire (2013). High-resolution CFD modelling of Lillgrund Wind farm. Renewable Energies and Power Quality Journal, Vol. 11

  8. Determination of Wind Turbine Near-Wake Length Based on Stability Analysis

    NASA Astrophysics Data System (ADS)

    Sørensen, Jens N.; Mikkelsen, Robert; Sarmast, Sasan; Ivanell, Stefan; Henningson, Dan

    2014-06-01

    A numerical study on the wake behind a wind turbine is carried out focusing on determining the length of the near-wake based on the instability onset of the trailing tip vortices shed from the turbine blades. The numerical model is based on large-eddy simulations (LES) of the Navier-Stokes equations using the actuator line (ACL) method. The wake is perturbed by applying stochastic or harmonic excitations in the neighborhood of the tips of the blades. The flow field is then analyzed to obtain the stability properties of the tip vortices in the wake of the wind turbine. As a main outcome of the study it is found that the amplification of specific waves (traveling structures) along the tip vortex spirals is responsible for triggering the instability leading to wake breakdown. The presence of unstable modes in the wake is related to the mutual inductance (vortex pairing) instability where there is an out-of-phase displacement of successive helix turns. Furthermore, using the non-dimensional growth rate, it is found that the pairing instability has a universal growth rate equal to π/2. Using this relationship, and the assumption that breakdown to turbulence occurs once a vortex has experienced sufficient growth, we provide an analytical relationship between the turbulence intensity and the stable wake length. The analysis leads to a simple expression for determining the length of the near wake. This expression shows that the near wake length is inversely proportional to thrust, tip speed ratio and the logarithmic of the turbulence intensity.

  9. Molecular wake shield gas analyzer

    NASA Technical Reports Server (NTRS)

    Hoffman, J. H.

    1980-01-01

    Techniques for measuring and characterizing the ultrahigh vacuum in the wake of an orbiting spacecraft are studied. A high sensitivity mass spectrometer that contains a double mass analyzer consisting of an open source miniature magnetic sector field neutral gas analyzer and an identical ion analyzer is proposed. These are configured to detect and identify gas and ion species of hydrogen, helium, nitrogen, oxygen, nitric oxide, and carbon dioxide and any other gas or ion species in the 1 to 46 amu mass range. This range covers the normal atmospheric constituents. The sensitivity of the instrument is sufficient to measure ambient gases and ion with a particle density of the order of one per cc. A chemical pump, or getter, is mounted near the entrance aperture of the neutral gas analyzer which integrates the absorption of ambient gases for a selectable period of time for subsequent release and analysis. The sensitivity is realizable for all but rare gases using this technique.

  10. Moon Waves and Moon Wakes

    NASA Image and Video Library

    2017-01-30

    This Cassini image features a density wave in Saturn's A ring (at left) that lies around 134,500 km from Saturn. Density waves are accumulations of particles at certain distances from the planet. This feature is filled with clumpy perturbations, which researchers informally refer to as "straw." The wave itself is created by the gravity of the moons Janus and Epimetheus, which share the same orbit around Saturn. Elsewhere, the scene is dominated by "wakes" from a recent pass of the ring moon Pan. The image was taken in visible light with the Cassini spacecraft wide-angle camera on Dec. 18, 2016. The view was obtained at a distance of approximately 34,000 miles (56,000 kilometers) from the rings and looks toward the unilluminated side of the rings. Image scale is about a quarter-mile (340 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA21060

  11. Simulation of spray dispersion in a simplified heavy vehicle wake

    SciTech Connect

    Paschkewitz, J S

    2006-01-13

    Simulations of spray dispersion in a simplified tractor-trailer wake have been completed with the goal of obtaining a better understanding of how to mitigate this safety hazard. The Generic Conventional Model (GCM) for the tractor-trailer was used. The impact of aerodynamic drag reduction devices, specifically trailer-mounted base flaps, on the transport of spray in the vehicle wake was considered using the GCM. This analysis demonstrated that base flaps including a bottom plate may actually worsen motorist visibility because of the interaction of fine spray with large vortex flows in the wake. This work suggests that to use computational fluid dynamics (CFD) to design and evaluate spray mitigation strategies the jet or sheet breakup processes can be modeled using an array of injectors of small (< 0.1 mm) water droplets; however the choice of size distribution, injection locations, directions and velocities is largely unknown and requires further study. Possible containment strategies would include using flow structures to 'focus' particles into regions away from passing cars or surface treatments to capture small drops.

  12. The Effect of Flow Curvature on the Axisymmetric Wake

    NASA Astrophysics Data System (ADS)

    Holmes, Marlin; Naughton, Jonathan

    2016-11-01

    The swirling turbulent wake is a perturbation to the canonical axisymmetric turbulent wake. Past studies of the axisymmetric turbulent wake have increased understanding of wake Reynolds number influence on wake characteristics such as centerline wake velocity deficit and wake width. In comparison, the axisymmetric turbulent swirling wake has received little attention. Earlier work by our group has shown that the addition of swirl can change the characteristics of the wake. The goal of this current work is to examine how wake mean flow quantities are related to the wake Reynolds number and the swirl number, where the latter quantity is the ratio of the angular momentum flux to the axial momentum deficit flux. A custom designed swirling wake generator is used in a low turbulence intensity wind tunnel flow to study the turbulent swirling wake in isolation. Stereoscopic Particle Image Velocimetry is used to obtain three component velocity fields in the axial-radial plane. From this data, the wake Reynolds number, the swirl number, centerline velocity decay, wake width, and other relevant wake mean flow quantities are determined. Using these results, the impact of swirl on wake development is discussed. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  13. Computational Simulation of a Heavy Vehicle Trailer Wake

    SciTech Connect

    Ortega, J M; Dunn, T; McCallen, R; Salari, K

    2002-12-04

    To better understand the flow mechanisms that contribute to the aerodynamic drag of heavy vehicles, unsteady large-eddy simulations are performed to model the wake of a truncated trailer geometry above a no-slip surface. The truncation of the heavy vehicle trailer is done to reduce the computational time needed to perform the simulations. Both unsteady and time-averaged results are presented from these simulations for two grids. A comparison of velocity fields with those obtained from a wind tunnel study demonstrate that there is a distinct di.erence in the separated wake of the experimental and computational results, perhaps indicating the influence of the geometry simplification, turbulence model, boundary conditions, or other aspects of the chosen numerical approach.

  14. A Piloted Simulation Study of Wake Turbulence on Final Approach

    NASA Technical Reports Server (NTRS)

    Stewart, Eric C.

    1998-01-01

    A piloted simulation study has been conducted in a research simulator to provide a means to estimate the effects of different levels of wake turbulence on final approach. A worst-case methodology was used to ensure conservative estimates. Fourteen airline pilots voluntarily participated in the study and flew almost 1000 approaches. The pilots rated the subjective severity of the disturbances using a special rating scale developed for this study. Several objective measures of the airplane/pilot response to the simulated wake turbulence were also made. All the data showed a large amount of variation between pilots and to a lesser extent for a given pilot. Therefore, the data were presented at 50, 70, 90 percentile levels as a function of vortex strength. The data allow estimates of the vortex strength for a given subjective or objective response and vice versa. The results of this study appear to be more conservative than the results of previous studies.

  15. Spectral Analysis of the Wake behind a Helicopter Rotor Hub

    NASA Astrophysics Data System (ADS)

    Petrin, Christopher; Reich, David; Schmitz, Sven; Elbing, Brian

    2016-11-01

    A scaled model of a notional helicopter rotor hub was tested in the 48" Garfield Thomas Water Tunnel at the Applied Research Laboratory Penn State. LDV and PIV measurements in the far-wake consistently showed a six-per-revolution flow structure, in addition to stronger two- and four-per-revolution structures. These six-per-revolution structures persisted into the far-field, and have no direct geometric counterpart on the hub model. The current study will examine the Reynolds number dependence of these structures and present higher-order statistics of the turbulence within the wake. In addition, current activity using the EFPL Large Water Tunnel at Oklahoma State University will be presented. This effort uses a more canonical configuration to identify the source for these six-per-revolution structures, which are assumed to be a non-linear interaction between the two- and four-per-revolution structures.

  16. Numerical Simulations of Wake/Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Choudhari, Meelan M.; Ovchinnikov, Victor; Balaras, Elias

    2003-01-01

    Direct and large-eddy simulations of the interaction between the wake of a circular cylinder and a flat-plate boundary layer are conducted. Two Reynolds numbers are examined. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re(sub theta) achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established.

  17. Wake Vortex Transport in Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Hamilton, David W.; Proctor, Fred H.

    2000-01-01

    A sensitivity study for aircraft wake vortex transport has been conducted using a validated large eddy simulation (LES) model. The study assumes neutrally stratified and nonturbulent environments and includes the consequences of the ground. The numerical results show that the nondimensional lateral transport is primarily influenced by the magnitude of the ambient crosswind and is insensitive to aircraft type. In most of the simulations, the ground effect extends the lateral position of the downwind vortex about one initial vortex spacing (b(sub o)) in the downstream direction. Further extension by as much as one b(sub o) occurs when the downwind vortex remains 'in ground effect' (IGE) for relatively long periods of time. Results also show that a layer-averaged ambient wind velocity can be used to bound the time for lateral transport of wake vortices to insure safe operations on a parallel runway.

  18. Altered sleep-wake cycles and physical performance in athletes.

    PubMed

    Reilly, Thomas; Edwards, Ben

    2007-02-28

    Sleep-waking cycles are fundamental in human circadian rhythms and their disruption can have consequences for behaviour and performance. Such disturbances occur due to domestic or occupational schedules that do not permit normal sleep quotas, rapid travel across multiple meridians and extreme athletic and recreational endeavours where sleep is restricted or totally deprived. There are methodological issues in quantifying the physiological and performance consequences of alterations in the sleep-wake cycle if the effects on circadian rhythms are to be separated from the fatigue process. Individual requirements for sleep show large variations but chronic reduction in sleep can lead to immuno-suppression. There are still unanswered questions about the sleep needs of athletes, the role of 'power naps' and the potential for exercise in improving the quality of sleep.

  19. POD Analysis of a Wind Turbine Wake in a Turbulent Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Bastine, D.; Witha, B.; Wächter, M.; Peinke, J.

    2014-06-01

    The wake of a single wind turbine is modeled using an actuator disk model and large eddy simulations. As inflow condition a numerically generated turbulent atmospheric boundary layer is used. The proper orthogonal decomposition (POD) is applied to a plane perpendicular to the main flow in the far wake of the turbine. Reconstructions of the field are investigated depending on the numbers of POD modes used. Even though a great number of modes is needed to recover a great part of the turbulent kinetic energy, our results indicate that relevant aspects of a wake flow can be recovered using only a few modes. Particularly, the dynamics of the average velocity over a potential disk in the wake can partially be captured using only three modes.

  20. Numerical Simulation of Wake Vortices Measured During the Idaho Falls and Memphis Field Programs

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1996-01-01

    A numerical large-eddy simulation model is under modification and testing for application to aircraft wake vortices. The model, having a meteorological framework, permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, and humidity. As part of the validation process, model results are compared with measured field data from the 1990 Idaho Falls and the 1994-1995 Memphis field experiments. Cases are selected that represent different aircraft and a cross section of meteorological environments. Also included is one case with wake vortex generation in ground effect. The model simulations are initialized with the appropriate meteorological conditions and a post roll-up vortex system. No ambient turbulence is assumed in our initial set of experiments, although turbulence can be self generated by the interaction of the model wakes with the ground and environment.

  1. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    NASA Astrophysics Data System (ADS)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  2. Effect of nonlinear chirped Gaussian laser pulse on plasma wake field generation

    SciTech Connect

    Afhami, Saeedeh; Eslami, Esmaeil

    2014-08-15

    An ultrashort laser pulse propagating in plasma can excite a nonlinear plasma wake field which can accelerate charged particles up to GeV energies within a compact space compared to the conventional accelerator devices. In this paper, the effect of different kinds of nonlinear chirped Gaussian laser pulse on wake field generation is investigated. The numerical analysis of our results depicts that the excitation of plasma wave with large and highly amplitude can be accomplished by nonlinear chirped pulses. The maximum amplitude of excited wake in nonlinear chirped pulse is approximately three times more than that of linear chirped pulse. In order to achieve high wake field generation, chirp parameters and functions should be set to optimal values.

  3. Two Dimensional Wake Vortex Simulations in the Atmosphere: Preliminary Sensitivity Studies

    NASA Technical Reports Server (NTRS)

    Proctor, F. H.; Hinton, D. A.; Han, J.; Schowalter, D. G.; Lin, Y.-L.

    1998-01-01

    A numerical large-eddy simulation model is currently being used to quantify aircraft wake vortex behavior with meteorological observables. The model, having a meteorological framework, permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, and humidity. The addition of grid-scale turbulence as an initial condition appeared to have little consequence. Results show that conventional nondimensionalizations work very well for vortex pairs embedded in stably stratified flows. However, this result is based on simple environments with constant Brunt-Vaisala frequency. Results presented here also show that crosswind profiles exert important and complex interactions on the trajectories of wake vortices. Nonlinear crosswind profiles tended to arrest the descent of wake vortex pairs. The member of the vortex pair with vorticity of same sign as the vertical change in the ambient along-track vorticity may be deflected upwards.

  4. The NASA-Langley Wake Vortex Modelling Effort in Support of an Operational Aircraft Spacing System

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.

    1998-01-01

    Two numerical modelling efforts, one using a large eddy simulation model and the other a numerical weather prediction model, are underway in support of NASA's Terminal Area Productivity program. The large-eddy simulation model (LES) has a meteorological framework and permits the interaction of wake vortices with environments characterized by crosswind shear, stratification, humidity, and atmospheric turbulence. Results from the numerical simulations are being used to assist in the development of algorithms for an operational wake-vortex aircraft spacing system. A mesoscale weather forecast model is being adapted for providing operational forecast of winds, temperature, and turbulence parameters to be used in the terminal area. This paper describes the goals and modelling approach, as well as achievements obtained to date. Simulation results will be presented from the LES model for both two and three dimensions. The 2-D model is found to be generally valid for studying wake vortex transport, while the 3-D approach is necessary for realistic treatment of decay via interaction of wake vortices and atmospheric boundary layer turbulence. Meteorology is shown to have an important affect on vortex transport and decay. Presented are results showing that wake vortex transport is unaffected by uniform fog or rain, but wake vortex transport can be strongly affected by nonlinear vertical change in the ambient crosswind. Both simulation and observations show that atmospheric vortices decay from the outside with minimal expansion of the core. Vortex decay and the onset three-dimensional instabilities are found to be enhanced by the presence of ambient turbulence.

  5. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  6. Time-of-day mediates the influences of extended wake and sleep restriction on simulated driving.

    PubMed

    Matthews, Raymond W; Ferguson, Sally A; Zhou, Xuan; Sargent, Charli; Darwent, David; Kennaway, David J; Roach, Gregory D

    2012-06-01

    Although a nonlinear time-of-day and prior wake interaction on performance has been well documented, two recent studies have aimed to incorporate the influences of sleep restriction into this paradigm. Through the use of sleep-restricted forced desynchrony protocols, both studies reported a time-of-day × sleep restriction interaction, as well as a time-of-day × prior wake × sleep dose three-way interaction. The current study aimed to investigate these interactions on simulated driving performance, a more complex task with ecological validity for the problem of fatigued driving. The driving performance of 41 male participants (mean ± SD: 22.8 ±2.2 yrs) was assessed on a 10-min simulated driving task with the standard deviation of lateral position (SDLAT) measured. Using a between-group design, participants were subjected to either a control condition of 9.33 h of sleep/18.66 h of wake, a moderate sleep-restriction (SR) condition of 7 h of sleep/21 h of wake, or a severe SR condition of 4.66 h of sleep/23.33 h of wake. In each condition, participants were tested at 2.5-h intervals after waking across 7 × 28-h d of forced desynchrony. Driving sessions occurred at nine doses of prior wake, within six divisions of the circadian cycle based on core body temperature (CBT). Mixed-models analyses of variance (ANOVAs) revealed significant main effects of time-of-day, prior wake, sleep debt, and sleep dose on SDLAT. Additionally, significant two-way interactions of time-of-day × prior wake and time-of-day × sleep debt, as well as significant three-way interactions of time-of-day × prior wake × sleep debt and time-of-day × sleep debt × sleep dose were observed. Although limitations such as the presence of practice effects and large standard errors are noted, the study concludes with three findings. The main effects demonstrate that extending wake, reducing sleep, and driving at poor times of day all significantly impair driving performance at an individual

  7. Analyzing complex wake-terrain interactions and its implications on wind-farm performance.

    NASA Astrophysics Data System (ADS)

    Tabib, Mandar; Rasheed, Adil; Fuchs, Franz

    2016-09-01

    Rotating wind turbine blades generate complex wakes involving vortices (helical tip-vortex, root-vortex etc.).These wakes are regions of high velocity deficits and high turbulence intensities and they tend to degrade the performance of down-stream turbines. Hence, a conservative inter-turbine distance of up-to 10 times turbine diameter (10D) is sometimes used in wind-farm layout (particularly in cases of flat terrain). This ensures that wake-effects will not reduce the overall wind-farm performance, but this leads to larger land footprint for establishing a wind-farm. In-case of complex-terrain, within a short distance (say 10D) itself, the nearby terrain can rise in altitude and be high enough to influence the wake dynamics. This wake-terrain interaction can happen either (a) indirectly, through an interaction of wake (both near tip vortex and far wake large-scale vortex) with terrain induced turbulence (especially, smaller eddies generated by small ridges within the terrain) or (b) directly, by obstructing the wake-region partially or fully in its flow-path. Hence, enhanced understanding of wake- development due to wake-terrain interaction will help in wind farm design. To this end the current study involves: (1) understanding the numerics for successful simulation of vortices, (2) understanding fundamental vortex-terrain interaction mechanism through studies devoted to interaction of a single vortex with different terrains, (3) relating influence of vortex-terrain interactions to performance of a wind-farm by studying a multi-turbine wind-farm layout under different terrains. The results on interaction of terrain and vortex has shown a much faster decay of vortex for complex terrain compared to a flatter-terrain. The potential reasons identified explaining the observation are (a) formation of secondary vortices in flow and its interaction with the primary vortex and (b) enhanced vorticity diffusion due to increased terrain-induced turbulence. The implications of

  8. Physics of temporal forcing in wakes

    NASA Astrophysics Data System (ADS)

    Thiria, B.; Wesfreid, J. E.

    2009-05-01

    In this paper, we review some recent results concerning the physics of forcing in open flows. First, we recall some properties of global modes in wakes, showing their shapes and their dependence on the Reynolds number and underline the importance of the mean flow correction induced by the fluctuations. Second, we show how a local temporal forcing can affect these properties, always through the modification of the mean flow, until the wake reaches a critical transition even far from the threshold. At last, we address some conjectures about an extended model suitable for describing the dynamics of forced wakes.

  9. Bedtime problems and night wakings in children.

    PubMed

    Moore, Melisa; Meltzer, Lisa J; Mindell, Jodi A

    2008-09-01

    Bedtime problems and night wakings in children are extremely common, and the treatment literature demonstrates strong empirical support for behavioral interventions. Empirically validated interventions for bedtime problems and night wakings include extinction, graduated extinction, positive routines, and parental education. Most children respond to behavioral interventions, resulting not only in better sleep for the child, but also better sleep and improved daytime functioning for the entire family. This article reviews the presentation of bedtime problems and night wakings, empirically validated interventions, and challenges to treatment in both typically developing and special populations of children.

  10. Experimental evaluation of a flat wake theory for predicting rotor inflow-wake velocities

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1992-01-01

    The theory for predicting helicopter inflow-wake velocities called flat wake theory was correlated with several sets of experimental data. The theory was developed by V. E. Baskin of the USSR, and a computer code known as DOWN was developed at Princeton University to implement the theory. The theory treats the wake geometry as rigid without interaction between induced velocities and wake structure. The wake structure is assumed to be a flat sheet of vorticity composed of trailing elements whose strength depends on the azimuthal and radial distributions of circulation on a rotor blade. The code predicts the three orthogonal components of flow velocity in the field surrounding the rotor. The predictions can be utilized in rotor performance and helicopter real-time flight-path simulation. The predictive capability of the coded version of flat wake theory provides vertical inflow patterns similar to experimental patterns.

  11. Imaging doppler lidar for wind turbine wake profiling

    DOEpatents

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  12. Towards physics-based operational modeling of the unsteady wind turbine response to atmospheric and wake-induced turbulence

    NASA Astrophysics Data System (ADS)

    Marichal, Y.; De Visscher, I.; Chatelain, P.; Winckelmans, G.

    2017-05-01

    The objective of the present work is to develop a tool able to predict, in a computationally affordable way, the unsteady wind turbine power production and loads as well as its wake dynamics, as a function of the turbine dynamics and incoming wind conditions. Based on the lessons learned from a previous study about the characterization of the unsteady wake dynamics, the framework for an operational wake model is presented. The approach relies on an underlying vorticity-based skeleton consisting of different components, such as a regularized Vortex Sheet Tube (VST) and Vortex Dipole Line (VDL). Physically based evolution equations, accounting for the various flow phenomena occurring in the wake (such as advection, turbulent diffusion/core spreading, source/sink terms, etc.), are then derived. Once calibrated, the wake model is shown to be in good agreement with results of high-fidelity Large Eddy Simulations (LES) obtained using an Immersed Lifting Line-enabled Vortex Particle-Mesh method.

  13. Secure Wake-Up Scheme for WBANs

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Wei; Ameen, Moshaddique Al; Kwak, Kyung-Sup

    Network life time and hence device life time is one of the fundamental metrics in wireless body area networks (WBAN). To prolong it, especially those of implanted sensors, each node must conserve its energy as much as possible. While a variety of wake-up/sleep mechanisms have been proposed, the wake-up radio potentially serves as a vehicle to introduce vulnerabilities and attacks to WBAN, eventually resulting in its malfunctions. In this paper, we propose a novel secure wake-up scheme, in which a wake-up authentication code (WAC) is employed to ensure that a BAN Node (BN) is woken up by the correct BAN Network Controller (BNC) rather than unintended users or malicious attackers. The scheme is thus particularly implemented by a two-radio architecture. We show that our scheme provides higher security while consuming less energy than the existing schemes.

  14. Characterizing Wake Turbulence with Staring Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Bastine, D.; Wächter, M.; Peinke, J.; Trabucchi, D.; Kühn, M.

    2015-06-01

    Lidar measurements in the German offshore wind farm Alpha Ventus were performed to investigate the turbulence characteristics of wind turbine wakes. In particular, we compare measurements of the free flow in the surroundings of the wind turbines with measurements in the inner region of a wake flow behind one turbine. Our results indicate that wind turbines modulate the turbulent structures of the flow on a wide range of scales. For the data of the wake flow, the power spectrum as well as the multifractal intermittency coefficient reveal features of homogeneous isotropic turbulence. Thus, we conjecture that on scales of the rotor a new turbulent cascade is initiated, which determines the features of the turbulent wake flow quite independently from the more complex wind flow in the surroundings of the turbine.

  15. On the wake of a Darrieus turbine

    NASA Technical Reports Server (NTRS)

    Base, T. E.; Phillips, P.; Robertson, G.; Nowak, E. S.

    1981-01-01

    The theory and experimental measurements on the aerodynamic decay of a wake from high performance vertical axis wind turbine are discussed. In the initial experimental study, the wake downstream of a model Darrieus rotor, 28 cm diameter and a height of 45.5 cm, was measured in a Boundary Layer Wind Tunnel. The wind turbine was run at the design tip speed ratio of 5.5. It was found that the wake decayed at a slower rate with distance downstream of the turbine, than a wake from a screen with similar troposkein shape and drag force characteristics as the Darrieus rotor. The initial wind tunnel results indicated that the vertical axis wind turbines should be spaced at least forty diameters apart to avoid mutual power depreciation greater than ten per cent.

  16. A wake detector for wind farm control

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Cacciola, S.; Schreiber, J.

    2015-06-01

    The paper describes an observer capable of detecting the impingement on a wind turbine rotor of the wake of an upstream machine. The observer estimates the local wind speed and turbulence intensity on the left and right parts of the rotor disk. The estimation is performed based on blade loads measured by strain gages or optical fibers, sensors which are becoming standard equipment on many modern machines. A lower wind speed and higher turbulence intensity on one part of the rotor, possibly in conjunction with other information, can then be used to infer the presence of a wake impinging on the disk. The wake state information is useful for wind plant control strategies, as for example wake deflection by active yawing. In addition, the local wind speed estimates may be used for a rough evaluation of the vertical wind shear.

  17. Post-Traumatic Sleep-Wake Disorders.

    PubMed

    Mollayeva, Tatyana; D'Souza, Andrea; Mollayeva, Shirin; Colantonio, Angela

    2017-04-01

    All living organisms that face a traumatic life event are susceptible to sleep-wake disturbances. Stress, which can result in trauma, evokes a high level of physiological arousal associated with sympathetic nervous system activation, during both sleep and wakefulness. Heredity, sex hormones, early losses, developmental factors and intra- and interpersonal conflicts, contribute to the level of baseline physiological arousal, producing either subclinical, clinical or complex clinical traits, acutely and at any time after exposure to a traumatic event. The risk of acute sleep-wake disturbances becoming disorders and syndromes depends on the type of traumatic event and all of the aforementioned factors. Taken together, with consideration for behavioural and environmental heterogeneity, in research, will aid identification and understanding of susceptibility factors in long-term sleep and wakefulness pathology after exposure to traumatic events.

  18. Brief wakeful resting can eliminate directed forgetting.

    PubMed

    Schlichting, Andreas; Bäuml, Karl-Heinz T

    2017-02-01

    When cued to intentionally forget previously encoded memories, participants typically show reduced recall of the memories on a later recall test. We examined how such directed forgetting is affected by a brief period of wakeful resting between encoding and test. Encoding was followed by a "passive" wakeful resting period in which subjects heard emotionally neutral music or perceived neutral pictures, or it was followed by an "active" distraction period in which subjects were engaged in counting or calculation tasks. Whereas typical directed forgetting was present after active distraction, the forgetting was absent after wakeful resting. The findings indicate that the degree to which people can intentionally forget memories is influenced by the cognitive activity that people engage in shortly after learning takes place. The results provide first evidence on the interplay between wakeful resting and intentional forgetting.

  19. Wake up to managing customer relationships.

    PubMed

    Frey, L; Rode, J

    1992-01-01

    A survey of 50,000 American households on their habits in purchasing healthcare services shows that healthcare marketers need to "wake up" to managing their customer base more effectively before they miss critical opportunities to capture and retain business.

  20. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Pavlova, Milena

    2017-08-01

    The endogenous circadian rhythms are one of the cardinal processes that control sleep. They are self-sustaining biological rhythms with a periodicity of approximately 24 hours that may be entrained by external zeitgebers (German for time givers), such as light, exercise, and meal times. This article discusses the physiology of the circadian rhythms, their relationship to neurologic disease, and the presentation and treatment of circadian rhythm sleep-wake disorders. Classic examples of circadian rhythms include cortisol and melatonin secretion, body temperature, and urine volume. More recently, the impact of circadian rhythm on several neurologic disorders has been investigated, such as the timing of occurrence of epileptic seizures as well as neurobehavioral functioning in dementia. Further updates include a more in-depth understanding of the symptoms, consequences, and treatment of circadian sleep-wake disorders, which may occur because of extrinsic misalignment with clock time or because of intrinsic dysfunction of the brain. An example of extrinsic misalignment occurs with jet lag during transmeridian travel or with intrinsic circadian rhythm sleep-wake disorders such as advanced or delayed sleep-wake phase disorders. In advanced sleep-wake phase disorder, which is most common in elderly individuals, sleep onset and morning arousal are undesirably early, leading to impaired evening function with excessive sleepiness and sleep-maintenance insomnia with early morning awakening. By contrast, delayed sleep-wake phase disorder is characterized by an inability to initiate sleep before the early morning hours, with subsequent delayed rise time, leading to clinical symptoms of severe sleep-onset insomnia coupled with excessive daytime sleepiness in the morning hours, as patients are unable to "sleep in" to attain sufficient sleep quantity. Irregular sleep-wake rhythm disorder is misentrainment with patches of brief sleep and wakefulness spread throughout the day

  1. Turbulent Plane Wakes Subjected to Successive Strains

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.

    2003-01-01

    Six direct numerical simulations of turbulent time-evolving strained plane wakes have been examined to investigate the response of a wake to successive irrotational plane strains of opposite sign. The orientation of the applied strain field has been selected so that the flow is the time-developing analogue of a spatially developing wake evolving in the presence of either a favourable or an adverse streamwise pressure gradient. The magnitude of the applied strain rate a is constant in time t until the total strain e(sup at) reaches about four. At this point, a new simulation is begun with the sign of the applied strain being reversed (the original simulation is continued as well). When the total strain is reduced back to its original value of one, yet another simulation is begun with the sign of the strain being reversed again back to its original sign. This process is done for both initially "favourable" and initially "adverse" strains, providing simulations for each of these strain types from three different initial conditions. The evolution of the wake mean velocity deficit and width is found to be very similar for all the adversely strained cases, with both measures rapidly achieving exponential growth at the rate associated with the cross-stream expansive strain e(sup at). In the "favourably" strained cases, the wake widths approach a constant and the velocity deficits ultimately decay rapidly as e(sup -2at). Although all three of these cases do exhibit the same asymptotic exponential behaviour, the time required to achieve this is longer for the cases that have been previously adversely strained (by at approx. equals 1). These simulations confirm the generality of the conclusions drawn in Rogers (2002) regarding the response of plane wakes to strain. The evolution of strained wakes is not consistent with the predictions of classical self-similar analysis; a more general equilibrium similarity solution is required to describe the results. At least for the cases

  2. Wake-Vortex Hazards During Cruise

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.; James, Kevin D.; Nixon, David (Technical Monitor)

    1998-01-01

    Even though the hazard posed by lift-generated wakes of subsonic transport aircraft has been studied extensively for approach and departure at airports, only a small amount of effort has gone into the potential hazard at cruise altitude. This paper reports on a studio of the wake-vortex hazard during cruise because encounters may become more prevalent when free-flight becomes available and each aircraft, is free to choose its own route between destinations. In order to address the problem, the various fluid-dynamic stages that vortex wakes usually go through as they age will be described along with estimates of the potential hazard that each stage poses. It appears that a rolling-moment hazard can be just as severe at cruise as for approach at airports, but it only persists for several minutes. However, the hazard posed by the downwash in the wake due to the lift on the generator aircraft persists for tens of minutes in a long narrow region behind the generating aircraft. The hazard consists of severe vertical loads when an encountering aircraft crosses the wake. A technique for avoiding vortex wakes at cruise altitude will be described. To date the hazard posed by lift-generated vortex wakes and their persistence at cruise altitudes has been identified and subdivided into several tasks. Analyses of the loads to be encounter and are underway and should be completed shortly. A review of published literature on the subject has been nearly completed (see text) and photographs of vortex wakes at cruise altitudes have been taken and the various stages of decay have been identified. It remains to study and sort the photographs for those that best illustrate the various stages of decay after they are shed by subsonic transport aircraft at cruise altitudes. The present status of the analysis and the paper are described.

  3. Vortex interactions and decay in aircraft wakes

    NASA Technical Reports Server (NTRS)

    Bilanin, A. J.; Teske, M. E.; Dupdonaldson, C.; Williamson, G. G.

    1977-01-01

    The dynamic interaction of aircraft wake vortices was investigated using both inviscid and viscous models. For the viscous model, a computer code was developed using a second-order closure model of turbulent transport. The phenomenon of vortex merging which results in the rapid aging of a vortex wake was examined in detail. It was shown that the redistribution of vorticity during merging results from both convective and diffusive mechanisms.

  4. Moonlet Wakes in Saturn's Cassini Division

    NASA Astrophysics Data System (ADS)

    Spilker, L. J.; Showalter, M. R.

    1997-07-01

    We have detected several features with wavelike characteristics in the Voyager Radio Science (RSS) earth occultation data and Voyager photopolarimeter (PPS) stellar occultation data of Saturn's Cassini Division. We identified these structures using a non-linear autoregressive power spectral algorithm called Burg. This method is powerful for detecting short sections of quasiperiodic structure. We successfully used this same technique to identify six previously unseen Pan wakes in the Voyager PPS and Voyager RSS occultation data (Horn, Showalter and Russell, 1996, {/it Icarus} {/bf 124}, 663). Applying the Burg technique to the RSS data we find a number of wavelike structures in the Cassini Division. We see three distinct features that look like moonlet wakes. Two are Cassini Division features detected by Marouf and Tyler (1986, {/it Nature} {/bf 323}, 120) in the Voyager RSS data. Flynn and Cuzzi (1989, {/it Icarus} {/bf 82}, 180) determined that these features were azimuthally symmetric in the Voyager images and were most likely not moonlet wakes. The third wavelike structure resembles an outer moonlet wake. If it is a wake it may correspond to a previously undetected moonlet located in a Cassini Division gap between 118,929 km and 118,966 km. We see at least one wavelike feature in the PPS data. This feature falls close to the outer edge of the Huygens gap in the Cassini Division. It is consistent with an outer moonlet wake. If it is a wake it may correspond to a previously undetected moonlet inside the Huygens gap. Several other wavelike features in the Cassini Division resemble moonlet wakes. We plan to pursue these structures further in the future. This work was performed at JPL/Caltech under contract with NASA.

  5. Mesoscale wake clouds in Skylab pictures.

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.; Tecson, J. J.

    1974-01-01

    The recognition of cloud patterns formed in the wake of orographic obstacles was investigated using pictures from Skylab, for the purpose of estimating atmospheric motions. The existence of ship-wake-type wave clouds in contrast to vortex sheets were revealed during examination of the pictures, and an attempt was made to characterize the pattern of waves as well as the transition between waves and vortices. Examples of mesoscale cloud patterns which were analyzed photogrammetrically and meteorologically are presented.

  6. Sleep and wakefulness in Drosophila melanogaster

    PubMed Central

    Cirelli, Chiara; Bushey, Daniel

    2009-01-01

    Summary Sleep is present and tightly regulated in every vertebrate species in which it has been carefully investigated, but what sleep is for remains a mystery. Sleep is also present in invertebrates, and an extensive analysis in Drosophila melanogaster has shown that sleep in fruit flies show most of the fundamental features that characterize sleep in mammals. In Drosophila, fly sleep consists of sustained periods of quiescence associated with an increased arousal threshold. Fly sleep is modulated by several of the same stimulants and hypnotics that affect mammalian sleep. Moreover, like in mammals, fly sleep shows remarkable interindividual variability. The expression of several genes involved in energy metabolism, synaptic plasticity, and the response to cellular stress varies in Drosophila between sleep and wakefulness, and the same occurs in rodents. Brain activity also changes in flies as a function of behavioral state. Furthermore, Drosophila sleep is tightly regulated in a circadian and homeostatic manner, and the homeostatic regulation is largely independent of the circadian regulation. After sleep deprivation recovery sleep in flies is longer in duration and more consolidated, as indicated by an increase in arousal threshold and fewer brief awakenings. Finally, sleep deprivation in flies impairs vigilance and performance. Because of the extensive similarities between flies and mammals, Drosophila is now being used as a promising model system for the genetic dissection of sleep. Over the last few years, mutagenesis screens have isolated several short sleeping mutants, a demonstration that that single genes can have a powerful effect on a complex trait like sleep. PMID:18591491

  7. A preliminary characterization of parachute wake recontact

    SciTech Connect

    Strickland, J.H.; Macha, J.M.

    1989-01-01

    A series of tests was conducted on a 10-ft.-diameter ringslot parachute with a geometric porosity of 20% to establish the conditions under which ''wake recontact'' occurs. The vertical helicopter drop tests covered a range of mass ratios from 0.5 to 3.0 and a range of Froude numbers from 70 to 400. Data consisted of velocity time histories obtained using a laser tracker and diameter time histories obtained from photometric data. A collapse parameter based on the ratio of the maximum parachute diameter to the subsequent minimum diameter was correlated with the mass ratio M/sub R/ and the Froude number Fr or equivalently with the initial to final velocity ratio V/sub o//V/sub t/. For large values of V/sub o//V/sub t/ the collapse parameter R/sub c/ appears to be a function of M/sub R/ alone. Non-dimensional opening time and ''collapse time'' data were also correlated with M/sub R/ and V/sub o//V/sub t/. 11 refs., 10 figs., 1 tab.

  8. Non-linear plasma wake growth of electron holes

    SciTech Connect

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-15

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  9. Wakefulness Is Governed by GABA and Histamine Cotransmission

    PubMed Central

    Yu, Xiao; Ye, Zhiwen; Houston, Catriona M.; Zecharia, Anna Y.; Ma, Ying; Zhang, Zhe; Uygun, David S.; Parker, Susan; Vyssotski, Alexei L.; Yustos, Raquel; Franks, Nicholas P.; Brickley, Stephen G.; Wisden, William

    2015-01-01

    Summary Histaminergic neurons in the tuberomammilary nucleus (TMN) of the hypothalamus form a widely projecting, wake-active network that sustains arousal. Yet most histaminergic neurons contain GABA. Selective siRNA knockdown of the vesicular GABA transporter (vgat, SLC32A1) in histaminergic neurons produced hyperactive mice with an exceptional amount of sustained wakefulness. Ablation of the vgat gene throughout the TMN further sharpened this phenotype. Optogenetic stimulation in the caudate-putamen and neocortex of “histaminergic” axonal projections from the TMN evoked tonic (extrasynaptic) GABAA receptor Cl− currents onto medium spiny neurons and pyramidal neurons. These currents were abolished following vgat gene removal from the TMN area. Thus wake-active histaminergic neurons generate a paracrine GABAergic signal that serves to provide a brake on overactivation from histamine, but could also increase the precision of neocortical processing. The long range of histamine-GABA axonal projections suggests that extrasynaptic inhibition will be coordinated over large neocortical and striatal areas. PMID:26094607

  10. 2P Vortex Wake Pattern in Vortex-Induced Vibration

    NASA Astrophysics Data System (ADS)

    Govardhan, R.; Williamson, C. H. K.

    1999-11-01

    Flow-visualization in the free vibration experiments of Khalak & Williamson (1997,1999) indicated the existence of the 2P wake vortex pattern (2 pairs of vortices per cycle; as defined in the forced vibration experiments of Williamson & Roshko, 1988), in support of Brika & Laneville (1993), although these visualization techniques are distinctly unclear at high Reynolds numbers (Re ~10^3-10^4 ). Forced vibrations [Sheridan et al. (1998), Techet et al. (1998)] show the 2P mode under some conditions. However, a large number of accurate numerical simulations, at low Re ~200, as well as 2D simulations at higher Re ~500 (Blackburn & Henderson 1999), clearly do not find the 2P mode. There has thus been some debate as to the existence of the 2P mode as a steady state pattern. Hence, DPIV measurements in the wake of the elastically-mounted cylinder have been performed to finally resolve this question. The present results show that the 2P mode is remarkably repeatable and continues indefinitely. The reason for this apparent disparity between experiments and DNS therefore seems to be either a Reynolds number effect or the fact that the computed flow is constrained to be 2D. Further, it is shown that this pattern corresponds with the splitting of a region of vorticity due to the strain rate field of neighbouring vortices. wake patterns show interesting differences. Supported by ONR Contracts N00014-94-1-1197 & N00014-95-1-0332.

  11. Vortex Core Size in the Rotor Near-Wake

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2003-01-01

    Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.

  12. Covert Waking Brain Activity Reveals Instantaneous Sleep Depth

    PubMed Central

    McKinney, Scott M.; Dang-Vu, Thien Thanh; Buxton, Orfeu M.; Solet, Jo M.; Ellenbogen, Jeffrey M.

    2011-01-01

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8–13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise—a measure of sleep depth—throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep. PMID:21408616

  13. Direct numerical simulations of a spatially developing plane wake

    NASA Technical Reports Server (NTRS)

    Maekawa, Hiroshi; Mansour, Nagi N.

    1992-01-01

    In the present paper, direct numerical methods by which to simulate the spatially developing free shear flows in the transitional region are described and the numerical results of a spatially developing plane wake are presented. The incompressible time-dependent Navier-Stokes equations were solved using Pade finite difference approximations in the streamwise direction, a mapped pseudospectral Fourier method in the cross-stream direction, and a third-order compact Runge-Kutta scheme for time advancement. The unstable modes of the Orr-Sommerfeld equations were used to perturb the inlet of the wake. Statistical analyses were performed and some numerical results were compared with experimental measurements. When only the fundamental mode is forced, the energy spectra show amplification of the fundamental and its higher harmonics. In this case, unperturbed alternate vortices develop in the saturation region of the wake. The phase jitter around the fundamental frequency plays a critical role in generating vortices of random shape and spacing. Large- and small-scale distortions of the fundamental structure are observed. Pairing of vortices of the same sign is observed, as well as vortex coupling of vortices of the opposite sign.

  14. Covert waking brain activity reveals instantaneous sleep depth.

    PubMed

    McKinney, Scott M; Dang-Vu, Thien Thanh; Buxton, Orfeu M; Solet, Jo M; Ellenbogen, Jeffrey M

    2011-03-03

    The neural correlates of the wake-sleep continuum remain incompletely understood, limiting the development of adaptive drug delivery systems for promoting sleep maintenance. The most useful measure for resolving early positions along this continuum is the alpha oscillation, an 8-13 Hz electroencephalographic rhythm prominent over posterior scalp locations. The brain activation signature of wakefulness, alpha expression discloses immediate levels of alertness and dissipates in concert with fading awareness as sleep begins. This brain activity pattern, however, is largely ignored once sleep begins. Here we show that the intensity of spectral power in the alpha band actually continues to disclose instantaneous responsiveness to noise--a measure of sleep depth--throughout a night of sleep. By systematically challenging sleep with realistic and varied acoustic disruption, we found that sleepers exhibited markedly greater sensitivity to sounds during moments of elevated alpha expression. This result demonstrates that alpha power is not a binary marker of the transition between sleep and wakefulness, but carries rich information about immediate sleep stability. Further, it shows that an empirical and ecologically relevant form of sleep depth is revealed in real-time by EEG spectral content in the alpha band, a measure that affords prediction on the order of minutes. This signal, which transcends the boundaries of classical sleep stages, could potentially be used for real-time feedback to novel, adaptive drug delivery systems for inducing sleep.

  15. Use of Individual Flight Corridors to Avoid Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2001-01-01

    Vortex wakes of aircraft pose a hazard to following aircraft until the energetic parts of their flow fields have decayed to a harmless level. It is suggested here that in-trail spacings between aircraft can be significantly and safely reduced by designing an individual, vortex-free flight corridor for each aircraft. Because each aircraft will then have its own flight corridor, which is free of vortex wakes while in use by the assigned aircraft, the time intervals between aircraft operations can be safely reduced to the order of seconds. The productivity of airports can then be substantially increased. How large the offset distances between operational corridors need to be to have them vortex free, and how airports need to be changed to accommodate an individual flight-corridor process for landing and takeoff operations, are explored. Estimates are then made of the productivity of an individual flight-corridor system as a function of the in-trail time interval between operations for various values of wake decay time, runway width, and the velocity of a sidewind. The results confirm the need for short time intervals between aircraft operations if smaller offset distances and increased productivity are to be achieved.

  16. Visualization of airflow in the wake of a ship superstructure

    NASA Astrophysics Data System (ADS)

    Brownell, C. J.; Stillman, W. P.; Golden, J. H.; Simpson, S. A.; Luznik, L.; Miklosovic, D. S.; White, G.; Burks, J. S.; Snyder, M. R.

    2009-11-01

    Helicopter landings on naval surface ships, such as cruisers and destroyers, must take place in the presence of an air wake created by flow over the ship superstructure. Wake turbulence over the flight deck makes piloted landings dangerous and difficult, and poses significant problems for the use of unmanned rotorcraft. To address this problem, a comprehensive set of experimental and simulation data are being collected via concurrent field tests, wind tunnel measurements, and CFD simulations. These data will facilitate an understanding of the wake turbulence produced under a variety of weather conditions, and will allow assessment of the fidelity of lower order flowfield estimates. A U.S. Navy Auxiliary Patrol (YP) Craft is used as a representative ship platform. The YP is over 100 ft long, has a similar shape to a modern destroyer, and has been modified to include a flight deck and hangar-like superstructure. Presented here are preliminary CFD results along with results from a large-scale flow visualization experiment. Qualitative information gleaned from the flow visualization is being used in the experimental design of upcoming quantitative air velocity measurements.

  17. Non-linear plasma wake growth of electron holes

    NASA Astrophysics Data System (ADS)

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-01

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  18. A numerical investigation of the role of the turbine rotor scale and the nacelle on wake meandering

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Yang, Xiaolei; Shen, Lian; Sotiropoulos, Fotis

    2016-11-01

    Recent analysis of a hydrokinetic turbine and laboratory scale wind turbine reveal that the turbine nacelle has a considerable effect on the turbulence kinetic energy and wake meandering. However, the role of the nacelle on wake meandering for utility-scale wind turbines has not been fully investigated. In this work, a numerical investigation using large eddy simulations of four wind turbines with rotor diameters ranging from laboratory to utility scale reveals similar turbulent structures in the far wake and a comparable wake meandering Strouhal number regardless of rotor size. By reconstructing the wake meandering with three dimensional spatio-temporal filtering process, first proposed in Foti et al., the statistics of the dynamics of the wake meandering are quantified in terms of amplitude and wavelength. Results indicate that the wavelength of wake meandering can be properly scaled by rotor diameter of the turbines for both simulations with and without a nacelle model. The meandering amplitude, on the other hand, is larger for the simulation with a nacelle. This is further quantitative evidence that a nacelle model is imperative to accurately capturing wake meandering. This work was supported by Department of Energy (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), and Sandia National Laboratories.

  19. Brain Circuitry Controlling Sleep and Wakefulness.

    PubMed

    Horner, Richard L; Peever, John H

    2017-08-01

    This article outlines the fundamental brain mechanisms that control sleep-wake patterns and reviews how pathologic changes in these control mechanisms contribute to common sleep disorders. Discrete but interconnected clusters of cells located within the brainstem and hypothalamus comprise the circuits that generate wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. These clusters of cells use specific neurotransmitters, or collections of neurotransmitters, to inhibit or excite their respective sleep- and wake-promoting target sites. These excitatory and inhibitory connections modulate not only the presence of wakefulness or sleep, but also the levels of arousal within those states, including the depth of sleep, degree of vigilance, and motor activity. Dysfunction or degeneration of wake- and sleep-promoting circuits is associated with narcolepsy, REM sleep behavior disorder, and age-related sleep disturbances. Research has made significant headway in identifying the brain circuits that control wakefulness, non-REM, and REM sleep and has led to a deeper understanding of common sleep disorders and disturbances.

  20. Investigation of Wake-Vortex Aircraft Encounters

    NASA Technical Reports Server (NTRS)

    Smith, Sonya T.

    1999-01-01

    The National Aeronautics and Space Administration is addressing airport capacity enhancements during instrument meteorological conditions though the Terminal Area Productivity (TAP) program. The major goal of the TAP program is to develop the technology that will allow air traffic levels during instrument meteorological condition to approach those achieved during visual operations. The Reduced Spacing Operations (RSO) subelement of TAP at the NASA Langley Research Center (LaRC) will develop the Aircraft Vortex Spacing System (AVOSS). The purpose of the AVOSS is to integrate current and predicted weather conditions, wake vortex transport and decay knowledge, wake vortex sensor data, and operational definitions of acceptable strengths for vortex encounters to produce dynamic wake vortex separation criteria. The proposed research is in support of the wake vortex hazard definition component of the LaRC AVOSS development research. The research program described in the next section provided an analysis of the static test data and uses this data to evaluate the accuracy vortex/wake-encounter models. The accuracy of these models has not before been evaluated using experimental data. The research results also presented the first analysis of the forces and moments imparted on an airplane during a wake vortex encounter using actual flight test data.

  1. Experiment S026: Ion wake measurement

    NASA Technical Reports Server (NTRS)

    Medved, D. B.; Troy, B. E., Jr.

    1971-01-01

    Measurements of the ion-wake and electron-wake structure and other perturbations of the ambient medium produced by the Gemini spacecraft in orbit are reported. Thruster firings in the TDA-south configuration produced a decrease in the observed ion flux to the outboard ion sensor, an apparent increase in the ion flux to the inboard ion sensor, and an enhanced electron concentration to the outboard electron sensor. Visual inspection of strip-chart data was indicative that definitive wake-cone angles could be determined. It also was apparent for many cases that the electron distribution followed the ion depletion effects; this was indicative that the wake was a plasma, not an ion wake. Analysis of the data from the GATV orbits was indicative that electron and ion temperatures were higher than was estimated. The high electron temperature accounted for the sensor saturation observed during the mission. This temperature measurement was 0.3 electron volt at a 200-n. mi. altitude during daytime conditions. Spacecraft wake structure has been observed as far as 100 feet from the vehicle.

  2. Periodic Wake Effects on Turbulent Juncture Flows

    NASA Astrophysics Data System (ADS)

    Sabatino, Daniel; Smith, Charles

    2000-11-01

    The horseshoe vortex (HV) that develops in juncture geometries with a turbulent approach flow has been shown to exhibit a periodic behavior that correlates with the bursting frequency of the impinging turbulent boundary layer. To examine the additional complication of impinging blade wakes on such juncture flows, as encountered in turbomachinery environments, periodic wakes were systematically introduced upstream of a simple turbulent endwall juncture flow. The influence of the wakes was examined via a study of the instantaneous endwall surface heat transfer behavior, established using an experimental liquid crystal technique in a water channel. Although it is possible to eliminate the periodic HV behavior using periodic wakes of high frequency (relative to the HV frequency) or strong turbulence intensity, the periodic character of the undisturbed HV remains evident at or below moderate wake frequency and turbulence levels. A parametric assessment of the results suggests that the periodic wake effects encountered for a real gas turbine cascade would not eliminate the HV periodicity. The significance of this residual HV periodicity on the endwall surface heat transfer will be discussed.

  3. Optimization Under Uncertainty for Wake Steering Strategies

    DOE PAGES

    Quick, Julian; Annoni, Jennifer; King, Ryan N.; ...

    2017-06-13

    Here, wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as 'wake steering,' in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in themore » presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.« less

  4. Generalized impedances and wakes in asymmetric structures

    SciTech Connect

    Heifets, S.; Wagner, A.; Zotter, B.

    1998-01-01

    In rotationally structures, the dominant m = 0 longitudinal impedance does not depend on the offsets of either the leading or the trailing particles, while the dominant m = 1 transverse impedance is proportional to the offset of the leading particles, while it is still independent of the offsets of the trailing ones. This behavior is no longer true in rotationally non-symmetric structures, where in general all impedances depend on the offsets of both the leading and the trailing particles. The same behavior is shown by wake functions and wake potentials. The concept of generalized impedances or generalized wake functions must be used to calculate the effect of leading particles on trailing ones with different offsets, each described by two transverse coordinates. This dependence of wake potentials on four additional parameters (two for each offset) would make their use very cumbersome. Fortunately, it was found that the transverse wake potentials can be separated into superpositions of dipolar components, which are proportional to the offset of the leading bunch, and quadrupolar components, which are proportional to the offset of the trailing particles. Higher multipole components are much smaller, and can be neglected for most structures without rotational symmetry. In this report, the authors derive analytical expressions for these multipolar components, which permits estimates of the size of the neglected terms. In particular, when structures have one or two transverse symmetry planes, the expressions simplify and explain the behavior of wake potentials which had been computed for rotationally non-symmetric structures.

  5. Optimization Under Uncertainty for Wake Steering Strategies

    NASA Astrophysics Data System (ADS)

    Quick, Julian; Annoni, Jennifer; King, Ryan; Dykes, Katherine; Fleming, Paul; Ning, Andrew

    2017-05-01

    Wind turbines in a wind power plant experience significant power losses because of aerodynamic interactions between turbines. One control strategy to reduce these losses is known as “wake steering,” in which upstream turbines are yawed to direct wakes away from downstream turbines. Previous wake steering research has assumed perfect information, however, there can be significant uncertainty in many aspects of the problem, including wind inflow and various turbine measurements. Uncertainty has significant implications for performance of wake steering strategies. Consequently, the authors formulate and solve an optimization under uncertainty (OUU) problem for finding optimal wake steering strategies in the presence of yaw angle uncertainty. The OUU wake steering strategy is demonstrated on a two-turbine test case and on the utility-scale, offshore Princess Amalia Wind Farm. When we accounted for yaw angle uncertainty in the Princess Amalia Wind Farm case, inflow-direction-specific OUU solutions produced between 0% and 1.4% more power than the deterministically optimized steering strategies, resulting in an overall annual average improvement of 0.2%. More importantly, the deterministic optimization is expected to perform worse and with more downside risk than the OUU result when realistic uncertainty is taken into account. Additionally, the OUU solution produces fewer extreme yaw situations than the deterministic solution.

  6. Utilizing Surface Sensors to Identify Wake Regimes

    NASA Astrophysics Data System (ADS)

    Wang, Mengying; Hemati, Maziar S.

    2016-11-01

    Marine swimmers often exploit external flow structures to reduce locomotive effort. To achieve this advantage, these swimmers utilize mechanosensory organs on the surface of their bodies to detect hydrodynamic signals from the surrounding fluid, which can then be used to inform the control task. Recently, there has been a growing interest in developing similar flow sensing systems to achieve enhanced propulsive efficiency and maneuverability in human-engineered underwater vehicles. In particular, much attention has been given to the problem of wake sensing; however, these investigations have concentrated on a restricted class of wakes-i.e., Kármán-type vortex streets-whereas more complicated wake structures can arise in practice. In this talk, we will explore the possibility of identifying wake regimes through the use of surface sensors. Potential flow theory is adopted to simulate the interactions of various wakes with a fish-like body. Wakes in different dynamical regimes impart distinct hydrodynamic signatures on the body, which permits these regimes to be distinguished from one another in an automated fashion. Our results can provide guidance for improving flow sensing capabilities in human-engineered systems and hint at how marine swimmers may sense their hydrodynamic surroundings.

  7. [Testing results of telemechanic system controlling train operators wakefulness].

    PubMed

    Serikov, V V; Zakrevskaia, A A; Zakharchenko, D V; Alpaev, D V; At'kova, E O

    2015-01-01

    Expert and instrumental assessment covered efficiency of telemechanic system controlling train operators wakefulness in simulation of real night travel, through special simulator complex "Locomotive operator cabin". The telemechanic system controlling train operators wakefulness, if exploited correctly, provides wakefulness of the train operators at the level sufficient for the effective work. That is supported by distribution of falling asleep cases in experiments with activated or deactivated telemechanic system controlling train operators wakefulness. The study proved efficiency of telemechanic system controlling train operators wakefulness.

  8. A coupled aero-structural model of a HAWT blade for dynamic load and response prediction in time-domain for health monitoring applications

    NASA Astrophysics Data System (ADS)

    Sauder, Heather Scot

    To reach the high standards set for renewable energy production in the US and around the globe, wind turbines with taller towers and longer blades are being designed for onshore and offshore wind developments to capture more energy from higher winds aloft and a larger rotor diameter. However, amongst all the wind turbine components wind turbine blades are still the most prone to damage. Given that wind turbine blades experience dynamic loads from multiple sources, there is a need to be able to predict the real-time load, stress distribution and response of the blade in a given wind environment for damage, flutter and fatigue life predictions. Current methods of wind-induced response analysis for wind turbine blades use approximations that are not suitable for wind turbine blade airfoils which are thick, and therefore lead to inaccurate life predictions. Additionally, a time-domain formulation can prove to be especially advantageous for predicting aerodynamic loads on wind turbine blades since they operate in a turbulent atmospheric boundary layer. This will help to analyze the blades on wind turbines that operate individually or in a farm setting where they experience high turbulence in the wake of another wind turbine. A time-domain formulation is also useful for examining the effects of gusty winds that are transient in nature like in gust fronts, thunderstorms or extreme events such as hurricanes, microbursts, and tornadoes. Time-domain methods present the opportunity for real-time health monitoring strategies that can easily be used with finite element methods for prediction of fatigue life or onset of flutter instability. The purpose of the proposed work is to develop a robust computational model to predict the loads, stresses and response of a wind turbine blade in operating and extreme wind conditions. The model can be used to inform health monitoring strategies for preventative maintenance and provide a realistic number of stress cycles that the blade will

  9. Wake structure of axial-flow hydrokinetic turbines in tri-frame arrangement

    NASA Astrophysics Data System (ADS)

    Chawdhary, Saurabh; Yang, Xiaolei; Hill, Craig; Khosronejad, Ali; Guala, Michele; Sotiropoulos, Fotis

    2015-11-01

    Marine and hydro-kinetic (MHK) energy hold promise for future of sustainable energy generation. Tri-frame of turbines, three turbines mounted on vertices of a triangle, are an effective way to build a power producing array of hydrokinetic turbines in marine environment. Large eddy simulation (LES) is used to simulate the flow past a tri-frame and characterize its wake. Full geometry of all three turbines in the tri-frame is resolved using the Curvilinear Immersed Boundary (CURVIB) method of Kang et al. (2011). High fidelity solution of flow field is obtained owing to the inclusion of detailed geometry of the turbines. Excellent agreement is obtained with the experiments conducted in a flume at Saint Anthony Falls Laboratory (SAFL). The wake evolution of the three turbines is compared to that of an isolated single turbine. The differences in wake dynamics are highlighted to elucidate the importance of turbine wake interaction in an array. The simulations indicate lower levels of TKE and lower levels of momentum deficit in the wake of the upstream turbine of tri-frame compared to the other turbines. Analysis of the far wake recovery is useful for the optimal MHK array design. This work was supported by NSF grant IIP-1318201. The simulations were carried out at the Minnesota Supercomputing Institute.

  10. Dynamical properties of the two-process model for sleep-wake cycles in infantile autism.

    PubMed

    Matsuura, Hirotsune; Tateno, Katsumi; Aou, Shuji

    2008-09-01

    The two-process model is a scheme for the timing of sleep that consists of homeostatic (Process S) and circadian (Process C) variables. The two-process model exhibits abnormal sleep patterns such as internal desynchronization or sleep fragmentation. Early infants with autism often experience sleep difficulties. Large day-by-day changes are found in the sleep onset and waking times in autistic children. Frequent night waking is a prominent property of their sleep. Further, the sleep duration of autistic children is often fragmented. These sleep patterns in infants with autism are not fully understood yet. In the present study, the sleep patterns in autistic children were reproduced by a modified two-process model using nonlinear analysis. A nap term was introduced into the original two-process model to reproduce the sleep patterns in early infants. The nap term and the time course of Process S are mentioned in the present study. Those parameters led to bifurcation of the sleep-wake cycle in the modified two-process model. In a certain range of these parameter sets, a small external noise was amplified, and an irregular sleep-wake cycle appeared. The short duration of sleep led to another irregular sleep onset or waking. Consequently, an irregular sleep-wake cycle appeared in early infantile autism.

  11. ENDOW (efficient development of offshore wind farms): modelling wake and boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Barthelmie, Rebecca; Larsen, Gunner; Pryor, Sara; Jørgensen, Hans; Bergström, Hans; Schlez, Wolfgang; Rados, Kostas; Lange, Bernhard; Vølund, Per; Neckelmann, Søren; Mogensen, Søren; Schepers, Gerard; Hegberg, Terry; Folkerts, Luuk; Magnusson, Mikael

    2004-07-01

    While experience gained through the offshore wind energy projects currently operating is valuable, a major uncertainty in estimating power production lies in the prediction of the dynamic links between the atmosphere and wind turbines in offshore regimes. The objective of the ENDOW project was to evaluate, enhance and interface wake and boundary layer models for utilization offshore. The project resulted in a significant advance in the state of the art in both wake and marine boundary layer models, leading to improved prediction of wind speed and turbulence profiles within large offshore wind farms. Use of new databases from existing offshore wind farms and detailed wake profiles collected using sodar provided a unique opportunity to undertake the first comprehensive evaluation of wake models in the offshore environment. The results of wake model performance in different wind speed, stability and roughness conditions relative to observations provided criteria for their improvement. Mesoscale model simulations were used to evaluate the impact of thermal flows, roughness and topography on offshore wind speeds. The model hierarchy developed under ENDOW forms the basis of design tools for use by wind energy developers and turbine manufacturers to optimize power output from offshore wind farms through minimized wake effects and optimal grid connections. The design tools are being built onto existing regional-scale models and wind farm design software which was developed with EU funding and is in use currently by wind energy developers. Copyright

  12. Effect of Wind Turbine Wakes on the Performance of a Real Case WRF-LES Simulation

    NASA Astrophysics Data System (ADS)

    Doubrawa, P.; Montornès, A.; Barthelmie, R. J.; Pryor, S. C.; Giroux, G.; Casso, P.

    2017-05-01

    The main objective of this work is to estimate how much of the discrepancy between measured and modeled flow parameters can be attributed to wake effects. The real case simulations were performed for a period of 15 days with the Weather Research and Forecasting (WRF) model and nested down to a Large-Eddy Simulation (LES) scale of ∼ 100 m. Beyond the coastal escarpment, the site is flat and homogeneous and the study focuses on a meteorological mast and a northern turbine subjected to the wake of a southern turbine. The observational data set collected during the Prince Edward Island Wind Energy Experiment (PEIWEE) includes a sonic anemometer at 60 m mounted onto the mast, and measurements from the two turbines. Wake versus free stream conditions are distinguished based on measured wind direction while assuming constant expansion for the wake of the southern turbine. During the period considered the mast and northern turbine were under the southern turbine wake ∼ 16% and ∼ 11% of the time, respectively. Under these conditions, the model overestimates the wind speed and underestimates the turbulence intensity at the mast but not at the northern turbine, where the effect of wakes on the model error is unclear and other model limitations are likely more important. The wind direction difference between the southern and northern turbines is slightly underestimated by the model regardless of whether free stream or wake conditions are observed, indicating that it may be due to factors unrelated to the wake development such as surface forcings. Finally, coupling an inexpensive wake model to the high-fidelity simulation as a post-processing tool drives the simulated wind speeds at the mast significantly closer to the observed values, but the opposite is true at the coastal turbine which is in the far wake. This indicates that the application of a post-processing wake correction should be performed with caution and may increase the wind speed errors when other important

  13. Sleep, Wake and Phase Dependent Changes in Neurobehavioral Function under Forced Desynchrony

    PubMed Central

    Zhou, Xuan; Ferguson, Sally A.; Matthews, Raymond W.; Sargent, Charli; Darwent, David; Kennaway, David J.; Roach, Gregory D.

    2011-01-01

    Study Objectives: The homeostatic-circadian regulation of neurobehavioral functioning is not well understood in that the role of sleep dose in relation to prior wake and circadian phase remains largely unexplored. The aim of the present study was to examine the neurobehavioral impact of sleep dose at different combinations of prior wake and circadian phase. Design: A between-participant design involving 2 forced desynchrony protocols varying in sleep dose. Both protocols comprised 7 repetitions of a 28-h sleep/wake cycle. The sleep dose in a standard protocol was 9.33 h per 28-h day and 4.67 h in a sleep-restricted protocol. Setting: A time-isolation laboratory at the Centre for Sleep Research, the University of South Australia. Participants: A total of 27 young healthy males participated in the study with 13 in the standard protocol (age 22.5 ± 2.2 y) and 14 in the sleep-restricted protocol (age 21.8 ± 3.8 y). Interventions: Wake periods during both protocols were approximately 4 h delayed each 28-h day relative to the circadian system, allowing performance testing at different combinations of prior wake and circadian phase. The manipulation in sleep dose between the 2 protocols, therefore, allowed the impact of sleep dose on neurobehavioral performance to be examined at various combinations of prior wake and circadian phase. Measurements and Results: Neurobehavioral function was assessed using the psychomotor vigilance task (PVT). There was a sleep dose × circadian phase interaction effect on PVT performance such that sleep restriction resulted in slower and more variable response times, predominantly during the biological night. This interaction was not altered by prior wakefulness, as indicated by a nonsignificant sleep dose × circadian phase × prior wake interaction. Conclusions: The performance consequence of sleep restriction in our study was prominent during the biological night, even when the prior wake duration was short, and this performance

  14. Evaluation of state-of-the-art parametric building wake models using computational fluid dynamics (CFD) computer codes, and development of building wake, plume rise, and dispersion models

    NASA Astrophysics Data System (ADS)

    Restrepo, Louis Fernando

    The close location of most DOE non-reactor nuclear facilities to site boundaries and the potential for having receptors in the proximity of such facilities makes it extremely important to accurately address the impact of plume rise and building wake effects on the consequences to such individuals. Unfortunately, there is no current single computer code or model that adequately address the consequences to receptors postulated to be located within the building wake of such facilities. Existing state-of-the-art models have relied on over- simplistic plume rise and parametric wake models that were developed based on very limited amount of data or assumptions, thus potentially leading to large errors in calculations. Building wake and plume rise models implemented in existing consequence computer codes have been identified and evaluated. These models come from an extensive literature review of dispersion, transport, and consequence modeling of airborne radioactive material releases that extends over 25 years. This dissertation focuses on the evaluation of existing state-of-the-art parametric building wake dispersion models by the use of computational fluid dynamic (CFD) codes, developing potential improvements to such models, and comparing the results of such improvements to those generated by CFD models and models implemented in state- of-the-art computer codes. This dissertation also presents new dispersion models and a new analytical parametric model to deal with transient releases that decay or transform during transport.

  15. Quiet airfoils for small and large wind turbines

    DOEpatents

    Tangler, James L [Boulder, CO; Somers, Dan L [Port Matilda, PA

    2012-06-12

    Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

  16. Experiments in the wind turbine far wake for the evaluation of an analytical wake model

    NASA Astrophysics Data System (ADS)

    García, Luis; Vatn, Mari; Mühle, Franz; Sætran, Lars

    2017-05-01

    Nowadays, not only the size of single wind turbines but also the size of wind farms is increasing. Understanding the interaction between the turbines and especially the wakes formed behind them are getting more important to further improve such wind turbine arrays. Consequently, new issues in wind energy research arise. An experimental wind tunnel study was conducted, in order to analyze and understand the far wake of a wind turbine. The experimental results were used to test if an analytical wake model derived by H. Schilichting for blunt bodies can be used to describe the velocity and width development in the far wake of wind turbines. The results of the evaluation show that the wake of a wind turbine agrees fairly well with the model according to Schlichting. The velocity deficit as well as the width in the wake behind the turbine, are found to deviate with around only 2% from the results obtained applying the analytical model. Thus, it can be concluded that the analytical wake model by Schlichting is well suited to estimate the velocity deficit and the width in the far wake of a wind turbine.

  17. User's guide for a flat wake rotor inflow/wake velocity prediction code, DOWN

    NASA Technical Reports Server (NTRS)

    Wilson, John C.

    1991-01-01

    A computer code named DOWN was created to implement a flat wake theory for the calculation of rotor inflow and wake velocities. A brief description of the code methodology and instructions for its use are given. The code will be available from NASA's Computer Software Management and Information Center (COSMIC).

  18. An experimental and analytical study of the stability of counter-rotating vortex pairs with applications for aircraft wake turbulence control

    NASA Astrophysics Data System (ADS)

    Babie, Brian Matthew

    Aircraft trailing vortex wakes are commonly referred to as `wake turbulence' and may pose a flight safety hazard to other aircraft that may encounter the wake. This hazard is of critical interest during the take-off and landing stages of flight, where aircraft are in the closest proximity to one another. During these flight stages, it is common for transport aircraft to be in a high-lift, or flaps down, configuration. In an effort to study these wakes a generic four-vortex wake is generated experimentally, such that the results are independent of a specific wing loading condition. Three principle objectives served to focus the research project that is presented in this dissertation. The first two objectives were to develop an improved understanding of the wake configurations that were conducive to large instability growth rates and to subsequently use quantitative methods to identify the instability modes that dominate the far-field wake dynamic. With a clear understanding of the physics of an unstable aircraft wake, the third objective of the research project was to use this newly attained information to recommend methods for a reliable wake control strategy. A compilation of flow visualization results shows a design space of counter-rotating wake configurations, defined by the circulation and span ratios, where rapidly amplifying instabilities are consistently seen to exist. This design space is also seen to encompass rigidly-translating wake systems. A combination of quantitative flow visualization estimates, hot-wire anemometry and an analytical stability analysis was successful in identifying two forms of bending wave instability, namely the long and short-wavelength modes. Having identified two bending instability modes in the experimental wake, it was possible to suggest a strategy by which these modes could be exploited for the control of aircraft wakes.

  19. Wind Turbine Wake Characterization with Remote Sensing and Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Aitken, Matthew Lawrence

    Because of the dense arrays at most wind farms, the region of disturbed flow downstream of an individual turbine leads to reduced power production and increased structural loading for its leeward counterparts. Currently, wind farm wake modeling, and hence turbine layout optimization, suffer from an unacceptable degree of uncertainty, largely because of a lack of adequate experimental data for model verification. Accordingly, wake measurements were taken in two separate experiments, (1) using the ground-based High Resolution Doppler Lidar (HRDL) developed by the National Oceanic and Atmospheric Administration (NOAA) in the Turbine Wake and Inflow Characterization Study (TWICS) at the National Renewable Energy Laboratory (NREL), and (2) using nacelle-based long-range lidar at a wind farm in the western United States. The vantage point from the nacelle is favorable in that scans can more consistently transect the central part of the wake. The work presented here outlines a set of quantitative procedures for determining critical parameters from these extensive datasets---such as the velocity deficit, the size of the wake boundary, and the location of the wake centerline---and the results are categorized by ambient wind speed, turbulence, and atmospheric stability. Despite specific reference to lidar, the methodology is general and can be applied to extract wake characteristics from other remote sensor datasets, as well as output from numerical simulations. In an effort to help advance computational fluid dynamics (CFD) models of wind turbine wake dynamics, experimental results are compared to a large eddy simulation (LES) of a turbine operating in the stable boundary layer using the actuator disk parameterization in the Weather Research and Forecasting (WRF) Model. With the wake characteristics described above as metrics for model verification, the simulations show good agreement with the observations. Moreover, new features---namely rotor tilt and drag from the

  20. Chronic decrease in wakefulness and disruption of sleep-wake behavior after experimental traumatic brain injury.

    PubMed

    Skopin, Mark D; Kabadi, Shruti V; Viechweg, Shaun S; Mong, Jessica A; Faden, Alan I

    2015-03-01

    Traumatic brain injury (TBI) can cause sleep-wake disturbances and excessive daytime sleepiness. The pathobiology of sleep disorders in TBI, however, is not well understood, and animal models have been underused in studying such changes and potential underlying mechanisms. We used the rat lateral fluid percussion (LFP) model to analyze sleep-wake patterns as a function of time after injury. Rapid-eye movement (REM) sleep, non-REM (NREM) sleep, and wake bouts during light and dark phases were measured with electroencephalography and electromyography at an early as well as chronic time points after LFP. Moderate TBI caused disturbances in the ability to maintain consolidated wake bouts during the active phase and chronic loss of wakefulness. Further, TBI resulted in cognitive impairments and depressive-like symptoms, and reduced the number of orexin-A-positive neurons in the lateral hypothalamus.

  1. Chronic Decrease in Wakefulness and Disruption of Sleep-Wake Behavior after Experimental Traumatic Brain Injury

    PubMed Central

    Skopin, Mark D.; Kabadi, Shruti V.; Viechweg, Shaun S.; Mong, Jessica A.

    2015-01-01

    Abstract Traumatic brain injury (TBI) can cause sleep-wake disturbances and excessive daytime sleepiness. The pathobiology of sleep disorders in TBI, however, is not well understood, and animal models have been underused in studying such changes and potential underlying mechanisms. We used the rat lateral fluid percussion (LFP) model to analyze sleep-wake patterns as a function of time after injury. Rapid-eye movement (REM) sleep, non-REM (NREM) sleep, and wake bouts during light and dark phases were measured with electroencephalography and electromyography at an early as well as chronic time points after LFP. Moderate TBI caused disturbances in the ability to maintain consolidated wake bouts during the active phase and chronic loss of wakefulness. Further, TBI resulted in cognitive impairments and depressive-like symptoms, and reduced the number of orexin-A-positive neurons in the lateral hypothalamus. PMID:25242371

  2. Identification and quantification of vortical structures in wind turbine wakes for operational wake modeling

    NASA Astrophysics Data System (ADS)

    Marichal, Y.; De Visscher, I.; Chatelain, P.; Winckelmans, G.

    2016-09-01

    The present paper describes a method to quantify the vortical structure characteristics from simulation results of the flow past a wind turbine, with the aim to develop an accurate, physics-based operational wake model. The wake centerline is first identified. Then, the flow characteristics are extracted by fitting a vorticity-based wake skeleton onto the velocity deficit profiles defined around the centerline and measured at several downstream distances from the rotor. The simulation results were obtained using a hybrid Vortex Particle-Mesh approach combined with an immersed Lifting Line technique to account for the blades. The characterization of the identified vortex wake structure lays a basis for the development of an operational wake model based on strong physical grounds.

  3. Characterization of wake effects and loading status of wind turbine arrays under different inflow conditions

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyu

    The objective of the present work is to improve the accuracy of Actuator Line Modeling (ALM) in predicting the unsteady aerodynamic loadings on turbine blades and turbine wake by assessing different methods used to determine the relative velocity between the rotating blades and wind. ALM is incorporated into a Large Eddy Simulation (LES) solver in OpenFOAM (Open Field Operations and Manipulations). The aerodynamic loadings are validated by experiment results from National Renewable Energy Laboratory (NREL). Turbine wakes are validated by predictions of large eddy simulation using exact 3D blade geometries from a two-blade NREL Phase VI turbine. Three different relative velocity calculation methods are presented: iterative process in Blade Element Momentum (BEM) theory, local velocity sampling, and Lagrange-Euler Interpolation (LEI). Loadings and wakes obtained from these three methods are compared. It is discovered that LEI functions better than the conventional BEM with iterative process in both loading and wake prediction. Then LES-ALM with LEI is performed on a small wind farm deploying five NREL Phase VI turbines in full wake setting. The power outputs and force coefficients of downstream turbines are evaluated. The LES-ALM with LEI is also performed on a small wind farm deploying 25 NREL Phase VI turbines with different inflow angles (from full wake setting to partial wake setting). The power outputs and force coefficients of each turbine are evaluated under different inflow angles (the angle the rotor has to turn to make the rotor plane face the incoming wind) (0, 5, 15, 30 and 45 degree). The power coefficient distributions and thrust coefficient distributions of the wind farm under each inflow angle are compared. The range of inflow angle which is best for power generation is also discussed. The results demonstrate that the LES-ALM with LEI has the potential to optimize wind farm arrangement and pitch angle of individual turbines.

  4. Dynamic wake prediction and visualization with uncertainty analysis

    NASA Technical Reports Server (NTRS)

    Holforty, Wendy L. (Inventor); Powell, J. David (Inventor)

    2005-01-01

    A dynamic wake avoidance system utilizes aircraft and atmospheric parameters readily available in flight to model and predict airborne wake vortices in real time. A novel combination of algorithms allows for a relatively simple yet robust wake model to be constructed based on information extracted from a broadcast. The system predicts the location and movement of the wake based on the nominal wake model and correspondingly performs an uncertainty analysis on the wake model to determine a wake hazard zone (no fly zone), which comprises a plurality of wake planes, each moving independently from another. The system selectively adjusts dimensions of each wake plane to minimize spatial and temporal uncertainty, thereby ensuring that the actual wake is within the wake hazard zone. The predicted wake hazard zone is communicated in real time directly to a user via a realistic visual representation. In an example, the wake hazard zone is visualized on a 3-D flight deck display to enable a pilot to visualize or see a neighboring aircraft as well as its wake. The system substantially enhances the pilot's situational awareness and allows for a further safe decrease in spacing, which could alleviate airport and airspace congestion.

  5. Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain

    NASA Astrophysics Data System (ADS)

    Markfort, Corey D.

    The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved

  6. Infrared imaging simulation and detection of ship wake

    NASA Astrophysics Data System (ADS)

    Yang, Li; Chen, Xuan; Chang, Shizheng; Xu, Enchi; Wang, Xingyu; Wang, Ye; Zhao, Xiaolong; Du, Yongchen; Kou, Wei; Fan, Chunli

    2015-10-01

    The thermal wake would be formed owing to the cooling water or exhaust heat discharged by ship, and the cold wake could be formed by the cool water in the lower part of sea stirred up by the ship propeller or vortexes. Owing to the difference of surface temperature and emissivity between the ship wake and the surrounding ocean the ship wake will be easily detected by the infrared detecting system. The wave of wake also could be detected by the difference of reflected radiance between the background and the Kelvin wake of ship. In this paper the simulating models of infrared imaging of ship wake are developed based on the selfradiation of wake, the reflected radiance of the sky and sun and the transmitted radiance of atmosphere, and the infrared imaging signatures of ship wake are investigated. The results show that the infrared imaging signatures of ship wake can be really simulated by the models proposed in this paper. The effects of the detecting height, the angle of view, the NETD of detector and the temperature of wake on the infrared imaging signatures of ship wake are studied. The temperature difference between the ship wake and surrounding ocean is a main fact which effects on the detecting distance. The infrared imaging signatures of ship wake in 8-14μm wave band is stronger than that in 2-5μm wave band whenever the temperature of ship wake is warmer or cooler than the surrounding ocean. Further, the infrared imaging of thermal wake is investigated in the homogenous water and temperature stratified water at different speed of a ship and different flow rate and depth of the discharged water in a water tank. The spreading and decaying laws of infrared signature of ship wake are obtained experimentally. The results obtained in this paper have an important application in the infrared remote sensing of ship wake.

  7. Characterization of the supersonic wake of a generic space launcher

    NASA Astrophysics Data System (ADS)

    Schreyer, A.-M.; Stephan, S.; Radespiel, R.

    2017-03-01

    The wake flow of a generic axisymmetric space-launcher model is investigated experimentally for flow cases with and without propulsive jet to gain insight into the wake-flow phenomena at a supersonic stage of the flight trajectory which is especially critical with respect to dynamic loads on the structure. Measurements are performed at Mach 2.9 and a Reynolds number Re D = 1.3 × 106 based on model diameter D. The nozzle exit velocity of the jet is at Mach 2.5, and the flow is moderately underexpanded ( p e/ p ∞ = 5.7). The flow topology is described based on velocity measurements in the wake by means of particle image velocimetry and schlieren visualizations. Mean and fluctuating mass-flux profiles are obtained from hot-wire measurements, and unsteady wall-pressure measurements on the main-body base are performed simultaneously. This way, the evolution of the wake flow and its spectral content can be observed along with the footprint of this highly dynamic flow on the launcher main-body base. For the case without propulsive jet, a large separated zone is forming downstream of the main body shoulder, and the flow is reattaching further downstream on the afterbody. The afterexpanding propulsive jet (air) causes a displacement of the shear layer away from the wall, preventing the reattachment of the flow. In the spectral analysis of the baseline case, a dominant frequency around St D = 0.25 is found in the pressure-fluctuation signal at the main-body base of the launcher. This frequency is related to the shedding of the separation bubble and is less pronounced in the presence of the propulsive jet. In the shear layer itself, the spectra obtained from the hot-wire signal have a more broadband low-frequency content, which also reflects the characteristic frequency of turbulent structures convected in the shear layer, a swinging motion ( St D = 0.6), as well as the radial flapping motion of the shear layer ( St D = 0.85), respectively. Moving downstream along the

  8. The wake of hovering flight in bats.

    PubMed

    Håkansson, Jonas; Hedenström, Anders; Winter, York; Johansson, L Christoffer

    2015-08-06

    Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%.

  9. The wake of hovering flight in bats

    PubMed Central

    Håkansson, Jonas; Hedenström, Anders; Winter, York; Johansson, L. Christoffer

    2015-01-01

    Hovering means stationary flight at zero net forward speed, which can be achieved by animals through muscle powered flapping flight. Small bats capable of hovering typically do so with a downstroke in an inclined stroke plane, and with an aerodynamically active outer wing during the upstroke. The magnitude and time history of aerodynamic forces should be reflected by vorticity shed into the wake. We thus expect hovering bats to generate a characteristic wake, but this has until now never been studied. Here we trained nectar-feeding bats, Leptonycteris yerbabuenae, to hover at a feeder and using time-resolved stereoscopic particle image velocimetry in conjunction with high-speed kinematic analysis we show that hovering nectar-feeding bats produce a series of bilateral stacked vortex loops. Vortex visualizations suggest that the downstroke produces the majority of the weight support, but that the upstroke contributes positively to the lift production. However, the relative contributions from downstroke and upstroke could not be determined on the basis of the wake, because wake elements from down- and upstroke mix and interact. We also use a modified actuator disc model to estimate lift force, power and flap efficiency. Based on our quantitative wake-induced velocities, the model accounts for weight support well (108%). Estimates of aerodynamic efficiency suggest hovering flight is less efficient than forward flapping flight, while the overall energy conversion efficiency (mechanical power output/metabolic power) was estimated at 13%. PMID:26179990

  10. Wake structure of a deformable Joukowski airfoil

    NASA Astrophysics Data System (ADS)

    Ysasi, Adam; Kanso, Eva; Newton, Paul K.

    2011-10-01

    We examine the vortical wake structure shed from a deformable Joukowski airfoil in an unbounded volume of inviscid and incompressible fluid. The deformable airfoil is considered to model a flapping fish. The vortex shedding is accounted for using an unsteady point vortex model commonly referred to as the Brown-Michael model. The airfoil’s deformations and rotations are prescribed in terms of a Jacobi elliptic function which exhibits, depending on a dimensionless parameter m, a range of periodic behaviors from sinusoidal to a more impulsive type flapping. Depending on the parameter m and the Strouhal number, one can identify five distinct wake structures, ranging from arrays of isolated point vortices to vortex dipoles and tripoles shed into the wake with every half-cycle of the airfoil flapping motion. We describe these regimes in the context of other published works which categorize wake topologies, and speculate on the importance of these wake structures in terms of periodic swimming and transient maneuvers of fish.

  11. DIELECTRIC WAKE FIELD RESONATOR ACCELERATOR MODULE

    SciTech Connect

    Hirshfield, Jay L.

    2013-11-06

    Results are presented from experiments, and numerical analysis of wake fields set up by electron bunches passing through a cylindrical or rectangular dielectric-lined structure. These bunches excite many TM-modes, with Ez components of the wake fields sharply localized on the axis of the structure periodically behind the bunches. The experiment with the cylindrical structure, carried out at ATF Brookhaven National Laboratory, used up to three 50 MeV bunches spaced by one wake field period (21 cm) to study the superposition of wake fields by measuring the energy loss of each bunch after it passed through the 53-cm long dielectric element. The millimeter-wave spectrum of radiation excited by the passage of bunches is also studied. Numerical analysis was aimed not only to simulate the behavior of our device, but in general to predict dielectric wake field accelerator performance. It is shown that one needs to match the radius of the cylindrical dielectric channel with the bunch longitudinal rms-length to achieve optimal performance.

  12. On quasiperiodic and subharmonic Floquet wake instabilities

    NASA Astrophysics Data System (ADS)

    Blackburn, H. M.; Sheard, G. J.

    2010-03-01

    The physical characteristics of bifurcated states in systems with inherent symmetry are constrained in ways that those in systems with broken symmetry are not. Here we examine the issue of quasiperiodic versus subharmonic instability modes of time-periodic laminar wakes, and how the relationship between them is influenced by weak symmetry breaking. The examples used are the vortex street wake of a circular cylinder, where symmetry is broken by distorting the cylinder into a ring, and the wake of a square cylinder, where symmetry is broken by a small fixed rotation of the cylinder about its axis. In both cases the symmetric wakes exhibit a quasiperiodic instability mode, with a pair of complex-conjugate Floquet multipliers and which manifests as a traveling wave. As symmetry is broken these multipliers migrate continuously to the real axis, coalesce, and split into a pair of subharmonic multipliers that move apart along the negative real axis. This behavior resolves an apparent dichotomy between the previously established theoretical results and numerical predictions for the symmetric wake systems, and the predictions and experimental observations for systems with weakly broken symmetry.

  13. Studies of a flat wake rotor theory

    NASA Technical Reports Server (NTRS)

    Curtiss, H. C., Jr.; Mckillip, R. M., Jr.

    1992-01-01

    A computer code was developed at Princeton University to calculate the velocity components in the flow field near a lifting rotor. The induced velocity components in the rotor flow field predicted by this theory are compared with experiment. It appears that on balance, this relatively simple theory gives a reasonable prediction of the average induced velocities in a rotor flow and is quite suitable for such applications as estimating the influence of the rotor wake on the tail surfaces of rotorcraft. The theory predicts that significant induced velocity components are present in all three flow directions in the wake at a lifting rotor. It should be noted , however, that there are a few experimental measurements of the longitudinal and lateral induced velocity components in the rotor wake. This theory, known as the flat wake theory, is essentially the rotary wing analog of Prandtl's lifting line theory. The theory is described in this report. Calculations based on the theory are presented and compared with a modern free wake theory.

  14. Wake properties of a stripline beam kicker

    SciTech Connect

    Poole, B. R.

    1997-05-27

    The transport of a high current relativistic electron beam in a stripline beam kicker is strongly dependent on the wake properties of the structure. The effect of the beam-induced fields on the steering of the beam must be determined for a prescribed trajectory within the structure. A 3-D time domain electromagnetic code is used to determine the wake fields and the resultant Lorentz force on the beam both for an ultra-relativistic electron beam moving parallel to the beamline axis as well as a beam that follows a curved trajectory through the structure. Usually in determining the wake properties of the structure, a wake impedance is found for a beam that is moving parallel to the beamline axis. However, we extend this concept to curved trajectories by calculating beam induced forces along the curved trajectory. Comparisons are made with simple transmission line models of the structure. The wake properties are used in models to transport the beam self-consistently through the structure.

  15. Sleep-to-wake transition movement disorders.

    PubMed

    Vetrugno, Roberto; Montagna, Pasquale

    2011-12-01

    Consciousness and vigilance level are important factors for the manifestation and variability of many disorders, including movement disorders. Usually lumped together into unspecified "Wakefulness," the transition between wakefulness and sleep--the pre-dormitum, and between sleep and wakefulness--the post-dormitum, possess intrinsic cerebral metabolic patterns and mental, behavioural, and neurophysiological characteristics which make these peculiar states of vigilance independent. Moreover, the pre- and post-dormitum, with the relative state-dependent changes in firing patterns of many neuronal supra-pinal populations, act to release pacemakers responsible for different sleep-related motor phenomena. The relevance of pre-dormitum and post-dormitum as states different from full wakefulness and full sleep is, indeed, indicated by disorders which appear exclusively during either state, including motor disorders such as propriospinal myoclonus and awakening epilepsy. We will focus on three paradigmatic physiological/pathological motor phenomena (rhythmic movement disorder, hypnic jerks, and propriospinal myoclonus) strictly linked to the sleep-wake transition periods. Thereafter we will briefly discuss how the process of pre-dormitum and post-dormitum can lead to such disruption of motor control. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Nonlinear collisionless plasma wakes of small particles

    SciTech Connect

    Hutchinson, I. H.

    2011-03-15

    The wake behind a spherical particle smaller than the Debye length ({lambda}{sub De}) in flowing plasma is calculated using a particle-in-cell code. The results with different magnitudes of charge reveal substantial nonlinear effects down to values that for a floating particle would correspond to a particle radius {approx}10{sup -2{lambda}}{sub De}. The peak potential in the oscillatory wake structure is strongly suppressed by nonlinearity, never exceeding {approx}0.4 times the unperturbed ion energy. By contrast, the density peak arising from ion focusing can be many times the ambient. Strong heating of the ions occurs in the nonlinear regime. Direct ion absorption by the particle is not important for the far wake unless the radius exceeds 10{sup -1{lambda}}{sub De}, and is therefore never significant (for the far wake) in the linear regime. Reasonable agreement with full-scale linear response calculations are obtained in the linear regime. The wake wavelength is confirmed and an explanation, in terms of the conical potential structure, is proposed for experimentally-observed oblique alignment of different-sized grains.

  17. Acceleration of electrons by the wake field of proton bunches

    SciTech Connect

    Ruggiero, A.G.

    1986-01-01

    This paper discusses a novel idea to accelerate low-intensity bunches of electrons (or positrons) by the wake field of intense proton bunches travelling along the axis of a cylindrical rf structure. Accelerating gradients in excess of 100 MeV/m and large ''transformer ratios'', which allow for acceleration of electrons to energies in the TeV range, are calculated. A possible application of the method is an electron-positron linear collider with luminosity of 10/sup 33/ cm/sup -2/ s/sup -1/. The relatively low cost and power consumption of the method is emphasized.

  18. Investigation of the effect of inflow turbulence on vertical axis wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Chatelain, P.; Duponcheel, M.; Zeoli, S.; Buffin, S.; Caprace, D.-G.; Winckelmans, G.; Bricteux, L.

    2017-05-01

    The aerodynamics of Vertical Axis Wind Turbines (VAWTs) is inherently unsteady, which leads to vorticity shedding mechanisms due to both the lift distribution along the blade and its time evolution. In this paper, we perform large-scale, fine-resolution Large Eddy Simulations of the flow past Vertical Axis Wind Turbines by means of a state-of-the-art Vortex Particle-Mesh (VPM) method combined with immersed lifting lines. Inflow turbulence with a prescribed turbulence intensity (TI) is injected at the inlet of the simulation either from a precomputed synthetic turbulence field obtained using the Mann algorithm [1] or generated on the-fly using time-correlated synthetic velocity planes. The wake of a standard, medium-solidity, H-shaped machine is simulated for several TI levels. The complex wake development is captured in details and over long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake. Mean flow and turbulence statistics are computed over more than 10 diameters downstream of the machine. The sensitivity of the wake topology and decay to the TI and to the operating conditions is then assessed.

  19. A numerical investigation of the wake structure of vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Balaras, Elias; Posa, Antonio; Leftwich, Megan

    2014-11-01

    Recent field-testing has shown that vertical axis wind turbines (VAWT) in wind farm configurations have the potential to reach higher power densities, when compared to the more widespread horizontal axis turbines. A critical component in achieving this goal is a good understanding of the wake structure and how it is influenced by operating conditions. In the present study the Large-Eddy Simulation technique is adopted to characterize the wake of a small vertical axis wind turbine and to explore its dependence on the value of its Tip Speed Ratio (TSR). It will be shown that its wake significantly differs from that of a spinning cylinder, often adopted to model this typology of machines: the displacement of the momentum deficit towards the windward side follows the same behavior, but turbulence is higher on the leeward side. An initial increase of the momentum deficit is observed moving downstream, with central peaks in the core of the near wake for both momentum and turbulent kinetic energy, especially at lower TSRs. No back-flow is produced downstream of the turbine. The interaction between blades is stronger at higher values of the TSR, while the production of coherent structures is enhanced at lower TSRs, with large rollers populating the leeward side of the wake.

  20. A numerical study of wind turbine wakes under various atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Xie, Shengbai

    The goal of this research is to investigate the properties of wind turbine wakes and their interactions with the atmospheric boundary layer (ABL) via large-eddy simulations (LES) with special emphasis on the effects of atmospheric stability. The ABL is considered stable when the ground surface is cooler than the air, unstable when the opposite happens, and neutral when the temperature effect is negligible. In the literature, neutral conditions have been studied extensively, whereas the effects of stability have not. A new LES code, named Wind Turbine and Turbulence Simulator (WiTTS), was developed based on finite-difference (FD) schemes. First, the code's sensitivity to numerous aspects of the FD LES, such as the subgrid-scale (SGS) model, resolution, numerical treatment of the convective term, and filter types, was analyzed by simulating a neutral ABL. It was found that the Lagrangian-averaged scale-dependent (LASD) SGS model performs better than other scale-invariant Smagorinsky-type models. Second, the WiTTS was used to study the wakes from a miniature wind turbine inside a wind tunnel, following the setup of past experimental and numerical studies. It was found that those wakes are spatially anisotropic, with lateral growth faster than the vertical. Based on this, a new wake model is proposed and the Gaussian-type self-similarity is obtained for this simplified scenario. Third, to study a more realistic ABL, the stability conditions have been considered by the Boussinesq approximation and by varying thermal conditions on the ground surface, together with a constant Coriolis force. The LES results indicate that the properties of utility-scale wind turbine wakes are strongly correlated to the stability conditions. The wake recovery is enhanced by the increased turbulence due to buoyant convection in the unstable ABL, while in the stable ABL the spreading of the wake is significantly larger in the lateral direction than in the vertical direction. The stability

  1. Photon acceleration in plasma wake wave

    SciTech Connect

    Bu, Zhigang; Shen, Baifei Yi, Longqing; Zhang, Hao; Huang, Shan; Li, Shun

    2015-04-15

    The photon acceleration effect in a laser wake field is investigated based on photon Hamiltonian dynamics. A test laser pulse is injected into a plasma wave at an incident angle θ{sub i}, which could slow down the photon velocity along the propagating direction of the wake wave so as to increase the acceleration distance for the photons. The photon trapping condition is analyzed in detail, and the maximum frequency shift of the trapped photon is obtained. The acceleration gradient and dephasing length are emphatically studied. The compression of the test laser pulse is examined and used to interpret the acceleration process. The limit of finite transverse width of the wake wave on photon acceleration is also discussed.

  2. A Experimental Investigation of the Turbulent Structure in Two-Dimensional Momentumless Wakes

    NASA Astrophysics Data System (ADS)

    Park, Woonjean

    By utilizing an airfoil-shaped model which permits air injection through the rear, two-dimensional momentumless wakes have been simulated in a wind tunnel. Mean velocity profiles have been measured (with four injection conditions) at Re = 5400, up to x/d = 75; these profiles are self-similar. In the momentumless wake (i.e. injection adjusted to provide a thrust which exactly cancels the model's drag), the decay rate of the centerline velocity difference, U_{d }, and the spreading rate of the wake were found to be much faster and slower, respectively, than that of the pure wake or pure jet. Smoke-wire flow visualizations are also presented; the characteristic turbulent vortical structures are easily identifiable for the wake and jet cases, while the structures for the momentumless wake are neither wake-like nor jet -like. Instead, a unique large-scale turbulence structure was observed near the boundary of the momentumless wake, which bursts out into the freestream quasi-periodically. For the momentumless wakes produced by three different jet-injection models, the three turbulence intensities (u^', v^' and w^') as well as the Reynolds stress were measured by hot-wire anemometry. Similarity of the turbulence intensities was observed; the overall shape of those profiles is Gaussian. The decay rate ( x^{-0.81}) of u ^' was observed to be universal for the three models. However, the rate of decay of U _{d} and the spreading rate are dependent on initial conditions, and ranged from x ^{-0.92} - x ^{-2.02} and x^ {0.3} - x^ {0.46}, respectively. U_ {d} decays much faster than does u ^'. Consequently, the balance between production and dissipation no longer exists and mean shear practically disappears some distance downstream; the flow becomes nearly isotropic beyond x/d ~eq 45. It has thus been verified that the unique property of this flowfield, which distinguishes it from jets and wakes, is the very rapid decay of both mean shear and turbulence.

  3. The Effects of Aircraft Wake Dynamics on Contrail Development

    NASA Technical Reports Server (NTRS)

    Lewellen, D. C.; Lewellen, W. S.; Grose, W. L. (Technical Monitor)

    2001-01-01

    Results of large-eddy simulations of the development of young persistent ice contrails are presented, concentrating on the interactions between the aircraft wake dynamics and the ice cloud evolution over ages front a few seconds to approx. 30 min. The 3D unsteady evolution of the dispersing engine exhausts, trailing vortex pair interaction and breakup, and subsequent Brunt-Vaisala oscillations of the older wake plume are modeled in detail in high-resolution simulations, coupled with it bulk microphysics model for the contrail ice development. The simulations confirm that the early wake dynamics can have a strong influence on the properties of persistent contrails even at late times. The vortex dynamics are the primary determinant of the vertical extent of the contrail (until precipitate ton becomes significant): and this together with the local wind shear largely determines the horizontal extent. The ice density, ice crystal number density, and a conserved exhaust tracer all develop and disperse in different fashions from each other. The total ice crystal number can be significantly reduced due to adiabatic compression resulting from the downward motion of the vortex system, even for ambient conditions that are substantially supersaturated with respect to ice. The fraction of the initial ice crystals surviving, their spatial distribution and the ice mass distribution are all sensitive to the aircraft type, ambient humidity, assumed initial ice crystal number, and ambient turbulence conditions. There is a significant range of conditions for which a smaller transport such as a B737 produces as significant a persistent contrail as a larger transport such as a B747, even though the latter consumes almost five times as much fuel. The difficulties involved in trying to minimize persistent contrail production are discussed.

  4. Irregular Sleep-Wake Rhythm Disorder.

    PubMed

    Abbott, Sabra M; Zee, Phyllis C

    2015-12-01

    Irregular sleep-wake rhythm disorder is a circadian rhythm disorder characterized by multiple bouts of sleep within a 24-hour period. Patients present with symptoms of insomnia, including difficulty either falling or staying asleep, and daytime excessive sleepiness. The disorder is seen in a variety of individuals, ranging from children with neurodevelopmental disorders, to patients with psychiatric disorders, and most commonly in older adults with neurodegenerative disorders. Treatment of irregular sleep-wake rhythm disorder requires a multimodal approach aimed at strengthening circadian synchronizing agents, such as daytime exposure to bright light, and structured social and physical activities. In addition, melatonin may be useful in some patients.

  5. Circadian Rhythm Sleep-Wake Disorders.

    PubMed

    Abbott, Sabra M; Reid, Kathryn J; Zee, Phyllis C

    2015-12-01

    The circadian system regulates the timing and expression of nearly all biological processes, most notably, the sleep-wake cycle, and disruption of this system can result in adverse effects on both physical and mental health. The circadian rhythm sleep-wake disorders (CRSWDs) consist of 5 disorders that are due primarily to pathology of the circadian clock or to a misalignment of the timing of the endogenous circadian rhythm with the environment. This article outlines the nature of these disorders, the association of many of these disorders with psychiatric illness, and available treatment options.

  6. Cylinder wakes in flowing soap films

    SciTech Connect

    Vorobieff, P.; Ecke, R.E. ); Vorobieff, P. )

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag. [copyright] [ital 1999] [ital The American Physical Society

  7. Cylinder wakes in flowing soap films

    NASA Astrophysics Data System (ADS)

    Vorobieff, Peter; Ecke, Robert E.

    1999-09-01

    We present an experimental characterization of cylinder wakes in flowing soap films. From instantaneous velocity and thickness fields, we find the vortex-shedding frequency, mean-flow velocity, and mean-film thickness. Using the empirical relationship between the Reynolds and Strouhal numbers obtained for cylinder wakes in three dimensions, we estimate the effective soap-film viscosity and its dependence on film thickness. We also compare the decay of vorticity with that in a simple Rankine vortex model with a dissipative term to account for air drag.

  8. Some observations on road vehicle wakes

    SciTech Connect

    Bearman, P.W.

    1984-01-01

    The role of longitudinal vortices in the development of aerodynamic forces on road vehicles is discussed. It is shown that the drag and the side force on a vehicle can be determined from a suitable survey of the wake. However the lift, which has a component related to the shed circulation and a component arising from the attractive force between a vehicle and its image in the ground, cannot be estimated in the same way. By studying plots showing the longitudinal component of the shed vorticity in the wake it is often possible to identify a number of different vortices. These vortices are found to originate from different features of the vehicle body.

  9. Modal parameter extraction from large operating structures using ambient excitation

    SciTech Connect

    James, G.H. III; Carne, T.G.; Mayes, R.L.

    1995-12-31

    A technique called the Natural Excitation Technique or has been developed to response extract response parameters from large operational structure when subjected to random and unmeasured forces such as wind, road noise, aerodynamics, or waves. Six applications of NExT to ambient excitation testing and NExT analysis are surveyed in this paper with a minimum of technical detail. In the first application, NExT was applied to a controlled-yaw Horizontal-Axis Wind Turbine (HAWT). By controlling the yaw degree of freedom an important class of rotating coordinate system effects are reduced. A new shape extraction procedure was applied to this data set with good results. The second application was to a free-yaw HAWT. The complexity of the response has prompted further analytical studies and the development of a specialized visualization package. The third application of NExT was to a parked three-bladed Vertical-Axis Wind Turbine (VAWT) in which traditional modal testing could not excite all modes of interest. The shape extraction process used cross-correlation functions directly in a time-domain shape-fitting routine. The fourth application was to ground transportation systems. Ongoing work to improve driver and passenger comfort in tractor-trailer vehicles and to refine automobile body and tire models will use NExT. NExT has been used to process ambient vibration data for Finite Element Model correlation and is being used to study Structural Health Monitoring with ambient excitation. Shape fitting was performed using amplitude and phase information taken directly from the cross-spectra. The final application is to an offshore structure. This work is on-going, however initial studies have found a high-modal density, high noise content, and sparse data set.

  10. Hub vortex instability and wake dynamics in axial flow wind turbines

    NASA Astrophysics Data System (ADS)

    Foti, Daniel; Howard, Kevin; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis

    2014-11-01

    The near wake region of an axial flow wind turbine has two distinct shear layers: an outer tip vortex shear layer, which rotates in the same direction as the rotor, and an inner counter-rotating hub vortex shear layer. Recent simulations (Kang et al., J. Fluid Mech. 744, 376 (2014)), corroborated with experiments (Chamorro et al., J. Fluid Mech. 716, 658 (2013)), showed that the hub vortex can undergo spiral vortex breakdown immediately downstream of the turbine. The precessing hub vortex core intercepts and interacts with the tip vortex shear layer causing the large-scale wake meandering motions in the far wake to intensify. These results were obtained for an axial flow hydrokinetic turbine in a turbulent open channel flow. Here we integrate high-resolution LES with experiments to show that a hub vortex instability also occurs in the near wake of a wind turbine in a wind tunnel. We show that the interactions of the hub vortex with the outer flow have significant effects on the wake meandering amplitude and frequency. Our results reinforce the conclusions of Kang et al. (2014) that the hub vortex must be included in wake models to simulate wake interactions at the power plant scale and optimize turbine siting for realistic terrain and wind conditions. This work was supported by DOE (DE-EE0002980, DE-EE0005482 and DE-AC04-94AL85000), the NSF (IIP-1318201), the IREE early career award (UMN) and NSF CAREER: Geophysical Flow Control (CBET-1351303). Computational resources were provided by MSI.

  11. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Barlas, E.; Buckingham, S.; van Beeck, J.

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-layer wind-tunnel. Time-resolved measurements are carried out with a three-component hot-wire anemometer in the mid-vertical plane of the wake up to a downstream distance of eleven turbine diameters. The major issue addressed is the wake dynamics i.e. the flow and turbulence characteristics as well as spectral content under two different neutral boundary-layer inflow conditions. The wind tunnel is arranged with and without roughened surfaces in order to mimic moderately rough and smooth conditions. The inflow characterization is carried out by using all three velocity components, while the rest of the study is focused on the streamwise component's evolution. The results show an earlier wake recovery, i.e. the velocity deficit due to the turbine is less persistent for the rough case due to higher incoming turbulence levels. This paves the way for enhanced mixing from higher momentum regions of the boundary layer towards the centre of the wake. The investigation on the turbulent shear stresses is in line with this observation as well. Moreover, common as well as distinguishing features of the turbulent-scales evolution are detected for rough and smooth inflow boundary-layer conditions. Wake meandering disappears for rough inflow conditions but persists for smooth case with a Strouhal number similar to that of a solid disk wake.

  12. Vortex-wake interactions of a flapping foil that models animal swimming and flight.

    PubMed

    Lentink, David; Muijres, Florian T; Donker-Duyvis, Frits J; van Leeuwen, Johan L

    2008-01-01

    The fluid dynamics of many swimming and flying animals involves the generation and shedding of vortices into the wake. Here we studied the dynamics of similar vortices shed by a simple two-dimensional flapping foil in a soap-film tunnel. The flapping foil models an animal wing, fin or tail in forward locomotion. The vortical flow induced by the foil is correlated to (the resulting) thickness variations in the soap film. We visualized these thickness variations through light diffraction and recorded it with a digital high speed camera. This set-up enabled us to study the influence of foil kinematics on vortex-wake interactions. We varied the dimensionless wavelength of the foil (lambda*=4-24) at a constant dimensionless flapping amplitude (A*=1.5) and geometric angle of attack amplitude (A(alpha,geo)=15 degrees ). The corresponding Reynolds number was of the order of 1000. Such values are relevant for animal swimming and flight. We found that a significant leading edge vortex (LEV) was generated by the foil at low dimensionless wavelengths (lambda*<10). The LEV separated from the foil for all dimensionless wavelengths. The relative time (compared with the flapping period) that the unstable LEV stayed above the flapping foil increased for decreasing dimensionless wavelengths. As the dimensionless wavelength decreased, the wake dynamics evolved from a wavy von Kármán-like vortex wake shed along the sinusoidal path of the foil into a wake densely packed with large interacting vortices. We found that strongly interacting vortices could change the wake topology abruptly. This occurred when vortices were close enough to merge or tear each other apart. Our experiments show that relatively small changes in the kinematics of a flapping foil can alter the topology of the vortex wake drastically.

  13. Investigation of the cylinder wake under spanwise periodic forcing with a segmented plasma actuator

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Gregory, James W.

    2015-01-01

    The wake response to three-dimensional forcing of flow over a circular cylinder was studied. Spanwise-segmented dielectric-barrier discharge plasma actuators were mounted on the cylinder in a square wave pattern for active forcing of the cylinder wake. The buried electrodes were placed periodically to create a spanwise-modulated blowing profile, with the aim of targeting three-dimensional instabilities in the wake. Considerable spanwise variation in the wake was achieved, which was a direct consequence of the difference in the location of shed spanwise vortices from the cylinder, along with the generation of streamwise vorticity. Two distinct power levels were used for forcing the flow, with different flow response observed between the two conditions. With low power, the segmented forcing caused the large-scale spanwise structures in the forcing region to lead those in the no-forcing region, with an accompanying shift away from the centerline and generation of streamwise vorticity. While vortex shedding was not substantially attenuated with low-power forcing, the shedding in the near wake was significantly attenuated with high-power forcing. This attenuation in the shedding strength was accompanied by a decrease in the peak shedding frequency, indicating an increase in the formation length. High-power forcing caused elongation of the Kármán vortices due to the induced strain field and strong differential development of the wake shedding frequency. In both forcing regimes, the wake three-dimensionality increased as shown by the increased width of the spectral peaks.

  14. Ultradian Rhythmicity in Sleep-Wakefulness Is Related to Color in Nestling Barn Owls.

    PubMed

    Scriba, Madeleine F; Henry, Isabelle; Vyssotski, Alexei L; Mueller, Jakob C; Rattenborg, Niels C; Roulin, Alexandre

    2017-08-01

    The possession of a rhythm is usually described as an important adaptation to regular changing environmental conditions such as the light-dark cycle. However, recent studies have suggested plasticity in the expression of a rhythm depending on life history and environmental factors. Barn owl ( Tyto alba) nestlings show variations in behavior and physiology in relation to the size of black feather spots, a trait associated with many behavioral and physiological phenotypes including the circadian expression of corticosterone and the regulation of body mass. This raises the possibility that individual spottiness could be associated with rhythmicity in sleep-wakefulness. Owlets showed ultradian rhythms in sleep-wakefulness, with a period length of 4.5 to 4.9 h. The period length of wakefulness and non-REM sleep was shorter in heavily compared to lightly spotted female nestlings, whereas in males, the opposite result was found. Furthermore, male and female nestlings displaying small black spots showed strong rhythmicity levels in wakefulness and REM sleep. This might be an advantage in a stable environment with predictable periodic changes in light, temperature, or social interactions. Heavily spotted nestlings displayed weak rhythms in wakefulness and REM sleep, which might enable them to be more flexible in reactions to unexpected events such as predation or might be a mechanism to save energy. These findings are consistent with previous findings showing that large-spotted nestlings switch more frequently between wakefulness and sleep, resulting in higher levels of vigilance compared to small-spotted conspecifics. Thus, nestlings with larger black feather spots might differently handle the trade-off between wakefulness and sleep, attention, and social interactions compared to nestlings with smaller black spots.

  15. Effects of a three-dimensional hill on the wake characteristics of a model wind turbine

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolei; Howard, Kevin B.; Guala, Michele; Sotiropoulos, Fotis

    2015-02-01

    The spatial evolution of a turbine wake downwind of a three-dimensional sinusoidal hill is studied using large-eddy simulations and wind tunnel measurements. The computed flow fields behind the hill show good agreement with wind tunnel measurements. Three different heights of the hill, i.e., hhill = zh - 0.5D, ≈ zh and =zh + 0.5D (where zh is the turbine hub height and D is the diameter of the turbine rotor), were considered. The effect of the hill turbine spacing was investigated through a comparative analysis with the turbine wake results in the undisturbed turbulent boundary layer. It is observed that the turbine wakes downwind of the hill with hhill ≈ zh and hhill = zh + 0.5D recover faster because of the increased entrainment of ambient flow into the turbine wake, which is due to the enhanced turbulent transport in both spanwise and vertical directions. In comparison with the turbine only case, significant increases in the turbulence kinetic energy (TKE) in the turbine wake are observed for the hill-turbine cases with hhill ≈ zh and hhill = zh + 0.5D. A velocity scale UT, defined in terms of the thrust force acting on the turbine, is introduced for the turbine-added velocity deficit and TKE. For the turbine-added velocity deficit, UT is shown to be an appropriate scale at wake locations sufficiently far downwind of the turbine (i.e., greater than or equal to 8D). The vertical profiles of the turbine-added TKE normalized by UT 2 are shown to nearly collapse in the wake both for the turbine only and hill-turbine cases at all locations greater than 4D downwind of the turbine. A simple model for the turbine-added TKE in complex terrain is also proposed based on the new physical insights obtained from our simulations.

  16. Effects of spanwise instabilities on the suppression of wake mode in flow over a long rectangular cavity

    NASA Astrophysics Data System (ADS)

    Sun, Yiyang; Taira, Kunihiko; Cattafesta, Louis; Ukeiley, Lawrence

    2016-11-01

    Direct numerical simulation (DNS) and biglobal stability analysis are performed to examine the spanwise effects on the appearance of the so-called wake mode in the flow over long rectangular cavities. The wake mode has been reported to exhibit high-amplitude fluctuations and eject large spanwise vortices in numerical studies, despite its lack of observation in experiments, leaving its existence an open question. The present study focuses on a rectangular cavity flow with aspect ratio of L / D = 6 , free stream Mach number of M∞ = 0 . 6 and ReD = 502 . The properties of the wake mode are revealed via 2D DNS. From the biglobal stability analysis, the wake mode can be captured with a zero spanwise wavenumber. Furthermore, 3D eigenmodes are calculated with spanwise wavelength λ / D ∈ [ 0 . 5 , 2 ] . With the knowledge of the features of the wake mode and the 3D eigenmodes, 3D DNS are performed with width-to-depth ratio of W / D = 1 and 2. We find the flow exhibits the wake mode with W / D = 1 but presents a moderate shear-layer mode with W / D = 2 . Based on the findings, we argue that the spanwise instabilities in flows over wide cavities redistribute energy from spanwise vortices to streamwise vortical structures, which suppresses the emergence of the wake mode in the 3D cavity flows. This work was supported by the US Air Force Office of Scientific Research (Grant FA9550-13-1-0091).

  17. NOWVIV - Nowcasting wake vortex impact variables

    NASA Astrophysics Data System (ADS)

    Tafferner, A.; Birke, L.; Frech, M.

    2003-04-01

    A central task of the ongoing DLR project "Wirbelschleppe" (Wake Vortex) is to forecast meteorological quantities which influence the behaviour of wake vortices of landing aircraft. In the first place these are wind, temperature and turbulence, resp. the vertical shear thereof, which impact the lateral drift and turbulent decay of wake vortices. For this purpose the nowcasting system NOWVIV has been developed at DLR. It combines operational forecasts of the Lokal Modell (LM; Doms and Schaettler 1999) of the German weather service DWD with a high-resolution forecasting system. For the latter, the NOAA/FSL version of the mesoscale model MM5 (Grell et al. 2000) has been adapted to particular sites. Orography, land use, and soil type have been generated from available data sources for a 80 km square domain centered on a particular airport with a horizontal resolution of 2.1 km. As a good representation of the boundary layer is of particular importance for predicting wake vortex impact variables, the vertical spacing of model layers has been selected rather small throughout the lower model atmosphere, starting with 20 m at the ground and increasing to about 60 m at 2 km height. NOWVIV delivers vertical profiles of vortex impact variables, which are used by the wake prediction model ``P2P'' developed at DLR (Holzaepfel 2002) to predict wake vortex behaviour. During the two field campaigns ``WakeOP'' and ``WakeTOUL'' in April/May 2001 and May/June 2002 which aimed at measuring (by lidar) and predicting wake vortex behaviour of landing aircraft, NOWVIV has been run in an operational mode for the airports of Oberpfaffenhofen (Germany) and Tarbes (France). A statistical evaluation of the NOWVIV forecasting performance during these campaigns achieved satisfactory results as compared to local measurements of wind and temperature from radio acoustic sounding instruments (Frech et al. 2002). However, there are uncertainties in the daily variation of the boundary layer. Also, the

  18. Wake measurements in a strong adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Hoffenberg, R.; Sullivan, John P.; Schneider, S. P.

    1994-01-01

    The behavior of wakes in adverse pressure gradients is critical to the performance of high-lift systems for transport aircraft. Wake deceleration is known to lead to sudden thickening and the onset of reversed flow; this 'wake bursting' phenomenon can occur while surface flows remain attached. Although 'wake bursting' is known to be important for high-lift systems, no detailed measurements of 'burst' wakes have ever been reported. Wake bursting has been successfully achieved in the wake of a flat plate as it decelerated in a two-dimensional diffuser, whose sidewalls were forced to remain attached by use of slot blowing. Pilot probe surveys, L.D.V. measurements, and flow visualization have been used to investigate the physics of this decelerated wake, through the onset of reversed flow.

  19. TMCI threshold with space charge and different wake fields

    SciTech Connect

    Balbekov, V.

    2016-08-22

    Transverse mode coupling instability of a bunch with space charge and wake field is considered within the frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as a basis for the solution of the equations with the wake field included. A dispersion equation for constant wake is presented in the form of an infinite continued fraction and also as the recursive relation with an arbitrary number of the basis functions. Realistic wake fields are considered as well including resistive wall, square, and oscillating wakes. It is shown that the TMCI threshold of the negative wake grows up in absolute value when the SC tune shift increases. Threshold of positive wake goes down at the increasing SC tune shift. The explanation is developed by an analysis of the bunch spectrum.

  20. Qualitative analysis of wind-turbine wakes over hilly terrain

    NASA Astrophysics Data System (ADS)

    Hyvärinen, A.; Segalini, A.

    2017-05-01

    In this work, wind-turbine wakes are studied over flat and hilly terrains. Measurements made by using stereoscopic PIV are compared to data obtained from numerical simulations using RANS equations and an actuator-disc method. The numerical and experimental data show similar qualitative trends, indicating that the wind-turbine wake is perturbed by the presence of the hills. Additionally, a faster flow recovery at hub height is seen with the hilly terrain, indicating that the hills presence is beneficial for downstream turbines exposed to wake-interaction effects. The Jensen wake model is implemented over the hilly terrain and it is shown that this model cannot accurately capture the wake modulations induced by the hills. However, by superimposing a wind-turbine wake simulated over flat terrain on the hilly-terrain flow field, it is illustrated that the commonly-used wake-superposition technique can yield reasonable results if the used wake model has sufficient accuracy.

  1. Wind turbine wake properties from Doppler lidar measurements

    NASA Astrophysics Data System (ADS)

    Pichugina, Y.; Banta, R. M.; Brewer, A.; Lundquist, J. K.

    2012-12-01

    Wake properties were estimated from the High-Resolution Doppler Lidar (HRDL) measurements during the Turbine Wake and Inflow Characterization Study (TWICS) in the spring of 2011. Velocity deficit, wake downwind extent, and wake meandering were obtained by detailed analysis of both lidar vertical-slice scans, performed straddling along the lidar-turbine centerline, and lidar conical scans, performed in narrow, nearly horizontal sectors that include the wind turbine inflow, and its wake at four levels. Simultaneous measurements of inflow and turbine outflow were corrected by terrain and wind direction to obtain mean wake properties. It has been found out that an operating wind turbine generates a wake with the maximum velocity deficit varying from 20% to 70% extending up to 10 rotor diameters downstream of the turbine, depending on the wind strength and atmospheric turbulence. Details including images and animations of the wake behavior will be presented.

  2. Shear layer approximation of Navier-Stokes steady equations for non-axisymmetric wind turbine wakes: Description, verification and first application

    NASA Astrophysics Data System (ADS)

    Trabucchi, Davide; Vollmer, Lukas; Kühn, Martin

    2016-09-01

    The number of turbines installed in offshore wind farms has strongly increased in the last years and at the same time the need for more precise estimation of the wind farm efficiency. For this reason, the wind energy community could benefit from more accurate models for multiple wakes. Existing engineering models can only simulate single wakes, which are superimposed if they are interacting in a wind farm. This method is a practical solution, but it is not fully supported by a physical background. The limitation to single wakes is given by the assumption that the wake is axisymmetric. As alternative, we propose a new shear model which is based on the existing engineering wake models, but is extended to simulate also non- axisymmetric wakes. In this paper, we present the theoretical background of the model and two application cases. First, we proved that for axisymmetric wakes the new model is equivalent to a commonly used engineering model. Then, we evaluated the improvements of the new model for the simulation of a non-axisymmetric wake using a large eddy simulation as reference. The results encourage the further development of the model, and promise a successful application for the simulation of multiple wakes.

  3. A comparison of dispersion calculations in bluff body wakes using LES and unsteady RANS

    SciTech Connect

    Paschkewitz, J S

    2006-01-19

    Accurate modeling of the dispersion behavior of sprays or particles is critical for a variety of problems including combustion, urban pollution or release events, and splash and spray transport around heavy vehicles. Bluff body wakes are particularly challenging since these flows are both highly separated and strongly unsteady. Attempting to model the dispersion of droplets or particles interacting with bluff body wakes is even more difficult since small differences in the flow field encountered by particles can lead to large differences in the dispersion behavior. Particles with finite inertia can exhibit additional complicating effects such as preferential concentration. In this preliminary study, we consider the dispersion of solid particles in the wake of a rectangular plane at a Reynolds number (Re) of 10000 and that of droplets in the wake of a simplified tractor-trailer geometry at Re = 2 x 10{sup 6} using both the Large Eddy Simulation (LES) and Unsteady Reynolds-Averaged Navier-Stokes (URANS) turbulence modeling approaches. The calculations were performed using identical meshes for both the LES and URANS models. Particle stresses are not backcoupled to the carrier fluid velocity solution. In the case of the rectangular plane wake, the LES calculation predicts a finer-scale and more persistent wake structure than the URANS one; the resulting particle dispersion is considerably ({approx} 40%) underpredicted for low inertia particles. For the case of the simplified tractor-trailer geometry, although the LES is underresolved, similar trends are observed with strong differences in the vertical and horizontal dispersion of the smallest particles. These results suggest that it may be necessary to use LES to accurately capture the dispersion behavior of small, low inertia particles or droplets, but that URANS may be sufficient for problems in which only large particles with substantial inertia are of primary concern.

  4. Spectral element discontinuous Galerkin simulations for wake potential calculations : NEKCEM.

    SciTech Connect

    Min, M.; Fischer, P. F.; Chae, Y.-C.

    2008-01-01

    In this paper we present high-order spectral element discontinuous Galerkin simulations for wake field and wake potential calculations. Numerical discretizations are based on body-conforming hexagonal meshes on Gauss-Lobatto-Legendre grids. We demonstrate wake potential profiles for cylindrically symmetric cavity structures in 3D, including the cases for linear and quadratic transitions between two cross sections. Wake potential calculations are carried out on 2D surfaces for various bunch sizes.

  5. Dynamics of wakes downstream of wind turbine towers

    NASA Technical Reports Server (NTRS)

    Snyder, M. H.; Wentz, W. H., Jr.

    1981-01-01

    The near field wakes downstream of circular cylinders and of 12 sided cylinders were surveyed in a wind tunnel. Local velocity and velocity deficit diagrams are presented. The variation of turbulence in the wake was surveyed and the frequency of the periodic component of wake motion was determined. Differences between wakes of circular cylinders and of 12 sided cylinders are discussed. Also effects of strakes, orientation of the 12 sided cylinders, and rounding of the corners are noted.

  6. Wind tunnel testing of a closed-loop wake deflection controller for wind farm power maximization

    NASA Astrophysics Data System (ADS)

    Campagnolo, Filippo; Petrović, Vlaho; Schreiber, Johannes; Nanos, Emmanouil M.; Croce, Alessandro; Bottasso, Carlo L.

    2016-09-01

    This paper presents results from wind tunnel tests aimed at evaluating a closed- loop wind farm controller for wind farm power maximization by wake deflection. Experiments are conducted in a large boundary layer wind tunnel, using three servo-actuated and sensorized wind turbine scaled models. First, we characterize the impact on steady-state power output of wake deflection, achieved by yawing the upstream wind turbines. Next, we illustrate the capability of the proposed wind farm controller to dynamically driving the upstream wind turbines to the optimal yaw misalignment setting.

  7. An LES study of vertical-axis wind turbine wakes aerodynamics

    NASA Astrophysics Data System (ADS)

    Abkar, Mahdi; Dabiri, John O.

    2016-11-01

    In this study, large-eddy simulation (LES) combined with a turbine model is used to investigate the structure of the wake behind a vertical-axis wind turbine (VAWT). In the simulations, a recently developed minimum dissipation model is used to parameterize the subgrid-scale stress tensor, while the turbine-induced forces are modeled with an actuator-line technique. The LES framework is first tested in the simulation of the wake behind a model straight-bladed VAWT placed in the water channel, and then used to study the wake structure downwind of a full-scale VAWT sited in the atmospheric boundary layer. In particular, the self-similarity of the wake is examined, and it is found that the wake velocity deficit is well characterized by a two-dimensional elliptical Gaussian distribution. By assuming a self-similar Gaussian distribution of the velocity deficit, and applying mass and momentum conservation, an analytical model is developed and tested to predict the maximum velocity deficit downwind of the turbine.

  8. Numerical study on bifurcations in the wake of a circular disk

    NASA Astrophysics Data System (ADS)

    Yang, Jianzhi; Wu, Guang; Zhong, Wei; Liu, Minghou

    2014-05-01

    Using Large-eddy simulation (LES), the dynamics in the wake of a circular disk with an aspect ratio of d/w = 5 is numerically studied. The circular disk is normal to the main flow, and Reynolds number ranges from 115 to 300. The first bifurcation is confirmed for Re = 120, leading to the steady state mode with a reflectional symmetry and a double-thread wake extending to the downstream. The Hopf bifurcation is found for Re = 152, and the planar symmetry is lost, which is different from that observed in the sphere wake; it is called the "reflectional-symmetry-breaking (RSB)" mode and the hairpin vortices in this mode are always shedding in a fixed orientation. The third bifurcation is captured for Re = 166, which is named the "standing wave (SW)" mode; the planar symmetry lost in RSB mode is recovered and the hairpin vortices are shedding in the oppositely sided orientations, unlike the ones observed in the sphere wake. The fourth bifurcation, referred to as "zigzag (ZZ)" mode, is observed for Re = 265 and the planar symmetry is lost again; the hairpin vortices are shedding in an irregular orientation and propagating in a zigzagged way; and a few small-scale structures begin to appear. Three different vortex shedding regimes are found in RSB, SW and ZZ modes, respectively. Results show that the recirculation region plays a significant role in the mode transitions, and the stagnation point of recirculation zone is conjectured to be the initial region causing the wake instability.

  9. Numerical investigation of the near wake of generic space launcher systems at transonic and supersonic flows

    NASA Astrophysics Data System (ADS)

    Statnikov, V.; Glatzer, C.; Meiß, J.-H.; Meinke, M.; Schröder, W.

    2013-06-01

    Numerical simulations of the near wake of generic rocket configurations are performed at transonic and supersonic freestream conditions to improve the understanding of the highly intricate near wake structures. The Reynolds number in both flow regimes is 106 based on the main body diameter, i. e., specific freestream conditions of ESA's Ariane launcher trajectory. The geometry matches models used in experiments in the framework of the German Transregional Collaborative Research Center TRR40. Both axisymmetric wind tunnel models possess cylindrical sting supports, representing a nozzle to allow investigations of a less disturbed wake flow. A zonal approach consisting of a Reynolds averaged Navier-Stokes (RANS) and a large-eddy simulation (LES) is applied. It is shown that the highly unsteady transonic wake flow at Ma∞ = 0.7 is characterized by the expanding separated shear layer, while the Mach 6.0 wake is defined by a shock, expansion waves, and a recompression region. In both cases, an instantaneous view on the base characteristics reveals complex azimuthal flow structures even for axisymmetric geometries. The flow regimes are discussed by comparing the aerodynamic characteristics, such as the size of the recirculation region and the turbulent kinetic energy.

  10. Wake orientation and its influence on the performance of diffusers with inlet distortion

    NASA Astrophysics Data System (ADS)

    Coffman, Jesse M.

    Distortion at the inlet to diffusers is very common in internal flow applications. Inlet velocity distortion influences the pressure recovery and flow regimes of diffusers. This work introduced a centerline wake at the square inlet of a plane wall diffuser in two orthogonal orientations to investigate its influence on the diffuser performance. Two different wakes were generated. One was from a mesh strip which produced a velocity deficit with low turbulence intensity and two shear layers. The other wake generator was a D-shaped cylinder which produced a wake with high turbulence intensity and large length scales. These inlet conditions were generated for a diffuser with a diffusion angle of 3° and 6°. A pair of RANS simulations were used to investigate the influence of the orthogonal inlet orientations on the solution. The inlet conditions were taken from the inlet velocity field measured for the mesh strip. The flow development and exit conditions showed some similarities and some differences with the experimental results. The performance of a diffuser is typically measured through the static pressure recovery coefficient and the total pressure losses. The definition of these metrics commonly found in the literature were insufficient to discern differences between the wake orientations. New metrics were derived using the momentum flux profile parameter which related the static pressure recovery, the total pressure losses, and the velocity uniformity at the inlet and exit of the diffuser. These metrics revealed a trade-off between the total pressure losses and the uniformity of the velocity field.

  11. Features of airplane vortex wake decay in cruise flight and in land proximity

    NASA Astrophysics Data System (ADS)

    Bosnyakov, I. S.; Sudakov, G. G.

    2016-10-01

    The cases of the vortex wake decay after the large aircraft are considered for the case of cruise flight and near the ground. It is shown that the scenarios of destruction process are principally different from each other. The physical features of the phenomenon are described and the two models for description of such phenomenon are compared.

  12. Explicit expressions of impedances and wake functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2010-10-01

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  13. Explicit Expressions of Impedances and Wake Functions

    SciTech Connect

    Ng, K.Y.; Bane, K,; /SLAC

    2012-06-11

    Sections 3.2.4 and 3.2.5 of the Handbook of Accelerator Physics and Engineering on Landau damping are combined and updated. The new addition includes impedances and wakes for multi-layer beam pipe, optical model, diffraction model, and cross-sectional transition.

  14. Space shuttle molecular and wake vacuum measurements

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Carignan, G. R.; Miller, E. R.

    1985-01-01

    The wake environment of the space shuttle is analyzed to determine whether it is feasible to perform ultrahigh vacuum experiments in or near the payload bay with the shuttle oriented such that the payload bay faces the antivelocity direction. Several mechanisms were considered by which molecules could approach the payload bay from this direction and their relative contributions to the wake environment are estimated. These mechanisms include ambient atmospheric molecules that have velocities in excess of the orbital velocity which can overtake the shuttle, ambient atmospheric molecules that are backscattered by collisions with the shuttle induced atmosphere, and self scattering from the induced atmosphere. These estimates are compared with the measurements made with the collimated mass spectrometer which was part of the Induced Environment Contamination Monitor flown on several of the early shuttle flights. Although the collimated mass spectrometer was not designed for this purpose and the instrument background for the species for which the collimator is effective is above the expected levels, upper limits can be established for these species in the wake environment which are consistent with the analysis. There was considerably more helium and argon observed in the wake direction than was predicted, however. Possible origins of these gases are discussed.

  15. Asymptotic behavior of a flat plate wake

    NASA Technical Reports Server (NTRS)

    Weygandt, James H.; Mehta, Rabindra D.

    1989-01-01

    An experimental study has been conducted to investigate the far-field, self-similar properties of a flat plate wake. A plane turbulent wake was generated at the trailing edge of a smooth splitter plate separating two legs of a Mixing Layer Wind Tunnel, with both initial boundary layers tripped. For the present study, both legs were operated at a free-steam velocity in the test section of 15 m/s, giving a Reynolds number based on wake momentum thickness of about 1750. Single profile measurements were obtained at five streamwise locations using a Pitot probe for the mean velocity measurements and a single cross-wire probe for the turbulence data, which included statistics up to third order. The mean flow data indicated a self-similar behavior beyond a streamwise distance equivalent to about 350 wake momentum thicknesses. However, the turbulence data show better collapse beyond a distance equivalent to about 500 momentum thicknesses, with all the measured peak Reynolds stresses achieving constant, asymptotic levels. The asymptotic mean flow behavior and peak primary stress levels agree well with theoretical predictions based on a constant eddy viscosity model. The present data also agree reasonably well with previous measurements, of which only one set extends into the self-similar region. Detailed comparisons with previous data are presented and discussed in this report.

  16. Wake County Public School System Design Guidelines.

    ERIC Educational Resources Information Center

    Wake County Public School System, Raleigh, NC.

    The Wake County Public School System has published its guidelines for planning and design of functional, cost effective, and durable educational facilities that are attractive and enhance the students' educational experience. The guidelines present basic planning requirement and design criteria for the entire construction process, including: codes…

  17. Radiative Forcing Over Ocean by Ship Wakes

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  18. Ram side of Wake Shield Facility

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The ram side of the Wake Shield Facility (WSF) is in the grasp of the Space Shuttle Discovery's Remote Manipulator System (RMS) arm in this 70mm frame. Clouds over the Atlantic Ocean and the blackness of space share the backdrop for the picture.

  19. Holographic flow visualization. [of aircraft wakes

    NASA Technical Reports Server (NTRS)

    Charwat, A. F.; Fourney, M. E.

    1976-01-01

    Holographic visualization techniques are presented of the vortex wake of a lifting wing. The motions of tracer particles in vortical flows are described along with the development of a liquid-drop tracer generator. An analysis is presented of the motion of particles of arbitrary density and size in solid body and potential vortex flows.

  20. Rarefaction shock in the near wake

    NASA Technical Reports Server (NTRS)

    Diebold, D.; Hershkowitz, N.; Eliezer, S.

    1987-01-01

    Laboratory experiments and fluid theory find a stationary rarefaction shock in the near wake of an electrically grounded obstacle placed in a steady state, supersonic plasma flow. The shock is only found when two electron temperatures, differing by at least an order of magnitude, are present. These shocks are analogous to rarefaction shocks in plasma free expansions.

  1. Wakes in the quark-gluon plasma

    SciTech Connect

    Chakraborty, Purnendu; Mustafa, Munshi G.; Thoma, Markus H.

    2006-11-01

    Using the high temperature approximation we study, within the linear response theory, the wake in the quark-gluon plasma by a fast parton owing to dynamical screening in the spacelike region. When the parton moves with a speed less than the average speed of the plasmon, we find that the wake structure corresponds to a screening charge cloud traveling with the parton with one sign flip in the induced charge density resulting in a Lennard-Jones type potential in the outward flow with a short range repulsive and a long range attractive part. On the other hand if the parton moves with a speed higher than that of plasmon, the wake structure in the induced charge density is found to have alternate sign flips and the wake potential in the outward flow oscillates analogous to Cerenkov-like wave generation with a Mach cone structure trailing the moving parton. The potential normal to the motion of the parton indicates a transverse flow in the system. We also calculate the potential due to a color dipole and discuss consequences of possible new bound states and J/{psi} suppression in the quark-gluon plasma.

  2. Sleep-wake as a biological rhythm.

    PubMed

    Lavie, P

    2001-01-01

    Evidence that the sleep-wake rhythm is generated endogenously has been provided by studies employing a variety of experimental paradigms such as sleep deprivation, sleep displacement, isolating subjects in environments free of time cues, or imposing on subjects sleep-wake schedules widely deviating from 24 hours. The initial observations obtained in isolated subjects revealed that the period of the endogenous circadian pacemaker regulating sleep is of approximately 25 hours. More recent studies, however, in which a more rigorous control of subjects' behavior was exerted, particularly over lighting conditions, have shown that the true periodicity of the endogenous pacemaker deviates from 24 hours by a few minutes only. Besides sleep propensity, the circadian pacemaker has been shown to regulate sleep consolidation, sleep stage structure, and electroencephalographic activities. The pattern of light exposure throughout the 24 hours appears to participate in the entrainment of the circadian pacemaker to the geophysical day-night cycle. Melatonin, the pineal hormone produced during the dark hours, participates in communicating both between the environmental light-dark cycle and the circadian pacemaker, and between the circadian pacemaker and the sleep-wake-generating mechanism. In contrast to prevailing views that have placed great emphasis on homeostatic sleep drive, recent data have revealed a potent circadian cycle in the drive for wakefulness, which is generated by the suprachiasmatic nucleus. This drive reaches a peak during the evening hours just before habitual bedtime.

  3. Active Wake Redirection Control to Improve Energy Yield (Poster)

    SciTech Connect

    Churchfield, M. J.; Fleming, P.; DeGeorge, E.; Bulder, B; White, S. M.

    2014-10-01

    Wake effects can dramatically reduce the efficiency of waked turbines relative to the unwaked turbines. Wakes can be deflected, or 'redirected,' by applying yaw misalignment to the turbines. Yaw misalignment causes part of the rotor thrust vector to be pointed in the cross-stream direction, deflecting the flow and the wake. Yaw misalignment reduces power production, but the global increase in wind plant power due to decreased wake effect creates a net increase in power production. It is also a fairly simple control idea to implement at existing or new wind plants. We performed high-fidelity computational fluid dynamics simulations of the wake flow of the proposed Fishermen's Atlantic City Windfarm (FACW) that predict that under certain waking conditions, wake redirection can increase plant efficiency by 10%. This means that by applying wake redirection control, for a given watersheet area, a wind plant can either produce more power, or the same amount of power can be produced with a smaller watersheet area. With the power increase may come increased loads, though, due to the yaw misalignment. If misalignment is applied properly, or if layered with individual blade pitch control, though, the load increase can be mitigated. In this talk we will discuss the concept of wake redirection through yaw misalignment and present our CFD results of the FACW project. We will also discuss the implications of wake redirection control on annual energy production, and finally we will discuss plans to implement wake redirection control at FACW when it is operational.

  4. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake....

  5. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake....

  6. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake....

  7. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake....

  8. Transverse wake field simulations for the ILC acceleration structure

    SciTech Connect

    Solyak, N.; Lunin, A.; Yakovlev, V.; /Fermilab

    2008-06-01

    Details of wake potential simulation in the acceleration structure of ILC, including the RF cavities and input/HOM couplers are presented. Transverse wake potential dependence is described versus the bunch length. Beam emittance dilution caused by main and HOM couplers is estimated, followed by a discussion of possible structural modifications allowing a reduction of transverse wake potential.

  9. 32 CFR 707.10 - Wake illumination light.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Wake illumination light. 707.10 Section 707.10... RESPECT TO ADDITIONAL STATION AND SIGNAL LIGHTS § 707.10 Wake illumination light. Naval vessels may display a white spot light located near the stern to illuminate the wake....

  10. Local Experience-Dependent Changes in the Wake EEG after Prolonged Wakefulness

    PubMed Central

    Hung, Ching-Sui; Sarasso, Simone; Ferrarelli, Fabio; Riedner, Brady; Ghilardi, M. Felice; Cirelli, Chiara; Tononi, Giulio

    2013-01-01

    Study Objectives: Prolonged wakefulness leads to a progressive increase in sleep pressure, reflected in a global increase in slow wave activity (SWA, 0.5-4.5 Hz) in the sleep electroencephalogram (EEG). A global increase in wake theta activity (5-9 Hz) also occurs. Recently, it was shown that prolonged wakefulness in rodents leads to signs of “local sleep” in an otherwise awake brain, accompanied by a slow/theta wave (2-6 Hz) in the local EEG that occurs at different times in different cortical areas. Compelling evidence in animals and humans also indicates that sleep is locally regulated by the amount of experience-dependent plasticity. Here, we asked whether the extended practice of tasks that involve specific brain circuits results in increased occurrence of local intermittent theta waves in the human EEG, above and beyond the global EEG changes previously described. Design: Participants recorded with high-density EEG completed 2 experiments during which they stayed awake ≥ 24 h practicing a language task (audiobook listening [AB]) or a visuomotor task (driving simulator [DS]). Setting: Sleep laboratory. Patients or Participants: 16 healthy participants (7 females). Interventions: Two extended wake periods. Measurements and Results: Both conditions resulted in global increases in resting wake EEG theta power at the end of 24 h of wake, accompanied by increased sleepiness. Moreover, wake theta power as well as the occurrence and amplitude of theta waves showed regional, task-dependent changes, increasing more over left frontal derivations in AB, and over posterior parietal regions in DS. These local changes in wake theta power correlated with similar local changes in sleep low frequencies including SWA. Conclusions: Extended experience-dependent plasticity of specific circuits results in a local increase of the wake theta EEG power in those regions, followed by more intense sleep, as reflected by SWA, over the same areas. Citation: Hung CS; Sarasso S

  11. PIV velocity measurements in the wake of an obstruction simulating a Taylor bubble in a duct

    SciTech Connect

    Vassallo, P.; Kumar, R.

    1997-06-01

    Mean velocity measurements in the wake of an obstruction simulating a Taylor bubble (or slug) have been obtained using Particle Image Velocimetry (PIV) in a duct. Two flow rates were established: one represented the flow behind a large gas slug rising in quiescent fluid and the other represented an idealized slug rising with a higher relative velocity, as typically found in higher void fraction churn-turbulent flow. The results indicate that, in a reference frame fixed to the slug, the flow around the sides of the slug behaves like wall bounded jets which eventually merge downstream of the slug. The ratio of wake volume to slug volume is nearly the same for both Reynolds numbers tested (i.e., 3.0 at Re = 3,628 and 2.9 at Re = 7.257) although the measurements suggest that the wake size decreases somewhat as the Reynolds number is increased.

  12. Wake-induced unsteady stagnation-region heat-transfer measurements

    NASA Technical Reports Server (NTRS)

    Magari, P. J.; Lagraff, L. E.

    1992-01-01

    Results of an experimental investigation of wake-induced unsteady heat transfer in the stagnation region of a cylinder are presented. A quasi-steady representation of the stator/rotor interaction in a gas turbine using two stationary cylinders in crossflow is created. Time-averaged and time-resolved heat-transfer results are obtained over a wide range of Reynolds numbers at two Mach numbers: one incompressible and one transonic. The augmentation of the heat transfer in the stagnation region due to wake unsteadiness is documented by comparison with isolated cylinder tests. The time-averaged heat-transfer rate at the stagnation line, expressed in terms of the Frossling number, is found to reach a maximum independent of the Reynolds number. The power spectra and cross correlation of the heat-transfer signals in the stagnation region reveal the importance of large vortical structures shed from the upstream wake generator.

  13. The effect of acoustic forcing on trailing edge separation and near wake development of an airfoil

    NASA Technical Reports Server (NTRS)

    Huang, L. S.; Bryant, T. D.; Maestrello, L.

    1988-01-01

    An experimental study was conducted to investigate the effect of acoustic forcing on flow fields near the trailing edge of a symmetric airfoil at zero angle of attack. At low chord Reynolds numbers, the boundary layers separate from the surfaces in the rear part of the airfoil and create recirculation regions near the trailing edge. It is shown that with the introduction of acoustic forcing through a slot in the vicinity of the separation point, periodic large-scale structures are generated in the trailing edge region. Significant reduction of trailing edge separation is achieved. It is also found that the most effective forcing frequency to control trailing edge separation is the wake vortex shedding frequency. As a result of forcing, applied only on the upper surface, the upper boundary layer is accelerated and the flow over the lower surface decelerated. Consequently, an asymmetric wake is formed. The results presented indicate that the development of the near wake varies with forcing conditions.

  14. [Simulation of UV spectra from the wake of a stony meteor in the upper atmosphere].

    PubMed

    Zhang, Da-wei; Chen, Bo

    2005-11-01

    For stony meteors thrusting through a region with an altitude between 100-90 km in the upper atmosphere at different initial geocentric velocities, the effective temperatures are calculated based on Sparrow's particle-collision theory. Assuming different mixture ratios, particle number densities of certain dominant components that might exist in the wake of a stony meteor at a velocity of 72 km x s(-1) are given. Using a large-scale spectral synthesis code called Cloudy, UV radiation within the 240-400 nm band of the wake of such a meteor is simulated, and relative intensities of several expected strong emission lines are predicted. Comparison shows that our prediction of the spectrum of a meteor wake, which has an effective temperature of 5 680 K and a fractional vapor pressure of 0.1 Pa, is fairly close to the observational results.

  15. Vortex research facility improvements and preliminary density stratification effects on vortex wakes

    NASA Technical Reports Server (NTRS)

    Satran, D. R.; Holbrook, G. T.; Greene, G. C.; Neuhart, D.

    1985-01-01

    Recent modernization of NASA's Vortex Research Facility is described. The facility has a 300-ft test section, scheduled for a 300-ft extension, with constant test speeds of the model up to 100 ft/sec. The data acquisition hardware and software improvements included the installation of a 24-channel PCM system onboard the research vehicle, and a large dedicated 16-bit minicomputer. Flow visualization of the vortex wake in the test section is by particle seeding, and a thin sheet of argon laser light perpendicular to the line of flight; detailed flow field measurements are made with a laser velocimeter optics system. The improved experimental capabilities of the facility were used in a study of atmospheric stratification effects on wake vortex decay, showing that the effects of temperature gradient must be taken into account to avoid misleading conclusions in wake vortex research.

  16. On wakefulness fluctuations as a source of BOLD functional connectivity dynamics.

    PubMed

    Haimovici, Ariel; Tagliazucchi, Enzo; Balenzuela, Pablo; Laufs, Helmut

    2017-07-19

    Human brain dynamics and functional connectivity fluctuate over a range of temporal scales in coordination with internal states and environmental demands. However, the neurobiological significance and consequences of functional connectivity dynamics during rest have not yet been established. We show that the coarse-grained clustering of whole-brain dynamic connectivity measured with magnetic resonance imaging reveals discrete patterns (dynamic connectivity states) associated with wakefulness and sleep. We validate this using EEG in healthy subjects and patients with narcolepsy and by matching our results with previous findings in a large collaborative database. We also show that drowsiness may account for previous reports of metastable connectivity states associated with different levels of functional integration. This implies that future studies of transient functional connectivity must independently monitor wakefulness. We conclude that a possible neurobiological significance of dynamic connectivity states, computed at a sufficiently coarse temporal scale, is that of fluctuations in wakefulness.

  17. Synergistic Effects of Turbine Wakes and Atmospheric Stability on Power Production at an Onshore Wind Farm

    SciTech Connect

    Wharton, S; Lundquist, J K; Marjanovic, N

    2012-01-25

    recovers to its inflow velocity is dependent on the amount ambient turbulence, the amount of wind shear, and topographical and structural effects. The maximum velocity deficit is estimated to occur at 1-2 D but can be longer under low levels of ambient turbulence. Our understanding of turbine wakes comes from wind tunnel experiments, field experiments, numerical simulations, and from studies utilizing both experimental and modeling methods. It is well documented that downwind turbines in multi-Megawatt wind farms often produce less power than upwind turbine rows. These wake-induced power losses have been estimated from 5% to up to 40% depending on the turbine operating settings (e.g., thrust coefficient), number of turbine rows, turbine size (e.g., rotor diameter and hub-height), wind farm terrain, and atmospheric flow conditions (e.g., ambient wind speed, turbulence, and atmospheric stability). Early work by Elliott and Cadogan suggested that power data for different turbulent conditions be segregated to distinguish the effects of turbulence on wind farm power production. This may be especially important for downwind turbines within wind farms, as chaotic and turbulent wake flows increase stress on downstream turbines. Impacts of stability on turbine wakes and power production have been examined for a flat terrain, moderate size (43 turbines) wind farm in Minnesota and for an offshore, 80 turbine wind farm off the coast of Denmark. Conzemius found it difficult to distinguish wakes (i.e., downwind velocity deficits) when the atmosphere was convective as large amounts of scatter were present in the turbine nacelle wind speed data. This suggested that high levels of turbulence broke-up the wake via large buoyancy effects, which are generally on the order of 1 km in size. On the other hand, they found pronounced wake effects when the atmosphere was very stable and turbulence was either suppressed or the length scale was reduced as turbulence in this case was mechanically

  18. Helicopter rotor wake geometry and its influence in forward flight. Volume 2: Wake geometry charts

    NASA Technical Reports Server (NTRS)

    Egolf, T. A.; Landgrebe, A. J.

    1983-01-01

    Isometric and projection view plots, inflow ratio nomographs, undistorted axial displacement nomographs, undistorted longitudinal and lateral coordinates, generalized axial distortion nomographs, blade/vortex passage charts, blade/vortex intersection angle nomographs, and fore and aft wake boundary charts are discussed. Example condition, in flow ratio, undistorted axial location, longitudinal and lateral coordinates, axial coordinates distortions, blade/tip vortex intersections, angle of intersection, and fore and aft wake boundaries are also discussed.

  19. Sleep/Wake Modulation of Polysomnographic Patterns has Prognostic Value in Pediatric Unresponsive Wakefulness Syndrome

    PubMed Central

    Molteni, Erika; Avantaggiato, Paolo; Formica, Francesca; Pastore, Valentina; Colombo, Katia; Galbiati, Sara; Arrigoni, Filippo; Strazzer, Sandra

    2016-01-01

    Study Objective: Sleep patterns of pediatric patients in unresponsive wakefulness syndrome (UWS) have been poorly investigated, and the prognostic potential of polysomnography (PSG) in these subjects is still uncertain. The goal of the study was to identify quantitative PSG indices to be applied as possible prognostic markers in pediatric UWS. Methods: We performed PSG in 27 children and adolescents with UWS due to acquired brain damage in the subacute phase. Patients underwent neurological examination and clinical assessment with standardized scales. Outcome was assessed after 36 mo. PSG tracks were scored for sleep stages and digitally filtered. The spectral difference between sleep and wake was computed, as the percent difference at specific spectral frequencies. We computed (1) the ratio between percent power in the delta and alpha frequency bands, (2) the ratio between alpha and theta frequency bands, and (3) the power ratio index, during wake and sleep, as proposed in previous literature. The predictive role of several clinical and PSG measures was tested by logistic regression. Results: Correlation was found between the differential measures of electroencephalographic activity during sleep and wake in several frequency bands and the clinical scales (Glasgow Outcome Score, Level of Cognitive Functioning Assessment Scale, and Disability Rating Scale) at follow-up; the Sleep Patterns for Pediatric Unresponsive Wakefulness Syndrome (SPPUWS) scores correlated with the differential measures, and allowed outcome prediction with 96.3% of accuracy. Conclusions: The differential measure of electroencephalographic activity during sleep and wake in the beta band and, more incisively, SPPUWS can help in determining the capability to recover from pediatric UWS well before the confirmation provided by suitable clinical scales. Citation: Molteni E, Avantaggiato P, Formica F, Pastore V, Colombo K, Galbiati S, Arrigoni F, Strazzer S. Sleep/wake modulation of polysomnographic

  20. A Study of the Development of Steady and Periodic Unsteady Turbulent Wakes Through Curved Channels at Positive, Zero, and Negative Streamwise Pressure Gradients, Part 1

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; John, J.

    1996-01-01

    The turbomachinery wake flow development is largely influenced by streamline curvature and streamwise pressure gradient. The objective of this investigation is to study the development of the wake under the influence of streamline curvature and streamwise pressure gradient. The experimental investigation is carried out in two phases. The first phase involves the study of the wake behind a stationary circular cylinder (steady wake) in curved channels at positive, zero, and negative streamwise pressure gradients. The mean velocity and Reynolds stress components are measured using a X-hot-film probe. The measured quantities obtained in probe coordinates are transformed to a curvilinear coordinate system along the wake centerline and are presented in similarity coordinates. The results of the steady wakes suggest strong asymmetry in velocity and Reynolds stress components. However, the velocity defect profiles in similarity coordinates are almost symmetrical and follow the same distribution as the zero pressure gradient straight wake. The results of Reynolds stress distributions show higher values on the inner side of the wake than the outer side. Other quantities, including the decay of maximum velocity defect, growth of wake width, and wake integral parameters, are also presented for the three different pressure gradient cases of steady wake. The decay rate of velocity defect is fastest for the negative streamwise pressure gradient case and slowest for the positive pressure gradient case. Conversely, the growth of the wake width is fastest for the positive streamwise pressure gradient case and slowest for the negative streamwise pressure gradient. The second phase studies the development of periodic unsteady wakes generated by the circular cylinders of the rotating wake generator in a curved channel at zero streamwise pressure gradient. Instantaneous velocity components of the periodic unsteady wakes, measured with a stationary X-hot-film probe, are analyzed by the