Pettit, Neil E; Naiman, Robert J
2005-09-01
We investigated whether large woody debris (LWD) piles create nodes of environmental resources that contribute to the recovery of riparian vegetation and that also augment the heterogeneity and resilience of the riverine system. River and riparian systems are typified by a large degree of heterogeneity and complex interactions between abiotic and biotic elements. Disturbance such as floods re-distribute the resources, such as LWD, and thereby add greater complexity to the system. We examined this issue on a semi-arid savanna river where approximately a 100-year return interval flood in 2000 uprooted vegetation and deposited substantial LWD. We investigated the micro-environment within the newly established LWD piles and compared this with conditions at adjacent reference sites containing no LWD. We found soil nutrient concentrations to be significantly higher in LWD piles compared with the reference plots (total N +19%, available P +51%, and total C +36%). Environmental variables within LWD piles and reference sites varied with landscape position in the river-riparian landscape and with LWD pile characteristics. Observed differences were generally between piles located in the terrestrial and riparian areas as compared to piles located on the macro-channel floor. After 3 years the number and cover of woody species were significantly higher when associated with LWD piles, regardless of landscape position or pile type. We conclude that LWD piles formed after large floods act as resource nodes by accumulating fine sediments and by retaining soil nutrients and soil moisture. The subsequent influence of LWD deposition on riparian heterogeneity is discerned at several spatial scales including within and between LWD piles, across landscape positions and between channel types. LWD piles substantially influence the initial developmental of riparian vegetation as the system regenerates following large destructive floods.
Hatt, Mathieu; Cheze-le Rest, Catherine; van Baardwijk, Angela; Lambin, Philippe; Pradier, Olivier; Visvikis, Dimitris
2011-11-01
The objectives of this study were to investigate the relationship between CT- and (18)F-FDG PET-based tumor volumes in non-small cell lung cancer (NSCLC) and the impact of tumor size and uptake heterogeneity on various approaches to delineating uptake on PET images. Twenty-five NSCLC cancer patients with (18)F-FDG PET/CT were considered. Seventeen underwent surgical resection of their tumor, and the maximum diameter was measured. Two observers manually delineated the tumors on the CT images and the tumor uptake on the corresponding PET images, using a fixed threshold at 50% of the maximum (T(50)), an adaptive threshold methodology, and the fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum diameters of the delineated volumes were compared with the histopathology reference when available. The volumes of the tumors were compared, and correlations between the anatomic volume and PET uptake heterogeneity and the differences between delineations were investigated. All maximum diameters measured on PET and CT images significantly correlated with the histopathology reference (r > 0.89, P < 0.0001). Significant differences were observed among the approaches: CT delineation resulted in large overestimation (+32% ± 37%), whereas all delineations on PET images resulted in underestimation (from -15% ± 17% for T(50) to -4% ± 8% for FLAB) except manual delineation (+8% ± 17%). Overall, CT volumes were significantly larger than PET volumes (55 ± 74 cm(3) for CT vs. from 18 ± 25 to 47 ± 76 cm(3) for PET). A significant correlation was found between anatomic tumor size and heterogeneity (larger lesions were more heterogeneous). Finally, the more heterogeneous the tumor uptake, the larger was the underestimation of PET volumes by threshold-based techniques. Volumes based on CT images were larger than those based on PET images. Tumor size and tracer uptake heterogeneity have an impact on threshold-based methods, which should not be used for the delineation of cases of large heterogeneous NSCLC, as these methods tend to largely underestimate the spatial extent of the functional tumor in such cases. For an accurate delineation of PET volumes in NSCLC, advanced image segmentation algorithms able to deal with tracer uptake heterogeneity should be preferred.
Islands and Bridges: Making Sense of Marked Nodes in Large Graphs
2013-01-01
our methods to heterogeneous and time-evolving graphs. References [1] Nouf M. Kh. Alsudairy, Vijay V. Raghavan, Alaaeldin M. Hafez, and Hassan I...multi-relational graphs. SIGKDD Explor., 7(2):56–63, 2005. [24] Jason Riedy, David A. Bader, Karl Jiang, Pushkar Pande, , and Richa Sharma . Detecting
Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.
Rubin, Ilan N; Doebeli, Michael
2017-12-21
Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into the evolutionary dynamics, effectively guaranteeing eventual branching. Large mutations allow the second order disruptive selection to dominate the first order selection toward phenotypic heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Lever, Anne G.; Ridderinkhof, K. Richard; Marsman, Maarten; Geurts, Hilde M.
2017-01-01
As a large heterogeneity is observed across studies on interference control in autism spectrum disorder (ASD), research may benefit from the use of a cognitive framework that models specific processes underlying reactive and proactive control of interference. Reactive control refers to the expression and suppression of responses and proactive…
Scales of Heterogeneities in the Continental Crust and Upper Mantle
NASA Astrophysics Data System (ADS)
Tittgemeyer, M.; Wenzel, F.; Ryberg, T.; Fuchs, K.
1999-09-01
A seismological characterization of crust and upper mantle can refer to large-scale averages of seismic velocities or to fluctuations of elastic parameters. Large is understood here relative to the wavelength used to probe the earth.¶In this paper we try to characterize crust and upper mantle by the fluctuations in media properties rather than by their average velocities. As such it becomes evident that different scales of heterogeneities prevail in different layers of crust and mantle. Although we cannot provide final models and an explanation of why these different scales exist, we believe that scales of inhomogeneities carry significant information regarding the tectonic processes that have affected the lower crust, the lithospheric and the sublithospheric upper mantle.¶We focus on four different types of small-scale inhomogeneities (1) the characteristics of the lower crust, (2) velocity fluctuations in the uppermost mantle, (3) scattering in the lowermost lithosphere and on (4) heterogeneities in the mantle transition zone.
NASA Astrophysics Data System (ADS)
Kwee, Edward; Peterson, Alexander; Stinson, Jeffrey; Halter, Michael; Yu, Liya; Majurski, Michael; Chalfoun, Joe; Bajcsy, Peter; Elliott, John
2018-02-01
Induced pluripotent stem cells (iPSCs) are reprogrammed cells that can have heterogeneous biological potential. Quality assurance metrics of reprogrammed iPSCs will be critical to ensure reliable use in cell therapies and personalized diagnostic tests. We present a quantitative phase imaging (QPI) workflow which includes acquisition, processing, and stitching multiple adjacent image tiles across a large field of view (LFOV) of a culture vessel. Low magnification image tiles (10x) were acquired with a Phasics SID4BIO camera on a Zeiss microscope. iPSC cultures were maintained using a custom stage incubator on an automated stage. We implement an image acquisition strategy that compensates for non-flat illumination wavefronts to enable imaging of an entire well plate, including the meniscus region normally obscured in Zernike phase contrast imaging. Polynomial fitting and background mode correction was implemented to enable comparability and stitching between multiple tiles. LFOV imaging of reference materials indicated that image acquisition and processing strategies did not affect quantitative phase measurements across the LFOV. Analysis of iPSC colony images demonstrated mass doubling time was significantly different than area doubling time. These measurements were benchmarked with prototype microsphere beads and etched-glass gratings with specified spatial dimensions designed to be QPI reference materials with optical pathlength shifts suitable for cell microscopy. This QPI workflow and the use of reference materials can provide non-destructive traceable imaging method for novel iPSC heterogeneity characterization.
Research on key technologies of data processing in internet of things
NASA Astrophysics Data System (ADS)
Zhu, Yangqing; Liang, Peiying
2017-08-01
The data of Internet of things (IOT) has the characteristics of polymorphism, heterogeneous, large amount and processing real-time. The traditional structured and static batch processing method has not met the requirements of data processing of IOT. This paper studied a middleware that can integrate heterogeneous data of IOT, and integrated different data formats into a unified format. Designed a data processing model of IOT based on the Storm flow calculation architecture, integrated the existing Internet security technology to build the Internet security system of IOT data processing, which provided reference for the efficient transmission and processing of IOT data.
Fan, Yu; Xi, Liu; Hughes, Daniel S T; Zhang, Jianjun; Zhang, Jianhua; Futreal, P Andrew; Wheeler, David A; Wang, Wenyi
2016-08-24
Subclonal mutations reveal important features of the genetic architecture of tumors. However, accurate detection of mutations in genetically heterogeneous tumor cell populations using next-generation sequencing remains challenging. We develop MuSE ( http://bioinformatics.mdanderson.org/main/MuSE ), Mutation calling using a Markov Substitution model for Evolution, a novel approach for modeling the evolution of the allelic composition of the tumor and normal tissue at each reference base. MuSE adopts a sample-specific error model that reflects the underlying tumor heterogeneity to greatly improve the overall accuracy. We demonstrate the accuracy of MuSE in calling subclonal mutations in the context of large-scale tumor sequencing projects using whole exome and whole genome sequencing.
NASA Astrophysics Data System (ADS)
Xie, S.; Tackley, P. J.
2003-12-01
This presentation focuses on the seismic signature of mantle heterogeneity associated with crustal differentiation and segregation in the lower mantle. Segregation of subducted oceanic crust above the CMB has often been invoked as a way of explaining the isotopic signature of OIB geochemical endmembers such as HIMU. Here a mantle convection model that includes melting-induced differentiation and plate tectonics is run for billions of years and the resulting thermo-chemical heterogeneity is studied. Statistical diagnostics such as radial correlation functions (Jordan et al., 1993) and spectral heterogeneity maps (Tackley et al., 1994) are used to characterize the observational signature of the thermo-chemical structures and compare them to global seismic tomographic models. In the reference case, crust is denser than the background mantle at the CMB. Due to this density contrast, the crustal material forms a thick and dense layer at the bottom of the mantle, although the layer interface is not sharp as is commonly obtained in models where a layer is inserted a priori. An enormous amount of long-wavelength volumetric heterogeneity is found in the lower mantle. The presence of oceanic crust near the surface also contributes to heterogeneity at the top of the mantle. In cases where the subducted crust is neutrally buoyant or buoyant in the deepest mantle, a large amount of heterogeneity instead exists in the the mid-mantle region, which is not observed in tomographic models of the real Earth. Unlike the reference case with a thick layer at the bottom of the mantle, these cases have heterogeneity right at the CMB, and this strong heterogeneity exists at both short and long wavelength. When comparing to Earth, it appears that models in which dense subducted crust settles into a layer above the CMB are consistent with constraints from seismic tomography; such a layer is therefore a viable location for the storage of geochemical endmembers.
Robust measurement of telomere length in single cells
Wang, Fang; Pan, Xinghua; Kalmbach, Keri; Seth-Smith, Michelle L.; Ye, Xiaoying; Antumes, Danielle M. F.; Yin, Yu; Liu, Lin; Keefe, David L.; Weissman, Sherman M.
2013-01-01
Measurement of telomere length currently requires a large population of cells, which masks telomere length heterogeneity in single cells, or requires FISH in metaphase arrested cells, posing technical challenges. A practical method for measuring telomere length in single cells has been lacking. We established a simple and robust approach for single-cell telomere length measurement (SCT-pqPCR). We first optimized a multiplex preamplification specific for telomeres and reference genes from individual cells, such that the amplicon provides a consistent ratio (T/R) of telomeres (T) to the reference genes (R) by quantitative PCR (qPCR). The average T/R ratio of multiple single cells corresponded closely to that of a given cell population measured by regular qPCR, and correlated with those of telomere restriction fragments (TRF) and quantitative FISH measurements. Furthermore, SCT-pqPCR detected the telomere length for quiescent cells that are inaccessible by quantitative FISH. The reliability of SCT-pqPCR also was confirmed using sister cells from two cell embryos. Telomere length heterogeneity was identified by SCT-pqPCR among cells of various human and mouse cell types. We found that the T/R values of human fibroblasts at later passages and from old donors were lower and more heterogeneous than those of early passages and from young donors, that cancer cell lines show heterogeneous telomere lengths, that human oocytes and polar bodies have nearly identical telomere lengths, and that the telomere lengths progressively increase from the zygote, two-cell to four-cell embryo. This method will facilitate understanding of telomere heterogeneity and its role in tumorigenesis, aging, and associated diseases. PMID:23661059
Estimating Animal Abundance in Ground Beef Batches Assayed with Molecular Markers
Hu, Xin-Sheng; Simila, Janika; Platz, Sindey Schueler; Moore, Stephen S.; Plastow, Graham; Meghen, Ciaran N.
2012-01-01
Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP) markers, from a large scale beef grinding facility. Results show that between 411∼1367 animals were present in six manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing finished meat products back to source. PMID:22479559
Using Computing and Data Grids for Large-Scale Science and Engineering
NASA Technical Reports Server (NTRS)
Johnston, William E.
2001-01-01
We use the term "Grid" to refer to a software system that provides uniform and location independent access to geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. These emerging data and computing Grids promise to provide a highly capable and scalable environment for addressing large-scale science problems. We describe the requirements for science Grids, the resulting services and architecture of NASA's Information Power Grid (IPG) and DOE's Science Grid, and some of the scaling issues that have come up in their implementation.
Brazhnik, Olga; Jones, John F.
2007-01-01
Producing reliable information is the ultimate goal of data processing. The ocean of data created with the advances of science and technologies calls for integration of data coming from heterogeneous sources that are diverse in their purposes, business rules, underlying models and enabling technologies. Reference models, Semantic Web, standards, ontology, and other technologies enable fast and efficient merging of heterogeneous data, while the reliability of produced information is largely defined by how well the data represent the reality. In this paper we initiate a framework for assessing the informational value of data that includes data dimensions; aligning data quality with business practices; identifying authoritative sources and integration keys; merging models; uniting updates of varying frequency and overlapping or gapped data sets. PMID:17071142
The processing and collaborative assay of a reference endotoxin.
Hochstein, H D; Mills, D F; Outschoorn, A S; Rastogi, S C
1983-10-01
A preparation of Escherichia coli bacterial endotoxin, the latest of successive lots drawn from bulk material which has been studied in laboratory tests and in animals and humans for suitability as a reference endotoxin, has been filled and lyophilized in a large number of vials. Details of its characterization, including stability studies, are given. A collaborative assay was conducted by 14 laboratories using gelation end-points with Limulus amebocyte lysates. Approximate continuity of the unit of potency with the existing national unit was achieved. The lot was made from the single final bulk but had to be freeze-dried in five sublimators. An assessment was therefore made for possible heterogeneity. The results indicate that the lot can be used as a large homogeneous quantity. The advantages of using it widely as a standard for endotoxins are discussed.
Statistics of chemical gradients in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Le Borgne, T.; Huck, P. D.; Dentz, M.; Villermaux, E.
2017-12-01
As they create chemical disequilibrium and drive mixing fluxes, spatial gradients in solute concentrations exert a strong control on mixing and biogeochemical reactions in the subsurface. Large concentration gradients may develop in particular at interfaces between surface water and groundwater bodies, such as hyporheic zones, sea water - surface water interfaces or recharge areas. They also develop around contaminant plumes and fluids injected in subsurface operations. While macrodispersion theories predict smooth gradients, decaying in time due to dispersive dissipation, we show that concentration gradients are sustained by flow heterogeneity and have broadly distributed values. We present a general theory predicting the statistics of concentration gradients from the flow heterogeneity (Le Borgne et al., 2017). Analytical predictions are validated from high resolution simulations of transport in heterogeneous Darcy fields ranging from low to high permeability variances and low to high Peclet numbers. This modelling framework hence opens new perspectives for quantifying the dynamics of chemical gradients and the kinetics of associated biogeochemical reactions in heterogeneous subsurface environments.Reference:Le Borgne T., P.D. Huck, M. Dentz and E. Villermaux (2017) Scalar gradients in stirred mixtures and the deconstruction of random fields, J. of Fluid Mech. vol. 812, pp. 578-610 doi:10.1017/jfm.2016.799
Dynamical consequences of mantle heterogeneity in two-phase models of mid-ocean ridges
NASA Astrophysics Data System (ADS)
Katz, R. F.
2010-12-01
The mid-ocean ridge system, over 50,000 km in length, samples the magmatic products of a large swath of the asthenosphere. It provides our best means to assess the heterogeneity structure of the upper mantle. Interpretation of the diverse array of observations of MOR petrology, geochemistry, tomography, etc requires models that can map heterogeneity structure onto predictions testable by comparison with these observations. I report on progress to this end; in particular, I describe numerical models of coupled magma/mantle dynamics at mid-ocean ridges [1,2]. These models incorporate heterogeneity in terms of a simple, two-component thermochemical system with specified amplitude and spatial distribution. They indicate that mantle heterogeneity has significant fluid-dynamical consequences for both mantle and magmatic flow. Models show that the distribution of enrichment can lead to asymmetry in the strength of upwelling across the ridge-axis and channelised magmatic transport to the axis. Furthermore, heterogeneity can cause off-axis upwelling of partially molten diapirs, trapping of enriched melts off-axis, and re-fertilization of the mantle by pooled and refrozen melts. Predicted consequences of geochemical heterogeneity may also be considered. References: [1] Katz, RF, (2008); Magma dynamics with the Enthalpy Method: Benchmark Solutions and Magmatic Focusing at Mid-ocean Ridges. Journal of Petrology, doi: 10.1093/petrology/egn058. [2] Katz RF, (2010); Porosity-driven convection and asymmetry beneath mid-ocean ridges. Submitted to G3.
Modeling a Large Heterogeneous Set of CIRS Spectra of Titan: The ν4 band of 12C2HD
NASA Astrophysics Data System (ADS)
Boyle, Robert J.; Jennings, Donald, Dr.; Bjoraker, Gordon, Dr.
2018-01-01
A technique has been developed which allows global average abundances of trace species to be derived from large heterogeneous data sets using the Spectral Synthsis Program [SSP] originally developed by Kunde & McGuire (1974). The method was applied to a large average of 24,000 individual spectra of Titan from the Composite Infrared Spectrometer (CIRS) on Cassini. The spectra were centered on the 581.6 cm‑1 ν4 band of 12C2HD and were taken in order to obtain a global average abundance for this species. The spectra covered a wide range of planetary latitudes and emission angles. The results obtained are generally in agreement with those derived by Coustenis et al. (2008) derived from their analysis of the ν5 band of this species at 678 cm‑1.ReferencesCoustenis, A., Jennings, D. E., Jolly, A., Bnilan, Y., Nixon, C. A., Vinatier, S., Gautier, D., Bjoraker, G. L., Romani, P. N., Carlson, R. C., & Flasar, F. 2008, Icarus, 197, 539-548.Kunde, V. G. & Maguire, W. C. 1974, JQSRT, 14, 803-817
Battlespace Awareness: Heterogeneous Sensor Maps of Large Scale, Complex Environments
2017-06-13
reference frames enable a system designer to describe the position of any sensor or platform at any point of time. This section introduces the...analysis to evaluate the quality of reconstructions created by our algorithms. CloudCompare is an open-source tool designed for this purpose [65]. In...structure of the data. The data term seeks to keep the proposed solution (u) similar to the originally observed values ( f ). A systems designer must
2010-01-01
Background The development of DNA microarrays has facilitated the generation of hundreds of thousands of transcriptomic datasets. The use of a common reference microarray design allows existing transcriptomic data to be readily compared and re-analysed in the light of new data, and the combination of this design with large datasets is ideal for 'systems'-level analyses. One issue is that these datasets are typically collected over many years and may be heterogeneous in nature, containing different microarray file formats and gene array layouts, dye-swaps, and showing varying scales of log2- ratios of expression between microarrays. Excellent software exists for the normalisation and analysis of microarray data but many data have yet to be analysed as existing methods struggle with heterogeneous datasets; options include normalising microarrays on an individual or experimental group basis. Our solution was to develop the Batch Anti-Banana Algorithm in R (BABAR) algorithm and software package which uses cyclic loess to normalise across the complete dataset. We have already used BABAR to analyse the function of Salmonella genes involved in the process of infection of mammalian cells. Results The only input required by BABAR is unprocessed GenePix or BlueFuse microarray data files. BABAR provides a combination of 'within' and 'between' microarray normalisation steps and diagnostic boxplots. When applied to a real heterogeneous dataset, BABAR normalised the dataset to produce a comparable scaling between the microarrays, with the microarray data in excellent agreement with RT-PCR analysis. When applied to a real non-heterogeneous dataset and a simulated dataset, BABAR's performance in identifying differentially expressed genes showed some benefits over standard techniques. Conclusions BABAR is an easy-to-use software tool, simplifying the simultaneous normalisation of heterogeneous two-colour common reference design cDNA microarray-based transcriptomic datasets. We show BABAR transforms real and simulated datasets to allow for the correct interpretation of these data, and is the ideal tool to facilitate the identification of differentially expressed genes or network inference analysis from transcriptomic datasets. PMID:20128918
The 3D Reference Earth Model: Status and Preliminary Results
NASA Astrophysics Data System (ADS)
Moulik, P.; Lekic, V.; Romanowicz, B. A.
2017-12-01
In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the reference dataset. This procedure allows us to evaluate the extent of consistency in imaging heterogeneity at various depths and between spatial scales.
Prefrontal Cortex and Impulsive Decision Making
Kim, Soyoun; Lee, Daeyeol
2010-01-01
Impulsivity refers to a set of heterogeneous behaviors that are tuned suboptimally along certain temporal dimensions. Impulsive inter-temporal choice refers to the tendency to forego a large but delayed reward and to seek an inferior but more immediate reward, whereas impulsive motor responses also result when the subjects fail to suppress inappropriate automatic behaviors. In addition, impulsive actions can be produced when too much emphasis is placed on speed rather than accuracy in a wide range of behaviors, including perceptual decision making. Despite this heterogeneous nature, the prefrontal cortex and its connected areas, such as the basal ganglia, play an important role in gating impulsive actions in a variety of behavioral tasks. Here, we describe key features of computations necessary for optimal decision making, and how their failures can lead to impulsive behaviors. We also review the recent findings from neuroimaging and single-neuron recording studies on the neural mechanisms related to impulsive behaviors. Converging approaches in economics, psychology, and neuroscience provide a unique vista for better understanding the nature of behavioral impairments associated with impulsivity. PMID:20728878
Quasi-heterogeneous efficient 3-D discrete ordinates CANDU calculations using Attila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preeti, T.; Rulko, R.
2012-07-01
In this paper, 3-D quasi-heterogeneous large scale parallel Attila calculations of a generic CANDU test problem consisting of 42 complete fuel channels and a perpendicular to fuel reactivity device are presented. The solution method is that of discrete ordinates SN and the computational model is quasi-heterogeneous, i.e. fuel bundle is partially homogenized into five homogeneous rings consistently with the DRAGON code model used by the industry for the incremental cross-section generation. In calculations, the HELIOS-generated 45 macroscopic cross-sections library was used. This approach to CANDU calculations has the following advantages: 1) it allows detailed bundle (and eventually channel) power calculationsmore » for each fuel ring in a bundle, 2) it allows the exact reactivity device representation for its precise reactivity worth calculation, and 3) it eliminates the need for incremental cross-sections. Our results are compared to the reference Monte Carlo MCNP solution. In addition, the Attila SN method performance in CANDU calculations characterized by significant up scattering is discussed. (authors)« less
Søeby, Karen; Jensen, Peter Bjødstrup; Werge, Thomas; Sørensen, Steen
2015-09-01
The knowledge of physiological fluctuation and variation of even commonly used biochemical quantities in extreme age groups and during development is sparse. This challenges the clinical interpretation and utility of laboratory tests in these age groups. To explore the utility of hospital laboratory data as a source of information, we analyzed enzymatic plasma creatinine as a model analyte in two large pediatric hospital samples. Plasma creatinine measurements from 9700 children aged 0-18 years were obtained from hospital laboratory databases and partitioned into high-resolution gender- and age-groups. Normal probability plots were used to deduce parameters of the normal distributions from healthy creatinine values in the mixed hospital datasets. Furthermore, temporal trajectories were generated from repeated measurements to examine developmental patterns in periods of changing creatinine levels. Creatinine shows great age dependence from birth throughout childhood. We computed and replicated 95% reference intervals in narrow gender and age bins and showed them to be comparable to those determined in healthy population studies. We identified pronounced transitions in creatinine levels at different time points after birth and around the early teens, which challenges the establishment and usefulness of reference intervals in those age groups. The study documents that hospital laboratory data may inform on the developmental aspects of creatinine, on periods with pronounced heterogeneity and valid reference intervals. Furthermore, part of the heterogeneity in creatinine distribution is likely due to differences in biological and chronological age of children and should be considered when using age-specific reference intervals.
Coarse Scale In Situ Albedo Observations over Heterogeneous Land Surfaces and Validation Strategy
NASA Astrophysics Data System (ADS)
Xiao, Q.; Wu, X.; Wen, J.; BAI, J., Sr.
2017-12-01
To evaluate and improve the quality of coarse-pixel land surface albedo products, validation with ground measurements of albedo is crucial over the spatially and temporally heterogeneous land surface. The performance of albedo validation depends on the quality of ground-based albedo measurements at a corresponding coarse-pixel scale, which can be conceptualized as the "truth" value of albedo at coarse-pixel scale. The wireless sensor network (WSN) technology provides access to continuously observe on the large pixel scale. Taking the albedo products as an example, this paper was dedicated to the validation of coarse-scale albedo products over heterogeneous surfaces based on the WSN observed data, which is aiming at narrowing down the uncertainty of results caused by the spatial scaling mismatch between satellite and ground measurements over heterogeneous surfaces. The reference value of albedo at coarse-pixel scale can be obtained through an upscaling transform function based on all of the observations for that pixel. We will devote to further improve and develop new method that that are better able to account for the spatio-temporal characteristic of surface albedo in the future. Additionally, how to use the widely distributed single site measurements over the heterogeneous surfaces is also a question to be answered. Keywords: Remote sensing; Albedo; Validation; Wireless sensor network (WSN); Upscaling; Heterogeneous land surface; Albedo truth at coarse-pixel scale
Pickles, Andrew; Anderson, Deborah K; Lord, Catherine
2014-12-01
Delayed, abnormal language is a common feature of autism and language therapy often a significant component of recommended treatment. However, as with other disorders with a language component, we know surprisingly little about the language trajectories and how varied these might be across different children. Thus, we know little about how and when language problems might resolve, whether there are periods of relative stability or lack of change and what periods might offer more favourable circumstances for intervention. Expressive and receptive language was measured on six occasions between age 2 and 19 on a cohort of 192 children initially referred for autism. Latent class growth models were fitted to characterize the patterns of heterogeneous development. Latent class growth analysis identified seven classes. Between age 6 and 19, all classes tracked in parallel. Between ages 2 and 6, development was more heterogeneous with considerable variation in relative progress. In all groups, receptive and expressive language developed very largely in tandem. The results confirmed previous analysis of children with specific language impairment where progress beyond age 6 was remarkably uniform. Greater variation was evident before this age with some groups making clearly better or worse progress compared to others. While this developmental heterogeneity may simply be a reflection of variation in preexisting and unchanging biological disposition, it may also reflect, at least in part, greater sensitivity in the early years to environments that are more or less supportive of language development. These findings contribute to the case for the importance of early intervention. © 2014 The Authors. Journal of Child Psychology and Psychiatry published by John Wiley & Sons Ltd on behalf of Association for Child and Adolescent Mental Health.
Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium
NASA Astrophysics Data System (ADS)
Zhang, Mingkan; Zhang, Ye
2015-03-01
A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems. This article was corrected on 7 MAY 2015. See the end of the full text for details.
REM-3D Reference Datasets: Reconciling large and diverse compilations of travel-time observations
NASA Astrophysics Data System (ADS)
Moulik, P.; Lekic, V.; Romanowicz, B. A.
2017-12-01
A three-dimensional Reference Earth model (REM-3D) should ideally represent the consensus view of long-wavelength heterogeneity in the Earth's mantle through the joint modeling of large and diverse seismological datasets. This requires reconciliation of datasets obtained using various methodologies and identification of consistent features. The goal of REM-3D datasets is to provide a quality-controlled and comprehensive set of seismic observations that would not only enable construction of REM-3D, but also allow identification of outliers and assist in more detailed studies of heterogeneity. The community response to data solicitation has been enthusiastic with several groups across the world contributing recent measurements of normal modes, (fundamental mode and overtone) surface waves, and body waves. We present results from ongoing work with body and surface wave datasets analyzed in consultation with a Reference Dataset Working Group. We have formulated procedures for reconciling travel-time datasets that include: (1) quality control for salvaging missing metadata; (2) identification of and reasons for discrepant measurements; (3) homogenization of coverage through the construction of summary rays; and (4) inversions of structure at various wavelengths to evaluate inter-dataset consistency. In consultation with the Reference Dataset Working Group, we retrieved the station and earthquake metadata in several legacy compilations and codified several guidelines that would facilitate easy storage and reproducibility. We find strong agreement between the dispersion measurements of fundamental-mode Rayleigh waves, particularly when made using supervised techniques. The agreement deteriorates substantially in surface-wave overtones, for which discrepancies vary with frequency and overtone number. A half-cycle band of discrepancies is attributed to reversed instrument polarities at a limited number of stations, which are not reflected in the instrument response history. By assessing inter-dataset consistency across similar paths, we quantify travel-time measurement errors for both surface and body waves. Finally, we discuss challenges associated with combining high frequency ( 1 Hz) and long period (10-20s) body-wave measurements into the REM-3D reference dataset.
Copper Oxide Precipitates in NBS Standard Reference Material 482
Windsor, Eric S.; Carlton, Robert A.; Gillen, Greg; Wight, Scott A.; Bright, David S.
2002-01-01
Copper oxide has been detected in the copper containing alloys of NBS Standard Reference Material (SRM) 482. This occurrence is significant because it represents heterogeneity within a standard reference material that was certified to be homogeneous on a micrometer scale. Oxide occurs as elliptically to spherically shaped precipitates whose size differs with alloy composition. The largest precipitates occur in the Au20-Cu80 alloy and range in size from submicrometer up to 2 μm in diameter. Precipitates are observed using light microscopy, electron microscopy, and secondary ion mass spectrometry (SIMS). SIMS has demonstrated that the precipitates are present within all the SRM 482 wires that contain copper. Only the pure gold wire is precipitate free. Initial results from the analysis of the Au20-Cu80 alloy indicate that the percentage of precipitates is less than 1 % by area. Electron probe microanalysis (EPMA) of large (2 μm) precipitates in this same alloy indicates that precipitates are detectable by EPMA and that their composition differs significantly from the certified alloy composition. The small size and low percentage of these oxide precipitates minimizes the impact that they have upon the intended use of this standard for electron probe microanalysis. Heterogeneity caused by these oxide precipitates may however preclude the use of this standard for automated EPMA analyses and other microanalysis techniques. PMID:27446759
Maheshwari, Abha; Bhattacharya, Siladitya; Johnson, Neil P
2008-06-01
Various predictors of fertility have been described, suggesting that none are ideal. The literature on tests of ovarian reserve is largely limited to women undergoing in vitro fertilization, and is reliant on the use of surrogate markers, such as cycle cancellation and number of oocytes retrieved, as reference standards. Currently available prediction models are far from ideal; most are applicable only to subfertile women seeking assisted reproduction, and lack external validation. Systematic reviews and meta-analyses of predictors of fertility are limited by their heterogeneity in terms of the population sampled, predictors tested and reference standards used. There is an urgent need for consensus in the design of these studies, definition of abnormal tests, and, above all, a need to use robust outcomes such as live birth as the reference standard. There are no reliable predictors of fertility that can guide women as to how long childbearing can be deferred.
Bohrer, Stefanie L; Limb, Ryan F; Daigh, Aaron L; Volk, Jay M; Wick, Abbey F
2017-03-01
Rangelands are described as heterogeneous, due to patterning in species assemblages and productivity that arise from species dispersal and interactions with environmental gradients and disturbances across multiple scales. The objectives of rangeland reclamation are typically vegetation establishment, plant community productivity, and soil stability. However, while fine-scale diversity is often promoted through species-rich seed mixes, landscape heterogeneity and coarse-scale diversity are largely overlooked. Our objectives were to evaluate fine and coarse-scale vegetation patterns across a 40-year reclamation chronosequence on reclaimed surface coalmine lands. We hypothesized that both α-diversity and β-diversity would increase and community patch size and species dissimilarity to reference sites would decrease on independent sites over 40 years. Plant communities were surveyed on 19 post-coalmine reclaimed sites and four intact native reference sites in central North Dakota mixed-grass prairie. Our results showed no differences in α or β-diversity and plant community patch size over the 40-year chronosequence. However, both α-diversity and β-diversity on reclaimed sites was similar to reference sites. Native species establishment was limited due to the presence of non-native species such as Kentucky bluegrass (Poa pratensis) on both the reclaimed and reference sites. Species composition was different between reclaimed and reference sites and community dissimilarity increased on reclaimed sites over the 40-year chronosequence. Plant communities resulting from reclamation followed non-equilibrium succession, even with consistent seeds mixes established across all reclaimed years. This suggests post-reclamation management strategies influence species composition outcomes and land management strategies applied uniformly may not increase landscape-level diversity.
David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.
NASA Astrophysics Data System (ADS)
Torquato, Salvatore
2009-03-01
The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].
NASA Astrophysics Data System (ADS)
Li, Xue-yan; Li, Xue-mei; Yang, Lingrun; Li, Jing
2018-07-01
Most of the previous studies on dynamic traffic assignment are based on traditional analytical framework, for instance, the idea of Dynamic User Equilibrium has been widely used in depicting both the route choice and the departure time choice. However, some recent studies have demonstrated that the dynamic traffic flow assignment largely depends on travelers' rationality degree, travelers' heterogeneity and what the traffic information the travelers have. In this paper, we develop a new self-adaptive multi agent model to depict travelers' behavior in Dynamic Traffic Assignment. We use Cumulative Prospect Theory with heterogeneous reference points to illustrate travelers' bounded rationality. We use reinforcement-learning model to depict travelers' route and departure time choosing behavior under the condition of imperfect information. We design the evolution rule of travelers' expected arrival time and the algorithm of traffic flow assignment. Compared with the traditional model, the self-adaptive multi agent model we proposed in this paper can effectively help travelers avoid the rush hour. Finally, we report and analyze the effect of travelers' group behavior on the transportation system, and give some insights into the relation between travelers' group behavior and the performance of transportation system.
NASA Astrophysics Data System (ADS)
Dünser, Simon; Meyer, Daniel W.
2016-06-01
In most groundwater aquifers, dispersion of tracers is dominated by flow-field inhomogeneities resulting from the underlying heterogeneous conductivity or transmissivity field. This effect is referred to as macrodispersion. Since in practice, besides a few point measurements the complete conductivity field is virtually never available, a probabilistic treatment is needed. To quantify the uncertainty in tracer concentrations from a given geostatistical model for the conductivity, Monte Carlo (MC) simulation is typically used. To avoid the excessive computational costs of MC, the polar Markovian velocity process (PMVP) model was recently introduced delivering predictions at about three orders of magnitude smaller computing times. In artificial test cases, the PMVP model has provided good results in comparison with MC. In this study, we further validate the model in a more challenging and realistic setup. The setup considered is derived from the well-known benchmark macrodispersion experiment (MADE), which is highly heterogeneous and non-stationary with a large number of unevenly scattered conductivity measurements. Validations were done against reference MC and good overall agreement was found. Moreover, simulations of a simplified setup with a single measurement were conducted in order to reassess the model's most fundamental assumptions and to provide guidance for model improvements.
Homogeneous, Heterogeneous, and Enzymatic Catalysis.
ERIC Educational Resources Information Center
Oyama, S. Ted; Somorjai, Gabor A.
1988-01-01
Discusses three areas of catalysis: homegeneous, heterogeneous, and enzymatic. Explains fundamentals and economic impact of catalysis. Lists and discusses common industrial catalysts. Provides a list of 107 references. (MVL)
Probing Mantle Heterogeneity Across Spatial Scales
NASA Astrophysics Data System (ADS)
Hariharan, A.; Moulik, P.; Lekic, V.
2017-12-01
Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.
Bilateral multifocal Warthin tumours.
Deveer, Mehmet; Sahan, Murat; Sivrioglu, Ali Kemal; Celik, Ozgür Ilhan
2013-05-22
Warthin tumour, also known as papillary cystadenoma lymphomatosum, is the second most frequent benign tumour of the parotid gland after pleomorphic adenoma. A 57-year-old man was referred to our hospital with bilateral buccal masses without pain. He presented with a 1-year history of the condition and stated that growth of the mass has accelerated during the last 6 months. Ultrasonography examination showed two heterogeneous solid masses. Axial contrast-enhanced CT image revealed bilateral heterogeneous solid masses. The masses showed enhancement after contrast administration (95 HU). Fine needle aspiration cytology was recommended for further analysis and typical benign features of Warthin tumour was obtained. Right parotid gland including the masses was resected completely. 5 weeks later superficial parotidectomy was performed to the left parotid gland. Histological examination revealed cystic tumour in the parenchyma of parotid gland, composed of prominent lymphoid stroma and large epithelial cells with oncocytic features covering it consistent with Warthin tumour.
Bilateral multifocal Warthin tumours
Deveer, Mehmet; Sahan, Murat; Sivrioglu, Ali Kemal; İlhan Celik, Özgür
2013-01-01
Warthin tumour, also known as papillary cystadenoma lymphomatosum, is the second most frequent benign tumour of the parotid gland after pleomorphic adenoma. A 57-year-old man was referred to our hospital with bilateral buccal masses without pain. He presented with a 1-year history of the condition and stated that growth of the mass has accelerated during the last 6 months. Ultrasonography examination showed two heterogeneous solid masses. Axial contrast-enhanced CT image revealed bilateral heterogeneous solid masses. The masses showed enhancement after contrast administration (95 HU). Fine needle aspiration cytology was recommended for further analysis and typical benign features of Warthin tumour was obtained. Right parotid gland including the masses was resected completely. 5 weeks later superficial parotidectomy was performed to the left parotid gland. Histological examination revealed cystic tumour in the parenchyma of parotid gland, composed of prominent lymphoid stroma and large epithelial cells with oncocytic features covering it consistent with Warthin tumour. PMID:23704438
NASA Astrophysics Data System (ADS)
Elag, M.; Kumar, P.
2014-12-01
Often, scientists and small research groups collect data, which target to address issues and have limited geographic or temporal range. A large number of such collections together constitute a large database that is of immense value to Earth Science studies. Complexity of integrating these data include heterogeneity in dimensions, coordinate systems, scales, variables, providers, users and contexts. They have been defined as long-tail data. Similarly, we use "long-tail models" to characterize a heterogeneous collection of models and/or modules developed for targeted problems by individuals and small groups, which together provide a large valuable collection. Complexity of integrating across these models include differing variable names and units for the same concept, model runs at different time steps and spatial resolution, use of differing naming and reference conventions, etc. Ability to "integrate long-tail models and data" will provide an opportunity for the interoperability and reusability of communities' resources, where not only models can be combined in a workflow, but each model will be able to discover and (re)use data in application specific context of space, time and questions. This capability is essential to represent, understand, predict, and manage heterogeneous and interconnected processes and activities by harnessing the complex, heterogeneous, and extensive set of distributed resources. Because of the staggering production rate of long-tail models and data resulting from the advances in computational, sensing, and information technologies, an important challenge arises: how can geoinformatics bring together these resources seamlessly, given the inherent complexity among model and data resources that span across various domains. We will present a semantic-based framework to support integration of "long-tail" models and data. This builds on existing technologies including: (i) SEAD (Sustainable Environmental Actionable Data) which supports curation and preservation of long-tail data during its life-cycle; (ii) BrownDog, which enhances the machine interpretability of large unstructured and uncurated data; and (iii) CSDMS (Community Surface Dynamics Modeling System), which "componentizes" models by providing plug-and-play environment for models integration.
Genetics Home Reference: Rubinstein-Taybi syndrome
... Breuning MH, Niedrist D, Hennekam RC, Schinzel A, Peters DJ. Genetic heterogeneity in Rubinstein-Taybi syndrome: delineation ... JT, van Ommen GJ, Breuning MH, Hennekam RC, Peters DJ. Genetic heterogeneity in Rubinstein-Taybi syndrome: mutations ...
ERIC Educational Resources Information Center
Peterson, N. Andrew; Farmer, Antoinette Y.; Donnelly, Louis; Forenza, Brad
2014-01-01
The implicit curriculum, which refers to a student's learning environment, has been described as an essential feature of an integrated professional social work curriculum. Very little is known, however, about the heterogeneity of students' experiences with the implicit curriculum, how this heterogeneity may be distributed across groups of…
Schuler, Matthew S; Chase, Jonathan M; Knight, Tiffany M
2017-06-01
Habitat heterogeneity is a primary mechanism influencing species richness. Despite the general expectation that increased heterogeneity should increase species richness, there is considerable variation in the observed relationship, including many studies that show negative effects of heterogeneity on species richness. One mechanism that can create such disparate results is the predicted trade-off between habitat area and heterogeneity, sometimes called the area-heterogeneity-trade-off (AHTO) hypothesis. The AHTO hypothesis predicts positive effects of heterogeneity on species richness in large habitats, but negative effects in small habitats. We examined the interplay between habitat size and habitat heterogeneity in experimental mesocosms that mimic freshwater ponds, and measured responses in a species-rich zooplankton community. We used the AHTO hypothesis and related mechanisms to make predictions about how heterogeneity would affect species richness and diversity in large compared to small habitats. We found that heterogeneity had a positive influence on species richness in large, but not small habitats, and that this likely resulted because habitat specialists were able to persist only when habitat size was sufficiently large, consistent with the predictions of the AHTO hypothesis. Our results emphasize the importance of considering context (e.g., habitat size in this case) when investigating the relative importance of ecological drivers of diversity, like heterogeneity. © 2017 by the Ecological Society of America.
Spontaneous bacterial coronary sinus septic thrombophlebitis treated successfully medically.
Fournet, Maxime; Behaghel, Albin; Pavy, Carine; Flecher, Erwan; Thebault, Christophe
2014-03-01
A 38-year-old farmer was hospitalized for fever, chills, cough, and chest pain lasting for 7 days. Due to persistent symptoms, patient was referred to hospital. Blood cultures identified oxacillin-sensitive Staphylococcus aureus (OSSA). Transthoracic echocardiography (TTE) showed large pericardial effusion, a mobile heterogeneous mass originating from the coronary sinus ostium, no sign of valvular endocarditis. Pericardiocentesis was done carrying out purulent fluid, microbiological culture isolating an OSSA. Parenteral penicillin M was administered for 6 weeks. At the end of this antibiotherapy regimen, TTE showed no coronary sinus mass with complete vacuity of the coronary sinus vein and no pericardial effusion.
Ibrahim, Khaled Z.; Madduri, Kamesh; Williams, Samuel; ...
2013-07-18
The Gyrokinetic Toroidal Code (GTC) uses the particle-in-cell method to efficiently simulate plasma microturbulence. This paper presents novel analysis and optimization techniques to enhance the performance of GTC on large-scale machines. We introduce cell access analysis to better manage locality vs. synchronization tradeoffs on CPU and GPU-based architectures. Finally, our optimized hybrid parallel implementation of GTC uses MPI, OpenMP, and NVIDIA CUDA, achieves up to a 2× speedup over the reference Fortran version on multiple parallel systems, and scales efficiently to tens of thousands of cores.
The Mantle Isotopic Array: A Tale of Two FOZOs
NASA Astrophysics Data System (ADS)
Apen, F. E.; Mukhopadhyay, S.; Williams, C. D.
2017-12-01
Oceanic basalts display isotopic arrays that suggest mixing between a depleted component, several enriched components, and a primitive component. The topology of the arrays provides information on mantle mixing, the distribution of heterogeneities, and information on mantle structure. Here we use a global compilation of mid-ocean ridge basalt (MORB) and ocean island basalt (OIB) He-Sr-Nd-Pb isotopic data to further analyze the topology of these arrays. Previous work indicated that OIB isotopic arrays converge to a common component [1-3] referred to as the focus zone, or FOZO. Our analyses suggest that while all OIBs do point to a common component with unradiogenic 4He/3He ratios relative to MORBs, this component has to be quite variable in its He, Sr, Nd and Pb isotopic compositions. FOZO cannot be a pure component but must represent a heterogeneous mixture of primitive and recycled material. Our analyses of the MORB and OIB isotopic compositions also indicate that while MORBs and OIBs sample the same components, the topology of their mixing arrays are quite distinct. Different MOR segments show quasi-linear isotopic arrays that all converge to a common component. This component is distinctive from the OIB FOZO being more depleted and more restrictive in its He, Sr, Nd and Pb composition. We suggest two common but distinguishable components are present in the mantle arrays: one common to MORBs and the other to OIBs, and we refer to them as MORB-FOZO and OIB-FOZO, respectively. We interpret the two FOZOs to represent the average composition of small-scale heterogeneities that make up the background matrix in the sources of MORBs and OIBs. The depleted and enriched components that are sampled in MORBs and OIBs reflect relatively large-scale heterogeneities distributed within the matrix, material that have yet to be deformed into the smaller length scales of the matrix material. Differences between the two FOZO compositions reflects the inclusion of a component with primitive He in OIBs along with differences in mixing timescales and mantle processing rates for MORBs and OIBs. The two distinct FOZO compositions must also indicate limited direct mixing between the two over Earth's 4.5 Gyr history. References: [1] Hart et al., Science 1992; [2] Farley et al., EPSL 1992; [3] Hanan and Graham, Science 1996.
Kharche, Sanjay R.; So, Aaron; Salerno, Fabio; Lee, Ting-Yim; Ellis, Chris; Goldman, Daniel; McIntyre, Christopher W.
2018-01-01
Dialysis prolongs life but augments cardiovascular mortality. Imaging data suggests that dialysis increases myocardial blood flow (BF) heterogeneity, but its causes remain poorly understood. A biophysical model of human coronary vasculature was used to explain the imaging observations, and highlight causes of coronary BF heterogeneity. Post-dialysis CT images from patients under control, pharmacological stress (adenosine), therapy (cooled dialysate), and adenosine and cooled dialysate conditions were obtained. The data presented disparate phenotypes. To dissect vascular mechanisms, a 3D human vasculature model based on known experimental coronary morphometry and a space filling algorithm was implemented. Steady state simulations were performed to investigate the effects of altered aortic pressure and blood vessel diameters on myocardial BF heterogeneity. Imaging showed that stress and therapy potentially increased mean and total BF, while reducing heterogeneity. BF histograms of one patient showed multi-modality. Using the model, it was found that total coronary BF increased as coronary perfusion pressure was increased. BF heterogeneity was differentially affected by large or small vessel blocking. BF heterogeneity was found to be inversely related to small blood vessel diameters. Simulation of large artery stenosis indicates that BF became heterogeneous (increase relative dispersion) and gave multi-modal histograms. The total transmural BF as well as transmural BF heterogeneity reduced due to large artery stenosis, generating large patches of very low BF regions downstream. Blocking of arteries at various orders showed that blocking larger arteries results in multi-modal BF histograms and large patches of low BF, whereas smaller artery blocking results in augmented relative dispersion and fractal dimension. Transmural heterogeneity was also affected. Finally, the effects of augmented aortic pressure in the presence of blood vessel blocking shows differential effects on BF heterogeneity as well as transmural BF. Improved aortic blood pressure may improve total BF. Stress and therapy may be effective if they dilate small vessels. A potential cause for the observed complex BF distributions (multi-modal BF histograms) may indicate existing large vessel stenosis. The intuitive BF heterogeneity methods used can be readily used in clinical studies. Further development of the model and methods will permit personalized assessment of patient BF status. PMID:29867555
Kawalec, Paweł
2016-04-01
Crohn's disease and ulcerative colitis are lifelong illnesses which have a significant impact on quality of life and personal burden through a reduction in the ability to work, sick leave and restrictions of leisure time. The aim of this study was to conduct a systematic review of the indirect costs of Crohn's disease and ulcerative colitis. The search was carried out in Medline, EMBASE, the Centre for Reviews and Dissemination, and reference lists of identified articles and reference lists of identified articles were also handsearched. All costs were adjusted to 2013 USD values by using the consumer price index and purchasing power parity. Identified studies were then analysed in order to assess their heterogeneity and possibility of inclusion in the meta-analysis. Eleven of the identified publications presented indirect costs of Crohn's disease or ulcerative colitis. The range of estimated yearly indirect costs per patient was large, from $1 159.09 for loss of earnings to $14 135.64 for lost productivity and sick leave for Crohn's disease. The values for ulcerative colitis ranged from $926.49 to $6 583.17. Because of the imprecise definition of methods of indirect cost calculations as well as heterogeneity of indirect cost components, a meta-analysis was not performed. The indirect costs of ulcerative colitis seem to be slightly lower than in the case of Crohn's disease. A small number of studies referring to indirect costs of Crohn's disease and ulcerative colitis were identified, which indicates the need to conduct further investigations on this problem.
2016-01-01
Introduction Crohn's disease and ulcerative colitis are lifelong illnesses which have a significant impact on quality of life and personal burden through a reduction in the ability to work, sick leave and restrictions of leisure time. The aim of this study was to conduct a systematic review of the indirect costs of Crohn's disease and ulcerative colitis. Material and methods The search was carried out in Medline, EMBASE, the Centre for Reviews and Dissemination, and reference lists of identified articles and reference lists of identified articles were also handsearched. All costs were adjusted to 2013 USD values by using the consumer price index and purchasing power parity. Identified studies were then analysed in order to assess their heterogeneity and possibility of inclusion in the meta-analysis. Results Eleven of the identified publications presented indirect costs of Crohn's disease or ulcerative colitis. The range of estimated yearly indirect costs per patient was large, from $1 159.09 for loss of earnings to $14 135.64 for lost productivity and sick leave for Crohn's disease. The values for ulcerative colitis ranged from $926.49 to $6 583.17. Because of the imprecise definition of methods of indirect cost calculations as well as heterogeneity of indirect cost components, a meta-analysis was not performed. Conclusions The indirect costs of ulcerative colitis seem to be slightly lower than in the case of Crohn's disease. A small number of studies referring to indirect costs of Crohn's disease and ulcerative colitis were identified, which indicates the need to conduct further investigations on this problem. PMID:27186172
NASA Astrophysics Data System (ADS)
Villegas-Lanza, J. C.; Chlieh, M.; Cavalié, O.; Tavera, H.; Baby, P.; Chire-Chira, J.; Nocquet, J.-M.
2016-10-01
Over 100 GPS sites measured in 2008-2013 in Peru provide new insights into the present-day crustal deformation of the 2200 km long Peruvian margin. This margin is squeezed between the eastward subduction of the oceanic Nazca Plate at the South America trench axis and the westward continental subduction of the South American Plate beneath the Eastern Cordillera and Subandean orogenic wedge. Continental active faults and GPS data reveal the rigid motion of a Peruvian Forearc Sliver that extends from the oceanic trench axis to the Western-Eastern Cordilleras boundary and moves southeastward at 4-5 mm/yr relative to a stable South America reference frame. GPS data indicate that the Subandean shortening increases southward by 2 to 4 mm/yr. In a Peruvian Sliver reference frame, the residual GPS data indicate that the interseismic coupling along the Nazca megathrust is highly heterogeneous. Coupling in northern Peru is shallow and coincides with the site of previous moderate-sized and shallow tsunami-earthquakes. Deep coupling occurs in central and southern Peru, where repeated large and great megathrust earthquakes have occurred. The strong correlation between highly coupled areas and large ruptures suggests that seismic asperities are persistent features of the megathrust. Creeping segments appear at the extremities of great ruptures and where oceanic fracture zones and ridges enter the subduction zone, suggesting that these subducting structures play a major role in the seismic segmentation of the Peruvian margin. In central Peru, we estimate a recurrence time of 305 ± 40 years to reproduce the great 1746 Mw 8.8 Lima-Callao earthquake.
Ecological Consequences of Clonal Integration in Plants
Liu, Fenghong; Liu, Jian; Dong, Ming
2016-01-01
Clonal plants are widespread throughout the plant kingdom and dominate in diverse habitats. Spatiotemporal heterogeneity of environment is pervasive at multiple scales, even at scales relevant to individual plants. Clonal integration refers to resource translocation and information communication among the ramets of clonal plants. Due to clonal integration, clonal plant species possess a series of peculiar attributes: plasticity in response to local and non-local conditions, labor division with organ specialization for acquiring locally abundant resources, foraging behavior by selective placement of ramets in resource-rich microhabitats, and avoidance of intraclonal competition. Clonal integration has very profound ecological consequences for clonal plants. It allows them to efficiently cope with environmental heterogeneity, by alleviating local resource shortages, buffering environmental stresses and disturbances, influencing competitive ability, increasing invasiveness, and altering species composition and invasibility at the community level. In this paper, we present a comprehensive review of research on the ecological consequences of plant clonal integration based on a large body of literature. We also attempt to propose perspectives for future research. PMID:27446093
NASA Astrophysics Data System (ADS)
Cortés, Joaquín.; Valencia, Eliana
1999-04-01
Two novel phenomena are discussed in this paper. The first one refers to the effect of the catalyst's surface heterogeneity on the smoothing of the first-order transition observed in the ( A+ B2) reaction (ZGB model). The second effect corresponds to obtaining information on the surface heterogeneity from the shape of the transition curve. Two types of heterogeneity were considered: the structure obtained by the random blocking of reactive sites, and the existence of a distribution in independent strips or terraces on the catalyst's surface.
NASA Astrophysics Data System (ADS)
Bunge, H.; Schuberth, B. S.; Shephard, G. E.; Müller, D.
2010-12-01
Plate and plume flow are dominant modes of mantle convection, as pointed out by Geoff Davies early on. Driven, respectively, from a cold upper and a hot lower thermal boundary layer these modes are now sufficiently well imaged by seismic tomographers to exploit the thermal boundary layer concept as an effective tool in exploring two long standing geodynamic problems. One relates to the choice of an absolute reference frame in plate tectonic reconstructions. Several absolute reference frames have been proposed over the last decade, including those based on hotspot tracks displaying age progression and assuming either fixity or motion, as well as palaeomagnetically-based reference frames, a subduction reference frame and hybrid versions. Each reference frame implies a particular history of the location of subduction zones through time and thus the evolution of mantle heterogeneity via mixing of subducted slab material in the mantle. Here we compare five alternative absolute plate motion models in terms of their consequences for deep mantle structure. Taking global paleo-plate boundaries and plate velocities back to 140 Ma derived from the new plate tectonic reconstruction software GPlates and assimilating them into vigorous 3-D spherical mantle circulation models, we infer geodynamic mantle heterogeneity and compare it to seismic tomography for each absolute rotation model. We also focus on the challenging problem of interpreting deep mantle seismic heterogeneity in terms of thermal and compositional variations. Using published thermodynamically self-consistent mantle mineralogy models in the pyrolite composition, we find strong plume flux from the CMB, with a high temperature contrast (on the order of 1000 K) across the lower thermal boundary layer is entirely sufficient to explain elastic heterogeneity in the deep mantle for a number of quantitative measures. A high excess temperatures of +1000--1500 K for plumes in the lowermost mantle is particularly important in understanding the strong seismic velocity reduction mapped by tomography in low-velocity bodies of the deep mantle, as this produces significant negative anomalies of shear wave velocity of up to -4%. We note, however, that our results do not account for the curious observation of seismic anti-correlation, which appears difficult to explain in any case. Our results provide important constraints for the integration of plate tectonics and mantle dynamics and their use in forward and inverse geodynamic mantle models.
Heterogeneous Effects of Fructose on Blood Lipids in Individuals With Type 2 Diabetes
Sievenpiper, John L.; Carleton, Amanda J.; Chatha, Sheena; Jiang, Henry Y.; de Souza, Russell J.; Beyene, Joseph; Kendall, Cyril W.C.; Jenkins, David J.A.
2009-01-01
OBJECTIVE Because of blood lipid concerns, diabetes associations discourage fructose at high intakes. To quantify the effect of fructose on blood lipids in diabetes, we conducted a systematic review and meta-analysis of experimental clinical trials investigating the effect of isocaloric fructose exchange for carbohydrate on triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol in type 1 and 2 diabetes. RESEARCH DESIGN AND METHODS We searched MEDLINE, EMBASE, CINAHL, and the Cochrane Library for relevant trials of ≥7 days. Data were pooled by the generic inverse variance method and expressed as standardized mean differences with 95% CI. Heterogeneity was assessed by χ2 tests and quantified by I2. Meta-regression models identified dose threshold and independent predictors of effects. RESULTS Sixteen trials (236 subjects) met the eligibility criteria. Isocaloric fructose exchange for carbohydrate raised triglycerides and lowered total cholesterol under specific conditions without affecting LDL cholesterol or HDL cholesterol. A triglyceride-raising effect without heterogeneity was seen only in type 2 diabetes when the reference carbohydrate was starch (mean difference 0.24 [95% CI 0.05–0.44]), dose was >60 g/day (0.18 [0.00–0.37]), or follow-up was ≤4 weeks (0.18 [0.00–0.35]). Piecewise meta-regression confirmed a dose threshold of 60 g/day (R2 = 0.13)/10% energy (R2 = 0.36). A total cholesterol–lowering effect without heterogeneity was seen only in type 2 diabetes under the following conditions: no randomization and poor study quality (−0.19 [−0.34 to −0.05]), dietary fat >30% energy (−0.33 [−0.52 to −0.15]), or crystalline fructose (−0.28 [−0.47 to −0.09]). Multivariate meta-regression analyses were largely in agreement. CONCLUSIONS Pooled analyses demonstrated conditional triglyceride-raising and total cholesterol–lowering effects of isocaloric fructose exchange for carbohydrate in type 2 diabetes. Recommendations and large-scale future trials need to address the heterogeneity in the data. PMID:19592634
NASA Astrophysics Data System (ADS)
McNamara, Allen; Li, Mingming; Garnero, Ed; Marin, Nicole
2017-04-01
Seismic observations of the lower mantle infer multiple scales of compositional heterogeneity. The largest-scale heterogeneity, observed in seismic tomography models, is in the form of large, nearly antipodal regions referred to as the Large Low Shear Velocity Provinces (LLSVPs). In contrast, diffracted wave and core-reflection precursor seismic studies reveal small-scale Ultra Low Velocity Zones (ULVZs) at the base of the mantle that are almost two orders of magnitude smaller than the LLSVPs. We hypothesize that ULVZs provide insight into the nature of LLSVPs, and the LLSVPs, in turn, provide clues to the nature of global-scale mantle convection and compositional state. However, both LLSVPs and ULVZs are observations, and it remains unclear what is causing them. Here, we examine several related questions to aid in understanding their cause and the dynamical processes associated with them. Can we use seismic observations of ULVZ locations to differentiate whether they are caused by compositional heterogeneity or simply partial melting in otherwise normal mantle? Can we use the map-view shape of ULVZs to tell us about lowermost mantle flow directions and the temporal stability of these flow directions? Can the cross-sectional morphology of ULVZs tell us something about the viscosity difference between LLSVPs and background mantle? We performed geodynamical experiments to help answer these questions. We find that ULVZs caused by compositional heterogeneity preferentially form patch-like shapes along the margins of LLSVPs. Rounded patches indicate regions with long-lived stable mantle flow patterns, and linear patches indicate changing mantle flow patterns. Typically, these ULVZ patches have an asymmetrical cross-sectional shape; however, if LLSVPs have a larger grain-size than background mantle, their increased diffusion creep viscosity will act to make them more symmetrical. Alternatively, ULVZs caused simply by partial melting of normal mantle are preferentially located significantly inboard of LLSVP margins and have relatively symmetrical cross-sectional shapes. These results can prompt new seismic studies to better constrain the cause and dynamic significance of multi-scale compositional heterogeneity in the Earth's mantle.
Dynamical links between small- and large-scale mantle heterogeneity: Seismological evidence
NASA Astrophysics Data System (ADS)
Frost, Daniel A.; Garnero, Edward J.; Rost, Sebastian
2018-01-01
We identify PKP • PKP scattered waves (also known as P‧ •P‧) from earthquakes recorded at small-aperture seismic arrays at distances less than 65°. P‧ •P‧ energy travels as a PKP wave through the core, up into the mantle, then scatters back down through the core to the receiver as a second PKP. P‧ •P‧ waves are unique in that they allow scattering heterogeneities throughout the mantle to be imaged. We use array-processing methods to amplify low amplitude, coherent scattered energy signals and resolve their incoming direction. We deterministically map scattering heterogeneity locations from the core-mantle boundary to the surface. We use an extensive dataset with sensitivity to a large volume of the mantle and a location method allowing us to resolve and map more heterogeneities than have previously been possible, representing a significant increase in our understanding of small-scale structure within the mantle. Our results demonstrate that the distribution of scattering heterogeneities varies both radially and laterally. Scattering is most abundant in the uppermost and lowermost mantle, and a minimum in the mid-mantle, resembling the radial distribution of tomographically derived whole-mantle velocity heterogeneity. We investigate the spatial correlation of scattering heterogeneities with large-scale tomographic velocities, lateral velocity gradients, the locations of deep-seated hotspots and subducted slabs. In the lowermost 1500 km of the mantle, small-scale heterogeneities correlate with regions of low seismic velocity, high lateral seismic gradient, and proximity to hotspots. In the upper 1000 km of the mantle there is no significant correlation between scattering heterogeneity location and subducted slabs. Between 600 and 900 km depth, scattering heterogeneities are more common in the regions most remote from slabs, and close to hotspots. Scattering heterogeneities show an affinity for regions close to slabs within the upper 200 km of the mantle. The similarity between the distribution of large-scale and small-scale mantle structures suggests a dynamic connection across scales, whereby mantle heterogeneities of all sizes may be directed in similar ways by large-scale convective currents.
Mass Spectrometry Imaging for the Investigation of Intratumor Heterogeneity.
Balluff, B; Hanselmann, M; Heeren, R M A
2017-01-01
One of the big clinical challenges in the treatment of cancer is the different behavior of cancer patients under guideline therapy. An important determinant for this phenomenon has been identified as inter- and intratumor heterogeneity. While intertumor heterogeneity refers to the differences in cancer characteristics between patients, intratumor heterogeneity refers to the clonal and nongenetic molecular diversity within a patient. The deciphering of intratumor heterogeneity is recognized as key to the development of novel therapeutics or treatment regimens. The investigation of intratumor heterogeneity is challenging since it requires an untargeted molecular analysis technique that accounts for the spatial and temporal dynamics of the tumor. So far, next-generation sequencing has contributed most to the understanding of clonal evolution within a cancer patient. However, it falls short in accounting for the spatial dimension. Mass spectrometry imaging (MSI) is a powerful tool for the untargeted but spatially resolved molecular analysis of biological tissues such as solid tumors. As it provides multidimensional datasets by the parallel acquisition of hundreds of mass channels, multivariate data analysis methods can be applied for the automated annotation of tissues. Moreover, it integrates the histology of the sample, which enables studying the molecular information in a histopathological context. This chapter will illustrate how MSI in combination with statistical methods and histology has been used for the description and discovery of intratumor heterogeneity in different cancers. This will give evidence that MSI constitutes a unique tool for the investigation of intratumor heterogeneity, and could hence become a key technology in cancer research. © 2017 Elsevier Inc. All rights reserved.
Heterogeneity of heat-resistant proteases from milk Pseudomonas species.
Marchand, Sophie; Vandriesche, Gonzalez; Coorevits, An; Coudijzer, Katleen; De Jonghe, Valerie; Dewettinck, Koen; De Vos, Paul; Devreese, Bart; Heyndrickx, Marc; De Block, Jan
2009-07-31
Pseudomonas fragi, Pseudomonas lundensis and members of the Pseudomonas fluorescens group may spoil Ultra High Temperature (UHT) treated milk and dairy products, due to the production of heat-stable proteases in the cold chain of raw milk. Since the aprX gene codes for a heat-resistant protease in P. fluorescens, the presence of this gene has also been investigated in other members of the genus. For this purpose an aprX-screening PCR test has been developed. Twenty-nine representatives of important milk Pseudomonas species and thirty-five reference strains were screened. In 42 out of 55 investigated Pseudomonas strains, the aprX gene was detected, which proves the potential of the aprX-PCR test as a screening tool for potentially proteolytic Pseudomonas strains in milk samples. An extensive study of the obtained aprX-sequences on the DNA and the amino acid level, however, revealed a large heterogeneity within the investigated milk isolates. Although this heterogeneity sets limitations to a general detection method for all proteolytic Pseudomonas strains in milk, it offers a great potential for the development of a multiplex PCR screening test targeting individual aprX-genes. Furthermore, our data illustrated the potential use of the aprX gene as a taxonomic marker, which may help in resolving the current taxonomic deadlock in the P. fluorescens group.
NASA Astrophysics Data System (ADS)
Delay, Frederick; Badri, Hamid; Fahs, Marwan; Ackerer, Philippe
2017-12-01
Dual porosity models become increasingly used for simulating groundwater flow at the large scale in fractured porous media. In this context, model inversions with the aim of retrieving the system heterogeneity are frequently faced with huge parameterizations for which descent methods of inversion with the assistance of adjoint state calculations are well suited. We compare the performance of discrete and continuous forms of adjoint states associated with the flow equations in a dual porosity system. The discrete form inherits from previous works by some of the authors, as the continuous form is completely new and here fully differentiated for handling all types of model parameters. Adjoint states assist descent methods by calculating the gradient components of the objective function, these being a key to good convergence of inverse solutions. Our comparison on the basis of synthetic exercises show that both discrete and continuous adjoint states can provide very similar solutions close to reference. For highly heterogeneous systems, the calculation grid of the continuous form cannot be too coarse, otherwise the method may show lack of convergence. This notwithstanding, the continuous adjoint state is the most versatile form as its non-intrusive character allows for plugging an inversion toolbox quasi-independent from the code employed for solving the forward problem.
[Phenotypic heterogeneity of chronic obstructive pulmonary disease].
Garcia-Aymerich, Judith; Agustí, Alvar; Barberà, Joan A; Belda, José; Farrero, Eva; Ferrer, Antoni; Ferrer, Jaume; Gáldiz, Juan B; Gea, Joaquim; Gómez, Federico P; Monsó, Eduard; Morera, Josep; Roca, Josep; Sauleda, Jaume; Antó, Josep M
2009-03-01
A functional definition of chronic obstructive pulmonary disease (COPD) based on airflow limitation has largely dominated the field. However, a view has emerged that COPD involves a complex array of cellular, organic, functional, and clinical events, with a growing interest in disentangling the phenotypic heterogeneity of COPD. The present review is based on the opinion of the authors, who have extensive research experience in several aspects of COPD. The starting assumption of the review is that current knowledge on the pathophysiology and clinical features of COPD allows us to classify phenotypic information in terms of the following dimensions: respiratory symptoms and health status, acute exacerbations, lung function, structural changes, local and systemic inflammation, and systemic effects. Twenty-six phenotypic traits were identified and assigned to one of the 6 dimensions. For each dimension, a summary is provided of the best evidence on the relationships among phenotypic traits, in particular among those corresponding to different dimensions, and on the relationship between these traits and relevant events in the natural history of COPD. The information has been organized graphically into a phenotypic matrix where each cell representing a pair of phenotypic traits is linked to relevant references. The information provided has the potential to increase our understanding of the heterogeneity of COPD phenotypes and help us plan future studies on aspects that are as yet unexplored.
Karama, Sherif; Armony, Jorge; Beauregard, Mario
2011-01-01
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence.
Tsunoda, Tomonori; Kachi, Naoki; Suzuki, Jun-Ichirou
2014-01-01
We examined how the volume and temporal heterogeneity of water supply changed the vertical distribution and mortality of a belowground herbivore, and consequently affected plant biomass. Plantago lanceolata (Plantaginaceae) seedlings were grown at one per pot under different combinations of water volume (large or small volume) and heterogeneity (homogeneous water conditions, watered every day; heterogeneous conditions, watered every 4 days) in the presence or absence of a larva of the belowground herbivorous insect, Anomala cuprea (Coleoptera: Scarabaeidae). The larva was confined in different vertical distributions to top feeding zone (top treatment), middle feeding zone (middle treatment), or bottom feeding zone (bottom treatment); alternatively no larva was introduced (control treatment) or larval movement was not confined (free treatment). Three-way interaction between water volume, heterogeneity, and the herbivore significantly affected plant biomass. With a large water volume, plant biomass was lower in free treatment than in control treatment regardless of heterogeneity. Plant biomass in free treatment was as low as in top treatment. With a small water volume and in free treatment, plant biomass was low (similar to that under top treatment) under homogeneous water conditions but high under heterogeneous ones (similar to that under middle or bottom treatment). Therefore, there was little effect of belowground herbivory on plant growth under heterogeneous water conditions. In other watering regimes, herbivores would be distributed in the shallow soil and reduced root biomass. Herbivore mortality was high with homogeneous application of a large volume or heterogeneous application of a small water volume. Under the large water volume, plant biomass was high in pots in which the herbivore had died. Thus, the combinations of water volume and heterogeneity affected plant growth via the change of a belowground herbivore.
Benbenishty, Rami; Jedwab, Merav; Chen, Wendy; Glasser, Saralee; Slutzky, Hanna; Siegal, Gil; Lavi-Sahar, Zohar; Lerner-Geva, Liat
2014-01-01
This study examines judgments made by hospital-based child protection teams (CPTs) when determining if there is reasonable suspicion that a child has been maltreated, and whether to report the case to a community welfare agency, to child protective services (CPS) and/or to the police. A prospective multi-center study of all 968 consecutive cases referred to CPTs during 2010-2011 in six medical centers in Israel. Centers were purposefully selected to represent the heterogeneity of medical centers in Israel in terms of size, geographical location and population characteristics. A structured questionnaire was designed to capture relevant information and judgments on each child referred to the team. Bivariate associations and multivariate multinomial logistic regressions were conducted to predict whether the decisions would be (a) to close the case, (b) to refer the case to community welfare services, or (c) to report it to CPS and/or the police. Bivariate and multivariate analyses identified a large number of case characteristics associated with higher probability of reporting to CPS/police or of referral to community welfare services. Case characteristics associated with the decisions include socio-demographic (e.g., ethnicity and financial status), parental functioning (e.g., mental health), previous contacts with authorities and hospital, current referral characteristics (e.g., parental referral vs. child referral), physical findings, and suspicious behaviors of child and parent. Most of the findings suggest that decisions of CPTs are based on indices that have strong support in the professional literature. Existing heterogeneity between cases, practitioners and medical centers had an impact on the overall predictability of the decision to report. Attending to collaboration between hospitals and community agencies is suggested to support learning and quality improvement. Copyright © 2013 Elsevier Ltd. All rights reserved.
Network Coding on Heterogeneous Multi-Core Processors for Wireless Sensor Networks
Kim, Deokho; Park, Karam; Ro, Won W.
2011-01-01
While network coding is well known for its efficiency and usefulness in wireless sensor networks, the excessive costs associated with decoding computation and complexity still hinder its adoption into practical use. On the other hand, high-performance microprocessors with heterogeneous multi-cores would be used as processing nodes of the wireless sensor networks in the near future. To this end, this paper introduces an efficient network coding algorithm developed for the heterogenous multi-core processors. The proposed idea is fully tested on one of the currently available heterogeneous multi-core processors referred to as the Cell Broadband Engine. PMID:22164053
Transfer factor, lung volumes, resistance and ventilation distribution in healthy adults.
Verbanck, Sylvia; Van Muylem, Alain; Schuermans, Daniel; Bautmans, Ivan; Thompson, Bruce; Vincken, Walter
2016-01-01
Monitoring of chronic lung disease requires reference values of lung function indices, including putative markers of small airway function, spanning a wide age range.We measured spirometry, transfer factor of the lung for carbon monoxide (TLCO), static lung volume, resistance and ventilation distribution in a healthy population, studying at least 20 subjects per sex and per decade between the ages of 20 and 80 years.With respect to the Global Lung Function Initiative reference data, our subjects had average z-scores for forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC of -0.12, 0.04 and -0.32, respectively. Reference equations were obtained which could account for a potential dependence of index variability on age and height. This was done for (but not limited to) indices that are pertinent to asthma and chronic obstructive pulmonary disease studies: forced expired volume in 6 s, forced expiratory flow, TLCO, specific airway conductance, residual volume (RV)/total lung capacity (TLC), and ventilation heterogeneity in acinar and conductive lung zones.Deterioration in acinar ventilation heterogeneity and lung clearance index with age were more marked beyond 60 years, and conductive ventilation heterogeneity showed the greatest increase in variability with age. The most clinically relevant deviation from published reference values concerned RV/TLC values, which were considerably smaller than American Thoracic Society/European Respiratory Society-endorsed reference values. Copyright ©ERS 2016.
Gerger, H; Munder, T; Gemperli, A; Nüesch, E; Trelle, S; Jüni, P; Barth, J
2014-11-01
To summarize the available evidence on the effectiveness of psychological interventions for patients with post-traumatic stress disorder (PTSD). We searched bibliographic databases and reference lists of relevant systematic reviews and meta-analyses for randomized controlled trials that compared specific psychological interventions for adults with PTSD symptoms either head-to-head or against control interventions using non-specific intervention components, or against wait-list control. Two investigators independently extracted the data and assessed trial characteristics. The analyses included 4190 patients in 66 trials. An initial network meta-analysis showed large effect sizes (ESs) for all specific psychological interventions (ESs between -1.10 and -1.37) and moderate effects of psychological interventions that were used to control for non-specific intervention effects (ESs -0.58 and -0.62). ES differences between various types of specific psychological interventions were absent to small (ES differences between 0.00 and 0.27). Considerable between-trial heterogeneity occurred (τ²= 0.30). Stratified analyses revealed that trials that adhered to DSM-III/IV criteria for PTSD were associated with larger ESs. However, considerable heterogeneity remained. Heterogeneity was reduced in trials with adequate concealment of allocation and in large-sized trials. We found evidence for small-study bias. Our findings show that patients with a formal diagnosis of PTSD and those with subclinical PTSD symptoms benefit from different psychological interventions. We did not identify any intervention that was consistently superior to other specific psychological interventions. However, the robustness of evidence varies considerably between different psychological interventions for PTSD, with most robust evidence for cognitive behavioral and exposure therapies.
Influence of topographic heterogeneity on the abandance of larch forest in eastern Siberia
NASA Astrophysics Data System (ADS)
Sato, H.; Kobayashi, H.
2016-12-01
In eastern Siberia, larches (Larix spp.) often exist in pure stands, constructing the world's largest coniferous forest, of which changes can significantly affect the earth's albedo and the global carbon balance. We have conducted simulation studies for this vegetation, aiming to forecast its structures and functions under changing climate (1, 2). In previous studies of simulating vegetation at large geographical scales, the examining area is divided into coarse grid cells such as 0.5 * 0.5 degree resolution, and topographical heterogeneities within each grid cell are just ignored. However, in Siberian larch area, which is located on the environmental edge of existence of forest ecosystem, abundance of larch trees largely depends on topographic condition at the scale of tens to hundreds meters. We, therefore, analyzed patterns of within-grid-scale heterogeneity of larch LAI as a function of topographic condition, and examined its underlying reason. For this analysis, larch LAI was estimated for each 1/112 degree from the SPOT-VEGETATION data, and topographic properties such as angularity and aspect direction were estimated form the ASTER-GDEM data. Through this analysis, we found that, for example, sign of correlation between angularity and larch LAI depends on hydrological condition on the grid cell. We then refined the hydrological sub-model of our vegetation model SEIB-DGVM, and validated whether the modified model can reconstruct these patterns, and examined its impact on the estimation of biomass and vegetation productivity of entire larch region. -- References --1. Sato, H., et al. (2010). "Simulation study of the vegetation structure and function in eastern Siberian larch forests using the individual-based vegetation model SEIB-DGVM." Forest Ecology and Management 259(3): 301-311.2. Sato, H., et al. (2016). "Endurance of larch forest ecosystems in eastern Siberia under warming trends." Ecology and Evolution
Kim, Daniel J; Francispragasam, Mario; Docherty, Gavin; Silver, Byron; Prager, Ross; Lee, Donna; Maberley, David
2018-05-18
Previous studies of point of care ultrasound (POCUS) have reported high sensitivities and specificities for retinal detachment (RD). Our primary objective was to assess the test characteristics of POCUS performed by a large heterogeneous group of emergency physicians (EPs) for the diagnosis of RD. This was a prospective diagnostic test assessment of POCUS performed by EPs with varying ultrasound experience on a convenience sample of emergency department (ED) patients presenting with flashes or floaters in one or both eyes. After standard ED assessment, EPs performed an ocular POCUS scan targeted to detect the presence or absence of RD. After completing their ED visit, all patients were assessed by a retina specialist who was blinded to the results of the POCUS scan. We calculated sensitivity and specificity with associated exact binomial confidence intervals (CI) using the retina specialist's final diagnosis as the reference standard. A total of 30 EPs enrolled 115 patients, with median age of 60 years and 64% female. The retina specialist diagnosed RD in 16 (14%) cases. The sensitivity and specificity of POCUS for detecting RD was 75% (95% CI 48%-93%) and 94% (95% CI 87%-98%), respectively. The positive likelihood ratio was 12.4 (95% CI 5.4-28.3), and negative likelihood ratio was 0.27 (95% CI 0.11-0.62). A large heterogeneous group of EPs can perform POCUS with high specificity but only intermediate sensitivity for RD. A negative POCUS scan in the ED performed by a heterogeneous group of providers after a one-hour POCUS didactic is not sufficiently sensitive to rule out RD in a patient with new onset flashes or floaters. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Heterogeneous Compression of Large Collections of Evolutionary Trees.
Matthews, Suzanne J
2015-01-01
Compressing heterogeneous collections of trees is an open problem in computational phylogenetics. In a heterogeneous tree collection, each tree can contain a unique set of taxa. An ideal compression method would allow for the efficient archival of large tree collections and enable scientists to identify common evolutionary relationships over disparate analyses. In this paper, we extend TreeZip to compress heterogeneous collections of trees. TreeZip is the most efficient algorithm for compressing homogeneous tree collections. To the best of our knowledge, no other domain-based compression algorithm exists for large heterogeneous tree collections or enable their rapid analysis. Our experimental results indicate that TreeZip averages 89.03 percent (72.69 percent) space savings on unweighted (weighted) collections of trees when the level of heterogeneity in a collection is moderate. The organization of the TRZ file allows for efficient computations over heterogeneous data. For example, consensus trees can be computed in mere seconds. Lastly, combining the TreeZip compressed (TRZ) file with general-purpose compression yields average space savings of 97.34 percent (81.43 percent) on unweighted (weighted) collections of trees. Our results lead us to believe that TreeZip will prove invaluable in the efficient archival of tree collections, and enables scientists to develop novel methods for relating heterogeneous collections of trees.
State-and-transition models for heterogeneous landscapes: A strategy for development and application
USDA-ARS?s Scientific Manuscript database
Interpretation of assessment and monitoring data requires information about reference conditions and ecological resilience. Reference conditions used as benchmarks can be specified via potential-based land classifications (e.g., ecological sites) that describe the plant communities potentially obser...
Decision support for the selection of reference sites using 137Cs as a soil erosion tracer
NASA Astrophysics Data System (ADS)
Arata, Laura; Meusburger, Katrin; Bürge, Alexandra; Zehringer, Markus; Ketterer, Michael E.; Mabit, Lionel; Alewell, Christine
2017-08-01
The classical approach of using 137Cs as a soil erosion tracer is based on the comparison between stable reference sites and sites affected by soil redistribution processes; it enables the derivation of soil erosion and deposition rates. The method is associated with potentially large sources of uncertainty with major parts of this uncertainty being associated with the selection of the reference sites. We propose a decision support tool to Check the Suitability of reference Sites (CheSS). Commonly, the variation among 137Cs inventories of spatial replicate reference samples is taken as the sole criterion to decide on the suitability of a reference inventory. Here we propose an extension of this procedure using a repeated sampling approach, in which the reference sites are resampled after a certain time period. Suitable reference sites are expected to present no significant temporal variation in their decay-corrected 137Cs depth profiles. Possible causes of variation are assessed by a decision tree. More specifically, the decision tree tests for (i) uncertainty connected to small-scale variability in 137Cs due to its heterogeneous initial fallout (such as in areas affected by the Chernobyl fallout), (ii) signs of erosion or deposition processes and (iii) artefacts due to the collection, preparation and measurement of the samples; (iv) finally, if none of the above can be assigned, this variation might be attributed to turbation
processes (e.g. bioturbation, cryoturbation and mechanical turbation, such as avalanches or rockfalls). CheSS was exemplarily applied in one Swiss alpine valley where the apparent temporal variability called into question the suitability of the selected reference sites. In general we suggest the application of CheSS as a first step towards a comprehensible approach to test for the suitability of reference sites.
Adaptive Control of Synchronization in Delay-Coupled Heterogeneous Networks of FitzHugh-Nagumo Nodes
NASA Astrophysics Data System (ADS)
Plotnikov, S. A.; Lehnert, J.; Fradkov, A. L.; Schöll, E.
We study synchronization in delay-coupled neural networks of heterogeneous nodes. It is well known that heterogeneities in the nodes hinder synchronization when becoming too large. We show that an adaptive tuning of the overall coupling strength can be used to counteract the effect of the heterogeneity. Our adaptive controller is demonstrated on ring networks of FitzHugh-Nagumo systems which are paradigmatic for excitable dynamics but can also — depending on the system parameters — exhibit self-sustained periodic firing. We show that the adaptively tuned time-delayed coupling enables synchronization even if parameter heterogeneities are so large that excitable nodes coexist with oscillatory ones.
Validity of flowmeter data in heterogeneous alluvial aquifers
NASA Astrophysics Data System (ADS)
Bianchi, Marco
2017-04-01
Numerical simulations are performed to evaluate the impact of medium-scale sedimentary architecture and small-scale heterogeneity on the validity of the borehole flowmeter test, a widely used method for measuring hydraulic conductivity (K) at the scale required for detailed groundwater flow and solute transport simulations. Reference data from synthetic K fields representing the range of structures and small-scale heterogeneity typically observed in alluvial systems are compared with estimated values from numerical simulations of flowmeter tests. Systematic errors inherent in the flowmeter K estimates are significant when the reference K field structure deviates from the hypothetical perfectly stratified conceptual model at the basis of the interpretation method of flowmeter tests. Because of these errors, the true variability of the K field is underestimated and the distributions of the reference K data and log-transformed spatial increments are also misconstrued. The presented numerical analysis shows that the validity of flowmeter based K data depends on measureable parameters defining the architecture of the hydrofacies, the conductivity contrasts between the hydrofacies and the sub-facies-scale K variability. A preliminary geological characterization is therefore essential for evaluating the optimal approach for accurate K field characterization.
Dandachi-FitzGerald, Brechje; van Twillert, Björn; van de Sande, Peter; van Os, Yindee; Ponds, Rudolf W H M
2016-05-30
We investigated the frequency of symptom validity test (SVT) failure and its clinical correlates in a large, heterogeneous sample of hospital outpatients referred for psychological assessment for clinical purposes. We studied patients (N=469), who were regularly referred for assessment to the psychology departments of five hospitals. Background characteristics, including information about incentives, were obtained with a checklist completed by the clinician. As a measure of over-reporting, the Structured Inventory of Malingered Symptomatology (SIMS) was administered to all patients. The Amsterdam Short-Term Memory test (ASTM), a cognitive underperformance measure, was only administered to patients who were referred for a neuropsychological assessment. Symptom over-reporting occurred in a minority of patients, ranging from 12% to 19% in the main diagnostic patient groups. Patients with morbid obesity had a low rate of over-reporting (1%). The SIMS was positively associated with levels of self-reported psychological symptoms. Cognitive underperformance occurred in 29.3% of the neuropsychological assessments. The ASTM was negatively associated with memory test performance. We found no association between SVT failure and financial incentives. Our results support the recommendation to routinely evaluate symptom validity in clinical assessments of hospital patients. The dynamics behind invalid symptom reporting need to be further elucidated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hueso-González, Fernando; Ballester, Facundo; Perez-Calatayud, Jose; Siebert, Frank-André; Vijande, Javier
RayStretch is a simple algorithm proposed for heterogeneity corrections in low-dose-rate brachytherapy. It is built on top of TG-43 consensus data, and it has been validated with Monte Carlo (MC) simulations. In this study, we take a real clinical prostate implant with 71 125 I seeds as reference and we apply RayStretch to analyze its performance in worst-case scenarios. To do so, we design two cases where large calcifications are located in the prostate lobules. RayStretch resilience under various calcification density values is also explored. Comparisons against MC calculations are performed. Dose-volume histogram-related parameters like prostate D 90 , rectum D 2cc , or urethra D 10 obtained with RayStretch agree within a few percent with the detailed MC results for all cases considered. The robustness and compatibility of RayStretch with commercial treatment planning systems indicate its applicability in clinical practice for dosimetric corrections in prostate calcifications. Its use during intraoperative ultrasound planning is foreseen. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Karama, Sherif; Armony, Jorge; Beauregard, Mario
2011-01-01
While the limbic system theory continues to be part of common scientific parlance, its validity has been questioned on multiple grounds. Nonetheless, the issue of whether or not there exists a set of brain areas preferentially dedicated to emotional processing remains central within affective neuroscience. Recently, a widespread neural reference space for emotion which includes limbic as well as other regions was characterized in a large meta-analysis. As methodologically heterogeneous studies go into such meta-analyses, showing in an individual study in which all parameters are kept constant, the involvement of overlapping areas for various emotion conditions in keeping with the neural reference space for emotion, would serve as valuable confirmatory evidence. Here, using fMRI, 20 young adult men were scanned while viewing validated neutral and effective emotion-eliciting short film excerpts shown to quickly and specifically elicit disgust, amusement, or sexual arousal. Each emotion-specific run included, in random order, multiple neutral and emotion condition blocks. A stringent conjunction analysis revealed a large overlap across emotion conditions that fit remarkably well with the neural reference space for emotion. This overlap included symmetrical bilateral activation of the medial prefrontal cortex, the anterior cingulate, the temporo-occipital junction, the basal ganglia, the brainstem, the amygdala, the hippocampus, the thalamus, the subthalamic nucleus, the posterior hypothalamus, the cerebellum, as well as the frontal operculum extending towards the anterior insula. This study clearly confirms for the visual modality, that processing emotional stimuli leads to widespread increases in activation that cluster within relatively confined areas, regardless of valence. PMID:21818311
Ode, Peter R.; Rehn, Andrew C.; Mazor, Raphael D.; Schiff, Kenneth C.; Stein, Eric D.; May, Jason; Brown, Larry R.; Herbst, David B.; Gillette, D.D.; Lunde, Kevin; Hawkins, Charles P.
2016-01-01
Many advances in the field of bioassessment have focused on approaches for objectively selecting the pool of reference sites used to establish expectations for healthy waterbodies, but little emphasis has been placed on ways to evaluate the suitability of the reference-site pool for its intended applications (e.g., compliance assessment vs ambient monitoring). These evaluations are critical because an inadequately evaluated reference pool may bias assessments in some settings. We present an approach for evaluating the adequacy of a reference-site pool for supporting biotic-index development in environmentally heterogeneous and pervasively altered regions. We followed common approaches for selecting sites with low levels of anthropogenic stress to screen 1985 candidate stream reaches to create a pool of 590 reference sites for assessing the biological integrity of streams in California, USA. We assessed the resulting pool of reference sites against 2 performance criteria. First, we evaluated how well the reference-site pool represented the range of natural gradients present in the entire population of streams as estimated by sites sampled through probabilistic surveys. Second, we evaluated the degree to which we were successful in rejecting sites influenced by anthropogenic stress by comparing biological metric scores at reference sites with the most vs fewest potential sources of stress. Using this approach, we established a reference-site pool with low levels of human-associated stress and broad coverage of environmental heterogeneity. This approach should be widely applicable and customizable to particular regional or programmatic needs.
A major challenge when conducting an assessment of natural resources is determining the appropriate standard (i.e., reference) against which to judge ecological condition. The process is complicated by the (1) tremendous natural environmental heterogeneity that exists within a la...
Wei, C P; Hu, P J; Sheng, O R
2001-03-01
When performing primary reading on a newly taken radiological examination, a radiologist often needs to reference relevant prior images of the same patient for confirmation or comparison purposes. Support of such image references is of clinical importance and may have significant effects on radiologists' examination reading efficiency, service quality, and work satisfaction. To effectively support such image reference needs, we proposed and developed a knowledge-based patient image pre-fetching system, addressing several challenging requirements of the application that include representation and learning of image reference heuristics and management of data-intensive knowledge inferencing. Moreover, the system demands an extensible and maintainable architecture design capable of effectively adapting to a dynamic environment characterized by heterogeneous and autonomous data source systems. In this paper, we developed a synthesized object-oriented entity- relationship model, a conceptual model appropriate for representing radiologists' prior image reference heuristics that are heuristic oriented and data intensive. We detailed the system architecture and design of the knowledge-based patient image pre-fetching system. Our architecture design is based on a client-mediator-server framework, capable of coping with a dynamic environment characterized by distributed, heterogeneous, and highly autonomous data source systems. To adapt to changes in radiologists' patient prior image reference heuristics, ID3-based multidecision-tree induction and CN2-based multidecision induction learning techniques were developed and evaluated. Experimentally, we examined effects of the pre-fetching system we created on radiologists' examination readings. Preliminary results show that the knowledge-based patient image pre-fetching system more accurately supports radiologists' patient prior image reference needs than the current practice adopted at the study site and that radiologists may become more efficient, consultatively effective, and better satisfied when supported by the pre-fetching system than when relying on the study site's pre-fetching practice.
Rocchini, Duccio
2009-01-01
Measuring heterogeneity in satellite imagery is an important task to deal with. Most measures of spectral diversity have been based on Shannon Information theory. However, this approach does not inherently address different scales, ranging from local (hereafter referred to alpha diversity) to global scales (gamma diversity). The aim of this paper is to propose a method for measuring spectral heterogeneity at multiple scales based on rarefaction curves. An algorithmic solution of rarefaction applied to image pixel values (Digital Numbers, DNs) is provided and discussed. PMID:22389600
Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment
Sun, Xiao-xiao; Yu, Qiang
2015-01-01
Recent studies have revealed extensive genetic and non-genetic variation across different geographical regions of a tumor or throughout different stages of tumor progression, which is referred to as intra-tumor heterogeneity. Several causes contribute to this phenomenon, including genomic instability, epigenetic alteration, plastic gene expression, signal transduction, and microenvironmental differences. These variables may affect key signaling pathways that regulate cancer cell growth, drive phenotypic diversity, and pose challenges to cancer treatment. Understanding the mechanisms underlying this heterogeneity will support the development of effective therapeutic strategies. PMID:26388155
Monte Carlo Estimation of Absorbed Dose Distributions Obtained from Heterogeneous 106Ru Eye Plaques.
Zaragoza, Francisco J; Eichmann, Marion; Flühs, Dirk; Sauerwein, Wolfgang; Brualla, Lorenzo
2017-09-01
The distribution of the emitter substance in 106 Ru eye plaques is usually assumed to be homogeneous for treatment planning purposes. However, this distribution is never homogeneous, and it widely differs from plaque to plaque due to manufacturing factors. By Monte Carlo simulation of radiation transport, we study the absorbed dose distribution obtained from the specific CCA1364 and CCB1256 106 Ru plaques, whose actual emitter distributions were measured. The idealized, homogeneous CCA and CCB plaques are also simulated. The largest discrepancy in depth dose distribution observed between the heterogeneous and the homogeneous plaques was 7.9 and 23.7% for the CCA and CCB plaques, respectively. In terms of isodose lines, the line referring to 100% of the reference dose penetrates 0.2 and 1.8 mm deeper in the case of heterogeneous CCA and CCB plaques, respectively, with respect to the homogeneous counterpart. The observed differences in absorbed dose distributions obtained from heterogeneous and homogeneous plaques are clinically irrelevant if the plaques are used with a lateral safety margin of at least 2 mm. However, these differences may be relevant if the plaques are used in eccentric positioning.
Gebreyesus, Grum; Lund, Mogens S; Buitenhuis, Bart; Bovenhuis, Henk; Poulsen, Nina A; Janss, Luc G
2017-12-05
Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula. BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate versions of our BayesAS models resulted in extra gains of up to 6% in prediction reliability compared to the univariate versions. Substantial improvement in prediction reliability was possible for most of the traits related to milk protein composition using our novel BayesAS models. Grouping adjacent SNPs into segments provided enhanced information to estimate parameters and allowing the segments to have different (co)variances helped disentangle heterogeneous (co)variances across the genome.
Polyacrylate microspheres composite for all-solid-state reference electrodes.
Kisiel, Anna; Donten, Mikołaj; Mieczkowski, Józef; Rius-Ruiz, F Xavier; Maksymiuk, Krzysztof; Michalska, Agata
2010-09-01
A novel concept is proposed for the encapsulation of components within polyacrylate microspheres, prior to their incorporation into a membrane phase. Thus finer and better controlled dispersion of heterogeneous membrane components can be achieved. This concept was verified by using a poly(n-butyl acrylate) membrane-based reference electrode as an example. In this example the proper dispersion of solid constituents of the heterogeneous membrane and prevention of their leakage are both of primary importance. Potassium chloride-loaded poly(n-butyl acrylate) microspheres were prepared and then left in contact with silver nitrate to convert some of the KCl into AgCl. The material obtained was introduced into a poly(n-butyl acrylate) membrane. The reference electrode membranes obtained in this way were characterized with much more stable potential (both in different electrolytes and over time) compared with electrodes prepared by the direct introduction of KCl and AgCl to the membrane.
Small-scale heterogeneity spectra in the Earth mantle resolved by PKP-ab,-bc and -df waves
NASA Astrophysics Data System (ADS)
Zheng, Y.
2016-12-01
Plate tectonics creates heterogeneities at mid ocean ridges and subducts the heterogeneities back to the mantle at subduction zones. Heterogeneities manifest themselves by different densities and seismic wave speeds. The length scales and spatial distribution of the heterogeneities measure the mixing mechanism of the plate tectonics. This information can be mathematically captured as the heterogeneity spatial Fourier spectrum. Since most heterogeneities created are on the order of 10s of km, global seismic tomography is not able to resolve them directly. Here, we use seismic P-waves that transmit through the outer core (phases: PKP-ab and PKP-bc) and through the inner core (PKP-df) to probe the lower-mantle heterogeneities. The differential traveltimes (PKP-ab versus PKP-df; PKP-bc versus PKP-df) are sensitive to lower mantle structures. We have collected more than 10,000 PKP phases recorded by Japan Hi-Net short-period seismic network. We found that the lower mantle was filled with seismic heterogeneities from scale 20km to 200km. The heterogeneity spectrum is similar to an exponential distribution but is more enriched in small-scale heterogeneities at the high-wavenumber end. The spectrum is "red" meaning large scales have more power and heterogeneities show a multiscale nature: small-scale heterogeneities are embedded in large-scale heterogeneities. These small-scale heterogeneities cannot be due to thermal origin and they must be compositional. If all these heterogeneities were located in the D" layer, statistically, it would have a root-mean-square P-wave velocity fluctuation of 1% (i.e., -3% to 3%).
Wang, Lu-Yong; Fasulo, D
2006-01-01
Genome-wide association study for complex diseases will generate massive amount of single nucleotide polymorphisms (SNPs) data. Univariate statistical test (i.e. Fisher exact test) was used to single out non-associated SNPs. However, the disease-susceptible SNPs may have little marginal effects in population and are unlikely to retain after the univariate tests. Also, model-based methods are impractical for large-scale dataset. Moreover, genetic heterogeneity makes the traditional methods harder to identify the genetic causes of diseases. A more recent random forest method provides a more robust method for screening the SNPs in thousands scale. However, for more large-scale data, i.e., Affymetrix Human Mapping 100K GeneChip data, a faster screening method is required to screening SNPs in whole-genome large scale association analysis with genetic heterogeneity. We propose a boosting-based method for rapid screening in large-scale analysis of complex traits in the presence of genetic heterogeneity. It provides a relatively fast and fairly good tool for screening and limiting the candidate SNPs for further more complex computational modeling task.
Tumour Heterogeneity: The Key Advantages of Single-Cell Analysis
Tellez-Gabriel, Marta; Ory, Benjamin; Lamoureux, Francois; Heymann, Marie-Francoise; Heymann, Dominique
2016-01-01
Tumour heterogeneity refers to the fact that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, motility, proliferation and metastatic potential. This phenomenon occurs both between tumours (inter-tumour heterogeneity) and within tumours (intra-tumour heterogeneity), and it is caused by genetic and non-genetic factors. The heterogeneity of cancer cells introduces significant challenges in using molecular prognostic markers as well as for classifying patients that might benefit from specific therapies. Thus, research efforts for characterizing heterogeneity would be useful for a better understanding of the causes and progression of disease. It has been suggested that the study of heterogeneity within Circulating Tumour Cells (CTCs) could also reflect the full spectrum of mutations of the disease more accurately than a single biopsy of a primary or metastatic tumour. In previous years, many high throughput methodologies have raised for the study of heterogeneity at different levels (i.e., RNA, DNA, protein and epigenetic events). The aim of the current review is to stress clinical implications of tumour heterogeneity, as well as current available methodologies for their study, paying specific attention to those able to assess heterogeneity at the single cell level. PMID:27999407
Grimm, Annegret; Gruber, Bernd; Henle, Klaus
2014-01-01
Reliable estimates of population size are fundamental in many ecological studies and biodiversity conservation. Selecting appropriate methods to estimate abundance is often very difficult, especially if data are scarce. Most studies concerning the reliability of different estimators used simulation data based on assumptions about capture variability that do not necessarily reflect conditions in natural populations. Here, we used data from an intensively studied closed population of the arboreal gecko Gehyra variegata to construct reference population sizes for assessing twelve different population size estimators in terms of bias, precision, accuracy, and their 95%-confidence intervals. Two of the reference populations reflect natural biological entities, whereas the other reference populations reflect artificial subsets of the population. Since individual heterogeneity was assumed, we tested modifications of the Lincoln-Petersen estimator, a set of models in programs MARK and CARE-2, and a truncated geometric distribution. Ranking of methods was similar across criteria. Models accounting for individual heterogeneity performed best in all assessment criteria. For populations from heterogeneous habitats without obvious covariates explaining individual heterogeneity, we recommend using the moment estimator or the interpolated jackknife estimator (both implemented in CAPTURE/MARK). If data for capture frequencies are substantial, we recommend the sample coverage or the estimating equation (both models implemented in CARE-2). Depending on the distribution of catchabilities, our proposed multiple Lincoln-Petersen and a truncated geometric distribution obtained comparably good results. The former usually resulted in a minimum population size and the latter can be recommended when there is a long tail of low capture probabilities. Models with covariates and mixture models performed poorly. Our approach identified suitable methods and extended options to evaluate the performance of mark-recapture population size estimators under field conditions, which is essential for selecting an appropriate method and obtaining reliable results in ecology and conservation biology, and thus for sound management. PMID:24896260
Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver.
Wymant, Chris; Blanquart, François; Golubchik, Tanya; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Croucher, Nicholas J; Hall, Matthew; Hillebregt, Mariska; Ong, Swee Hoe; Ratmann, Oliver; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Berkhout, Ben; Cornelissen, Marion; Kellam, Paul; Reiss, Peter; Fraser, Christophe
2018-01-01
Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately reconstructing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between- and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclusions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs. However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect structure, and no information is available at parts of the genome where contigs could not be assembled. To address these problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference tailored to the sample using corrected contigs supplemented with the user's choice of existing reference sequences. Run with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superiority of mapping to shiver's constructed reference compared with mapping the same reads to the closest of 3,249 real references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately, and 205 bases of missing sequence recovered. We also successfully applied shiver to whole-genome samples of Hepatitis C Virus and Respiratory Syncytial Virus. shiver is publicly available from https://github.com/ChrisHIV/shiver.
Query-Based Outlier Detection in Heterogeneous Information Networks.
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-03-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user's search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks.
Query-Based Outlier Detection in Heterogeneous Information Networks
Kuck, Jonathan; Zhuang, Honglei; Yan, Xifeng; Cam, Hasan; Han, Jiawei
2015-01-01
Outlier or anomaly detection in large data sets is a fundamental task in data science, with broad applications. However, in real data sets with high-dimensional space, most outliers are hidden in certain dimensional combinations and are relative to a user’s search space and interest. It is often more effective to give power to users and allow them to specify outlier queries flexibly, and the system will then process such mining queries efficiently. In this study, we introduce the concept of query-based outlier in heterogeneous information networks, design a query language to facilitate users to specify such queries flexibly, define a good outlier measure in heterogeneous networks, and study how to process outlier queries efficiently in large data sets. Our experiments on real data sets show that following such a methodology, interesting outliers can be defined and uncovered flexibly and effectively in large heterogeneous networks. PMID:27064397
Jinno, Shunta; Tachibana, Hidenobu; Moriya, Shunsuke; Mizuno, Norifumi; Takahashi, Ryo; Kamima, Tatsuya; Ishibashi, Satoru; Sato, Masanori
2018-05-21
In inhomogeneous media, there is often a large systematic difference in the dose between the conventional Clarkson algorithm (C-Clarkson) for independent calculation verification and the superposition-based algorithms of treatment planning systems (TPSs). These treatment site-dependent differences increase the complexity of the radiotherapy planning secondary check. We developed a simple and effective method of heterogeneity correction integrated with the Clarkson algorithm (L-Clarkson) to account for the effects of heterogeneity in the lateral dimension, and performed a multi-institutional study to evaluate the effectiveness of the method. In the method, a 2D image reconstructed from computed tomography (CT) images is divided according to lines extending from the reference point to the edge of the multileaf collimator (MLC) or jaw collimator for each pie sector, and the radiological path length (RPL) of each line is calculated on the 2D image to obtain a tissue maximum ratio and phantom scatter factor, allowing the dose to be calculated. A total of 261 plans (1237 beams) for conventional breast and lung treatments and lung stereotactic body radiotherapy were collected from four institutions. Disagreements in dose between the on-site TPSs and a verification program using the C-Clarkson and L-Clarkson algorithms were compared. Systematic differences with the L-Clarkson method were within 1% for all sites, while the C-Clarkson method resulted in systematic differences of 1-5%. The L-Clarkson method showed smaller variations. This heterogeneity correction integrated with the Clarkson algorithm would provide a simple evaluation within the range of -5% to +5% for a radiotherapy plan secondary check.
Xu, Guohua; Wu, Min; Wang, Lin; Zhang, Xu; Cao, Shufen; Liu, Maili; Cui, Yanfang
2009-12-01
Hedistin is an antimicrobial peptide isolated from the coelomocytes of Nereis diversicolor, possessing activity against a large spectrum of bacteria including the methicillin resistant Staphylococcus aureus and Vibrio alginolyticus. The three-dimensional structure of hedistin in both aqueous solution and deuterated dodecylphosphocholine (DPC) micelles was examined using circular dichroism (CD) and nuclear magnetic resonance (NMR) techniques. And, the early events of the antibacterial process of hedistin were simulated using palmitoyl-oleoyl-phophatidylcholine (POPC) lipid bilayers and molecular dynamics (MD) simulation methods. Hedistin lacks secondary structure in aqueous solution, however, in DPC micelles, it features with a heterogeneous helix-turn-helix moiety and exhibits obvious amphipathic nature. The turn region (residues Val9-Thr12) in the moiety is a four-residue hinge, lying in between the first N-terminal alpha-helix (residues Leu5-Lys8) and the second alpha-helix (residues Val13-Ala17) regions and causing an approximately 120 degrees angle between the axes of the two helices. The segmental and nonlinear nature of hedistin structure is referred to as the heterogeneity of its helix-turn-helix motif which was found to be corresponding to a kind of discrete dynamics behavior, herein coined as its dynamical heterogeneity, at the early stage (0-50 ns) of the MD simulations. That is, the first helix segment, prior to (at 310 K) or following (at 363 K) the second helix, binds to the lipid head-group region and subsequently permeates into the hydrophobic lipid tail region, and the hinge is the last portion entering the lipid environment. This result implies that hedistin may adopt a "carpet" model action when disrupting bacterial membrane.
Jayewardene, Wasantha P; Lohrmann, David K; Erbe, Ryan G; Torabi, Mohammad R
2017-03-01
Empirical evidence suggested that mind-body interventions can be effectively delivered online. This study aimed to examine whether preventive online mindfulness interventions (POMI) for non-clinical populations improve short- and long-term outcomes for perceived-stress (primary) and mindfulness (secondary). Systematic search of four electronic databases, manuscript reference lists, and journal content lists was conducted in 2016, using 21 search-terms. Eight randomized controlled trials (RCTs) evaluating effects of POMI in non-clinical populations with adequately reported perceived-stress and mindfulness measures pre- and post-intervention were included. Random-effects models utilized for all effect-size estimations with meta-regression performed for mean age and %females. Participants were volunteers (adults; predominantly female) from academic, workplace, or community settings. Most interventions utilized simplified Mindfulness-Based Stress Reduction protocols over 2-12 week periods. Post-intervention, significant medium effect found for perceived-stress (g = 0.432), with moderate heterogeneity and significant, but small, effect size for mindfulness (g = 0.275) with low heterogeneity; highest effects were for middle-aged individuals. At follow-up, significant large effect found for perceived-stress (g = 0.699) with low heterogeneity and significant medium effect (g = 0.466) for mindfulness with high heterogeneity. No publication bias was found for perceived-stress; publication bias found for mindfulness outcomes led to underestimation of effects, not overestimation. Number of eligible RCTs was low with inadequate data reporting in some studies. POMI had substantial stress reduction effects and some mindfulness improvement effects. POMI can be a more convenient and cost-effective strategy, compared to traditional face-to-face interventions, especially in the context of busy, hard-to-reach, but digitally-accessible populations.
NASA Technical Reports Server (NTRS)
Dominguez, Anthony; Kleissl, Jan P.; Luvall, Jeffrey C.
2011-01-01
Large-eddy Simulation (LES) was used to study convective boundary layer (CBL) flow through suburban regions with both large and small scale heterogeneities in surface temperature. Constant remotely sensed surface temperatures were applied at the surface boundary at resolutions of 10 m, 90 m, 200 m, and 1 km. Increasing the surface resolution from 1 km to 200 m had the most significant impact on the mean and turbulent flow characteristics as the larger scale heterogeneities became resolved. While previous studies concluded that scales of heterogeneity much smaller than the CBL inversion height have little impact on the CBL characteristics, we found that further increasing the surface resolution (resolving smaller scale heterogeneities) results in an increase in mean surface heat flux, thermal blending height, and potential temperature profile. The results of this study will help to better inform sub-grid parameterization for meso-scale meteorological models. The simulation tool developed through this study (combining LES and high resolution remotely sensed surface conditions) is a significant step towards future studies on the micro-scale meteorology in urban areas.
Willke, Richard J; Zheng, Zhiyuan; Subedi, Prasun; Althin, Rikard; Mullins, C Daniel
2012-12-13
Implicit in the growing interest in patient-centered outcomes research is a growing need for better evidence regarding how responses to a given intervention or treatment may vary across patients, referred to as heterogeneity of treatment effect (HTE). A variety of methods are available for exploring HTE, each associated with unique strengths and limitations. This paper reviews a selected set of methodological approaches to understanding HTE, focusing largely but not exclusively on their uses with randomized trial data. It is oriented for the "intermediate" outcomes researcher, who may already be familiar with some methods, but would value a systematic overview of both more and less familiar methods with attention to when and why they may be used. Drawing from the biomedical, statistical, epidemiological and econometrics literature, we describe the steps involved in choosing an HTE approach, focusing on whether the intent of the analysis is for exploratory, initial testing, or confirmatory testing purposes. We also map HTE methodological approaches to data considerations as well as the strengths and limitations of each approach. Methods reviewed include formal subgroup analysis, meta-analysis and meta-regression, various types of predictive risk modeling including classification and regression tree analysis, series of n-of-1 trials, latent growth and growth mixture models, quantile regression, and selected non-parametric methods. In addition to an overview of each HTE method, examples and references are provided for further reading.By guiding the selection of the methods and analysis, this review is meant to better enable outcomes researchers to understand and explore aspects of HTE in the context of patient-centered outcomes research.
Preventing Supercooling Of Gallium
NASA Technical Reports Server (NTRS)
Massucco, Arthur A.; Wenghoefer, Hans M.; Wilkins, Ronnie
1994-01-01
Principle of heterogeneous nucleation exploited to prevent gallium from supercooling, enabling its use as heat-storage material that crystallizes reproducibly at its freezing or melting temperature of 29 to 30 degrees C. In original intended application, gallium used as heat-storage material in gloves of space suits. Terrestrial application lies in preparation of freezing-temperature reference samples for laboratories. Principle of heterogeneous nucleation also exploited similarly in heat pipes filled with sodium.
Wearn, Oliver R; Carbone, Chris; Rowcliffe, J Marcus; Bernard, Henry; Ewers, Robert M
2016-07-01
Diversity responses to land-use change are poorly understood at local scales, hindering our ability to make forecasts and management recommendations at scales which are of practical relevance. A key barrier in this has been the underappreciation of grain-dependent diversity responses and the role that β-diversity (variation in community composition across space) plays in this. Decisions about the most effective spatial arrangement of conservation set-aside, for example high conservation value areas, have also neglected β-diversity, despite its role in determining the complementarity of sites. We examined local-scale mammalian species richness and β-diversity across old-growth forest, logged forest, and oil palm plantations in Borneo, using intensive camera- and live-trapping. For the first time, we were able to investigate diversity responses, as well as β-diversity, at multiple spatial grains, and across the whole terrestrial mammal community (large and small mammals); β-diversity was quantified by comparing observed β-diversity with that obtained under a null model, in order to control for sampling effects, and we refer to this as the β-diversity signal. Community responses to land use were grain dependent, with large mammals showing reduced richness in logged forest compared to old-growth forest at the grain of individual sampling points, but no change at the overall land-use level. Responses varied with species group, however, with small mammals increasing in richness at all grains in logged forest compared to old-growth forest. Both species groups were significantly depauperate in oil palm. Large mammal communities in old-growth forest became more heterogeneous at coarser spatial grains and small mammal communities became more homogeneous, while this pattern was reversed in logged forest. Both groups, however, showed a significant β-diversity signal at the finest grain in logged forest, likely due to logging-induced environmental heterogeneity. The β-diversity signal in oil palm was weak, but heterogeneity at the coarsest spatial grain was still evident, likely due to variation in landscape forest cover. Our findings suggest that the most effective spatial arrangement of set-aside will involve trade-offs between conserving large and small mammals. Greater consideration in the conservation and management of tropical landscapes needs to be given to β-diversity at a range of spatial grains. © 2016 by the Ecological Society of America.
Intratumor and Intertumor Heterogeneity in Melanoma.
Grzywa, Tomasz M; Paskal, Wiktor; Włodarski, Paweł K
2017-12-01
Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.
2018-01-01
Background Stability in baseline risk and estimated predictor effects both geographically and temporally is a desirable property of clinical prediction models. However, this issue has received little attention in the methodological literature. Our objective was to examine methods for assessing temporal and geographic heterogeneity in baseline risk and predictor effects in prediction models. Methods We studied 14,857 patients hospitalized with heart failure at 90 hospitals in Ontario, Canada, in two time periods. We focussed on geographic and temporal variation in baseline risk (intercept) and predictor effects (regression coefficients) of the EFFECT-HF mortality model for predicting 1-year mortality in patients hospitalized for heart failure. We used random effects logistic regression models for the 14,857 patients. Results The baseline risk of mortality displayed moderate geographic variation, with the hospital-specific probability of 1-year mortality for a reference patient lying between 0.168 and 0.290 for 95% of hospitals. Furthermore, the odds of death were 11% lower in the second period than in the first period. However, we found minimal geographic or temporal variation in predictor effects. Among 11 tests of differences in time for predictor variables, only one had a modestly significant P value (0.03). Conclusions This study illustrates how temporal and geographic heterogeneity of prediction models can be assessed in settings with a large sample of patients from a large number of centers at different time periods. PMID:29350215
Kim, Jaehyun; Kim, Jaekyun; Jo, Sangho; Kang, Jingu; Jo, Jeong-Wan; Lee, Myungwon; Moon, Juhyuk; Yang, Lin; Kim, Myung-Gil; Kim, Yong-Hoon; Park, Sung Kyu
2016-04-01
An ultra-thin and large-area skin-compatible heterogeneous organic/metal-oxide photosensor array is demonstrated which is capable of sensing and boosting signals with high detectivity and signal-to-noise ratio. For the realization of ultra-flexible and high-sensitive heterogeneous photosensor arrays on a polyimide substrate having organic sensor arrays and metal-oxide boosting circuitry, solution-processing and room-temperature alternating photochemical conversion routes are applied. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Lanbo; Chao, Benjamin F; Sun, Wenke; Kuang, Weijia
2016-11-01
In this paper we report the assessment of the effect of the three-dimensional (3D) density heterogeneity in the mantle on Earth Orientation Parameters (EOP) (i.e., the polar motion, or PM, and the length of day, or LOD) in the tidal frequencies. The 3D mantle density model is estimated based upon a global S-wave velocity tomography model (S16U6L8) and the mineralogical knowledge derived from laboratory experiment. The lateral density variation is referenced against the Preliminary Reference Earth Model (PREM). Using this approach the effects of the heterogeneous mantle density variation in all three tidal frequencies (zonal long periods, tesseral diurnal, and sectorial semidiurnal) are estimated in both PM and LOD. When compared with mass or density perturbations originated on the earth's surface such as the oceanic and barometric changes, the heterogeneous mantle only contributes less than 10% of the total variation in PM and LOD in tidal frequencies. Nevertheless, including the 3D variation of the density in the mantle into account explained a substantial portion of the discrepancy between the observed signals in PM and LOD extracted from the lump-sum values based on continuous space geodetic measurement campaigns (e.g., CONT94) and the computed contribution from ocean tides as predicted by tide models derived from satellite altimetry observations (e.g., TOPEX/Poseidon). In other word, the difference of the two, at all tidal frequencies (long-periods, diurnals, and semi-diurnals) contains contributions of the lateral density heterogeneity of the mantle. Study of the effect of mantle density heterogeneity effect on torque-free earth rotation may provide useful constraints to construct the Reference Earth Model (REM), which is the next major objective in global geophysics research beyond PREM.
Local Deformation Precursors of Large Earthquakes Derived from GNSS Observation Data
NASA Astrophysics Data System (ADS)
Kaftan, Vladimir; Melnikov, Andrey
2017-12-01
Research on deformation precursors of earthquakes was of immediate interest from the middle to the end of the previous century. The repeated conventional geodetic measurements, such as precise levelling and linear-angular networks, were used for the study. Many examples of studies referenced to strong seismic events using conventional geodetic techniques are presented in [T. Rikitake, 1976]. One of the first case studies of geodetic earthquake precursors was done by Yu.A. Meshcheryakov [1968]. Rare repetitions, insufficient densities and locations of control geodetic networks made difficult predicting future places and times of earthquakes occurrences. Intensive development of Global Navigation Satellite Systems (GNSS) during the recent decades makes research more effective. The results of GNSS observations in areas of three large earthquakes (Napa M6.1, USA, 2014; El Mayor Cucapah M7.2, USA, 2010; and Parkfield M6.0, USA, 2004) are treated and presented in the paper. The characteristics of land surface deformation before, during, and after earthquakes have been obtained. The results prove the presence of anomalous deformations near their epicentres. The temporal character of dilatation and shear strain changes show existence of spatial heterogeneity of deformation of the Earth’s surface from months to years before the main shock close to it and at some distance from it. The revealed heterogeneities can be considered as deformation precursors of strong earthquakes. According to historical data and proper research values of critical deformations which are offered to be used for seismic danger scale creation based on continuous GNSS observations are received in a reference to the mentioned large earthquakes. It is shown that the approach has restrictions owing to uncertainty of the moment in the beginning of deformation accumulation and the place of expectation of another seismic event. Verification and clarification of the derived conclusions are proposed.
Rationale, design and objectives of ARegPKD, a European ARPKD registry study.
Ebner, Kathrin; Feldkoetter, Markus; Ariceta, Gema; Bergmann, Carsten; Buettner, Reinhard; Doyon, Anke; Duzova, Ali; Goebel, Heike; Haffner, Dieter; Hero, Barbara; Hoppe, Bernd; Illig, Thomas; Jankauskiene, Augustina; Klopp, Norman; König, Jens; Litwin, Mieczyslaw; Mekahli, Djalila; Ranchin, Bruno; Sander, Anja; Testa, Sara; Weber, Lutz Thorsten; Wicher, Dorota; Yuzbasioglu, Ayse; Zerres, Klaus; Dötsch, Jörg; Schaefer, Franz; Liebau, Max Christoph
2015-02-18
Autosomal recessive polycystic kidney disease (ARPKD) is a rare but frequently severe disorder that is typically characterized by cystic kidneys and congenital hepatic fibrosis but displays pronounced phenotypic heterogeneity. ARPKD is among the most important causes for pediatric end stage renal disease and a leading reason for liver-, kidney- or combined liver kidney transplantation in childhood. The underlying pathophysiology, the mechanisms resulting in the observed clinical heterogeneity and the long-term clinical evolution of patients remain poorly understood. Current treatment approaches continue to be largely symptomatic and opinion-based even in most-advanced medical centers. While large clinical trials for the frequent and mostly adult onset autosomal dominant polycystic kidney diseases have recently been conducted, therapeutic initiatives for ARPKD are facing the challenge of small and clinically variable cohorts for which reliable end points are hard to establish. ARegPKD is an international, mostly European, observational study to deeply phenotype ARPKD patients in a pro- and retrospective fashion. This registry study is conducted with the support of the German Society for Pediatric Nephrology (GPN) and the European Study Consortium for Chronic Kidney Disorders Affecting Pediatric Patients (ESCAPE Network). ARegPKD clinically characterizes long-term ARPKD courses by a web-based approach that uses detailed basic data questionnaires in combination with yearly follow-up visits. Clinical data collection is accompanied by associated biobanking and reference histology, thus setting roots for future translational research. The novel registry study ARegPKD aims to characterize miscellaneous subcohorts and to compare the applied treatment options in a large cohort of deeply characterized patients. ARegPKD will thus provide evidence base for clinical treatment decisions and contribute to the pathophysiological understanding of this severe inherited disorder.
Heterogeneity image patch index and its application to consumer video summarization.
Dang, Chinh T; Radha, Hayder
2014-06-01
Automatic video summarization is indispensable for fast browsing and efficient management of large video libraries. In this paper, we introduce an image feature that we refer to as heterogeneity image patch (HIP) index. The proposed HIP index provides a new entropy-based measure of the heterogeneity of patches within any picture. By evaluating this index for every frame in a video sequence, we generate a HIP curve for that sequence. We exploit the HIP curve in solving two categories of video summarization applications: key frame extraction and dynamic video skimming. Under the key frame extraction frame-work, a set of candidate key frames is selected from abundant video frames based on the HIP curve. Then, a proposed patch-based image dissimilarity measure is used to create affinity matrix of these candidates. Finally, a set of key frames is extracted from the affinity matrix using a min–max based algorithm. Under video skimming, we propose a method to measure the distance between a video and its skimmed representation. The video skimming problem is then mapped into an optimization framework and solved by minimizing a HIP-based distance for a set of extracted excerpts. The HIP framework is pixel-based and does not require semantic information or complex camera motion estimation. Our simulation results are based on experiments performed on consumer videos and are compared with state-of-the-art methods. It is shown that the HIP approach outperforms other leading methods, while maintaining low complexity.
Inactive Hepatitis B Carrier and Pregnancy Outcomes: A Systematic Review and Meta-analysis.
Keramat, Afsaneh; Younesian, Masud; Gholami Fesharaki, Mohammad; Hasani, Maryam; Mirzaei, Samaneh; Ebrahimi, Elham; Alavian, Seyed Moaed; Mohammadi, Fatemeh
2017-04-01
We aimed to explore whether maternal asymptomatic hepatitis B (HB) infection effects on pre-term rupture of membranous (PROM), stillbirth, preeclampsia, eclampsia, gestational hypertension, or antepartum hemorrhage. We searched the PubMed, Scopus, and ISI web of science from 1990 to Feb 2015. In addition, electronic literature searches supplemented by searching the gray literature (e.g., conference abstracts thesis and the result of technical reports) and scanning the reference lists of included studies and relevant systematic reviews. We explored statistical heterogeneity using the, I2 and tau-squared (Tau2) statistical tests. Eighteen studies were included. Preterm rupture of membranous (PROM), stillbirth, preeclampsia, eclampsia, gestational hypertension and antepartum hemorrhage were considerable outcomes in this survey. The results showed no significant association between inactive HB and these complications in pregnancy. The small amounts of P -value and chi-square and large amount of I2 suggested the probable heterogeneity in this part, which we tried to modify with statistical methods such as subgroup analysis. Inactive HB infection did not increase the risk of adversely mentioned outcomes in this study. Further, well-designed studies should be performed to confirm the results.
Inferring Molecular Processes Heterogeneity from Transcriptional Data.
Gogolewski, Krzysztof; Wronowska, Weronika; Lech, Agnieszka; Lesyng, Bogdan; Gambin, Anna
2017-01-01
RNA microarrays and RNA-seq are nowadays standard technologies to study the transcriptional activity of cells. Most studies focus on tracking transcriptional changes caused by specific experimental conditions. Information referring to genes up- and downregulation is evaluated analyzing the behaviour of relatively large population of cells by averaging its properties. However, even assuming perfect sample homogeneity, different subpopulations of cells can exhibit diverse transcriptomic profiles, as they may follow different regulatory/signaling pathways. The purpose of this study is to provide a novel methodological scheme to account for possible internal, functional heterogeneity in homogeneous cell lines, including cancer ones. We propose a novel computational method to infer the proportion between subpopulations of cells that manifest various functional behaviour in a given sample. Our method was validated using two datasets from RNA microarray experiments. Both experiments aimed to examine cell viability in specific experimental conditions. The presented methodology can be easily extended to RNA-seq data as well as other molecular processes. Moreover, it complements standard tools to indicate most important networks from transcriptomic data and in particular could be useful in the analysis of cancer cell lines affected by biologically active compounds or drugs.
Inferring Molecular Processes Heterogeneity from Transcriptional Data
Wronowska, Weronika; Lesyng, Bogdan; Gambin, Anna
2017-01-01
RNA microarrays and RNA-seq are nowadays standard technologies to study the transcriptional activity of cells. Most studies focus on tracking transcriptional changes caused by specific experimental conditions. Information referring to genes up- and downregulation is evaluated analyzing the behaviour of relatively large population of cells by averaging its properties. However, even assuming perfect sample homogeneity, different subpopulations of cells can exhibit diverse transcriptomic profiles, as they may follow different regulatory/signaling pathways. The purpose of this study is to provide a novel methodological scheme to account for possible internal, functional heterogeneity in homogeneous cell lines, including cancer ones. We propose a novel computational method to infer the proportion between subpopulations of cells that manifest various functional behaviour in a given sample. Our method was validated using two datasets from RNA microarray experiments. Both experiments aimed to examine cell viability in specific experimental conditions. The presented methodology can be easily extended to RNA-seq data as well as other molecular processes. Moreover, it complements standard tools to indicate most important networks from transcriptomic data and in particular could be useful in the analysis of cancer cell lines affected by biologically active compounds or drugs. PMID:29362714
Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States
Hopp, Lydia; Löffler-Wirth, Henry; Binder, Hans
2015-01-01
Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12. PMID:26371046
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
Aerts, Hugo J. W. L.; Velazquez, Emmanuel Rios; Leijenaar, Ralph T. H.; Parmar, Chintan; Grossmann, Patrick; Cavalho, Sara; Bussink, Johan; Monshouwer, René; Haibe-Kains, Benjamin; Rietveld, Derek; Hoebers, Frank; Rietbergen, Michelle M.; Leemans, C. René; Dekker, Andre; Quackenbush, John; Gillies, Robert J.; Lambin, Philippe
2014-01-01
Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. PMID:24892406
IQ, handedness, and pedophilia in adult male patients stratified by referral source.
Blanchard, Ray; Kolla, Nathan J; Cantor, James M; Klassen, Philip E; Dickey, Robert; Kuban, Michael E; Blak, Thomas
2007-09-01
This study investigated whether the previously observed association of pedophilia with lower IQs is an artifact of heterogeneity in referral source. The subjects were 832 adult male patients referred to a specialty clinic for evaluation of their sexual behavior. The patients' erotic preferences for prepubescent, pubescent, or adult partners were assessed with phallometric testing. Full scale IQ was estimated using six subtests from the WAIS-R. The results showed that the relations between pedophilia and lower IQ, lesser education, and increased rates of non-right-handedness were the same in homogeneous groups referred by lawyers or parole and probation officers as they were in a heterogeneous group referred by a miscellany of other sources. Those results, along with secondary analyses in the study, supported the conclusion that the relation between pedophilia and cognitive function is genuine and not artifactual. The findings were interpreted as evidence for the hypothesis that neurodevelopmental perturbations increase the risk of pedophilia in males.
Ozone impacts of gas-aerosol uptake in global chemistry transport models
NASA Astrophysics Data System (ADS)
Stadtler, Scarlet; Simpson, David; Schröder, Sabine; Taraborrelli, Domenico; Bott, Andreas; Schultz, Martin
2018-03-01
The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are incorporated. Our results are loosely consistent with results from earlier studies, although the magnitude of changes induced by N2O5 reaction is at the low end of estimates, which seems to fit a trend, whereby the more recent the study the lower the impacts of these reactions.
Using high-resolution variant frequencies to empower clinical genome interpretation.
Whiffin, Nicola; Minikel, Eric; Walsh, Roddy; O'Donnell-Luria, Anne H; Karczewski, Konrad; Ing, Alexander Y; Barton, Paul J R; Funke, Birgit; Cook, Stuart A; MacArthur, Daniel; Ware, James S
2017-10-01
PurposeWhole-exome and whole-genome sequencing have transformed the discovery of genetic variants that cause human Mendelian disease, but discriminating pathogenic from benign variants remains a daunting challenge. Rarity is recognized as a necessary, although not sufficient, criterion for pathogenicity, but frequency cutoffs used in Mendelian analysis are often arbitrary and overly lenient. Recent very large reference datasets, such as the Exome Aggregation Consortium (ExAC), provide an unprecedented opportunity to obtain robust frequency estimates even for very rare variants.MethodsWe present a statistical framework for the frequency-based filtering of candidate disease-causing variants, accounting for disease prevalence, genetic and allelic heterogeneity, inheritance mode, penetrance, and sampling variance in reference datasets.ResultsUsing the example of cardiomyopathy, we show that our approach reduces by two-thirds the number of candidate variants under consideration in the average exome, without removing true pathogenic variants (false-positive rate<0.001).ConclusionWe outline a statistically robust framework for assessing whether a variant is "too common" to be causative for a Mendelian disorder of interest. We present precomputed allele frequency cutoffs for all variants in the ExAC dataset.
Estimating finite-population reproductive numbers in heterogeneous populations.
Keegan, Lindsay T; Dushoff, Jonathan
2016-05-21
The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate "finite-population reproductive numbers" with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0. Copyright © 2016 Elsevier Ltd. All rights reserved.
North by Northwestern: initial experience with PACS at Northwestern Memorial Hospital
NASA Astrophysics Data System (ADS)
Channin, David S.; Hawkins, Rodney C.; Enzmann, Dieter R.
2000-05-01
This paper describes the initial phases and configuration of the Picture Archive and Communication System (PACS) deployed at Northwestern Memorial Hospital. The primary goals of the project were to improve service to patients, improve service to referring physicians, and improve the process of radiology. Secondary goals were to enhance the academic mission, and modernize institutional information systems. The system consists of a large number of heterogeneous imaging modalities sending imaging studies via DICOM to a GE medical Systems PathSpeed PACS. The radiology department workflow is briefly described. The system is currently storing approximately 140,000 studies and over 5 million images, growing by approximately 600 studies and 25,000 images per day. Data reflecting use of the short term and long term storage is provided.
Visual analysis of large heterogeneous social networks by semantic and structural abstraction.
Shen, Zeqian; Ma, Kwan-Liu; Eliassi-Rad, Tina
2006-01-01
Social network analysis is an active area of study beyond sociology. It uncovers the invisible relationships between actors in a network and provides understanding of social processes and behaviors. It has become an important technique in a variety of application areas such as the Web, organizational studies, and homeland security. This paper presents a visual analytics tool, OntoVis, for understanding large, heterogeneous social networks, in which nodes and links could represent different concepts and relations, respectively. These concepts and relations are related through an ontology (also known as a schema). OntoVis is named such because it uses information in the ontology associated with a social network to semantically prune a large, heterogeneous network. In addition to semantic abstraction, OntoVis also allows users to do structural abstraction and importance filtering to make large networks manageable and to facilitate analytic reasoning. All these unique capabilities of OntoVis are illustrated with several case studies.
Maroso, F; Hillen, J E J; Pardo, B G; Gkagkavouzis, K; Coscia, I; Hermida, M; Franch, R; Hellemans, B; Van Houdt, J; Simionati, B; Taggart, J B; Nielsen, E E; Maes, G; Ciavaglia, S A; Webster, L M I; Volckaert, F A M; Martinez, P; Bargelloni, L; Ogden, R
2018-06-01
The development of Genotyping-By-Sequencing (GBS) technologies enables cost-effective analysis of large numbers of Single Nucleotide Polymorphisms (SNPs), especially in "non-model" species. Nevertheless, as such technologies enter a mature phase, biases and errors inherent to GBS are becoming evident. Here, we evaluated the performance of double digest Restriction enzyme Associated DNA (ddRAD) sequencing in SNP genotyping studies including high number of samples. Datasets of sequence data were generated from three marine teleost species (>5500 samples, >2.5 × 10 12 bases in total), using a standardized protocol. A common bioinformatics pipeline based on STACKS was established, with and without the use of a reference genome. We performed analyses throughout the production and analysis of ddRAD data in order to explore (i) the loss of information due to heterogeneous raw read number across samples; (ii) the discrepancy between expected and observed tag length and coverage; (iii) the performances of reference based vs. de novo approaches; (iv) the sources of potential genotyping errors of the library preparation/bioinformatics protocol, by comparing technical replicates. Our results showed use of a reference genome and a posteriori genotype correction improved genotyping precision. Individual read coverage was a key variable for reproducibility; variance in sequencing depth between loci in the same individual was also identified as an important factor and found to correlate to tag length. A comparison of downstream analysis carried out with ddRAD vs single SNP allele specific assay genotypes provided information about the levels of genotyping imprecision that can have a significant impact on allele frequency estimations and population assignment. The results and insights presented here will help to select and improve approaches to the analysis of large datasets based on RAD-like methodologies. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, D.M.
1997-01-01
The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that weremore » not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.« less
2012-01-01
Implicit in the growing interest in patient-centered outcomes research is a growing need for better evidence regarding how responses to a given intervention or treatment may vary across patients, referred to as heterogeneity of treatment effect (HTE). A variety of methods are available for exploring HTE, each associated with unique strengths and limitations. This paper reviews a selected set of methodological approaches to understanding HTE, focusing largely but not exclusively on their uses with randomized trial data. It is oriented for the “intermediate” outcomes researcher, who may already be familiar with some methods, but would value a systematic overview of both more and less familiar methods with attention to when and why they may be used. Drawing from the biomedical, statistical, epidemiological and econometrics literature, we describe the steps involved in choosing an HTE approach, focusing on whether the intent of the analysis is for exploratory, initial testing, or confirmatory testing purposes. We also map HTE methodological approaches to data considerations as well as the strengths and limitations of each approach. Methods reviewed include formal subgroup analysis, meta-analysis and meta-regression, various types of predictive risk modeling including classification and regression tree analysis, series of n-of-1 trials, latent growth and growth mixture models, quantile regression, and selected non-parametric methods. In addition to an overview of each HTE method, examples and references are provided for further reading. By guiding the selection of the methods and analysis, this review is meant to better enable outcomes researchers to understand and explore aspects of HTE in the context of patient-centered outcomes research. PMID:23234603
Dietary choline and betaine intakes vary in an adult multiethnic population.
Yonemori, Kim M; Lim, Unhee; Koga, Karin R; Wilkens, Lynne R; Au, Donna; Boushey, Carol J; Le Marchand, Loïc; Kolonel, Laurence N; Murphy, Suzanne P
2013-06-01
Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45-75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population.
Clustering evolving proteins into homologous families.
Chan, Cheong Xin; Mahbob, Maisarah; Ragan, Mark A
2013-04-08
Clustering sequences into groups of putative homologs (families) is a critical first step in many areas of comparative biology and bioinformatics. The performance of clustering approaches in delineating biologically meaningful families depends strongly on characteristics of the data, including content bias and degree of divergence. New, highly scalable methods have recently been introduced to cluster the very large datasets being generated by next-generation sequencing technologies. However, there has been little systematic investigation of how characteristics of the data impact the performance of these approaches. Using clusters from a manually curated dataset as reference, we examined the performance of a widely used graph-based Markov clustering algorithm (MCL) and a greedy heuristic approach (UCLUST) in delineating protein families coded by three sets of bacterial genomes of different G+C content. Both MCL and UCLUST generated clusters that are comparable to the reference sets at specific parameter settings, although UCLUST tends to under-cluster compositionally biased sequences (G+C content 33% and 66%). Using simulated data, we sought to assess the individual effects of sequence divergence, rate heterogeneity, and underlying G+C content. Performance decreased with increasing sequence divergence, decreasing among-site rate variation, and increasing G+C bias. Two MCL-based methods recovered the simulated families more accurately than did UCLUST. MCL using local alignment distances is more robust across the investigated range of sequence features than are greedy heuristics using distances based on global alignment. Our results demonstrate that sequence divergence, rate heterogeneity and content bias can individually and in combination affect the accuracy with which MCL and UCLUST can recover homologous protein families. For application to data that are more divergent, and exhibit higher among-site rate variation and/or content bias, MCL may often be the better choice, especially if computational resources are not limiting.
Dietary Choline and Betaine Intakes Vary in an Adult Multiethnic Population123
Yonemori, Kim M.; Lim, Unhee; Koga, Karin R.; Wilkens, Lynne R.; Au, Donna; Boushey, Carol J.; Le Marchand, Loïc; Kolonel, Laurence N.; Murphy, Suzanne P.
2013-01-01
Choline and betaine are important nutrients for human health, but reference food composition databases for these nutrients became available only recently. We tested the feasibility of using these databases to estimate dietary choline and betaine intakes among ethnically diverse adults who participated in the Multiethnic Cohort (MEC) Study. Of the food items (n = 965) used to quantify intakes for the MEC FFQ, 189 items were exactly matched with items in the USDA Database for the Choline Content of Common Foods for total choline, choline-containing compounds, and betaine, and 547 items were matched to the USDA National Nutrient Database for Standard Reference for total choline (n = 547) and 148 for betaine. When a match was not found, choline and betaine values were imputed based on the same food with a different form (124 food items for choline, 300 for choline compounds, 236 for betaine), a similar food (n = 98, 284, and 227, respectively) or the closest item in the same food category (n = 6, 191, and 157, respectively), or the values were assumed to be zero (n = 1, 1, and 8, respectively). The resulting mean intake estimates for choline and betaine among 188,147 MEC participants (aged 45–75) varied by sex (372 and 154 mg/d in men, 304 and 128 mg/d in women, respectively; P-heterogeneity < 0.0001) and by race/ethnicity among Caucasians, African Americans, Japanese Americans, Latinos, and Native Hawaiians (P-heterogeneity < 0.0001), largely due to the variation in energy intake. Our findings demonstrate the feasibility of assessing choline and betaine intake and characterize the variation in intake that exists in a multiethnic population. PMID:23616508
Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brent Dixon
Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energymore » systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.« less
Turner, Andrew; Sasse, Jurgen; Varadi, Aniko
2016-10-19
Inherited disorders of haemoglobin are the world's most common genetic diseases, resulting in significant morbidity and mortality. The large number of mutations associated with the haemoglobin beta gene (HBB) makes gene scanning by High Resolution Melting (HRM) PCR an attractive diagnostic approach. However, existing HRM-PCR assays are not able to detect all common point mutations and have only a very limited ability to detect larger gene rearrangements. The aim of the current study was to develop a HBB assay, which can be used as a screening test in highly heterogeneous populations, for detection of both point mutations and larger gene rearrangements. The assay is based on a combination of conventional HRM-PCR and a novel Gene Ratio Analysis Copy Enumeration (GRACE) PCR method. HRM-PCR was extensively optimised, which included the use of an unlabelled probe and incorporation of universal bases into primers to prevent interference from common non-pathological polymorphisms. GRACE-PCR was employed to determine HBB gene copy numbers relative to a reference gene using melt curve analysis to detect rearrangements in the HBB gene. The performance of the assay was evaluated by analysing 410 samples. A total of 44 distinct pathological genotypes were detected. In comparison with reference methods, the assay has a sensitivity of 100 % and a specificity of 98 %. We have developed an assay that detects both point mutations and larger rearrangements of the HBB gene. This assay is quick, sensitive, specific and cost effective making it suitable as an initial screening test that can be used for highly heterogeneous cohorts.
NASA Astrophysics Data System (ADS)
Lander, D. M. P.; McCanty, S. T.; Dimino, T. F.; Christian, A. D.
2016-02-01
The River Continuum Concept (RCC) predicts stream biological communities based on dominant physical structures and energy inputs into streams and predicts how these features and corresponding communities change along the stream continuum. Verifying RCC expectations is important for creating valid points of comparison during stream ecosystem evaluation. These reference expectations are critical for restoration projects, such as the restoration of decommissioned cranberry bogs. Our research compares the physical habitat and freshwater invertebrate functional feeding groups (FWIFFG) of reference, active cranberry farming, and cranberry farm passive restoration sites in Northeastern Coastal Zone streams of Massachusetts to the specific RCC FWIFFG predictions. We characterized stream physical habitat using a semi-quantitative habitat characterization protocol and sampled freshwater invertebrates using the U.S. EPA standard 20-jab multi-habitat protocol. We expected that stream habitat would be most homogeneous at active farming stations, intermediate at restoration stations, and most heterogeneous at reference stations. Furthermore, we expected reference stream FWIFFG would be accurately predicted by the RCC and distributions at restoration and active sites would vary significantly. Habitat data was analyzed using a principle component analysis and results confirmed our predictions showing more homogeneous habitat for the active and reference stations, while showing a more heterogeneous habitat at the reference stations. The FWIFFG chi-squared analysis showed significant deviation from our specific RCC FWIFFG predictions. Because published FWIFFG distributions did not match our empirical values for a least disturbed Northeastern Coastal Zone headwater stream, using our data as a community structure template for current and future restoration projects is not recommend without further considerations.
Alaiya, A A; Franzén, B; Moberger, B; Silfverswärd, C; Linder, S; Auer, G
1999-01-01
The process of tumor progression leads to the emergence of multiple clones, and to the development of tumor heterogeneity. One approach to the study of the extent of such heterogeneity is to examine the expression of marker proteins in different tumor areas. Two-dimensional gel electrophoresis (2-DE) is a powerful tool for such studies, since the expression of a large number of polypeptide markers can be evaluated. In the present study, tumor cells were prepared from human ovarian tumors and analyzed by 2-DE and PDQUEST. As judged from the analysis of two different areas in each of nine ovarian tumors, the intratumoral variation in protein expression was low. In contrast, large differences were observed when the protein profiles of different tumors were compared. The differences in gene expression between pairs of malignant carcinomas were slightly larger than the differences observed between pairs of benign tumors. We conclude that 2-DE analysis of intratumoral heterogeneity in ovarian cancer tissue indicates a low degree of heterogeneity.
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd
2012-02-01
We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.
Counting on β-Diversity to Safeguard the Resilience of Estuaries
de Juan, Silvia; Thrush, Simon F.; Hewitt, Judi E.
2013-01-01
Coastal ecosystems are often stressed by non-point source and cumulative effects that can lead to local-scale community homogenisation and a concomitant loss of large-scale ecological connectivity. Here we investigate the use of β-diversity as a measure of both community heterogeneity and ecological connectivity. To understand the consequences of different environmental scenarios on heterogeneity and connectivity, it is necessary to understand the scale at which different environmental factors affect β-diversity. We sampled macrofauna from intertidal sites in nine estuaries from New Zealand’s North Island that represented different degrees of stress derived from land-use. We used multiple regression models to identify relationships between β-diversity and local sediment variables, factors related to the estuarine and catchment hydrodynamics and morphology and land-based stressors. At local scales, we found higher β-diversity at sites with a relatively high total richness. At larger scales, β-diversity was positively related to γ-diversity, suggesting that a large regional species pool was linked with large-scale heterogeneity in these systems. Local environmental heterogeneity influenced β-diversity at both local and regional scales, although variables at the estuarine and catchment scales were both needed to explain large scale connectivity. The estuaries expected a priori to be the most stressed exhibited higher variance in community dissimilarity between sites and connectivity to the estuary species pool. This suggests that connectivity and heterogeneity metrics could be used to generate early warning signals of cumulative stress. PMID:23755252
A novel algorithm for fully automated mapping of geospatial ontologies
NASA Astrophysics Data System (ADS)
Chaabane, Sana; Jaziri, Wassim
2018-01-01
Geospatial information is collected from different sources thus making spatial ontologies, built for the same geographic domain, heterogeneous; therefore, different and heterogeneous conceptualizations may coexist. Ontology integrating helps creating a common repository of the geospatial ontology and allows removing the heterogeneities between the existing ontologies. Ontology mapping is a process used in ontologies integrating and consists in finding correspondences between the source ontologies. This paper deals with the "mapping" process of geospatial ontologies which consist in applying an automated algorithm in finding the correspondences between concepts referring to the definitions of matching relationships. The proposed algorithm called "geographic ontologies mapping algorithm" defines three types of mapping: semantic, topological and spatial.
Reinhold, Ann Marie; Bramblett, Robert G.; Zale, Alexander V.; Poole, Geoffrey C.; Roberts, David W.
2017-01-01
The alteration of rivers by anthropogenic bank stabilization to prevent the erosion of economically valuable lands and structures has become commonplace. However, such alteration has ambiguous consequences for fish assemblages, especially in large rivers. Because most large, temperate rivers have impoundments, it can be difficult to separate the influences of bank stabilization structures from those of main-stem impoundments, especially because both stabilization structures and impoundments can cause side-channel loss. Few large rivers are free flowing and retain extensive side channels, but the Yellowstone River (our study area) is one such river. We hypothesized that in this river (1) bank stabilization has changed fish assemblage structure by altering habitats, (2) side-channel availability has influenced fish assemblage structure by providing habitat heterogeneity, and (3) the influences of bank stabilization and side channels on fish assemblages were spatially scale dependent. We developed a spatially explicit framework to test these hypotheses. Fish assemblage structure varied with the extent of bank stabilization and the availability of side channels; however, not all assemblage subsets were influenced. Nevertheless, bank stabilization and side channels had different and sometimes opposite influences on the fish assemblage. The effects of side channels on fish were more consistent and widespread than those of bank stabilization; the catches of more fishes were positively correlated with side-channel availability than with the extent of bank stabilization. The influences of bank stabilization and side channels on the relative abundances of fish also varied, depending on species and river bend geomorphology. The variation in river morphology probably contributed to the assemblage differences between stabilized and reference river bends; stabilized alluvial pools were deeper than reference alluvial pools, but the depths of stabilized and reference bluff pools did not differ. The strengths of the relationships among fish assemblages, bank stabilization, and side channels were spatially scale dependent; optimum spatial scales ranged from less than 200 m to 3,200 m up- and downstream, suggesting that bank stabilization and side channels influenced fish assemblages across multiple spatial scales.
Normand, Anne-Cécile; Cassagne, Carole; Ranque, Stéphane; L'ollivier, Coralie; Fourquet, Patrick; Roesems, Sam; Hendrickx, Marijke; Piarroux, Renaud
2013-04-08
The poor reproducibility of matrix-assisted desorption/ionization time-of-flight (MALDI-TOF) spectra limits the effectiveness of the MALDI-TOF MS-based identification of filamentous fungi with highly heterogeneous phenotypes in routine clinical laboratories. This study aimed to enhance the MALDI-TOF MS-based identification of filamentous fungi by assessing several architectures of reference spectrum libraries. We established reference spectrum libraries that included 30 filamentous fungus species with various architectures characterized by distinct combinations of the following: i) technical replicates, i.e., the number of analyzed deposits for each culture used to build a reference meta-spectrum (RMS); ii) biological replicates, i.e., the number of RMS derived from the distinct subculture of each strain; and iii) the number of distinct strains of a given species. We then compared the effectiveness of each library in the identification of 200 prospectively collected clinical isolates, including 38 species in 28 genera.Identification effectiveness was improved by increasing the number of both RMS per strain (p<10-4) and strains for a given species (p<10-4) in a multivariate analysis. Addressing the heterogeneity of MALDI-TOF spectra derived from filamentous fungi by increasing the number of RMS obtained from distinct subcultures of strains included in the reference spectra library markedly improved the effectiveness of the MALDI-TOF MS-based identification of clinical filamentous fungi.
Hydraulic head applications of flow logs in the study of heterogeneous aquifers
Paillet, Frederick L.
2001-01-01
Permeability profiles derived from high-resolution flow logs in heterogeneous aquifers provide a limited sample of the most permeable beds or fractures determining the hydraulic properties of those aquifers. This paper demonstrates that flow logs can also be used to infer the large-scale properties of aquifers surrounding boreholes. The analysis is based on the interpretation of the hydraulic head values estimated from the flow log analysis. Pairs of quasi-steady flow profiles obtained under ambient conditions and while either pumping or injecting are used to estimate the hydraulic head in each water-producing zone. Although the analysis yields localized estimates of transmissivity for a few water-producing zones, the hydraulic head estimates apply to the farfield aquifers to which these zones are connected. The hydraulic head data are combined with information from other sources to identify the large-scale structure of heterogeneous aquifers. More complicated cross-borehole flow experiments are used to characterize the pattern of connection between large-scale aquifer units inferred from the hydraulic head estimates. The interpretation of hydraulic heads in situ under steady and transient conditions is illustrated by several case studies, including an example with heterogeneous permeable beds in an unconsolidated aquifer, and four examples with heterogeneous distributions of bedding planes and/or fractures in bedrock aquifers.
Perpetuation of torsade de pointes in heterogeneous hearts: competing foci or re-entry?
Vandersickel, Nele; de Boer, Teun P; Vos, Marc A; Panfilov, Alexander V
2016-12-01
The underlying mechanism of torsade de pointes (TdP) remains of debate: perpetuation may be due to (1) focal activity or (2) re-entrant activity. The onset of TdP correlates with action potential heterogeneities in different regions of the heart. We studied the mechanism of perpetuation of TdP in silico using a 2D model of human cardiac tissue and an anatomically accurate model of the ventricles of the human heart. We found that the mechanism of perpetuation TdP depends on the degree of heterogeneity. If the degree of heterogeneity is large, focal activity alone can sustain a TdP, otherwise re-entrant activity emerges. This result can help to understand the relationship between the mechanisms of TdP and tissue properties and may help in developing new drugs against it. Torsade de pointes (TdP) can be the consequence of cardiac remodelling, drug effects or a combination of both. The mechanism underlying TdP is unclear, and may involve triggered focal activity or re-entry. Recent work by our group has indicated that both cases may exist, i.e. TdPs induced in the chronic atrioventricular block (CAVB) dog model may have a focal origin or are due to re-entry. Also it was found that heterogeneities might play an important role. In the current study we have used computational modelling to further investigate the mechanisms involved in TdP initiation and perpetuation, especially in the CAVB dog model, by the addition of heterogeneities with reduced repolarization reserve in comparison with the surrounding tissue. For this, the TNNP computer model was used for computations. We demonstrated in 2D and 3D simulations that ECGs with the typical TdP morphology can be caused by both multiple competing foci and re-entry circuits as a result of introduction of heterogeneities, depending on whether the heterogeneities have a large or a smaller reduced repolarization reserve in comparison with the surrounding tissue. Large heterogeneities can produce ectopic TdP, while smaller heterogeneities will produce re-entry-type TdP. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
ERIC Educational Resources Information Center
Vannice, M. A.
1979-01-01
Described is a graduate course in catalysis offered at Penn State University. A detailed course outline with 30 lecture topics is presented. A list of 42 references on catalysis used in place of a textbook is provided. (BT)
Genetics Home Reference: craniometaphyseal dysplasia
... Passos-Bueno MR. Mapping of the autosomal recessive (AR) craniometaphyseal dysplasia locus to chromosome region 6q21-22 and confirmation of genetic heterogeneity for mild AR spondylocostal dysplasia. Am J Med Genet. 2000 Dec ...
Genetics Home Reference: fumarase deficiency
... C, Knape M, Zierz S, Gellerich FN. Molecular and biochemical investigations in fumarase deficiency. Mol Genet Metab. 2006 ... Y, Toulhoat H, de Lonlay P. Clinical and biochemical heterogeneity associated with fumarase deficiency. Hum Mutat. 2011 ...
Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.
2015-10-27
In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.
Hiremath, Swapnil; Dangas, George; Mehran, Roxana; Brar, Simerjeet K.; Leon, Martin B.
2009-01-01
Background and objectives: Infusion of sodium bicarbonate has been suggested as a preventative strategy but reports are conflicting on its efficacy. The aim of this study was to assess the effectiveness of hydration with sodium bicarbonate for the prevention of contrast-induced acute kidney injury (CI-AKI). Design, setting, participants, & measurements: Medline, EMBASE, Cochrane library, and the Internet were searched for randomized controlled trials comparing hydration between sodium bicarbonate and chloride for the prevention of CI-AKI between 1966 and November 2008. Fourteen trials that included 2290 patients were identified. There was significant heterogeneity between studies (P heterogeneity = 0.02; I2 = 47.8%), which was largely accounted for by trial size (P = 0.016). Trials were therefore classified by size. Results: Three trials were categorized as large (n = 1145) and 12 as small (n = 1145). Among the large trials, the incidence of CI-AKI for sodium bicarbonate and sodium chloride was 10.7 and 12.5%, respectively; the relative risk (RR) [95% confidence interval (CI)] was 0.85 (0.63 to 1.16) without evidence of heterogeneity (P = 0.89, I2 = 0%). The pooled RR (95% CI) among the 12 small trials was 0.50 (0.27 to 0.93) with significant between-trial heterogeneity (P = 0.01; I2 = 56%). The small trials were more likely to be of lower methodological quality. Conclusions: A significant clinical and statistical heterogeneity was observed that was largely explained by trial size and published status. Among the large randomized trials there was no evidence of benefit for hydration with sodium bicarbonate compared with sodium chloride for the prevention of CI-AKI. The benefit of sodium bicarbonate was limited to small trials of lower methodological quality. PMID:19713291
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
Distributed sensor coordination for advanced energy systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumer, Kagan
Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less
Mantle temperature under drifting deformable continents during the supercontinent cycle
NASA Astrophysics Data System (ADS)
Yoshida, Masaki
2013-04-01
The thermal heterogeneity of the Earth's mantle under the drifting continents during a supercontinent cycle is a controversial issue in earth science. Here, a series of numerical simulations of mantle convection are performed in 3D spherical-shell geometry, incorporating drifting deformable continents and self-consistent plate tectonics, to evaluate the subcontinental mantle temperature during a supercontinent cycle. Results show that the laterally averaged temperature anomaly of the subcontinental mantle remains within several tens of degrees (±50 °C) throughout the simulation time. Even after the formation of the supercontinent and the development of subcontinental plumes due to the subduction of the oceanic plates, the laterally averaged temperature anomaly of the deep mantle under the continent is within +10 °C. This implies that there is no substantial temperature difference between the subcontinental and suboceanic mantles during a supercontinent cycle. The temperature anomaly immediately beneath the supercontinent is generally positive owing to the thermal insulation effect and the active upwelling plumes from the core-mantle boundary. In the present simulation, the formation of a supercontinent causes the laterally averaged subcontinental temperature to increase by a maximum of 50 °C, which would produce sufficient tensional force to break up the supercontinent. The periodic assembly and dispersal of continental fragments, referred to as the supercontinent cycle, bear close relation to the evolution of mantle convection and plate tectonics. Supercontinent formation involves complex processes of introversion, extroversion or a combination of these in uniting dispersed continental fragments, as against the simple opening and closing of individual oceans envisaged in Wilson cycle. In the present study, I evaluate supercontinent processes in a realistic mantle convection regime. Results show that the assembly of supercontinents is accompanied by a combination of introversion and extroversion processes. The regular periodicity of the supercontinent cycles observed in previous 2D and 3D simulation models with rigid nondeformable continents is not confirmed. The small-scale thermal heterogeneity is dominated in deep mantle convection during the supercontinent cycle, although the large-scale, active upwelling plumes intermittently originate under drifting continents and/or the supercontinent. Results suggest that active subducting cold plates along continental margins generate thermal heterogeneity with short-wavelength structures, which is consistent with the thermal heterogeneity in the present-day mantle convection inferred from seismic tomography models. References: [1] Yoshida, M. Mantle temperature under drifting deformable continents during the supercontinent cycle, Geophys. Res. Lett., 2013, in press. [2] Yoshida, M. and M. Santosh, Mantle convection modeling of supercontinent cycle: Introversion, extroversion, or combination?, 2013, submitted.
Link, W.A.
2003-01-01
Heterogeneity in detection probabilities has long been recognized as problematic in mark-recapture studies, and numerous models developed to accommodate its effects. Individual heterogeneity is especially problematic, in that reasonable alternative models may predict essentially identical observations from populations of substantially different sizes. Thus even with very large samples, the analyst will not be able to distinguish among reasonable models of heterogeneity, even though these yield quite distinct inferences about population size. The problem is illustrated with models for closed and open populations.
Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver
Blanquart, François; Golubchik, Tanya; Gall, Astrid; Bakker, Margreet; Bezemer, Daniela; Croucher, Nicholas J; Hall, Matthew; Hillebregt, Mariska; Ratmann, Oliver; Albert, Jan; Bannert, Norbert; Fellay, Jacques; Fransen, Katrien; Gourlay, Annabelle; Grabowski, M Kate; Gunsenheimer-Bartmeyer, Barbara; Günthard, Huldrych F; Kivelä, Pia; Kouyos, Roger; Laeyendecker, Oliver; Liitsola, Kirsi; Meyer, Laurence; Porter, Kholoud; Ristola, Matti; van Sighem, Ard; Cornelissen, Marion; Kellam, Paul; Reiss, Peter
2018-01-01
Abstract Studying the evolution of viruses and their molecular epidemiology relies on accurate viral sequence data, so that small differences between similar viruses can be meaningfully interpreted. Despite its higher throughput and more detailed minority variant data, next-generation sequencing has yet to be widely adopted for HIV. The difficulty of accurately reconstructing the consensus sequence of a quasispecies from reads (short fragments of DNA) in the presence of large between- and within-host diversity, including frequent indels, may have presented a barrier. In particular, mapping (aligning) reads to a reference sequence leads to biased loss of information; this bias can distort epidemiological and evolutionary conclusions. De novo assembly avoids this bias by aligning the reads to themselves, producing a set of sequences called contigs. However contigs provide only a partial summary of the reads, misassembly may result in their having an incorrect structure, and no information is available at parts of the genome where contigs could not be assembled. To address these problems we developed the tool shiver to pre-process reads for quality and contamination, then map them to a reference tailored to the sample using corrected contigs supplemented with the user’s choice of existing reference sequences. Run with two commands per sample, it can easily be used for large heterogeneous data sets. We used shiver to reconstruct the consensus sequence and minority variant information from paired-end short-read whole-genome data produced with the Illumina platform, for sixty-five existing publicly available samples and fifty new samples. We show the systematic superiority of mapping to shiver’s constructed reference compared with mapping the same reads to the closest of 3,249 real references: median values of 13 bases called differently and more accurately, 0 bases called differently and less accurately, and 205 bases of missing sequence recovered. We also successfully applied shiver to whole-genome samples of Hepatitis C Virus and Respiratory Syncytial Virus. shiver is publicly available from https://github.com/ChrisHIV/shiver. PMID:29876136
Roychoudhury, Pavitra; Makhsous, Negar; Hanson, Derek; Chase, Jill; Krueger, Gerhard; Xie, Hong; Huang, Meei-Li; Saunders, Lindsay; Ablashi, Dharam; Koelle, David M.; Cook, Linda; Jerome, Keith R.
2018-01-01
ABSTRACT Quantitative PCR is a diagnostic pillar for clinical virology testing, and reference materials are necessary for accurate, comparable quantitation between clinical laboratories. Accurate quantitation of human herpesvirus 6A/B (HHV-6A/B) is important for detection of viral reactivation and inherited chromosomally integrated HHV-6A/B in immunocompromised patients. Reference materials in clinical virology commonly consist of laboratory-adapted viral strains that may be affected by the culture process. We performed next-generation sequencing to make relative copy number measurements at single nucleotide resolution of eight candidate HHV-6A and seven HHV-6B reference strains and DNA materials from the HHV-6 Foundation and Advanced Biotechnologies Inc. Eleven of 17 (65%) HHV-6A/B candidate reference materials showed multiple copies of the origin of replication upstream of the U41 gene by next-generation sequencing. These large tandem repeats arose independently in culture-adapted HHV-6A and HHV-6B strains, measuring 1,254 bp and 983 bp, respectively. The average copy number measured was between 5 and 10 times the number of copies of the rest of the genome. We also report the first interspecies recombinant HHV-6A/B strain with a HHV-6A backbone and a >5.5-kb region from HHV-6B, from U41 to U43, that covered the origin tandem repeat. Specific HHV-6A reference strains demonstrated duplication of regions at U1/U2, U87, and U89, as well as deletion in the U12-to-U24 region and the U94/U95 genes. HHV-6A/B strains derived from cord blood mononuclear cells from different laboratories on different continents with fewer passages revealed no copy number differences throughout the viral genome. These data indicate that large origin tandem duplications are an adaptation of both HHV-6A and HHV-6B in culture and show interspecies recombination is possible within the Betaherpesvirinae. IMPORTANCE Anything in science that needs to be quantitated requires a standard unit of measurement. This includes viruses, for which quantitation increasingly determines definitions of pathology and guidelines for treatment. However, the act of making standard or reference material in virology can alter its very accuracy through genomic duplications, insertions, and rearrangements. We used deep sequencing to examine candidate reference strains for HHV-6, a ubiquitous human virus that can reactivate in the immunocompromised population and is integrated into the human genome in every cell of the body for 1% of people worldwide. We found large tandem repeats in the origin of replication for both HHV-6A and HHV-6B that are selected for in culture. We also found the first interspecies recombinant between HHV-6A and HHV-6B, a phenomenon that is well known in alphaherpesviruses but to date has not been seen in betaherpesviruses. These data critically inform HHV-6A/B biology and the standard selection process. PMID:29491155
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blake, D.M.
1995-11-01
This report is an update of a bibliography, published in May, 1994, of research performed on the photocatalytic oxidation of organic or inorganic compounds in air or water and on the photocatalytic reduction of metal-containing ions in water. The general focus of the research is on removing hazardous contaminants from air water to meet environmental or health regulations. The processes covered are based on the application of heterogeneous photocatalysts. The current state-of-the-art in catalysts are forms of titanium dioxide or modifications of titanium dioxide, but work on other heterogeneous catalysts is also included in this compilation. This update contains 574more » references, most published between January, 1993 and June, 1995, but some references are from earlier work that were not included in the previous report. A new section has been added which gives information about companies that are active in providing products based on photocatalytic processes or that can provide pilot, demonstration, or commercial-scale water- or air-treatment systems. Key words, assigned by the author of this report, have been included with the citations in the listing of the bibliography.« less
Accounting for aquifer heterogeneity from geological data to management tools.
Blouin, Martin; Martel, Richard; Gloaguen, Erwan
2013-01-01
A nested workflow of multiple-point geostatistics (MPG) and sequential Gaussian simulation (SGS) was tested on a study area of 6 km(2) located about 20 km northwest of Quebec City, Canada. In order to assess its geological and hydrogeological parameter heterogeneity and to provide tools to evaluate uncertainties in aquifer management, direct and indirect field measurements are used as inputs in the geostatistical simulations to reproduce large and small-scale heterogeneities. To do so, the lithological information is first associated to equivalent hydrogeological facies (hydrofacies) according to hydraulic properties measured at several wells. Then, heterogeneous hydrofacies (HF) realizations are generated using a prior geological model as training image (TI) with the MPG algorithm. The hydraulic conductivity (K) heterogeneity modeling within each HF is finally computed using SGS algorithm. Different K models are integrated in a finite-element hydrogeological model to calculate multiple transport simulations. Different scenarios exhibit variations in mass transport path and dispersion associated with the large- and small-scale heterogeneity respectively. Three-dimensional maps showing the probability of overpassing different thresholds are presented as examples of management tools. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.
NASA Astrophysics Data System (ADS)
de Jong, Maarten F.; Baptist, Martin J.; van Hal, Ralf; de Boois, Ingeborg J.; Lindeboom, Han J.; Hoekstra, Piet
2014-06-01
For the seaward harbour extension of the Port of Rotterdam in the Netherlands, approximately 220 million m3 sand was extracted between 2009 and 2013. In order to decrease the surface area of direct impact, the authorities permitted deep sand extraction, down to 20 m below the seabed. Biological and physical impacts of large-scale and deep sand extraction are still being investigated and largely unknown. For this reason, we investigated the colonization of demersal fish in a deep sand extraction site. Two sandbars were artificially created by selective dredging, copying naturally occurring meso-scale bedforms to increase habitat heterogeneity and increasing post-dredging benthic and demersal fish species richness and biomass. Significant differences in demersal fish species assemblages in the sand extraction site were associated with variables such as water depth, median grain size, fraction of very fine sand, biomass of white furrow shell (Abra alba) and time after the cessation of sand extraction. Large quantities of undigested crushed white furrow shell fragments were found in all stomachs and intestines of plaice (Pleuronectes platessa), indicating that it is an important prey item. One and two years after cessation, a significant 20-fold increase in demersal fish biomass was observed in deep parts of the extraction site. In the troughs of a landscaped sandbar however, a significant drop in biomass down to reference levels and a significant change in species assemblage was observed two years after cessation. The fish assemblage at the crests of the sandbars differed significantly from the troughs with tub gurnard (Chelidonichthys lucerna) being a Dufrêne-Legendre indicator species of the crests. This is a first indication of the applicability of landscaping techniques to induce heterogeneity of the seabed although it remains difficult to draw a strong conclusion due the lack of replication in the experiment. A new ecological equilibrium is not reached after 2 years since biotic and abiotic variables are still adapting. To understand the final impact of deep and large-scale sand extraction on demersal fish, we recommend monitoring for a longer period, at least for a period of six years or even longer.
Evaluation on island ecological vulnerability and its spatial heterogeneity.
Chi, Yuan; Shi, Honghua; Wang, Yuanyuan; Guo, Zhen; Wang, Enkang
2017-12-15
The evaluation on island ecological vulnerability (IEV) can help reveal the comprehensive characteristics of the island ecosystem and provide reference for controlling human activities on islands. An IEV evaluation model which reflects the land-sea dual features, natural and anthropogenic attributes, and spatial heterogeneity of the island ecosystem was established, and the southern islands of Miaodao Archipelago in North China were taken as the study area. The IEV, its spatial heterogeneity, and its sensitivities to the evaluation elements were analyzed. Results indicated that the IEV was in status of mild vulnerability in the archipelago scale, and population pressure, ecosystem productivity, environmental quality, landscape pattern, and economic development were the sensitive elements. The IEV showed significant spatial heterogeneities both in land and surrounding waters sub-ecosystems. Construction scale control, optimization of development allocation, improvement of exploitation methods, and reasonable ecological construction are important measures to control the IEV. Copyright © 2017 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Prion diseases are a heterogeneous group of transmissible spongiform encephalopathies (TSEs) that affect a variety of mammals, causing a slowly progressive and ultimately fatal, degenerative disease of the brain. Classical scrapie, commonly just referred to as ‘scrapie’, is a naturally transmissibl...
Genetics Home Reference: erythrokeratodermia variabilis et progressiva
... P, Campanelli C, Compton JG, Bale SJ, DiGiovanna JJ, Uitto J. Genetic heterogeneity in erythrokeratodermia variabilis: novel ... Itin P, Hohl D, Epstein EH Jr, DiGiovanna JJ, Compton JG, Bale SJ. Mutations in the human ...
Genetics Home Reference: epidermolytic hyperkeratosis
... CC, Korge BP, Markova N, Bale SJ, DiGiovanna JJ, Compton JG, Steinert PM. A leucine----proline mutation ... 70(5):821-8. Citation on PubMed DiGiovanna JJ, Bale SJ. Clinical heterogeneity in epidermolytic hyperkeratosis. Arch ...
van Dijk, R; van Assen, M; Vliegenthart, R; de Bock, G H; van der Harst, P; Oudkerk, M
2017-11-27
Stress cardiovascular magnetic resonance (CMR) perfusion imaging is a promising modality for the evaluation of coronary artery disease (CAD) due to high spatial resolution and absence of radiation. Semi-quantitative and quantitative analysis of CMR perfusion are based on signal-intensity curves produced during the first-pass of gadolinium contrast. Multiple semi-quantitative and quantitative parameters have been introduced. Diagnostic performance of these parameters varies extensively among studies and standardized protocols are lacking. This study aims to determine the diagnostic accuracy of semi- quantitative and quantitative CMR perfusion parameters, compared to multiple reference standards. Pubmed, WebOfScience, and Embase were systematically searched using predefined criteria (3272 articles). A check for duplicates was performed (1967 articles). Eligibility and relevance of the articles was determined by two reviewers using pre-defined criteria. The primary data extraction was performed independently by two researchers with the use of a predefined template. Differences in extracted data were resolved by discussion between the two researchers. The quality of the included studies was assessed using the 'Quality Assessment of Diagnostic Accuracy Studies Tool' (QUADAS-2). True positives, false positives, true negatives, and false negatives were subtracted/calculated from the articles. The principal summary measures used to assess diagnostic accuracy were sensitivity, specificity, andarea under the receiver operating curve (AUC). Data was pooled according to analysis territory, reference standard and perfusion parameter. Twenty-two articles were eligible based on the predefined study eligibility criteria. The pooled diagnostic accuracy for segment-, territory- and patient-based analyses showed good diagnostic performance with sensitivity of 0.88, 0.82, and 0.83, specificity of 0.72, 0.83, and 0.76 and AUC of 0.90, 0.84, and 0.87, respectively. In per territory analysis our results show similar diagnostic accuracy comparing anatomical (AUC 0.86(0.83-0.89)) and functional reference standards (AUC 0.88(0.84-0.90)). Only the per territory analysis sensitivity did not show significant heterogeneity. None of the groups showed signs of publication bias. The clinical value of semi-quantitative and quantitative CMR perfusion analysis remains uncertain due to extensive inter-study heterogeneity and large differences in CMR perfusion acquisition protocols, reference standards, and methods of assessment of myocardial perfusion parameters. For wide spread implementation, standardization of CMR perfusion techniques is essential. CRD42016040176 .
NASA Astrophysics Data System (ADS)
Kent, E. R.; Clay, J. M.; Leinfelder-Miles, M.; Lambert, J. J.; Little, C.; Monteiro, R. O. C.; Monteiro, P. F. C.; Shapiro, K.; Rice, S.; Snyder, R. L.; Daniele, Z.; Paw U, K. T.
2016-12-01
Evapotranspiration (ET) estimated using a single crop coefficient and a grass reference largely ignores variability due to heterogeneity in microclimate, soils, and crop management. We employ a relatively low cost energy balance residual method using surface renewal and eddy covariance measurements to continuously estimate half-hourly and daily ET across more than 15 fields and orchards spanning four crops and two regions of California. In the Sacramento-San Joaquin River Delta, measurements were taken in corn, pasture, and alfalfa fields, with 4-5 stations in each crop type spread across the region. In the Southern San Joaquin Valley, measurements were taken in three different pistachio orchards, with one orchard having six stations instrumented to examine salinity-induced heterogeneity. We analyze field-scale and regional variability in ET and measured surface energy balance components. Cross comparisons between the eddy covariance and the surface renewal measurements confirm the robustness of the surface renewal method. A hybrid approach in which remotely sensed net radiation is combined with in situ measurements of sensible heat flux is also investigated. This work will provide ground-truth data for satellite and aerial-based ET estimates and will inform water management at the field and regional scales.
NASA Astrophysics Data System (ADS)
Kööp, Levke; Davis, Andrew M.; Nakashima, Daisuke; Park, Changkun; Krot, Alexander N.; Nagashima, Kazuhide; Tenner, Travis J.; Heck, Philipp R.; Kita, Noriko T.
2016-09-01
PLACs (platy hibonite crystals) and related hibonite-rich calcium-, aluminum-rich inclusions (CAIs; hereafter collectively referred to as PLAC-like CAIs) have the largest nucleosynthetic isotope anomalies of all materials believed to have formed in the solar system. Most PLAC-like CAIs have low inferred initial 26Al/27Al ratios and could have formed prior to injection or widespread distribution of 26Al in the solar nebula. In this study, we report 26Al-26Mg systematics combined with oxygen, calcium, and titanium isotopic compositions for a large number of newly separated PLAC-like CAIs from the Murchison CM2 chondrite (32 CAIs studied for oxygen, 26 of these also for 26Al-26Mg, calcium and titanium). Our results confirm (1) the large range of nucleosynthetic anomalies in 50Ti and 48Ca (our data range from -70‰ to +170‰ and -60‰ to +80‰, respectively), (2) the substantial range of Δ17O values (-28‰ to -17‰, with Δ17O = δ17O - 0.52 × δ18O), and (3) general 26Al-depletion in PLAC-like CAIs. The multielement approach reveals a relationship between Δ17O and the degree of variability in 50Ti and 48Ca: PLAC-like CAIs with the highest Δ17O (∼-17‰) show large positive and negative 50Ti and 48Ca anomalies, while those with the lowest Δ17O (∼-28‰) have small to no anomalies in 50Ti and 48Ca. These observations could suggest a physical link between anomalous 48Ca and 50Ti carriers and an 16O-poor reservoir. We suggest that the solar nebula was isotopically heterogeneous shortly after collapse of the protosolar molecular cloud, and that the primordial dust reservoir, in which anomalous carrier phases were heterogeneously distributed, was 16O-poor (Δ17O ⩾ -17‰) relative to the primordial gaseous (CO + H2O) reservoir (Δ17O < -35‰). However, other models such as CO self-shielding in the protoplanetary disk are also considered to explain the link between oxygen and calcium and titanium isotopes in PLAC-like CAIs.
NASA Astrophysics Data System (ADS)
Tsakiroglou, C. D.; Aggelopoulos, C. A.; Sygouni, V.
2009-04-01
A hierarchical, network-type, dynamic simulator of the immiscible displacement of water by oil in heterogeneous porous media is developed to simulate the rate-controlled displacement of two fluids at the soil column scale. A cubic network is constructed, where each node is assigned a permeability which is chosen randomly from a distribution function. The intensity of heterogeneities is quantified by the width of the permeability distribution function. The capillary pressure at each node is calculated by combining a generalized Leverett J-function with a Corey type model. Information about the heterogeneity of soils at the pore network scale is obtained by combining mercury intrusion porosimetry (MIP) data with back-scattered scanning electron microscope (BSEM) images [1]. In order to estimate the two-phase flow properties of nodes (relative permeability and capillary pressure functions, permeability distribution function) immiscible and miscible displacement experiments are performed on undisturbed soil columns. The transient responses of measured variables (pressure drop, fluid saturation averaged over five successive segments, solute concentration averaged over three cross-sections) are fitted with models accounting for the preferential flow paths at the micro- (multi-region model) and macro-scale (multi flowpath model) because of multi-scale heterogeneities [2,3]. Simulating the immiscible displacement of water by oil (drainage) in a large netork, at each time step, the fluid saturation and pressure of each node are calculated formulating mass balances at each node, accounting for capillary, viscous and gravity forces, and solving the system of coupled equations. At each iteration of the algorithm, the pressure drop is so selected that the total flow rate of the injected fluid is kept constant. The dynamic large-scale network simulator is used (1) to examine the sensitivity of the transient responses of the axial distribution of fluid saturation and total pressure drop across the network to the permeability distribution function, spatial correlations of permeability, and capillary number, and (2) to estimate the effective (up-scaled) relative permeability functions at the soil column scale. In an attempt to clarify potential effects of the permeability distribution and spatial permeability correlations on the transient responses of the pressure drop across a soil column, signal analysis with wavelets is performed [4] on experimental and simulated results. The transient variation of signal energy and frequency of pressure drop fluctuations at the wavelet domain are correlated with macroscopic properties such as the effective water and oil relative permeabilities of the porous medium, and microscopic properties such as the variation of the permeability distribution of oil-occupied nodes. Toward the solution of the inverse problem, a general procedure is suggested to identify macro-heterogeneities from the fast analysis of pressure drop signals. References 1. Tsakiroglou, C.D. and M.A. Ioannidis, "Dual porosity modeling of the pore structure and transport properties of a contaminated soil", Eur. J. Soil Sci., 59, 744-761 (2008). 2. Aggelopoulos, C.A., and C.D. Tsakiroglou, "Quantifying the Soil Heterogeneity from Solute Dispersion Experiments", Geoderma, 146, 412-424 (2008). 3. Aggelopoulos, C.A., and C.D. Tsakiroglou, "A multi-flow path approach to model immiscible displacement in undisturbed heterogeneous soil columns", J. Contam. Hydrol., in press (2009). 4. Sygouni, V., C.D. Tsakiroglou, and A.C. Payatakes, "Using wavelets to characterize the wettability of porous materials", Phys. Rev. E, 76, 056304 (2007).
NASA Astrophysics Data System (ADS)
Wesley, David T. A.
In 2011, stakeholders with differing objectives formed an alliance to oppose the Keystone XL heavy oil pipeline. The alliance, which came to be known as "Tar Sands Action," implemented various strategies, some of which were more successful than others. Tar Sands Action was a largely heterogeneous alliance that included indigenous tribes, environmentalists, ranchers, landowners, and trade unions, making it one of the more diverse social movement organizations in history. Each of these stakeholder categories had distinct demographic structures, representing an array of racial, ethnic, educational, occupational, and political backgrounds. Participants also had differing policy objectives that included combating climate change and protecting jobs, agricultural interests, water resources, wildlife, and human health. The current dissertation examines the Tar Sands Action movement to understand how heterogeneous social movement organizations mobilize supporters, maintain alliances, and create effective frames to achieve policy objectives. A multi-stakeholder analysis of the development, evolution and communication of frames concerning the Keystone XL controversy provides insight into the role of alliances, direct action, and the news media in challenging hegemonic frames. Previous research has ignored the potential value that SMO heterogeneity provides by treating social movements as culturally homogenous. However, diversity has been shown to affect performance in business organizations. The current study demonstrates that under some circumstances, diversity can also improve policy outcomes. Moreover, policy frames are shown to be more effective in sustaining news media and public interest through a process the author calls dynamic frame sequencing (DFS). DFS refers to a process implementing different stakeholder frames at strategically opportune moments. Finally, Tar Sands Action was one of the first SMOs to rely heavily on social media to build alliances, disseminate information, and mobilize support. This study adds to a growing body of research that considers the emerging role of social media in protest movements.
Estimation of brood and nest survival: Comparative methods in the presence of heterogeneity
Manly, Bryan F.J.; Schmutz, Joel A.
2001-01-01
The Mayfield method has been widely used for estimating survival of nests and young animals, especially when data are collected at irregular observation intervals. However, this method assumes survival is constant throughout the study period, which often ignores biologically relevant variation and may lead to biased survival estimates. We examined the bias and accuracy of 1 modification to the Mayfield method that allows for temporal variation in survival, and we developed and similarly tested 2 additional methods. One of these 2 new methods is simply an iterative extension of Klett and Johnson's method, which we refer to as the Iterative Mayfield method and bears similarity to Kaplan-Meier methods. The other method uses maximum likelihood techniques for estimation and is best applied to survival of animals in groups or families, rather than as independent individuals. We also examined how robust these estimators are to heterogeneity in the data, which can arise from such sources as dependent survival probabilities among siblings, inherent differences among families, and adoption. Testing of estimator performance with respect to bias, accuracy, and heterogeneity was done using simulations that mimicked a study of survival of emperor goose (Chen canagica) goslings. Assuming constant survival for inappropriately long periods of time or use of Klett and Johnson's methods resulted in large bias or poor accuracy (often >5% bias or root mean square error) compared to our Iterative Mayfield or maximum likelihood methods. Overall, estimator performance was slightly better with our Iterative Mayfield than our maximum likelihood method, but the maximum likelihood method provides a more rigorous framework for testing covariates and explicity models a heterogeneity factor. We demonstrated use of all estimators with data from emperor goose goslings. We advocate that future studies use the new methods outlined here rather than the traditional Mayfield method or its previous modifications.
Montoro, Pedro R; Luna, Dolores
2009-10-01
Previous studies on the processing of hierarchical patterns (Luna & Montoro, 2008) have shown that altering the spatial relationships between the local elements affected processing dominance by decreasing global advantage. In the present article, the authors examine whether heterogeneity or a sparse distribution of the local elements was the responsible factor for this effect. In Experiments 1 and 2, the distance between the local elements was increased in a similar way, but between-element distance was homogeneous in Experiment 1 and heterogeneous in Experiment 2. In Experiment 3, local elements' size was varied by presenting global patterns composed of similar large or small local elements and of different large and small sizes. The results of the present research showed that, instead of element sparsity, spatial heterogeneity that could change the appearance of the global form as well as the salience of the local elements was the main determiner of impairing global processing.
XML-based approaches for the integration of heterogeneous bio-molecular data.
Mesiti, Marco; Jiménez-Ruiz, Ernesto; Sanz, Ismael; Berlanga-Llavori, Rafael; Perlasca, Paolo; Valentini, Giorgio; Manset, David
2009-10-15
The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources.
Nürnberger, Fabian; Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health.
Chemical heterogeneities in the interior of terrestrial bodies
NASA Astrophysics Data System (ADS)
Plesa, Ana-Catalina; Maurice, Maxime; Tosi, Nicola; Breuer, Doris
2016-04-01
Mantle chemical heterogeneities that can strongly influence the interior dynamics have been inferred for all terrestrial bodies of the Solar System and range from local to global scale. Seismic data for the Earth, differences in surface mineral compositions observed in data sets from space missions, and isotopic variations identified in laboratory analyses of meteorites or samples indicate chemically heterogeneous systems. One way to generate large scale geochemical heterogeneities is through the fractional crystallization of a liquid magma ocean. The large amount of energy available in the early stages of planetary evolution can cause melting of a significant part or perhaps even the entire mantle of a terrestrial body resulting in a liquid magma ocean. Assuming fractional crystallization, magma ocean solidification proceeds from the core-mantle boundary to the surface where dense cumulates tend to form due to iron enrichment in the evolving liquid. This process leads to a gravitationally unstable mantle, which is prone to overturn. Following cumulate overturn, a stable stratification may be reached that prevents efficient material transport. As a consequence, mantle reservoirs may be kept separate, possibly for the entire thermo-chemical evolution of a terrestrial body. Scenarios assuming fractional crystallization of a liquid magma ocean have been suggested to explain lavas with distinct composition on Mercury's surface [1], the generation of the Moon's mare basalts by sampling a reservoir consisting of overturned ilmenite-bearing cumulates [2], and the preservation of Mars' geochemical reservoirs as inferred by isotopic analysis of the SNC meteorites [3]. However, recent studies have shown that the style of the overturn as well as the subsequent density stratification are of extreme importance for the subsequent thermo-chemical evolution of a planetary body and may have a major impact on the later surface tectonics and volcanic history. The rapid formation of a stagnant lid that traps the uppermost dense cumulates close to the surface and prevents them from sinking into the mantle or the difficulty to initiate thermal convection because of the stable compositional gradient established after the overturn are difficult to reconcile with observations [4, 5]. More recent results show that the crystallization achieved upon solidification of a liquid magma ocean is considerably more complex than previously assumed. In fact, the onset of solid-state convection prior to complete crystallization of the mantle can efficiently reduce mantle chemical heterogeneities [5]. We thus conclude that mantle mixing may partly or even completely erase the effects of fractional crystallization well before complete solidification. Nevertheless, the subsequent differentiation caused by partial melting, may introduce additional heterogeneities between residual and primitive mantle that could explain compositional differences observed over the surface of terrestrial bodies [6]. References: [1] Charlier et al., 2013, EPSL; [2] Elkins-Tanton et al., 2011, EPSL; [3] Elkins-Tanton et al., 2005, JGR; [4] Tosi et al., 2013, JGR; [5] Plesa et al., 2014, EPSL; [5] Maurice et al, 2015, EGU; [6] Plesa & Breuer, 2014, PSS.
The Importance of Large-Diameter Trees to Forest Structural Heterogeneity
Lutz, James A.; Larson, Andrew J.; Freund, James A.; Swanson, Mark E.; Bible, Kenneth J.
2013-01-01
Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥1 cm dbh, all 1,966 snags ≥10 cm dbh, and all shrub patches ≥2 m2. Basal area of the 26 woody species was 62.18 m2/ha, of which 61.60 m2/ha was trees and 0.58 m2/ha was tall shrubs. Large-diameter trees (≥100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P≤0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses. PMID:24376579
The importance of large-diameter trees to forest structural heterogeneity.
Lutz, James A; Larson, Andrew J; Freund, James A; Swanson, Mark E; Bible, Kenneth J
2013-01-01
Large-diameter trees dominate the structure, dynamics and function of many temperate and tropical forests. However, their attendant contributions to forest heterogeneity are rarely addressed. We established the Wind River Forest Dynamics Plot, a 25.6 ha permanent plot within which we tagged and mapped all 30,973 woody stems ≥ 1 cm dbh, all 1,966 snags ≥ 10 cm dbh, and all shrub patches ≥ 2 m(2). Basal area of the 26 woody species was 62.18 m(2)/ha, of which 61.60 m(2)/ha was trees and 0.58 m(2)/ha was tall shrubs. Large-diameter trees (≥ 100 cm dbh) comprised 1.5% of stems, 31.8% of basal area, and 17.6% of the heterogeneity of basal area, with basal area dominated by Tsuga heterophylla and Pseudotsuga menziesii. Small-diameter subpopulations of Pseudotsuga menziesii, Tsuga heterophylla and Thuja plicata, as well as all tree species combined, exhibited significant aggregation relative to the null model of complete spatial randomness (CSR) up to 9 m (P ≤ 0.001). Patterns of large-diameter trees were either not different from CSR (Tsuga heterophylla), or exhibited slight aggregation (Pseudotsuga menziesii and Thuja plicata). Significant spatial repulsion between large-diameter and small-diameter Tsuga heterophylla suggests that large-diameter Tsuga heterophylla function as organizers of tree demography over decadal timescales through competitive interactions. Comparison among two forest dynamics plots suggests that forest structural diversity responds to intermediate-scale environmental heterogeneity and disturbances, similar to hypotheses about patterns of species richness, and richness- ecosystem function. Large mapped plots with detailed within-plot environmental spatial covariates will be required to test these hypotheses.
NASA Astrophysics Data System (ADS)
Shao, Yaping; Liu, Shaofeng; Schween, Jan H.; Crewell, Susanne
2013-08-01
A model is developed for the large-eddy simulation (LES) of heterogeneous atmosphere and land-surface processes. This couples a LES model with a land-surface scheme. New developments are made to the land-surface scheme to ensure the adequate representation of atmosphere-land-surface transfers on the large-eddy scale. These include, (1) a multi-layer canopy scheme; (2) a method for flux estimates consistent with the large-eddy subgrid closure; and (3) an appropriate soil-layer configuration. The model is then applied to a heterogeneous region with 60-m horizontal resolution and the results are compared with ground-based and airborne measurements. The simulated sensible and latent heat fluxes are found to agree well with the eddy-correlation measurements. Good agreement is also found in the modelled and observed net radiation, ground heat flux, soil temperature and moisture. Based on the model results, we study the patterns of the sensible and latent heat fluxes, how such patterns come into existence, and how large eddies propagate and destroy land-surface signals in the atmosphere. Near the surface, the flux and land-use patterns are found to be closely correlated. In the lower boundary layer, small eddies bearing land-surface signals organize and develop into larger eddies, which carry the signals to considerably higher levels. As a result, the instantaneous flux patterns appear to be unrelated to the land-use patterns, but on average, the correlation between them is significant and persistent up to about 650 m. For a given land-surface type, the scatter of the fluxes amounts to several hundred W { m }^{-2}, due to (1) large-eddy randomness; (2) rapid large-eddy and surface feedback; and (3) local advection related to surface heterogeneity.
Simple, efficient allocation of modelling runs on heterogeneous clusters with MPI
Donato, David I.
2017-01-01
In scientific modelling and computation, the choice of an appropriate method for allocating tasks for parallel processing depends on the computational setting and on the nature of the computation. The allocation of independent but similar computational tasks, such as modelling runs or Monte Carlo trials, among the nodes of a heterogeneous computational cluster is a special case that has not been specifically evaluated previously. A simulation study shows that a method of on-demand (that is, worker-initiated) pulling from a bag of tasks in this case leads to reliably short makespans for computational jobs despite heterogeneity both within and between cluster nodes. A simple reference implementation in the C programming language with the Message Passing Interface (MPI) is provided.
Organizational heterogeneity of vertebrate genomes.
Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham
2012-01-01
Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.
Ultrafast cavitation induced by an X-ray laser in water drops
NASA Astrophysics Data System (ADS)
Stan, Claudiu; Willmott, Philip; Stone, Howard; Koglin, Jason; Liang, Mengning; Aquila, Andrew; Robinson, Joseph; Gumerlock, Karl; Blaj, Gabriel; Sierra, Raymond; Boutet, Sebastien; Guillet, Serge; Curtis, Robin; Vetter, Sharon; Loos, Henrik; Turner, James; Decker, Franz-Josef
2016-11-01
Cavitation in pure water is determined by an intrinsic heterogeneous cavitation mechanism, which prevents in general the experimental generation of large tensions (negative pressures) in bulk liquid water. We developed an ultrafast decompression technique, based on the reflection of shock waves generated by an X-ray laser inside liquid drops, to stretch liquids to large negative pressures in a few nanoseconds. Using this method, we observed cavitation in liquid water at pressures below -100 MPa. These large tensions exceed significantly those achieved previously, mainly due to the ultrafast decompression. The decompression induced by shock waves generated by an X-ray laser is rapid enough to continue to stretch the liquid phase after the heterogeneous cavitation occurs in water, despite the rapid growth of cavitation nanobubbles. We developed a nucleation-and-growth hydrodynamic cavitation model that explains our results and estimates the concentration of heterogeneous cavitation nuclei in water.
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies
Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-01-01
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods’ performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. PMID:27993672
Experience of targeted Usher exome sequencing as a clinical test
Besnard, Thomas; García-García, Gema; Baux, David; Vaché, Christel; Faugère, Valérie; Larrieu, Lise; Léonard, Susana; Millan, Jose M; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise
2014-01-01
We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service. PMID:24498627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrotriya, D., E-mail: shrotriya2007@gmail.com; Srivastava, R. N. L.; Kumar, S.
The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for directmore » measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.« less
Changing climate in Hungary and trends in the annual number of heat stress days
NASA Astrophysics Data System (ADS)
Solymosi, Norbert; Torma, Csaba; Kern, Anikó; Maróti-Agóts, Ákos; Barcza, Zoltán; Könyves, László; Berke, Olaf; Reiczigel, Jenő
2010-07-01
Global climate change can have serious direct effects on animal health and production through heat stress. In Hungary, the number of heat stress days per year (YNHD), i.e., days when the temperature humidity index (THI) is above a specific comfort threshold, has increased in recent years based on observed meteorological data. Between 1973 and 2008, the countrywide average increase in YNHD was 4.1% per year. Climate scenarios based on regional climate models (RCM) were used to predict possible changes in YNHD for the near future (2021-2050) relative to the reference period (1961-1990). This comparison shows that, in Hungary, the 30-year mean of YNHD is expected to increase by between 1 and 27 days, depending on the RCM used. Half of the scenarios investigated in this study predicted that, in large parts of Hungary, YNHD will increase by at least 1 week. However, the increase observed in the past, and that predicted for the near future, is spatially heterogeneous, and areas that currently have large cattle populations are expected to be affected more severely than other regions.
Efficient data management tools for the heterogeneous big data warehouse
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Osipova, V. V.; Ivanov, M. A.; Klimentov, A.; Grigorieva, N. V.; Nalamwar, H. S.
2016-09-01
The traditional RDBMS has been consistent for the normalized data structures. RDBMS served well for decades, but the technology is not optimal for data processing and analysis in data intensive fields like social networks, oil-gas industry, experiments at the Large Hadron Collider, etc. Several challenges have been raised recently on the scalability of data warehouse like workload against the transactional schema, in particular for the analysis of archived data or the aggregation of data for summary and accounting purposes. The paper evaluates new database technologies like HBase, Cassandra, and MongoDB commonly referred as NoSQL databases for handling messy, varied and large amount of data. The evaluation depends upon the performance, throughput and scalability of the above technologies for several scientific and industrial use-cases. This paper outlines the technologies and architectures needed for processing Big Data, as well as the description of the back-end application that implements data migration from RDBMS to NoSQL data warehouse, NoSQL database organization and how it could be useful for further data analytics.
Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes
NASA Astrophysics Data System (ADS)
Yang, Hui; Tang, Ming; Gross, Thilo
2015-08-01
One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.
Large epidemic thresholds emerge in heterogeneous networks of heterogeneous nodes.
Yang, Hui; Tang, Ming; Gross, Thilo
2015-08-21
One of the famous results of network science states that networks with heterogeneous connectivity are more susceptible to epidemic spreading than their more homogeneous counterparts. In particular, in networks of identical nodes it has been shown that network heterogeneity, i.e. a broad degree distribution, can lower the epidemic threshold at which epidemics can invade the system. Network heterogeneity can thus allow diseases with lower transmission probabilities to persist and spread. However, it has been pointed out that networks in which the properties of nodes are intrinsically heterogeneous can be very resilient to disease spreading. Heterogeneity in structure can enhance or diminish the resilience of networks with heterogeneous nodes, depending on the correlations between the topological and intrinsic properties. Here, we consider a plausible scenario where people have intrinsic differences in susceptibility and adapt their social network structure to the presence of the disease. We show that the resilience of networks with heterogeneous connectivity can surpass those of networks with homogeneous connectivity. For epidemiology, this implies that network heterogeneity should not be studied in isolation, it is instead the heterogeneity of infection risk that determines the likelihood of outbreaks.
2013-01-01
Background The poor reproducibility of matrix-assisted desorption/ionization time-of-flight (MALDI-TOF) spectra limits the effectiveness of the MALDI-TOF MS-based identification of filamentous fungi with highly heterogeneous phenotypes in routine clinical laboratories. This study aimed to enhance the MALDI-TOF MS-based identification of filamentous fungi by assessing several architectures of reference spectrum libraries. Results We established reference spectrum libraries that included 30 filamentous fungus species with various architectures characterized by distinct combinations of the following: i) technical replicates, i.e., the number of analyzed deposits for each culture used to build a reference meta-spectrum (RMS); ii) biological replicates, i.e., the number of RMS derived from the distinct subculture of each strain; and iii) the number of distinct strains of a given species. We then compared the effectiveness of each library in the identification of 200 prospectively collected clinical isolates, including 38 species in 28 genera. Identification effectiveness was improved by increasing the number of both RMS per strain (p<10-4) and strains for a given species (p<10-4) in a multivariate analysis. Conclusion Addressing the heterogeneity of MALDI-TOF spectra derived from filamentous fungi by increasing the number of RMS obtained from distinct subcultures of strains included in the reference spectra library markedly improved the effectiveness of the MALDI-TOF MS-based identification of clinical filamentous fungi. PMID:23565856
Large-scale compositional heterogeneity in the Earth's mantle
NASA Astrophysics Data System (ADS)
Ballmer, M.
2017-12-01
Seismic imaging of subducted Farallon and Tethys lithosphere in the lower mantle has been taken as evidence for whole-mantle convection, and efficient mantle mixing. However, cosmochemical constraints point to a lower-mantle composition that has a lower Mg/Si compared to upper-mantle pyrolite. Moreover, geochemical signatures of magmatic rocks indicate the long-term persistence of primordial reservoirs somewhere in the mantle. In this presentation, I establish geodynamic mechanisms for sustaining large-scale (primordial) heterogeneity in the Earth's mantle using numerical models. Mantle flow is controlled by rock density and viscosity. Variations in intrinsic rock density, such as due to heterogeneity in basalt or iron content, can induce layering or partial layering in the mantle. Layering can be sustained in the presence of persistent whole mantle convection due to active "unmixing" of heterogeneity in low-viscosity domains, e.g. in the transition zone or near the core-mantle boundary [1]. On the other hand, lateral variations in intrinsic rock viscosity, such as due to heterogeneity in Mg/Si, can strongly affect the mixing timescales of the mantle. In the extreme case, intrinsically strong rocks may remain unmixed through the age of the Earth, and persist as large-scale domains in the mid-mantle due to focusing of deformation along weak conveyor belts [2]. That large-scale lateral heterogeneity and/or layering can persist in the presence of whole-mantle convection can explain the stagnation of some slabs, as well as the deflection of some plumes, in the mid-mantle. These findings indeed motivate new seismic studies for rigorous testing of model predictions. [1] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015), Science Advances, doi:10.1126/sciadv.1500815. [2] Ballmer, M. D., C. Houser, J. W. Hernlund, R. Wentzcovitch, and K. Hirose (2017), Nature Geoscience, doi:10.1038/ngeo2898.
Parameter studies on the energy balance closure problem using large-eddy simulation
NASA Astrophysics Data System (ADS)
De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias
2017-04-01
The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion presentation (EGU2017-2130) these correlations are investigated and confirmed with the help of micrometeorological measurements from the TERENO sites where the effects of landscape scale surface heterogeneities are deemed to be important.
Mechanism of heterogeneous catalytic oxidation of organic compounds to carboxylic acids
NASA Astrophysics Data System (ADS)
Andrushkevich, T. V.; Chesalov, Yu A.
2018-06-01
The results of studies on the mechanism of heterogeneous catalytic oxidation of organic compounds of different chemical structure to carboxylic acids are analyzed and generalized. The concept developed by Academician G.K.Boreskov, according to which the direction of the reaction is governed by the structure and bond energy of surface intermediates, was confirmed taking the title processes as examples. Quantitative criteria of the bond energies of surface compounds of oxidizable reactants, reaction products and oxygen that determine the selective course of the reaction are presented. The bibliography includes 195 references.
NASA Astrophysics Data System (ADS)
Kartashov, E. M.
1986-10-01
Analytical methods for solving boundary value problems for the heat conduction equation with heterogeneous boundary conditions on lines, on a plane, and in space are briefly reviewed. In particular, the method of dual integral equations and summator series is examined with reference to stationary processes. A table of principal solutions to dual integral equations and pair summator series is proposed which presents the known results in a systematic manner. Newly obtained results are presented in addition to the known ones.
Mashouf, Shahram; Lechtman, Eli; Beaulieu, Luc; Verhaegen, Frank; Keller, Brian M; Ravi, Ananth; Pignol, Jean-Philippe
2013-09-21
The American Association of Physicists in Medicine Task Group No. 43 (AAPM TG-43) formalism is the standard for seeds brachytherapy dose calculation. But for breast seed implants, Monte Carlo simulations reveal large errors due to tissue heterogeneity. Since TG-43 includes several factors to account for source geometry, anisotropy and strength, we propose an additional correction factor, called the inhomogeneity correction factor (ICF), accounting for tissue heterogeneity for Pd-103 brachytherapy. This correction factor is calculated as a function of the media linear attenuation coefficient and mass energy absorption coefficient, and it is independent of the source internal structure. Ultimately the dose in heterogeneous media can be calculated as a product of dose in water as calculated by TG-43 protocol times the ICF. To validate the ICF methodology, dose absorbed in spherical phantoms with large tissue heterogeneities was compared using the TG-43 formalism corrected for heterogeneity versus Monte Carlo simulations. The agreement between Monte Carlo simulations and the ICF method remained within 5% in soft tissues up to several centimeters from a Pd-103 source. Compared to Monte Carlo, the ICF methods can easily be integrated into a clinical treatment planning system and it does not require the detailed internal structure of the source or the photon phase-space.
The periodic dynamics of the irregular heterogeneous celestial bodies
NASA Astrophysics Data System (ADS)
Lan, Lei; Yang, Mo; Baoyin, Hexi; Li, Junfeng
2017-02-01
In this paper, we develop a methodology to study the periodic dynamics of irregular heterogeneous celestial bodies. Heterogeneous bodies are not scarce in space. It has been found that bodies, such as 4 Vesta, 624 Hektor, 87 Sylvia, 16 Psyche and 25143 Itokawa, may all have varied internal structures. They can be divided into large-scale and small-scale cases. The varied internal structures of large-scale bodies always result from gradient pressure inside, which leads to compactness differences of the inner material. However, the heterogeneity of a small-scale body is always reflected by the different densities of different areas, which may originate from collision formation from multiple objects. We propose a modeling procedure for the heterogeneous bodies derived from the conventional polyhedral method and then compare its dynamical characteristics with those of the homogeneous case. It is found that zero-velocity curves, positions of equilibrium points, types of bifurcations in the continuation of the orbital family and the stabilities of periodic orbits near the heterogeneous body are different from those in the homogeneous case. The suborbicular orbits near the equatorial plane are potential parking orbits for a future mission, so we discuss the switching of the orbital stability of the family because it has fundamental significance to orbit maintenance and operations around actual asteroids.
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.
Hartmann, Andreas; Gleeson, Tom; Wagener, Thorsten
2017-01-01
Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover ∼25% of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit “karstification,” which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers. PMID:28242703
Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health. PMID:28603677
The Enigma of Soil Animal Species Diversity Revisited: The Role of Small-Scale Heterogeneity
Nielsen, Uffe N.; Osler, Graham H. R.; Campbell, Colin D.; Neilson, Roy; Burslem, David F. R. P.; van der Wal, René
2010-01-01
Background “The enigma of soil animal species diversity” was the title of a popular article by J. M. Anderson published in 1975. In that paper, Anderson provided insights on the great richness of species found in soils, but emphasized that the mechanisms contributing to the high species richness belowground were largely unknown. Yet, exploration of the mechanisms driving species richness has focused, almost exclusively, on above-ground plant and animal communities, and nearly 35 years later we have several new hypotheses but are not much closer to revealing why soils are so rich in species. One persistent but untested hypothesis is that species richness is promoted by small-scale environmental heterogeneity. Methodology/Principal Findings To test this hypothesis we manipulated small-scale heterogeneity in soil properties in a one-year field experiment and investigated the impacts on the richness of soil fauna and evenness of the microbial communities. We found that heterogeneity substantially increased the species richness of oribatid mites, collembolans and nematodes, whereas heterogeneity had no direct influence on the evenness of either the fungal, bacterial or archaeal communities or on species richness of the large and mobile mesostigmatid mites. These results suggest that the heterogeneity-species richness relationship is scale dependent. Conclusions Our results provide direct evidence for the hypothesis that small-scale heterogeneity in soils increase species richness of intermediate-sized soil fauna. The concordance of mechanisms between above and belowground communities suggests that the relationship between environmental heterogeneity and species richness may be a general property of ecological communities. PMID:20644639
NASA Technical Reports Server (NTRS)
Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten
2017-01-01
Our environment is heterogeneous. In hydrological sciences, the heterogeneity of subsurface properties, such as hydraulic conductivities or porosities, exerts an important control on water balance. This notably includes groundwater recharge, which is an important variable for efficient and sustainable groundwater resources management. Current large-scale hydrological models do not adequately consider this subsurface heterogeneity. Here we show that regions with strong subsurface heterogeneity have enhanced present and future recharge rates due to a different sensitivity of recharge to climate variability compared with regions with homogeneous subsurface properties. Our study domain comprises the carbonate rock regions of Europe, Northern Africa, and the Middle East, which cover 25 of the total land area. We compare the simulations of two large-scale hydrological models, one of them accounting for subsurface heterogeneity. Carbonate rock regions strongly exhibit karstification, which is known to produce particularly strong subsurface heterogeneity. Aquifers from these regions contribute up to half of the drinking water supply for some European countries. Our results suggest that water management for these regions cannot rely on most of the presently available projections of groundwater recharge because spatially variable storages and spatial concentration of recharge result in actual recharge rates that are up to four times larger for present conditions and changes up to five times larger for potential future conditions than previously estimated. These differences in recharge rates for strongly heterogeneous regions suggest a need for groundwater management strategies that are adapted to the fast transit of water from the surface to the aquifers.
Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa
Arauna, Lara R.; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett
2017-01-01
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies. PMID:27744413
Shaw, Catriona; Nitsch, Dorothea; Lee, Jasmine; Fogarty, Damian; Sharpe, Claire C.
2016-01-01
Background Clinical practice guidelines support an early invasive approach after NSTE-ACS in patients with chronic kidney disease (CKD). There is no direct randomised controlled trial evidence in the CKD population, and whether the benefit of an early invasive approach is maintained across the spectrum of severity of CKD remains controversial. Methods We conducted a systematic review to evaluate the association between an early invasive approach and all-cause mortality in patients with CKD. We searched MEDLINE and EMBASE (1990-May 2015) and article reference lists. Data describing study design, participants, invasive management strategies, renal function, all-cause mortality and risk of bias were extracted. Results 3,861 potentially relevant studies were identified. Ten studies, representing data on 147,908 individuals with NSTE-ACS met the inclusion criteria. Qualitative heterogeneity in the definitions of early invasive approach, comparison groups and renal dysfunction existed. Meta-analysis of the RCT derived and observational data were generally supportive of an early invasive approach in CKD (RR0.76 (95% CI 0.49–1.17) and RR0.50 (95%CI 0.42–0.59) respectively). Meta-analysis of the observational studies demonstrated a large degree of heterogeneity (I2 79%) driven in part by study size and heterogeneity across various kidney function levels. Conclusions The observational data support that an early invasive approach after NSTE-ACS confers a survival benefit in those with early-moderate CKD. Local opportunities for quality improvement should be sought. Those with severe CKD and the dialysis population are high risk and under-studied. Novel and inclusive approaches for CKD and dialysis patients in cardiovascular clinical trials are needed. PMID:27195786
NASA Data Evaluation (2015): Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies
NASA Astrophysics Data System (ADS)
Burkholder, J. B.; Sander, S. P.; Abbatt, J.; Barker, J. R.; Huie, R. E.; Kolb, C. E., Jr.; Kurylo, M. J., III; Orkin, V. L.; Wilmouth, D. M.; Wine, P. H.
2015-12-01
Atmospheric chemistry models must include a large number of processes to accurately describe the temporal and spatial behavior of atmospheric composition. They require a wide range of chemical and physical data (parameters) that describe elementary gas-phase and heterogeneous processes. The review and evaluation of chemical and physical data has, therefore, played an important role in the development of chemical models and in their use in environmental assessment activities. The NASA data panel evaluation has a broad atmospheric focus that includes Ox, O(1D), singlet O2, HOx, NOx, Organic, FOx, ClOx, BrOx, IOx, SOx, and Na reactions, three-body reactions, equilibrium constants, photochemistry, Henry's Law coefficients, aqueous chemistry, heterogeneous chemistry and processes, and thermodynamic parameters. The 2015 evaluation includes critical coverage of ~700 bimolecular reactions, 86 three-body reactions, 33 equilibrium constants, ~220 photochemical species, ~360 aqueous and heterogeneous processes, and thermodynamic parameters for ~800 species with over 5000 literature citations reviewed. Each evaluation includes (1) recommended values (e.g. rate coefficients, absorption cross sections, solubilities, and uptake coefficients) with estimated uncertainty factors and (2) a note describing the available experimental and theoretical data and an explanation for the recommendation. This presentation highlights some of the recent additions to the evaluation that include: (1) expansion of thermochemical parameters, including Hg species, (2) CH2OO (Criegee) chemistry, (3) Isoprene and its major degradation product chemistry, (4) halocarbon chemistry, (5) Henry's law solubility data, and (6) uptake coefficients. In addition, a listing of complete references with the evaluation notes has been implemented. Users of the data evaluation are encouraged to suggest potential improvements and ways that the evaluation can better serve the atmospheric chemistry community.
Recent Historical Migrations Have Shaped the Gene Pool of Arabs and Berbers in North Africa.
Arauna, Lara R; Mendoza-Revilla, Javier; Mas-Sandoval, Alex; Izaabel, Hassan; Bekada, Asmahan; Benhamamouch, Soraya; Fadhlaoui-Zid, Karima; Zalloua, Pierre; Hellenthal, Garrett; Comas, David
2017-02-01
North Africa is characterized by its diverse cultural and linguistic groups and its genetic heterogeneity. Genomic data has shown an amalgam of components mixed since pre-Holocean times. Though no differences have been found in uniparental and classical markers between Berbers and Arabs, the two main ethnic groups in the region, the scanty genomic data available have highlighted the singularity of Berbers. We characterize the genetic heterogeneity of North African groups, focusing on the putative differences of Berbers and Arabs, and estimate migration dates. We analyze genome-wide autosomal data in five Berber and six Arab groups, and compare them to Middle Easterns, sub-Saharans, and Europeans. Haplotype-based methods show a lack of correlation between geographical and genetic populations, and a high degree of genetic heterogeneity, without strong differences between Berbers and Arabs. Berbers enclose genetically diverse groups, from isolated endogamous groups with high autochthonous component frequencies, large homozygosity runs and low effective population sizes, to admixed groups with high frequencies of sub-Saharan and Middle Eastern components. Admixture time estimates show a complex pattern of recent historical migrations, with a peak around the 7th century C.E. coincident with the Arabization of the region; sub-Saharan migrations since the 1st century B.C. in agreement with Roman slave trade; and a strong migration in the 17th century C.E., coincident with a huge impact of the trans-Atlantic and trans-Saharan trade of sub-Saharan slaves in the Modern Era. The genetic complexity found should be taken into account when selecting reference groups in population genetics and biomedical studies. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Campos, Valeria E.; Miguel, Florencia; Cona, Mónica I.
2016-01-01
The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: “seed predators”, “scatter-hoarders”, and “opportunistic frugivores”. Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal. PMID:27655222
Campos, Claudia M; Campos, Valeria E; Miguel, Florencia; Cona, Mónica I
The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: "seed predators", "scatter-hoarders", and "opportunistic frugivores". Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal.
Comparison of fMRI analysis methods for heterogeneous BOLD responses in block design studies.
Liu, Jia; Duffy, Ben A; Bernal-Casas, David; Fang, Zhongnan; Lee, Jin Hyung
2017-02-15
A large number of fMRI studies have shown that the temporal dynamics of evoked BOLD responses can be highly heterogeneous. Failing to model heterogeneous responses in statistical analysis can lead to significant errors in signal detection and characterization and alter the neurobiological interpretation. However, to date it is not clear that, out of a large number of options, which methods are robust against variability in the temporal dynamics of BOLD responses in block-design studies. Here, we used rodent optogenetic fMRI data with heterogeneous BOLD responses and simulations guided by experimental data as a means to investigate different analysis methods' performance against heterogeneous BOLD responses. Evaluations are carried out within the general linear model (GLM) framework and consist of standard basis sets as well as independent component analysis (ICA). Analyses show that, in the presence of heterogeneous BOLD responses, conventionally used GLM with a canonical basis set leads to considerable errors in the detection and characterization of BOLD responses. Our results suggest that the 3rd and 4th order gamma basis sets, the 7th to 9th order finite impulse response (FIR) basis sets, the 5th to 9th order B-spline basis sets, and the 2nd to 5th order Fourier basis sets are optimal for good balance between detection and characterization, while the 1st order Fourier basis set (coherence analysis) used in our earlier studies show good detection capability. ICA has mostly good detection and characterization capabilities, but detects a large volume of spurious activation with the control fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.
Endogenous pain modulation in chronic orofacial pain: a systematic review and meta-analysis.
Moana-Filho, Estephan J; Herrero Babiloni, Alberto; Theis-Mahon, Nicole R
2018-06-15
Abnormal endogenous pain modulation was suggested as a potential mechanism for chronic pain, ie, increased pain facilitation and/or impaired pain inhibition underlying symptoms manifestation. Endogenous pain modulation function can be tested using psychophysical methods such as temporal summation of pain (TSP) and conditioned pain modulation (CPM), which assess pain facilitation and inhibition, respectively. Several studies have investigated endogenous pain modulation function in patients with nonparoxysmal orofacial pain (OFP) and reported mixed results. This study aimed to provide, through a qualitative and quantitative synthesis of the available literature, overall estimates for TSP/CPM responses in patients with OFP relative to controls. MEDLINE, Embase, and the Cochrane databases were searched, and references were screened independently by 2 raters. Twenty-six studies were included for qualitative review, and 22 studies were included for meta-analysis. Traditional meta-analysis and robust variance estimation were used to synthesize overall estimates for standardized mean difference. The overall standardized estimate for TSP was 0.30 (95% confidence interval: 0.11-0.49; P = 0.002), with moderate between-study heterogeneity (Q [df = 17] = 41.8, P = 0.001; I = 70.2%). Conditioned pain modulation's estimated overall effect size was large but above the significance threshold (estimate = 1.36; 95% confidence interval: -0.09 to 2.81; P = 0.066), with very large heterogeneity (Q [df = 8] = 108.3, P < 0.001; I = 98.0%). Sensitivity analyses did not affect the overall estimate for TSP; for CPM, the overall estimate became significant if specific random-effect models were used or if the most influential study was removed. Publication bias was not present for TSP studies, whereas it substantially influenced CPM's overall estimate. These results suggest increased pain facilitation and trend for pain inhibition impairment in patients with nonparoxysmal OFP.
Reduced-Order Models for Load Management in the Power Grid
NASA Astrophysics Data System (ADS)
Alizadeh, Mahnoosh
In recent years, considerable research efforts have been directed towards designing control schemes that can leverage the inherent flexibility of electricity demand that is not tapped into in today's electricity markets. It is expected that these control schemes will be carried out by for-profit entities referred to as aggregators that operate at the edge of the power grid network. While the aggregator control problem is receiving much attention, more high-level questions of how these aggregators should plan their market participation, interact with the main grid and with each other, remain rather understudied. Answering these questions requires a large-scale model for the aggregate flexibility that can be harnessed from the a population of customers, particularly for residences and small businesses. The contribution of this thesis towards this goal is divided into three parts: In Chapter 3, a reduced-order model for a large population of heterogeneous appliances is provided by clustering load profiles that share similar degrees of freedom together. The use of such reduced-order model for system planning and optimal market decision making requires a foresighted approximation of the number of appliances that will join each cluster. Thus, Chapter 4 provides a systematic framework to generate such forecasts for the case of Electric Vehicles, based on real-world battery charging data. While these two chapters set aside the economic side that is naturally involved with participation in demand response programs and mainly focus on the control problem, Chapter 5 is dedicated to the study of optimal pricing mechanisms in order to recruit heterogeneous customers in a demand response program in which an aggregator can directly manage their appliances' load under their specified preferences. Prices are proportional to the wholesale market savings that can result from each recruitment event.
Cummings, Jonathon N; Kiesler, Sara; Bosagh Zadeh, Reza; Balakrishnan, Aruna D
2013-06-01
Heterogeneous groups are valuable, but differences among members can weaken group identification. Weak group identification may be especially problematic in larger groups, which, in contrast with smaller groups, require more attention to motivating members and coordinating their tasks. We hypothesized that as groups increase in size, productivity would decrease with greater heterogeneity. We studied the longitudinal productivity of 549 research groups varying in disciplinary heterogeneity, institutional heterogeneity, and size. We examined their publication and citation productivity before their projects started and 5 to 9 years later. Larger groups were more productive than smaller groups, but their marginal productivity declined as their heterogeneity increased, either because their members belonged to more disciplines or to more institutions. These results provide evidence that group heterogeneity moderates the effects of group size, and they suggest that desirable diversity in groups may be better leveraged in smaller, more cohesive units.
Kikuchi, Kumiko; Masuda, Yuji; Yamashita, Toyonobu; Kawai, Eriko; Hirao, Tetsuji
2015-05-01
Heterogeneity with respect to skin color tone is one of the key factors in visual perception of facial attractiveness and age. However, there have been few studies on quantitative analyses of the color heterogeneity of facial skin. The purpose of this study was to develop image evaluation methods for skin color heterogeneity focusing on skin chromophores and then characterize ethnic differences and age-related changes. A facial imaging system equipped with an illumination unit and a high-resolution digital camera was used to develop image evaluation methods for skin color heterogeneity. First, melanin and/or hemoglobin images were obtained using pigment-specific image-processing techniques, which involved conversion from Commission Internationale de l'Eclairage XYZ color values to melanin and/or hemoglobin indexes as measures of their contents. Second, a spatial frequency analysis with threshold settings was applied to the individual images. Cheek skin images of 194 healthy Asian and Caucasian female subjects were acquired using the imaging system. Applying this methodology, the skin color heterogeneity of Asian and Caucasian faces was characterized. The proposed pigment-specific image-processing techniques allowed visual discrimination of skin redness from skin pigmentation. In the heterogeneity analyses of cheek skin color, age-related changes in melanin were clearly detected in Asian and Caucasian skin. Furthermore, it was found that the heterogeneity indexes of hemoglobin were significantly higher in Caucasian skin than in Asian skin. We have developed evaluation methods for skin color heterogeneity by image analyses based on the major chromophores, melanin and hemoglobin, with special reference to their size. This methodology focusing on skin color heterogeneity should be useful for better understanding of aging and ethnic differences. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
On seismic resolution of lateral heterogeneity in the Earth's outermost core
NASA Astrophysics Data System (ADS)
Garnero, Edward J.; Helmberger, Donald V.
1995-03-01
Issues concerning resolution of seismically determined outermost core properties are presented with an example from three earthquakes in the Fiji-Tonga region. Travel time behavior of the commonly used family of S mKS waves, which travel as S in the mantle, P in the core, reflecting m - 1 times at the underside of the core-mantle boundary (CMB), are analyzed over a large distance range (125-165°). Data having wavepaths through an area of known D″ heterogeneity (±2%) exhibit systematic anomalies in S mKS differential times. Two-dimensional wave propagation experiments demonstrate how large-scale lower-mantle velocity perturbations can explain long-wavelength behavior of such anomalous S mKS times, though heterogeneity on smaller scales may be responsible for the observed scatter about these trends. If lower-mantle heterogeneity is not properly accounted for in deriving a core model, misfit of the mantle model maps directly into core structure. The existence of outermost core heterogeneity is difficult to resolve at present, owing to uncertainties in global lower-mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult, owing to the same uncertainties. Inclusion of the slowly accruing broadband data should help in this regard. Restricting study to higher multiples of S mKS ( m = 2, 3, 4) can help reduce the effect of mantle heterogeneity, because of the closeness of the mantle legs of the wavepaths. S mKS waves are ideal in providing additional information on the details of lower-mantle heterogeneity.
Consensus statement for diagnosis of subcortical small vessel disease
Wallin, Anders; Wardlaw, Joanna M; Markus, Hugh S; Montaner, Joan; Wolfson, Leslie; Iadecola, Costantino; Zlokovic, Berislav V; Joutel, Anne; Dichgans, Martin; Duering, Marco; Schmidt, Reinhold; Korczyn, Amos D; Grinberg, Lea T; Chui, Helena C; Hachinski, Vladimir
2016-01-01
Vascular cognitive impairment (VCI) is the diagnostic term used to describe a heterogeneous group of sporadic and hereditary diseases of the large and small blood vessels. Subcortical small vessel disease (SVD) leads to lacunar infarcts and progressive damage to the white matter. Patients with progressive damage to the white matter, referred to as Binswanger’s disease (BD), constitute a spectrum from pure vascular disease to a mixture with neurodegenerative changes. Binswanger’s disease patients are a relatively homogeneous subgroup with hypoxic hypoperfusion, lacunar infarcts, and inflammation that act synergistically to disrupt the blood–brain barrier (BBB) and break down myelin. Identification of this subgroup can be facilitated by multimodal disease markers obtained from clinical, cerebrospinal fluid, neuropsychological, and imaging studies. This consensus statement identifies a potential set of biomarkers based on underlying pathologic changes that could facilitate diagnosis and aid patient selection for future collaborative treatment trials. PMID:26198175
Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning
USDA-ARS?s Scientific Manuscript database
The role of land-atmosphere interactions under heterogeneous surface conditions is investigated in order to identify mechanisms responsible for altering surface heat and moisture fluxes. Twelve coupled land surface – large eddy simulation scenarios with four different length scales of surface variab...
Distributional Impacts of Large Dams in China
NASA Astrophysics Data System (ADS)
Bao, X.
2010-12-01
Dams on a river are believed to have heterogeneous impacts to the upstream, local and downstream areas. Generally, irrigation dams will bring benefits to the downstream by facilitating more irrigation, while it will bring negative impacts to upstream due to inundation or no impact to local area as a combination result of population dislocation and economic benefits. This paper checked the impacts of large dams (above 100 meters) on the upstream, downstream and local area, using 2000-2008 county level data in China. Robust heterogeneous impacts of different categories of dams (mainly dams serving for irrigation, hydropower, or other purposes) were found on different areas, using IV regression approaches. Dams higher than 100 meters are significantly and heterogeneously impacting agricultural production, urban employment and rural per capita income. Its beneficial impact on agriculture production is significant for downstream especially in continuous drought years. But its impacts on social welfare indicators, such as primary school enrollment and hospital beds, are not heterogeneously different across regions.
Alleviating bias leads to accurate and personalized recommendation
NASA Astrophysics Data System (ADS)
Qiu, Tian; Wang, Tian-Tian; Zhang, Zi-Ke; Zhong, Li-Xin; Chen, Guang
2013-11-01
Recommendation bias towards objects has been found to have an impact on personalized recommendation, since objects present heterogeneous characteristics in some network-based recommender systems. In this article, based on a biased heat conduction recommendation algorithm (BHC) which considers the heterogeneity of the target objects, we propose a heterogeneous heat conduction algorithm (HHC), by further taking the heterogeneity of the source objects into account. Tested on three real datasets, the Netflix, RYM and MovieLens, the HHC algorithm is found to present better recommendation in both the accuracy and diversity than two benchmark algorithms, i.e., the original BHC and a hybrid algorithm of heat conduction and mass diffusion (HHM), while not requiring any other accessorial information or parameter. Moreover, the HHC algorithm also elevates the recommendation accuracy on cold objects, referring to the so-called cold-start problem. Eigenvalue analyses show that, the HHC algorithm effectively alleviates the recommendation bias towards objects with different level of popularity, which is beneficial to solving the accuracy-diversity dilemma.
Stochastic simulation in systems biology
Székely, Tamás; Burrage, Kevin
2014-01-01
Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome, depending on the situation. Traditionally, when constructing mathematical models of these systems, heterogeneity has typically been ignored, despite its critical role. However, in recent years, stochastic computational methods have become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic heterogeneity). In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and discuss the three different sources of heterogeneity in natural systems. Our main topic is an overview of stochastic simulation methods in systems biology. There are many different types of stochastic methods. We focus on one group that has become especially popular in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow individuals over time; rather they track only total populations. They also assume that the volume of interest is spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disadvantages of each, and suggest when each is more appropriate to use. We also include references to software implementations of them, so that beginners can quickly start using stochastic methods for practical problems of interest. PMID:25505503
Scaling laws of strategic behavior and size heterogeneity in agent dynamics
NASA Astrophysics Data System (ADS)
Vaglica, Gabriella; Lillo, Fabrizio; Moro, Esteban; Mantegna, Rosario N.
2008-03-01
We consider the financial market as a model system and study empirically how agents strategically adjust the properties of large orders in order to meet their preference and minimize their impact. We quantify this strategic behavior by detecting scaling relations between the variables characterizing the trading activity of different institutions. We also observe power-law distributions in the investment time horizon, in the number of transactions needed to execute a large order, and in the traded value exchanged by large institutions, and we show that heterogeneity of agents is a key ingredient for the emergence of some aggregate properties characterizing this complex system.
A further analysis of the role of heterogeneity in coevolutionary spatial games
NASA Astrophysics Data System (ADS)
Cardinot, Marcos; Griffith, Josephine; O'Riordan, Colm
2018-03-01
Heterogeneity has been studied as one of the most common explanations of the puzzle of cooperation in social dilemmas. A large number of papers have been published discussing the effects of increasing heterogeneity in structured populations of agents, where it has been established that heterogeneity may favour cooperative behaviour if it supports agents to locally coordinate their strategies. In this paper, assuming an existing model of a heterogeneous weighted network, we aim to further this analysis by exploring the relationship (if any) between heterogeneity and cooperation. We adopt a weighted network which is fully populated by agents playing both the Prisoner's Dilemma or the Optional Prisoner's Dilemma games with coevolutionary rules, i.e., not only the strategies but also the link weights evolve over time. Surprisingly, results show that the heterogeneity of link weights (states) on their own does not always promote cooperation; rather cooperation is actually favoured by the increase in the number of overlapping states and not by the heterogeneity itself. We believe that these results can guide further research towards a more accurate analysis of the role of heterogeneity in social dilemmas.
Characterizing heterogeneous cellular responses to perturbations.
Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J
2008-12-09
Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.
Evolutionary dynamics of social dilemmas in structured heterogeneous populations.
Santos, F C; Pacheco, J M; Lenaerts, Tom
2006-02-28
Real populations have been shown to be heterogeneous, in which some individuals have many more contacts than others. This fact contrasts with the traditional homogeneous setting used in studies of evolutionary game dynamics. We incorporate heterogeneity in the population by studying games on graphs, in which the variability in connectivity ranges from single-scale graphs, for which heterogeneity is small and associated degree distributions exhibit a Gaussian tale, to scale-free graphs, for which heterogeneity is large with degree distributions exhibiting a power-law behavior. We study the evolution of cooperation, modeled in terms of the most popular dilemmas of cooperation. We show that, for all dilemmas, increasing heterogeneity favors the emergence of cooperation, such that long-term cooperative behavior easily resists short-term noncooperative behavior. Moreover, we show how cooperation depends on the intricate ties between individuals in scale-free populations.
Link prediction based on nonequilibrium cooperation effect
NASA Astrophysics Data System (ADS)
Li, Lanxi; Zhu, Xuzhen; Tian, Hui
2018-04-01
Link prediction in complex networks has become a common focus of many researchers. But most existing methods concentrate on neighbors, and rarely consider degree heterogeneity of two endpoints. Node degree represents the importance or status of endpoints. We describe the large-degree heterogeneity as the nonequilibrium between nodes. This nonequilibrium facilitates a stable cooperation between endpoints, so that two endpoints with large-degree heterogeneity tend to connect stably. We name such a phenomenon as the nonequilibrium cooperation effect. Therefore, this paper proposes a link prediction method based on the nonequilibrium cooperation effect to improve accuracy. Theoretical analysis will be processed in advance, and at the end, experiments will be performed in 12 real-world networks to compare the mainstream methods with our indices in the network through numerical analysis.
Impact of spatially correlated pore-scale heterogeneity on drying porous media
NASA Astrophysics Data System (ADS)
Borgman, Oshri; Fantinel, Paolo; Lühder, Wieland; Goehring, Lucas; Holtzman, Ran
2017-07-01
We study the effect of spatially-correlated heterogeneity on isothermal drying of porous media. We combine a minimal pore-scale model with microfluidic experiments with the same pore geometry. Our simulated drying behavior compares favorably with experiments, considering the large sensitivity of the emergent behavior to the uncertainty associated with even small manufacturing errors. We show that increasing the correlation length in particle sizes promotes preferential drying of clusters of large pores, prolonging liquid connectivity and surface wetness and thus higher drying rates for longer periods. Our findings improve our quantitative understanding of how pore-scale heterogeneity impacts drying, which plays a role in a wide range of processes ranging from fuel cells to curing of paints and cements to global budgets of energy, water and solutes in soils.
Arcade: A Web-Java Based Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.
Examining the influence of heterogeneous porosity fields on conservative solute transport
Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong
2009-01-01
It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.
NASA Technical Reports Server (NTRS)
Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh
2003-01-01
This is the first in a two-part series of manuscripts describing numerical experiments on the influence of 2-30 km striplike heterogeneity on wet and dry boundary layers coupled to the land surface. The strip-like heterogeneity is shown to dramatically alter the structure of the free-convective boundary layer by inducing significant organized circulations that modify turbulent statistics. The coupling with the land-surface modifies the circulations compared to previous studies using fixed surface forcing. Total boundary layer turbulence kinetic energy increases significantly for surface heterogeneity at scales between Lambda/z(sub i) = 4 and 9, however entrainment rates for all cases are largely unaffected by the strip-like heterogeneity.
Fernández-Guisuraga, José Manuel; Sanz-Ablanedo, Enoc; Suárez-Seoane, Susana; Calvo, Leonor
2018-02-14
This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by the WorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with the WorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areas.
2018-01-01
This study evaluated the opportunities and challenges of using drones to obtain multispectral orthomosaics at ultra-high resolution that could be useful for monitoring large and heterogeneous burned areas. We conducted a survey using an octocopter equipped with a Parrot SEQUOIA multispectral camera in a 3000 ha framework located within the perimeter of a megafire in Spain. We assessed the quality of both the camera raw imagery and the multispectral orthomosaic obtained, as well as the required processing capability. Additionally, we compared the spatial information provided by the drone orthomosaic at ultra-high spatial resolution with another image provided by the WorldView-2 satellite at high spatial resolution. The drone raw imagery presented some anomalies, such as horizontal banding noise and non-homogeneous radiometry. Camera locations showed a lack of synchrony of the single frequency GPS receiver. The georeferencing process based on ground control points achieved an error lower than 30 cm in X-Y and lower than 55 cm in Z. The drone orthomosaic provided more information in terms of spatial variability in heterogeneous burned areas in comparison with the WorldView-2 satellite imagery. The drone orthomosaic could constitute a viable alternative for the evaluation of post-fire vegetation regeneration in large and heterogeneous burned areas. PMID:29443914
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd
2009-07-01
In hydrate-bearing sediments, the velocity and attenuation of compressional and shear waves depend primarily on the spatial distribution of hydrates in the pore space of the subsurface lithologies. Recent characterizations of gas hydrate accumulations based on seismic velocity and attenuation generally assume homogeneous sedimentary layers and neglect effects from large- and small-scale heterogeneities of hydrate-bearing sediments. We present an algorithm, based on stochastic medium theory, to construct heterogeneous multivariable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this algorithm, we model some key petrophysical properties of gas hydrates within heterogeneous sediments near the Mallik well site, Northwest Territories, Canada. The modeled density, and P and S wave velocities used in combination with a modified Biot-Gassmann theory provide a first-order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a range of 528 to 768 × 106 m3/km2 of natural gas trapped within hydrates, nearly an order of magnitude lower than earlier estimates which did not include effects of small-scale heterogeneities. Further, the petrophysical models are combined with a 3-D finite difference modeling algorithm to study seismic attenuation due to scattering and leaky mode propagation. Simulations of a near-offset vertical seismic profile and cross-borehole numerical surveys demonstrate that attenuation of seismic energy may not be directly related to the intrinsic attenuation of hydrate-bearing sediments but, instead, may be largely attributed to scattering from small-scale heterogeneities and highly attenuate leaky mode propagation of seismic waves through larger-scale heterogeneities in sediments.
Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware.
Rast, Alexander; Galluppi, Francesco; Davies, Sergio; Plana, Luis; Patterson, Cameron; Sharp, Thomas; Lester, David; Furber, Steve
2011-11-01
Dedicated hardware is becoming increasingly essential to simulate emerging very-large-scale neural models. Equally, however, it needs to be able to support multiple models of the neural dynamics, possibly operating simultaneously within the same system. This may be necessary either to simulate large models with heterogeneous neural types, or to simplify simulation and analysis of detailed, complex models in a large simulation by isolating the new model to a small subpopulation of a larger overall network. The SpiNNaker neuromimetic chip is a dedicated neural processor able to support such heterogeneous simulations. Implementing these models on-chip uses an integrated library-based tool chain incorporating the emerging PyNN interface that allows a modeller to input a high-level description and use an automated process to generate an on-chip simulation. Simulations using both LIF and Izhikevich models demonstrate the ability of the SpiNNaker system to generate and simulate heterogeneous networks on-chip, while illustrating, through the network-scale effects of wavefront synchronisation and burst gating, methods that can provide effective behavioural abstractions for large-scale hardware modelling. SpiNNaker's asynchronous virtual architecture permits greater scope for model exploration, with scalable levels of functional and temporal abstraction, than conventional (or neuromorphic) computing platforms. The complete system illustrates a potential path to understanding the neural model of computation, by building (and breaking) neural models at various scales, connecting the blocks, then comparing them against the biology: computational cognitive neuroscience. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, J.; Zhang, Y.; Klein, S. A.
2017-12-01
The triggering of the land breeze, and hence the development of deep convection over heterogeneous land should be understood as a consequence of the complex processes involving various factors from land surface and atmosphere simultaneously. That is a sub-grid scale process that many large-scale models have difficulty incorporating it into the parameterization scheme partly due to lack of our understanding. Thus, it is imperative that we approach the problem using a high-resolution modeling framework. In this study, we use SAM-SLM (Lee and Khairoutdinov, 2015), a large-eddy simulation model coupled to a land model, to explore the cloud effect such as cold pool, the cloud shading and the soil moisture memory on the land breeze structure and the further development of cloud and precipitation over a heterogeneous land surface. The atmospheric large scale forcing and the initial sounding are taken from the new composite case study of the fair-weather, non-precipitating shallow cumuli at ARM SGP (Zhang et al., 2017). We model the land surface as a chess board pattern with alternating leaf area index (LAI). The patch contrast of the LAI is adjusted to encompass the weak to strong heterogeneity amplitude. The surface sensible- and latent heat fluxes are computed according to the given LAI representing the differential surface heating over a heterogeneous land surface. Separate from the surface forcing imposed from the originally modeled surface, the cases that transition into the moist convection can induce another layer of the surface heterogeneity from the 1) radiation shading by clouds, 2) adjusted soil moisture pattern by the rain, 3) spreading cold pool. First, we assess and quantifies the individual cloud effect on the land breeze and the moist convection under the weak wind to simplify the feedback processes. And then, the same set of experiments is repeated under sheared background wind with low level jet, a typical summer time wind pattern at ARM SGP site, to account for more realistic situations. Our goal is to assist answering the question: "Do the sub-grid scale land surface heterogeneity matter for the weather and climate modeling?" This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 736011.
Rong, Junkang; Feltus, F. Alex; Waghmare, Vijay N.; Pierce, Gary J.; Chee, Peng W.; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J.; Wilkins, Thea A.; May, O. Lloyd; Smith, C. Wayne; Gannaway, John R.; Wendel, Jonathan F.; Paterson, Andrew H.
2007-01-01
QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks. PMID:17565937
Rong, Junkang; Feltus, F Alex; Waghmare, Vijay N; Pierce, Gary J; Chee, Peng W; Draye, Xavier; Saranga, Yehoshua; Wright, Robert J; Wilkins, Thea A; May, O Lloyd; Smith, C Wayne; Gannaway, John R; Wendel, Jonathan F; Paterson, Andrew H
2007-08-01
QTL mapping experiments yield heterogeneous results due to the use of different genotypes, environments, and sampling variation. Compilation of QTL mapping results yields a more complete picture of the genetic control of a trait and reveals patterns in organization of trait variation. A total of 432 QTL mapped in one diploid and 10 tetraploid interspecific cotton populations were aligned using a reference map and depicted in a CMap resource. Early demonstrations that genes from the non-fiber-producing diploid ancestor contribute to tetraploid lint fiber genetics gain further support from multiple populations and environments and advanced-generation studies detecting QTL of small phenotypic effect. Both tetraploid subgenomes contribute QTL at largely non-homeologous locations, suggesting divergent selection acting on many corresponding genes before and/or after polyploid formation. QTL correspondence across studies was only modest, suggesting that additional QTL for the target traits remain to be discovered. Crosses between closely-related genotypes differing by single-gene mutants yield profoundly different QTL landscapes, suggesting that fiber variation involves a complex network of interacting genes. Members of the lint fiber development network appear clustered, with cluster members showing heterogeneous phenotypic effects. Meta-analysis linked to synteny-based and expression-based information provides clues about specific genes and families involved in QTL networks.
Epidemiology of Major Depressive Disorder in Iran: a Systematic Review and Meta-Analysis
Sadeghirad, Behnam; Haghdoost, Ali-Akbar; Amin-Esmaeili, Masoumeh; Ananloo, Esmaeil Shahsavand; Ghaeli, Padideh; Rahimi-Movaghar, Afarin; Talebian, Elham; Pourkhandani, Ali; Noorbala, Ahmad Ali; Barooti, Esmat
2010-01-01
Objectives: There are a large number of primary researches on the prevalence of major depressive disorder (MDD) in Iran; however, their findings are varied considerably. A systematic review was performed in order to summarize the findings. Methods: Electronic and manual searches in international and Iranian journals were conducted to find relevant studies reporting MDD prevalence. To maximize the sensitivity of the search, the references of relevant papers were also explored. We explored the potential sources of heterogeneity such as diagnostic tools, gender and other characteristics using meta-regression model. The combined mean prevalence rates were calculated for genders, studies using each type of instruments and for each province using meta-analysis method. Results: From 44 articles included in the systematic review, 24 reported current prevalence and 20 reported lifetime prevalence of MDD. The overall estimation of current prevalence of MDD was 4.1% (95% CI: 3.1-5.1). Women were 1.95 (95% CI: 1.55-2.45) times more likely to have MDD. The current prevalence of MDD in urban inhabitants was not significantly different from rural inhabitants. The analysis identified the variations in diagnostic tools as an important source of heterogeneity. Conclusions: Although there is not adequate information on MDD prevalence in some areas of Iran, the overall current prevalence of MDD in the country is high and females are at the greater risk of disease. PMID:21566767
Petrogenesis of basalts from the Archean Matachewan Dike Swarm Superior Province of Canada
NASA Technical Reports Server (NTRS)
Nelson, Dennis O.
1987-01-01
The Matachewan Dike swarm of eastern Ontario comprises Archean age basalts that were emplaced in the greenstone, granite-greenstone, and metasedimentary terrains of the Superior Province of Canada. The basalts are Fe-rich tholeiites, characterized by the near ubiquitos presence of large, compositionally uniform, calcic plagioclase. Major and trace element whole-rock compositions, along with microprobe analyses of constituent phases, from a group of dikes from the eastern portion of the province, were evaluated to constrain petrological processes that operated during the formation and evolution of the magmas. Three compositional groupings, were identified within the dikes. One group has compositional characteristics similar to modern abyssal tholeiites and is termed morb-type. A second group, enriched in incompatible elements and light-REE enriched, is referred to as the enriched group. The third more populated group has intermediate characteristics and is termed the main group. The observation of both morb-type and enriched compositions within a single dike strongly argues for the contemporaneous existence of magmas derived through different processes. Mixing calculations suggest that two possibilities exist. The least evolved basalts lie on a mixing line between the morb-type and enriched group, suggesting mixing of magmas derived from heterogeneous mantle. Mixing of magmas derived from a depleted mantle with heterogeneous Archean crust can duplicate certain aspects of the Matachewan dike composition array.
Lindholm, C; Jönsson, J; Calais, A; Middelkoop, A; Yngwe, N; Berndtson, E; Lees, J J; Hult, E; Altimiras, J
2017-01-01
Uniform growth is a desirable trait in all large-scale animal production systems because it simplifies animal management and increases profitability. In parental broiler flocks, so-called broiler breeders, low growth uniformity is largely attributed to the feed competition that arises from quantitatively restricted feeding. As feed restriction is crucial to maintaining healthy and fertile breeders, several practices for reducing feed competition and the associated growth heterogeneity have been suggested and range from nutrient dilution by increasing fiber content in feed to intermittent fasting with increased portion size ("skip a day"), but no practice appears to be entirely effective. The fact that a large part of the heterogeneity remains even when feed competition is minimized suggests that some growth variation is caused by other factors. We investigated whether this variation arises during embryonic development (as measured by size at hatch) or during posthatch development by following the growth and body composition of birds of varying hatch sizes. Our results support the posthatch alternative, with animals that later grow to be small or large (here defined as >1 SD lighter or heavier than mean BW of the flock) being significantly different in size as early as 1 d after gaining access to feed ( < 0.05). We then investigated 2 possible causes for different postnatal growth: that high growth performance is linked 1) to interindividual variations in metabolism (as measured by cloacal temperature and verified by respirometry) or 2) to higher levels of social motivation (as measured in a social reinstatement T-maze), which should reduce the stress of being reared in large-scale commercial flocks. Neither of these follow-up hypotheses could account for the observed heterogeneity in growth. We suggest that the basis of growth heterogeneity in broiler breeder pullets may already be determined at the time of hatch in the form of qualitatively different maternal investments or immediately thereafter as an indirect result of differences in incubation conditions, hatching time, and resulting fasting time. Although this potential difference in maternal investment is not seen in body mass, tarsometatarsal length, or full body length of day-old chicks arriving at the farm, it may influence the development of differential feed and water intake during the first day of feeding, which in turn has direct effects on growth heterogeneity.
Exploration of Heterogeneity in Distributed Research Network Drug Safety Analyses
ERIC Educational Resources Information Center
Hansen, Richard A.; Zeng, Peng; Ryan, Patrick; Gao, Juan; Sonawane, Kalyani; Teeter, Benjamin; Westrich, Kimberly; Dubois, Robert W.
2014-01-01
Distributed data networks representing large diverse populations are an expanding focus of drug safety research. However, interpreting results is difficult when treatment effect estimates vary across datasets (i.e., heterogeneity). In a previous study, risk estimates were generated for selected drugs and potential adverse outcomes. Analyses were…
Clinical and Imaging Heterogeneity of Polymicrogyria: A Study of 328 Patients
ERIC Educational Resources Information Center
Leventer, Richard J.; Jansen, Anna; Pilz, Daniela T.; Stoodley, Neil; Marini, Carla; Dubeau, Francois; Malone, Jodie; Mitchell, L. Anne; Mandelstam, Simone; Scheffer, Ingrid E.; Berkovic, Samuel F.; Andermann, Frederick; Andermann, Eva; Guerrini, Renzo; Dobyns, William B.
2010-01-01
Polymicrogyria is one of the most common malformations of cortical development and is associated with a variety of clinical sequelae including epilepsy, intellectual disability, motor dysfunction and speech disturbance. It has heterogeneous clinical manifestations and imaging patterns, yet large cohort data defining the clinical and imaging…
NASA Astrophysics Data System (ADS)
Odling, N. E.; Serrano, R. P.; Hussein, M.; Guadagnini, A.; Riva, M.
2013-12-01
In confined and semi-confined aquifers, borehole water levels respond to fluctuations in barometric pressure and this response can be used to estimate the properties of aquifer confining layers. We use this response as indicator of groundwater vulnerability for the semi-confined Chalk aquifer in East Yorkshire, UK. Time series data of borehole water levels are corrected for Earth tides and recharge, and barometric response functions (BRFs) estimated using cross-spectral deconvolution-averaging techniques. The resulting BRFs are fitted using a theoretical model of the BRF gain and phase for a semi-confined aquifer (Rojstaczer, 1988) to obtain confining layer properties. For all of the boreholes, non-zero hydraulic diffusivities for the confining layer were found indicating that the aquifer is semi-confined. A ';characteristic time scale' based on the hydraulic and pneumatic diffusivities of the confining layer is introduced as a measure of the degree of aquifer confinement and therefore groundwater vulnerability. The analytical model assumes that the confining layer and aquifer are homogeneous. However, in nature, confining layers are heterogeneous and groundwater vulnerability dominated by the presence of high diffusivity, high flow pathways through the confining layer to the aquifer. A transient numerical model (MODFLOW) was constructed to test the impact of such heterogeneities on the BRF. In the model, an observed barometric pressure time series is used as a boundary condition applied to the upper surface of the top unit of the model (representing the confining layer) and BRFs determined from the time series of model heads in the bottom unit (representing the aquifer). The results from a numerical model with a homogeneous confining layer were found to accurately reproduce the BRFs from a modified version of the analytical model. The introduction of a localized, high diffusive block in the confining layer was found to modify the BRF, reducing the gain amplitude while having limited impact on the phase. It was found that the BRF reflects the presence of a fully penetrating, high diffusivity heterogeneity up to several hundred meters distant from the observation borehole, and shows little sensitivity to the heterogeneity's horizontal dimension. Heterogeneities that are 50% partially penetrating do not significantly impact on the BRF and 90% penetrating heterogeneities can only be detected when large and close to the observation borehole. These results show that BRF gain may be particularly useful in detecting the presence of fully penetrating heterogeneities of high diffusivity within confining layers that potentially enhance groundwater vulnerability. This research has been funded in part through the EU ITN ';IMVUL' (PITN-GA-2008-212298). Reference: Rojstaczer, S. (1988) Determination of fluid-flow properties from the response of water levels in wells to atmospheric loading, Water Resources Research, 24(11), 1927-1938.
Multimedia as Rhizome: Design Issues in a Network Environment.
ERIC Educational Resources Information Center
Burnett, Kathleen
1992-01-01
Defines the concepts of hypertext, hypermedia, multimedia, and multimedia networks. Using the rhizome as a metaphor for electronically mediated exchange, a theory of hypermedia design that incorporates principles of connection and heterogeneity, multiplicity, asignifying rupture, and cartography and decalomania is explored. (four references) (MES)
Radiation dose delivery verification in the treatment of carcinoma-cervix
NASA Astrophysics Data System (ADS)
Shrotriya, D.; Kumar, S.; Srivastava, R. N. L.
2015-06-01
The accurate dose delivery to the clinical target volume in radiotherapy can be affected by various pelvic tissues heterogeneities. An in-house heterogeneous woman pelvic phantom was designed and used to verify the consistency and computational capability of treatment planning system of radiation dose delivery in the treatment of cancer cervix. Oncentra 3D-TPS with collapsed cone convolution (CCC) dose calculation algorithm was used to generate AP/PA and box field technique plan. the radiation dose was delivered by Primus Linac (Siemens make) employing high energy 15 MV photon beam by isocenter technique. A PTW make, 0.125cc ionization chamber was used for direct measurements at various reference points in cervix, bladder and rectum. The study revealed that maximum variation between computed and measured dose at cervix reference point was 1% in both the techniques and 3% and 4% variation in AP/PA field and 5% and 4.5% in box technique at bladder and rectum points respectively.
TopoSCALE v.1.0: downscaling gridded climate data in complex terrain
NASA Astrophysics Data System (ADS)
Fiddes, J.; Gruber, S.
2014-02-01
Simulation of land surface processes is problematic in heterogeneous terrain due to the the high resolution required of model grids to capture strong lateral variability caused by, for example, topography, and the lack of accurate meteorological forcing data at the site or scale it is required. Gridded data products produced by atmospheric models can fill this gap, however, often not at an appropriate spatial resolution to drive land-surface simulations. In this study we describe a method that uses the well-resolved description of the atmospheric column provided by climate models, together with high-resolution digital elevation models (DEMs), to downscale coarse-grid climate variables to a fine-scale subgrid. The main aim of this approach is to provide high-resolution driving data for a land-surface model (LSM). The method makes use of an interpolation of pressure-level data according to topographic height of the subgrid. An elevation and topography correction is used to downscale short-wave radiation. Long-wave radiation is downscaled by deriving a cloud-component of all-sky emissivity at grid level and using downscaled temperature and relative humidity fields to describe variability with elevation. Precipitation is downscaled with a simple non-linear lapse and optionally disaggregated using a climatology approach. We test the method in comparison with unscaled grid-level data and a set of reference methods, against a large evaluation dataset (up to 210 stations per variable) in the Swiss Alps. We demonstrate that the method can be used to derive meteorological inputs in complex terrain, with most significant improvements (with respect to reference methods) seen in variables derived from pressure levels: air temperature, relative humidity, wind speed and incoming long-wave radiation. This method may be of use in improving inputs to numerical simulations in heterogeneous and/or remote terrain, especially when statistical methods are not possible, due to lack of observations (i.e. remote areas or future periods).
SU-F-BRD-09: A Random Walk Model Algorithm for Proton Dose Calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, W; Farr, J
2015-06-15
Purpose: To develop a random walk model algorithm for calculating proton dose with balanced computation burden and accuracy. Methods: Random walk (RW) model is sometimes referred to as a density Monte Carlo (MC) simulation. In MC proton dose calculation, the use of Gaussian angular distribution of protons due to multiple Coulomb scatter (MCS) is convenient, but in RW the use of Gaussian angular distribution requires an extremely large computation and memory. Thus, our RW model adopts spatial distribution from the angular one to accelerate the computation and to decrease the memory usage. From the physics and comparison with the MCmore » simulations, we have determined and analytically expressed those critical variables affecting the dose accuracy in our RW model. Results: Besides those variables such as MCS, stopping power, energy spectrum after energy absorption etc., which have been extensively discussed in literature, the following variables were found to be critical in our RW model: (1) inverse squared law that can significantly reduce the computation burden and memory, (2) non-Gaussian spatial distribution after MCS, and (3) the mean direction of scatters at each voxel. In comparison to MC results, taken as reference, for a water phantom irradiated by mono-energetic proton beams from 75 MeV to 221.28 MeV, the gamma test pass rate was 100% for the 2%/2mm/10% criterion. For a highly heterogeneous phantom consisting of water embedded by a 10 cm cortical bone and a 10 cm lung in the Bragg peak region of the proton beam, the gamma test pass rate was greater than 98% for the 3%/3mm/10% criterion. Conclusion: We have determined key variables in our RW model for proton dose calculation. Compared with commercial pencil beam algorithms, our RW model much improves the dose accuracy in heterogeneous regions, and is about 10 times faster than MC simulations.« less
NASA Astrophysics Data System (ADS)
Lu, Yang; Stehly, Laurent; Paul, Anne; AlpArray Working Group
2018-05-01
Taking advantage of the large number of seismic stations installed in Europe, in particular in the greater Alpine region with the AlpArray experiment, we derive a new high-resolution 3-D shear-wave velocity model of the European crust and uppermost mantle from ambient noise tomography. The correlation of up to four years of continuous vertical-component seismic recordings from 1293 broadband stations (10° W-35° E, 30° N-75° N) provides Rayleigh wave group velocity dispersion data in the period band 5-150 s at more than 0.8 million virtual source-receiver pairs. Two-dimensional Rayleigh wave group velocity maps are estimated using adaptive parameterization to accommodate the strong heterogeneity of path coverage. A probabilistic 3-D shear-wave velocity model, including probability densities for the depth of layer boundaries and S-wave velocity values, is obtained by non-linear Bayesian inversion. A weighted average of the probabilistic model is then used as starting model for the linear inversion step, providing the final Vs model. The resulting S-wave velocity model and Moho depth are validated by comparison with previous geophysical studies. Although surface-wave tomography is weakly sensitive to layer boundaries, vertical cross-sections through our Vs model and the associated probability of presence of interfaces display striking similarities with reference controlled-source (CSS) and receiver-function sections across the Alpine belt. Our model even provides new structural information such as a ˜8 km Moho jump along the CSS ECORS-CROP profile that was not imaged by reflection data due to poor penetration across a heterogeneous upper crust. Our probabilistic and final shear wave velocity models have the potential to become new reference models of the European crust, both for crustal structure probing and geophysical studies including waveform modeling or full waveform inversion.
Soffientini, Chiara D; De Bernardi, Elisabetta; Casati, Rosangela; Baselli, Giuseppe; Zito, Felicia
2017-01-01
Design, realization, scan, and characterization of a phantom for PET Automatic Segmentation (PET-AS) assessment are presented. Radioactive zeolites immersed in a radioactive heterogeneous background simulate realistic wall-less lesions with known irregular shape and known homogeneous or heterogeneous internal activity. Three different zeolite families were evaluated in terms of radioactive uptake homogeneity, necessary to define activity and contour ground truth. Heterogeneous lesions were simulated by the perfect matching of two portions of a broken zeolite, soaked in two different 18 F-FDG radioactive solutions. Heterogeneous backgrounds were obtained with tissue paper balls and sponge pieces immersed into radioactive solutions. Natural clinoptilolite proved to be the most suitable zeolite for the construction of artificial objects mimicking homogeneous and heterogeneous uptakes in 18 F-FDG PET lesions. Heterogeneous backgrounds showed a coefficient of variation equal to 269% and 443% of a uniform radioactive solution. Assembled phantom included eight lesions with volumes ranging from 1.86 to 7.24 ml and lesion to background contrasts ranging from 4.8:1 to 21.7:1. A novel phantom for the evaluation of PET-AS algorithms was developed. It is provided with both reference contours and activity ground truth, and it covers a wide range of volumes and lesion to background contrasts. The dataset is open to the community of PET-AS developers and utilizers. © 2016 American Association of Physicists in Medicine.
Brown, C; Burslem, D F R P; Illian, J B; Bao, L; Brockelman, W; Cao, M; Chang, L W; Dattaraja, H S; Davies, S; Gunatilleke, C V S; Gunatilleke, I A U N; Huang, J; Kassim, A R; Lafrankie, J V; Lian, J; Lin, L; Ma, K; Mi, X; Nathalang, A; Noor, S; Ong, P; Sukumar, R; Su, S H; Sun, I F; Suresh, H S; Tan, S; Thompson, J; Uriarte, M; Valencia, R; Yap, S L; Ye, W; Law, R
2013-08-07
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Heterogeneous game resource distributions promote cooperation in spatial prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Cui, Guang-Hai; Wang, Zhen; Yang, Yan-Cun; Tian, Sheng-Wen; Yue, Jun
2018-01-01
In social networks, individual abilities to establish interactions are always heterogeneous and independent of the number of topological neighbors. We here study the influence of heterogeneous distributions of abilities on the evolution of individual cooperation in the spatial prisoner's dilemma game. First, we introduced a prisoner's dilemma game, taking into account individual heterogeneous abilities to establish games, which are determined by the owned game resources. Second, we studied three types of game resource distributions that follow the power-law property. Simulation results show that the heterogeneous distribution of individual game resources can promote cooperation effectively, and the heterogeneous level of resource distributions has a positive influence on the maintenance of cooperation. Extensive analysis shows that cooperators with large resource capacities can foster cooperator clusters around themselves. Furthermore, when the temptation to defect is high, cooperator clusters in which the central pure cooperators have larger game resource capacities are more stable than other cooperator clusters.
Zhong, Qing; Rüschoff, Jan H.; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J.; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J.; Rupp, Niels J.; Fankhauser, Christian; Buhmann, Joachim M.; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A.; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C.; Jochum, Wolfram; Wild, Peter J.
2016-01-01
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility. PMID:27052161
Zhong, Qing; Rüschoff, Jan H; Guo, Tiannan; Gabrani, Maria; Schüffler, Peter J; Rechsteiner, Markus; Liu, Yansheng; Fuchs, Thomas J; Rupp, Niels J; Fankhauser, Christian; Buhmann, Joachim M; Perner, Sven; Poyet, Cédric; Blattner, Miriam; Soldini, Davide; Moch, Holger; Rubin, Mark A; Noske, Aurelia; Rüschoff, Josef; Haffner, Michael C; Jochum, Wolfram; Wild, Peter J
2016-04-07
Recent large-scale genome analyses of human tissue samples have uncovered a high degree of genetic alterations and tumour heterogeneity in most tumour entities, independent of morphological phenotypes and histopathological characteristics. Assessment of genetic copy-number variation (CNV) and tumour heterogeneity by fluorescence in situ hybridization (ISH) provides additional tissue morphology at single-cell resolution, but it is labour intensive with limited throughput and high inter-observer variability. We present an integrative method combining bright-field dual-colour chromogenic and silver ISH assays with an image-based computational workflow (ISHProfiler), for accurate detection of molecular signals, high-throughput evaluation of CNV, expressive visualization of multi-level heterogeneity (cellular, inter- and intra-tumour heterogeneity), and objective quantification of heterogeneous genetic deletions (PTEN) and amplifications (19q12, HER2) in diverse human tumours (prostate, endometrial, ovarian and gastric), using various tissue sizes and different scanners, with unprecedented throughput and reproducibility.
Data integration in the era of omics: current and future challenges
2014-01-01
To integrate heterogeneous and large omics data constitutes not only a conceptual challenge but a practical hurdle in the daily analysis of omics data. With the rise of novel omics technologies and through large-scale consortia projects, biological systems are being further investigated at an unprecedented scale generating heterogeneous and often large data sets. These data-sets encourage researchers to develop novel data integration methodologies. In this introduction we review the definition and characterize current efforts on data integration in the life sciences. We have used a web-survey to assess current research projects on data-integration to tap into the views, needs and challenges as currently perceived by parts of the research community. PMID:25032990
Large-scale simulations and in-situ observations of mid-latitude and Arctic cirrus clouds
NASA Astrophysics Data System (ADS)
Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Costa, Anja; Krämer, Martina
2017-04-01
Cirrus clouds play an important role by influencing the Earth's radiation budget and the global climate (Heintzenberg and Charlson, 2009). The formation and further evolution of cirrus clouds is determined by the interplay of temperature, ice nuclei (IN) properties, relative humidity, cooling rates and ice crystal sedimentation. Thus, for a realistic simulation of cirrus clouds, a Lagrangian approach using meteorological wind fields is the best way to represent complete cirrus systems as e.g. frontal cirrus. To this end, we coupled the two moment microphysical ice model of Spichtinger and Gierens (2009) with the 3D Lagrangian model CLaMS (McKenna et al., 2002). The new CLaMS-Ice module simulates cirrus formation by including heterogeneous and homogeneous freezing as well as ice crystal sedimentation. The boxmodel is operated along CLaMS trajectories and individually initialized with the ECMWF meteorological fields. From the CLaMS-Ice three dimensional large scale cirrus simulations, we are able to assign the formation mechanism - either heterogeneous or homogeneous freezing - to specific combinations of temperatures and ice water contents. First, we compare a large mid-latitude dataset of in-situ measured cirrus microphysical properties compiled from the ML-Cirrus aircraft campaign in 2014 to ClaMS-Ice model simulations. We investigate the number of ice crystals and the ice water content with respect to temperature in a climatological way and found a good and consistent agreement between measurement and simulations. We also found that most (67 %) of the cirrus cloud cover in mid-latitude is dominated by heterogeneously formed ice crystals. Second, CLaMS-Ice model simulations in the Arctic/Polar region are performed during the POLSTRACC aircraft campaign in 2016. Higher ice crystal number concentrations are found more frequently in the Arctic region in comparison to the mid-latitude dataset. This is caused by enhanced gravity wave activity over the mountainous terrain. References: Heintzenberg, J. and Charlson, R. J.: Clouds in the perturbed climate system - Their relationship to energy balance, atmospheric dynamics, and precipitation, MIT Press, Cambridge, UK, 58-72, 2009. McKenna, D. S., Konopka, P., Grooss, J. U., Günther, G., Müller, R., Spang, R., Offermann, D.,and Orsolini, Y.: A new Chemical Lagrangian Model of the Stratosphere (CLaMS) - 1. Formulation of advection and mixing, J. Geophys. Res., 107, 4309, doi:10.1029/2000JD000114, 2002. Spichtinger, P. and Gierens, K. M.: Modelling of cirrus clouds - Part 1a: Model description and validation, Atmospheric Chemistry and Physics, 9, 685-706, 2009.
Zhao, Xuefeng; Raghavan, Madhavan L; Lu, Jia
2011-05-01
Knowledge of elastic properties of cerebral aneurysms is crucial for understanding the biomechanical behavior of the lesion. However, characterizing tissue properties using in vivo motion data presents a tremendous challenge. Aside from the limitation of data accuracy, a pressing issue is that the in vivo motion does not expose the stress-free geometry. This is compounded by the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This article introduces a method for identifying the heterogeneous properties of aneurysm wall tissue under unknown stress-free configuration. In the proposed approach, an accessible configuration is taken as the reference; the unknown stress-free configuration is represented locally by a metric tensor describing the prestrain from the stress-free configuration to the reference configuration. Material parameters are identified together with the metric tensor pointwisely. The paradigm is tested numerically using a forward-inverse analysis loop. An image-derived sac is considered. The aneurysm tissue is modeled as an eightply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four material parameters. The parameters are assumed to vary continuously in two assigned patterns to represent two types of material heterogeneity. Nine configurations between the diastolic and systolic pressures are generated by forward quasi-static finite element analyses. These configurations are fed to the inverse analysis to delineate the material parameters and the metric tensor. The recovered and the assigned distributions are in good agreement. A forward verification is conducted by comparing the displacement solutions obtained from the recovered and the assigned material parameters at a different pressure. The nodal displacements are found in excellent agreement.
Epidemic outbreaks in complex heterogeneous networks
NASA Astrophysics Data System (ADS)
Moreno, Y.; Pastor-Satorras, R.; Vespignani, A.
2002-04-01
We present a detailed analytical and numerical study for the spreading of infections with acquired immunity in complex population networks. We show that the large connectivity fluctuations usually found in these networks strengthen considerably the incidence of epidemic outbreaks. Scale-free networks, which are characterized by diverging connectivity fluctuations in the limit of a very large number of nodes, exhibit the lack of an epidemic threshold and always show a finite fraction of infected individuals. This particular weakness, observed also in models without immunity, defines a new epidemiological framework characterized by a highly heterogeneous response of the system to the introduction of infected individuals with different connectivity. The understanding of epidemics in complex networks might deliver new insights in the spread of information and diseases in biological and technological networks that often appear to be characterized by complex heterogeneous architectures.
Heterogeneous Effects of Birth Spacing on Neonatal Mortality Risks in Bangladesh
Molitoris, Joseph
2018-01-01
Abstract The negative relationship between birth interval length and neonatal mortality risks is well documented, but heterogeneity in this relationship has been largely ignored. Using the Bangladesh Maternal Mortality and Health Care Survey 2010, this study investigates how the effect of birth interval length on neonatal mortality risks varies by maternal age at birth and maternal education. There is significant variation in the effect of interval length on neonatal mortality along these dimensions. Young mothers and those with little education, both of which make up a large share of the Bangladeshi population, can disproportionately benefit from longer intervals. Because these results were obtained from within‐family models, they are not due to unobservable heterogeneity between mothers. Targeting women with these characteristics may lead to significant improvements in neonatal mortality rates, but there are significant challenges in reaching them. PMID:29508949
Mixture Modeling: Applications in Educational Psychology
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Hodis, Flaviu A.
2016-01-01
Model-based clustering methods, commonly referred to as finite mixture modeling, have been applied to a wide variety of cross-sectional and longitudinal data to account for heterogeneity in population characteristics. In this article, we elucidate 2 such approaches: growth mixture modeling and latent profile analysis. Both techniques are…
Benthic protists: the under-charted majority.
Forster, Dominik; Dunthorn, Micah; Mahé, Fréderic; Dolan, John R; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Edvardsen, Bente; Egge, Elianne; Eikrem, Wenche; Gobet, Angélique; Kooistra, Wiebe H C F; Logares, Ramiro; Massana, Ramon; Montresor, Marina; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Richards, Thomas A; Santini, Sébastien; Sarno, Diana; Siano, Raffaele; Vaulot, Daniel; Wincker, Patrick; Zingone, Adriana; de Vargas, Colomban; Stoeck, Thorsten
2016-08-01
Marine protist diversity inventories have largely focused on planktonic environments, while benthic protists have received relatively little attention. We therefore hypothesize that current diversity surveys have only skimmed the surface of protist diversity in marine sediments, which may harbor greater diversity than planktonic environments. We tested this by analyzing sequences of the hypervariable V4 18S rRNA from benthic and planktonic protist communities sampled in European coastal regions. Despite a similar number of OTUs in both realms, richness estimations indicated that we recovered at least 70% of the diversity in planktonic protist communities, but only 33% in benthic communities. There was also little overlap of OTUs between planktonic and benthic communities, as well as between separate benthic communities. We argue that these patterns reflect the heterogeneity and diversity of benthic habitats. A comparison of all OTUs against the Protist Ribosomal Reference database showed that a higher proportion of benthic than planktonic protist diversity is missing from public databases; similar results were obtained by comparing all OTUs against environmental references from NCBI's Short Read Archive. We suggest that the benthic realm may therefore be the world's largest reservoir of marine protist diversity, with most taxa at present undescribed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Recommendations for the management of sickle cell disease in South Africa.
Alli, N A; Patel, M; Alli, H D; Bassa, F; Coetzee, M J; Davidson, A; Essop, M R; Lakha, A; Louw, V J; Novitzky, N; Philip, V; Poole, J E; Wainwright, R D
2014-11-01
The spectrum of sickle cell disease (SCD) encompasses a heterogeneous group of disorders that include: (I) homozygous SCD (HbSS), also referred to as sickle cell anaemia; (ii) heterozygous SCD (HbAS), also referred to as sickle cell trait; and (iii) compound heterozygous states such as HbSC disease, HbSβ thalassaemia, etc. Homozygous or compound heterozygous SCD patients manifest with clinical disease of varying severity that is influenced by biological and environmental factors, whereas subject with sickle cell trait are largely asymptomatic. SCD is characterized by vaso-occlusive episodes that result in tissue ischaemia and pain in the affected region. Repeated infarctive episodes cause organ damage and may eventually lead to organ failure. For effective management, regular follow-up with support from a multidisciplinary healthcare team is necessary. The chronic nature of the disease, the steady increase in patient numbers, and relapsing acute episodes have cost implications that are likely to impact on provincial and national health budgets. Limited resources mandate local management protocols for the purposes of consistency and standardisation, which could also facilitate sharing of resources between centres for maximal utility. These recommendations have been developed for the South African setting, and it is intended to update them regularly to meet new demands and challenges.
Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons.
Nicola, Wilten; Campbell, Sue Ann
2013-01-01
We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons.
Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons
Nicola, Wilten; Campbell, Sue Ann
2013-01-01
We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons. PMID:24416013
Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress
NASA Astrophysics Data System (ADS)
Gibaud, Thomas; Perge, Christophe; Lindström, Stefan B.; Taberlet, Nicolas; Manneville, Sébastien
Fatigue refers to the changes in material properties caused by repeatedly applied loads. It has been widely studied for, e.g., construction materials, but much less has been done on soft materials. Here, we characterize the fatigue dynamics of a colloidal gel. Fatigue is induced by large amplitude oscillatory stress (LAOStress), and the local displacements of the gel are measured through high-frequency ultrasonic imaging. We show that fatigue eventually leads to rupture and fluidization. We evidence four successive steps associated with these dynamics: (i) the gel first remains solid, (ii) it then slides against the walls, (iii) the bulk of the sample becomes heterogeneous and displays solid-fluid coexistence, and (iv) it is finally fully fluidized. It is possible to homogeneously scale the duration of each step with respect to the stress oscillation amplitude $\\sigma_0$. The data are compatible with both exponential and power-law scalings with $\\sigma_0$, which hints at two possible interpretations in terms of delayed yielding in terms activated processes or of the Basquin law. Surprisingly, we find that the model parameters behave nonmonotonically as we change the oscillation frequency and/or the gel concentration.
NASA Astrophysics Data System (ADS)
Herlach, Dieter M.; Kobold, Raphael; Klein, Stefan
2018-03-01
Glass formation of a liquid undercooled below its melting temperature requires the complete avoidance of crystal nucleation and subsequent crystal growth. Even though they are not part of the glass formation process, a detailed knowledge of both processes involved in crystallization is mandatory to determine the glass-forming ability of metals and metallic alloys. In the present work, methods of containerless processing of drops by electrostatic and electromagnetic levitation are applied to undercool metallic melts prior to solidification. Heterogeneous nucleation on crucible walls is completely avoided giving access to large undercoolings. A freely suspended drop offers the additional benefit of showing the rapid crystallization process of an undercooled melt in situ by proper diagnostic means. As a reference, crystal nucleation and dendrite growth in the undercooled melt of pure Zr are experimentally investigated. Equivalently, binary Zr-Cu, Zr-Ni and Zr-Pd and ternary Zr-Ni-Cu alloys are studied, whose glass-forming abilities differ. The experimental results are analyzed within classical nucleation theory and models of dendrite growth. The findings give detailed knowledge about the nucleation-undercooling statistics and the growth kinetics over a large range of undercooling.
Phylotranscriptomic consolidation of the jawed vertebrate timetree.
Irisarri, Iker; Baurain, Denis; Brinkmann, Henner; Delsuc, Frédéric; Sire, Jean-Yves; Kupfer, Alexander; Petersen, Jörn; Jarek, Michael; Meyer, Axel; Vences, Miguel; Philippe, Hervé
2017-09-01
Phylogenomics is extremely powerful but introduces new challenges as no agreement exists on "standards" for data selection, curation and tree inference. We use jawed vertebrates (Gnathostomata) as model to address these issues. Despite considerable efforts in resolving their evolutionary history and macroevolution, few studies have included a full phylogenetic diversity of gnathostomes and some relationships remain controversial. We tested a novel bioinformatic pipeline to assemble large and accurate phylogenomic datasets from RNA sequencing and find this phylotranscriptomic approach successful and highly cost-effective. Increased sequencing effort up to ca. 10Gbp allows recovering more genes, but shallower sequencing (1.5Gbp) is sufficient to obtain thousands of full-length orthologous transcripts. We reconstruct a robust and strongly supported timetree of jawed vertebrates using 7,189 nuclear genes from 100 taxa, including 23 new transcriptomes from previously unsampled key species. Gene jackknifing of genomic data corroborates the robustness of our tree and allows calculating genome-wide divergence times by overcoming gene sampling bias. Mitochondrial genomes prove insufficient to resolve the deepest relationships because of limited signal and among-lineage rate heterogeneity. Our analyses emphasize the importance of large curated nuclear datasets to increase the accuracy of phylogenomics and provide a reference framework for the evolutionary history of jawed vertebrates.
The Multi-Scale Network Landscape of Collaboration.
Bae, Arram; Park, Doheum; Ahn, Yong-Yeol; Park, Juyong
2016-01-01
Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena--which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists.
The Multi-Scale Network Landscape of Collaboration
Ahn, Yong-Yeol; Park, Juyong
2016-01-01
Propelled by the increasing availability of large-scale high-quality data, advanced data modeling and analysis techniques are enabling many novel and significant scientific understanding of a wide range of complex social, natural, and technological systems. These developments also provide opportunities for studying cultural systems and phenomena—which can be said to refer to all products of human creativity and way of life. An important characteristic of a cultural product is that it does not exist in isolation from others, but forms an intricate web of connections on many levels. In the creation and dissemination of cultural products and artworks in particular, collaboration and communication of ideas play an essential role, which can be captured in the heterogeneous network of the creators and practitioners of art. In this paper we propose novel methods to analyze and uncover meaningful patterns from such a network using the network of western classical musicians constructed from a large-scale comprehensive Compact Disc recordings data. We characterize the complex patterns in the network landscape of collaboration between musicians across multiple scales ranging from the macroscopic to the mesoscopic and microscopic that represent the diversity of cultural styles and the individuality of the artists. PMID:26990088
Nonlinearity Analysis for Efficient Modelling of Long-Term CO2 Storage
NASA Astrophysics Data System (ADS)
Li, Boxiao; Benson, Sally; Tchelepi, Hamdi
2014-05-01
Numerical simulation is widely used to predict the long-term fate of the injected CO2 in a storage formation. Performing large-scale simulations is often limited by the computational speed, where convergence failure of Newton iterations is one of the main bottlenecks. In order to design better numerical schemes and faster nonlinear solvers for modelling long-term CO2 storage, the nonlinearity in the simulations has to be analysed thoroughly, and the cause of convergence failures has to be identified clearly. We focus on the transport of CO2 and water in the presence of viscous, gravity, and heterogeneous capillary forces. We investigate the nonlinearity of the discrete transport equation obtained from finite-volume discretization with single-point phase-based upstream weighting, which is the industry standard. In particular, we study the discretized flux expressed as a function of saturations at the upstream and downstream (with respect to the total velocity) of each gridblock interface. We analyse the locations and complexity of the unit-flux, zero-flux, and inflection lines on the numerical flux. The unit- and zero-flux lines, referred to as kinks, correspond to a change of the flow direction, which often occurs when strong buoyancy and capillarity are present. We observe that these kinks and inflection lines are major sources of nonlinear convergence difficulties. We find that kinks create more challenges than inflection lines, especially when their locations depend on both the upstream and downstream saturations of the total velocity. When the flow is driven by viscous and gravity forces (e.g., during CO2 injection), one kink will occur in the numerical flux and its location depends only on the upstream saturation. However, when capillarity is dominant (e.g., during the post-injection period), two kinks will occur and both are functions of the upstream and downstream saturations, causing severe convergence difficulties particularly when heterogeneity is present. Our analysis of the numerical flux theoretically describes the cause of the convergence failures for simulating long-term CO2 storage. This understanding provides useful guidance in designing numerical schemes and nonlinear solvers that overcome the convergence bottlenecks. For example, to reduce the nonlinearity introduced by the two kinks in the presence of capillarity, we modify the method of Cances (2009) to discretize the capillary flux. Consequently, only one kink will occur even for coupled viscous, buoyancy, and heterogeneous capillary forces, and the kink depends only on the upstream saturation of the total velocity. An efficient nonlinear solver that is a significant refinement of the works of Jenny et al. (2009) and Wang and Tchelepi (2013) has also been proposed and demonstrated. References [1] C. Cances. Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM:M2AN., 43, 973-1001, (2009). [2] P. Jenny, H.A. Tchelepi, and S.H. Lee. Unconditionally convergent nonlinear solver for hyperbolic conservation laws with S-shaped flux functions. J. Comput. Phys., 228, 7497-7512, (2009). [3] X. Wang and H.A. Tchelepi. Trust-region based solver for nonlinear transport in heterogeneous porous media. J. Comput. Phys., 253, 114-137, (2013).
ERIC Educational Resources Information Center
Rutkowski, Leslie; Rutkowski, David
2018-01-01
Over time international large-scale assessments have grown in terms of number of studies, cycles, and participating countries, many of which are a heterogeneous mix of economies, languages, cultures, and geography. This heterogeneity has meaningful consequences for comparably measuring both achievement and non-achievement constructs, such as…
Clinical Heterogeneity in Patients with the Hypermobility Type of Ehlers-Danlos Syndrome
ERIC Educational Resources Information Center
De Wandele, Inge; Rombaut, Lies; Malfait, Fransiska; De Backer, Tine; De Paepe, Anne; Calders, Patrick
2013-01-01
EDS-HT is a connective tissue disorder characterized by large inter-individual differences in the clinical presentation, complicating diagnosis and treatment. We aim to describe the clinical heterogeneity and to investigate whether differences in the symptom profile are also reflected as disparity in functional impairment and pain experience. In…
USDA-ARS?s Scientific Manuscript database
The estimation of spatial patterns in surface fluxes from aircraft observations poses several challenges in presence of heterogeneous land cover. In particular, the effects of turbulence on scalar transport and the different behavior of passive (e.g. moisture) versus active (e.g. temperature) scalar...
Shibuta, Yasushi; Sakane, Shinji; Miyoshi, Eisuke; Okita, Shin; Takaki, Tomohiro; Ohno, Munekazu
2017-04-05
Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.Nucleation is a fundamental physical process, however it is a long-standing issue whether completely homogeneous nucleation can occur. Here the authors reveal, via a billion-atom molecular dynamics simulation, that local heterogeneity exists during homogeneous nucleation in an undercooled iron melt.
Large-scale model of flow in heterogeneous and hierarchical porous media
NASA Astrophysics Data System (ADS)
Chabanon, Morgan; Valdés-Parada, Francisco J.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît
2017-11-01
Heterogeneous porous structures are very often encountered in natural environments, bioremediation processes among many others. Reliable models for momentum transport are crucial whenever mass transport or convective heat occurs in these systems. In this work, we derive a large-scale average model for incompressible single-phase flow in heterogeneous and hierarchical soil porous media composed of two distinct porous regions embedding a solid impermeable structure. The model, based on the local mechanical equilibrium assumption between the porous regions, results in a unique momentum transport equation where the global effective permeability naturally depends on the permeabilities at the intermediate mesoscopic scales and therefore includes the complex hierarchical structure of the soil. The associated closure problem is numerically solved for various configurations and properties of the heterogeneous medium. The results clearly show that the effective permeability increases with the volume fraction of the most permeable porous region. It is also shown that the effective permeability is sensitive to the dimensionality spatial arrangement of the porous regions and in particular depends on the contact between the impermeable solid and the two porous regions.
Evaluation of field methods for vertical high resolution aquifer characterization
NASA Astrophysics Data System (ADS)
Vienken, T.; Tinter, M.; Rogiers, B.; Leven, C.; Dietrich, P.
2012-12-01
The delineation and characterization of subsurface (hydro)-stratigraphic structures is one of the challenging tasks of hydrogeological site investigations. The knowledge about the spatial distribution of soil specific properties and hydraulic conductivity (K) is the prerequisite for understanding flow and fluid transport processes. This is especially true for heterogeneous unconsolidated sedimentary deposits with a complex sedimentary architecture. One commonly used approach to investigate and characterize sediment heterogeneity is soil sampling and lab analyses, e.g. grain size distribution. Tests conducted on 108 samples show that calculation of K based on grain size distribution is not suitable for high resolution aquifer characterization of highly heterogeneous sediments due to sampling effects and large differences of calculated K values between applied formulas (Vienken & Dietrich 2011). Therefore, extensive tests were conducted at two test sites under different geological conditions to evaluate the performance of innovative Direct Push (DP) based approaches for the vertical high resolution determination of K. Different DP based sensor probes for the in-situ subsurface characterization based on electrical, hydraulic, and textural soil properties were used to obtain high resolution vertical profiles. The applied DP based tools proved to be a suitable and efficient alternative to traditional approaches. Despite resolution differences, all of the applied methods captured the main aquifer structure. Correlation of the DP based K estimates and proxies with DP based slug tests show that it is possible to describe the aquifer hydraulic structure on less than a meter scale by combining DP slug test data and continuous DP measurements. Even though correlations are site specific and appropriate DP tools must be chosen, DP is reliable and efficient alternative for characterizing even strongly heterogeneous sites with complex structured sedimentary aquifers (Vienken et al. 2012). References: Vienken, T., Leven, C., and Dietrich, P. 2012. Use of CPT and other direct push methods for (hydro-) stratigraphic aquifer characterization — a field study. Canadian Geotechnical Journal, 49(2): 197-206. Vienken, T., and Dietrich, P. 2011. Field evaluation of methods for determining hydraulic conductivity from grain size data. Journal of Hydrology, 400(1-2): 58-71.
Modeling and comparative study of fluid velocities in heterogeneous rocks
NASA Astrophysics Data System (ADS)
Hingerl, Ferdinand F.; Romanenko, Konstantin; Pini, Ronny; Balcom, Bruce; Benson, Sally
2013-04-01
Detailed knowledge of the distribution of effective porosity and fluid velocities in heterogeneous rock samples is crucial for understanding and predicting spatially resolved fluid residence times and kinetic reaction rates of fluid-rock interactions. The applicability of conventional MRI techniques to sedimentary rocks is limited by internal magnetic field gradients and short spin relaxation times. The approach developed at the UNB MRI Centre combines the 13-interval Alternating-Pulsed-Gradient Stimulated-Echo (APGSTE) scheme and three-dimensional Single Point Ramped Imaging with T1 Enhancement (SPRITE). These methods were designed to reduce the errors due to effects of background gradients and fast transverse relaxation. SPRITE is largely immune to time-evolution effects resulting from background gradients, paramagnetic impurities and chemical shift. Using these techniques quantitative 3D porosity maps as well as single-phase fluid velocity fields in sandstone core samples were measured. Using a new Magnetic Resonance Imaging technique developed at the MRI Centre at UNB, we created 3D maps of porosity distributions as well as single-phase fluid velocity distributions of sandstone rock samples. Then, we evaluated the applicability of the Kozeny-Carman relationship for modeling measured fluid velocity distributions in sandstones samples showing meso-scale heterogeneities using two different modeling approaches. The MRI maps were used as reference points for the modeling approaches. For the first modeling approach, we applied the Kozeny-Carman relationship to the porosity distributions and computed respective permeability maps, which in turn provided input for a CFD simulation - using the Stanford CFD code GPRS - to compute averaged velocity maps. The latter were then compared to the measured velocity maps. For the second approach, the measured velocity distributions were used as input for inversely computing permeabilities using the GPRS CFD code. The computed permeabilities were then correlated with the ones based on the porosity maps and the Kozeny-Carman relationship. The findings of the comparative modeling study are discussed and its potential impact on the modeling of fluid residence times and kinetic reaction rates of fluid-rock interactions in rocks containing meso-scale heterogeneities are reviewed.
[Genotype/phenotype correlation in autism: genetic models and phenotypic characterization].
Bonnet-Brilhault, F
2011-02-01
Autism spectrum disorders are a class of conditions categorized by communication problems, ritualistic behaviors, and deficits in social behaviors. This class of disorders merges a heterogeneous group of neurodevelopmental disorders regarding some phenotypic and probably physiopathological aspects. Genetic basis is well admitted, however, considering phenotypic and genotypic heterogeneity, correspondences between genotype and phenotype have yet to be established. To better identify such correspondences, genetic models have to be identified and phenotypic markers have to be characterized. Recent insights show that a variety of genetic mechanisms may be involved in autism spectrum disorders, i.e. single gene disorders, copy number variations and polygenic mechanisms. These current genetic models are described. Regarding clinical aspects, several approaches can be used in genetic studies. Nosographical approach, especially with the concept of autism spectrum disorders, merges a large group of disorders with clinical heterogeneity and may fail to identify clear genotype/phenotype correlations. Dimensional approach referred in genetic studies to the notion of "Broad Autism Phenotype" related to a constellation of language, personality, and social-behavioral features present in relatives that mirror the symptom domains of autism, but are much milder in expression. Studies of this broad autism phenotype may provide a potentially important complementary approach for detecting the genes involved in these domains. However, control population used in those studies need to be well characterized too. Identification of endophenotypes seems to offer more promising results. Endophenotypes, which are supposed to be more proximal markers of gene action in the same biological pathway, linking genes and complex clinical symptoms, are thought to be less genetically complex than the broader disease phenotype, indexing a limited aspect of genetic risk for the disorder as a whole. However, strategies useful to characterize such phenotypic markers (for example, electrophysiological markers) have to take into account that autism is an early neurodevelopmental disorder occurring during childhood when brain development and maturation are in process. Recent genetic results have improved our knowledge in genetic basis in autism. Nevertheless, correspondences with phenotypic markers remain challenging according to phenotypic and genotypic heterogeneity. Copyright © 2010 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang
2013-01-01
Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments. PMID:23776594
Li, Shuai; Zhang, Yong-Jiang; Sack, Lawren; Scoffoni, Christine; Ishida, Atsushi; Chen, Ya-Jun; Cao, Kun-Fang
2013-01-01
Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L.) Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their global rarity, even in resource-rich environments.
NASA Astrophysics Data System (ADS)
Manfredi, Sabato
2016-06-01
Large-scale dynamic systems are becoming highly pervasive in their occurrence with applications ranging from system biology, environment monitoring, sensor networks, and power systems. They are characterised by high dimensionality, complexity, and uncertainty in the node dynamic/interactions that require more and more computational demanding methods for their analysis and control design, as well as the network size and node system/interaction complexity increase. Therefore, it is a challenging problem to find scalable computational method for distributed control design of large-scale networks. In this paper, we investigate the robust distributed stabilisation problem of large-scale nonlinear multi-agent systems (briefly MASs) composed of non-identical (heterogeneous) linear dynamical systems coupled by uncertain nonlinear time-varying interconnections. By employing Lyapunov stability theory and linear matrix inequality (LMI) technique, new conditions are given for the distributed control design of large-scale MASs that can be easily solved by the toolbox of MATLAB. The stabilisability of each node dynamic is a sufficient assumption to design a global stabilising distributed control. The proposed approach improves some of the existing LMI-based results on MAS by both overcoming their computational limits and extending the applicative scenario to large-scale nonlinear heterogeneous MASs. Additionally, the proposed LMI conditions are further reduced in terms of computational requirement in the case of weakly heterogeneous MASs, which is a common scenario in real application where the network nodes and links are affected by parameter uncertainties. One of the main advantages of the proposed approach is to allow to move from a centralised towards a distributed computing architecture so that the expensive computation workload spent to solve LMIs may be shared among processors located at the networked nodes, thus increasing the scalability of the approach than the network size. Finally, a numerical example shows the applicability of the proposed method and its advantage in terms of computational complexity when compared with the existing approaches.
Comparison of statistical tests for association between rare variants and binary traits.
Bacanu, Silviu-Alin; Nelson, Matthew R; Whittaker, John C
2012-01-01
Genome-wide association studies have found thousands of common genetic variants associated with a wide variety of diseases and other complex traits. However, a large portion of the predicted genetic contribution to many traits remains unknown. One plausible explanation is that some of the missing variation is due to the effects of rare variants. Nonetheless, the statistical analysis of rare variants is challenging. A commonly used method is to contrast, within the same region (gene), the frequency of minor alleles at rare variants between cases and controls. However, this strategy is most useful under the assumption that the tested variants have similar effects. We previously proposed a method that can accommodate heterogeneous effects in the analysis of quantitative traits. Here we extend this method to include binary traits that can accommodate covariates. We use simulations for a variety of causal and covariate impact scenarios to compare the performance of the proposed method to standard logistic regression, C-alpha, SKAT, and EREC. We found that i) logistic regression methods perform well when the heterogeneity of the effects is not extreme and ii) SKAT and EREC have good performance under all tested scenarios but they can be computationally intensive. Consequently, it would be more computationally desirable to use a two-step strategy by (i) selecting promising genes by faster methods and ii) analyzing selected genes using SKAT/EREC. To select promising genes one can use (1) regression methods when effect heterogeneity is assumed to be low and the covariates explain a non-negligible part of trait variability, (2) C-alpha when heterogeneity is assumed to be large and covariates explain a small fraction of trait's variability and (3) the proposed trend and heterogeneity test when the heterogeneity is assumed to be non-trivial and the covariates explain a large fraction of trait variability.
Schmitt, Martin L; Ladwein, Kathrin I; Carlino, Luca; Schulz-Fincke, Johannes; Willmann, Dominica; Metzger, Eric; Schilcher, Pierre; Imhof, Axel; Schüle, Roland; Sippl, Wolfgang; Jung, Manfred
2014-07-01
Posttranslational modifications of histone tails are very important for epigenetic gene regulation. The lysine-specific demethylase LSD1 (KDM1A/AOF2) demethylates in vitro predominantly mono- and dimethylated lysine 4 on histone 3 (H3K4) and is a promising target for drug discovery. We report a heterogeneous antibody-based assay, using dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) for the detection of LSD1 activity. We used a biotinylated histone 3 peptide (amino acids 1-21) with monomethylated lysine 4 (H3K4me) as the substrate for the detection of LSD1 activity with antibody-mediated quantitation of the demethylated product. We have successfully used the assay to measure the potency of reference inhibitors. The advantage of the heterogeneous format is shown with cumarin-based LSD1 inhibitor candidates that we have identified using virtual screening. They had shown good potency in an established LSD1 screening assay. The new heterogeneous assay identified them as false positives, which was verified using mass spectrometry. © 2014 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Nourhani, Amir; Crespi, Vincent H.; Lammert, Paul E.
2015-06-01
We present a self-consistent nonlocal feedback theory for the phoretic propulsion mechanisms of electrocatalytic micromotors or nanomotors. These swimmers, such as bimetallic platinum and gold rods catalyzing decomposition of hydrogen peroxide in aqueous solution, have received considerable theoretical attention. In contrast, the heterogeneous electrochemical processes with nonlocal feedback that are the actual "engines" of such motors are relatively neglected. We present a flexible approach to these processes using bias potential as a control parameter field and a locally-open-circuit reference state, carried through in detail for a spherical motor. While the phenomenological flavor makes meaningful contact with experiment easier, required inputs can also conceivably come from, e.g., Frumkin-Butler-Volmer kinetics. Previously obtained results are recovered in the weak-heterogeneity limit and improved small-basis approximations tailored to structural heterogeneity are presented. Under the assumption of weak inhomogeneity, a scaling form is deduced for motor speed as a function of fuel concentration and swimmer size. We argue that this form should be robust and demonstrate a good fit to experimental data.
Near-edge X-ray refraction fine structure microscopy
Farmand, Maryam; Celestre, Richard; Denes, Peter; ...
2017-02-06
We demonstrate a method for obtaining increased spatial resolution and specificity in nanoscale chemical composition maps through the use of full refractive reference spectra in soft x-ray spectro-microscopy. Using soft x-ray ptychography, we measure both the absorption and refraction of x-rays through pristine reference materials as a function of photon energy and use these reference spectra as the basis for decomposing spatially resolved spectra from a heterogeneous sample, thereby quantifying the composition at high resolution. While conventional instruments are limited to absorption contrast, our novel refraction based method takes advantage of the strongly energy dependent scattering cross-section and can seemore » nearly five-fold improved spatial resolution on resonance.« less
Intercultural Communication and the Concept of Marginality.
ERIC Educational Resources Information Center
Howell, Gladys David
The complex mosaic of cultural and racial heterogeneity in America throughout the twentieth century has given rise to various sociological perspectives to interpret the evolving interaction patterns and to give clues to the direction that policy decisions should take. The major theoretical frames of reference have been assimilation and cultural…
ERIC Educational Resources Information Center
Bowker, Julie C.; Thomas, Katelyn K.; Norman, Kelly E.; Spencer, Sarah V.
2011-01-01
Rejection sensitivity (RS) refers to the tendency to anxiously expect, readily perceive, and overreact to experiences of possible rejection. RS is a clear risk factor for psychological maladaptation during early adolescence. However, there is growing evidence of significant heterogeneity in the psychological correlates of RS. To investigate when…
ERIC Educational Resources Information Center
Tampubolon, Mangatas
2003-01-01
Examines nonformal education's part in expanding democratic culture in Indonesia; discusses contextual constraints on democracy, use of nonformal education for literacy and life skills development, and the influence on developing citizen awareness of responsibilities in a democratic society. (Contains 28 references.) (SK)
Heterogeneity among Violence-Exposed Women: Applying Person-Oriented Research Methods
ERIC Educational Resources Information Center
Nurius, Paula S.; Macy, Rebecca J.
2008-01-01
Variability of experience and outcomes among violence-exposed people pose considerable challenges toward developing effective prevention and treatment protocols. To address these needs, the authors present an approach to research and a class of methodologies referred to as person oriented. Person-oriented tools support assessment of meaningful…
One of the biggest challenges when conducting a continental-scale assessment of streams is setting appropriate expectations for the assessed sites. The challenge occurs for 2 reasons: 1) tremendous natural environmental heterogeneity exists within a continental landscape and 2) r...
Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future.
McGranahan, Nicholas; Swanton, Charles
2017-02-09
Intratumor heterogeneity, which fosters tumor evolution, is a key challenge in cancer medicine. Here, we review data and technologies that have revealed intra-tumor heterogeneity across cancer types and the dynamics, constraints, and contingencies inherent to tumor evolution. We emphasize the importance of macro-evolutionary leaps, often involving large-scale chromosomal alterations, in driving tumor evolution and metastasis and consider the role of the tumor microenvironment in engendering heterogeneity and drug resistance. We suggest that bold approaches to drug development, harnessing the adaptive properties of the immune-microenvironment while limiting those of the tumor, combined with advances in clinical trial-design, will improve patient outcome. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Peng, Dailiang; Zhang, Xiaoyang; Zhang, Bing; Liu, Liangyun; Liu, Xinjie; Huete, Alfredo R.; Huang, Wenjiang; Wang, Siyuan; Luo, Shezhou; Zhang, Xiao; Zhang, Helin
2017-10-01
Land surface phenology (LSP) has been widely retrieved from satellite data at multiple spatial resolutions, but the spatial scaling effects on LSP detection are poorly understood. In this study, we collected enhanced vegetation index (EVI, 250 m) from collection 6 MOD13Q1 product over the contiguous United States (CONUS) in 2007 and 2008, and generated a set of multiple spatial resolution EVI data by resampling 250 m to 2 × 250 m and 3 × 250 m, 4 × 250 m, …, 35 × 250 m. These EVI time series were then used to detect the start of spring season (SOS) at various spatial resolutions. Further the SOS variation across scales was examined at each coarse resolution grid (35 × 250 m ≈ 8 km, refer to as reference grid) and ecoregion. Finally, the SOS scaling effects were associated with landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation within each reference grid. The results revealed the influences of satellite spatial resolutions on SOS retrievals and the related impact factors. Specifically, SOS significantly varied lineally or logarithmically across scales although the relationship could be either positive or negative. The overall SOS values averaged from spatial resolutions between 250 m and 35 × 250 m at large ecosystem regions were generally similar with a difference less than 5 days, while the SOS values within the reference grid could differ greatly in some local areas. Moreover, the standard deviation of SOS across scales in the reference grid was less than 5 days in more than 70% of area over the CONUS, which was smaller in northeastern than in southern and western regions. The SOS scaling effect was significantly associated with heterogeneity of vegetation properties characterized using land landscape fragment, proportion of primary land cover type, and spatial variability of seasonal greenness variation, but the latter was the most important impact factor.
NASA Astrophysics Data System (ADS)
Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.
2010-12-01
Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.
Spatial heterogeneities and variability of karst hydro-system : insights from geophysics
NASA Astrophysics Data System (ADS)
Champollion, C.; Fores, B.; Lesparre, N.; Frederic, N.
2017-12-01
Heterogeneous systems such as karsts or fractured hydro-systems are challenging for both scientist and groundwater resources management. Karsts heterogeneities prevent the comparison and moreover the combination of data representative of different scales: borehole water level can generally not be used directly to interpret spring flow dynamic for example. The spatial heterogeneity has also an impact on the temporal variability of groundwater transfer and storage. Karst hydro-systems have characteristic non linear relation between precipitation amount and discharge at the outlets with threshold effects and a large variability of groundwater transit times In the presentation, geophysical field experiments conducted in karst hydro-system in the south of France are used to investigate groundwater transfer and storage variability at a scale of a few hundred meters. We focus on the added value of both geophysical time-lapse gravity experiments and 2D ERT imaging of the subsurface heterogeneities. Both gravity and ERT results can only be interpreted with large ambiguity or some strong a priori: the relation between resistivity and water content is not unique; almost no information about the processes can be inferred from the groundwater stock variations. The present study demonstrate how the ERT and gravity field experiments can be interpreted together in a coherent scheme with less ambiguity. First the geological and hydro-meteorological context is presented. Then the ERT field experiment including the processing and the results are detailed in the section about geophysical imaging of the heterogeneities. The gravity double difference (S2D) time-lapse experiment is described in the section about geophysical monitoring of the temporal variability. The following discussion demonstrate the impact of both experiments on the interpretation in terms of processes and heterogeneities.
Precision medicine in myasthenia graves: begin from the data precision
Hong, Yu; Xie, Yanchen; Hao, Hong-Jun; Sun, Ren-Cheng
2016-01-01
Myasthenia gravis (MG) is a prototypic autoimmune disease with overt clinical and immunological heterogeneity. The data of MG is far from individually precise now, partially due to the rarity and heterogeneity of this disease. In this review, we provide the basic insights of MG data precision, including onset age, presenting symptoms, generalization, thymus status, pathogenic autoantibodies, muscle involvement, severity and response to treatment based on references and our previous studies. Subgroups and quantitative traits of MG are discussed in the sense of data precision. The role of disease registries and scientific bases of precise analysis are also discussed to ensure better collection and analysis of MG data. PMID:27127759
Concerning the relationship between evapotranspiration and soil moisture
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.; Chang, Jy-Tai
1987-01-01
The relationship between the evapotranspiration and soil moisture during the drying, supply-limited phase is studied. A second scaling parameter, based on the evapotranspirational supply and demand concept of Federer (1982), is defined; the parameter, referred to as the threshold evapotranspiration, occurs in vegetation-covered surfaces just before leaf stomata close and when surface tension restricts moisture release from bare soil pores. A simple model for evapotranspiration is proposed. The effects of natural soil heterogeneities on evapotranspiration computed from the model are investigated. It is observed that the natural variability in soil moisture, caused by the heterogeneities, alters the relationship between regional evapotranspiration and the area average soil moisture.
Effect of the image resolution on the statistical descriptors of heterogeneous media.
Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime
2018-02-01
The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.
Effect of the image resolution on the statistical descriptors of heterogeneous media
NASA Astrophysics Data System (ADS)
Ledesma-Alonso, René; Barbosa, Romeli; Ortegón, Jaime
2018-02-01
The characterization and reconstruction of heterogeneous materials, such as porous media and electrode materials, involve the application of image processing methods to data acquired by scanning electron microscopy or other microscopy techniques. Among them, binarization and decimation are critical in order to compute the correlation functions that characterize the microstructure of the above-mentioned materials. In this study, we present a theoretical analysis of the effects of the image-size reduction, due to the progressive and sequential decimation of the original image. Three different decimation procedures (random, bilinear, and bicubic) were implemented and their consequences on the discrete correlation functions (two-point, line-path, and pore-size distribution) and the coarseness (derived from the local volume fraction) are reported and analyzed. The chosen statistical descriptors (correlation functions and coarseness) are typically employed to characterize and reconstruct heterogeneous materials. A normalization for each of the correlation functions has been performed. When the loss of statistical information has not been significant for a decimated image, its normalized correlation function is forecast by the trend of the original image (reference function). In contrast, when the decimated image does not hold statistical evidence of the original one, the normalized correlation function diverts from the reference function. Moreover, the equally weighted sum of the average of the squared difference, between the discrete correlation functions of the decimated images and the reference functions, leads to a definition of an overall error. During the first stages of the gradual decimation, the error remains relatively small and independent of the decimation procedure. Above a threshold defined by the correlation length of the reference function, the error becomes a function of the number of decimation steps. At this stage, some statistical information is lost and the error becomes dependent on the decimation procedure. These results may help us to restrict the amount of information that one can afford to lose during a decimation process, in order to reduce the computational and memory cost, when one aims to diminish the time consumed by a characterization or reconstruction technique, yet maintaining the statistical quality of the digitized sample.
Genetic studies on reference strains of mutans streptococci.
Ota, Fusao; Yamato, Masayuki; Hayashi, Mie; Ota, Masayuki; Koga, Tetsuro; Sherin, Ahmed; Mukai, Chiharu; Sakai, Kentaro; Yamamoto, Shigeru
2002-01-01
Twenty four reference strains (serotype a-h) belonging to the mutans group of streptococci were compared for DNA fragment patterns of rDNA after treatment with Hind III. It was shown that Streptococcus cricetus (serotype a), S. rattus (serotype b), and S. downei (serotype h) reveals comparatively homogeneous patterns while S. mutans (serotype c, e and f) exhibits differences between the different serotypes as well as within single serotypes. S. sobrinus had an intermediary diversity. These data support the previous findings that S. mutans is heterogeneous at the serological, biochemical and genetical level.
Pacemakers in large arrays of oscillators with nonlocal coupling
NASA Astrophysics Data System (ADS)
Jaramillo, Gabriela; Scheel, Arnd
2016-02-01
We model pacemaker effects of an algebraically localized heterogeneity in a 1 dimensional array of oscillators with nonlocal coupling. We assume the oscillators obey simple phase dynamics and that the array is large enough so that it can be approximated by a continuous nonlocal evolution equation. We concentrate on the case of heterogeneities with positive average and show that steady solutions to the nonlocal problem exist. In particular, we show that these heterogeneities act as a wave source. This effect is not possible in 3 dimensional systems, such as the complex Ginzburg-Landau equation, where the wavenumber of weak sources decays at infinity. To obtain our results we use a series of isomorphisms to relate the nonlocal problem to the viscous eikonal equation. We then use Fredholm properties of the Laplace operator in Kondratiev spaces to obtain solutions to the eikonal equation, and by extension to the nonlocal problem.
Li, Qi-Gang; He, Yong-Han; Wu, Huan; Yang, Cui-Ping; Pu, Shao-Yan; Fan, Song-Qing; Jiang, Li-Ping; Shen, Qiu-Shuo; Wang, Xiao-Xiong; Chen, Xiao-Qiong; Yu, Qin; Li, Ying; Sun, Chang; Wang, Xiangting; Zhou, Jumin; Li, Hai-Peng; Chen, Yong-Bin; Kong, Qing-Peng
2017-01-01
Heterogeneity in transcriptional data hampers the identification of differentially expressed genes (DEGs) and understanding of cancer, essentially because current methods rely on cross-sample normalization and/or distribution assumption-both sensitive to heterogeneous values. Here, we developed a new method, Cross-Value Association Analysis (CVAA), which overcomes the limitation and is more robust to heterogeneous data than the other methods. Applying CVAA to a more complex pan-cancer dataset containing 5,540 transcriptomes discovered numerous new DEGs and many previously rarely explored pathways/processes; some of them were validated, both in vitro and in vivo , to be crucial in tumorigenesis, e.g., alcohol metabolism ( ADH1B ), chromosome remodeling ( NCAPH ) and complement system ( Adipsin ). Together, we present a sharper tool to navigate large-scale expression data and gain new mechanistic insights into tumorigenesis.
A New Equivalence Theory Method for Treating Doubly Heterogeneous Fuel - II. Verifications
Choi, Sooyoung; Kong, Chidong; Lee, Deokjung; ...
2015-03-09
A new methodology has been developed recently to treat resonance self-shielding in systems for which the fuel compact region of a reactor lattice consists of small fuel grains dispersed in a graphite matrix. The theoretical development adopts equivalence theory in both micro- and macro-level heterogeneities to provide approximate analytical expressions for the shielded cross sections, which may be interpolated from a table of resonance integrals or Bondarenko factors using a modified background cross section as the interpolation parameter. This paper describes the first implementation of the theoretical equations in a reactor analysis code. In order to reduce discrepancies caused bymore » use of the rational approximation for collision probabilities in the original derivation, a new formulation for a doubly heterogeneous Bell factor is developed in this paper to improve the accuracy of doubly heterogeneous expressions. This methodology is applied to a wide range of pin cell and assembly test problems with varying geometry parameters, material compositions, and temperatures, and the results are compared with continuous-energy Monte Carlo simulations to establish the accuracy and range of applicability of the new approach. It is shown that the new doubly heterogeneous self-shielding method including the Bell factor correction gives good agreement with reference Monte Carlo results.« less
NASA Astrophysics Data System (ADS)
Frey, Davide; Guerraoui, Rachid; Kermarrec, Anne-Marie; Koldehofe, Boris; Mogensen, Martin; Monod, Maxime; Quéma, Vivien
Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Load-balancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination.
USDA-ARS?s Scientific Manuscript database
Accurate estimation of surface energy fluxes at field scale over large areas has the potential to improve agricultural water management in arid and semiarid watersheds. Remote sensing may be the only viable approach for mapping fluxes over heterogeneous landscapes. The Two-Source Energy Balance mode...
Ownership and ecosystem as sources of spatial heterogeneity in a forested landscape, Wisconsin, USA
Thomas R. Crow; George E. Host; David J. Mladenoff
1999-01-01
The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained...
High-resolution observations of combustion in heterogeneous surface fuels
E. Louise Loudermilk; Gary L. Achtemeier; Joseph J. O' Brien; J. Kevin Hiers; Benjamin S. Hornsby
2014-01-01
In ecosystems with frequent surface fires, fire and fuel heterogeneity at relevant scales have been largely ignored. This could be because complete burns give an impression of homogeneity, or due to the difficulty in capturing fine-scale variation in fuel characteristics and fire behaviour. Fire movement between patches of fuel can have implications for modelling fire...
NASA Technical Reports Server (NTRS)
Sanyal, Soumya; Jain, Amit; Das, Sajal K.; Biswas, Rupak
2003-01-01
In this paper, we propose a distributed approach for mapping a single large application to a heterogeneous grid environment. To minimize the execution time of the parallel application, we distribute the mapping overhead to the available nodes of the grid. This approach not only provides a fast mapping of tasks to resources but is also scalable. We adopt a hierarchical grid model and accomplish the job of mapping tasks to this topology using a scheduler tree. Results show that our three-phase algorithm provides high quality mappings, and is fast and scalable.
Confronting the Paradox of Enrichment to the Metacommunity Perspective
Hauzy, Céline; Nadin, Grégoire; Canard, Elsa; Gounand, Isabelle; Mouquet, Nicolas; Ebenman, Bo
2013-01-01
Resource enrichment can potentially destabilize predator-prey dynamics. This phenomenon historically referred as the "paradox of enrichment" has mostly been explored in spatially homogenous environments. However, many predator-prey communities exchange organisms within spatially heterogeneous networks called metacommunities. This heterogeneity can result from uneven distribution of resources among communities and thus can lead to the spreading of local enrichment within metacommunities. Here, we adapted the original Rosenzweig-MacArthur predator-prey model, built to study the paradox of enrichment, to investigate the effect of regional enrichment and of its spatial distribution on predator-prey dynamics in metacommunities. We found that the potential for destabilization was depending on the connectivity among communities and the spatial distribution of enrichment. In one hand, we found that at low dispersal regional enrichment led to the destabilization of predator-prey dynamics. This destabilizing effect was more pronounced when the enrichment was uneven among communities. In the other hand, we found that high dispersal could stabilize the predator-prey dynamics when the enrichment was spatially heterogeneous. Our results illustrate that the destabilizing effect of enrichment can be dampened when the spatial scale of resource enrichment is lower than that of organismss movements (heterogeneous enrichment). From a conservation perspective, our results illustrate that spatial heterogeneity could decrease the regional extinction risk of species involved in specialized trophic interactions. From the perspective of biological control, our results show that the heterogeneous distribution of pest resource could favor or dampen outbreaks of pests and of their natural enemies, depending on the spatial scale of heterogeneity. PMID:24358242
NASA Astrophysics Data System (ADS)
Conny, Joseph M.; Ortiz-Montalvo, Diana L.
2017-09-01
We show the effect of composition heterogeneity and shape on the optical properties of urban dust particles based on the three-dimensional spatial and optical modeling of individual particles. Using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) and focused ion beam (FIB) tomography, spatial models of particles collected in Los Angeles and Seattle accounted for surface features, inclusions, and voids, as well as overall composition and shape. Using voxel data from the spatial models and the discrete dipole approximation method, we report extinction efficiency, asymmetry parameter, and single-scattering albedo (SSA). Test models of the particles involved (1) the particle's actual morphology as a single homogeneous phase and (2) simple geometric shapes (spheres, cubes, and tetrahedra) depicting composition homogeneity or heterogeneity (with multiple spheres). Test models were compared with a reference model, which included the particle's actual morphology and heterogeneity based on SEM/EDX and FIB tomography. Results show particle shape to be a more important factor for determining extinction efficiency than accounting for individual phases in a particle, regardless of whether absorption or scattering dominated. In addition to homogeneous models with the particles' actual morphology, tetrahedral geometric models provided better extinction accuracy than spherical or cubic models. For iron-containing heterogeneous particles, the asymmetry parameter and SSA varied with the composition of the iron-containing phase, even if the phase was <10% of the particle volume. For particles containing loosely held phases with widely varying refractive indexes (i.e., exhibiting "severe" heterogeneity), only models that account for heterogeneity may sufficiently determine SSA.
NASA Astrophysics Data System (ADS)
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It reinforces the notion that the flow response is influenced by the higher-order statistical description of heterogeneity. An important implication is that when scaling-up transport response from lab-scale results to the field scale, it is necessary to account for the scale-up of heterogeneity. Since the characteristics of higher-order multivariate distributions and large-scale heterogeneity are typically not captured in small-scale experiments, a reservoir modeling framework that captures the uncertainty in heterogeneity description should be adopted.
A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.
Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang
2016-04-01
Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.
An evolutionary algorithm for large traveling salesman problems.
Tsai, Huai-Kuang; Yang, Jinn-Moon; Tsai, Yuan-Fang; Kao, Cheng-Yan
2004-08-01
This work proposes an evolutionary algorithm, called the heterogeneous selection evolutionary algorithm (HeSEA), for solving large traveling salesman problems (TSP). The strengths and limitations of numerous well-known genetic operators are first analyzed, along with local search methods for TSPs from their solution qualities and mechanisms for preserving and adding edges. Based on this analysis, a new approach, HeSEA is proposed which integrates edge assembly crossover (EAX) and Lin-Kernighan (LK) local search, through family competition and heterogeneous pairing selection. This study demonstrates experimentally that EAX and LK can compensate for each other's disadvantages. Family competition and heterogeneous pairing selections are used to maintain the diversity of the population, which is especially useful for evolutionary algorithms in solving large TSPs. The proposed method was evaluated on 16 well-known TSPs in which the numbers of cities range from 318 to 13509. Experimental results indicate that HeSEA performs well and is very competitive with other approaches. The proposed method can determine the optimum path when the number of cities is under 10,000 and the mean solution quality is within 0.0074% above the optimum for each test problem. These findings imply that the proposed method can find tours robustly with a fixed small population and a limited family competition length in reasonable time, when used to solve large TSPs.
Length scales and pinning of interfaces
Tan, Likun
2016-01-01
The pinning of interfaces and free discontinuities by defects and heterogeneities plays an important role in a variety of phenomena, including grain growth, martensitic phase transitions, ferroelectricity, dislocations and fracture. We explore the role of length scale on the pinning of interfaces and show that the width of the interface relative to the length scale of the heterogeneity can have a profound effect on the pinning behaviour, and ultimately on hysteresis. When the heterogeneity is large, the pinning is strong and can lead to stick–slip behaviour as predicted by various models in the literature. However, when the heterogeneity is small, we find that the interface may not be pinned in a significant manner. This shows that a potential route to making materials with low hysteresis is to introduce heterogeneities at a length scale that is small compared with the width of the phase boundary. Finally, the intermediate setting where the length scale of the heterogeneity is comparable to that of the interface width is characterized by complex interactions, thereby giving rise to a non-monotone relationship between the relative heterogeneity size and the critical depinning stress. PMID:27002068
Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.
Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol
2013-02-01
A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.
The effects of habitat connectivity and regional heterogeneity on artificial pond metacommunities.
Pedruski, Michael T; Arnott, Shelley E
2011-05-01
Habitat connectivity and regional heterogeneity represent two factors likely to affect biodiversity across different spatial scales. We performed a 3 × 2 factorial design experiment to investigate the effects of connectivity, heterogeneity, and their interaction on artificial pond communities of freshwater invertebrates at the local (α), among-community (β), and regional (γ) scales. Despite expectations that the effects of connectivity would depend on levels of regional heterogeneity, no significant interactions were found for any diversity index investigated at any spatial scale. While observed responses of biodiversity to connectivity and heterogeneity depended to some extent on the diversity index and spatial partitioning formula used, the general pattern shows that these factors largely act at the β scale, as opposed to the α or γ scales. We conclude that the major role of connectivity in aquatic invertebrate communities is to act as a homogenizing force with relatively little effect on diversity at the α or γ levels. Conversely, heterogeneity acts as a force maintaining differences between communities.
Armstrong, Jonathan B.; Schindler, Daniel E.; Ruff, Casey P.; Brooks, Gabriel T.; Bentley, Kale E.; Torgersen, Christian E.
2013-01-01
Vertical heterogeneity in the physical characteristics of lakes and oceans is ecologically salient and exploited by a wide range of taxa through diel vertical migration to enhance their growth and survival. Whether analogous behaviors exploit horizontal habitat heterogeneity in streams is largely unknown. We investigated fish movement behavior at daily timescales to explore how individuals integrated across spatial variation in food abundance and water temperature. Juvenile coho salmon made feeding forays into cold habitats with abundant food, and then moved long distances (350–1300 m) to warmer habitats that accelerated their metabolism and increased their assimilative capacity. This behavioral thermoregulation enabled fish to mitigate trade-offs between trophic and thermal resources by exploiting thermal heterogeneity. Fish that exploited thermal heterogeneity grew at substantially faster rates than did individuals that assumed other behaviors. Our results provide empirical support for the importance of thermal diversity in lotic systems, and emphasize the importance of considering interactions between animal behavior and habitat heterogeneity when managing and restoring ecosystems.
Global variations in abyssal peridotite compositions
NASA Astrophysics Data System (ADS)
Warren, Jessica M.
2016-04-01
Abyssal peridotites are ultramafic rocks collected from mid-ocean ridges that are the residues of adiabatic decompression melting. Their compositions provide information on the degree of melting and melt-rock interaction involved in the formation of oceanic lithosphere, as well as providing constraints on pre-existing mantle heterogeneities. This review presents a compilation of abyssal peridotite geochemical data (modes, mineral major elements, and clinopyroxene trace elements) for > 1200 samples from 53 localities on 6 major ridge systems. On the basis of composition and petrography, peridotites are classified into one of five lithological groups: (1) residual peridotite, (2) dunite, (3) gabbro-veined and/or plagioclase-bearing peridotite, (4) pyroxenite-veined peridotite, and (5) other types of melt-added peridotite. Almost a third of abyssal peridotites are veined, indicating that the oceanic lithospheric mantle is more fertile, on average, than estimates based on residual peridotites alone imply. All veins appear to have formed recently during melt transport beneath the ridge, though some pyroxenites may be derived from melting of recycled oceanic crust. A limited number of samples are available at intermediate and fast spreading rates, with samples from the East Pacific Rise indicating high degrees of melting. At slow and ultra-slow spreading rates, residual abyssal peridotites define a large (0-15% modal clinopyroxene and spinel Cr# = 0.1-0.6) compositional range. These variations do not match the prediction for how degree of melting should vary as a function of spreading rate. Instead, the compositional ranges of residual peridotites are derived from a combination of melting, melt-rock interaction and pre-existing compositional variability, where melt-rock interaction is used here as a general term to refer to the wide range of processes that can occur during melt transport in the mantle. Globally, 10% of abyssal peridotites are refractory (0% clinopyroxene, spinel Cr# > 0.5, bulk Al2O3 < 1 wt.%) and some ridge sections are dominated by harzburgites while lacking a significant basaltic crust. Abyssal ultramafic samples thus indicate that the mantle is multi-component, probably consisting of at least three components (lherzolite, harzburgite, and pyroxenite). Overall, the large compositional range among residual and melt-added peridotites implies that the oceanic lithospheric mantle is heterogeneous, which will lead to the generation of further heterogeneities upon subduction back into the mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Soest, S.; Ingeborgh Van Den Born, L.; Bergen, A.A.B.
1994-08-01
Linkage analysis was carried out in a large family segregating for autosomal recessive retinitis pigmentosa (arRP), originating from a genetically isolated population in The Netherlands. Within the family, clinical heterogeneity was observed, with a major section of the family segregating arRP with characteristic para-arteriolar preservation of the retinal pigment epithelium (PPRPE). In the remainder of the arRP patients no PPRPE was found. Initially, all branches of the family were analyzed jointly, and linkage was found between the marker F13B, located at 1q31-q32.1, and RP12 ({Zeta}{sub max} = 4.99 at 8% recombination). Analysis of linkage heterogeneity between five branches of themore » family yielded significant evidence for nonallelic genetic heterogeneity within this family, coinciding with the observed clinical differences. Multipoint analysis, carried out in the branches that showed linkage, favored the locus order 1cen-D1S158-(F13B, RP12)-D1S53-1qter ({Zeta}{sub max} = 9.17). The finding of a single founder allele associated with the disease phenotype supports this localization. This study reveals that even in a large family, apparently segregating for a single disease entity, genetic heterogeneity can be detected and resolved successfully. 35 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Glose, T. J.; Hausner, M. B.; Lowry, C.
2016-12-01
The accurate, fine scale quantification of groundwater-surface water (GW-SW) interactions over large expanses in hydrologic systems is a fundamental need in order to accurately characterize critical zones of biogeochemical transformation and fluxes, as well as to provide insight into near-surface geologic heterogeneity. Paired fiber-optic distributed temperature sensing (FO-DTS) is a tool that is capable of synoptically sampling hydrologic systems, allowing GW-SW interactions to be examined at a fine scale over large distances. Within managed aquifer recharge (MAR) sites, differential recharge dynamics controlled by bed clogging and subsurface heterogeneity dictate the effectiveness of these sites at infiltrating water. Numerical modeling indicates that the use of paired FO-DTS in an MAR site can provide accurate quantification of flux at the GW-SW interface, as well as provide insight to the areal extent of geologic heterogeneity in the subsurface. However, the lateral and vertical separation of the fiber-optic cables is of vital importance. Here we present a 2-D, fully coupled groundwater flow and heat transport model with prescribed heterogeneity. Following a forward modeling approach, realizations simulating varying fiber-optic cable positioning, differential bed clogging, and hydraulic conductivity variability were analyzed over a suite of scenarios. The results from the model were then used as observations to calculate groundwater recharge rates and calibration targets for an inverse model to estimate subsurface heterogeneity.
NASA Astrophysics Data System (ADS)
Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham
2018-06-01
This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.
Looking through the Zircon Kaleidoscope: Durations, Rates, and Fluxes in Silicic Magmatic System
NASA Astrophysics Data System (ADS)
Schaltegger, U.; Wotzlaw, J. F.
2014-12-01
The crystallization rate of zircon in a cooling magma depends on the cooling rate through the saturation interval in addition to compositional and kinetic factors. Repeated influx of hot magma over 10-20 ka leads to short-amplitude temperature oscillations, which are recorded by resorption/crystallization cycles of zircon. Plotting the number of dated zircons versus their high-precision U-Pb date results in curves that qualitatively relate to the evolution of magma temperature over time [1], [2]. The trace elemental, O and Hf isotopic composition of zircon gives indications about the degree of magma homogenization and thermal evolution. Zircons from systems with small volumes and magma fluxes record non-systematic chemical and Hf isotopic heterogeneity, suggesting crystallization in non-homogenized ephemeral magma batches. Such systems typically lead to small, mid-upper crustal plutons [3]. Zircons from large-volume crystal-poor rhyolites record initial heterogeneities and rapid amalgamation of smaller magma batches over 10 ka [4], while zircons from monotonous intermediates record magma evolution over several 100 ka with coherent fractionation trends suggesting homogenization and a coherent thermal evolution [2]. In both cases, volumes and flux rates were sufficient to produce large volumes of eruptible magma on very contrasting time scales. Zircon is therefore recording cyclic crystallization-rejuvenation processes during temperature fluctuations in intermediate to upper crustal magma reservoirs but may not relate to the physical pluton emplacement or eruption. We can quantify volumes, rates of magma influx, rates of cooling and crystallization, and the degree of convective homogenization from zircon data, and infer reservoir assembly and eruption trigger mechanisms. These parameters largely control the evolution of long-lived, low-flux silicic magmatic system typical for mid-to-upper crustal plutons, monotonous intermediates are characterized by intermediate durations and fluxes while short-lived, high-flux systems preferentially produce crystal-poor rhyolites. References: [1] Caricchi et al. (2014) Nature 511, 457-461; [2] Wotzlaw et al. (2013) Geology 41, 867-870; [3] Broderick (2013) PhD thesis, Univ. of Geneva; [3] Wotzlaw et al. (2014) Geology, doi:10.1130/G35979.1
Couriot, Ophélie; Hewison, A J Mark; Saïd, Sonia; Cagnacci, Francesca; Chamaillé-Jammes, Simon; Linnell, John D C; Mysterud, Atle; Peters, Wibke; Urbano, Ferdinando; Heurich, Marco; Kjellander, Petter; Nicoloso, Sandro; Berger, Anne; Sustr, Pavel; Kroeschel, Max; Soennichsen, Leif; Sandfort, Robin; Gehr, Benedikt; Morellet, Nicolas
2018-05-01
Much research on large herbivore movement has focused on the annual scale to distinguish between resident and migratory tactics, commonly assuming that individuals are sedentary at the within-season scale. However, apparently sedentary animals may occupy a number of sub-seasonal functional home ranges (sfHR), particularly when the environment is spatially heterogeneous and/or temporally unpredictable. The roe deer (Capreolus capreolus) experiences sharply contrasting environmental conditions due to its widespread distribution, but appears markedly sedentary over much of its range. Using GPS monitoring from 15 populations across Europe, we evaluated the propensity of this large herbivore to be truly sedentary at the seasonal scale in relation to variation in environmental conditions. We studied movement using net square displacement to identify the possible use of sfHR. We expected that roe deer should be less sedentary within seasons in heterogeneous and unpredictable environments, while migratory individuals should be seasonally more sedentary than residents. Our analyses revealed that, across the 15 populations, all individuals adopted a multi-range tactic, occupying between two and nine sfHR during a given season. In addition, we showed that (i) the number of sfHR was only marginally influenced by variation in resource distribution, but decreased with increasing sfHR size; and (ii) the distance between sfHR increased with increasing heterogeneity and predictability in resource distribution, as well as with increasing sfHR size. We suggest that the multi-range tactic is likely widespread among large herbivores, allowing animals to track spatio-temporal variation in resource distribution and, thereby, to cope with changes in their local environment.
Szychot, Elwira; Brodkiewicz, Andrzej; Peregud-Pogorzelski, Jarosław
2014-01-01
The term "leukaemia" refers to a large and heterogenous group of diseases, with treatment response and outcome dependent on the specific type of malignancy. New molecular methods allow us to specifically evaluate the type of disorder, and provide treatment of necessary intensity. The aim of this review is to provide insight into the progress in leukaemia treatment that had been possible due to advances in molecular genetics over the last few decades. Those new sophisticated diagnostic methods have allowed us not only to predict patients' prognosis but also to provide a specific therapy depending on the molecular and genetic characteristics of patients. Our review is based on 25 articles regarding novel diagnostic and therapeutic methods as well as prognostic factors, released between 1992 and 2011. Those articles focus mostly on molecular and cytogenetic testing allowing revolutionary methods of patient classification and individual therapy for this highly heterogeneous group of disorders. Implementation of molecular genetic testing to evaluate the type of leukaemia allowed paediatric oncologists and haematologists to adjust the intensity of treatment, improve outcome, minimize toxicity of therapies and considerably lower the risk of side effects. In the last few decades there has been a great improvement in survival among children suffering from haematopoietic malignancies. Progress made in molecular genetics allowed the creation of new treatment protocols that are designed to maintain a high cure rate for children with leukaemia while reducing toxicity.
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Chou, M.-D.; Khairoutdinov, M.; Barker, H. W.; Cahalan, R. F.
2003-01-01
We test the performance of the shortwave (SW) and longwave (LW) Column Radiation Models (CORAMs) of Chou and collaborators with heterogeneous cloud fields from a global single-day dataset produced by NCAR's Community Atmospheric Model with a 2-D CRM installed in each gridbox. The original SW version of the CORAM performs quite well compared to reference Independent Column Approximation (ICA) calculations for boundary fluxes, largely due to the success of a combined overlap and cloud scaling parameterization scheme. The absolute magnitude of errors relative to ICA are even smaller for the LW CORAM which applies similar overlap. The vertical distribution of heating and cooling within the atmosphere is also simulated quite well with daily-averaged zonal errors always below 0.3 K/d for SW heating rates and 0.6 K/d for LW cooling rates. The SW CORAM's performance improves by introducing a scheme that accounts for cloud inhomogeneity. These results suggest that previous studies demonstrating the inaccuracy of plane-parallel models may have unfairly focused on worst scenario cases, and that current radiative transfer algorithms of General Circulation Models (GCMs) may be more capable than previously thought in estimating realistic spatial and temporal averages of radiative fluxes, as long as they are provided with correct mean cloud profiles. However, even if the errors of the particular CORAMs are small, they seem to be systematic, and the impact of the biases can be fully assessed only with GCM climate simulations.
Non-psychotropic medication and risk of suicide or attempted suicide: a systematic review
Gorton, Hayley C; Webb, Roger T; Kapur, Navneet; Ashcroft, Darren M
2016-01-01
Objectives To establish which non-psychotropic medications have been assessed in relation to risk of suicide or attempted suicide in observational studies, document reported associations and consider study strengths and limitations. Design Systematic review. Methods Four databases (Embase, Medline, PsycINFO and International Pharmaceutical Abstracts) were searched from 1990 to June 2014, and reference lists of included articles were hand-searched. Case–control, cohort and case only studies which reported suicide or attempted suicide in association with any non-psychotropic medication were included. Outcome measures The outcomes eligible for inclusion were suicide and attempted suicide, as defined by the authors of the included study. Results Of 11 792 retrieved articles, 19 were eligible for inclusion. Five studies considered cardiovascular medication and antiepileptics; two considered leukotriene receptor antagonists, isotretinoin and corticosteroids; one assessed antibiotics and another assessed varenicline. An additional study compared multiple medications prescribed to suicide cases versus controls. There was marked heterogeneity in study design, outcome and exposure classification, and control for confounding factors; particularly comorbid mental and physical illness. No increased risk was associated with cardiovascular medications, but associations with other medications remained inconclusive and meta-analysis was inappropriate due to study heterogeneity. Conclusions Whether non-psychotropic medications are associated with increased risk of suicide or attempted suicide remains largely unknown. Robust identification of suicide outcomes and control of comorbidities could improve quantification of risk associated with non-psychotropic medication, beyond that conferred by underlying physical and mental illnesses. PMID:26769782
Morrison, Carl D.; Liu, Pengyuan; Woloszynska-Read, Anna; Zhang, Jianmin; Luo, Wei; Qin, Maochun; Bshara, Wiam; Conroy, Jeffrey M.; Sabatini, Linda; Vedell, Peter; Xiong, Donghai; Liu, Song; Wang, Jianmin; Shen, He; Li, Yinwei; Omilian, Angela R.; Hill, Annette; Head, Karen; Guru, Khurshid; Kunnev, Dimiter; Leach, Robert; Eng, Kevin H.; Darlak, Christopher; Hoeflich, Christopher; Veeranki, Srividya; Glenn, Sean; You, Ming; Pruitt, Steven C.; Johnson, Candace S.; Trump, Donald L.
2014-01-01
Using complete genome analysis, we sequenced five bladder tumors accrued from patients with muscle-invasive transitional cell carcinoma of the urinary bladder (TCC-UB) and identified a spectrum of genomic aberrations. In three tumors, complex genotype changes were noted. All three had tumor protein p53 mutations and a relatively large number of single-nucleotide variants (SNVs; average of 11.2 per megabase), structural variants (SVs; average of 46), or both. This group was best characterized by chromothripsis and the presence of subclonal populations of neoplastic cells or intratumoral mutational heterogeneity. Here, we provide evidence that the process of chromothripsis in TCC-UB is mediated by nonhomologous end-joining using kilobase, rather than megabase, fragments of DNA, which we refer to as “stitchers,” to repair this process. We postulate that a potential unifying theme among tumors with the more complex genotype group is a defective replication–licensing complex. A second group (two bladder tumors) had no chromothripsis, and a simpler genotype, WT tumor protein p53, had relatively few SNVs (average of 5.9 per megabase) and only a single SV. There was no evidence of a subclonal population of neoplastic cells. In this group, we used a preclinical model of bladder carcinoma cell lines to study a unique SV (translocation and amplification) of the gene glutamate receptor ionotropic N-methyl D-aspertate as a potential new therapeutic target in bladder cancer. PMID:24469795
Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations.
Mendez, Oscar A; Potter, Colin J; Valdez, Michael; Bello, Thomas; Trouard, Theodore P; Koshy, Anita A
2018-07-15
Our group studies the interactions between cells of the brain and the neurotropic parasite Toxoplasma gondii. Using an in vivo system that allows us to permanently mark and identify brain cells injected with Toxoplasma protein, we have identified that Toxoplasma-injected neurons (TINs) are heterogeneously distributed throughout the brain. Unfortunately, standard methods to quantify and map heterogeneous cell populations onto a reference brain atlas are time consuming and prone to user bias. We developed a novel MATLAB-based semi-automated quantification and mapping program to allow the rapid and consistent mapping of heterogeneously distributed cells on to the Allen Institute Mouse Brain Atlas. The system uses two-threshold background subtraction to identify and quantify cells of interest. We demonstrate that we reliably quantify and neuroanatomically localize TINs with low intra- or inter-observer variability. In a follow up experiment, we show that specific regions of the mouse brain are enriched with TINs. The procedure we use takes advantage of simple immunohistochemistry labeling techniques, use of a standard microscope with a motorized stage, and low cost computing that can be readily obtained at a research institute. To our knowledge there is no other program that uses such readily available techniques and equipment for mapping heterogeneous populations of cells across the whole mouse brain. The quantification method described here allows reliable visualization, quantification, and mapping of heterogeneous cell populations in immunolabeled sections across whole mouse brains. Copyright © 2018 Elsevier B.V. All rights reserved.
Homogeneous-heterogeneous reactions in curved channel with porous medium
NASA Astrophysics Data System (ADS)
Hayat, T.; Ayub, Sadia; Alsaedi, A.
2018-06-01
Purpose of the present investigation is to examine the peristaltic flow through porous medium in a curved conduit. Problem is modeled for incompressible electrically conducting Ellis fluid. Influence of porous medium is tackled via modified Darcy's law. The considered model utilizes homogeneous-heterogeneous reactions with equal diffusivities for reactant and autocatalysis. Constitutive equations are formulated in the presence of viscous dissipation. Channel walls are compliant in nature. Governing equations are modeled and simplified under the assumptions of small Reynolds number and large wavelength. Graphical results for velocity, temperature, heat transfer coefficient and homogeneous-heterogeneous reaction parameters are examined for the emerging parameters entering into the problem. Results reveal an activation in both homogenous-heterogenous reaction effect and heat transfer rate with increasing curvature of the channel.
Random sphere packing model of heterogeneous propellants
NASA Astrophysics Data System (ADS)
Kochevets, Sergei Victorovich
It is well recognized that combustion of heterogeneous propellants is strongly dependent on the propellant morphology. Recent developments in computing systems make it possible to start three-dimensional modeling of heterogeneous propellant combustion. A key component of such large scale computations is a realistic model of industrial propellants which retains the true morphology---a goal never achieved before. The research presented develops the Random Sphere Packing Model of heterogeneous propellants and generates numerical samples of actual industrial propellants. This is done by developing a sphere packing algorithm which randomly packs a large number of spheres with a polydisperse size distribution within a rectangular domain. First, the packing code is developed, optimized for performance, and parallelized using the OpenMP shared memory architecture. Second, the morphology and packing fraction of two simple cases of unimodal and bimodal packs are investigated computationally and analytically. It is shown that both the Loose Random Packing and Dense Random Packing limits are not well defined and the growth rate of the spheres is identified as the key parameter controlling the efficiency of the packing. For a properly chosen growth rate, computational results are found to be in excellent agreement with experimental data. Third, two strategies are developed to define numerical samples of polydisperse heterogeneous propellants: the Deterministic Strategy and the Random Selection Strategy. Using these strategies, numerical samples of industrial propellants are generated. The packing fraction is investigated and it is shown that the experimental values of the packing fraction can be achieved computationally. It is strongly believed that this Random Sphere Packing Model of propellants is a major step forward in the realistic computational modeling of heterogeneous propellant of combustion. In addition, a method of analysis of the morphology of heterogeneous propellants is developed which uses the concept of multi-point correlation functions. A set of intrinsic length scales of local density fluctuations in random heterogeneous propellants is identified by performing a Monte-Carlo study of the correlation functions. This method of analysis shows great promise for understanding the origins of the combustion instability of heterogeneous propellants, and is believed to become a valuable tool for the development of safe and reliable rocket engines.
Genetics Home Reference: primary coenzyme Q10 deficiency
... q10 deficiency. Mol Syndromol. 2014 Jul;5(3-4):156-62. doi: 10.1159/000362826. Citation on PubMed or Free article on PubMed Central Emmanuele V, López LC, Berardo A, Naini A, Tadesse S, Wen B, D'Agostino E, Solomon M, DiMauro S, Quinzii C, Hirano M. Heterogeneity of ...
ERIC Educational Resources Information Center
Welton, Anjalé D.
2013-01-01
Background/Context: The term racial diversity is interchangeably used in the literature with other terms such as racially mixed, integration, and desegregation in reference to policies to design and practices to implement racially heterogeneous communities, districts, and schools. Scholarship that promotes the democratic potential of racially…
The W22 genome: a foundation for maize functional genomics and transposon biology
USDA-ARS?s Scientific Manuscript database
The maize W22 inbred has served as a platform for maize genetics since the mid twentieth century. To streamline maize genome analyses, we have sequenced and de novo assembled a W22 reference genome using small-read sequencing technologies. We show that significant structural heterogeneity exists in ...
Prevalence and Nature of Late-Emerging Poor Readers
ERIC Educational Resources Information Center
Catts, Hugh W.; Compton, Donald; Tomblin, J. Bruce; Bridges, Mindy Sittner
2012-01-01
Some children demonstrate adequate or better reading achievement in early school grades but fall significantly behind their peers in later grades. These children are often referred to as late-emerging poor readers. In this study, we investigated the prevalence and heterogeneity of these poor readers. We also examined the early language and…
Castleman's disease imitating adrenal mass in the retroperitoneal area.
Koç, Gökhan; Turk, Hakan; Un, Sıtkı; Isoglu, Cemal Selcuk; Zorlu, Ferruh
2015-01-01
Castleman's disease (CD) is a non-clonal lymph node hyperplasia, mostly seen in the mediastinum. It has various clinical and pathological outcomes. There are different treatments because of its rare occurance and heterogenity. We present 2 cases which were referred to our clinic as retroperitoneal mass and diagnosed as CD after surgical resection.
Model of Distributed Learning Objects Repository for a Heterogenic Internet Environment
ERIC Educational Resources Information Center
Kaczmarek, Jerzy; Landowska, Agnieszka
2006-01-01
In this article, an extension of the existing structure of learning objects is described. The solution addresses the problem of the access and discovery of educational resources in the distributed Internet environment. An overview of e-learning standards, reference models, and problems with educational resources delivery is presented. The paper…
HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.
Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Satoh, Motonobu; Kohara, Arihiro
2018-05-17
Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.
Strong Spatial Influence on Colonization Rates in a Pioneer Zooplankton Metacommunity
Frisch, Dagmar; Cottenie, Karl; Badosa, Anna; Green, Andy J.
2012-01-01
The magnitude of community-wide dispersal is central to metacommunity models, yet dispersal is notoriously difficult to quantify in passive and cryptic dispersers such as many freshwater invertebrates. By overcoming the problem of quantifying dispersal rates, colonization rates into new habitats can provide a useful estimate of the magnitude of effective dispersal. Here we study the influence of spatial and local processes on colonization rates into new ponds that indicate differential dispersal limitation of major zooplankton taxa, with important implications for metacommunity dynamics. We identify regional and local factors that affect zooplankton colonization rates and spatial patterns in a large-scale experimental system. Our study differs from others in the unique setup of the experimental pond area by which we were able to test spatial and environmental variables at a large spatial scale. We quantified colonization rates separately for the Copepoda, Cladocera and Rotifera from samples collected over a period of 21 months in 48 newly constructed temporary ponds of 0.18–2.95 ha distributed in a restored wetland area of 2,700 ha in Doñana National Park, Southern Spain. Species richness upon initial sampling of new ponds was about one third of that in reference ponds, although the rate of detection of new species from thereon were not significantly different, probably owing to high turnover in the dynamic, temporary reference ponds. Environmental heterogeneity had no detectable effect on colonization rates in new ponds. In contrast, connectivity, space (based on latitude and longitude) and surface area were key determinants of colonization rates for copepods and cladocerans. This suggests dispersal limitation in cladocerans and copepods, but not in rotifers, possibly due to differences in propagule size and abundance. PMID:22792241
Strong spatial influence on colonization rates in a pioneer zooplankton metacommunity.
Frisch, Dagmar; Cottenie, Karl; Badosa, Anna; Green, Andy J
2012-01-01
The magnitude of community-wide dispersal is central to metacommunity models, yet dispersal is notoriously difficult to quantify in passive and cryptic dispersers such as many freshwater invertebrates. By overcoming the problem of quantifying dispersal rates, colonization rates into new habitats can provide a useful estimate of the magnitude of effective dispersal. Here we study the influence of spatial and local processes on colonization rates into new ponds that indicate differential dispersal limitation of major zooplankton taxa, with important implications for metacommunity dynamics. We identify regional and local factors that affect zooplankton colonization rates and spatial patterns in a large-scale experimental system. Our study differs from others in the unique setup of the experimental pond area by which we were able to test spatial and environmental variables at a large spatial scale. We quantified colonization rates separately for the Copepoda, Cladocera and Rotifera from samples collected over a period of 21 months in 48 newly constructed temporary ponds of 0.18-2.95 ha distributed in a restored wetland area of 2,700 ha in Doñana National Park, Southern Spain. Species richness upon initial sampling of new ponds was about one third of that in reference ponds, although the rate of detection of new species from thereon were not significantly different, probably owing to high turnover in the dynamic, temporary reference ponds. Environmental heterogeneity had no detectable effect on colonization rates in new ponds. In contrast, connectivity, space (based on latitude and longitude) and surface area were key determinants of colonization rates for copepods and cladocerans. This suggests dispersal limitation in cladocerans and copepods, but not in rotifers, possibly due to differences in propagule size and abundance.
Trauscht, Jacob; Pazmino, Eddy; Johnson, William P
2015-09-01
Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing applicable semiempirical expressions in order to examine the strengths and weaknesses of the discrete heterogeneity approach and opportunities for improvement.
Carrying capacity in a heterogeneous environment with habitat connectivity.
Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David
2017-09-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.
Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.
Xiao, Jiadong; Xie, Yongbing; Cao, Hongbin
2015-02-01
Heterogeneous photocatalysis and ozonation are robust advanced oxidation processes for eliminating organic contaminants in wastewater. The combination of these two methods is carried out in order to enhance the overall mineralization of refractory organics. An apparent synergism between heterogeneous photocatalysis and ozonation has been demonstrated in many literatures, which gives rise to an improvement of total organic carbon removal. The present overview dissects the heterogeneous catalysts and the influences of different operational parameters, followed by the discussion on the kinetics, mechanism, economic feasibility and future trends of this integrated technology. The enhanced oxidation rate mainly results from a large amount of hydroxyl radicals generated from a synergistically induced decomposition of dissolved ozone, besides superoxide ion radicals and the photo-induced holes. Six reaction pathways possibly exist for the generation of hydroxyl radicals in the reaction mechanism of heterogeneous photocatalytic ozonation. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begoli, Edmon; Bates, Jack; Kistler, Derek E
The Polystore architecture revisits the federated approach to access and querying of the standalone, independent databases in the uniform and optimized fashion, but this time in the context of heterogeneous data and specialized analyses. In the light of this architectural philosophy, and in the light of the major data architecture development efforts at the US Department of Veterans Administration (VA), we discuss the need for the heterogeneous data store consisting of the large relational data warehouse, an image and text datastore, and a peta-scale genomic repository. The VA's heterogeneous datastore would, to a larger or smaller degree, follow the architecturalmore » blueprint proposed by the polystore architecture. To this end, we discuss the current state of the data architecture at VA, architectural alternatives for development of the heterogeneous datastore, the anticipated challenges, and the drawbacks and benefits of adopting the polystore architecture.« less
Carrying capacity in a heterogeneous environment with habitat connectivity
Zhang, Bo; Kula, Alex; Mack, Keenan M.L.; Zhai, Lu; Ryce, Arrix L.; Ni, Wei-Ming; DeAngelis, Donald L.; Van Dyken, J. David
2017-01-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments.
Katrin Premke; Katrin Attermeyer; Jurgen Augustin; Alvaro Cabezas; Peter Casper; Detlef Deumlich; Jorg Gelbrecht; Horst H. Gerke; Arthur Gessler; Hans-Peter Grossart; Sabine Hilt; Michael Hupfer; Thomas Kalettka; Zachary Kayler; Gunnar Lischeid; Michael Sommer; Dominik Zak
2016-01-01
Landscapes can be viewed as spatially heterogeneous areas encompassing terrestrial and aquatic domains. To date, most landscape carbon (C) fluxes have been estimated by accounting for terrestrial ecosystems, while aquatic ecosystems have been largely neglected. However, a robust assessment of C fluxes on the landscape scale requires the estimation of fluxes within and...
ERIC Educational Resources Information Center
Harman, Patrick; And Others
Northwest Guilford High School, Guilford County (North Carolina), is an essentially rural, largely white school that serves about 1,200 students from all socioeconomic levels. An evaluation was conducted of a heterogeneous grouping project involving students in a 2-year sequence of algebra for those who scored below the 40th percentile on a…
Complex dynamics and empirical evidence (Invited Paper)
NASA Astrophysics Data System (ADS)
Delli Gatti, Domenico; Gaffeo, Edoardo; Giulioni, Gianfranco; Gallegati, Mauro; Kirman, Alan; Palestrini, Antonio; Russo, Alberto
2005-05-01
Standard macroeconomics, based on a reductionist approach centered on the representative agent, is badly equipped to explain the empirical evidence where heterogeneity and industrial dynamics are the rule. In this paper we show that a simple agent-based model of heterogeneous financially fragile agents is able to replicate a large number of scaling type stylized facts with a remarkable degree of statistical precision.
Neuronal network disintegration: common pathways linking neurodegenerative diseases.
Ahmed, Rebekah M; Devenney, Emma M; Irish, Muireann; Ittner, Arne; Naismith, Sharon; Ittner, Lars M; Rohrer, Jonathan D; Halliday, Glenda M; Eisen, Andrew; Hodges, John R; Kiernan, Matthew C
2016-11-01
Neurodegeneration refers to a heterogeneous group of brain disorders that progressively evolve. It has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels and therefore traditional clinicopathological correlation approaches to better classify a disease have met with limited success. Neuronal network disintegration is fundamental to neurodegeneration, and concepts based around such a concept may better explain the overlap between their clinical and pathological phenotypes. In this Review, promoters of overlap in neurodegeneration incorporating behavioural, cognitive, metabolic, motor, and extrapyramidal presentations will be critically appraised. In addition, evidence that may support the existence of large-scale networks that might be contributing to phenotypic differentiation will be considered across a neurodegenerative spectrum. Disintegration of neuronal networks through different pathological processes, such as prion-like spread, may provide a better paradigm of disease and thereby facilitate the identification of novel therapies for neurodegeneration. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Astrophysics Data System (ADS)
Savostjanov, V. N.; Dvalishvili, V. V.; Sakharov, V. N.; Isajkin, A. S.; Frishter, L.; Starchevsky, A. V.
1991-12-01
The development of many-year-frost rock (MYFR) region hydrotechnic construction, the MYFR being quite a reliable construction based provided it is situated outside the seasonal temperature fluctuation layer, requires the rock stress-deformed state evaluating criteria working out with maximal possible account of static, dynamic, blast-hole drilling, and temperature effect on their properties. In estimating the hydroelectrical power station (HPS) underground building stress-deformed state the present work refers to experimental data and calculations, received by solving a linear task with further account of the building profile changing effect in the process of construction and the concrete and rock mechanic properties heterogeneity. The proposed order is justified, provided the rock mass defrosting depth value is small as compared to the rock separate block dimensions and it corresponds to the building construction period. The results are given for the Kolymskaya Hydroelectrical Power Station building cross-section, considered under flat deformation conditions.
Cooper, Kari M.; Donnelly, Carrie T.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.
2008-01-01
230Th)/(232Th) measured for the 1980s reference suite. However, (230Th)/(232Th) for plagioclase separates for dome samples erupted during October and November 2004 are significantly different from corresponding whole-rock values, which suggests that a large fraction (>30 percent) of crystals in each sample are foreign to the host liquid. Furthermore, plagioclase in the two 2004 samples have U-series characteristics distinct from each other and from plagioclase in dacite erupted in 1982, indicating that (1) the current eruption must include a component of crystals (and potentially associated magma) that were not sampled by the 1980-86 eruption, and (2) dacite magmas erupted only a month apart in 2004 contain different populations of crystals, indicating that this foreign component is highly heterogeneous within the 2004-5 magma reservoir.
An Emerging Role for Polystores in Precision Medicine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Begoli, Edmon; Christian, J. Blair; Gadepally, Vijay
Medical data is organically heterogeneous, and it usually varies significantly in both size and composition. Yet, this data is also a key for the recent and promising field of precision medicine, which focuses on identifying and tailoring appropriate medical treatments for the needs of the individual patients, based on their specific conditions, their medical history, lifestyle, genetic, and other individual factors. As we, and a database community at large, recognize that a “one size does not fit all” solution is required to work with such data, we present in this paper our observations based on our experiences, and the applicationsmore » in the field of precision medicine. Finally, we make the case for the use of polystore architecture; how it applies for precision medicine; we discuss the reference architecture; describe some of its critical components (array database); and discuss the specific types of analysis that directly benefit from this database architecture, and the ways it serves the data.« less
Fett, Nicole
2013-01-01
Scleroderma refers to a heterogeneous group of autoimmune fibrosing disorders. The nomenclature of scleroderma has changed dramatically in recent years, with morphea (localized scleroderma), limited cutaneous systemic sclerosis, diffuse cutaneous systemic sclerosis, and systemic sclerosis sine scleroderma encompassing the currently accepted disease subtypes. Major advances have been made in the molecular studies of morphea and systemic sclerosis; however, their etiologies and pathogenesis remain incompletely understood. Although morphea and systemic sclerosis demonstrate activation of similar inflammatory and fibrotic pathways, important differences in signaling pathways and gene signatures indicate they are likely biologically distinct processes. Morphea can cause significant morbidity but does not affect mortality, whereas systemic sclerosis has the highest disease-specific mortality of all autoimmune connective tissue diseases. Treatment recommendations for morphea and systemic sclerosis are based on limited data and largely expert opinions. Current collaborative efforts in morphea and systemic sclerosis research will hopefully lead to better understanding of the etiology and pathogenesis of these rare and varied diseases and improved treatment options. Published by Elsevier Inc.
Wechsler Adult Intelligence Scale-IV Dyads for Estimating Global Intelligence.
Girard, Todd A; Axelrod, Bradley N; Patel, Ronak; Crawford, John R
2015-08-01
All possible two-subtest combinations of the core Wechsler Adult Intelligence Scale-IV (WAIS-IV) subtests were evaluated as possible viable short forms for estimating full-scale IQ (FSIQ). Validity of the dyads was evaluated relative to FSIQ in a large clinical sample (N = 482) referred for neuropsychological assessment. Sample validity measures included correlations, mean discrepancies, and levels of agreement between dyad estimates and FSIQ scores. In addition, reliability and validity coefficients were derived from WAIS-IV standardization data. The Coding + Information dyad had the strongest combination of reliability and validity data. However, several other dyads yielded comparable psychometric performance, albeit with some variability in their particular strengths. We also observed heterogeneity between validity coefficients from the clinical and standardization-based estimates for several dyads. Thus, readers are encouraged to also consider the individual psychometric attributes, their clinical or research goals, and client or sample characteristics when selecting among the dyadic short forms. © The Author(s) 2014.
Adalsteinsson, Viktor A; Tahirova, Narmin; Tallapragada, Naren; Yao, Xiaosai; Campion, Liam; Angelini, Alessandro; Douce, Thomas B; Huang, Cindy; Bowman, Brittany; Williamson, Christina A; Kwon, Douglas S; Wittrup, K Dane; Love, J Christopher
2013-10-01
Cancer is an inflammatory disease of tissue that is largely influenced by the interactions between multiple cell types, secreted factors, and signal transduction pathways. While single-cell sequencing continues to refine our understanding of the clonotypic heterogeneity within tumors, the complex interplay between genetic variations and non-genetic factors ultimately affects therapeutic outcome. Much has been learned through bulk studies of secreted factors in the tumor microenvironment, but the secretory behavior of single cells has been largely uncharacterized. Here we directly profiled the secretions of ELR+ CXC chemokines from thousands of single colorectal tumor and stromal cells, using an array of subnanoliter wells and a technique called microengraving to characterize both the rates of secretion of several factors at once and the numbers of cells secreting each chemokine. The ELR+ CXC chemokines are highly redundant, pro-angiogenic cytokines that signal via the CXCR1 and CXCR2 receptors, influencing tumor growth and progression. We find that human primary colorectal tumor and stromal cells exhibit polyfunctional heterogeneity in the combinations and magnitudes of secretions for these chemokines. In cell lines, we observe similar variance: phenotypes observed in bulk can be largely absent among the majority of single cells, and discordances exist between secretory states measured and gene expression for these chemokines among single cells. Together, these measures suggest secretory states among tumor cells are complex and can evolve dynamically. Most importantly, this study reveals new insight into the intratumoral phenotypic heterogeneity of human primary tumors.
Experimental protocol for manipulating plant-induced soil heterogeneity.
Brandt, Angela J; del Pino, Gaston A; Burns, Jean H
2014-03-13
Coexistence theory has often treated environmental heterogeneity as being independent of the community composition; however biotic feedbacks such as plant-soil feedbacks (PSF) have large effects on plant performance, and create environmental heterogeneity that depends on the community composition. Understanding the importance of PSF for plant community assembly necessitates understanding of the role of heterogeneity in PSF, in addition to mean PSF effects. Here, we describe a protocol for manipulating plant-induced soil heterogeneity. Two example experiments are presented: (1) a field experiment with a 6-patch grid of soils to measure plant population responses and (2) a greenhouse experiment with 2-patch soils to measure individual plant responses. Soils can be collected from the zone of root influence (soils from the rhizosphere and directly adjacent to the rhizosphere) of plants in the field from conspecific and heterospecific plant species. Replicate collections are used to avoid pseudoreplicating soil samples. These soils are then placed into separate patches for heterogeneous treatments or mixed for a homogenized treatment. Care should be taken to ensure that heterogeneous and homogenized treatments experience the same degree of soil disturbance. Plants can then be placed in these soil treatments to determine the effect of plant-induced soil heterogeneity on plant performance. We demonstrate that plant-induced heterogeneity results in different outcomes than predicted by traditional coexistence models, perhaps because of the dynamic nature of these feedbacks. Theory that incorporates environmental heterogeneity influenced by the assembling community and additional empirical work is needed to determine when heterogeneity intrinsic to the assembling community will result in different assembly outcomes compared with heterogeneity extrinsic to the community composition.
Collective phase response curves for heterogeneous coupled oscillators
NASA Astrophysics Data System (ADS)
Hannay, Kevin M.; Booth, Victoria; Forger, Daniel B.
2015-08-01
Phase response curves (PRCs) have become an indispensable tool in understanding the entrainment and synchronization of biological oscillators. However, biological oscillators are often found in large coupled heterogeneous systems and the variable of physiological importance is the collective rhythm resulting from an aggregation of the individual oscillations. To study this phenomena we consider phase resetting of the collective rhythm for large ensembles of globally coupled Sakaguchi-Kuramoto oscillators. Making use of Ott-Antonsen theory we derive an asymptotically valid analytic formula for the collective PRC. A result of this analysis is a characteristic scaling for the change in the amplitude and entrainment points for the collective PRC compared to the individual oscillator PRC. We support the analytical findings with numerical evidence and demonstrate the applicability of the theory to large ensembles of coupled neuronal oscillators.
McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta
2014-01-01
The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance. PMID:24639951
Strain localization in usnaturated soils with large deformation
NASA Astrophysics Data System (ADS)
Song, X.; Borja, R. I.
2014-12-01
Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In unsaturated porous media, how the localized deformation band is formed depends crucially on the degree of saturation, since fluid in the pores of a solid imposes a volume constraint on the deformation of the solid. When fluid flow is involved, the inception of the localized deformation band also depends on the heterogeneity of a material, which is quantified in terms of the spatial variation of density, the degree of saturation, and matric suction. We present a mathematical framework for coupled solid-deformation/fluid-diffusion in unsaturated porous media that takes into account material and geometric nonlinearities [1, 2]. The framework relies on the continuum principle of thermodynamics to identify an effective, or constitutive, stress for the solid matrix, and a water retention law that highlights the interdependence of degree of saturation, suction, and porosity of the material. We discuss the role of heterogeneity, quantified either deterministically or stochastically, on the development of a persistent shear band. We derive bifurcation conditions [3] governing the initiation of such a shear band. This research is inspired by current testing techniques that allow nondestructive and non-invasive measurement of density and the degree of saturation through high-resolution imaging [4]. The numerical simulations under plane strain condition demonstrate that the bifurcation not only manifests itself on the loading response curve and but also in the space of the degree of saturation, specific volume and suction stress. References[1] Song X, Borja RI, Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Engng 2014; 97: 658-686. [2] Song X, Borja RI, Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 2014; doi:10.2136/vzj2013.07.0131. [3] Song X, Borja RI, Instability and bifurcation in partially saturated porous media. 2014. to be submitted. [4] Song X, Strain localization in unsaturated porous media. 2014. Ph.D. Dissertation, Stanford University, California.
NASA Astrophysics Data System (ADS)
Negrut, Dan; Lamb, David; Gorsich, David
2011-06-01
This paper describes a software infrastructure made up of tools and libraries designed to assist developers in implementing computational dynamics applications running on heterogeneous and distributed computing environments. Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The heterogeneous and distributed computing hardware infrastructure is assumed herein to be made up of a combination of CPUs and Graphics Processing Units (GPUs). The computational dynamics applications targeted to execute on such a hardware topology include many-body dynamics, smoothed-particle hydrodynamics (SPH) fluid simulation, and fluid-solid interaction analysis. The underlying theme of the solution approach embraced by HCT is that of partitioning the domain of interest into a number of subdomains that are each managed by a separate core/accelerator (CPU/GPU) pair. Five components at the core of HCT enable the envisioned distributed computing approach to large-scale dynamical system simulation: (a) the ability to partition the problem according to the one-to-one mapping; i.e., spatial subdivision, discussed above (pre-processing); (b) a protocol for passing data between any two co-processors; (c) algorithms for element proximity computation; and (d) the ability to carry out post-processing in a distributed fashion. In this contribution the components (a) and (b) of the HCT are demonstrated via the example of the Discrete Element Method (DEM) for rigid body dynamics with friction and contact. The collision detection task required in frictional-contact dynamics (task (c) above), is shown to benefit on the GPU of a two order of magnitude gain in efficiency when compared to traditional sequential implementations. Note: Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not imply its endorsement, recommendation, or favoring by the United States Army. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Army, and shall not be used for advertising or product endorsement purposes.
Statistical Physics of Rupture in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Sornette, Didier
The damage and fracture of materials are technologically of enormous interest due to their economic and human cost. They cover a wide range of phenomena like cracking of glass, aging of concrete, the failure of fiber networks in the formation of paper and the breaking of a metal bar subject to an external load. Failure of composite systems is of utmost importance in naval, aeronautics and space industry [1]. By the term composite, we refer to materials with heterogeneous microscopic structures and also to assemblages of macroscopic elements forming a super-structure. Chemical and nuclear plants suffer from cracking due to corrosion either of chemical or radioactive origin, aided by thermal and/or mechanical stress.
Szymanski, Maciej; Karlowski, Wojciech M
2016-01-01
In eukaryotes, ribosomal 5S rRNAs are products of multigene families organized within clusters of tandemly repeated units. Accumulation of genomic data obtained from a variety of organisms demonstrated that the potential 5S rRNA coding sequences show a large number of variants, often incompatible with folding into a correct secondary structure. Here, we present results of an analysis of a large set of short RNA sequences generated by the next generation sequencing techniques, to address the problem of heterogeneity of the 5S rRNA transcripts in Arabidopsis and identification of potentially functional rRNA-derived fragments.
Bockholt, Henry J.; Scully, Mark; Courtney, William; Rachakonda, Srinivas; Scott, Adam; Caprihan, Arvind; Fries, Jill; Kalyanam, Ravi; Segall, Judith M.; de la Garza, Raul; Lane, Susan; Calhoun, Vince D.
2009-01-01
A neuroinformatics (NI) system is critical to brain imaging research in order to shorten the time between study conception and results. Such a NI system is required to scale well when large numbers of subjects are studied. Further, when multiple sites participate in research projects organizational issues become increasingly difficult. Optimized NI applications mitigate these problems. Additionally, NI software enables coordination across multiple studies, leveraging advantages potentially leading to exponential research discoveries. The web-based, Mind Research Network (MRN), database system has been designed and improved through our experience with 200 research studies and 250 researchers from seven different institutions. The MRN tools permit the collection, management, reporting and efficient use of large scale, heterogeneous data sources, e.g., multiple institutions, multiple principal investigators, multiple research programs and studies, and multimodal acquisitions. We have collected and analyzed data sets on thousands of research participants and have set up a framework to automatically analyze the data, thereby making efficient, practical data mining of this vast resource possible. This paper presents a comprehensive framework for capturing and analyzing heterogeneous neuroscience research data sources that has been fully optimized for end-users to perform novel data mining. PMID:20461147
NASA Astrophysics Data System (ADS)
Li, Yunkai; Zhang, Yuying; Xu, Jun; Zhang, Shuo
2018-03-01
Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in different trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic differences between basins with different environmental characteristics. Such differences likely result from isotopic baseline differences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.
Venter, Jan A; Prins, Herbert H T; Mashanova, Alla; Slotow, Rob
2017-01-01
Finding suitable forage patches in a heterogeneous landscape, where patches change dynamically both spatially and temporally could be challenging to large herbivores, especially if they have no a priori knowledge of the location of the patches. We tested whether three large grazing herbivores with a variety of different traits improve their efficiency when foraging at a heterogeneous habitat patch scale by using visual cues to gain a priori knowledge about potential higher value foraging patches. For each species (zebra ( Equus burchelli ), red hartebeest ( Alcelaphus buselaphus subspecies camaa ) and eland ( Tragelaphus oryx )), we used step lengths and directionality of movement to infer whether they were using visual cues to find suitable forage patches at a habitat patch scale. Step lengths were significantly longer for all species when moving to non-visible patches than to visible patches, but all movements showed little directionality. Of the three species, zebra movements were the most directional. Red hartebeest had the shortest step lengths and zebra the longest. We conclude that these large grazing herbivores may not exclusively use visual cues when foraging at a habitat patch scale, but would rather adapt their movement behaviour, mainly step length, to the heterogeneity of the specific landscape.
NASA Astrophysics Data System (ADS)
Kyriakopoulos, Christodoulos; Trasatti, Elisa; Atzori, Simone; Bignami, Christian; Chini, Marco; Stramondo, Salvatore; Tolomei, Christiano
2010-05-01
A destructive (Mw 7.9) earthquake struck the Sichuan province (China) on May 12, 2008. The seismic event, the largest in China in more than three decades and referred as the Wenchuan earthquake, ruptured approximately 280 km of the Yingxiu-Beichuan fault and about 70 km of the Guanxian-Anxian fault. Surface effects were suffered over a wide epicentral area (about 300 km E-W and 250 km N-S). The huge earthquake took place within the context of long term uplift of the Longmen Shan range in eastern Tibet. The Longmen Shan fault zone is the main tectonic boundary between the Sichuan basin and eastern Tibet and is characterized by a large topographic relief (from 500m a.s.l. to more than 4000m) and large variations in rheological properties. The coseismic deformation is imaged by a set of ALOS-PALSAR L-band SAR interferograms. We use an unprecedented high number of data (25 frames from 6 adjacent tracks) to encompass the entire coseismic area. The resulting mosaic of differential interferograms covers an overall area of about 340 km E-W and 240 km N-S. The complex geophysical context of Longmen Shan and the variations of the fault geometry along its length can be better handled by means of numerical methods. The fault geometry is constrained by inversions of geodetic data and by taking into account the geological features of eastern Tibet and Sichuan basin. As a result, we build a Finite Element (FE) model consisting of two non planar faults embedded in a non-homogeneous medium with real topography of the area. We develop a procedure to perform inversions of DInSAR data based on FE computed Green functions of the surface displacement field. We retrieve a complex slip distribution on the fault segments in a heterogeneous medium with realistic surface topography.
Ecoregion-Based Conservation Planning in the Mediterranean: Dealing with Large-Scale Heterogeneity
Giakoumi, Sylvaine; Sini, Maria; Gerovasileiou, Vasilis; Mazor, Tessa; Beher, Jutta; Possingham, Hugh P.; Abdulla, Ameer; Çinar, Melih Ertan; Dendrinos, Panagiotis; Gucu, Ali Cemal; Karamanlidis, Alexandros A.; Rodic, Petra; Panayotidis, Panayotis; Taskin, Ergun; Jaklin, Andrej; Voultsiadou, Eleni; Webster, Chloë; Zenetos, Argyro; Katsanevakis, Stelios
2013-01-01
Spatial priorities for the conservation of three key Mediterranean habitats, i.e. seagrass Posidonia oceanica meadows, coralligenous formations, and marine caves, were determined through a systematic planning approach. Available information on the distribution of these habitats across the entire Mediterranean Sea was compiled to produce basin-scale distribution maps. Conservation targets for each habitat type were set according to European Union guidelines. Surrogates were used to estimate the spatial variation of opportunity cost for commercial, non-commercial fishing, and aquaculture. Marxan conservation planning software was used to evaluate the comparative utility of two planning scenarios: (a) a whole-basin scenario, referring to selection of priority areas across the whole Mediterranean Sea, and (b) an ecoregional scenario, in which priority areas were selected within eight predefined ecoregions. Although both scenarios required approximately the same total area to be protected in order to achieve conservation targets, the opportunity cost differed between them. The whole-basin scenario yielded a lower opportunity cost, but the Alboran Sea ecoregion was not represented and priority areas were predominantly located in the Ionian, Aegean, and Adriatic Seas. In comparison, the ecoregional scenario resulted in a higher representation of ecoregions and a more even distribution of priority areas, albeit with a higher opportunity cost. We suggest that planning at the ecoregional level ensures better representativeness of the selected conservation features and adequate protection of species, functional, and genetic diversity across the basin. While there are several initiatives that identify priority areas in the Mediterranean Sea, our approach is novel as it combines three issues: (a) it is based on the distribution of habitats and not species, which was rarely the case in previous efforts, (b) it considers spatial variability of cost throughout this socioeconomically heterogeneous basin, and (c) it adopts ecoregions as the most appropriate level for large-scale planning. PMID:24155901
Horvitz-Thompson survey sample methods for estimating large-scale animal abundance
Samuel, M.D.; Garton, E.O.
1994-01-01
Large-scale surveys to estimate animal abundance can be useful for monitoring population status and trends, for measuring responses to management or environmental alterations, and for testing ecological hypotheses about abundance. However, large-scale surveys may be expensive and logistically complex. To ensure resources are not wasted on unattainable targets, the goals and uses of each survey should be specified carefully and alternative methods for addressing these objectives always should be considered. During survey design, the impoflance of each survey error component (spatial design, propofiion of detected animals, precision in detection) should be considered carefully to produce a complete statistically based survey. Failure to address these three survey components may produce population estimates that are inaccurate (biased low), have unrealistic precision (too precise) and do not satisfactorily meet the survey objectives. Optimum survey design requires trade-offs in these sources of error relative to the costs of sampling plots and detecting animals on plots, considerations that are specific to the spatial logistics and survey methods. The Horvitz-Thompson estimators provide a comprehensive framework for considering all three survey components during the design and analysis of large-scale wildlife surveys. Problems of spatial and temporal (especially survey to survey) heterogeneity in detection probabilities have received little consideration, but failure to account for heterogeneity produces biased population estimates. The goal of producing unbiased population estimates is in conflict with the increased variation from heterogeneous detection in the population estimate. One solution to this conflict is to use an MSE-based approach to achieve a balance between bias reduction and increased variation. Further research is needed to develop methods that address spatial heterogeneity in detection, evaluate the effects of temporal heterogeneity on survey objectives and optimize decisions related to survey bias and variance. Finally, managers and researchers involved in the survey design process must realize that obtaining the best survey results requires an interactive and recursive process of survey design, execution, analysis and redesign. Survey refinements will be possible as further knowledge is gained on the actual abundance and distribution of the population and on the most efficient techniques for detection animals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.; Patchen, D.G.; Heald, M.
Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less
Heterogeneous oxidation of folpet and dimethomorph by OH radicals: A kinetic and mechanistic study
NASA Astrophysics Data System (ADS)
Al Rashidi, M.; Chakir, A.; Roth, E.
2014-01-01
This study investigates the heterogeneous OH oxidation of folpet and dimethomorph, two fungicides identified in the atmosphere of the Champagne-Ardenne region. Kinetic experiments were conducted in the relative mode, using terbuthylazine as a reference compound. The experimental method employed makes use of a simulation chamber coupled to a GC/MS analytical system. Meanwhile, the identification of (4-chlorophenyl)(3,4-dimethoxyphenyl)methanone (CPMPM), a degradation product of the OH oxidation of dimethomorph, is achieved using SPME/GC/MS. Moreover, a degradation mechanism of dimethomorph is proposed, and the heterogeneous OH reactivity of CPMPM is evaluated. The obtained OH reaction rate constants (cm3 molecule-1 s-1) are: kZ-dimethomorph = (2.0 ± 1.2) 10-14, kE-dimethomorph = (1.7 ± 1.2) 10-14, kFolpet = (1.6 ± 0.9) 10-13 and kCPMPM = (1.9 ± 1.0) 10-12. The implicated tropospheric life-times are up to 2 months, which shows that the investigated pesticides are relatively persistent towards oxidation removal processes. CPMPM, the identified product of OH oxidation of dimethomorph, is less persistent with a life time of only 6 days relative to heterogeneous oxidation by OH radicals.
Individual heterogeneity in life histories and eco-evolutionary dynamics
Vindenes, Yngvild; Langangen, Øystein
2015-01-01
Individual heterogeneity in life history shapes eco-evolutionary processes, and unobserved heterogeneity can affect demographic outputs characterising life history and population dynamical properties. Demographic frameworks like matrix models or integral projection models represent powerful approaches to disentangle mechanisms linking individual life histories and population-level processes. Recent developments have provided important steps towards their application to study eco-evolutionary dynamics, but so far individual heterogeneity has largely been ignored. Here, we present a general demographic framework that incorporates individual heterogeneity in a flexible way, by separating static and dynamic traits (discrete or continuous). First, we apply the framework to derive the consequences of ignoring heterogeneity for a range of widely used demographic outputs. A general conclusion is that besides the long-term growth rate lambda, all parameters can be affected. Second, we discuss how the framework can help advance current demographic models of eco-evolutionary dynamics, by incorporating individual heterogeneity. For both applications numerical examples are provided, including an empirical example for pike. For instance, we demonstrate that predicted demographic responses to climate warming can be reversed by increased heritability. We discuss how applications of this demographic framework incorporating individual heterogeneity can help answer key biological questions that require a detailed understanding of eco-evolutionary dynamics. PMID:25807980
The heterogeneity statistic I(2) can be biased in small meta-analyses.
von Hippel, Paul T
2015-04-14
Estimated effects vary across studies, partly because of random sampling error and partly because of heterogeneity. In meta-analysis, the fraction of variance that is due to heterogeneity is estimated by the statistic I(2). We calculate the bias of I(2), focusing on the situation where the number of studies in the meta-analysis is small. Small meta-analyses are common; in the Cochrane Library, the median number of studies per meta-analysis is 7 or fewer. We use Mathematica software to calculate the expectation and bias of I(2). I(2) has a substantial bias when the number of studies is small. The bias is positive when the true fraction of heterogeneity is small, but the bias is typically negative when the true fraction of heterogeneity is large. For example, with 7 studies and no true heterogeneity, I(2) will overestimate heterogeneity by an average of 12 percentage points, but with 7 studies and 80 percent true heterogeneity, I(2) can underestimate heterogeneity by an average of 28 percentage points. Biases of 12-28 percentage points are not trivial when one considers that, in the Cochrane Library, the median I(2) estimate is 21 percent. The point estimate I(2) should be interpreted cautiously when a meta-analysis has few studies. In small meta-analyses, confidence intervals should supplement or replace the biased point estimate I(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, J; Lindsay, P; University of Toronto, Toronto
Purpose: Recent progress in small animal radiotherapy systems has provided the foundation for delivering the heterogeneous, millimeter scale dose distributions demanded by preclinical radiobiology investigations. Despite advances in preclinical dose planning, delivery of highly heterogeneous dose distributions is constrained by the fixed collimation systems and large x-ray focal spot common in small animal radiotherapy systems. This work proposes a dual focal spot dose optimization and delivery method with a large x-ray focal spot used to deliver homogeneous dose regions and a small focal spot to paint spatially heterogeneous dose regions. Methods: Two-dimensional dose kernels were measured for a 1 mmmore » circular collimator with radiochromic film at 10 mm depth in a solid water phantom for the small and large x-ray focal spots on a recently developed small animal microirradiator. These kernels were used in an optimization framework which segmented a desired dose distribution into low- and high-spatial frequency regions for delivery by the large and small focal spot, respectively. For each region, the method determined an optimal set of stage positions and beam-on times. The method was demonstrated by optimizing a bullseye pattern consisting of 0.75 mm radius circular target and 0.5 and 1.0 mm wide rings alternating between 0 and 2 Gy. Results: Compared to a large focal spot technique, the dual focal spot technique improved the optimized dose distribution: 69.2% of the optimized dose was within 0.5 Gy of the intended dose for the large focal spot, compared to 80.6% for the dual focal spot method. The dual focal spot design required 14.0 minutes of optimization, and will require 178.3 minutes for automated delivery. Conclusion: The dual focal spot optimization and delivery framework is a novel option for delivering conformal and heterogeneous dose distributions at the preclinical level and provides a new experimental option for unique radiobiological investigations. Funding Support: this work is supported by funding the National Sciences and Engineering Research Council of Canada, and a Mitacs-accelerate fellowship. Conflict of Interest: Dr. Lindsay and Dr. Jaffray are listed as inventors of the small animal microirradiator described herein. This system has been licensed for commercial development.« less
Earth Science Data Analytics: Preparing for Extracting Knowledge from Information
NASA Technical Reports Server (NTRS)
Kempler, Steven; Barbieri, Lindsay
2016-01-01
Data analytics is the process of examining large amounts of data of a variety of types to uncover hidden patterns, unknown correlations and other useful information. Data analytics is a broad term that includes data analysis, as well as an understanding of the cognitive processes an analyst uses to understand problems and explore data in meaningful ways. Analytics also include data extraction, transformation, and reduction, utilizing specific tools, techniques, and methods. Turning to data science, definitions of data science sound very similar to those of data analytics (which leads to a lot of the confusion between the two). But the skills needed for both, co-analyzing large amounts of heterogeneous data, understanding and utilizing relevant tools and techniques, and subject matter expertise, although similar, serve different purposes. Data Analytics takes on a practitioners approach to applying expertise and skills to solve issues and gain subject knowledge. Data Science, is more theoretical (research in itself) in nature, providing strategic actionable insights and new innovative methodologies. Earth Science Data Analytics (ESDA) is the process of examining, preparing, reducing, and analyzing large amounts of spatial (multi-dimensional), temporal, or spectral data using a variety of data types to uncover patterns, correlations and other information, to better understand our Earth. The large variety of datasets (temporal spatial differences, data types, formats, etc.) invite the need for data analytics skills that understand the science domain, and data preparation, reduction, and analysis techniques, from a practitioners point of view. The application of these skills to ESDA is the focus of this presentation. The Earth Science Information Partners (ESIP) Federation Earth Science Data Analytics (ESDA) Cluster was created in recognition of the practical need to facilitate the co-analysis of large amounts of data and information for Earth science. Thus, from a to advance science point of view: On the continuum of ever evolving data management systems, we need to understand and develop ways that allow for the variety of data relationships to be examined, and information to be manipulated, such that knowledge can be enhanced, to facilitate science. Recognizing the importance and potential impacts of the unlimited ways to co-analyze heterogeneous datasets, now and especially in the future, one of the objectives of the ESDA cluster is to facilitate the preparation of individuals to understand and apply needed skills to Earth science data analytics. Pinpointing and communicating the needed skills and expertise is new, and not easy. Information technology is just beginning to provide the tools for advancing the analysis of heterogeneous datasets in a big way, thus, providing opportunity to discover unobvious scientific relationships, previously invisible to the science eye. And it is not easy It takes individuals, or teams of individuals, with just the right combination of skills to understand the data and develop the methods to glean knowledge out of data and information. In addition, whereas definitions of data science and big data are (more or less) available (summarized in Reference 5), Earth science data analytics is virtually ignored in the literature, (barring a few excellent sources).
Li, Yi Zhe; Zhang, Ting Long; Liu, Qiu Yu; Li, Ying
2018-01-01
The ecological process models are powerful tools for studying terrestrial ecosystem water and carbon cycle at present. However, there are many parameters for these models, and weather the reasonable values of these parameters were taken, have important impact on the models simulation results. In the past, the sensitivity and the optimization of model parameters were analyzed and discussed in many researches. But the temporal and spatial heterogeneity of the optimal parameters is less concerned. In this paper, the BIOME-BGC model was used as an example. In the evergreen broad-leaved forest, deciduous broad-leaved forest and C3 grassland, the sensitive parameters of the model were selected by constructing the sensitivity judgment index with two experimental sites selected under each vegetation type. The objective function was constructed by using the simulated annealing algorithm combined with the flux data to obtain the monthly optimal values of the sensitive parameters at each site. Then we constructed the temporal heterogeneity judgment index, the spatial heterogeneity judgment index and the temporal and spatial heterogeneity judgment index to quantitatively analyze the temporal and spatial heterogeneity of the optimal values of the model sensitive parameters. The results showed that the sensitivity of BIOME-BGC model parameters was different under different vegetation types, but the selected sensitive parameters were mostly consistent. The optimal values of the sensitive parameters of BIOME-BGC model mostly presented time-space heterogeneity to different degrees which varied with vegetation types. The sensitive parameters related to vegetation physiology and ecology had relatively little temporal and spatial heterogeneity while those related to environment and phenology had generally larger temporal and spatial heterogeneity. In addition, the temporal heterogeneity of the optimal values of the model sensitive parameters showed a significant linear correlation with the spatial heterogeneity under the three vegetation types. According to the temporal and spatial heterogeneity of the optimal values, the parameters of the BIOME-BGC model could be classified in order to adopt different parameter strategies in practical application. The conclusion could help to deeply understand the parameters and the optimal values of the ecological process models, and provide a way or reference for obtaining the reasonable values of parameters in models application.
Heiz, J; Majerus, S; Barisnikov, K
2017-09-28
This study examined the spontaneous use of allocentric and egocentric frames of reference and their flexible use as a function of instructions. The computerized spatial reference task created by Heiz and Barisnikov (2015) was used. Participants had to choose a frame of reference according to three types of instructions: spontaneous, allocentric and egocentric. The performances of 16 Williams Syndrome participants between 10 and 41 years were compared to those of two control groups (chronological age and non-verbal intellectual ability). The majority of Williams Syndrome participants did not show a preference for a particular frame of reference. When explicitly inviting participants to use an allocentric frame of reference, all three groups showed an increased use of the allocentric frame of reference. At the same time, an important heterogeneity of type of frame of reference used by Williams Syndrome participants was observed. Results demonstrate that despite difficulties in the spontaneous use of allocentric and egocentric frames of reference, some Williams Syndrome participants show flexibility in the use of an allocentric frame of reference when an explicit instruction is provided. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
D.P. Turner; W.D. Ritts; B.E. Law; W.B. Cohen; Z. Yan; T. Hudiburg; J.L. Campbell; M. Duane
2007-01-01
Bottom-up scaling of net ecosystem production (NEP) and net biome production (NBP) was used to generate a carbon budget for a large heterogeneous region (the state of Oregon, 2.5x105 km2 ) in the Western United States. Landsat resolution (30 m) remote sensing provided the basis for mapping land cover and disturbance history...
Discrimination between discrete and continuum scattering from the sub-seafloor.
Holland, Charles W; Steininger, Gavin; Dosso, Stan E
2015-08-01
There is growing evidence that seabed scattering is often dominated by heterogeneities within the sediment volume as opposed to seafloor roughness. From a theoretical viewpoint, sediment volume heterogeneities can be described either by a fluctuation continuum or by discrete particles. In at-sea experiments, heterogeneity characteristics generally are not known a priori. Thus, an uninformed model selection is generally made, i.e., the researcher must arbitrarily select either a discrete or continuum model. It is shown here that it is possible to (acoustically) discriminate between continuum and discrete heterogeneities in some instances. For example, when the spectral exponent γ3>4, the volume scattering cannot be described by discrete particles. Conversely, when γ3≤2, the heterogeneities likely arise from discrete particles. Furthermore, in the range 2<γ3≤4 it is sometimes possible to discriminate via physical bounds on the parameter values. The ability to so discriminate is important, because there are few tools for measuring small scale, O(10(-2) to 10(1)) m, sediment heterogeneities over large areas. Therefore, discriminating discrete vs continuum heterogeneities via acoustic remote sensing may lead to improved observations and concomitant increased understanding of the marine benthic environment.
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer.
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-05-30
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.
One microenvironment does not fit all: heterogeneity beyond cancer cells.
Kim, Ik Sun; Zhang, Xiang H-F
2016-12-01
Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-01-01
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957
Chemotherapy in heterogeneous cultures of cancer cells with interconversion
NASA Astrophysics Data System (ADS)
Dilão, Rui
2015-02-01
Recently, the interconversion between differentiated and stem-like cancer cells has been observed. Here, we model the in vitro growth of heterogeneous cell cultures in the presence of interconversion from differentiated cancer cells to cancer stem cells (CSCs), showing that, by targeting only CSC with cytotoxic agents, it is not always possible to eradicate cancer. We have determined the kinetic conditions under which cytotoxic agents in in vitro heterogeneous cultures of cancer cells eradicate cancer. In particular, we have shown that the chemotherapeutic elimination of in vitro cultures of heterogeneous cancer cells is effective only if it targets all cancer cell types, and if the induced death rates for the different subpopulations of cancer cell types are large enough. The quantitative results of the model are compared and validated with experimental data.
Simulator for heterogeneous dataflow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
1993-01-01
A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.
Lever, Anne G; Ridderinkhof, K Richard; Marsman, Maarten; Geurts, Hilde M
2017-02-01
As a large heterogeneity is observed across studies on interference control in autism spectrum disorder (ASD), research may benefit from the use of a cognitive framework that models specific processes underlying reactive and proactive control of interference. Reactive control refers to the expression and suppression of responses and proactive control refers to the adjustment of response to previous situations. We administered a Simon conflict task in 2 independent adult samples (IQ >80) and applied distributional analyses to examine temporal dynamics of interference control in ASD. Along comparable interference effects in both reactive and proactive control, young men (n = 23, 18-36 years) diagnosed with ASD made as many fast errors on conflict trials as neurotypical controls (n = 19) and showed similar suppression on slow responses (Study 1). However, over the adult life span (19-79 years), individuals with ASD (n = 118) made fewer fast errors on conflict trials, and had overall slower and more accurate responses than controls (n = 160; Study 2). These results converge to the idea that individuals with ASD adopt a more cautious response bias over the adult life span, which is not yet observed among young adults. Our findings suggest that it is fruitful to distinguish different processes involved in interference control and contribute to an increased understanding of interference control mechanisms in adults with ASD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Large-scale replication and heterogeneity in Parkinson disease genetic loci
Ioannidis, John P.A.; Aasly, Jan O.; Annesi, Grazia; Brice, Alexis; Van Broeckhoven, Christine; Bertram, Lars; Bozi, Maria; Crosiers, David; Clarke, Carl; Facheris, Maurizio; Farrer, Matthew; Garraux, Gaetan; Gispert, Suzana; Auburger, Georg; Vilariño-Güell, Carles; Hadjigeorgiou, Georgios M.; Hicks, Andrew A.; Hattori, Nobutaka; Jeon, Beom; Lesage, Suzanne; Lill, Christina M.; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E.; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D.; Morrison, Karen E.; Opala, Grzegorz; Pramstaller, Peter P.; Pichler, Irene; Park, Sung Sup; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A.; Stefanis, Leonidas; Stockton, Joanne D.; Satake, Wataru; Silburn, Peter A.; Theuns, Jessie; Tan, Eng-King; Toda, Tatsushi; Tomiyama, Hiroyuki; Uitti, Ryan J.; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius; Krüger, Rejko
2012-01-01
Objective: Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. Methods: Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. Results: In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78–0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14–1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I2 estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. Conclusion: Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity. Neurology® 2012;79:659–667 PMID:22786590
Coarse-Grained Clustering Dynamics of Heterogeneously Coupled Neurons.
Moon, Sung Joon; Cook, Katherine A; Rajendran, Karthikeyan; Kevrekidis, Ioannis G; Cisternas, Jaime; Laing, Carlo R
2015-12-01
The formation of oscillating phase clusters in a network of identical Hodgkin-Huxley neurons is studied, along with their dynamic behavior. The neurons are synaptically coupled in an all-to-all manner, yet the synaptic coupling characteristic time is heterogeneous across the connections. In a network of N neurons where this heterogeneity is characterized by a prescribed random variable, the oscillatory single-cluster state can transition-through [Formula: see text] (possibly perturbed) period-doubling and subsequent bifurcations-to a variety of multiple-cluster states. The clustering dynamic behavior is computationally studied both at the detailed and the coarse-grained levels, and a numerical approach that can enable studying the coarse-grained dynamics in a network of arbitrarily large size is suggested. Among a number of cluster states formed, double clusters, composed of nearly equal sub-network sizes are seen to be stable; interestingly, the heterogeneity parameter in each of the double-cluster components tends to be consistent with the random variable over the entire network: Given a double-cluster state, permuting the dynamical variables of the neurons can lead to a combinatorially large number of different, yet similar "fine" states that appear practically identical at the coarse-grained level. For weak heterogeneity we find that correlations rapidly develop, within each cluster, between the neuron's "identity" (its own value of the heterogeneity parameter) and its dynamical state. For single- and double-cluster states we demonstrate an effective coarse-graining approach that uses the Polynomial Chaos expansion to succinctly describe the dynamics by these quickly established "identity-state" correlations. This coarse-graining approach is utilized, within the equation-free framework, to perform efficient computations of the neuron ensemble dynamics.
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander
2017-07-01
In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological productions to the next level of control. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Large-scale replication and heterogeneity in Parkinson disease genetic loci.
Sharma, Manu; Ioannidis, John P A; Aasly, Jan O; Annesi, Grazia; Brice, Alexis; Van Broeckhoven, Christine; Bertram, Lars; Bozi, Maria; Crosiers, David; Clarke, Carl; Facheris, Maurizio; Farrer, Matthew; Garraux, Gaetan; Gispert, Suzana; Auburger, Georg; Vilariño-Güell, Carles; Hadjigeorgiou, Georgios M; Hicks, Andrew A; Hattori, Nobutaka; Jeon, Beom; Lesage, Suzanne; Lill, Christina M; Lin, Juei-Jueng; Lynch, Timothy; Lichtner, Peter; Lang, Anthony E; Mok, Vincent; Jasinska-Myga, Barbara; Mellick, George D; Morrison, Karen E; Opala, Grzegorz; Pramstaller, Peter P; Pichler, Irene; Park, Sung Sup; Quattrone, Aldo; Rogaeva, Ekaterina; Ross, Owen A; Stefanis, Leonidas; Stockton, Joanne D; Satake, Wataru; Silburn, Peter A; Theuns, Jessie; Tan, Eng-King; Toda, Tatsushi; Tomiyama, Hiroyuki; Uitti, Ryan J; Wirdefeldt, Karin; Wszolek, Zbigniew; Xiromerisiou, Georgia; Yueh, Kuo-Chu; Zhao, Yi; Gasser, Thomas; Maraganore, Demetrius; Krüger, Rejko
2012-08-14
Eleven genetic loci have reached genome-wide significance in a recent meta-analysis of genome-wide association studies in Parkinson disease (PD) based on populations of Caucasian descent. The extent to which these genetic effects are consistent across different populations is unknown. Investigators from the Genetic Epidemiology of Parkinson's Disease Consortium were invited to participate in the study. A total of 11 SNPs were genotyped in 8,750 cases and 8,955 controls. Fixed as well as random effects models were used to provide the summary risk estimates for these variants. We evaluated between-study heterogeneity and heterogeneity between populations of different ancestry. In the overall analysis, single nucleotide polymorphisms (SNPs) in 9 loci showed significant associations with protective per-allele odds ratios of 0.78-0.87 (LAMP3, BST1, and MAPT) and susceptibility per-allele odds ratios of 1.14-1.43 (STK39, GAK, SNCA, LRRK2, SYT11, and HIP1R). For 5 of the 9 replicated SNPs there was nominally significant between-site heterogeneity in the effect sizes (I(2) estimates ranged from 39% to 48%). Subgroup analysis by ethnicity showed significantly stronger effects for the BST1 (rs11724635) in Asian vs Caucasian populations and similar effects for SNCA, LRRK2, LAMP3, HIP1R, and STK39 in Asian and Caucasian populations, while MAPT rs2942168 and SYT11 rs34372695 were monomorphic in the Asian population, highlighting the role of population-specific heterogeneity in PD. Our study allows insight to understand the distribution of newly identified genetic factors contributing to PD and shows that large-scale evaluation in diverse populations is important to understand the role of population-specific heterogeneity.
Statistical characterization of Earth’s heterogeneities from seismic scattering
NASA Astrophysics Data System (ADS)
Zheng, Y.; Wu, R.
2009-12-01
The distortion of a teleseismic wavefront carries information about the heterogeneities through which the wave propagates and it is manifestited as logarithmic amplitude (logA) and phase fluctuations of the direct P wave recorded by a seismic network. By cross correlating the fluctuations (e.g., logA-logA or phase-phase), we obtain coherence functions, which depend on spatial lags between stations and incident angles between the incident waves. We have mathematically related the depth-dependent heterogeneity spectrum to the observable coherence functions using seismic scattering theory. We will show that our method has sharp depth resolution. Using the HiNet seismic network data in Japan, we have inverted power spectra for two depth ranges, ~0-120km and below ~120km depth. The coherence functions formed by different groups of stations or by different groups of earthquakes at different back azimuths are similar. This demonstrates that the method is statistically stable and the inhomogeneities are statistically stationary. In both depth intervals, the trend of the spectral amplitude decays from large scale to small scale in a power-law fashion with exceptions at ~50km for the logA data. Due to the spatial spacing of the seismometers, only information from length scale 15km to 200km is inverted. However our scattering method provides new information on small to intermediate scales that are comparable to scales of the recycled materials and thus is complimentary to the global seismic tomography which reveals mainly large-scale heterogeneities on the order of ~1000km. The small-scale heterogeneities revealed here are not likely of pure thermal origin. Therefore, the length scale and strength of heterogeneities as a function of depth may provide important constraints in mechanical mixing of various components in the mantle convection.
Ho, Hau My; Cui, Bianxiao; Repel, Stephen; Lin, Binhua; Rice, Stuart A
2004-11-01
We report the results of digital video microscopy studies of the large particle displacements in a quasi-two-dimensional binary mixture of large (L) and small (S) colloid particles with diameter ratio sigma(L)/sigma(S)=4.65, as a function of the large and small colloid particle densities. As in the case of the one-component quasi-two-dimensional colloid system, the binary mixtures exhibit structural and dynamical heterogeneity. The distribution of large particle displacements over the time scale examined provides evidence for (at least) two different mechanisms of motion, one associated with particles in locally ordered regions and the other associated with particles in locally disordered regions. When rhoL*=Npisigma(L) (2)/4A< or =0.35, the addition of small colloid particles leads to a monotonic decrease in the large particle diffusion coefficient with increasing small particle volume fraction. When rhoL* > or =0.35 the addition of small colloid particles to a dense system of large colloid particles at first leads to an increase in the large particle diffusion coefficient, which is then followed by the expected decrease of the large particle diffusion coefficient with increasing small colloid particle volume fraction. The mode coupling theory of the ideal glass transition in three-dimensional systems makes a qualitative prediction that agrees with the initial increase in the large particle diffusion coefficient with increasing small particle density. Nevertheless, because the structural and dynamical heterogeneities of the quasi-two-dimensional colloid liquid occur within the field of equilibrium states, and the fluctuations generate locally ordered domains rather than just disordered regions of higher and lower density, it is suggested that mode coupling theory does not account for all classes of relevant fluctuations in a quasi-two-dimensional liquid. (c) 2004 American Institute of Physics.
Secure Heterogeneous Multicore Platform Through Diversity and Redundancy
2012-03-31
implementation detects synchronization in this way. If a programmer uses custom synchronization primitives , our approach assumes that such primitives ... synchronization primitives . Primitives such as barriers and spinlocks explicitly enforce a pre- determined ordering among threads. Therefore, the outcome of...these synchronization operations are deterministic. In the discussion, we will refer to these primitives as ordering synchronization operations. On the
Research Survey of Bilingualism and Bilingual Education in the Soviet Union.
ERIC Educational Resources Information Center
Lewis, E. Glyn
The state of the art of bilingual education in the Soviet Union is surveyed. The social context of Soviet bilingualism is discussed with reference to sources of heterogeneity, modernization as a motivating factor, political dimensions, and Soviet bases of research. The sociolinguistic paradigm of Soviet society is viewed as a function of the need…
ERIC Educational Resources Information Center
Klein, Esther Dominique; van Ackeren, Isabell
2011-01-01
Statewide exit examinations play an important role in discussions on school effectiveness. Referring to educational governance concepts, this paper presumes a relation between varying organizational structures of statewide examinations across states, and heterogeneous effects on school actors. It is assumed that their ability to affect work in…
ERIC Educational Resources Information Center
Lo, William Yat Wai
2010-01-01
This paper views seeking the optimal balance between state strengths and the scope of state functions for "good governance" as the formation of a homogenization-heterogenization matrix of policy initiatives in different social settings. Homogenization refers to a global tendency for institutional changes and governance framework to…
Attitudes toward Younger and Older Adults: The German Aging Semantic Differential
ERIC Educational Resources Information Center
Gluth, Sebastian; Ebner, Natalie C.; Schmiedek, Florian
2010-01-01
The present study used the German Aging Semantic Differential (ASD) to assess attitudes toward younger and older adults in a heterogeneous sample of n = 151 younger and n = 143 older adults. The questionnaire was administered in two versions, one referring to the evaluation of younger adults, the other to the evaluation of older adults.…
Castleman’s disease imitating adrenal mass in the retroperitoneal area
Koç, Gökhan; Turk, Hakan; Un, Sıtkı; Isoglu, Cemal Selcuk; Zorlu, Ferruh
2015-01-01
Castleman’s disease (CD) is a non-clonal lymph node hyperplasia, mostly seen in the mediastinum. It has various clinical and pathological outcomes. There are different treatments because of its rare occurance and heterogenity. We present 2 cases which were referred to our clinic as retroperitoneal mass and diagnosed as CD after surgical resection. PMID:25624969
Fair, Damien A.; Bathula, Deepti; Nikolas, Molly A.; Nigg, Joel T.
2012-01-01
Research and clinical investigations in psychiatry largely rely on the de facto assumption that the diagnostic categories identified in the Diagnostic and Statistical Manual (DSM) represent homogeneous syndromes. However, the mechanistic heterogeneity that potentially underlies the existing classification scheme might limit discovery of etiology for most developmental psychiatric disorders. Another, perhaps less palpable, reality may also be interfering with progress—heterogeneity in typically developing populations. In this report we attempt to clarify neuropsychological heterogeneity in a large dataset of typically developing youth and youth with attention deficit/hyperactivity disorder (ADHD), using graph theory and community detection. We sought to determine whether data-driven neuropsychological subtypes could be discerned in children with and without the disorder. Because individual classification is the sine qua non for eventual clinical translation, we also apply support vector machine-based multivariate pattern analysis to identify how well ADHD status in individual children can be identified as defined by the community detection delineated subtypes. The analysis yielded several unique, but similar subtypes across both populations. Just as importantly, comparing typically developing children with ADHD children within each of these distinct subgroups increased diagnostic accuracy. Two important principles were identified that have the potential to advance our understanding of typical development and developmental neuropsychiatric disorders. The first tenet suggests that typically developing children can be classified into distinct neuropsychological subgroups with high precision. The second tenet proposes that some of the heterogeneity in individuals with ADHD might be “nested” in this normal variation. PMID:22474392
The Influence of Heat Flux Boundary Heterogeneity on Heat Transport in Earth's Core
NASA Astrophysics Data System (ADS)
Davies, C. J.; Mound, J. E.
2017-12-01
Rotating convection in planetary systems can be subjected to large lateral variations in heat flux from above; for example, due to the interaction between the metallic cores of terrestrial planets and their overlying silicate mantles. The boundary anomalies can significantly reorganise the pattern of convection and influence global diagnostics such as the Nusselt number. We have conducted a suite of numerical simulations of rotating convection in a spherical shell geometry comparing convection with homogeneous boundary conditions to that with two patterns of heat flux variation at the outer boundary: one hemispheric pattern, and one derived from seismic tomographic imaging of Earth's lower mantle. We consider Ekman numbers down to 10-6 and flux-based Rayleigh numbers up to 800 times critical. The heterogeneous boundary conditions tend to increase the Nusselt number relative to the equivalent homogeneous case by altering both the flow and temperature fields, particularly near the top of the convecting region. The enhancement in Nusselt number tends to increase as the amplitude and wavelength of the boundary heterogeneity is increased and as the system becomes more supercritical. In our suite of models, the increase in Nusselt number can be as large as 25%. The slope of the Nusselt-Rayleigh scaling also changes when boundary heterogeneity is included, which has implications when extrapolating to planetary conditions. Additionally, regions of effective thermal stratification can develop when strongly heterogeneous heat flux conditions are applied at the outer boundary.
Xie, Xin-Ping; Xie, Yu-Feng; Wang, Hong-Qiang
2017-08-23
Large-scale accumulation of omics data poses a pressing challenge of integrative analysis of multiple data sets in bioinformatics. An open question of such integrative analysis is how to pinpoint consistent but subtle gene activity patterns across studies. Study heterogeneity needs to be addressed carefully for this goal. This paper proposes a regulation probability model-based meta-analysis, jGRP, for identifying differentially expressed genes (DEGs). The method integrates multiple transcriptomics data sets in a gene regulatory space instead of in a gene expression space, which makes it easy to capture and manage data heterogeneity across studies from different laboratories or platforms. Specifically, we transform gene expression profiles into a united gene regulation profile across studies by mathematically defining two gene regulation events between two conditions and estimating their occurring probabilities in a sample. Finally, a novel differential expression statistic is established based on the gene regulation profiles, realizing accurate and flexible identification of DEGs in gene regulation space. We evaluated the proposed method on simulation data and real-world cancer datasets and showed the effectiveness and efficiency of jGRP in identifying DEGs identification in the context of meta-analysis. Data heterogeneity largely influences the performance of meta-analysis of DEGs identification. Existing different meta-analysis methods were revealed to exhibit very different degrees of sensitivity to study heterogeneity. The proposed method, jGRP, can be a standalone tool due to its united framework and controllable way to deal with study heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ning
Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less
Hellmann, Christine; Große-Stoltenberg, André; Thiele, Jan; Oldeland, Jens; Werner, Christiane
2017-06-23
Spatial heterogeneity of ecosystems crucially influences plant performance, while in return plant feedbacks on their environment may increase heterogeneous patterns. This is of particular relevance for exotic plant invaders that transform native ecosystems, yet, approaches integrating geospatial information of environmental heterogeneity and plant-plant interaction are lacking. Here, we combined remotely sensed information of site topography and vegetation cover with a functional tracer of the N cycle, δ 15 N. Based on the case study of the invasion of an N 2 -fixing acacia in a nutrient-poor dune ecosystem, we present the first model that can successfully predict (R 2 = 0.6) small-scale spatial variation of foliar δ 15 N in a non-fixing native species from observed geospatial data. Thereby, the generalized additive mixed model revealed modulating effects of heterogeneous environments on invader impacts. Hence, linking remote sensing techniques with tracers of biological processes will advance our understanding of the dynamics and functioning of spatially structured heterogeneous systems from small to large spatial scales.
DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma
Sheffield, Nathan C; Pierron, Gaelle; Klughammer, Johanna; Datlinger, Paul; Schönegger, Andreas; Schuster, Michael; Hadler, Johanna; Surdez, Didier; Guillemot, Delphine; Lapouble, Eve; Freneaux, Paul; Champigneulle, Jacqueline; Bouvier, Raymonde; Walder, Diana; Ambros, Ingeborg M; Hutter, Caroline; Sorz, Eva; Amaral, Ana T; de Álava, Enrique; Schallmoser, Katharina; Strunk, Dirk; Rinner, Beate; Liegl-Atzwanger, Bernadette; Huppertz, Berthold; Leithner, Andreas; de Pinieux, Gonzague; Terrier, Philippe; Laurence, Valérie; Michon, Jean; Ladenstein, Ruth; Holter, Wolfgang; Windhager, Reinhard; Dirksen, Uta; Ambros, Peter F; Delattre, Olivier; Kovar, Heinrich; Bock, Christoph; Tomazou, Eleni M
2018-01-01
Developmental tumors in children and young adults carry few genetic alterations, yet they have diverse clinical presentation. Focusing on Ewing sarcoma, we sought to establish the prevalence and characteristics of epigenetic heterogeneity in genetically homogeneous cancers. We performed genome-scale DNA methylation sequencing for a large cohort of Ewing sarcoma tumors and analyzed epigenetic heterogeneity on three levels: between cancers, between tumors, and within tumors. We observed consistent DNA hypomethylation at enhancers regulated by the disease-defining EWS-FLI1 fusion protein, thus establishing epigenomic enhancer reprogramming as a ubiquitous and characteristic feature of Ewing sarcoma. DNA methylation differences between tumors identified a continuous disease spectrum underlying Ewing sarcoma, which reflected the strength of an EWS-FLI1 regulatory signature and a continuum between mesenchymal and stem cell signatures. There was substantial epigenetic heterogeneity within tumors, particularly in patients with metastatic disease. In summary, our study provides a comprehensive assessment of epigenetic heterogeneity in Ewing sarcoma and thereby highlights the importance of considering nongenetic aspects of tumor heterogeneity in the context of cancer biology and personalized medicine. PMID:28134926
Origin of Permeability and Structure of Flows in Fractured Media
NASA Astrophysics Data System (ADS)
De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.
2013-12-01
After more than three decades of research, flows in fractured media have been shown to result from multi-scale geological structures. Flows result non-exclusively from the damage zone of the large faults, from the percolation within denser networks of smaller fractures, from the aperture heterogeneity within the fracture planes and from some remaining permeability within the matrix. While the effect of each of these causes has been studied independently, global assessments of the main determinisms is still needed. We propose a general approach to determine the geological structures responsible for flows, their permeability and their organization based on field data and numerical modeling [de Dreuzy et al., 2012b]. Multi-scale synthetic networks are reconstructed from field data and simplified mechanical modeling [Davy et al., 2010]. High-performance numerical methods are developed to comply with the specificities of the geometry and physical properties of the fractured media [Pichot et al., 2010; Pichot et al., 2012]. And, based on a large Monte-Carlo sampling, we determine the key determinisms of fractured permeability and flows (Figure). We illustrate our approach on the respective influence of fracture apertures and fracture correlation patterns at large scale. We show the potential role of fracture intersections, so far overlooked between the fracture and the network scales. We also demonstrate how fracture correlations reduce the bulk fracture permeability. Using this analysis, we highlight the need for more specific in-situ characterization of fracture flow structures. Fracture modeling and characterization are necessary to meet the new requirements of a growing number of applications where fractures appear both as potential advantages to enhance permeability and drawbacks for safety, e.g. in energy storage, stimulated geothermal energy and non-conventional gas productions. References Davy, P., et al. (2010), A likely universal model of fracture scaling and its consequence for crustal hydromechanics, Journal of Geophysical Research-Solid Earth, 115, 13. de Dreuzy, J.-R., et al. (2012a), Influence of fracture scale heterogeneity on the flow properties of three-dimensional Discrete Fracture Networks (DFN), J. Geophys. Res.-Earth Surf., 117(B11207), 21 PP. de Dreuzy, J.-R., et al. (2012b), Synthetic benchmark for modeling flow in 3D fractured media, Computers and Geosciences(0). Pichot, G., et al. (2010), A Mixed Hybrid Mortar Method for solving flow in Discrete Fracture Networks, Applicable Analysis, 89(10), 1729-1643. Pichot, G., et al. (2012), Flow simulation in 3D multi-scale fractured networks using non-matching meshes, SIAM Journal on Scientific Computing (SISC), 34(1). Figure: (a) Fracture network with a broad-range of fracture lengths. (b) Flows (log-scale) with homogeneous fractures. (c) Flows (log-scale) with heterogeneous fractures [de Dreuzy et al., 2012a]. The impact of the fracture apertures (c) is illustrated on the organization of flows.
NASA Astrophysics Data System (ADS)
Land, Walker H., Jr.; Lewis, Michael; Sadik, Omowunmi; Wong, Lut; Wanekaya, Adam; Gonzalez, Richard J.; Balan, Arun
2004-04-01
This paper extends the classification approaches described in reference [1] in the following way: (1.) developing and evaluating a new method for evolving organophosphate nerve agent Support Vector Machine (SVM) classifiers using Evolutionary Programming, (2.) conducting research experiments using a larger database of organophosphate nerve agents, and (3.) upgrading the architecture to an object-based grid system for evaluating the classification of EP derived SVMs. Due to the increased threats of chemical and biological weapons of mass destruction (WMD) by international terrorist organizations, a significant effort is underway to develop tools that can be used to detect and effectively combat biochemical warfare. This paper reports the integration of multi-array sensors with Support Vector Machines (SVMs) for the detection of organophosphates nerve agents using a grid computing system called Legion. Grid computing is the use of large collections of heterogeneous, distributed resources (including machines, databases, devices, and users) to support large-scale computations and wide-area data access. Finally, preliminary results using EP derived support vector machines designed to operate on distributed systems have provided accurate classification results. In addition, distributed training time architectures are 50 times faster when compared to standard iterative training time methods.
Long Non-Coding RNAs in Multiple Myeloma
Ronchetti, Domenica; Taiana, Elisa; Vinci, Cristina; Neri, Antonino
2018-01-01
Multiple myeloma (MM) is an incurable disease caused by the malignant proliferation of bone marrow plasma cells, whose pathogenesis remains largely unknown. Although a large fraction of the genome is actively transcribed, most of the transcripts do not serve as templates for proteins and are referred to as non-coding RNAs (ncRNAs), broadly divided into short and long transcripts on the basis of a 200-nucleotide threshold. Short ncRNAs, especially microRNAs, have crucial roles in virtually all types of cancer, including MM, and have gained importance in cancer diagnosis and prognosis, predicting the response to therapy and, notably, as innovative therapeutic targets. Long ncRNAs (lncRNAs) are a very heterogeneous group, involved in many physiological cellular and genomic processes as well as in carcinogenesis, cancer metastasis, and invasion. LncRNAs are aberrantly expressed in various types of cancers, including hematological malignancies, showing either oncogenic or tumor suppressive functions. However, the mechanisms of the related disease-causing events are not yet revealed in most cases. Besides emerging as key players in cancer initiation and progression, lncRNAs own many interesting features as biomarkers with diagnostic and prognostic importance and, possibly, for their utility in therapeutic terms as druggable molecules. This review focuses on the role of lncRNAs in the pathogenesis of MM and summarizes the recent literature. PMID:29389884
Use of ecoacoustics to determine biodiversity patterns across ecological gradients.
Grant, Paul B C; Samways, Michael J
2016-12-01
The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation. © 2016 Society for Conservation Biology.
Brownstein, Zippora; Abu-Rayyan, Amal; Karfunkel-Doron, Daphne; Sirigu, Serena; Davidov, Bella; Shohat, Mordechai; Frydman, Moshe; Houdusse, Anne; Kanaan, Moien; Avraham, Karen B
2014-01-01
Hereditary hearing loss is genetically heterogeneous, with a large number of genes and mutations contributing to this sensory, often monogenic, disease. This number, as well as large size, precludes comprehensive genetic diagnosis of all known deafness genes. A combination of targeted genomic capture and massively parallel sequencing (MPS), also referred to as next-generation sequencing, was applied to determine the deafness-causing genes in hearing-impaired individuals from Israeli Jewish and Palestinian Arab families. Among the mutations detected, we identified nine novel mutations in the genes encoding myosin VI, myosin VIIA and myosin XVA, doubling the number of myosin mutations in the Middle East. Myosin VI mutations were identified in this population for the first time. Modeling of the mutations provided predicted mechanisms for the damage they inflict in the molecular motors, leading to impaired function and thus deafness. The myosin mutations span all regions of these molecular motors, leading to a wide range of hearing phenotypes, reinforcing the key role of this family of proteins in auditory function. This study demonstrates that multiple mutations responsible for hearing loss can be identified in a relatively straightforward manner by targeted-gene MPS technology and concludes that this is the optimal genetic diagnostic approach for identification of mutations responsible for hearing loss. PMID:24105371
Intratumoral histologic heterogeneity of gliomas. A quantitative study.
Paulus, W; Peiffer, J
1989-07-15
Quantitative data for intratumoral histologic heterogeneity were obtained by investigating ten small and ten large punched samples from 50 unembedded supratentorial gliomas. The 1000 samples were diagnosed according to the World Health Organization (WHO) classification and six histopathologic features associated with malignancy were evaluated (cellular density, nuclear pleomorphism, necroses, histologic architecture, vessels, and mitoses), each with defined gradations. The slides were read independently by two observers. The initially high interobserver variability (grade, 22.2%; type, 10.3%; and tumor presence/absence, 7.1%) was for the most part due to intermediate grades and types and was reduced to 1.7% after mutual review. Small samples showed lower mean grade than large samples and more often absence of tumor (7.6% versus 2.4%). Of all gliomas, 48% showed differently typed samples, 82% differently graded samples, and 62% benign and malignant grades. Intratumoral heterogeneity was higher for the necroses than for the other histopathologic features. Our results underscore the importance of extensive tissue sampling.
Doubled heterogeneous crystal nucleation in sediments of hard sphere binary-mass mixtures
NASA Astrophysics Data System (ADS)
Löwen, Hartmut; Allahyarov, Elshad
2011-10-01
Crystallization during the sedimentation process of a binary colloidal hard spheres mixture is explored by Brownian dynamics computer simulations. The two species are different in buoyant mass but have the same interaction diameter. Starting from a completely mixed system in a finite container, gravity is suddenly turned on, and the crystallization process in the sample is monitored. If the Peclet numbers of the two species are both not too large, crystalline layers are formed at the bottom of the cell. The composition of lighter particles in the sedimented crystal is non-monotonic in the altitude: it is first increasing, then decreasing, and then increasing again. If one Peclet number is large and the other is small, we observe the occurrence of a doubled heterogeneous crystal nucleation process. First, crystalline layers are formed at the bottom container wall which are separated from an amorphous sediment. At the amorphous-fluid interface, a secondary crystal nucleation of layers is identified. This doubled heterogeneous nucleation can be verified in real-space experiments on colloidal mixtures.
Lara, Alvaro R; Galindo, Enrique; Ramírez, Octavio T; Palomares, Laura A
2006-11-01
The presence of spatial gradients in fundamental culture parameters, such as dissolved gases, pH, concentration of substrates, and shear rate, among others, is an important problem that frequently occurs in large-scale bioreactors. This problem is caused by a deficient mixing that results from limitations inherent to traditional scale-up methods and practical constraints during large-scale bioreactor design and operation. When cultured in a heterogeneous environment, cells are continuously exposed to fluctuating conditions as they travel through the various zones of a bioreactor. Such fluctuations can affect cell metabolism, yields, and quality of the products of interest. In this review, the theoretical analyses that predict the existence of environmental gradients in bioreactors and their experimental confirmation are reviewed. The origins of gradients in common culture parameters and their effects on various organisms of biotechnological importance are discussed. In particular, studies based on the scale-down methodology, a convenient tool for assessing the effect of environmental heterogeneities, are surveyed.
Crystal nucleation and glass formation in metallic alloy melts
NASA Technical Reports Server (NTRS)
Spaepen, F.
1984-01-01
Homogeneous nucleation, containerless solidification, and bulk formation of metallic glasses are discussed. Homogeneous nucleation is not a limiting factor for metallic glass formation at slow cooling rates if the reduced glass transition temperature is high enough. Such glasses can be made in bulk if heterogeneous nucleants are removed. Containerless processing eleminates potential sources of nucleants, but as drop tube experiments on the Pd-Si alloys show, the free surface may still be a very effective heterogeneous nucleant. Combination of etching and heating in vacuum or fluxing can be effective for cleaning fairly large ingots of nucleants. Reduced gravity processing has a potentially useful role in the fluxing technique, for example to keep large metallic ingots surrounded by a low density, low fluidity flux if this proved difficult under ground conditions. For systems where heterogeneous nucleants in the bulk of the ingot need gravity to segregate to the flux-metal interface, reduced gravity processing may not be appropriate for bulk glass formation.
NASA Astrophysics Data System (ADS)
Nagaso, Masaru; Komatitsch, Dimitri; Moysan, Joseph; Lhuillier, Christian
2018-01-01
ASTRID project, French sodium cooled nuclear reactor of 4th generation, is under development at the moment by Alternative Energies and Atomic Energy Commission (CEA). In this project, development of monitoring techniques for a nuclear reactor during operation are identified as a measure issue for enlarging the plant safety. Use of ultrasonic measurement techniques (e.g. thermometry, visualization of internal objects) are regarded as powerful inspection tools of sodium cooled fast reactors (SFR) including ASTRID due to opacity of liquid sodium. In side of a sodium cooling circuit, heterogeneity of medium occurs because of complex flow state especially in its operation and then the effects of this heterogeneity on an acoustic propagation is not negligible. Thus, it is necessary to carry out verification experiments for developments of component technologies, while such kind of experiments using liquid sodium may be relatively large-scale experiments. This is why numerical simulation methods are essential for preceding real experiments or filling up the limited number of experimental results. Though various numerical methods have been applied for a wave propagation in liquid sodium, we still do not have a method for verifying on three-dimensional heterogeneity. Moreover, in side of a reactor core being a complex acousto-elastic coupled region, it has also been difficult to simulate such problems with conventional methods. The objective of this study is to solve these 2 points by applying three-dimensional spectral element method. In this paper, our initial results on three-dimensional simulation study on heterogeneous medium (the first point) are shown. For heterogeneity of liquid sodium to be considered, four-dimensional temperature field (three spatial and one temporal dimension) calculated by computational fluid dynamics (CFD) with Large-Eddy Simulation was applied instead of using conventional method (i.e. Gaussian Random field). This three-dimensional numerical experiment yields that we could verify the effects of heterogeneity of propagation medium on waves in Liquid sodium.
Li, Jinjing; Sologon, Denisa Maria
2014-01-01
This paper advances a structural inter-temporal model of labour supply that is able to simulate the dynamics of labour supply in a continuous setting and addresses two main drawbacks of most existing models. The first limitation is the inability to incorporate individual heterogeneity as every agent is sharing the same parameters of the utility function. The second one is the strong assumption that individuals make decisions in a world of perfect certainty. Essentially, this paper offers an extension of marginal-utility-of-wealth-constant labour supply functions known as “Frisch functions” under certainty and uncertainty with homogenous and heterogeneous preferences. The lifetime models based on the fixed effect vector decomposition yield the most stable simulation results, under both certain and uncertain future wage assumptions. Due to its improved accuracy and stability, this lifetime labour supply model is particularly suitable for enhancing the performance of the life cycle simulation models, thus providing a better reference for policymaking. PMID:25391021
Hedge, L H; Dafforn, K A; Simpson, S L; Johnston, E L
2017-06-30
Infrastructure associated with coastal communities is likely to not only directly displace natural systems, but also leave environmental footprints' that stretch over multiple scales. Some coastal infrastructure will, there- fore, generate a hidden layer of habitat heterogeneity in sediment systems that is not immediately observable in classical impact assessment frameworks. We examine the hidden heterogeneity associated with one of the most ubiquitous coastal modifications; dense swing moorings fields. Using a model based geo-statistical framework we highlight the variation in sedimentology throughout mooring fields and reference locations. Moorings were correlated with patches of sediment with larger particle sizes, and associated metal(loid) concentrations in these patches were depressed. Our work highlights two important ideas i) mooring fields create a mosaic of habitat in which contamination decreases and grain sizes increase close to moorings, and ii) model- based frameworks provide an information rich, easy-to-interpret way to communicate complex analyses to stakeholders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Using the heterogeneity distribution in Earth's mantle to study structure and flow
NASA Astrophysics Data System (ADS)
Rost, S.; Frost, D. A.; Bentham, H. L.
2016-12-01
The Earth's interior contains heterogeneities on many scale-lengths ranging from continent sized structures such as Large-Low Shear Velocity Provinces (LLSVPs) to grain-sized anomalies resolved using geochemistry. Sources of heterogeneity in Earth's mantle are for example the recycling of crustal material through the subduction process as well as partial melting and compositional variations. The subduction and recycling of oceanic crust throughout Earth's history leads to strong heterogeneities in the mantle that can be detected using seismology and geochemistry. Current models of mantle convection show that the subducted crustal material can be long-lived and is transported passively throughout the mantle by convective flows. Settling and entrainment is dependent on the density structure of the heterogeneity. Imaging heterogeneities throughout the mantle therefore allows imaging mantle flow especially in areas of inhibited flow due to e.g. viscosity changes or changes in composition or dynamics. The short-period seismic wavefield is dominated by scattered seismic energy partly originating from scattering at small-scale heterogeneities in Earth's mantle. Using specific raypath configurations we are able to sample different depths throughout Earth's mantle for the existence and properties of heterogeneities. These scattering probes show distinct variations in energy content with frequency indicating dominant heterogeneity length-scales in the mantle. We detect changes in heterogeneity structure both in lateral and radial directions. The radial heterogeneity structure requires changes in mantle structure at depths of 1000 km and 1800 to 2000 km that could indicate a change in viscosity structure in the mid mantle partly changing the flow of subducted crustal material into the deep mantle. Lateral changes in heterogeneity structure close to the core mantle boundary indicate lateral transport inhibited by the compositional anomalies of the LLSVPs.
The heterogeneous HLA genetic makeup of the Swiss population.
Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia
2012-01-01
This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also indicates that HLA data of local donor recruitment centers can be used as reference data in both epidemiological and population genetic studies focusing on the genetic history of present European populations.
Effects of Simple Leaching of Crushed and Powdered Materials on High-precision Pb Isotope Analyses
NASA Astrophysics Data System (ADS)
Todd, E.; Stracke, A.
2013-12-01
We present new results of simple leaching experiments on the Pb isotope composition of USGS standard reference material powders and on ocean island basalt whole rock splits and powders. Rock samples were leached with 6N HCl in two steps, first hot and then in an ultrasonic bath, and washed with ultrapure H2O before conventional sample digestion and chromatographic purification of Pb. Pb isotope analyses were determined with Tl-doped MC-ICP-MS. Intra- and inter-session analytical reproducibility of repeated analyses of both synthetic Pb solutions and Pb from single digests of chemically processed natural samples were generally < 100 ppm (2 S.D.). The comparison of leached and unleached samples shows that leaching reliably removes variable amounts of different contaminants for different starting materials. For repeated digests of a single sample, the leached samples reproduce better than the unleached ones, showing that leaching effectively removes heterogeneously distributed extraneous Pb. However, the reproducibility of repeated digests of variably contaminated natural samples is up to an order of magnitude worse than the analytical reproducibility of ca. 100 ppm. More complex leaching methods (e.g., Nobre Silva et al., 2009) yield Pb isotope ratios within error of and with similar reproducibility to our method, showing that the simple leaching method is reliable. The remaining Pb isotope heterogeneity of natural samples, which typically exceeds 100 ppm, is thus attributed to inherent isotopic sample heterogeneity. Tl-doped MC-ICP-MS Pb ratio determination is therefore a sufficiently precise method for Pb isotope analyses in natural rocks. More precise Pb double- or triple-spike methods (e.g., Galer, 1999; Thirlwall, 2000), may exploit their full potential only in cases where natural isotopic sample heterogeneity is demonstrably negligible. References: Galer, S., 1999, Chem. Geol. 157, 255-274. Nobre Silva, et al. 2009, Geochemistry Geophysics Geosystems 10, Q08012. Thirlwall, M.F., 2000, Chem. Geol. 163, 299-322.
The Heterogeneous HLA Genetic Makeup of the Swiss Population
Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia
2012-01-01
This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9–13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national—and hence global—donor registry. It also indicates that HLA data of local donor recruitment centers can be used as reference data in both epidemiological and population genetic studies focusing on the genetic history of present European populations. PMID:22848484
A morphing-based scheme for large deformation analysis with stereo-DIC
NASA Astrophysics Data System (ADS)
Genovese, Katia; Sorgente, Donato
2018-05-01
A key step in the DIC-based image registration process is the definition of the initial guess for the non-linear optimization routine aimed at finding the parameters describing the pixel subset transformation. This initialization may result very challenging and possibly fail when dealing with pairs of largely deformed images such those obtained from two angled-views of not-flat objects or from the temporal undersampling of rapidly evolving phenomena. To address this problem, we developed a procedure that generates a sequence of intermediate synthetic images for gradually tracking the pixel subset transformation between the two extreme configurations. To this scope, a proper image warping function is defined over the entire image domain through the adoption of a robust feature-based algorithm followed by a NURBS-based interpolation scheme. This allows a fast and reliable estimation of the initial guess of the deformation parameters for the subsequent refinement stage of the DIC analysis. The proposed method is described step-by-step by illustrating the measurement of the large and heterogeneous deformation of a circular silicone membrane undergoing axisymmetric indentation. A comparative analysis of the results is carried out by taking as a benchmark a standard reference-updating approach. Finally, the morphing scheme is extended to the most general case of the correspondence search between two largely deformed textured 3D geometries. The feasibility of this latter approach is demonstrated on a very challenging case: the full-surface measurement of the severe deformation (> 150% strain) suffered by an aluminum sheet blank subjected to a pneumatic bulge test.
NASA Astrophysics Data System (ADS)
Cécillon, Lauric; Quénéa, Katell; Anquetil, Christelle; Barré, Pierre
2015-04-01
Due to its large heterogeneity at all scales (from soil core to the globe), several measurements are often mandatory to get a meaningful value of a measured soil property. A large number of measurements can therefore be needed to study a soil property whatever the scale of the study. Moreover, several soil investigation techniques produce large and complex datasets, such as pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) which produces complex 3-way data. In this context, straightforward methods designed to speed up data treatments are needed to deal with large datasets. GC-MS pyrolysis (py-GCMS) is a powerful and frequently used tool to characterize soil organic matter (SOM). However, the treatment of the results of a py-GCMS analysis of soil sample is time consuming (number of peaks, co-elution, etc.) and the treatment of large data set of py-GCMS results is rather laborious. Moreover, peak position shifts and baseline drifts between analyses make the automation of GCMS programs data treatment difficult. These problems can be fixed using the Parallel Factor Analysis 2 (PARAFAC 2, Kiers et al., 1999; Bro et al., 1999). This algorithm has been applied frequently on chromatography data but has never been applied to analyses of SOM. We developed a Matlab routine based on existing Matlab packages dedicated to the simultaneous treatment of dozens of pyro-chromatograms mass spectra. We applied this routine on 40 soil samples. The benefits and expected improvements of our method will be discussed in our poster. References Kiers et al. (1999) PARAFAC2 - PartI. A direct fitting algorithm for the PARAFAC2 model. Journal of Chemometrics, 13: 275-294. Bro et al. (1999) PARAFAC2 - PartII. Modeling chromatographic data with retention time shifts. Journal of Chemometrics, 13: 295-309.
2013-01-01
Introduction Small-study effects refer to the fact that trials with limited sample sizes are more likely to report larger beneficial effects than large trials. However, this has never been investigated in critical care medicine. Thus, the present study aimed to examine the presence and extent of small-study effects in critical care medicine. Methods Critical care meta-analyses involving randomized controlled trials and reported mortality as an outcome measure were considered eligible for the study. Component trials were classified as large (≥100 patients per arm) and small (<100 patients per arm) according to their sample sizes. Ratio of odds ratio (ROR) was calculated for each meta-analysis and then RORs were combined using a meta-analytic approach. ROR<1 indicated larger beneficial effect in small trials. Small and large trials were compared in methodological qualities including sequence generating, blinding, allocation concealment, intention to treat and sample size calculation. Results A total of 27 critical care meta-analyses involving 317 trials were included. Of them, five meta-analyses showed statistically significant RORs <1, and other meta-analyses did not reach a statistical significance. Overall, the pooled ROR was 0.60 (95% CI: 0.53 to 0.68); the heterogeneity was moderate with an I2 of 50.3% (chi-squared = 52.30; P = 0.002). Large trials showed significantly better reporting quality than small trials in terms of sequence generating, allocation concealment, blinding, intention to treat, sample size calculation and incomplete follow-up data. Conclusions Small trials are more likely to report larger beneficial effects than large trials in critical care medicine, which could be partly explained by the lower methodological quality in small trials. Caution should be practiced in the interpretation of meta-analyses involving small trials. PMID:23302257
Challenges in the global-scale quantification of permafrost changes
NASA Astrophysics Data System (ADS)
Gruber, S.
2012-12-01
Permafrost underlies much of Earth's surface and interacts with climate, land-surface phenomena and human systems. This presentation highlights heterogeneity and near-isothermal ground, two simple and well-known phenomena, as important challenges for investigating current and future states of permafrost. Heterogeneity, which can be introduced by e.g., topography, vegetation or subsurface material, is shown to be important for large parts of the global permafrost areas based on two proxies calculated from a global model of permafrost distribution. The model is based on a 1km DEM and NCEP-NCAR as well as CRU TS 2.0 air temperature data. Near-isothermal ground occurs when heat flow into a volume of ground material is accompanied by only a minute temperature change due to the dominance of latent heat transfer near 0°C. This causes our monitoring systems, which are to a large part based on temperature measurements, to lose much of their sensitivity as an instrument to measure permafrost changes. The importance of this is argued for based on (a) the long duration that soil columns are usually exposed to this effect, (b) the abundance of boreholes with temperatures close to 0°C based on the IPY-TSP data set, and (c) the global abundance and relative importance of ground near 0°C. The results presented indicated that systems and methods of gathering permafrost evidence and monitoring data need to better account for heterogeneity and isothermal ground in order to maintain long-term relevance, and that in large-area models sub-grid heterogeneity needs explicit attention.
PBSM3D: A finite volume, scalar-transport blowing snow model for use with variable resolution meshes
NASA Astrophysics Data System (ADS)
Marsh, C.; Wayand, N. E.; Pomeroy, J. W.; Wheater, H. S.; Spiteri, R. J.
2017-12-01
Blowing snow redistribution results in heterogeneous snowcovers that are ubiquitous in cold, windswept environments. Capturing this spatial and temporal variability is important for melt and runoff simulations. Point scale blowing snow transport models are difficult to apply in fully distributed hydrological models due to landscape heterogeneity and complex wind fields. Many existing distributed snow transport models have empirical wind flow and/or simplified wind direction algorithms that perform poorly in calculating snow redistribution where there are divergent wind flows, sharp topography, and over large spatial extents. Herein, a steady-state scalar transport model is discretized using the finite volume method (FVM), using parameterizations from the Prairie Blowing Snow Model (PBSM). PBSM has been applied in hydrological response units and grids to prairie, arctic, glacier, and alpine terrain and shows a good capability to represent snow redistribution over complex terrain. The FVM discretization takes advantage of the variable resolution mesh in the Canadian Hydrological Model (CHM) to ensure efficient calculations over small and large spatial extents. Variable resolution unstructured meshes preserve surface heterogeneity but result in fewer computational elements versus high-resolution structured (raster) grids. Snowpack, soil moisture, and streamflow observations were used to evaluate CHM-modelled outputs in a sub-arctic and an alpine basin. Newly developed remotely sensed snowcover indices allowed for validation over large basins. CHM simulations of snow hydrology were improved by inclusion of the blowing snow model. The results demonstrate the key role of snow transport processes in creating pre-melt snowcover heterogeneity and therefore governing post-melt soil moisture and runoff generation dynamics.
Pincebourde, Sylvain; Murdock, Courtney C; Vickers, Mathew; Sears, Michael W
2016-07-01
When predicting the response of organisms to global change, models use measures of climate at a coarse resolution from general circulation models or from downscaled regional models. Organisms, however, do not experience climate at such large scales. The climate heterogeneity over a landscape and how much of that landscape an organism can sample will determine ultimately the microclimates experienced by organisms. This past few decades has seen an important increase in the number of studies reporting microclimatic patterns at small scales. This synthesis intends to unify studies reporting microclimatic heterogeneity (mostly temperature) at various spatial scales, to infer any emerging trends, and to discuss the causes and consequences of such heterogeneity for organismal performance and with respect to changing land use patterns and climate. First, we identify the environmental drivers of heterogeneity across the various spatial scales that are pertinent to ectotherms. The thermal heterogeneity at the local and micro-scales is mostly generated by the architecture or the geometrical features of the microhabitat. Then, the thermal heterogeneity experienced by individuals is modulated by behavior. Second, we survey the literature to quantify thermal heterogeneity from the micro-scale up to the scale of a landscape in natural habitats. Despite difficulties in compiling studies that differ much in their design and aims, we found that there is as much thermal heterogeneity across micro-, local and landscape scales, and that the temperature range is large in general (>9 °C on average, and up to 26 °C). Third, we examine the extent to which urban habitats can be used to infer the microclimatic patterns of the future. Urban areas generate globally drier and warmer microclimatic patterns and recent evidence suggest that thermal traits of ectotherms are adapted to them. Fourth, we explore the interplay between microclimate heterogeneity and the behavioral thermoregulatory abilities of ectotherms in setting their overall performance. We used a random walk framework to show that the thermal heterogeneity allows a more precise behavioral thermoregulation and a narrower temperature distribution of the ectotherm compared to less heterogeneous microhabitats. Finally, we discuss the potential impacts of global change on the fine scale mosaics of microclimates. The amplitude of change may differ between spatial scales. In heterogeneous microhabitats, the amplitude of change at micro-scale, caused by atmospheric warming, can be substantial while it can be limited at the local and landscape scales. We suggest that the warming signal will influence species performance and biotic interactions by modulating the mosaic of microclimates. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Principle of Parsimony, Fake Science, and Scales
NASA Astrophysics Data System (ADS)
Yeh, T. C. J.; Wan, L.; Wang, X. S.
2017-12-01
Considering difficulties in predicting exact motions of water molecules, and the scale of our interests (bulk behaviors of many molecules), Fick's law (diffusion concept) has been created to predict solute diffusion process in space and time. G.I. Taylor (1921) demonstrated that random motion of the molecules reach the Fickian regime in less a second if our sampling scale is large enough to reach ergodic condition. Fick's law is widely accepted for describing molecular diffusion as such. This fits the definition of the parsimony principle at the scale of our concern. Similarly, advection-dispersion or convection-dispersion equation (ADE or CDE) has been found quite satisfactory for analysis of concentration breakthroughs of solute transport in uniformly packed soil columns. This is attributed to the solute is often released over the entire cross-section of the column, which has sampled many pore-scale heterogeneities and met the ergodicity assumption. Further, the uniformly packed column contains a large number of stationary pore-size heterogeneity. The solute thus reaches the Fickian regime after traveling a short distance along the column. Moreover, breakthrough curves are concentrations integrated over the column cross-section (the scale of our interest), and they meet the ergodicity assumption embedded in the ADE and CDE. To the contrary, scales of heterogeneity in most groundwater pollution problems evolve as contaminants travel. They are much larger than the scale of our observations and our interests so that the ergodic and the Fickian conditions are difficult. Upscaling the Fick's law for solution dispersion, and deriving universal rules of the dispersion to the field- or basin-scale pollution migrations are merely misuse of the parsimony principle and lead to a fake science ( i.e., the development of theories for predicting processes that can not be observed.) The appropriate principle of parsimony for these situations dictates mapping of large-scale heterogeneities as detailed as possible and adapting the Fick's law for effects of small-scale heterogeneity resulting from our inability to characterize them in detail.
Potential for geophysical experiments in large scale tests.
Dieterich, J.H.
1981-01-01
Potential research applications for large-specimen geophysical experiments include measurements of scale dependence of physical parameters and examination of interactions with heterogeneities, especially flaws such as cracks. In addition, increased specimen size provides opportunities for improved recording resolution and greater control of experimental variables. Large-scale experiments using a special purpose low stress (100MPa).-Author
WE-E-17A-06: Assessing the Scale of Tumor Heterogeneity by Complete Hierarchical Segmentation On MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gensheimer, M; Trister, A; Ermoian, R
2014-06-15
Purpose: In many cancers, intratumoral heterogeneity exists in vascular and genetic structure. We developed an algorithm which uses clinical imaging to interrogate different scales of heterogeneity. We hypothesize that heterogeneity of perfusion at large distance scales may correlate with propensity for disease recurrence. We applied the algorithm to initial diagnosis MRI of rhabdomyosarcoma patients to predict recurrence. Methods: The Spatial Heterogeneity Analysis by Recursive Partitioning (SHARP) algorithm recursively segments the tumor image. The tumor is repeatedly subdivided, with each dividing line chosen to maximize signal intensity difference between the two subregions. This process continues to the voxel level, producing segmentsmore » at multiple scales. Heterogeneity is measured by comparing signal intensity histograms between each segmented region and the adjacent region. We measured the scales of contrast enhancement heterogeneity of the primary tumor in 18 rhabdomyosarcoma patients. Using Cox proportional hazards regression, we explored the influence of heterogeneity parameters on relapse-free survival (RFS). To compare with existing methods, fractal and Haralick texture features were also calculated. Results: The complete segmentation produced by SHARP allows extraction of diverse features, including the amount of heterogeneity at various distance scales, the area of the tumor with the most heterogeneity at each scale, and for a given point in the tumor, the heterogeneity at different scales. 10/18 rhabdomyosarcoma patients suffered disease recurrence. On contrast-enhanced MRI, larger scale of maximum signal intensity heterogeneity, relative to tumor diameter, predicted for shorter RFS (p=0.05). Fractal dimension, fractal fit, and three Haralick features did not predict RFS (p=0.09-0.90). Conclusion: SHARP produces an automatic segmentation of tumor regions and reports the amount of heterogeneity at various distance scales. In rhabdomyosarcoma, RFS was shorter when the primary tumor exhibited larger scale of heterogeneity on contrast-enhanced MRI. If validated on a larger dataset, this imaging biomarker could be useful to help personalize treatment.« less
Sezgin, Erdinc; Levental, Ilya; Mayor, Satyajit; Eggeling, Christian
2017-01-01
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large body of research has focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, wherein the preferential associations of cholesterol and saturated lipids drives the formation of relatively packed (ordered) membrane domains that selectively recruit certain lipids and proteins. Recent years have yielded new insights into this concept and its in vivo relevance, primarily owing to the development of biochemical and biophysical technologies. PMID:28356571
Genetic Advances in Autism: Heterogeneity and Convergence on Shared Pathways
Bill, Brent R.; Geschwind, Daniel H.
2009-01-01
The autism spectrum disorders (ASD) are a heterogeneous set of developmental disorders characterized at their core by deficits in social interaction and communication. Current psychiatric nosology groups this broad set of disorders with strong genetic liability and multiple etiologies into the same diagnostic category. This heterogeneity has challenged genetic analyses. But shared patient resources, genomic technologies, more refined phenotypes, and novel computational approaches have begun to yield dividends in defining the genetic mechanisms at work. Over the last five years, a large number of autism susceptibility loci have emerged, redefining our notion of autism’s etiologies, and reframing how we think about ASD. PMID:19477629
CTD² in Action: Translating High-Content Genomic Data into New Therapies | Office of Cancer Genomics
Large-scale molecular analyses have provided an unprecedented global view of the molecular defects in cancers and promise to revolutionize precision cancer medicine by guiding the development of therapies that are matched to genomic alterations in tumors. Cancer is a heterogeneous disease which explains why there are varying responses to therapy. This heterogeneity poses a daunting challenge for clinicians managing a patient’s disease.
NASA Astrophysics Data System (ADS)
Xu, Junshan; Zhang, Baohua
2018-03-01
Development of stress heterogeneity in two-phase rocks was investigated via a finite element method at 1000-1200 K and 100 MPa. Two groups of rock models were considered: anorthite-diopside and anorthite-clinopyroxene, with a phase volume ratio of 1:1 in each group and different dislocation creep rates between phases ( 4-8 orders of magnitude). Our numerical results indicate that the stress inside the model can be several times higher than the differential stress applied to the model and stress will tend to concentrate in hard phase, especially near the sharp boundaries with soft phase. Moreover, large stress gradient in hard phase and nearly homogeneous stress in soft phase will lead to the initialization of localized dynamic recrystallization or fracture. These numerical observations suggest that the rheological contrast between two phases plays a crucial role in stress heterogeneity rather than other factors (such as grain size, the boundary conditions or mesh density), which may eventually accelerate development of stress heterogeneity in the lower crust. Our study provides new insights into the dynamic processes of grain size reduction in the lower crust, which may cause the transformation from dislocation creep to diffusion creep and enable the weakened shear zones.
Role of Hydrodynamic and Mineralogical Heterogeneities on Reactive Transport Processes.
NASA Astrophysics Data System (ADS)
Luquot, L.; Garcia-Rios, M.; soler Sagarra, J.; Gouze, P.; Martinez-Perez, L.; Carrera, J.
2017-12-01
Predicting reactive transport at large scale, i.e., Darcy- and field- scale, is still challenging considering the number of heterogeneities that may be present from nm- to pore-scale. It is well documented that conventional continuum-scale approaches oversimplify and/or ignore many important aspects of rock structure, chemical reactions, fluid displacement and transport, which, as a consequence, results in uncertainties when applied to field-scale operations. The changes in flow and reactive transport across the different spatial and temporal scales are of central concern in many geological applications such as groundwater systems, geo-energy, rock building heritage and geological storage... In this presentation, we will discuss some laboratory and numerical results on how local heterogeneities (structural, hydrodynamic and mineralogical) can affect the localization and the rate of the reaction processes. Different flow through laboratory experiments using various rock samples will be presented, from simple monomineral rocks such as limestone samples, and more complex rocks composed of different minerals with a large range of kinetic reactions. A new numerical approach based on multirate water mixing approach will be presented and applied to one of the laboratory experiment in order to analyze and distinguish the effect of the mineralogy distribution and the hydrodynamic heterogeneity on the total reaction rate.
Uchida, Yuichiro; Masui, Toshihiko; Sato, Asahi; Nagai, Kazuyuki; Anazawa, Takayuki; Takaori, Kyoichi; Uemoto, Shinji
2018-03-27
Peripancreatic collections occur frequently after distal pancreatectomy. However, the sequelae of peripancreatic collections vary from case to case, and their clinical impact is uncertain. In this study, the correlations between CT findings of peripancreatic collections and complications after distal pancreatectomy were investigated. Ninety-six consecutive patients who had undergone distal pancreatectomy between 2010 and 2015 were retrospectively investigated. The extent and heterogeneity of peripancreatic collections and background clinicopathological characteristics were analyzed. The extent of peripancreatic collections was calculated based on three-dimensional computed tomography images, and the degree of heterogeneity of peripancreatic collections was assessed based on the standard deviation of their density on computed tomography. Of 85 patients who underwent postoperative computed tomography imaging, a peripancreatic collection was detected in 77 (91%). Patients with either a large extent or a high degree of heterogeneity of peripancreatic collection had a significantly higher rate of clinically relevant pancreatic fistula than those without (odds ratio 5.95, 95% confidence interval 2.12-19.72, p = 0.001; odds ratio 8.0, 95% confidence interval 2.87-24.19, p = 0.0001, respectively). A large and heterogeneous peripancreatic collection was significantly associated with postoperative complications, especially clinically relevant postoperative pancreatic fistula. A small and homogenous peripancreatic collection could be safely observed.
Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer
NASA Astrophysics Data System (ADS)
Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael
2014-12-01
Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.
Landsat-TM identification of Amblyomma variegatum (Acari: Ixodidae) habitats in Guadeloupe
NASA Technical Reports Server (NTRS)
Hugh-Jones, M.; Barre, N.; Nelson, G.; Wehnes, K.; Warner, J.; Garvin, J.; Garris, G.
1992-01-01
The feasibility of identifying specific habitats of the African bont tick, Amblyomma variegatum, from Landsat-TM images was investigated by comparing remotely sensed images of visible farms in Grande Terre (Guadeloupe) with field observations made in the same period of time (1986-1987). The different tick habitates could be separated using principal component analysis. The analysis clustered the sites by large and small variance of band values, and by vegetation and moisture indexes. It was found that herds in heterogeneous sites with large variances had more ticks than those in homogeneous or low variance sites. Within the heterogeneous sites, those with high vegetation and moisture indexes had more ticks than those with low values.
Composite catalyst surfaces: Effect of inert and active heterogeneities on pattern formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.; Bangia, A.K.; Kevrekidis, I.G.
1996-12-05
Spatiotemporal dynamics in reaction-diffusion systems can be altered through the properties (reactivity, diffusivity) of the medium in which they occur. We construct active heterogeneous media (composite catalytic surfaces with inert as well as active illusions) using microelectronics fabrication techniques and study the spatiotemporal dynamics of heterogeneous catalytic reactions on these catalysts. In parallel, we perform simulations as well as numerical stability and bifurcation analysis of these patterns using mechanistic models. At the limit of large heterogeneity `grain size` (compared to the wavelength of spontaneously arising structures) the interaction patterns with inert or active boundaries dominates (e.g., pinning, transmission, and boundarymore » breakup of spirals, interaction of pulses with corners, `pacemaker` effects). At the opposite limit of very small or very finely distributed heterogeneity, effective behavior is observed (slight modulation of pulses, nearly uniform oscillations, effective spirals). Some representative studies of transitions between the two limits are presented. 48 refs., 11 figs.« less
NASA Astrophysics Data System (ADS)
Kuras, E. R.; Hondula, D. M.; Brown-Saracino, J.
2015-10-01
Urban environmental health hazards, including exposure to extreme heat, have become increasingly important to understand in light of ongoing climate change and urbanization. In cities, neighborhoods are often considered a homogenous and appropriate unit with which to assess heat risk. This manuscript presents results from a pilot study examining the variability of individually experienced temperatures (IETs) within a single urban neighborhood. In July 2013, 23 research participants were recruited from the South End neighborhood of Boston and equipped with Thermochron iButtons that measured the air temperatures surrounding individuals as they went about their daily lives. IETs were measured during a heat wave period (July 17-20), which included 2 days with excessive heat warnings and 1 day with a heat advisory, as well as a reference period (July 20-23) in which temperatures were below seasonal averages. IETs were not homogeneous during the heat wave period; mean IETs were significantly different between participants ( p < 0.001). The majority of participants recorded IETs significantly lower than outdoor ambient temperatures (OATs), and on average, the mean IET was 3.7 °C below the mean OAT. Compared with IETs during the reference period, IETs during the heat wave period were 1.0 °C higher. More than half of participants did not experience statistically different temperatures between the two test periods, despite the fact that the mean OAT was 6.5 °C higher during the heat wave period. The IET data collected for this sample and study period suggest that (1) heterogeneity in individual heat exposure exists within this neighborhood and that (2) outdoor temperatures misrepresent the mean experienced temperatures during a heat wave period. Individual differences in attributes (gender, race, socioeconomic status, etc.), behaviors (schedules, preferences, lifestyle, etc.), and access to resources are overlooked determinants of heat exposure and should be better integrated with group- and neighborhood-level characteristics. Understanding IETs for the population at large may lead to innovative advances in heat-health intervention and mitigation strategies.
Yu, Zhenhua; Li, Ao; Wang, Minghui
2017-03-15
Copy number alterations (CNA) and loss of heterozygosity (LOH) represent a large proportion of genetic structural variations of cancer genomes. These aberrations are continuously accumulated during the procedure of clonal evolution and patterned by phylogenetic branching. This invariably results in the emergence of multiple cell populations with distinct complement of mutational landscapes in tumor sample. With the advent of next-generation sequencing technology, inference of subclonal populations has become one of the focused interests in cancer-associated studies, and is usually based on the assessment of combinations of somatic single-nucleotide variations (SNV), CNA and LOH. However, cancer samples often have several inherent issues, such as contamination of normal stroma, tumor aneuploidy and intra-tumor heterogeneity. Addressing these critical issues is imperative for accurate profiling of clonal architecture. We present CLImAT-HET, a computational method designed for capturing clonal diversity in the CNA/LOH dimensions by taking into account the intra-tumor heterogeneity issue, in the case where a reference or matched normal sample is absent. The algorithm quantitatively represents the clonal identification problem using a factorial hidden Markov model, and takes an integrated analysis of read counts and allele frequency data. It is able to infer subclonal CNA and LOH events as well as the fraction of cells harboring each event. The results on simulated datasets indicate that CLImAT-HET has high power to identify CNA/LOH segments, it achieves an average accuracy of 0.87. It can also accurately infer proportion of each clonal population with an overall Pearson correlation coefficient of 0.99 and a mean absolute error of 0.02. CLImAT-HET shows significant advantages when compared with other existing methods. Application of CLImAT-HET to 5 primary triple negative breast cancer samples demonstrates its ability to capture clonal diversity in the CAN/LOH dimensions. It detects two clonal populations in one sample, and three clonal populations in one other sample. CLImAT-HET, a novel algorithm is introduced to infer CNA/LOH segments from heterogeneous tumor samples. We demonstrate CLImAT-HET's ability to accurately recover clonal compositions using tumor WGS data without a match normal sample.
Shahid, Murtuza; Sun, Run L; Liu, Yu; Bao, Jin L; Huang, Can X; Liao, Yu; Zhou, Shu X; Wang, Jing F; Zhang, Yu L
2016-05-01
To clarify the association between premature coronary heart disease of patients ≤55 years and high-density lipoprotein cholesterol (HDL-C) plasma levels. Searches were performed between 2002 and 2013 using PubMed, Web of Science, Science Direct, and Google Scholar. The original articles selected published premature coronary heart disease diagnosed by World Health Organization criteria or via angiograph both in males and females ≤55 years and with plasma HDL-C levels in both the case and control groups. The 'related articles' function and manual searches of the related references was used to broaden the search. The Newcastle-Ottawa Quality Assessment Scale was used to assess the quality of papers. Standard mean difference with 95% confidence interval was used as a measure of the association between HDL and premature coronary heart disease, after pooling data across trials in a random effect model. Sensitivity and subgroup analyses were used to explore sources of heterogeneity and the effect of potential confounders. The influences of publication year, sample size and district were assessed by meta-regression. STATA (version 11.0) was used to conduct all statistical analyses. Only 13 case-control studies met the criteria, which included 1775 patients and 1989 controls. The Newcastle-Ottawa Quality Assessment Scale score was about 5-7. A strong association was identified between HDL-C and premature coronary heart disease. The premature coronary heart disease patients had lower levels of HDL-C compared with the controls: standard mean difference = -0.48, 95% confidence interval = -0.71 to -0.26, p < 0.001, pheterogeneity < 0.001. By meta-regression and subgroup analysis, we found publication year might be the source of heterogeneity, but not the main reason for heterogeneity. After removing the heterogeneity of outlier studies, the significant association between low HDL-C levels and premature coronary heart disease was still retained. Low plasma HDL-C levels are positively associated with premature coronary heart disease in patients ≤55 years. As only small sample size case-control studies were found to focus on this age group in the last 10 years, additional population-based cohort studies with large samples are necessary. © The European Society of Cardiology 2015.
Genomic prediction based on data from three layer lines using non-linear regression models.
Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L
2014-11-06
Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional occurrence of large negative accuracies when the evaluated line was not included in the training dataset. Furthermore, when using a multi-line training dataset, non-linear models provided information on the genotype data that was complementary to the linear models, which indicates that the underlying data distributions of the three studied lines were indeed heterogeneous.
Danese, Elisa; Salvagno, Gian Luca; Negrini, Davide; Brocco, Giorgio; Montagnana, Martina; Lippi, Giuseppe
2017-01-01
Although the clinical significance of measuring bile acids concentration in plasma or serum has been recognized for long in patients with hepatobiliary disease and/or bile acid malabsorption, the reference separation techniques are expensive and mostly unsuitable for early diagnosis and for measuring large volumes of samples. Therefore, this study was aimed to evaluate the analytical performance of three commercial enzymatic techniques for measuring total bile acids in plasma using a fully-automated clinical chemistry platform. Three commercial enzymatic assays (from Diazyme, Randox and Sentinel) were adapted for use on a Cobas Roche c501. We performed imprecision and linearity studies, and we compared results with those obtained using a reference liquid chromatography-mass spectrometry (LC-MS) technique on an identical set of lithium-heparin plasma samples. Total imprecision was optimal, always equal or lower than 3%. All assays had optimal linearity between 3-138 μmol/L. The comparison studies showed good correlation with LC-MS data (Spearman's correlation coefficients always >0.92), but all plasma samples values were significantly underestimated using the commercial enzymatic assays (-44% for Diazyme, -16% for Randox and -12% for Sentinel). The agreement at the 10 and 40 μmol/L diagnostic thresholds of total bile acids in plasma ranged between 86-92%. This discrepancy was found to be mainly attributable to a heterogeneous composition in terms of bile acids content of the three assay calibrators. This study suggests that the analytical performance of the three commercial enzymatic assays is excellent, thus confirming that automation of this important test by means of enzymatic assessment may be feasible, practical, reliable and supposedly cheap. Nevertheless, the underestimation of values compared to the reference LC-MS also suggests that the local definition and validation of reference ranges according to the combination between the specific enzymatic assay and the different clinical chemistry platforms may be advisable.
ICESat laser altimetry over small mountain glaciers
NASA Astrophysics Data System (ADS)
Treichler, Désirée; Kääb, Andreas
2016-09-01
Using sparsely glaciated southern Norway as a case study, we assess the potential and limitations of ICESat laser altimetry for analysing regional glacier elevation change in rough mountain terrain. Differences between ICESat GLAS elevations and reference elevation data are plotted over time to derive a glacier surface elevation trend for the ICESat acquisition period 2003-2008. We find spatially varying biases between ICESat and three tested digital elevation models (DEMs): the Norwegian national DEM, SRTM DEM, and a high-resolution lidar DEM. For regional glacier elevation change, the spatial inconsistency of reference DEMs - a result of spatio-temporal merging - has the potential to significantly affect or dilute trends. Elevation uncertainties of all three tested DEMs exceed ICESat elevation uncertainty by an order of magnitude, and are thus limiting the accuracy of the method, rather than ICESat uncertainty. ICESat matches glacier size distribution of the study area well and measures small ice patches not commonly monitored in situ. The sample is large enough for spatial and thematic subsetting. Vertical offsets to ICESat elevations vary for different glaciers in southern Norway due to spatially inconsistent reference DEM age. We introduce a per-glacier correction that removes these spatially varying offsets, and considerably increases trend significance. Only after application of this correction do individual campaigns fit observed in situ glacier mass balance. Our correction also has the potential to improve glacier trend significance for other causes of spatially varying vertical offsets, for instance due to radar penetration into ice and snow for the SRTM DEM or as a consequence of mosaicking and merging that is common for national or global DEMs. After correction of reference elevation bias, we find that ICESat provides a robust and realistic estimate of a moderately negative glacier mass balance of around -0.36 ± 0.07 m ice per year. This regional estimate agrees well with the heterogeneous but overall negative in situ glacier mass balance observed in the area.
Case retrieval in medical databases by fusing heterogeneous information.
Quellec, Gwénolé; Lamard, Mathieu; Cazuguel, Guy; Roux, Christian; Cochener, Béatrice
2011-01-01
A novel content-based heterogeneous information retrieval framework, particularly well suited to browse medical databases and support new generation computer aided diagnosis (CADx) systems, is presented in this paper. It was designed to retrieve possibly incomplete documents, consisting of several images and semantic information, from a database; more complex data types such as videos can also be included in the framework. The proposed retrieval method relies on image processing, in order to characterize each individual image in a document by their digital content, and information fusion. Once the available images in a query document are characterized, a degree of match, between the query document and each reference document stored in the database, is defined for each attribute (an image feature or a metadata). A Bayesian network is used to recover missing information if need be. Finally, two novel information fusion methods are proposed to combine these degrees of match, in order to rank the reference documents by decreasing relevance for the query. In the first method, the degrees of match are fused by the Bayesian network itself. In the second method, they are fused by the Dezert-Smarandache theory: the second approach lets us model our confidence in each source of information (i.e., each attribute) and take it into account in the fusion process for a better retrieval performance. The proposed methods were applied to two heterogeneous medical databases, a diabetic retinopathy database and a mammography screening database, for computer aided diagnosis. Precisions at five of 0.809 ± 0.158 and 0.821 ± 0.177, respectively, were obtained for these two databases, which is very promising.
NASA Astrophysics Data System (ADS)
Loranty, Michael M.; Mackay, D. Scott; Ewers, Brent E.; Traver, Elizabeth; Kruger, Eric L.
2010-12-01
We have used an ecosystem model, TREES (Terrestrial Regional Ecosystem Exchange Simulator), to test the hypothesis that competition for light limits reference canopy stomatal conductance (GSref; conductance at 1 kPa vapor pressure deficit) for individual tree crowns. Sap flux (JS) data was collected at an aspen-dominated unmanaged early successional site, and at a sugar maple dominated midsuccessional site managed for timber production. Using a Monte Carlo approach, JS scaled canopy transpiration (EC) estimates were used to parameterize two versions of the model for each tree individually; a control model treated trees as isolated individuals, and a modified version incorporated the shading effects of neighboring individuals on incident radiation. Agreement between simulated and observed EC was better for maple than for aspen using the control model. Accounting for canopy heterogeneity using a three-dimensional canopy representation had minimal effects on estimates of GSref or model performance for individual maples. At the Aspen site the modified model resulted in improved EC estimates, particularly for trees with lower GSref and more shading by neighboring individuals. Our results imply a link between photosynthetic capacity, as mediated by competitive light environment, and GSref. We conclude that accounting for the effects of canopy heterogeneity on incident radiation improves modeled estimates of canopy carbon and water fluxes, especially for shade intolerant species. Furthermore our results imply a link between ecosystem structure and function that may be exploited to elucidate the impacts of forest structural heterogeneity on ecosystem fluxes of carbon and water via LiDAR remote sensing.
Review of utility values for economic modeling in type 2 diabetes.
Beaudet, Amélie; Clegg, John; Thuresson, Per-Olof; Lloyd, Adam; McEwan, Phil
2014-06-01
Economic analysis in type 2 diabetes mellitus (T2DM) requires an assessment of the effect of a wide range of complications. The objective of this article was to identify a set of utility values consistent with the National Institute for Health and Care Excellence (NICE) reference case and to critically discuss and illustrate challenges in creating such a utility set. A systematic literature review was conducted to identify studies reporting utility values for relevant complications. The methodology of each study was assessed for consistency with the NICE reference case. A suggested set of utility values applicable to modeling was derived, giving preference to studies reporting multiple complications and correcting for comorbidity. The review considered 21 relevant diabetes complications. A total of 16,574 articles were identified; after screening, 61 articles were assessed for methodological quality. Nineteen articles met NICE criteria, reporting utility values for 20 of 21 relevant complications. For renal transplant, because no articles meeting NICE criteria were identified, two articles using other methodologies were included. Index value estimates for T2DM without complication ranged from 0.711 to 0.940. Utility decrement associated with complications ranged from 0.014 (minor hypoglycemia) to 0.28 (amputation). Limitations associated with the selection of a utility value for use in economic modeling included variability in patient recruitment, heterogeneity in statistical analysis, large variability around some point estimates, and lack of recent data. A reference set of utility values for T2DM and its complications in line with NICE requirements was identified. This research illustrates the challenges associated with systematically selecting utility data for economic evaluations. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Habitat Restoration and Monitoring in Urban Streams: The Case of Tryon Creek in Portland, OR
NASA Astrophysics Data System (ADS)
Rios Touma, B. P.; Prescott, C.; Axtell, S.; Kondolf, G. M.
2013-12-01
Habitat enhancement in urban streams can be important for threatened species but challenging, because of altered catchment hydrology and urban encroachment on floodplains and channel banks. In Portland (OR) restoration actions have been undertaken at the watershed scale (e.g.: storm water management, protection of sites with high watershed value) to improve water quality, and at reach scale, when water quality and quantity are adequate, to increase habitat heterogeneity and stabilize banks. To evaluate reach-scale restoration projects in the Tryon Creek watershed, we sampled benthic macroinvertebrates and conducted habitat quality surveys pre-project and over 4 years post- project. Species sensitive to pollution and diversity of trophic groups increased after restoration. Although taxonomical diversity increased after restoration, but was still low compared to reference streams. We found no significant changes in trait proportions and functional diversity. Functional diversity, proportion of shredders and semivoltine invertebrates were significantly higher in reference streams than the restored stream reaches. We hypothesized that inputs of coarse particulate organic matter and land use at watershed scale may explain the differences in biodiversity between restored and reference stream reaches. Variables such as substrate composition, canopy cover or large wood pieces did not change from pre- to post-project, so could not explain the changes in the community. This may have been partly attributable to insensitivity of the visual estimate methods used, but likely also reflects an importance influence of watershed variables on aquatic biota - suggesting watershed actions may be more effective for the ecological recovery of streams. For future projects, we recommend multihabitat benthic sampling supported by studies of channel geomorphology to better understand stream response to restoration actions.
ARE LAKES GETTING WARMER? REMOTE SENSING OF LARGE LAKE TEMPERATURES
Recent studies (Levitus et al., 2000) suggest a warning of the world ocean over the past 50 years. Freshwater lakes could also be getting warmer but thermal measurements to determine this are lacking. Large lake temperatures are vertically and horizontally heterogeneous and vary ...
Tolsma, J; van der Meer, T W G
2017-01-01
The constrict claim that ethnic heterogeneity drives down social trust has been empirically tested across the globe. Meta-analyses suggest that neighbourhood ethnic heterogeneity generally undermines ties within the neighbourhood (such as trust in neighbours), but concurrently has an inconsistent or even positive effect on interethnic ties (such as outgroup trust). While the composition of the living environment thus often seems to matter, when and where remain unclear. We contribute to the literature by: (1) scrutinizing the extent to which ethnic heterogeneity drives down trust in coethnic neighbours, non-coethnic neighbours, unknown neighbours and unknown non-neighbours similarly; (2) comparing effects of heterogeneity aggregated to geographical areas that vary in scale and type of boundary; and (3) assessing whether the impact of heterogeneity of the local area depends on the wider geographic context. We test our hypotheses on the Religion in Dutch Society 2011-2012 dataset, supplemented with uniquely detailed GIS-data of Statistics Netherlands. Our dependent variables are four different so-called wallet-items, which we model through spatial and multilevel regression techniques. We demonstrate that both trust in non-coethnic and coethnic neighbours are lower in heterogeneous environments. Trust in people outside the neighbourhood is not affected by local heterogeneity. Measures of heterogeneity aggregated to relatively large scales, such as, administrative municipalities and egohoods with a 4000 m radius, demonstrate the strongest negative relationships with our trust indicators.
Landscape heterogeneity-biodiversity relationship: effect of range size.
Katayama, Naoki; Amano, Tatsuya; Naoe, Shoji; Yamakita, Takehisa; Komatsu, Isamu; Takagawa, Shin-ichi; Sato, Naoto; Ueta, Mutsuyuki; Miyashita, Tadashi
2014-01-01
The importance of landscape heterogeneity to biodiversity may depend on the size of the geographic range of species, which in turn can reflect species traits (such as habitat generalization) and the effects of historical and contemporary land covers. We used nationwide bird survey data from Japan, where heterogeneous landscapes predominate, to test the hypothesis that wide-ranging species are positively associated with landscape heterogeneity in terms of species richness and abundance, whereas narrow-ranging species are positively associated with landscape homogeneity in the form of either open or forest habitats. We used simultaneous autoregressive models to explore the effects of climate, evapotranspiration, and landscape heterogeneity on the richness and abundance of breeding land-bird species. The richness of wide-ranging species and the total species richness were highest in heterogeneous landscapes, where many wide-ranging species showed the highest abundance. In contrast, the richness of narrow-ranging species was not highest in heterogeneous landscapes; most of those species were abundant in either open or forest landscapes. Moreover, in open landscapes, narrow-ranging species increased their species richness with decreasing temperature. These results indicate that heterogeneous landscapes are associated with rich bird diversity but that most narrow-ranging species prefer homogeneous landscapes--particularly open habitats in colder regions, where grasslands have historically predominated. There is a need to reassess the generality of the heterogeneity-biodiversity relationship, with attention to the characteristics of species assemblages determined by environments at large spatiotemporal scales.
NASA Astrophysics Data System (ADS)
Newman, Andrew J.; Richardson, Casey L.; Kain, Sean M.; Stankiewicz, Paul G.; Guseman, Paul R.; Schreurs, Blake A.; Dunne, Jeffrey A.
2016-05-01
This paper introduces the game of reconnaissance blind multi-chess (RBMC) as a paradigm and test bed for understanding and experimenting with autonomous decision making under uncertainty and in particular managing a network of heterogeneous Intelligence, Surveillance and Reconnaissance (ISR) sensors to maintain situational awareness informing tactical and strategic decision making. The intent is for RBMC to serve as a common reference or challenge problem in fusion and resource management of heterogeneous sensor ensembles across diverse mission areas. We have defined a basic rule set and a framework for creating more complex versions, developed a web-based software realization to serve as an experimentation platform, and developed some initial machine intelligence approaches to playing it.
Sadiq, Faizan A; Flint, Steve; Li, YanJun; Ou, Kai; Yuan, Lei; He, Guo Qing
2017-09-01
Phenotypic changes or phase variation within biofilms is an important feature of bacterial dormant life. Enhanced resistance to antimicrobials is one of the distinct features displayed by a fraction of cells within biofilms. It is believed that persisters are mainly responsible for this phenotypic heterogeneity. However, there is still an unresolved debate on the formation of persisters. In this short review, we highlight all known genomic and proteomic changes encountered by bacterial cells within biofilms. We have also described all phenotypic changes displayed by bacterial cells within biofilms with particular emphasis on enhanced antimicrobial tolerance of biofilms with particular reference to persisters. In addition, all currently known models of persistence have been succinctly discussed.
Yurk, Brian P
2018-07-01
Animal movement behaviors vary spatially in response to environmental heterogeneity. An important problem in spatial ecology is to determine how large-scale population growth and dispersal patterns emerge within highly variable landscapes. We apply the method of homogenization to study the large-scale behavior of a reaction-diffusion-advection model of population growth and dispersal. Our model includes small-scale variation in the directed and random components of movement and growth rates, as well as large-scale drift. Using the homogenized model we derive simple approximate formulas for persistence conditions and asymptotic invasion speeds, which are interpreted in terms of residence index. The homogenization results show good agreement with numerical solutions for environments with a high degree of fragmentation, both with and without periodicity at the fast scale. The simplicity of the formulas, and their connection to residence index make them appealing for studying the large-scale effects of a variety of small-scale movement behaviors.
Gavaldà-Miralles, Arnau; Choffnes, David R; Otto, John S; Sánchez, Mario A; Bustamante, Fabián E; Amaral, Luís A N; Duch, Jordi; Guimerà, Roger
2014-10-28
Tens of millions of individuals around the world use decentralized content distribution systems, a fact of growing social, economic, and technological importance. These sharing systems are poorly understood because, unlike in other technosocial systems, it is difficult to gather large-scale data about user behavior. Here, we investigate user activity patterns and the socioeconomic factors that could explain the behavior. Our analysis reveals that (i) the ecosystem is heterogeneous at several levels: content types are heterogeneous, users specialize in a few content types, and countries are heterogeneous in user profiles; and (ii) there is a strong correlation between socioeconomic indicators of a country and users behavior. Our findings open a research area on the dynamics of decentralized sharing ecosystems and the socioeconomic factors affecting them, and may have implications for the design of algorithms and for policymaking.
Blasting methods for heterogeneous rocks in hillside open-pit mines with high and steep slopes
NASA Astrophysics Data System (ADS)
Chen, Y. J.; Chang, Z. G.; Chao, X. H.; Zhao, J. F.
2017-06-01
In the arid desert areas in Xinjiang, most limestone quarries are hillside open-pit mines (OPMs) where the limestone is hard, heterogeneous, and fractured, and can be easily broken into large blocks by blasting. This study tried to find effective technical methods for blasting heterogeneous rocks in such quarries based on an investigation into existing problems encountered in actual mining at Hongshun Limestone Quarry in Xinjiang. This study provided blasting schemes for hillside OPMs with different heights and slopes. These schemes involve the use of vertical deep holes, oblique shallow holes, and downslope hole-by-hole sublevel or simultaneous detonation techniques. In each bench, the detonations of holes in a detonation unit occur at intervals of 25-50 milliseconds. The research findings can offer technical guidance on how to blast heterogeneous rocks in hillside limestone quarries.
Seismoelectric effects due to mesoscopic heterogeneities
NASA Astrophysics Data System (ADS)
Jougnot, Damien; Rubino, J. GermáN.; Carbajal, Marina Rosas; Linde, Niklas; Holliger, Klaus
2013-05-01
While the seismic effects of wave-induced fluid flow due to mesoscopic heterogeneities have been studied for several decades, the role played by these types of heterogeneities on seismoelectric phenomena is largely unexplored. To address this issue, we have developed a novel methodological framework which allows for the coupling of wave-induced fluid flow, as inferred through numerical oscillatory compressibility tests, with the pertinent seismoelectric conversion mechanisms. Simulating the corresponding response of a water-saturated sandstone sample containing mesoscopic fractures, we demonstrate for the first time that these kinds of heterogeneities can produce measurable seismoelectric signals under typical laboratory conditions. Given that this phenomenon is sensitive to key hydraulic and mechanical properties, we expect that the results of this pilot study will stimulate further exploration on this topic in several domains of the Earth, environmental, and engineering sciences.
Effect of heterogeneous investments on the evolution of cooperation in spatial public goods game.
Huang, Keke; Wang, Tao; Cheng, Yuan; Zheng, Xiaoping
2015-01-01
Understanding the emergence of cooperation in spatial public goods game remains a grand challenge across disciplines. In most previous studies, it is assumed that the investments of all the cooperators are identical, and often equal to 1. However, it is worth mentioning that players are diverse and heterogeneous when choosing actions in the rapidly developing modern society and researchers have shown more interest to the heterogeneity of players recently. For modeling the heterogeneous players without loss of generality, it is assumed in this work that the investment of a cooperator is a random variable with uniform distribution, the mean value of which is equal to 1. The results of extensive numerical simulations convincingly indicate that heterogeneous investments can promote cooperation. Specifically, a large value of the variance of the random variable can decrease the two critical values for the result of behavioral evolution effectively. Moreover, the larger the variance is, the better the promotion effect will be. In addition, this article has discussed the impact of heterogeneous investments when the coevolution of both strategy and investment is taken into account. Comparing the promotion effect of coevolution of strategy and investment with that of strategy imitation only, we can conclude that the coevolution of strategy and investment decreases the asymptotic fraction of cooperators by weakening the heterogeneity of investments, which further demonstrates that heterogeneous investments can promote cooperation in spatial public goods game.
Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells.
Hald, Bjørn Olav; Garkier Hendriksen, Morten; Sørensen, Preben Graae
2013-05-15
Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredictable. In heterogeneous populations, synchronization of events becomes a cardinal problem-particularly for phase coherence in oscillating systems. The present article presents a novel strategy for construction of large-scale simulation programs of heterogeneous biological entities. The strategy is designed to be tractable, to handle heterogeneity and to handle computational cost issues simultaneously, primarily by writing a generator of the 'model to be simulated'. We apply the strategy to model glycolytic oscillations among thousands of yeast cells coupled through the extracellular medium. The usefulness is illustrated through (i) benchmarking, showing an almost linear relationship between model size and run time, and (ii) analysis of the resulting simulations, showing that contrary to the experimental situation, synchronous oscillations are surprisingly hard to achieve, underpinning the need for tools to study heterogeneity. Thus, we present an efficient strategy to model the biological heterogeneity, neglected by ordinary mean-field models. This tool is well posed to facilitate the elucidation of the physiologically vital problem of synchronization. The complete python code is available as Supplementary Information. bjornhald@gmail.com or pgs@kiku.dk Supplementary data are available at Bioinformatics online.
Guénolé, Fabian; Speranza, Mario; Louis, Jacqueline; Fourneret, Pierre; Revol, Olivier; Baleyte, Jean-Marc
2015-07-01
It is common that intellectually gifted children (IQ ≥ 130) are referred to paediatric or child neuropsychiatry clinics for socio-emotional problems and/or school underachievement or maladjustment. Among them, those displaying developmental asynchrony - a heterogeneous developmental pattern reflected in a significant verbal-performance discrepancy (SVPD) on Wechsler's intelligence profile - are thought to be more emotionally and behaviourally impaired than others. Our purpose was to investigate this clinical dichotomy using a cognitive psychopathological approach. Trait-anxiety and emotional dysregulation were investigated in two groups of referred gifted children (n = 107 and 136, respectively), a pilot-study of reasoning processes on extensive Piaget-like tasks was also performed in an additional small group (n = 12). Compared to those with a homogenous Wechsler profile, children with a SVPD exhibited: 1) a decreased prevalence of social preoccupation-anxiety (11.1% versus 27.4%; p < 0.05); 2) an increased prevalence of emotional dysregulation (58.7% versus 41.3%; p < 0.05); and 3) an increased prevalence of pathological cognitive disharmony on Piaget-like tasks (87.5% versus 0.0%; p < 0.05). The results support a clinical dichotomy of behaviourally-impaired children with intellectual giftedness, with developmentally asynchronous ones exhibiting more severe psychopathological features. This suggests that developmental asynchrony matters when examining emotional and behavioural problems in gifted children and call for further investigation of this profile. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Qumseya, Bashar J; Brown, Jessica; Abraham, Merna; White, Donna; Wolfsen, Herbert; Gupta, Neil; Vennalaganti, Prashanth; Sharma, Prateek; Wallace, Michael B
2015-04-01
The role of EUS among patients with Barrett's esophagus (BE) with high-grade dysplasia (HGD) or suspected mucosal carcinoma is controversial. To define the role of EUS in detecting advanced disease among patients with BE. Systematic review and meta-analysis. MEDLINE, Embase, Web of Science, and Cochrane Central databases. Patients with BE and HGD or esophageal adenocarcinoma (EAC) who were referred for endoscopic evaluation and underwent EUS. EUS. Pooled proportion of patients with advanced EAC identified by EUS among patients with BE who are referred for HGD or EAC (with or without visible lesions). Forest plots were used to contrast effect sizes in each of the studies and random effect models when tests of heterogeneity were significant (I(2) > 50% or P < .1 for the Q statistic). Of 1278 articles, 47 were reviewed in full text, and 11 articles met the inclusion criteria, including a total of 656 patients. Based on a random-effects model, the proportion of patients with advanced disease detected on EUS was 14% (95% confidence interval, 8%-22%; P < .0001). In a subanalysis, the pooled proportion of patients with advanced disease on EUS in the absence of nodules was 4% (95% confidence interval, 2%-6%, P < .0001). Significant heterogeneity among studies. EUS will result in a change in the therapeutic approach among in a significant minority of patients with BE who are referred for HGD or EAC. Copyright © 2015. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Pickles, Andrew; Anderson, Deborah K.; Lord, Catherine
2014-01-01
Background: Delayed, abnormal language is a common feature of autism and language therapy often a significant component of recommended treatment. However, as with other disorders with a language component, we know surprisingly little about the language trajectories and how varied these might be across different children. Thus, we know little about…
ERIC Educational Resources Information Center
Aagaard, James S.; And Others
This two-volume document specifies a protocol that was developed using the Reference Model for Open Systems Interconnection (OSI), which provides a framework for communications within a heterogeneous network environment. The protocol implements the features necessary for bibliographic searching, record maintenance, and mail transfer between…
Brandon M. Collins; Jamie M. Lydersen; Danny L. Fry; Katherine Wilkin; Tadashi Moody; Scott L. Stephens
2016-01-01
Studies of historical fire and vegetation conditions in dry conifer forests have demonstrated a high degree of heterogeneity across landscapes. However, there is a limit to the amount of inference that can be drawn from historical fire reconstructions. Contemporary "reference" landscapes may be able to provide information that is not available from historical...
Young Kim, Eun; Johnson, Hans J
2013-01-01
A robust multi-modal tool, for automated registration, bias correction, and tissue classification, has been implemented for large-scale heterogeneous multi-site longitudinal MR data analysis. This work focused on improving the an iterative optimization framework between bias-correction, registration, and tissue classification inspired from previous work. The primary contributions are robustness improvements from incorporation of following four elements: (1) utilize multi-modal and repeated scans, (2) incorporate high-deformable registration, (3) use extended set of tissue definitions, and (4) use of multi-modal aware intensity-context priors. The benefits of these enhancements were investigated by a series of experiments with both simulated brain data set (BrainWeb) and by applying to highly-heterogeneous data from a 32 site imaging study with quality assessments through the expert visual inspection. The implementation of this tool is tailored for, but not limited to, large-scale data processing with great data variation with a flexible interface. In this paper, we describe enhancements to a joint registration, bias correction, and the tissue classification, that improve the generalizability and robustness for processing multi-modal longitudinal MR scans collected at multi-sites. The tool was evaluated by using both simulated and simulated and human subject MRI images. With these enhancements, the results showed improved robustness for large-scale heterogeneous MRI processing.
Heterogeneity of Systemic Oxidative Stress Profiles in COPD: A Potential Role of Gender.
Maury, Jonathan; Gouzi, Farés; De Rigal, Philippe; Heraud, Nelly; Pincemail, Joël; Molinari, Nicolas; Pomiès, Pascal; Laoudj-Chenivesse, Dalila; Mercier, Jacques; Préfaut, Christian; Hayot, Maurice
2015-01-01
Oxidative stress (OS) plays a key role in the muscle impairment and exercise capacity of COPD patients. However, the literature reveals that systemic OS markers show great heterogeneity, which may hinder the prescription of effective antioxidant supplementation. This study therefore aimed to identify OS markers imbalance of COPD patients, relative to validated normal reference values, and to investigate the possibility of systemic OS profiles. We measured systemic enzymatic/nonenzymatic antioxidant and lipid peroxidation (LP) levels in 54 stable COPD patients referred for a rehabilitation program. The main systemic antioxidant deficits in these patients concerned vitamins and trace elements. Fully 89% of the COPD patients showed a systemic antioxidant imbalance which may have caused the elevated systemic LP levels in 69% of them. Interestingly, two patient profiles (clusters 3 and 4) had a more elevated increase in LP combined with increased copper and/or decreased vitamin C, GSH, and GPx. Further analysis revealed that the systemic LP level was higher in COPD women and associated with exercise capacity. Our present data therefore support future supplementations with antioxidant vitamins and trace elements to improve exercise capacity, but COPD patients will probably show different positive responses.
Kanematsu, Nobuyuki
2011-04-01
This work addresses computing techniques for dose calculations in treatment planning with proton and ion beams, based on an efficient kernel-convolution method referred to as grid-dose spreading (GDS) and accurate heterogeneity-correction method referred to as Gaussian beam splitting. The original GDS algorithm suffered from distortion of dose distribution for beams tilted with respect to the dose-grid axes. Use of intermediate grids normal to the beam field has solved the beam-tilting distortion. Interplay of arrangement between beams and grids was found as another intrinsic source of artifact. Inclusion of rectangular-kernel convolution in beam transport, to share the beam contribution among the nearest grids in a regulatory manner, has solved the interplay problem. This algorithmic framework was applied to a tilted proton pencil beam and a broad carbon-ion beam. In these cases, while the elementary pencil beams individually split into several tens, the calculation time increased only by several times with the GDS algorithm. The GDS and beam-splitting methods will complementarily enable accurate and efficient dose calculations for radiotherapy with protons and ions. Copyright © 2010 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Assessment of NPP VIIRS Albedo Over Heterogeneous Crop Land in Northern China
NASA Astrophysics Data System (ADS)
Wu, Xiaodan; Wen, Jianguang; Xiao, Qing; Yu, Yunyue; You, Dongqin; Hueni, Andreas
2017-12-01
In this paper, the accuracy of Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) land surface albedo, which is derived from the direct estimation algorithm, was assessed using ground-based albedo observations from a wireless sensor network over a heterogeneous cropland in the Huailai station, northern China. Data from six nodes spanning 2013-2014 over vegetation, bare soil, and mixed terrain surfaces were utilized to provide ground reference at VIIRS pixel scale. The performance of VIIRS albedo was also compared with Global LAnd Surface Satellite (GLASS) and Moderate Resolution Imaging Spectroradiometer (MODIS) albedos (Collection 5 and 6). The results indicate that the current granular VIIRS albedo has a high accuracy with a root-mean-square error of 0.02 for typical land covers. They are significantly correlated with ground references indicated by a correlation coefficient (R) of 0.73. The VIIRS albedo shows distinct advantages to GLASS and MODIS albedos over bare soil and mixed-cover surfaces, while it is inferior to the other two products over vegetated surfaces. Furthermore, its time continuity and the ability to capture the abrupt change of surface albedo are better than that of GLASS and MODIS albedo.
Critical laboratory values in hemostasis: toward consensus.
Lippi, Giuseppe; Adcock, Dorothy; Simundic, Ana-Maria; Tripodi, Armando; Favaloro, Emmanuel J
2017-09-01
The term "critical values" can be defined to entail laboratory test results that significantly lie outside the normal (reference) range and necessitate immediate reporting to safeguard patient health, as well as those displaying a highly and clinically significant variation compared to previous data. The identification and effective communication of "highly pathological" values has engaged the minds of many clinicians, health care and laboratory professionals for decades, since these activities are vital to good laboratory practice. This is especially true in hemostasis, where a timely and efficient communication of critical values strongly impacts patient management. Due to the heterogeneity of available data, this paper is hence aimed to analyze the state of the art and provide an expert opinion about the parameters, measurement units and alert limits pertaining to critical values in hemostasis, thus providing a basic document for future consultation that assists laboratory professionals and clinicians alike. KEY MESSAGES Critical values are laboratory test results significantly lying outside the normal (reference) range and necessitating immediate reporting to safeguard patient health. A broad heterogeneity exists about critical values in hemostasis worldwide. We provide here an expert opinion about the parameters, measurement units and alert limits pertaining to critical values in hemostasis.
Characterizing polymorphic inversions in human genomes by single-cell sequencing
Sanders, Ashley D.; Hills, Mark; Porubský, David; Guryev, Victor; Falconer, Ester; Lansdorp, Peter M.
2016-01-01
Identifying genomic features that differ between individuals and cells can help uncover the functional variants that drive phenotypes and disease susceptibilities. For this, single-cell studies are paramount, as it becomes increasingly clear that the contribution of rare but functional cellular subpopulations is important for disease prognosis, management, and progression. Until now, studying these associations has been challenged by our inability to map structural rearrangements accurately and comprehensively. To overcome this, we coupled single-cell sequencing of DNA template strands (Strand-seq) with custom analysis software to rapidly discover, map, and genotype genomic rearrangements at high resolution. This allowed us to explore the distribution and frequency of inversions in a heterogeneous cell population, identify several polymorphic domains in complex regions of the genome, and locate rare alleles in the reference assembly. We then mapped the entire genomic complement of inversions within two unrelated individuals to characterize their distinct inversion profiles and built a nonredundant global reference of structural rearrangements in the human genome. The work described here provides a powerful new framework to study structural variation and genomic heterogeneity in single-cell samples, whether from individuals for population studies or tissue types for biomarker discovery. PMID:27472961
Negative Cooperativity in the EGF Receptor
Pike, Linda J.
2012-01-01
Scatchard analyses of the binding of EGF to its receptor yield concave up Scatchard plots, indicative of some type of heterogenity in ligand binding affinity. This was typically interpreted as being due to the presence of two independent binding site–one of high affinity representing ≤10% of the receptor population and one of low affinity making up the bulk of the receptors. However, the concept of two independent binding sites is difficult to reconcile with the X-ray structures of the dimerized EGF receptor that show symmetric binding of the two ligands. A new approach to the analysis of 125I-EGF binding data combined with the structure of the singly-occupied Drosophila EGF receptor have now shown that this heterogeneity is due to the presence of negative cooperativity in the EGF receptor. Concerns that negative cooperativity precludes ligand-induced dimerization of the EGF receptor confuse the concepts of linkage cooperativity. Linkage refers to the effect of ligand on the assembly of dimers while cooperativity refers to the effect of ligand binding to one subunit on ligand binding to the other subunit within a preassembled dimer. Binding of EGF to its receptor is positively linked with dimer assembly but shows negative cooperativity within the dimer. PMID:22260659
A weighted U statistic for association analyses considering genetic heterogeneity.
Wei, Changshuai; Elston, Robert C; Lu, Qing
2016-07-20
Converging evidence suggests that common complex diseases with the same or similar clinical manifestations could have different underlying genetic etiologies. While current research interests have shifted toward uncovering rare variants and structural variations predisposing to human diseases, the impact of heterogeneity in genetic studies of complex diseases has been largely overlooked. Most of the existing statistical methods assume the disease under investigation has a homogeneous genetic effect and could, therefore, have low power if the disease undergoes heterogeneous pathophysiological and etiological processes. In this paper, we propose a heterogeneity-weighted U (HWU) method for association analyses considering genetic heterogeneity. HWU can be applied to various types of phenotypes (e.g., binary and continuous) and is computationally efficient for high-dimensional genetic data. Through simulations, we showed the advantage of HWU when the underlying genetic etiology of a disease was heterogeneous, as well as the robustness of HWU against different model assumptions (e.g., phenotype distributions). Using HWU, we conducted a genome-wide analysis of nicotine dependence from the Study of Addiction: Genetics and Environments dataset. The genome-wide analysis of nearly one million genetic markers took 7h, identifying heterogeneous effects of two new genes (i.e., CYP3A5 and IKBKB) on nicotine dependence. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Combining Deterministic structures and stochastic heterogeneity for transport modeling
NASA Astrophysics Data System (ADS)
Zech, Alraune; Attinger, Sabine; Dietrich, Peter; Teutsch, Georg
2017-04-01
Contaminant transport in highly heterogeneous aquifers is extremely challenging and subject of current scientific debate. Tracer plumes often show non-symmetric but highly skewed plume shapes. Predicting such transport behavior using the classical advection-dispersion-equation (ADE) in combination with a stochastic description of aquifer properties requires a dense measurement network. This is in contrast to the available information for most aquifers. A new conceptual aquifer structure model is presented which combines large-scale deterministic information and the stochastic approach for incorporating sub-scale heterogeneity. The conceptual model is designed to allow for a goal-oriented, site specific transport analysis making use of as few data as possible. Thereby the basic idea is to reproduce highly skewed tracer plumes in heterogeneous media by incorporating deterministic contrasts and effects of connectivity instead of using unimodal heterogeneous models with high variances. The conceptual model consists of deterministic blocks of mean hydraulic conductivity which might be measured by pumping tests indicating values differing in orders of magnitudes. A sub-scale heterogeneity is introduced within every block. This heterogeneity can be modeled as bimodal or log-normal distributed. The impact of input parameters, structure and conductivity contrasts is investigated in a systematic manor. Furthermore, some first successful implementation of the model was achieved for the well known MADE site.
Heterogeneity of long-history migration predicts emotion recognition accuracy.
Wood, Adrienne; Rychlowska, Magdalena; Niedenthal, Paula M
2016-06-01
Recent work (Rychlowska et al., 2015) demonstrated the power of a relatively new cultural dimension, historical heterogeneity, in predicting cultural differences in the endorsement of emotion expression norms. Historical heterogeneity describes the number of source countries that have contributed to a country's present-day population over the last 500 years. People in cultures originating from a large number of source countries may have historically benefited from greater and clearer emotional expressivity, because they lacked a common language and well-established social norms. We therefore hypothesized that in addition to endorsing more expressive display rules, individuals from heterogeneous cultures will also produce facial expressions that are easier to recognize by people from other cultures. By reanalyzing cross-cultural emotion recognition data from 92 papers and 82 cultures, we show that emotion expressions of people from heterogeneous cultures are more easily recognized by observers from other cultures than are the expressions produced in homogeneous cultures. Heterogeneity influences expression recognition rates alongside the individualism-collectivism of the perceivers' culture, as more individualistic cultures were more accurate in emotion judgments than collectivistic cultures. This work reveals the present-day behavioral consequences of long-term historical migration patterns and demonstrates the predictive power of historical heterogeneity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Gough, Albert; Shun, Tongying; Taylor, D. Lansing; Schurdak, Mark
2016-01-01
Heterogeneity is well recognized as a common property of cellular systems that impacts biomedical research and the development of therapeutics and diagnostics. Several studies have shown that analysis of heterogeneity: gives insight into mechanisms of action of perturbagens; can be used to predict optimal combination therapies; and to quantify heterogeneity in tumors where heterogeneity is believed to be associated with adaptation and resistance. Cytometry methods including high content screening (HCS), high throughput microscopy, flow cytometry, mass spec imaging and digital pathology capture cell level data for populations of cells. However it is often assumed that the population response is normally distributed and therefore that the average adequately describes the results. A deeper understanding of the results of the measurements and more effective comparison of perturbagen effects requires analysis that takes into account the distribution of the measurements, i.e. the heterogeneity. However, the reproducibility of heterogeneous data collected on different days, and in different plates/slides has not previously been evaluated. Here we show that conventional assay quality metrics alone are not adequate for quality control of the heterogeneity in the data. To address this need, we demonstrate the use of the Kolmogorov-Smirnov statistic as a metric for monitoring the reproducibility of heterogeneity in an SAR screen, describe a workflow for quality control in heterogeneity analysis. One major challenge in high throughput biology is the evaluation and interpretation of heterogeneity in thousands of samples, such as compounds in a cell-based screen. In this study we also demonstrate that three heterogeneity indices previously reported, capture the shapes of the distributions and provide a means to filter and browse big data sets of cellular distributions in order to compare and identify distributions of interest. These metrics and methods are presented as a workflow for analysis of heterogeneity in large scale biology projects. PMID:26476369
Morley, S.A.; Duda, J.J.; Coe, H.J.; Kloehn, K.K.; McHenry, M.L.
2008-01-01
The impending removal of two dams on the Elwha River in Washington State offers a unique opportunity to study ecosystem restoration at a watershed scale. We examine how periphyton and benthic invertebrate assemblages vary across regulated and unregulated sections of the Elwha River and across different habitat types, and establish baseline data for tracking future changes following dam removal. We collected multiple years of data on physical habitat, water chemistry, periphyton, and benthic invertebrates from 52 sites on the Elwha River and a reference section on the Quinault River, a neighboring basin. We found that substrate in regulated river sections was coarser and less heterogeneous in size than in unregulated sections, and summer water temperature and specific conductivity higher. Periphyton biomass was also consistently higher in regulated than unregulated sections. Benthic invertebrate assemblage structure at sites above both dams was distinct from sites between and below the dams, due in large part to dominance of mayfly taxa compared to higher relative abundance of midges and non-insect taxa at downstream sites. Following dam removal, we anticipate that both periphyton and benthic invertebrate abundance and diversity will temporarily decrease between and below dams as a result of sediment released from behind the reservoirs. Over the long-term, increased floodplain heterogeneity and recolonization by anadromous fish will alter benthic invertebrate and periphyton assemblages via increases in niche diversity and inputs of marine-derived nutrients. The extended timeline predicted for Elwha River recovery and the complexities of forecasting ecological response highlights the need for more long-term assessments of dam removal and river restoration practices.
Virlet, Nicolas; Lebourgeois, Valentine; Martinez, Sébastien; Costes, Evelyne; Labbé, Sylvain; Regnard, Jean-Luc
2014-01-01
As field phenotyping of plant response to water constraints constitutes a bottleneck for breeding programmes, airborne thermal imagery can contribute to assessing the water status of a wide range of individuals simultaneously. However, the presence of mixed soil–plant pixels in heterogeneous plant cover complicates the interpretation of canopy temperature. Moran’s Water Deficit Index (WDI = 1–ETact/ETmax), which was designed to overcome this difficulty, was compared with surface minus air temperature (T s–T a) as a water stress indicator. As parameterization of the theoretical equations for WDI computation is difficult, particularly when applied to genotypes with large architectural variability, a simplified procedure based on quantile regression was proposed to delineate the Vegetation Index–Temperature (VIT) scatterplot. The sensitivity of WDI to variations in wet and dry references was assessed by applying more or less stringent quantile levels. The different stress indicators tested on a series of airborne multispectral images (RGB, near-infrared, and thermal infrared) of a population of 122 apple hybrids, under two irrigation regimes, significantly discriminated the tree water statuses. For each acquisition date, the statistical method efficiently delineated the VIT scatterplot, while the limits obtained using the theoretical approach overlapped it, leading to inconsistent WDI values. Once water constraint was established, the different stress indicators were linearly correlated to the stem water potential among a tree subset. T s–T a showed a strong sensitivity to evaporative demand, which limited its relevancy for temporal comparisons. Finally, the statistical approach of WDI appeared the most suitable for high-throughput phenotyping. PMID:25080086
Education in cardiopulmonary resuscitation in Russia: A systematic review of the available evidence
Birkun, Alexei; Glotov, Maksim
2017-01-01
BACKGROUND: To summarise and appraise cumulative published scientific evidence relevant to cardiopulmonary resuscitation (CPR) education in Russia. DATA RESOURCES: We searched Medline, Scopus, Science Direct and Russian Science Citation Index databases from December 1991 to December 2016 to identify studies pertaining to the field of CPR education that were carried out by Russian researchers and/or investigated the topic of interest for Russia/Russian population. Reference lists of eligible publications, contents pages of relevant Russian journals and Google Scholar were also searched. There was no limitation based on publication language or study design. RESULTS: Of 7 964 unique citations identified, 22 studies were included. All studies were published from 2009 to 2016, mainly in Russian. Only three studies were reported to be randomized controlled. Non-medical individuals constituted 17% of studied populations. Most of the studies aimed to assess effects of CPR educational interventions, generally suggesting positive influence of the training conducted. The studies were highly heterogeneous as for methodological approaches, structure and duration of educational interventions, evaluation methods and criteria being used. Methodological quality was generally poor, with >40% publications not passing quality screening and only 2 studies meeting the criteria of moderate high quality. CONCLUSION: The results suggest paucity, low population coverage, high thematic and methodological heterogeneity and low quality of the studies addressing CPR education, which were carried out in the Russian Federation. There is a critical need in conducting methodologically consistent, large-scale, randomized, controlled studies evaluating and comparing efficiency of educational interventions for teaching CPR in different population categories of Russia. PMID:29123601
A disease state fingerprint for evaluation of Alzheimer's disease.
Mattila, Jussi; Koikkalainen, Juha; Virkki, Arho; Simonsen, Anja; van Gils, Mark; Waldemar, Gunhild; Soininen, Hilkka; Lötjönen, Jyrki
2011-01-01
Diagnostic processes of Alzheimer's disease (AD) are evolving. Knowledge about disease-specific biomarkers is constantly increasing and larger volumes of data are being measured from patients. To gain additional benefits from the collected data, a novel statistical modeling and data visualization system is proposed for supporting clinical diagnosis of AD. The proposed system computes an evidence-based estimate of a patient's AD state by comparing his or her heterogeneous neuropsychological, clinical, and biomarker data to previously diagnosed cases. The AD state in this context denotes a patient's degree of similarity to previously diagnosed disease population. A summary of patient data and results of the computation are displayed in a succinct Disease State Fingerprint (DSF) visualization. The visualization clearly discloses how patient data contributes to the AD state, facilitating rapid interpretation of the information. To model the AD state from complex and heterogeneous patient data, a statistical Disease State Index (DSI) method underlying the DSF has been developed. Using baseline data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), the ability of the DSI to model disease progression from elderly healthy controls to AD and its ability to predict conversion from mild cognitive impairment (MCI) to AD were assessed. It was found that the DSI provides well-behaving AD state estimates, corresponding well with the actual diagnoses. For predicting conversion from MCI to AD, the DSI attains performance similar to state-of-the-art reference classifiers. The results suggest that the DSF establishes an effective decision support and data visualization framework for improving AD diagnostics, allowing clinicians to rapidly analyze large quantities of diverse patient data.
Vatland, Shane J.; Gresswell, Robert E.; Poole, Geoffrey C.
2015-01-01
Accurately quantifying stream thermal regimes can be challenging because stream temperatures are often spatially and temporally heterogeneous. In this study, we present a novel modeling framework that combines stream temperature data sets that are continuous in either space or time. Specifically, we merged the fine spatial resolution of thermal infrared (TIR) imagery with hourly data from 10 stationary temperature loggers in a 100 km portion of the Big Hole River, MT, USA. This combination allowed us to estimate summer thermal conditions at a relatively fine spatial resolution (every 100 m of stream length) over a large extent of stream (100 km of stream) during during the warmest part of the summer. Rigorous evaluation, including internal validation, external validation with spatially continuous instream temperature measurements collected from a Langrangian frame of reference, and sensitivity analyses, suggests the model was capable of accurately estimating longitudinal patterns in summer stream temperatures for this system Results revealed considerable spatial and temporal heterogeneity in summer stream temperatures and highlighted the value of assessing thermal regimes at relatively fine spatial and temporal scales. Preserving spatial and temporal variability and structure in abiotic stream data provides a critical foundation for understanding the dynamic, multiscale habitat needs of mobile stream organisms. Similarly, enhanced understanding of spatial and temporal variation in dynamic water quality attributes, including temporal sequence and spatial arrangement, can guide strategic placement of monitoring equipment that will subsequently capture variation in environmental conditions directly pertinent to research and management objectives.
Course and outcome of somatoform disorders in non-referred adolescents.
Essau, Cecilia A
2007-01-01
The author examined the course of somatoform disorders in non-referred adolescents. Somatoform disorders were coded from DSM-IV criteria, using the computerized Munich (Germany) version of the Composite International Diagnostic Interview. About 35.9% of the adolescents with somatoform disorders at the index investigation continued to have the same disorders at the follow-up investigation: 26.7% had anxiety, 17.1% had depression, 22% had substance-use disorders, and 53.7% had no psychiatric disorders. Factors related to the chronicity of somatoform disorders included gender, comorbid depressive disorders, parental psychiatric disorders, and negative life events. Somatoform disorders showed a heterogeneous pattern of course.
NASA Astrophysics Data System (ADS)
Harting, Ronald; Bosch, Aleid; Gunnink, Jan
2014-05-01
Society has an increasing demand from the subsurface, which in the Dutch shallow subsurface (upper 30 to 40 meters) mainly focuses on natural aggregate resources, groundwater, infrastructure and dike safety. This stimulates the demand for knowledge about the composition and heterogeneity of the subsurface and its physical and chemical properties, including the uncertainties involved. Physical and chemical properties of sediments in the subsurface have been under investigation for decades; however, the usefulness of this data for applied research and the understanding of these properties is limited. This is due to several factors: studies consist mainly of separately collected datasets, targeted at a limited amount of parameters, focused on a small number of geological units, distributed unevenly with depth and usually collected from clustered drillings with limited spatial extent or are analysed with different techniques and methods, often on disturbed samples. These factors result in a heterogeneous and biased dataset not suitable to function as a reference dataset or to statistically determine regional characteristics of geological units. To overcome these shortcomings, the Geological Survey of the Netherlands is establishing a nation-wide reference dataset for physical and chemical properties. In 2006, a drilling campaign was started using cone penetration tests, cored drillings and geophysical well logs, choosing the sites for a good geographical distribution. The lithological properties of the undisturbed cores are visually described and interpreted for lithostratigraphy and inferred sedimentary environment based on lithofacies. The location of the samples in the cores are chosen based on this description and interpretation, resulting in an evenly distributed dataset of in situ samples with respect to geological units as well as an adequate number of samples suitable for statistical analysis. Analyses are uniformly performed for grain size distribution, permeability (both high and low permeable lithologies) and geochemical methods (X-Ray Fluorescence, Thermo-Gravimetric Analysis, Total Carbon, Total Sulphur and Total Organic Carbon). These analyses result in a large number of lithological, hydrological and geochemical parameters, i.e. clay content, sand median, vertical and horizontal permeability and CaCO3-content. We present the results from the analysis of lithological properties for the Northern Netherlands. Besides geology, these properties can be applied directly in studies concerning (amongst others) groundwater, natural aggregates and dike safety. We demonstrate the use of sedimentary environments based on lithofacies as a useful tool for comparison between lithostratigraphic units and lithofacies. These lithofacies match distinct parts of the marine, fluvial, glacial, eolian or organogenic environment, i.e. tidal channel sand, floodbasin clay and subglacial till. This results in lithological properties illustrating the heterogeneity within a geological unit and between equal depositional environments in different lithostratigraphic units. The acquired data have so far been used in several applied studies, i.e. improving parameterisation of 3D models leading to increased accuracy in groundwater models and dike safety studies concerning dike failure due to undermining. Recently, grain size distributions measured with different methods were recalibrated into a homogeneous dataset using this reference set, which greatly enlarged the dataset to be incorporated in the parameterisation of a 3D voxel model.
Zygomatic osteoma with atypical heterogeneity in a dog.
Johnson, K A; Cooley, A J; Darien, D L
1996-02-01
An osteoma of the zygomatic bone in a young dog is described. It had large, centralized radiolucent regions consisting of fatty bone marrow and sparse trabeculae. A discrete, proliferative nodule within the osteoma consisted of closely-packed woven bone trabeculae and pleomorphic osteoblasts associated with haphazard osteoid deposits, resembling osteosarcoma-like change. These heterogeneous structural features were at variance with more classic reports of osteoma, which usually describe a uniform cancellous or cortical bone architecture.
Scuba: scalable kernel-based gene prioritization.
Zampieri, Guido; Tran, Dinh Van; Donini, Michele; Navarin, Nicolò; Aiolli, Fabio; Sperduti, Alessandro; Valle, Giorgio
2018-01-25
The uncovering of genes linked to human diseases is a pressing challenge in molecular biology and precision medicine. This task is often hindered by the large number of candidate genes and by the heterogeneity of the available information. Computational methods for the prioritization of candidate genes can help to cope with these problems. In particular, kernel-based methods are a powerful resource for the integration of heterogeneous biological knowledge, however, their practical implementation is often precluded by their limited scalability. We propose Scuba, a scalable kernel-based method for gene prioritization. It implements a novel multiple kernel learning approach, based on a semi-supervised perspective and on the optimization of the margin distribution. Scuba is optimized to cope with strongly unbalanced settings where known disease genes are few and large scale predictions are required. Importantly, it is able to efficiently deal both with a large amount of candidate genes and with an arbitrary number of data sources. As a direct consequence of scalability, Scuba integrates also a new efficient strategy to select optimal kernel parameters for each data source. We performed cross-validation experiments and simulated a realistic usage setting, showing that Scuba outperforms a wide range of state-of-the-art methods. Scuba achieves state-of-the-art performance and has enhanced scalability compared to existing kernel-based approaches for genomic data. This method can be useful to prioritize candidate genes, particularly when their number is large or when input data is highly heterogeneous. The code is freely available at https://github.com/gzampieri/Scuba .
Takayama, Kotaro; King, Diana; Robinson, Sharon A; Osmond, Barry
2013-11-01
Long-lived shade leaves of avocado had extremely low rates of photosynthesis. Gas exchange measurements of photosynthesis were of limited use, so we resorted to Chl fluorescence imaging (CFI) and spot measurements to evaluate photosynthetic electron transport rates (ETRs) and non-photochemical quenching (NPQ). Imaging revealed a remarkable transient heterogeneity of NPQ during photosynthetic induction in these hypostomatous, heterobaric leaves, but was adequately integrated by spot measurements, despite long-lasting artifacts from repeated saturating flashes during assays. Major veins (mid-vein, first- and second-order veins) defined areas of more static large-scale heterogeneous NPQ, with more dynamic small-scale heterogeneity most strongly expressed in mesophyll cells between third- and fourth-order veins. Both responded to external CO2 concentration ([CO2]), occlusion of stomata with Vaseline™, leaf dehydration and relative humidity (RH). We interpreted these responses in terms of independent behavior of stomata in adjacent areoles that was largely expressed through CO2-limited photosynthesis. Heterogeneity was most pronounced and prolonged in the absence of net CO2 fixation in 100 p.p.m. [CO2] when respiratory and photorespiratory CO2 cycling constrained the inferred ETR to ~75% of values in 400 or 700 p.p.m. [CO2]. Likewise, sustained higher NPQ under Vaseline™, after dehydration or at low RH, also restricted ETR to ~75% of control values. Low NPQ in chloroplast-containing cells adjacent to major veins but remote from stomata suggested internal sources of high [CO2] in these tissues.
Catchment heterogeneity controls emergent archetype concentration-discharge relationships
NASA Astrophysics Data System (ADS)
Musolff, A.; Fleckenstein, J. H.; Rao, P. S.; Jawitz, J. W.
2017-12-01
Relationships between in-stream dissolved solute concentrations (C) and discharge (Q) are often-used indicators of catchment-scale processes and their interference with human activities. Here we analyze observational C-Q relationships from 61 catchments and 8 different solutes across a wide range of land-uses and discharge regimes. This analysis is combined with a parsimonious stochastic modeling approach to test how C-Q relationships arise from spatial heterogeneity in catchment solute sources coupled with different timescales of biogeochemical reactions. The observational data exhibit archetypical dilution, enrichment, and constant C-Q patterns. Moreover, with land-use intensification we find decreasing C variability relative to Q variability (chemostatic export regime). Our model indicates that the dominant driver of emergent C-Q patterns was structured heterogeneity of solute sources implemented as correlation of source concentration to travel time. Regardless of the C-Q pattern, with decreasing source heterogeneity we consistently find lower variability in C than in Q and a dominance of chemostatic export regimes. Here, the variance in exported loads is determined primarily by variance of Q. We conclude that efforts to improve stream water quality and ecological integrity in intensely managed catchments should lead away from landscape homogenization by introducing structured source heterogeneity. References: Musolff, A., J. H. Fleckenstein, P. S. C. Rao, and J. W. Jawitz (2017), Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments, Geophys. Res. Lett., 44(9), 4143-4151, doi: 10.1002/2017GL072630.
Experimental validation of a new heterogeneous mechanical test design
NASA Astrophysics Data System (ADS)
Aquino, J.; Campos, A. Andrade; Souto, N.; Thuillier, S.
2018-05-01
Standard material parameters identification strategies generally use an extensive number of classical tests for collecting the required experimental data. However, a great effort has been made recently by the scientific and industrial communities to support this experimental database on heterogeneous tests. These tests can provide richer information on the material behavior allowing the identification of a more complete set of material parameters. This is a result of the recent development of full-field measurements techniques, like digital image correlation (DIC), that can capture the heterogeneous deformation fields on the specimen surface during the test. Recently, new specimen geometries were designed to enhance the richness of the strain field and capture supplementary strain states. The butterfly specimen is an example of these new geometries, designed through a numerical optimization procedure where an indicator capable of evaluating the heterogeneity and the richness of strain information. However, no experimental validation was yet performed. The aim of this work is to experimentally validate the heterogeneous butterfly mechanical test in the parameter identification framework. For this aim, DIC technique and a Finite Element Model Up-date inverse strategy are used together for the parameter identification of a DC04 steel, as well as the calculation of the indicator. The experimental tests are carried out in a universal testing machine with the ARAMIS measuring system to provide the strain states on the specimen surface. The identification strategy is accomplished with the data obtained from the experimental tests and the results are compared to a reference numerical solution.
Developing a shale heterogeneity index to predict fracture response in the Mancos Shale
NASA Astrophysics Data System (ADS)
DeReuil, Aubry; Birgenheier, Lauren; McLennan, John
2017-04-01
The interplay between sedimentary heterogeneity and fracture propagation in mudstone is crucial to assess the potential of low permeability rocks as unconventional reservoirs. Previous experimental research has demonstrated a relationship between heterogeneity and fracture of brittle rocks, as discontinuities in a rock mass influence micromechanical processes such as microcracking and strain localization, which evolve into macroscopic fractures. Though numerous studies have observed heterogeneity influencing fracture development, fundamental understanding of the entire fracture process and the physical controls on this process is still lacking. This is partly due to difficulties in quantifying heterogeneity in fine-grained rocks. Our study tests the hypothesis that there is a correlation between sedimentary heterogeneity and the manner in which mudstone is fractured. An extensive range of heterogeneity related to complex sedimentology is represented by various samples from cored intervals of the Mancos Shale. Samples were categorized via facies analysis consisting of: visual core description, XRF and XRD analysis, SEM and thin section microscopy, and reservoir quality analysis that tested porosity, permeability, water saturation, and TOC. Systematic indirect tensile testing on a broad variety of facies has been performed, and uniaxial and triaxial compression testing is underway. A novel tool based on analytically derived and statistically proven relationships between sedimentary geologic and geomechanical heterogeneity is the ultimate result, referred to as the shale heterogeneity index. Preliminary conclusions from development of the shale heterogeneity index reveal that samples with compositionally distinct bedding withstand loading at higher stress values, while texturally and compositionally homogeneous, bedded samples fail at lower stress values. The highest tensile strength results from cemented Ca-enriched samples, medial to high strength samples have approximately equivalent proportions of Al-Ca-Si compositions, while Al-rich samples have consistently low strength. Moisture preserved samples fail on average at approximately 5 MPa lower than dry samples of similar facies. Additionally, moisture preserved samples fail in a step-like pattern when tested perpendicular to bedding. Tensile fractures are halted at heterogeneities and propagate parallel to bedding planes before developing a through-going failure plane, as opposed to the discrete, continuous fractures that crosscut dry samples. This result suggests that sedimentary heterogeneity plays a greater role in fracture propagation in moisture preserved samples, which are more indicative of in-situ reservoir conditions. Stress-strain curves will be further analyzed, including estimation of an energy released term based on post-failure response, and an estimation of volume of cracking measure on the physical fracture surface.
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.
2003-01-01
The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.
Piersma, Sjouke; Denham, Emma L; Drulhe, Samuel; Tonk, Rudi H J; Schwikowski, Benno; van Dijl, Jan Maarten
2013-01-01
Gene expression heterogeneity is a key driver for microbial adaptation to fluctuating environmental conditions, cell differentiation and the evolution of species. This phenomenon has therefore enormous implications, not only for life in general, but also for biotechnological applications where unwanted subpopulations of non-producing cells can emerge in large-scale fermentations. Only time-lapse fluorescence microscopy allows real-time measurements of gene expression heterogeneity. A major limitation in the analysis of time-lapse microscopy data is the lack of fast, cost-effective, open, simple and adaptable protocols. Here we describe TLM-Quant, a semi-automatic pipeline for the analysis of time-lapse fluorescence microscopy data that enables the user to visualize and quantify gene expression heterogeneity. Importantly, our pipeline builds on the open-source packages ImageJ and R. To validate TLM-Quant, we selected three possible scenarios, namely homogeneous expression, highly 'noisy' heterogeneous expression, and bistable heterogeneous expression in the Gram-positive bacterium Bacillus subtilis. This bacterium is both a paradigm for systems-level studies on gene expression and a highly appreciated biotechnological 'cell factory'. We conclude that the temporal resolution of such analyses with TLM-Quant is only limited by the numbers of recorded images.
NASA Astrophysics Data System (ADS)
Kardanpour, Z.; Jacobsen, O. S.; Esbensen, K. H.
2015-06-01
This study is a contribution to development of a heterogeneity characterisation facility for "next generation" sampling aimed at more realistic and controllable pesticide variability in laboratory pots in experimental environmental contaminant assessment. The role of soil heterogeneity on quantification of a set of exemplar parameters, organic matter, loss on ignition (LOI), biomass, soil microbiology, MCPA sorption and mineralization is described, including a brief background on how heterogeneity affects sampling/monitoring procedures in environmental pollutant studies. The Theory of Sampling (TOS) and variographic analysis has been applied to develop a fit-for-purpose heterogeneity characterization approach. All parameters were assessed in large-scale profile (1-100 m) vs. small-scale (0.1-1 m) replication sampling pattern. Variographic profiles of experimental analytical results concludes that it is essential to sample at locations with less than a 2.5 m distance interval to benefit from spatial auto-correlation and thereby avoid unnecessary, inflated compositional variation in experimental pots; this range is an inherent characteristic of the soil heterogeneity and will differ among soils types. This study has a significant carrying-over potential for related research areas e.g. soil science, contamination studies, and environmental monitoring and environmental chemistry.
Emergence of Persistent Infection due to Heterogeneity
NASA Astrophysics Data System (ADS)
Agrawal, Vidit; Moitra, Promit; Sinha, Sudeshna
2017-02-01
We explore the emergence of persistent infection in a closed region where the disease progression of the individuals is given by the SIRS model, with an individual becoming infected on contact with another infected individual. We investigate the persistence of contagion qualitatively and quantitatively, under increasing heterogeneity in the partitioning of the population into different disease compartments, as well as increasing heterogeneity in the phases of the disease among individuals within a compartment. We observe that when the initial population is uniform, consisting of individuals at the same stage of disease progression, infection arising from a contagious seed does not persist. However when the initial population consists of randomly distributed refractory and susceptible individuals, a single source of infection can lead to sustained infection in the population, as heterogeneity facilitates the de-synchronization of the phases in the disease cycle of the individuals. We also show how the average size of the window of persistence of infection depends on the degree of heterogeneity in the initial composition of the population. In particular, we show that the infection eventually dies out when the entire initial population is susceptible, while even a few susceptibles among an heterogeneous refractory population gives rise to a large persistent infected set.
Roberts, Anna Ilona; Roberts, Sam George Bradley
2017-11-01
A key challenge for primates living in large, stable social groups is managing social relationships. Chimpanzee gestures may act as a time-efficient social bonding mechanism, and the presence (homogeneity) and absence (heterogeneity) of overlap in repertoires in particular may play an important role in social bonding. However, how homogeneity and heterogeneity in the gestural repertoire of primates relate to social interaction is poorly understood. We used social network analysis and generalized linear mixed modelling to examine this question in wild chimpanzees. The repertoire size of both homogeneous and heterogeneous visual, tactile and auditory gestures was associated with the duration of time spent in social bonding behaviour, centrality in the social bonding network and demography. The audience size of partners who displayed similar or different characteristics to the signaller (e.g. same or opposite age or sex category) also influenced the use of homogeneous and heterogeneous gestures. Homogeneous and heterogeneous gestures were differentially associated with the presence of emotional reactions in response to the gesture and the presence of a change in the recipient's behaviour. Homogeneity and heterogeneity of gestural communication play a key role in maintaining a differentiated set of strong and weak social relationships in complex, multilevel societies.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Wright, D.; Liu, S.
2017-12-01
Regional frequency analyses of extreme rainfall are critical for development of engineering hydrometeorology procedures. In conventional approaches, the assumptions that `design storms' have specified time profiles and are uniform in space are commonly applied but often not appropriate, especially over regions with heterogeneous environments (due to topography, water-land boundaries and land surface properties). In this study, we present regional frequency analyses of extreme rainfall for Baltimore study region combining storm catalogs of rainfall fields derived from weather radar and stochastic storm transposition (SST, developed by Wright et al., 2013). The study region is Dead Run, a small (14.3 km2) urban watershed, in the Baltimore Metropolitan region. Our analyses build on previous empirical and modeling studies showing pronounced spatial heterogeneities in rainfall due to the complex terrain, including the Chesapeake Bay to the east, mountainous terrain to the west and urbanization in this region. We expand the original SST approach by applying a multiplier field that accounts for spatial heterogeneities in extreme rainfall. We also characterize the spatial heterogeneities of extreme rainfall distribution through analyses of rainfall fields in the storm catalogs. We examine the characteristics of regional extreme rainfall and derive intensity-duration-frequency (IDF) curves using the SST approach for heterogeneous regions. Our results highlight the significant heterogeneity of extreme rainfall in this region. Estimates of IDF show the advantages of SST in capturing the space-time structure of extreme rainfall. We also illustrate application of SST analyses for flood frequency analyses using a distributed hydrological model. Reference: Wright, D. B., J. A. Smith, G. Villarini, and M. L. Baeck (2013), Estimating the frequency of extreme rainfall using weather radar and stochastic storm transposition, J. Hydrol., 488, 150-165.
Predicting sample lifetimes in creep fracture of heterogeneous materials
NASA Astrophysics Data System (ADS)
Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J.
2016-08-01
Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.
A study of fracture phenomena in fiber composite laminates. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Konish, H. J., Jr.
1973-01-01
The extension of linear elastic fracture mechanics from ostensibly homogeneous isotropic metallic alloys to heterogeneous anisotropic advanced fiber composites is considered. It is analytically demonstrated that the effects of material anisotropy do not alter the principal characteristics exhibited by a crack in an isotropic material. The heterogeneity of fiber composites is experimentally shown to have a negligible effect on the behavior of a sufficiently long crack. A method is proposed for predicting the fracture strengths of a large class of composite laminates; the values predicted by this method show good agreement with limited experimental data. The limits imposed by material heterogeneity are briefly discussed, and areas for further study are recommended.
Van Assche, Tom R C; Duerinck, Tim; Van der Perre, Stijn; Baron, Gino V; Denayer, Joeri F M
2014-07-08
Due to the combination of metal ions and organic linkers and the presence of different types of cages and channels, metal-organic frameworks often possess a large structural and chemical heterogeneity, complicating their adsorption behavior, especially for polar-apolar adsorbate mixtures. By allocating isotherms to individual subunits in the structure, the ideal adsorbed solution theory (IAST) can be adjusted to cope with this heterogeneity. The binary adsorption of methanol and n-hexane on HKUST-1 is analyzed using this segregated IAST (SIAST) approach and offers a significant improvement over the standard IAST model predictions. It identifies the various HKUST-1 cages to have a pronounced polar or apolar adsorptive behavior.
Emission measurements from large area sources such as landfills are complicated by their spatial extent and heterogeneous nature. In recent years, an on-site optical remote sensing (ORS) technique for characterizing emissions from area sources was described in an EPA-published p...
Brief Report: The Negev Hospital-University-Based (HUB) Autism Database
ERIC Educational Resources Information Center
Meiri, Gal; Dinstein, Ilan; Michaelowski, Analya; Flusser, Hagit; Ilan, Michal; Faroy, Michal; Bar-Sinai, Asif; Manelis, Liora; Stolowicz, Dana; Yosef, Lili Lea; Davidovitch, Nadav; Golan, Hava; Arbelle, Shosh; Menashe, Idan
2017-01-01
Elucidating the heterogeneous etiologies of autism will require investment in comprehensive longitudinal data acquisition from large community based cohorts. With this in mind, we have established a hospital-university-based (HUB) database of autism which incorporates prospective and retrospective data from a large and ethnically diverse…
Lim, Eugene Y; Lee, Chiang; Cai, Weidong; Feng, Dagan; Fulham, Michael
2007-01-01
Medical practice is characterized by a high degree of heterogeneity in collaborative and cooperative patient care. Fast and effective communication between medical practitioners can improve patient care. In medical imaging, the fast delivery of medical reports to referring medical practitioners is a major component of cooperative patient care. Recently, mobile phones have been actively deployed in telemedicine applications. The mobile phone is an ideal medium to achieve faster delivery of reports to the referring medical practitioners. In this study, we developed an electronic medical report delivery system from a medical imaging department to the mobile phones of the referring doctors. The system extracts a text summary of medical report and a screen capture of diagnostic medical image in JPEG format, which are transmitted to 3G GSM mobile phones.
NASA Astrophysics Data System (ADS)
Beers, A.; Ray, C.
2015-12-01
Climate change is likely to affect mountainous areas unevenly due to the complex interactions between topography, vegetation, and the accumulation of snow and ice. This heterogeneity will complicate relationships between species presence and large-scale drivers such as precipitation and make predicting habitat extent and connectivity much more difficult. We studied the potential for fine-scale variation in climate and habitat use throughout the year in the American pika (Ochotona princeps), a talus specialist of mountainous western North America known for strong microhabitat affiliation. Not all areas of talus are likely to be equally hospitable, which may reduce connectivity more than predicted by large-scale occupancy drivers. We used high resolution remotely sensed data to create metrics of the terrain and land cover in the Niwot Ridge (NWT) LTER site in Colorado. We hypothesized that pikas preferentially use heterogeneous terrain, as it might foster greater snow accumulation, and used radio telemetry to test this with radio-collared pikas. Pikas use heterogeneous terrain during snow covered periods and less heterogeneous area during the summer. This suggests that not all areas of talus habitat are equally suitable as shelter from extreme conditions but that pikas need more than just shelter from winter cold. With those results we created a predictive map using the same habitat metrics to model the extent of suitable habitat across the NWT area. These strong effects of terrain on pika habitat use and territory occupancy show the great utility that high resolution remotely sensed data can have in ecological applications. With increasing effects of climate change in mountainous regions, this modeling approach is crucial for quantifying habitat connectivity at both small and large scales and to identify potential refugia for threatened or isolated species.
NASA Astrophysics Data System (ADS)
Hartmann, A. J.; Gleeson, T. P.; Wagener, T.; Wada, Y.
2016-12-01
Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.
Chapuy, Bjoern; Cheng, Hongwei; Watahiki, Akira; Ducar, Matthew D; Tan, Yuxiang; Chen, Linfeng; Roemer, Margaretha G M; Ouyang, Jing; Christie, Amanda L; Zhang, Liye; Gusenleitner, Daniel; Abo, Ryan P; Farinha, Pedro; von Bonin, Frederike; Thorner, Aaron R; Sun, Heather H; Gascoyne, Randy D; Pinkus, Geraldine S; van Hummelen, Paul; Wulf, Gerald G; Aster, Jon C; Weinstock, David M; Monti, Stefano; Rodig, Scott J; Wang, Yuzhuo; Shipp, Margaret A
2016-05-05
Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease defined by transcriptional classifications, specific signaling and survival pathways, and multiple low-frequency genetic alterations. Preclinical model systems that capture the genetic and functional heterogeneity of DLBCL are urgently needed. Here, we generated and characterized a panel of large B-cell lymphoma (LBCL) patient-derived xenograft (PDX) models, including 8 that reflect the immunophenotypic, transcriptional, genetic, and functional heterogeneity of primary DLBCL and 1 that is a plasmablastic lymphoma. All LBCL PDX models were subjected to whole-transcriptome sequencing to classify cell of origin and consensus clustering classification (CCC) subtypes. Mutations and chromosomal rearrangements were evaluated by whole-exome sequencing with an extended bait set. Six of the 8 DLBCL models were activated B-cell (ABC)-type tumors that exhibited ABC-associated mutations such as MYD88, CD79B, CARD11, and PIM1. The remaining 2 DLBCL models were germinal B-cell type, with characteristic alterations of GNA13, CREBBP, and EZH2, and chromosomal translocations involving IgH and either BCL2 or MYC Only 25% of the DLBCL PDX models harbored inactivating TP53 mutations, whereas 75% exhibited copy number alterations of TP53 or its upstream modifier, CDKN2A, consistent with the reported incidence and type of p53 pathway alterations in primary DLBCL. By CCC criteria, 6 of 8 DLBCL PDX models were B-cell receptor (BCR)-type tumors that exhibited selective surface immunoglobulin expression and sensitivity to entospletinib, a recently developed spleen tyrosine kinase inhibitor. In summary, we have established and characterized faithful PDX models of DLBCL and demonstrated their usefulness in functional analyses of proximal BCR pathway inhibition. © 2016 by The American Society of Hematology.
Gavaldà-Miralles, Arnau; Choffnes, David R.; Otto, John S.; Sánchez, Mario A.; Bustamante, Fabián E.; Amaral, Luís A. N.; Duch, Jordi; Guimerà, Roger
2014-01-01
Tens of millions of individuals around the world use decentralized content distribution systems, a fact of growing social, economic, and technological importance. These sharing systems are poorly understood because, unlike in other technosocial systems, it is difficult to gather large-scale data about user behavior. Here, we investigate user activity patterns and the socioeconomic factors that could explain the behavior. Our analysis reveals that (i) the ecosystem is heterogeneous at several levels: content types are heterogeneous, users specialize in a few content types, and countries are heterogeneous in user profiles; and (ii) there is a strong correlation between socioeconomic indicators of a country and users behavior. Our findings open a research area on the dynamics of decentralized sharing ecosystems and the socioeconomic factors affecting them, and may have implications for the design of algorithms and for policymaking. PMID:25288755
Transcription termination factor Rho and microbial phenotypic heterogeneity.
Bidnenko, Elena; Bidnenko, Vladimir
2018-06-01
Populations of genetically identical microorganisms exhibit high degree of cell-to-cell phenotypic diversity even when grown in uniform environmental conditions. Heterogeneity is a genetically determined trait, which ensures bacterial adaptation and survival in the ever changing environmental conditions. Fluctuations in gene expression (noise) at the level of transcription initiation largely contribute to cell-to-cell variability within population. Not surprisingly, the analyses of the mechanisms driving phenotypic heterogeneity are mainly focused on the activity of promoters and transcriptional factors. Less attention is currently given to a role of intrinsic and factor-dependent transcription terminators. Here, we discuss recent advances in understanding the regulatory role of the multi-functional transcription termination factor Rho, the major inhibitor of pervasive transcription in bacteria and the emerging global regulator of gene expression. We propose that termination activity of Rho might be among the mechanisms by which cells manage the intensity of transcriptional noise, thus affecting population heterogeneity.
NASA Technical Reports Server (NTRS)
Fauchez, T.; Platnick, S.; Meyer, K.; Sourdeval, O.; Cornet, C.; Zhang, Z.; Szczap, F.
2016-01-01
This study presents preliminary results on the effect of cirrus heterogeneities on top-of-atmosphere (TOA) simulated radiances or reflectances for MODIS channels centered at 0.86, 2.21, 8.56, 11.01 and 12.03 micrometers , and on cloud optical properties retrieved with a research-level optimal estimation method (OEM). Synthetic cirrus cloud fields are generated using a 3D cloud generator (3DCLOUD) and radiances/reflectances are simulated using a 3D radiative transfer code (3DMCPOL). We find significant differences between the heterogeneity effects on either visible and near-infrared (VNIR) or thermal infrared (TIR) radiances. However, when both wavelength ranges are combined, heterogeneity effects are dominated by the VNIR horizontal radiative transport effect. As a result, small optical thicknesses are overestimated and large ones are underestimated. Retrieved effective diameter are found to be slightly affected, contrarily to retrievals using TIR channels only.
Optimal forwarding ratio on dynamical networks with heterogeneous mobility
NASA Astrophysics Data System (ADS)
Gan, Yu; Tang, Ming; Yang, Hanxin
2013-05-01
Since the discovery of non-Poisson statistics of human mobility trajectories, more attention has been paid to understand the role of these patterns in different dynamics. In this study, we first introduce the heterogeneous mobility of mobile agents into dynamical networks, and then investigate packet forwarding strategy on the heterogeneous dynamical networks. We find that the faster speed and the higher proportion of high-speed agents can enhance the network throughput and reduce the mean traveling time in random forwarding. A hierarchical structure in the dependence of high-speed is observed: the network throughput remains unchanged at small and large high-speed value. It is also interesting to find that a slightly preferential forwarding to high-speed agents can maximize the network capacity. Through theoretical analysis and numerical simulations, we show that the optimal forwarding ratio stems from the local structural heterogeneity of low-speed agents.
Imaging Heterogeneity in Lung Cancer: Techniques, Applications, and Challenges.
Bashir, Usman; Siddique, Muhammad Musib; Mclean, Emma; Goh, Vicky; Cook, Gary J
2016-09-01
Texture analysis involves the mathematic processing of medical images to derive sets of numeric quantities that measure heterogeneity. Studies on lung cancer have shown that texture analysis may have a role in characterizing tumors and predicting patient outcome. This article outlines the mathematic basis of and the most recent literature on texture analysis in lung cancer imaging. We also describe the challenges facing the clinical implementation of texture analysis. Texture analysis of lung cancer images has been applied successfully to FDG PET and CT scans. Different texture parameters have been shown to be predictive of the nature of disease and of patient outcome. In general, it appears that more heterogeneous tumors on imaging tend to be more aggressive and to be associated with poorer outcomes and that tumor heterogeneity on imaging decreases with treatment. Despite these promising results, there is a large variation in the reported data and strengths of association.
Ochodo, Eleanor A; Gopalakrishna, Gowri; Spek, Bea; Reitsma, Johannes B; van Lieshout, Lisette; Polman, Katja; Lamberton, Poppy; Bossuyt, Patrick M M; Leeflang, Mariska M G
2015-03-11
Point-of-care (POC) tests for diagnosing schistosomiasis include tests based on circulating antigen detection and urine reagent strip tests. If they had sufficient diagnostic accuracy they could replace conventional microscopy as they provide a quicker answer and are easier to use. To summarise the diagnostic accuracy of: a) urine reagent strip tests in detecting active Schistosoma haematobium infection, with microscopy as the reference standard; and b) circulating antigen tests for detecting active Schistosoma infection in geographical regions endemic for Schistosoma mansoni or S. haematobium or both, with microscopy as the reference standard. We searched the electronic databases MEDLINE, EMBASE, BIOSIS, MEDION, and Health Technology Assessment (HTA) without language restriction up to 30 June 2014. We included studies that used microscopy as the reference standard: for S. haematobium, microscopy of urine prepared by filtration, centrifugation, or sedimentation methods; and for S. mansoni, microscopy of stool by Kato-Katz thick smear. We included studies on participants residing in endemic areas only. Two review authors independently extracted data, assessed quality of the data using QUADAS-2, and performed meta-analysis where appropriate. Using the variability of test thresholds, we used the hierarchical summary receiver operating characteristic (HSROC) model for all eligible tests (except the circulating cathodic antigen (CCA) POC for S. mansoni, where the bivariate random-effects model was more appropriate). We investigated heterogeneity, and carried out indirect comparisons where data were sufficient. Results for sensitivity and specificity are presented as percentages with 95% confidence intervals (CI). We included 90 studies; 88 from field settings in Africa. The median S. haematobium infection prevalence was 41% (range 1% to 89%) and 36% for S. mansoni (range 8% to 95%). Study design and conduct were poorly reported against current standards. Tests for S. haematobium Urine reagent test strips versus microscopyCompared to microscopy, the detection of microhaematuria on test strips had the highest sensitivity and specificity (sensitivity 75%, 95% CI 71% to 79%; specificity 87%, 95% CI 84% to 90%; 74 studies, 102,447 participants). For proteinuria, sensitivity was 61% and specificity was 82% (82,113 participants); and for leukocyturia, sensitivity was 58% and specificity 61% (1532 participants). However, the difference in overall test accuracy between the urine reagent strips for microhaematuria and proteinuria was not found to be different when we compared separate populations (P = 0.25), or when direct comparisons within the same individuals were performed (paired studies; P = 0.21).When tests were evaluated against the higher quality reference standard (when multiple samples were analysed), sensitivity was marginally lower for microhaematuria (71% vs 75%) and for proteinuria (49% vs 61%). The specificity of these tests was comparable. Antigen assayCompared to microscopy, the CCA test showed considerable heterogeneity; meta-analytic sensitivity estimate was 39%, 95% CI 6% to 73%; specificity 78%, 95% CI 55% to 100% (four studies, 901 participants). Tests for S. mansoni Compared to microscopy, the CCA test meta-analytic estimates for detecting S. mansoni at a single threshold of trace positive were: sensitivity 89% (95% CI 86% to 92%); and specificity 55% (95% CI 46% to 65%; 15 studies, 6091 participants) Against a higher quality reference standard, the sensitivity results were comparable (89% vs 88%) but specificity was higher (66% vs 55%). For the CAA test, sensitivity ranged from 47% to 94%, and specificity from 8% to 100% (4 studies, 1583 participants). Among the evaluated tests for S. haematobium infection, microhaematuria correctly detected the largest proportions of infections and non-infections identified by microscopy.The CCA POC test for S. mansoni detects a very large proportion of infections identified by microscopy, but it misclassifies a large proportion of microscopy negatives as positives in endemic areas with a moderate to high prevalence of infection, possibly because the test is potentially more sensitive than microscopy.
NASA Astrophysics Data System (ADS)
Zhang, Baolong; Ni, Sidao; Sun, Daoyuan; Shen, Zhichao; Jackson, Jennifer M.; Wu, Wenbo
2018-05-01
Volumetric heterogeneities on large (∼>1000 km) and intermediate scales (∼>100 km) in the lowermost mantle have been established with seismological approaches. However, there are controversies regarding the level of heterogeneity in the lowermost mantle at small scales (a few kilometers to tens of kilometers), with lower bound estimates ranging from 0.1% to a few percent. We take advantage of the small amplitude PcP waves at near podal distances (0-12°) to constrain the level of small-scale heterogeneity within 250 km above the CMB. First, we compute short period synthetic seismograms with a finite difference code for a series of volumetric heterogeneity models in the lowermost mantle, and find that PcP is not identifiable if the small-scale heterogeneity in the lowermost mantle is above 2.5%. We then use a functional form appropriate for coda decay to suppress P coda contamination. By comparing the corrected envelope of PcP and its precursors with synthetic seismograms, we find that perturbations of small-scale (∼8 km) heterogeneity in the lowermost mantle is ∼0.2-0.5% beneath regions of the China-Myanmar border area, Okhotsk Sea and South America. Whereas strong perturbations (∼1.0%) are found beneath Central America. In the regions studied, we find that this particular type of small-scale heterogeneity in the lowermost mantle is weak, yet there are some regions requiring heterogeneity up to 1.0%. Where scattering is stronger, such as under Central America, more chemically complex mineral assemblages may be present at the core-mantle boundary.
Spatial heterogeneity study of vegetation coverage at Heihe River Basin
NASA Astrophysics Data System (ADS)
Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei
2014-11-01
Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.
NASA Technical Reports Server (NTRS)
Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh
2003-01-01
We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.
Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity
NASA Astrophysics Data System (ADS)
Morris, C. K.; Knighton, J.
2017-12-01
Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.
Effect of Heterogeneous Investments on the Evolution of Cooperation in Spatial Public Goods Game
Huang, Keke; Wang, Tao; Cheng, Yuan; Zheng, Xiaoping
2015-01-01
Understanding the emergence of cooperation in spatial public goods game remains a grand challenge across disciplines. In most previous studies, it is assumed that the investments of all the cooperators are identical, and often equal to 1. However, it is worth mentioning that players are diverse and heterogeneous when choosing actions in the rapidly developing modern society and researchers have shown more interest to the heterogeneity of players recently. For modeling the heterogeneous players without loss of generality, it is assumed in this work that the investment of a cooperator is a random variable with uniform distribution, the mean value of which is equal to 1. The results of extensive numerical simulations convincingly indicate that heterogeneous investments can promote cooperation. Specifically, a large value of the variance of the random variable can decrease the two critical values for the result of behavioral evolution effectively. Moreover, the larger the variance is, the better the promotion effect will be. In addition, this article has discussed the impact of heterogeneous investments when the coevolution of both strategy and investment is taken into account. Comparing the promotion effect of coevolution of strategy and investment with that of strategy imitation only, we can conclude that the coevolution of strategy and investment decreases the asymptotic fraction of cooperators by weakening the heterogeneity of investments, which further demonstrates that heterogeneous investments can promote cooperation in spatial public goods game. PMID:25781345
Landscape Heterogeneity–Biodiversity Relationship: Effect of Range Size
Katayama, Naoki; Amano, Tatsuya; Naoe, Shoji; Yamakita, Takehisa; Komatsu, Isamu; Takagawa, Shin-ichi; Sato, Naoto; Ueta, Mutsuyuki; Miyashita, Tadashi
2014-01-01
The importance of landscape heterogeneity to biodiversity may depend on the size of the geographic range of species, which in turn can reflect species traits (such as habitat generalization) and the effects of historical and contemporary land covers. We used nationwide bird survey data from Japan, where heterogeneous landscapes predominate, to test the hypothesis that wide-ranging species are positively associated with landscape heterogeneity in terms of species richness and abundance, whereas narrow-ranging species are positively associated with landscape homogeneity in the form of either open or forest habitats. We used simultaneous autoregressive models to explore the effects of climate, evapotranspiration, and landscape heterogeneity on the richness and abundance of breeding land-bird species. The richness of wide-ranging species and the total species richness were highest in heterogeneous landscapes, where many wide-ranging species showed the highest abundance. In contrast, the richness of narrow-ranging species was not highest in heterogeneous landscapes; most of those species were abundant in either open or forest landscapes. Moreover, in open landscapes, narrow-ranging species increased their species richness with decreasing temperature. These results indicate that heterogeneous landscapes are associated with rich bird diversity but that most narrow-ranging species prefer homogeneous landscapes—particularly open habitats in colder regions, where grasslands have historically predominated. There is a need to reassess the generality of the heterogeneity-biodiversity relationship, with attention to the characteristics of species assemblages determined by environments at large spatiotemporal scales. PMID:24675969
An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation
Gao, Kai; Fu, Shubin; Chung, Eric T.
2018-02-13
The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less
An Efficient Multiscale Finite-Element Method for Frequency-Domain Seismic Wave Propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Chung, Eric T.
The frequency-domain seismic-wave equation, that is, the Helmholtz equation, has many important applications in seismological studies, yet is very challenging to solve, particularly for large geological models. Iterative solvers, domain decomposition, or parallel strategies can partially alleviate the computational burden, but these approaches may still encounter nontrivial difficulties in complex geological models where a sufficiently fine mesh is required to represent the fine-scale heterogeneities. We develop a novel numerical method to solve the frequency-domain acoustic wave equation on the basis of the multiscale finite-element theory. We discretize a heterogeneous model with a coarse mesh and employ carefully constructed high-order multiscalemore » basis functions to form the basis space for the coarse mesh. Solved from medium- and frequency-dependent local problems, these multiscale basis functions can effectively capture themedium’s fine-scale heterogeneity and the source’s frequency information, leading to a discrete system matrix with a much smaller dimension compared with those from conventional methods.We then obtain an accurate solution to the acoustic Helmholtz equation by solving only a small linear system instead of a large linear system constructed on the fine mesh in conventional methods.We verify our new method using several models of complicated heterogeneities, and the results show that our new multiscale method can solve the Helmholtz equation in complex models with high accuracy and extremely low computational costs.« less
Y-12 PLANT NUCLEAR SAFETY HANDBOOK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachter, J.W. ed.; Bailey, M.L.; Cagle, T.J.
1963-03-27
Information needed to solve nuclear safety problems is condensed into a reference book for use by persons familiar with the field. Included are a glossary of terms; useful tables; nuclear constants; criticality calculations; basic nuclear safety limits; solution geometries and critical values; metal critical values; criticality values for intermediate, heterogeneous, and interacting systems; miscellaneous and related information; and report number, author, and subject indexes. (C.H.)
Begg, Graham S; Elliott, Martin J; Cullen, Danny W; Iannetta, Pietro P M; Squire, Geoff R
2008-10-01
The implementation of co-existence in the commercialisation of GM crops requires GM and non-GM products to be segregated in production and supply. However, maintaining segregation in oilseed rape will be made difficult by the highly persistent nature of this species. An understanding of its population dynamics is needed to predict persistence and develop potential strategies for control, while to ensure segregation is being achieved, the production of GM oilseed rape must be accompanied by the monitoring of GM levels in crop or seed populations. Heterogeneity in the spatial distribution of oilseed rape has the potential to affect both control and monitoring and, although a universal phenomenon in arable weeds and harvested seed lots, spatial heterogeneity in oilseed rape populations remains to be demonstrated and quantified. Here we investigate the distribution of crop and volunteer populations in a commercial field before and during the cultivation of the first conventional oilseed rape (winter) crop since the cultivation of a GM glufosinate-tolerant oilseed rape crop (spring) three years previously. GM presence was detected by ELISA for the PAT protein in each of three morphologically distinguishable phenotypes: autumn germinating crop-type plants (3% GM), autumn-germinating 'regrowths' (72% GM) and spring germinating 'small-type' plants (17% GM). Statistical models (Poisson log-normal and binomial logit-normal) were used to describe the spatial distribution of these populations at multiple spatial scales in the field and of GM presence in the harvested seed lot. Heterogeneity was a consistent feature in the distribution of GM and conventional oilseed rape. Large trends across the field (50 x 400 m) and seed lot (4 x 1.5 x 1.5 m) were observed in addition to small-scale heterogeneity, less than 20 m in the field and 20 cm in the seed lot. The heterogeneity was greater for the 'regrowth' and 'small' phenotypes, which were likely to be volunteers and included most of the GM plants detected, than for the largely non-GM 'crop' phenotype. The implications of the volunteer heterogeneity for field management and GM-sampling are discussed.
Enabling Flexible and Continuous Capability Invocation in Mobile Prosumer Environments
Alcarria, Ramon; Robles, Tomas; Morales, Augusto; López-de-Ipiña, Diego; Aguilera, Unai
2012-01-01
Mobile prosumer environments require the communication with heterogeneous devices during the execution of mobile services. These environments integrate sensors, actuators and smart devices, whose availability continuously changes. The aim of this paper is to design a reference architecture for implementing a model for continuous service execution and access to capabilities, i.e., the functionalities provided by these devices. The defined architecture follows a set of software engineering patterns and includes some communication paradigms to cope with the heterogeneity of sensors, actuators, controllers and other devices in the environment. In addition, we stress the importance of the flexibility in capability invocation by allowing the communication middleware to select the access technology and change the communication paradigm when dealing with smart devices, and by describing and evaluating two algorithms for resource access management. PMID:23012526
Paleo movement of continents since 300 Ma, mantle dynamics and large wander of the rotational pole
NASA Astrophysics Data System (ADS)
Greff-Lefftz, Marianne; Besse, Jean
2012-09-01
Apparent polar wander (APW) is known to be mainly linked to internal mass distribution changes and in particular to changes in subduction and large-scale upwellings in the mantle. We investigate plate motions during the last 410 million years in a reference frame where Africa is fixed. Indeed, Africa has remained a central plate from which most continents diverged since the break-up of Pangea. The exact amount of subduction is unknown prior to 120 Ma. We propose an approach, based on one hand on the study of the past subduction volcanism to locate ancient subduction activity, and on the other hand microplate motion history in the Tethyan area derived from geology and paleomagnetism. The peri-Pacific subductions seem to be a quasi-permanent feature of the Earth's history at least since the Paleozoic, with however localized interruptions. The “Tethyan” subductions have a complex history with successive collisions of continental blocs (Hercynian, Indo-Sinian, Alpine and Himalayan) and episodical rebirth of E-W subduction trending zones. Assuming that subducted slabs sink vertically into the mantle and taking into account large-scale upwellings derived from present-day tomography and intra-plate volcanism in the past, we compute the time variation of mantle density heterogeneities since 280 Ma. Due to conservation of the angular momentum of the Earth, the temporal evolution of the rotational axis is computed in a mantle reference frame where the Africa plate is fixed, and compared to the apparent polar wander (APW) observed by paleomagnetism since 280 Ma. We find that a major trend of both paleomagnetic and computed APW are successive oscillatory clockwise or counter-clockwise motions, with tracks separated by abrupt cusps (around 230 Ma, 190 Ma and 140-110 Ma). We find that cusps result from earlier major geodynamic events: the 230 Ma cusp is related to the end of active subduction due to the closure of the Rheic Ocean basin after the Hercynian continental collision (340-300 Ma) and to renewed subduction zone West of Laurentia, whereas the 190 Ma cusp results from the Indo-Sinian collision (270-230 Ma) and the subsequent end of the Neo-Tethys ocean subduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malkov, V; Rogers, D; Jaffray, D
2016-06-15
Purpose: Magnetic fields in MRgRT are known to induce dose perturbations near lung-tissue interfaces. The goal of this study is to determine if the heterogeneous structure of the lung influences the dose distribution in a magnetic field. Method: The dose distribution from a 4 cm X 4 cm 6 MV photon beam in a 0, 0.6, or 1.5 T magnetic field in a homogeneous lung density (0.333 g/cm{sup 3}) geometry is compared to that in a heterogeneous segmented slab configuration. The heterogeneous phantom is composed of 2/3 water vapour and 1/3 liquid water such that the overall density of themore » lung regions in the two phantoms are equivalent. The EGSnrc DOSXYZnrc user code is used with a previously implemented magnetic field transport code. Results: For water vapour gap thickness of 2 mm, compared to the homogeneous lung case (which already exhibits significant dose perturbations in a magnetic field) differences as large as 12.3 ± 0.2 % are observed for a 0.6 T field and 9.3 ± 0.1 % for a 1.5 T field at the tissuelung interface, and on the order of several percent within the lung-like tissue region for both magnetic fields. Thicker gaps produced larger deviations while a gap thickness of 0.2 mm does not result in notable differences. Regardless of gap thickness, the heterogeneities had little effect on the 0 T simulations. Further, using smaller scoring regions revealed that dose averaging effects could obscure dose differences as large as 10 – 20 % within the heterogeneous structures of the lung-like media. Conclusions: This simple model demonstrates that media heterogeneities can play an important role in MRgRT dose distributions, and care must be taken in setting up any dose calculation in the lung in the presence of a magnetic field, especially for air regions larger than 2 mm.« less
Discretization-dependent model for weakly connected excitable media
NASA Astrophysics Data System (ADS)
Arroyo, Pedro André; Alonso, Sergio; Weber dos Santos, Rodrigo
2018-03-01
Pattern formation has been widely observed in extended chemical and biological processes. Although the biochemical systems are highly heterogeneous, homogenized continuum approaches formed by partial differential equations have been employed frequently. Such approaches are usually justified by the difference of scales between the heterogeneities and the characteristic spatial size of the patterns. Under different conditions, for example, under weak coupling, discrete models are more adequate. However, discrete models may be less manageable, for instance, in terms of numerical implementation and mesh generation, than the associated continuum models. Here we study a model to approach discreteness which permits the computer implementation on general unstructured meshes. The model is cast as a partial differential equation but with a parameter that depends not only on heterogeneities sizes, as in the case of quasicontinuum models, but also on the discretization mesh. Therefore, we refer to it as a discretization-dependent model. We validate the approach in a generic excitable media that simulates three different phenomena: the propagation of action membrane potential in cardiac tissue, in myelinated axons of neurons, and concentration waves in chemical microemulsions.