Sample records for large industrial complex

  1. Transformation of environmental conditions in large former Soviet countries: regional analysis

    NASA Astrophysics Data System (ADS)

    Bityukova, V. R.; Borovikov, M. S.

    2018-01-01

    The article studies changes in the structure of environmental conditions of regions in the large former Soviet countries (case study of Russia and Kazakhstan) that have formed considerable contrasts in the placement of industrial complex and population settlement during the previous development stages. The changes related to the transition to market economy have led to essential transformation of environmental conditions. A complex index allowing to assess changes at the regional level in Kazakhstan and Russia and to reveal main similarities and differences between those changes is applied to studying the transformation of regional and industry structure. The article examines both industry-specific and spatial patterns forming environmental conditions at the regional level.

  2. The American Educational Industrial Complex: A Critique of a Concept Submitted to the "Journal of School Choice"

    ERIC Educational Resources Information Center

    Maranto, Robert; Van Raemdonck, Dirk C.

    2011-01-01

    Many people view subgovernments such as the "military-industrial complex" as largely self-governing and budget maximizing. Yet, as defense cutbacks in the 1970s and 1990s show, such networks do not maintain their privileged status indefinitely. In similar fashion, some claim public education is too autonomous and too focused on budget…

  3. Coal conversion products industrial applications

    NASA Technical Reports Server (NTRS)

    Dunkin, J. H.; Warren, D.

    1980-01-01

    Coal-based synthetic fuels complexes under development consideration by NASA/MSFC will produce large quantities of synthetic fuels, primarily medium BTU gas, which could be sold commercially to industries located in South Central Tennessee and Northern Alabama. The complexes would be modular in construction, and subsequent modules may produce liquid fuels or fuels for electric power production. Current and projected industries in the two states which have a propensity for utilizing coal-based synthetic fuels were identified, and a data base was compiled to support MFSC activities.

  4. Health risk assessment of volatile organic compounds exposure near Daegu dyeing industrial complex in South Korea.

    PubMed

    Shuai, Jianfei; Kim, Sunshin; Ryu, Hyeonsu; Park, Jinhyeon; Lee, Chae Kwan; Kim, Geun-Bae; Ultra, Venecio U; Yang, Wonho

    2018-04-20

    Studying human health in areas with industrial contamination is a serious and complex issue. In recent years, attention has increasingly focused on the health implications of large industrial complexes. A variety of potential toxic chemicals have been produced during manufacturing processes and activities in industrial complexes in South Korea. A large number of dyeing industries gathered together in Daegu dyeing industrial complex. The residents near the industrial complex could be often exposed to volatile organic compounds. This study aimed to evaluate VOCs levels in the ambient air of DDIC, to assess the impact on human health risks, and to find more convincing evidences to prove these VOCs emitted from DDIC. According to deterministic risk assessment, inhalation was the most important route. Residential indoor, outdoor and personal exposure air VOCs were measured by passive samplers in exposed area and controlled area in different seasons. Satisfaction with ambient environments and self-reported diseases were also obtained by questionnaire survey. The VOCs concentrations in exposed area and controlled area was compared by t-test. The relationships among every VOC were tested by correlation. The values of hazard quotient (HQ) and life cancer risk were estimated. The concentrations of measured VOCs were presented, moreover, the variety of concentrations according the distances from the residential settings to the industrial complex site in exposed area. The residential indoor, outdoor, and personal exposure concentrations of toluene, DMF and chloroform in exposed area were significantly higher than the corresponding concentrations in controlled area both in summer and autumn. Toluene, DMF, chloroform and MEK had significantly positive correlations with each other in indoor and outdoor, and even in personal exposure. The HQ for DMF exceeded 1, and the life cancer risk of chloroform was greater than 10 - 4 in exposed area. The prevalence of respiratory diseases, anaphylactic diseases and cardiovascular diseases in exposed area were significantly higher than in controlled area. This study showed that adverse cancer and non-cancer health effects may occur by VOCs emitted from DDIC, and some risk managements are needed. Moreover, this study provides a convenient preliminarily method for pollutants source characteristics.

  5. Reliability Standards of Complex Engineering Systems

    NASA Astrophysics Data System (ADS)

    Galperin, E. M.; Zayko, V. A.; Gorshkalev, P. A.

    2017-11-01

    Production and manufacture play an important role in today’s modern society. Industrial production is nowadays characterized by increased and complex communications between its parts. The problem of preventing accidents in a large industrial enterprise becomes especially relevant. In these circumstances, the reliability of enterprise functioning is of particular importance. Potential damage caused by an accident at such enterprise may lead to substantial material losses and, in some cases, can even cause a loss of human lives. That is why industrial enterprise functioning reliability is immensely important. In terms of their reliability, industrial facilities (objects) are divided into simple and complex. Simple objects are characterized by only two conditions: operable and non-operable. A complex object exists in more than two conditions. The main characteristic here is the stability of its operation. This paper develops the reliability indicator combining the set theory methodology and a state space method. Both are widely used to analyze dynamically developing probability processes. The research also introduces a set of reliability indicators for complex technical systems.

  6. IP-Based Video Modem Extender Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, L G; Boorman, T M; Howe, R E

    2003-12-16

    Visualization is one of the keys to understanding large complex data sets such as those generated by the large computing resources purchased and developed by the Advanced Simulation and Computing program (aka ASCI). In order to be convenient to researchers, visualization data must be distributed to offices and large complex visualization theaters. Currently, local distribution of the visual data is accomplished by distance limited modems and RGB switches that simply do not scale to hundreds of users across the local, metropolitan, and WAN distances without incurring large costs in fiber plant installation and maintenance. Wide Area application over the DOEmore » Complex is infeasible using these limited distance RGB extenders. On the other hand, Internet Protocols (IP) over Ethernet is a scalable well-proven technology that can distribute large volumes of data over these distances. Visual data has been distributed at lower resolutions over IP in industrial applications. This document describes requirements of the ASCI program in visual signal distribution for the purpose of identifying industrial partners willing to develop products to meet ASCI's needs.« less

  7. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    NASA Astrophysics Data System (ADS)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  8. Bio-based production of fuels and industrial chemicals by repurposing antibiotic-producing type I modular polyketide synthases: opportunities and challenges.

    PubMed

    Yuzawa, Satoshi; Keasling, Jay D; Katz, Leonard

    2017-04-01

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. We have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.

  9. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum.

    PubMed

    Posch, Andreas E; Spadiut, Oliver; Herwig, Christoph

    2012-06-22

    Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding.

  10. Switching industrial production processes from complex to defined media: method development and case study using the example of Penicillium chrysogenum

    PubMed Central

    2012-01-01

    Background Filamentous fungi are versatile cell factories and widely used for the production of antibiotics, organic acids, enzymes and other industrially relevant compounds at large scale. As a fact, industrial production processes employing filamentous fungi are commonly based on complex raw materials. However, considerable lot-to-lot variability of complex media ingredients not only demands for exhaustive incoming components inspection and quality control, but unavoidably affects process stability and performance. Thus, switching bioprocesses from complex to defined media is highly desirable. Results This study presents a strategy for strain characterization of filamentous fungi on partly complex media using redundant mass balancing techniques. Applying the suggested method, interdependencies between specific biomass and side-product formation rates, production of fructooligosaccharides, specific complex media component uptake rates and fungal strains were revealed. A 2-fold increase of the overall penicillin space time yield and a 3-fold increase in the maximum specific penicillin formation rate were reached in defined media compared to complex media. Conclusions The newly developed methodology enabled fast characterization of two different industrial Penicillium chrysogenum candidate strains on complex media based on specific complex media component uptake kinetics and identification of the most promising strain for switching the process from complex to defined conditions. Characterization at different complex/defined media ratios using only a limited number of analytical methods allowed maximizing the overall industrial objectives of increasing both, method throughput and the generation of scientific process understanding. PMID:22727013

  11. Modern methods of surveyor observations in opencast mining under complex hydrogeological conditions.

    NASA Astrophysics Data System (ADS)

    Usoltseva, L. A.; Lushpei, V. P.; Mursin, VA

    2017-10-01

    The article considers the possibility of linking the modern methods of surveying security of open mining works to improve industrial safety in the Primorsky Territory, as well as their use in the educational process. Industrial Safety in the management of Surface Mining depends largely on the applied assessment methods and methods of stability of pit walls and slopes of dumps in the complex mining and hydro-geological conditions.

  12. Radiological impact of natural radionuclides from soils of Salamanca, Mexico.

    PubMed

    Mandujano-García, C D; Sosa, M; Mantero, J; Costilla, R; Manjón, G; García-Tenorio, R

    2016-11-01

    Salamanca is the centre of a large industrial complex associated with the production and refining of oil-derived products in the state of Guanajuato, Mexico. The city also hosts a large chemical industry, and in past years a major fertilizer industry. All of them followed NORM (naturally occurring radioactive materials) industrial activities, where either raw materials or residues enriched in natural radionuclides are handled or generated, which can have an environmental radiological impact on their environmental compartments (e.g. soils and aquatic systems). In this study, activity concentrations of radionuclides from the 238 U and 232 Th natural series present in superficial urban soils surrounding an industrial complex in Salamanca, México, have been determined to analyse the possible environmental radiological impact of some of the industrial activities. The alpha-particle and gamma-ray spectrometry is used for the radiometric characterization. The results revealed the presence of 10-42, 11-51 and 178-811Bq/kg of 238 U, 232 Th and 40 K, respectively, without any clear anthropogenic increment in relation to the values normally found in unaffected soils. Thus, the radioactive impact of the industrial activities on the surrounding soils can be evaluated as very low, representing no radiological risk for the health of the population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A network analysis of indirect carbon emission flows among different industries in China.

    PubMed

    Du, Qiang; Xu, Yadan; Wu, Min; Sun, Qiang; Bai, Libiao; Yu, Ming

    2018-06-17

    Indirect carbon emissions account for a large ratio of the total carbon emissions in processes to make the final products, and this implies indirect carbon emission flow across industries. Understanding these flows is crucial for allocating a carbon allowance for each industry. By combining input-output analysis and complex network theory, this study establishes an indirect carbon emission flow network (ICEFN) for 41 industries from 2005 to 2014 to investigate the interrelationships among different industries. The results show that the ICEFN was consistent with a small-world nature based on an analysis of the average path lengths and the clustering coefficients. Moreover, key industries in the ICEFN were identified using complex network theory on the basis of degree centrality and betweenness centrality. Furthermore, the 41 industries of the ICEFN were divided into four industrial subgroups that are related closely to one another. Finally, possible policy implications were provided based on the knowledge of the structure of the ICEFN and its trend.

  14. Advances in Multi-Sensor Scanning and Visualization of Complex Plants: the Utmost Case of a Reactor Building

    NASA Astrophysics Data System (ADS)

    Hullo, J.-F.; Thibault, G.; Boucheny, C.

    2015-02-01

    In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".

  15. A brief historical introduction to Euler's formula for polyhedra, topology, graph theory and networks

    NASA Astrophysics Data System (ADS)

    Debnath, Lokenath

    2010-09-01

    This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Königsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real physical systems are included. We also mention some important and modern applications of graph theory or network problems from transportation to telecommunications. Graphs or networks are effectively used as powerful tools in industrial, electrical and civil engineering, communication networks in the planning of business and industry. Graph theory and combinatorics can be used to understand the changes that occur in many large and complex scientific, technical and medical systems. With the advent of fast large computers and the ubiquitous Internet consisting of a very large network of computers, large-scale complex optimization problems can be modelled in terms of graphs or networks and then solved by algorithms available in graph theory. Many large and more complex combinatorial problems dealing with the possible arrangements of situations of various kinds, and computing the number and properties of such arrangements can be formulated in terms of networks. The Knight's tour problem, Hamilton's tour problem, problem of magic squares, the Euler Graeco-Latin squares problem and their modern developments in the twentieth century are also included.

  16. Natural gas availability and ambient air quality in the Baton Rouge/New Orleans industrial complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fieler, E.R.; Harrison, D.P.

    1978-02-26

    Three scenarios were modeled for the Baton Rouge/New Orleans area for 1985: one assumes the substitution of residual oil (0.7% sulfur) for gas to decrease gas-burning stationary sources from 80 to 8% and the use of properly designed stacks for large emitters; the second makes identical gas supply assumptions but adds proper stack dispersion for medium as well as large emitters; and the third is based on 16% gas-burning stationary sources. The Climatological Dispersion Model was used to translate (1974) emission rates into ambient air concentrations. Growth rates for residential, commercial, and transportation sources, but not industry, were considered. Themore » results show that proper policies, which would require not only tall stacks for large oil burning units (and for intermediate units also in the areas of high industrial concentration), but also the careful location of new plants would permit continued industrial expansion without severe air pollution problems.« less

  17. Large eddy simulation of flows in industrial compressors: a path from 2015 to 2035

    PubMed Central

    Gourdain, N.; Sicot, F.; Duchaine, F.; Gicquel, L.

    2014-01-01

    A better understanding of turbulent unsteady flows is a necessary step towards a breakthrough in the design of modern compressors. Owing to high Reynolds numbers and very complex geometry, the flow that develops in such industrial machines is extremely hard to predict. At this time, the most popular method to simulate these flows is still based on a Reynolds-averaged Navier–Stokes approach. However, there is some evidence that this formalism is not accurate for these components, especially when a description of time-dependent turbulent flows is desired. With the increase in computing power, large eddy simulation (LES) emerges as a promising technique to improve both knowledge of complex physics and reliability of flow solver predictions. The objective of the paper is thus to give an overview of the current status of LES for industrial compressor flows as well as to propose future research axes regarding the use of LES for compressor design. While the use of wall-resolved LES for industrial multistage compressors at realistic Reynolds number should not be ready before 2035, some possibilities exist to reduce the cost of LES, such as wall modelling and the adaptation of the phase-lag condition. This paper also points out the necessity to combine LES to techniques able to tackle complex geometries. Indeed LES alone, i.e. without prior knowledge of such flows for grid construction or the prohibitive yet ideal use of fully homogeneous meshes to predict compressor flows, is quite limited today. PMID:25024422

  18. Preventing type 2 diabetes: Changing the food industry

    PubMed Central

    Popkin, Barry M.; Kenan, W. R.

    2016-01-01

    Improving our global diet by working with the food industry is a fairly complex task. Previously the global food manufacturing companies and governments were the major players. However, matters have shifted rapidly so that food retailers, food manufacturers, the restaurant–food service sector, and agribusinesses are now the major players. The current modern system of packaged processed food has now penetrated the globe—rich and poor, rural and urban are all in reach of this food system. Consequently, working with this complex sector when possible and an array of governmental regulatory large-scale options to improve our diet have increased in importance. Taxation of unhealthy foods and beverages, marketing controls, and front of the package labeling are the primary current options. Evaluations of the impacts of both public and industry initiatives are needed. PMID:27432072

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuzawa, Satoshi; Keasling, Jay D.; Katz, Leonard

    Complex polyketides comprise a large number of natural products that have broad application in medicine and agriculture. They are produced in bacteria and fungi from large enzyme complexes named type I modular polyketide synthases (PKSs) that are composed of multifunctional polypeptides containing discrete enzymatic domains organized into modules. The modular nature of PKSs has enabled a multitude of efforts to engineer the PKS genes to produce novel polyketides of predicted structure. Finally, we have repurposed PKSs to produce a number of short-chain mono- and di-carboxylic acids and ketones that could have applications as fuels or industrial chemicals.

  20. Industrial metrology as applied to large physics experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veal, D.

    1993-05-01

    A physics experiment is a large complex 3-D object (typ. 1200 m{sup 3}, 35000 tonnes), with sub-millimetric alignment requirements. Two generic survey alignment tasks can be identified; first, an iterative positioning of the apparatus subsystems in space and, second, a quantification of as-built parameters. The most convenient measurement technique is industrial triangulation but the complexity of the measured object and measurement environment constraints frequently requires a more sophisticated approach. To enlarge the ``survey alignment toolbox`` measurement techniques commonly associated with other disciplines such as geodesy, applied geodesy for accelerator alignment, and mechanical engineering are also used. Disparate observables require amore » heavy reliance on least squares programs for campaign pre-analysis and calculation. This paper will offer an introduction to the alignment of physics experiments and will identify trends for the next generation of SSC experiments.« less

  1. Health impact assessment of industrial development projects: a spatio-temporal visualization.

    PubMed

    Winkler, Mirko S; Krieger, Gary R; Divall, Mark J; Singer, Burton H; Utzinger, Jürg

    2012-05-01

    Development and implementation of large-scale industrial projects in complex eco-epidemiological settings typically require combined environmental, social and health impact assessments. We present a generic, spatio-temporal health impact assessment (HIA) visualization, which can be readily adapted to specific projects and key stakeholders, including poorly literate communities that might be affected by consequences of a project. We illustrate how the occurrence of a variety of complex events can be utilized for stakeholder communication, awareness creation, interactive learning as well as formulating HIA research and implementation questions. Methodological features are highlighted in the context of an iron ore development in a rural part of Africa.

  2. Summary of workshop 'Theory Meets Industry'—the impact of ab initio solid state calculations on industrial materials research

    NASA Astrophysics Data System (ADS)

    Wimmer, E.

    2008-02-01

    A workshop, 'Theory Meets Industry', was held on 12-14 June 2007 in Vienna, Austria, attended by a well balanced number of academic and industrial scientists from America, Europe, and Japan. The focus was on advances in ab initio solid state calculations and their practical use in industry. The theoretical papers addressed three dominant themes, namely (i) more accurate total energies and electronic excitations, (ii) more complex systems, and (iii) more diverse and accurate materials properties. Hybrid functionals give some improvements in energies, but encounter difficulties for metallic systems. Quantum Monte Carlo methods are progressing, but no clear breakthrough is on the horizon. Progress in order-N methods is steady, as is the case for efficient methods for exploring complex energy hypersurfaces and large numbers of structural configurations. The industrial applications were dominated by materials issues in energy conversion systems, the quest for hydrogen storage materials, improvements of electronic and optical properties of microelectronic and display materials, and the simulation of reactions on heterogeneous catalysts. The workshop is a clear testimony that ab initio computations have become an industrial practice with increasingly recognized impact.

  3. You Can't Get There From Here! Problems and Potential Solutions in Developing New Classes of Complex Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Truszkowski, Walter F.; Rouff, Christopher A.; Sterritt, Roy

    2005-01-01

    The explosion of capabilities and new products within the sphere of Information Technology (IT) has fostered widespread, overly optimistic opinions regarding the industry, based on common but unjustified assumptions of quality and correctness of software. These assumptions are encouraged by software producers and vendors, who at this late date have not succeeded in finding a way to overcome the lack of an automated, mathematically sound way to develop correct systems from requirements. NASA faces this dilemma as it envisages advanced mission concepts that involve large swarms of small spacecraft that will engage cooperatively to acheve science goals. Such missions entail levels of complexity that beg for new methods for system development far beyond today's methods, which are inadequate for ensuring correct behavior of large numbers of interacting intelligent mission elements. New system development techniques recently devised through NASA-led research will offer some innovative approaches to achieving correctness in complex system development, including autonomous swarm missions that exhibit emergent behavior, as well as general software products created by the computing industry.

  4. Preventing type 2 diabetes: Changing the food industry.

    PubMed

    Popkin, Barry M; Kenan, W R

    2016-06-01

    Improving our global diet by working with the food industry is a fairly complex task. Previously the global food manufacturing companies and governments were the major players. However, matters have shifted rapidly so that food retailers, food manufacturers, the restaurant-food service sector, and agribusinesses are now the major players. The current modern system of packaged processed food has now penetrated the globe-rich and poor, rural and urban are all in reach of this food system. Consequently, working with this complex sector when possible and an array of governmental regulatory large-scale options to improve our diet have increased in importance. Taxation of unhealthy foods and beverages, marketing controls, and front of the package labeling are the primary current options. Evaluations of the impacts of both public and industry initiatives are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Complex organic pollutant mixtures originating from industrial and municipal emissions in surface waters of the megacity Jakarta-an example of a water pollution problem in emerging economies.

    PubMed

    Dsikowitzky, Larissa; Hagemann, Lukas; Dwiyitno; Ariyani, Farida; Irianto, Hari Eko; Schwarzbauer, Jan

    2017-12-01

    During the last decades, the global industrial production partly shifted from industrialized nations to emerging and developing countries. In these upcoming economies, the newly developed industrial centers are generally located in densely populated areas, resulting in the discharge of often only partially treated industrial and municipal wastewaters into the surface waters. There is a huge gap of knowledge about the composition of the complex organic pollutant mixtures occurring in such heavily impacted areas. Therefore, we applied a non-target screening to comprehensively assess river pollution in a large industrial area located in the megacity Jakarta. More than 100 structurally diverse organic contaminants were identified, some of which were reported here for the first time as environmental contaminants. The concentrations of paper manufacturing chemicals in river water-for example, of the endocrine-disrupting compound bisphenol A (50-8000 ng L -1 )-were as high as in pure untreated paper industry wastewaters. The non-target screening approach is the adequate tool for the identification of water contaminants in the new global centers of industrial manufacturing-as the first crucial step towards the evaluation of as yet unrecognized environmental risks.

  6. The University and the Municipality: Summary of Proceedings of the First Session of the National Association of Municipal Universities. Bulletin, 1915, No. 38. Whole Number 665

    ERIC Educational Resources Information Center

    United States Bureau of Education, Department of the Interior, 1915

    1915-01-01

    The problems of industry, government, and life in the modern industrial and commercial city are numerous, large, and complex. For their solution a larger amount of scientific knowledge and higher standards of intelligence among citizens are needed. All the city's agencies for good and progress need to be united and vitalized for more effective…

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 69: Writing for the Aerospace Industry. Chapter 3; The Practice of Technical and Scientific Communication: Writing in Professional Contexts

    NASA Technical Reports Server (NTRS)

    Barclay, Rebecca O.; Pinelli, Thomas E.

    1997-01-01

    The large and complex aerospace industry, which employed approximately 850,000 people in 1994 (Aerospace Facts, 1994-95, p. 11), plays a vital role in the nation's economy. Although only a small percentage of those employed in aerospace are technical communicators, they perform a wide variety of communication duties in government and the private sector.

  8. Exploring data availability for the Environmental Quality Index to assess environmental health disparities

    EPA Science Inventory

    The interaction between environmental insults and human health is complex. Environmental exposures tend to cluster, with disamenities (e.g., landfills, industrial plants) often located in high-minority and largely poor neighborhoods, while wealthier neighborhoods contain amenitie...

  9. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications

    PubMed Central

    Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores

    2018-01-01

    Abstract Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed. PMID:29438505

  10. Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications.

    PubMed

    Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores

    2018-03-01

    Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.

  11. RICIS Symposium 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Integrated Environments for Large, Complex Systems is the theme for the RICIS symposium of 1988. Distinguished professionals from industry, government, and academia have been invited to participate and present their views and experiences regarding research, education, and future directions related to this topic. Within RICIS, more than half of the research being conducted is in the area of Computer Systems and Software Engineering. The focus of this research is on the software development life-cycle for large, complex, distributed systems. Within the education and training component of RICIS, the primary emphasis has been to provide education and training for software professionals.

  12. Applying Adaptive Variables in Computerised Adaptive Testing

    ERIC Educational Resources Information Center

    Triantafillou, Evangelos; Georgiadou, Elissavet; Economides, Anastasios A.

    2007-01-01

    Current research in computerised adaptive testing (CAT) focuses on applications, in small and large scale, that address self assessment, training, employment, teacher professional development for schools, industry, military, assessment of non-cognitive skills, etc. Dynamic item generation tools and automated scoring of complex, constructed…

  13. Self-assembly of polyelectrolyte surfactant complexes using large scale MD simulation

    NASA Astrophysics Data System (ADS)

    Goswami, Monojoy; Sumpter, Bobby

    2014-03-01

    Polyelectrolytes (PE) and surfactants are known to form interesting structures with varied properties in aqueous solutions. The morphological details of the PE-surfactant complexes depend on a combination of polymer backbone, electrostatic interactions and hydrophobic interactions. We study the self-assembly of cationic PE and anionic surfactants complexes in dilute condition. The importance of such complexes of PE with oppositely charged surfactants can be found in biological systems, such as immobilization of enzymes in polyelectrolyte complexes or nonspecific association of DNA with protein. Many useful properties of PE surfactant complexes come from the highly ordered structures of surfactant self-assembly inside the PE aggregate which has applications in industry. We do large scale molecular dynamics simulation using LAMMPS to understand the structure and dynamics of PE-surfactant systems. Our investigation shows highly ordered pearl-necklace structures that have been observed experimentally in biological systems. We investigate many different properties of PE-surfactant complexation for different parameter ranges that are useful for pharmaceutical, engineering and biological applications.

  14. Mercury in soil, earthworms and organs of voles Myodes glareolus and shrew Sorex araneus in the vicinity of an industrial complex in Northwest Russia (Cherepovets).

    PubMed

    Komov, V T; Ivanova, E S; Poddubnaya, N Y; Gremyachikh, V A

    2017-03-01

    The characteristic properties of uptake and distribution of mercury in terrestrial ecosystems have received much lesser attention compared to aquatic particularly in Russia. Terrestrial ecosystems adjacent to large industrial manufactures-potential sources of mercury inflow into the environment frequently remain unstudied. This is the first report on mercury (Hg) levels in the basic elements of terrestrial ecosystems situated close to a large metallurgical complex.Mean values of mercury concentration (mg Hg/kg dry weight) in the vicinity of city of Cherepovets were the following: 0.056 ± 0.033-in the humus layer of soil; 0.556 ± 0.159-in earthworms; in the organs of voles Myodes glareolus (kidneys-0.021 ± 0.001; liver-0.014 ± 0.003; muscle-0.014 ± 0.001; brain-0.008 ± 0.002); in the organs of shrew Sorex araneus (kidneys-0.191 ± 0.016; liver-0.124 ± 0.011; muscle-0.108 ± 0.009; brain-0.065 ± 0.000). Correlation dependences between Hg content in soil and earthworms (r s  = 0.85, p < 0.01) as well as soil and all studied shrews' organs (rs = 0.44-0.58; p ≤ 0.01) were found.The results obtained evidence for a strong trophic link in the bioaccumulation of Hg in terrestrial food webs. Despite the vicinity to a large metallurgical complex, mercury content in the studied objects was significantly lower than values of corresponding parameters in the soils and biota from industrial (polluted) areas of Great Britain, the USA, and China.

  15. Software Reliability Issues Concerning Large and Safety Critical Software Systems

    NASA Technical Reports Server (NTRS)

    Kamel, Khaled; Brown, Barbara

    1996-01-01

    This research was undertaken to provide NASA with a survey of state-of-the-art techniques using in industrial and academia to provide safe, reliable, and maintainable software to drive large systems. Such systems must match the complexity and strict safety requirements of NASA's shuttle system. In particular, the Launch Processing System (LPS) is being considered for replacement. The LPS is responsible for monitoring and commanding the shuttle during test, repair, and launch phases. NASA built this system in the 1970's using mostly hardware techniques to provide for increased reliability, but it did so often using custom-built equipment, which has not been able to keep up with current technologies. This report surveys the major techniques used in industry and academia to ensure reliability in large and critical computer systems.

  16. Factors influencing efficient structure of fuel and energy complex

    NASA Astrophysics Data System (ADS)

    Sidorova, N. G.; Novikova, S. A.

    2017-10-01

    The development of the Russian fuel-energy complex is a priority for the national economic policy, and the Far East is a link between Russia and the Asia-Pacific region. Large-scale engineering of numerous resources of the Far East will force industrial development, increase living standard and strengthen Russia’s position in the global energy market. So, revealing the factors which influence rational structure of the fuel-energy complex is very urgent nowadays. With the use of depth analysis of development tendencies of the complex and its problems the authors show ways of its efficiency improvement.

  17. Bacterial community changes in an industrial algae production system.

    PubMed

    Fulbright, Scott P; Robbins-Pianka, Adam; Berg-Lyons, Donna; Knight, Rob; Reardon, Kenneth F; Chisholm, Stephen T

    2018-04-01

    While microalgae are a promising feedstock for production of fuels and other chemicals, a challenge for the algal bioproducts industry is obtaining consistent, robust algae growth. Algal cultures include complex bacterial communities and can be difficult to manage because specific bacteria can promote or reduce algae growth. To overcome bacterial contamination, algae growers may use closed photobioreactors designed to reduce the number of contaminant organisms. Even with closed systems, bacteria are known to enter and cohabitate, but little is known about these communities. Therefore, the richness, structure, and composition of bacterial communities were characterized in closed photobioreactor cultivations of Nannochloropsis salina in F/2 medium at different scales, across nine months spanning late summer-early spring, and during a sequence of serially inoculated cultivations. Using 16S rRNA sequence data from 275 samples, bacterial communities in small, medium, and large cultures were shown to be significantly different. Larger systems contained richer bacterial communities compared to smaller systems. Relationships between bacterial communities and algae growth were complex. On one hand, blooms of a specific bacterial type were observed in three abnormal, poorly performing replicate cultivations, while on the other, notable changes in the bacterial community structures were observed in a series of serial large-scale batch cultivations that had similar growth rates. Bacteria common to the majority of samples were identified, including a single OTU within the class Saprospirae that was found in all samples. This study contributes important information for crop protection in algae systems, and demonstrates the complex ecosystems that need to be understood for consistent, successful industrial algae cultivation. This is the first study to profile bacterial communities during the scale-up process of industrial algae systems.

  18. Development of an Environmental Quality Index to assess environmental public health disparities - What data are available?

    EPA Science Inventory

    Assessing exposure to environmental insults and human health outcomes is complex. Environmental exposures tend to cluster spatially, with disamenities (e.g., landfills, industrial plants) often located in high-minority and largely poor neighborhoods, while wealthier neighborhoods...

  19. ACTIVIS: Visual Exploration of Industry-Scale Deep Neural Network Models.

    PubMed

    Kahng, Minsuk; Andrews, Pierre Y; Kalro, Aditya; Polo Chau, Duen Horng

    2017-08-30

    While deep learning models have achieved state-of-the-art accuracies for many prediction tasks, understanding these models remains a challenge. Despite the recent interest in developing visual tools to help users interpret deep learning models, the complexity and wide variety of models deployed in industry, and the large-scale datasets that they used, pose unique design challenges that are inadequately addressed by existing work. Through participatory design sessions with over 15 researchers and engineers at Facebook, we have developed, deployed, and iteratively improved ACTIVIS, an interactive visualization system for interpreting large-scale deep learning models and results. By tightly integrating multiple coordinated views, such as a computation graph overview of the model architecture, and a neuron activation view for pattern discovery and comparison, users can explore complex deep neural network models at both the instance- and subset-level. ACTIVIS has been deployed on Facebook's machine learning platform. We present case studies with Facebook researchers and engineers, and usage scenarios of how ACTIVIS may work with different models.

  20. Deployment of ERP Systems at Automotive Industries, Security Inspection (Case Study: IRAN KHODRO Automotive Company)

    NASA Astrophysics Data System (ADS)

    Ali, Hatamirad; Hasan, Mehrjerdi

    Automotive industry and car production process is one of the most complex and large-scale production processes. Today, information technology (IT) and ERP systems incorporates a large portion of production processes. Without any integrated systems such as ERP, the production and supply chain processes will be tangled. The ERP systems, that are last generation of MRP systems, make produce and sale processes of these industries easier and this is the major factor of development of these industries anyhow. Today many of large-scale companies are developing and deploying the ERP systems. The ERP systems facilitate many of organization processes and make organization to increase efficiency. The security is a very important part of the ERP strategy at the organization, Security at the ERP systems, because of integrity and extensive, is more important of local and legacy systems. Disregarding of this point can play a giant role at success or failure of this kind of systems. The IRANKHODRO is the biggest automotive factory in the Middle East with an annual production over 600.000 cars. This paper presents ERP security deployment experience at the "IRANKHODRO Company". Recently, by launching ERP systems, it moved a big step toward more developments.

  1. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives

    PubMed Central

    Yagüe, Paula; López-García, Maria T.; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Ángel

    2013-01-01

    Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. PMID:23496097

  2. Screening procedure for airborne pollutants emitted from a high-tech industrial complex in Taiwan.

    PubMed

    Wang, John H C; Tsai, Ching-Tsan; Chiang, Chow-Feng

    2015-11-01

    Despite the modernization of computational techniques, atmospheric dispersion modeling remains a complicated task as it involves the use of large amounts of interrelated data with wide variability. The continuously growing list of regulated air pollutants also increases the difficulty of this task. To address these challenges, this study aimed to develop a screening procedure for a long-term exposure scenario by generating a site-specific lookup table of hourly averaged dispersion factors (χ/Q), which could be evaluated by downwind distance, direction, and effective plume height only. To allow for such simplification, the average plume rise was weighted with the frequency distribution of meteorological data so that the prediction of χ/Q could be decoupled from the meteorological data. To illustrate this procedure, 20 receptors around a high-tech complex in Taiwan were selected. Five consecutive years of hourly meteorological data were acquired to generate a lookup table of χ/Q, as well as two regression formulas of plume rise as functions of downwind distance, buoyancy flux, and stack height. To calculate the concentrations for the selected receptors, a six-step Excel algorithm was programmed with four years of emission records and 10 most critical toxics were screened out. A validation check using Industrial Source Complex (ISC3) model with the same meteorological and emission data showed an acceptable overestimate of 6.7% in the average concentration of 10 nearby receptors. The procedure proposed in this study allows practical and focused emission management for a large industrial complex and can therefore be integrated into an air quality decision-making system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  4. Development of a One-Equation Eddy Viscosity Turbulence Model for Application to Complex Turbulent Flows

    NASA Astrophysics Data System (ADS)

    Wray, Timothy J.

    Computational fluid dynamics (CFD) is routinely used in performance prediction and design of aircraft, turbomachinery, automobiles, and in many other industrial applications. Despite its wide range of use, deficiencies in its prediction accuracy still exist. One critical weakness is the accurate simulation of complex turbulent flows using the Reynolds-Averaged Navier-Stokes equations in conjunction with a turbulence model. The goal of this research has been to develop an eddy viscosity type turbulence model to increase the accuracy of flow simulations for mildly separated flows, flows with rotation and curvature effects, and flows with surface roughness. It is accomplished by developing a new zonal one-equation turbulence model which relies heavily on the flow physics; it is now known in the literature as the Wray-Agarwal one-equation turbulence model. The effectiveness of the new model is demonstrated by comparing its results with those obtained by the industry standard one-equation Spalart-Allmaras model and two-equation Shear-Stress-Transport k - o model and experimental data. Results for subsonic, transonic, and supersonic flows in and about complex geometries are presented. It is demonstrated that the Wray-Agarwal model can provide the industry and CFD researchers an accurate, efficient, and reliable turbulence model for the computation of a large class of complex turbulent flows.

  5. Datasets for Ostrava PMF paper

    EPA Pesticide Factsheets

    These data support a published journal paper described as follows:A 14-week investigation during a warm and cold seasons was conducted to improve understanding of airpollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulatematter (PM2.5) samples were collected in consecutive 12-h day and night increments during spring andfall 2012 sampling campaigns. Sampling sites were strategically located to evaluate conditions in closeproximity of a large steel works industrial complex, as well as away from direct influence of theindustrial complex. These samples were analyzed for metals and other elements, organic and elemental(black) carbon, and polycyclic aromatic hydrocarbons (PAHs). The PM2.5 samples were supplementedwith pollutant gases and meteorological parameters. We applied the EPA PMF v5.1 model with uncertainty estimate features to the Ostrava data set. Using the model's bootstrapping procedure and other considerations, six factors were determined to provide the optimum solution. Each model run consisted of 100 iterations to ensure that the solution represents a global minimum. The resulting factors were identified as representing coal (power plants), mixed Cl, crustal, industrial 1 (alkali metals and PAHs), industrial 2 (transition metals), and home heat/transportation. The home heating source is thought to be largely domestic boilers burning low quality fuels such as lignite, wood, and domestic waste.Transportation-r

  6. Conduction Cooling of a Niobium SRF Cavity Using a Cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, Joshua; Geelhoed, Michael; Dhuley, Ram

    Superconducting Radio Frequency (SRF) cavities are the primary choice for accelerating charged particles in high-energy research accelerators. Institutions like Fermilab use SRF cavities because they enable significantly higher gradients and quality factors than normal-conducting RF cavities and DC voltage cavities. To cool the SRF cavities to low temperatures (typically around 2 K), liquid helium refrigerators are used. Producing and maintaining the necessary liquid helium requires large, elaborate cryogenic plants involving dewars, compressors, expansion engines, and recyclers. The cost, complexity, and space required for such plants is part of the reason that industry has not yet adopted SRF-based accelerators. At themore » Illinois Accelerator Research Center (IARC) at Fermilab, our team seeks to make SRF technology accessible not only to large research accelerators, but to industry as well. If we eliminate the complexity associated with liquid helium plants, SRF-based industrial accelerators may finally become a reality. One way to do this is to eliminate the use of liquid helium baths altogether and develop a brand-new cooling technique for SRF cavities: conduction cooling using a cryocooler. Recent advances in SRF technology have made it possible to operate SRF cavities at 4 K, a temperature easily achievable using commercial cryocoolers. Our IARC team is taking advantage of this technology to cool SRF cavities.« less

  7. Three dimensional hair model by means particles using Blender

    NASA Astrophysics Data System (ADS)

    Alvarez-Cedillo, Jesús Antonio; Almanza-Nieto, Roberto; Herrera-Lozada, Juan Carlos

    2010-09-01

    The simulation and modeling of human hair is a process whose computational complexity is very large, this due to the large number of factors that must be calculated to give a realistic appearance. Generally, the method used in the film industry to simulate hair is based on particle handling graphics. In this paper we present a simple approximation of how to model human hair using particles in Blender. [Figure not available: see fulltext.

  8. Assessing the impact of industrial source emissions on atmospheric carbonaceous aerosol concentrations using routine monitoring networks.

    PubMed

    Sheesley, Rebecca J; Schauer, James J; Orf, Marya L

    2010-02-01

    Industrial sources can have a significant but poorly defined impact on ambient particulate matter concentrations in select areas. Detailed emission profiles are often not available and are hard to develop because of the diversity of emissions across time and space at large industrial complexes. A yearlong study was conducted in an industrial area in Detroit, MI, which combined real-time particle mass (tapered element oscillating microbalance) and black carbon (aetholometer) measurements with molecular marker measurements of monthly average concentrations as well as daily concentrations of select high pollution days. The goal of the study was to use the real-time data to define days in which the particulate matter concentration in the atmosphere was largely impacted by local source emissions and to use daily speciation data to derive emission profiles for the industrial source. When combined with motor vehicle exhaust, wood smoke and road dust profiles, the industrial source profile was used to determine the contribution of the local industrial source to the total organic carbon (OC) concentrations using molecular marker-chemical mass balance modeling (MM-CMB). The MM-CMB analysis revealed that the industrial source had minimal impact on the monthly average carbonaceous aerosol concentration, but contributed approximately 2 microg m(-3), or a little over one-third of the total OC, on select high-impact days.

  9. Industry and energy: the moral dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacIntyre, A.

    1979-05-28

    Prof. MacIntyre examines the morality of the electric power industry in the historical context of creating a tradition for unchallenged demand growth. Past decisions are shown to have considered only technical matters and not violating negative prohibiting rules, but with failure to assert positive moral leadership. Positive tasks would include assuming more public responsibility in keeping with the strategic position and vast resources of the industry, Prof. MacIntyre feels. The electric power industry can, by shifting its patterns of investment, affect the nation's energy choices. Complexity and the hazards of oversimplification, the need to involve everyone in the discussion ofmore » energy costs and benefits, the ability to live with unpredictability, the avoidance of large-scale irreversible decisions, and recognition of limitations are all part of the moral dimensions the industry needs to address.« less

  10. High-frequency CAD-based scattering model: SERMAT

    NASA Astrophysics Data System (ADS)

    Goupil, D.; Boutillier, M.

    1991-09-01

    Specifications for an industrial radar cross section (RCS) calculation code are given: it must be able to exchange data with many computer aided design (CAD) systems, it must be fast, and it must have powerful graphic tools. Classical physical optics (PO) and equivalent currents (EC) techniques have proven their efficiency on simple objects for a long time. Difficult geometric problems occur when objects with very complex shapes have to be computed. Only a specific geometric code can solve these problems. We have established that, once these problems have been solved: (1) PO and EC give good results on complex objects of large size compared to wavelength; and (2) the implementation of these objects in a software package (SERMAT) allows fast and sufficiently precise domain RCS calculations to meet industry requirements in the domain of stealth.

  11. Environmental and Body Concentrations of Heavy Metals at Sites Near and Distant from Industrial Complexes in Ulsan, Korea.

    PubMed

    Sung, Joo Hyun; Oh, Inbo; Kim, Ahra; Lee, Jiho; Sim, Chang Sun; Yoo, Cheolin; Park, Sang Jin; Kim, Geun Bae; Kim, Yangho

    2018-01-29

    Industrial pollution may affect the heavy metal body burden of people living near industrial complexes. We determined the average concentrations of atmospheric heavy metals in areas close to and distant from industrial complexes in Korea, and the body concentrations of these heavy metals in residents living near and distant from these facilities. The atmospheric data of heavy metals (lead and cadmium) were from the Regional Air Monitoring Network in Ulsan. We recruited 1,148 participants, 872 who lived near an industrial complex ("exposed" group) and 276 who lived distant from industrial complexes ("non-exposed" group), and measured their concentrations of blood lead, urinary cadmium, and urinary total mercury. The results showed that atmospheric and human concentrations of heavy metals were higher in areas near industrial complexes. In addition, residents living near industrial complexes had higher individual and combined concentrations (cadmium + lead + mercury) of heavy metals. We conclude that residents living near industrial complexes are exposed to high concentrations of heavy metals, and should be carefully monitored. © 2018 The Korean Academy of Medical Sciences.

  12. Environmental and Body Concentrations of Heavy Metals at Sites Near and Distant from Industrial Complexes in Ulsan, Korea

    PubMed Central

    2017-01-01

    Background Industrial pollution may affect the heavy metal body burden of people living near industrial complexes. We determined the average concentrations of atmospheric heavy metals in areas close to and distant from industrial complexes in Korea, and the body concentrations of these heavy metals in residents living near and distant from these facilities. Methods The atmospheric data of heavy metals (lead and cadmium) were from the Regional Air Monitoring Network in Ulsan. We recruited 1,148 participants, 872 who lived near an industrial complex (“exposed” group) and 276 who lived distant from industrial complexes (“non-exposed” group), and measured their concentrations of blood lead, urinary cadmium, and urinary total mercury. Results The results showed that atmospheric and human concentrations of heavy metals were higher in areas near industrial complexes. In addition, residents living near industrial complexes had higher individual and combined concentrations (cadmium + lead + mercury) of heavy metals. Conclusion We conclude that residents living near industrial complexes are exposed to high concentrations of heavy metals, and should be carefully monitored. PMID:29349943

  13. Improving Risk Management and Resiliency: A Plan for a Proactive National Policy on Insurance Practices in FEMA’s Public Assistance Program

    DTIC Science & Technology

    2013-12-01

    DisasterRecoveryExpenditure/Pag es/default.aspx, Canadian Disaster Database, and www.fema.gov) 116 Table 15. Comparison of declaration criteria and disasters for $30 million...the role of insurance in FEMA’s Public Assistance program. The guidance provided in the 44 CFR has not kept up with the industry since being...the nation. xxix THIS PAGE INTENTIONALLY LEFT BLANK I. INTRODUCTION Insurance is a complex industry , which is a large component of the U.S

  14. Considering Complex Objectives and Scarce Resources in Information Systems' Analysis.

    ERIC Educational Resources Information Center

    Crowther, Warren

    The low efficacy of many of the library and large-scale information systems that have been implemented in the developing countries has been disappointing, and their appropriateness is often questioned in the governmental and educational institutions of more industrialized countries beset by budget-crunching and a very dynamic transformation of…

  15. Aspects of Mutual Engagement: School of Engineering and Industry Collaborations

    ERIC Educational Resources Information Center

    Stroud, Dean; Hopkins, Andrew

    2016-01-01

    This paper is a case study of collaboration between a large steel company and a university's school of engineering. Our aim is to contribute to understandings of engagement between employers and higher education institutions and explore some of the complexities of such collaborations in their initiation and propagation. The analysis derives from…

  16. Experimental application of OMA solutions on the model of industrial structure

    NASA Astrophysics Data System (ADS)

    Mironov, A.; Mironovs, D.

    2017-10-01

    It is very important and sometimes even vital to maintain reliability of industrial structures. High quality control during production and structural health monitoring (SHM) in exploitation provides reliable functioning of large, massive and remote structures, like wind generators, pipelines, power line posts, etc. This paper introduces a complex of technological and methodical solutions for SHM and diagnostics of industrial structures, including those that are actuated by periodic forces. Solutions were verified on a wind generator scaled model with integrated system of piezo-film deformation sensors. Simultaneous and multi-patch Operational Modal Analysis (OMA) approaches were implemented as methodical means for structural diagnostics and monitoring. Specially designed data processing algorithms provide objective evaluation of structural state modification.

  17. Design considerations for computationally constrained two-way real-time video communication

    NASA Astrophysics Data System (ADS)

    Bivolarski, Lazar M.; Saunders, Steven E.; Ralston, John D.

    2009-08-01

    Today's video codecs have evolved primarily to meet the requirements of the motion picture and broadcast industries, where high-complexity studio encoding can be utilized to create highly-compressed master copies that are then broadcast one-way for playback using less-expensive, lower-complexity consumer devices for decoding and playback. Related standards activities have largely ignored the computational complexity and bandwidth constraints of wireless or Internet based real-time video communications using devices such as cell phones or webcams. Telecommunications industry efforts to develop and standardize video codecs for applications such as video telephony and video conferencing have not yielded image size, quality, and frame-rate performance that match today's consumer expectations and market requirements for Internet and mobile video services. This paper reviews the constraints and the corresponding video codec requirements imposed by real-time, 2-way mobile video applications. Several promising elements of a new mobile video codec architecture are identified, and more comprehensive computational complexity metrics and video quality metrics are proposed in order to support the design, testing, and standardization of these new mobile video codecs.

  18. Flux Calculation Using CARIBIC DOAS Aircraft Measurements: SO2 Emission of Norilsk

    NASA Technical Reports Server (NTRS)

    Walter, D.; Heue, K.-P.; Rauthe-Schoech, A.; Brenninkmeijer, C. A. M.; Lamsal, L. N.; Krotkov, N. A.; Platt, U.

    2012-01-01

    Based on a case-study of the nickel smelter in Norilsk (Siberia), the retrieval of trace gas fluxes using airborne remote sensing is discussed. A DOAS system onboard an Airbus 340 detected large amounts of SO2 and NO2 near Norilsk during a regular passenger flight within the CARIBIC project. The remote sensing data were combined with ECMWF wind data to estimate the SO2 output of the Norilsk industrial complex to be around 1 Mt per year, which is in agreement with independent estimates. This value is compared to results using data from satellite remote sensing (GOME, OMI). The validity of the assumptions underlying our estimate is discussed, including the adaptation of this method to other gases and sources like the NO2 emissions of large industries or cities.

  19. A preliminary index of biotic integrity for monitoring the condition of the Rio Paraiba do Sul, southeast Brazil.

    PubMed

    Araujo, Francisco Gerson; Fichberg, Ilana; Pinto, Benjamin Carvalho Teixeira; Peixoto, Magna Galvao

    2003-10-01

    The biodiversity of many Brazilian rivers is seriously threatened by industrial and municipal pollution, and Rio Paraiba do Sul, located between two major industrial centers is one example of this situation. A survey of the fish assemblage was conducted from October 1998 to September 1999 and the data were used to develop an index of biotic integrity (IBI). We sampled three zones in bracketing a large urban-industrial complex to evaluate water quality changes and the usefulness of the IBI as a monitoring tool. Water quality was classified as poor upstream of the effluent discharges, very poor near the discharges, and poor-fair downstream of the discharges, with this latter situation revealing the current biological capacity of the river. Physical and chemical habitat characteristics were also measured at each site to construct an independent environmental index to validate the IBI. The habitat and IBI indices were highly correlated, suggesting this IBI would be applicable to other large rivers in southeast Brazil.

  20. The use of Tecnomatix software to simulate the manufacturing flows in an industrial enterprise producing hydrostatic components

    NASA Astrophysics Data System (ADS)

    Petrila, S.; Brabie, G.; Chirita, B.

    2016-08-01

    The analysis performed on manufacturing flows within industrial enterprises producing hydrostatic components twos made on a number of factors that influence smooth running of production such: distance between pieces, waiting time from one surgery to another; time achievement of setups on CNC machines; tool changing in case of a large number of operators and manufacturing complexity of large files [2]. To optimize the manufacturing flow it was used the software Tecnomatix. This software represents a complete portfolio of manufacturing solutions digital manufactured by Siemens. It provides innovation by linking all production methods of a product from process design, process simulation, validation and ending the manufacturing process. Among its many capabilities to create a wide range of simulations, the program offers various demonstrations regarding the behavior manufacturing cycles. This program allows the simulation and optimization of production systems and processes in several areas such as: car suppliers, production of industrial equipment; electronics manufacturing, design and production of aerospace and defense parts.

  1. Identification of specific organic contaminants in different units of a chemical production site.

    PubMed

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process. The chemical composition of the inflow samples showed a very heterogenic composition and strongly varied, reflecting that large scale industrial synthesis is carried out in batches. The outflow contained mainly unspecific chlorinated educts or intermediates of industrial syntheses as well as compounds which are known as typical constituents of municipal wastewaters.

  2. Earth Observations taken by the Expedition 10 crew

    NASA Image and Video Library

    2004-12-25

    ISS010-E-12103 (25 December 2004) --- Seoul, South Korea is featured in this digital image photographed by an Expedition 10 crewmember on the International Space Station. This photograph illustrates the Seoul (originally known as Hanyang) urban area at night. Major roadways and river courses (such as the Han River) are clearly outlined by street lights, while the brightest lights indicate the downtown urban core (center of image) and large industrial complexes. Very dark regions in the image are mountains or large bodies of water.

  3. Statistical mechanics of complex economies

    NASA Astrophysics Data System (ADS)

    Bardoscia, Marco; Livan, Giacomo; Marsili, Matteo

    2017-04-01

    In the pursuit of ever increasing efficiency and growth, our economies have evolved to remarkable degrees of complexity, with nested production processes feeding each other in order to create products of greater sophistication from less sophisticated ones, down to raw materials. The engine of such an expansion have been competitive markets that, according to general equilibrium theory (GET), achieve efficient allocations under specific conditions. We study large random economies within the GET framework, as templates of complex economies, and we find that a non-trivial phase transition occurs: the economy freezes in a state where all production processes collapse when either the number of primary goods or the number of available technologies fall below a critical threshold. As in other examples of phase transitions in large random systems, this is an unintended consequence of the growth in complexity. Our findings suggest that the Industrial Revolution can be regarded as a sharp transition between different phases, but also imply that well developed economies can collapse if too many intermediate goods are introduced.

  4. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  5. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  6. Software engineering as an engineering discipline

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1988-01-01

    The purpose of this panel is to explore the emerging field of software engineering from a variety of perspectives: university programs; industry training and definition; government development; and technology transfer. In doing this, the panel will address the issues of distinctions among software engineering, computer science, and computer hardware engineering as they relate to the challenges of large, complex systems.

  7. Simulation of the effect of air pollution on forest ecosystems in a region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarko, A.M.; Bykadorov, A.V.; Kryuchkov, V.V.

    1995-03-01

    This article describes a model of air pollution effects on spruce in forests of the northern taiga regions which have been exposed to air pollution from a large metallurgical industrial complex. Both the predictions the model makes about forest ecosystem degradation zones and the limitations of the model are discussed. 5 refs., 1 fig.

  8. Diesel Engine Services. An Instructor's Guide for a Program in Trade and Technical Education. Automotive Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Designed to prepare students to be engine mechanics working on automotive and large stationary diesel engines, this instructor's guide contains eight units arranged from simple to complex to facilitate student learning. Each contains behavioral objectives, a content outline, understandings and teaching approaches necessary to develop the content,…

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques Hugo

    Traditional engineering methods do not make provision for the integration of human considerations, while traditional human factors methods do not scale well to the complexity of large-scale nuclear power plant projects. Although the need for up-to-date human factors engineering processes and tools is recognised widely in industry, so far no formal guidance has been developed. This article proposes such a framework.

  10. Business of biosimilars - 14th annual conference (October 15-17, 2013 - Boston, Massachusetts, USA).

    PubMed

    Bourgoin, A

    2013-12-01

    Competition in the biological market offers a new set of opportunities and challenges within the healthcare industry. Biosimilars, like generic small-molecule drugs, can provide cost savings and increase patient access, while also promoting innovation. While large molecule manufacturers face many challenges unique to complex therapeutics, it is becoming clear that the commercialization of biosimilars shares many of the same hurdles as the generics market. The 14th Annual Business of Biosimilars Conference provided quality presentations from industry leaders regarding many commercial considerations for stakeholders interested in entering the biosimilars market. Opportunities to network with industry experts were offered, with over 120 attendees. Copyright 2013 Prous Science, S.A.U. or its licensors. All rights reserved.

  11. Pre-sporulation stages of Streptomyces differentiation: state-of-the-art and future perspectives.

    PubMed

    Yagüe, Paula; López-García, Maria T; Rioseras, Beatriz; Sánchez, Jesús; Manteca, Angel

    2013-05-01

    Streptomycetes comprise very important industrial bacteria, producing two-thirds of all clinically relevant secondary metabolites. They are mycelial microorganisms with complex developmental cycles that include programmed cell death (PCD) and sporulation. Industrial fermentations are usually performed in liquid cultures (large bioreactors), conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that there was no differentiation. In this work, we review the current knowledge on Streptomyces pre-sporulation stages of Streptomyces differentiation. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. St. Croix, U.S. Virgin Islands, Caribbean Sea

    NASA Image and Video Library

    1993-01-19

    STS054-74-049 (13-19 Jan. 1993) --- St. Croix is the largest, and most industrial of the U.S. Virgin Islands. This photograph captures St. Croix's features in great detail. The large industrial complex in the middle of the southern shore is the world's largest petroleum refinery. The main city, Christiansted, can be seen across the island on the north shore. The reefs around the eastern end of St. Croix are preserved as a submarine national park -- Buck Island Reef National Park -- around the small island off the north shore of the eastern end of St. Croix.

  13. Multipurpose electroslag remelting furnace for modern energy and heavy engineering industry

    NASA Astrophysics Data System (ADS)

    Dub, A. V.; Dub, V. S.; Kriger, Yu. N.; Levkov, L. Ya.; Shurygin, D. A.; Kissel'man, M. A.; Nekhamin, C. M.; Chernyak, A. I.; Bessonov, A. V.; Kamantsev, S. V.; Sokolov, S. O.

    2012-12-01

    In 2011, a unique complex based on a multipurpose unit-type electroslag remelting (ESR) furnace is created to meet the demand for large high-quality solid and hollow billets for the products of power, atomic, petrochemical, and heavy machine engineering. This complex has modern low-frequency power supplies with a new control level that ensure a high homogeneity and quality of the billets and an increase in the engineering-and-economical performance of the production. A unique pilot ESR furnace is erected to adjust technological conditions and the main control system elements.

  14. Complex Nano-Scale Structures for Unprecedented Properties in Steels

    DOE PAGES

    Caballero, Francisca G.; Poplawsky, Jonathan D.; Yen, Hung Wei; ...

    2016-11-01

    Processing bulk nanoscrystalline materials for structural applications still poses a rather large challenge, particularly in achieving an industrially viable process. In this context, recent work has proved that complex nanoscale steel structures can be formed by solid reaction at low temperatures. These nanocrystalline bainitic steels present the highest strength ever recorded, unprecedented ductility, fatigue on par with commercial bearing steels and exceptional rolling-sliding wear performances. In this paper, a description of the characteristics and significance of these remarkable structures in the context of the atomic mechanism of transformation is provided.

  15. Microbiological corrosion of ASTM SA105 carbon steel pipe for industrial fire water usage

    NASA Astrophysics Data System (ADS)

    Chidambaram, S.; Ashok, K.; Karthik, V.; Venkatakrishnan, P. G.

    2018-02-01

    The large number of metallic systems developed for last few decades against both general uniform corrosion and localized corrosion. Among all microbiological induced corrosion (MIC) is attractive, multidisciplinary and complex in nature. Many chemical processing industries utilizes fresh water for fire service to nullify major/minor fire. One such fire water service line pipe attacked by micro-organisms leads to leakage which is industrially important from safety point of view. Also large numbers of leakage reported in similar fire water service of nearby food processing plant, paper & pulp plant, steel plant, electricity board etc…In present investigation one such industrial fire water service line failure analysis of carbon steel line pipe was analyzed to determine the cause of failure. The water sample subjected to various chemical and bacterial analyses. Turbidity, pH, calcium hardness, free chlorine, oxidation reduction potential, fungi, yeasts, sulphide reducing bacteria (SRB) and total bacteria (TB) were measured on water sample analysis. The corrosion rate was measured on steel samples and corrosion coupon measurements were installed in fire water for validating non flow assisted localized corrosion. The sulphide reducing bacteria (SRB) presents in fire water causes a localized micro biological corrosion attack of line pipe.

  16. Complex networks as an emerging property of hierarchical preferential attachment.

    PubMed

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  17. Complex networks as an emerging property of hierarchical preferential attachment

    NASA Astrophysics Data System (ADS)

    Hébert-Dufresne, Laurent; Laurence, Edward; Allard, Antoine; Young, Jean-Gabriel; Dubé, Louis J.

    2015-12-01

    Real complex systems are not rigidly structured; no clear rules or blueprints exist for their construction. Yet, amidst their apparent randomness, complex structural properties universally emerge. We propose that an important class of complex systems can be modeled as an organization of many embedded levels (potentially infinite in number), all of them following the same universal growth principle known as preferential attachment. We give examples of such hierarchy in real systems, for instance, in the pyramid of production entities of the film industry. More importantly, we show how real complex networks can be interpreted as a projection of our model, from which their scale independence, their clustering, their hierarchy, their fractality, and their navigability naturally emerge. Our results suggest that complex networks, viewed as growing systems, can be quite simple, and that the apparent complexity of their structure is largely a reflection of their unobserved hierarchical nature.

  18. Taking Open Innovation to the Molecular Level - Strengths and Limitations.

    PubMed

    Zdrazil, Barbara; Blomberg, Niklas; Ecker, Gerhard F

    2012-08-01

    The ever-growing availability of large-scale open data and its maturation is having a significant impact on industrial drug-discovery, as well as on academic and non-profit research. As industry is changing to an 'open innovation' business concept, precompetitive initiatives and strong public-private partnerships including academic research cooperation partners are gaining more and more importance. Now, the bioinformatics and cheminformatics communities are seeking for web tools which allow the integration of this large volume of life science datasets available in the public domain. Such a data exploitation tool would ideally be able to answer complex biological questions by formulating only one search query. In this short review/perspective, we outline the use of semantic web approaches for data and knowledge integration. Further, we discuss strengths and current limitations of public available data retrieval tools and integrated platforms.

  19. Use of big data by Blue Cross and Blue Shield of North Carolina.

    PubMed

    Helm-Murtagh, Susan C

    2014-01-01

    The health care industry is grappling with the challenges of working with and analyzing large, complex, diverse data sets. Blue Cross and Blue Shield of North Carolina provides several promising examples of how big data can be used to reduce the cost of care, to predict and manage health risks, and to improve clinical outcomes.

  20. Complex dynamics and empirical evidence (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Delli Gatti, Domenico; Gaffeo, Edoardo; Giulioni, Gianfranco; Gallegati, Mauro; Kirman, Alan; Palestrini, Antonio; Russo, Alberto

    2005-05-01

    Standard macroeconomics, based on a reductionist approach centered on the representative agent, is badly equipped to explain the empirical evidence where heterogeneity and industrial dynamics are the rule. In this paper we show that a simple agent-based model of heterogeneous financially fragile agents is able to replicate a large number of scaling type stylized facts with a remarkable degree of statistical precision.

  1. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  2. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE PAGES

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    2016-10-23

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  3. An Overview of P450 Enzymes: Opportunity and Challenges in Industrial Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonier, Sandra; Alexander, Meyers; Jayakody, Lahiru N.

    Cytochrome P450 enzymes (P450s) containing a heme-iron center, are biocatalysts from all kingdoms, involvedin a large variety of reactions. Their potential in catalyzing a broad range of substrates makes perfect candidates for biotechnology applications and the production of high-value compounds. Biocatalytic reactions performed by P450s have a great interest in the pharmaceutical industry, fine chemicals, cosmetics, and for bioremediation procedures. However, the complex nature of this protein is still a major hurdle in the prospect of using their promising ability for expanding the number of industrial applications. Multiple approaches of protein engineering are currently conducted to improve activity, stability and/ormore » substrate specificity for a given reaction. Furthermore, in combination with the appropriate biocatalyst, a suitable bioengineering process is a key step in the implementation of P450s at the industrial scale.« less

  4. Antidepressant Efficacy for Depression in Children and Adolescents: Industry- and NIMH-Funded Studies.

    PubMed

    Walkup, John T

    2017-05-01

    Significant controversy surrounds the efficacy of the newer antidepressants for children and adolescents with depression. The controversy largely hinges on meta-analyses of studies that suggest that antidepressants are minimally effective, not effective, or equivalent to placebo. In this review, the author discusses several scientific and clinical complexities that are important to understand in reviewing the antidepressant literature: the strengths and weaknesses of meta-analyses; the scientific and regulatory context for the large number of antidepressant trials in the late 1990s and early 2000s; and the distinction between a negative trial, where the treatment does not demonstrate efficacy, and a failed trial, where methodological problems make it impossible to draw any conclusion about efficacy. It is the premise of this review that meta-analyses that include the large number of industry-sponsored antidepressant trials distort the picture of antidepressant efficacy for teen depression. Industry-sponsored child and adolescent depression trials suffer from a number of implementation challenges and should be considered failed trials that are largely uninformative and not eligible to be included in efficacy meta-analyses. In contrast to the industry-sponsored trials, depression trials funded by the National Institute of Mental Health (NIMH) (N=2) are characterized by many methodological strengths, lower placebo response rates (30%-35%), and meaningful between-group differences (25%-30%) that support antidepressant efficacy. The NIMH-funded trials, taken together with the demonstrated efficacy of the serotonin reuptake inhibitors for childhood-onset obsessive-compulsive disorder and the anxiety disorders, suggest a broad and important role for antidepressant medications in pediatric internalizing conditions.

  5. Meta-control of combustion performance with a data mining approach

    NASA Astrophysics Data System (ADS)

    Song, Zhe

    Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.

  6. Characterizing and locating air pollution sources in a complex industrial district using optical remote sensing technology and multivariate statistical modeling.

    PubMed

    Chang, Pao-Erh Paul; Yang, Jen-Chih Rena; Den, Walter; Wu, Chang-Fu

    2014-09-01

    Emissions of volatile organic compounds (VOCs) are most frequent environmental nuisance complaints in urban areas, especially where industrial districts are nearby. Unfortunately, identifying the responsible emission sources of VOCs is essentially a difficult task. In this study, we proposed a dynamic approach to gradually confine the location of potential VOC emission sources in an industrial complex, by combining multi-path open-path Fourier transform infrared spectrometry (OP-FTIR) measurement and the statistical method of principal component analysis (PCA). Close-cell FTIR was further used to verify the VOC emission source by measuring emitted VOCs from selected exhaust stacks at factories in the confined areas. Multiple open-path monitoring lines were deployed during a 3-month monitoring campaign in a complex industrial district. The emission patterns were identified and locations of emissions were confined by the wind data collected simultaneously. N,N-Dimethyl formamide (DMF), 2-butanone, toluene, and ethyl acetate with mean concentrations of 80.0 ± 1.8, 34.5 ± 0.8, 103.7 ± 2.8, and 26.6 ± 0.7 ppbv, respectively, were identified as the major VOC mixture at all times of the day around the receptor site. As the toxic air pollutant, the concentrations of DMF in air samples were found exceeding the ambient standard despite the path-average effect of OP-FTIR upon concentration levels. The PCA data identified three major emission sources, including PU coating, chemical packaging, and lithographic printing industries. Applying instrumental measurement and statistical modeling, this study has established a systematic approach for locating emission sources. Statistical modeling (PCA) plays an important role in reducing dimensionality of a large measured dataset and identifying underlying emission sources. Instrumental measurement, however, helps verify the outcomes of the statistical modeling. The field study has demonstrated the feasibility of using multi-path OP-FTIR measurement. The wind data incorporating with the statistical modeling (PCA) may successfully identify the major emission source in a complex industrial district.

  7. A high performance, ad-hoc, fuzzy query processing system for relational databases

    NASA Technical Reports Server (NTRS)

    Mansfield, William H., Jr.; Fleischman, Robert M.

    1992-01-01

    Database queries involving imprecise or fuzzy predicates are currently an evolving area of academic and industrial research. Such queries place severe stress on the indexing and I/O subsystems of conventional database environments since they involve the search of large numbers of records. The Datacycle architecture and research prototype is a database environment that uses filtering technology to perform an efficient, exhaustive search of an entire database. It has recently been modified to include fuzzy predicates in its query processing. The approach obviates the need for complex index structures, provides unlimited query throughput, permits the use of ad-hoc fuzzy membership functions, and provides a deterministic response time largely independent of query complexity and load. This paper describes the Datacycle prototype implementation of fuzzy queries and some recent performance results.

  8. Integrating Efficiency of Industry Processes and Practices Alongside Technology Effectiveness in Space Transportation Cost Modeling and Analysis

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2012-01-01

    This paper presents past and current work in dealing with indirect industry and NASA costs when providing cost estimation or analysis for NASA projects and programs. Indirect costs, when defined as those costs in a project removed from the actual hardware or software hands-on labor; makes up most of the costs of today's complex large scale NASA space/industry projects. This appears to be the case across phases from research into development into production and into the operation of the system. Space transportation is the case of interest here. Modeling and cost estimation as a process rather than a product will be emphasized. Analysis as a series of belief systems in play among decision makers and decision factors will also be emphasized to provide context.

  9. Turbulence modeling needs of commercial CFD codes: Complex flows in the aerospace and automotive industries

    NASA Technical Reports Server (NTRS)

    Befrui, Bizhan A.

    1995-01-01

    This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.

  10. Health effects of environmental pollution in population living near industrial complex areas in Korea.

    PubMed

    Eom, Sang-Yong; Choi, Jonghyuk; Bae, Sanghyuk; Lim, Ji-Ae; Kim, Guen-Bae; Yu, Seung-Do; Kim, Yangho; Lim, Hyun-Sul; Son, Bu-Soon; Paek, Domyung; Kim, Yong-Dae; Kim, Heon; Ha, Mina; Kwon, Ho-Jang

    2018-01-01

    Several epidemiological studies have reported an association between environmental pollution and various health conditions in individuals residing in industrial complexes. To evaluate the effects of pollution from industrial complex on human health, we performed a pooled analysis of environmental epidemiologic monitoring data for residents living near national industrial complexes in Korea. The respiratory and allergic symptoms and the prevalence of acute and chronic diseases, including cancer, were used as the outcome variables for health effects. Multiple logistic regression analysis was used to analyze the relationship between exposure to pollution from industrial complexes and health conditions. After adjusting for age, sex, smoking status, occupational exposure, level of education, and body mass index, the residents near the industrial complexes were found to have more respiratory symptoms, such as cough (odds ratio [OR], 1.18; 95% confidence interval [CI], 1.06 to 1.31) and sputum production (OR, 1.13; 95% CI, 1.03 to 1.24), and symptoms of atopic dermatitis (OR, 1.10; 95% CI, 1.01 to 1.20). Among residents of the industrial complexes, the prevalence of acute eye disorders was approximately 40% higher (OR, 1.39; 95% CI, 1.04 to 1.84) and the prevalence of lung and uterine cancer was 3.45 times and 1.88 times higher, respectively, than those among residents of the control area. This study showed that residents living in the vicinity of industrial complexes have a high risk of acute and chronic diseases including respiratory and allergic conditions. These results can be used as basic objective data for developing health management measures for individuals residing near industrial complexes.

  11. An innovative approach to sampling complex industrial emissions for use in animal toxicity tests: application to iron casting operations.

    PubMed

    Palmer, W G; Scholz, R C; Moorman, W J

    1983-03-01

    Sampling of complex mixtures of airborne contaminants for chronic animal toxicity tests often involves numerous sampling devices, requires extensive sampling time, and yields forms of collected materials unsuitable for administration to animals. A method is described which used a high volume, wet venturi scrubber for collection of respirable fractions of emissions from iron foundry casting operations. The construction and operation of the sampler are presented along with collection efficiency data and its application to the preparation of large quantities of samples to be administered to animals by intratracheal instillation.

  12. Toolsets Maintain Health of Complex Systems

    NASA Technical Reports Server (NTRS)

    2010-01-01

    First featured in Spinoff 2001, Qualtech Systems Inc. (QSI), of Wethersfield, Connecticut, adapted its Testability, Engineering, and Maintenance System (TEAMS) toolset under Small Business Innovation Research (SBIR) contracts from Ames Research Center to strengthen NASA's systems health management approach for its large, complex, and interconnected systems. Today, six NASA field centers utilize the TEAMS toolset, including TEAMS-Designer, TEAMS-RT, TEAMATE, and TEAMS-RDS. TEAMS is also being used on industrial systems that generate power, carry data, refine chemicals, perform medical functions, and produce semiconductor wafers. QSI finds TEAMS can lower costs by decreasing problems requiring service by 30 to 50 percent.

  13. Resource Use in Small Island States: Material Flows in Iceland and Trinidad and Tobago, 1961-2008.

    PubMed

    Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina

    2014-04-01

    Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption.

  14. Resource Use in Small Island States

    PubMed Central

    Krausmann, Fridolin; Richter, Regina; Eisenmenger, Nina

    2014-01-01

    Iceland and Trinidad and Tobago are small open, high-income island economies with very specific resource-use patterns. This article presents a material flow analysis (MFA) for the two countries covering a time period of nearly five decades. Both countries have a narrow domestic resource base, their economy being largely based on the exploitation of one or two key resources for export production. In the case of Trinidad and Tobago, the physical economy is dominated by oil and natural gas extraction and petrochemical industries, whereas Iceland's economy for centuries has been based on fisheries. More recently, abundant hydropower and geothermal heat were the basis for the establishment of large export-oriented metal processing industries, which fully depend on imported raw materials and make use of domestic renewable electricity. Both countries are highly dependent on these natural resources and vulnerable to overexploitation and price developments. We show how the export-oriented industries lead to high and growing levels of per capita material and energy use and carbon dioxide emissions resulting from large amounts of processing wastes and energy consumption in production processes. The example of small open economies with an industrial production system focused on few, but abundant, key resources and of comparatively low complexity provides interesting insights of how resource endowment paired with availability or absence of infrastructure and specific institutional arrangements drives domestic resource-use patterns. This also contributes to a better understanding and interpretation of MFA indicators, such as domestic material consumption. PMID:25505367

  15. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS)

    PubMed Central

    Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P.; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores

    2017-01-01

    Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal−cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal−cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source. PMID:28253357

  16. Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS).

    PubMed

    Ibáñez, María Isabel; Cabello, Purificación; Luque-Almagro, Víctor Manuel; Sáez, Lara P; Olaya, Alfonso; Sánchez de Medina, Verónica; Luque de Castro, María Dolores; Moreno-Vivián, Conrado; Roldán, María Dolores

    2017-01-01

    Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the different chemical forms of cyanide that are present in alkaline wastewaters from the jewelry industry. This liquid residue also contains large concentrations of metals like iron, copper and zinc, making this wastewater even more toxic. To elucidate the molecular mechanisms involved in the bioremediation process, a quantitative proteomic analysis by LC-MS/MS has been carried out in P. pseudoalcaligenes CECT5344 cells grown with the jewelry residue as sole nitrogen source. Different proteins related to cyanide and cyanate assimilation, as well as other proteins involved in transport and resistance to metals were induced by the cyanide-containing jewelry residue. GntR-like regulatory proteins were also induced by this industrial residue and mutational analysis revealed that GntR-like regulatory proteins may play a role in the regulation of cyanide assimilation in P. pseudoalcaligenes CECT5344. The strain CECT5344 has been used in a batch reactor to remove at pH 9 the different forms of cyanide present in industrial wastewaters from the jewelry industry (0.3 g/L, ca. 12 mM total cyanide, including both free cyanide and metal-cyanide complexes). This is the first report describing the biological removal at alkaline pH of such as elevated concentration of cyanide present in a heterogeneous mixture from an industrial source.

  17. How big is too big or how many partners are needed to build a large project which still can be managed successfully?

    NASA Astrophysics Data System (ADS)

    Henkel, Daniela; Eisenhauer, Anton

    2017-04-01

    During the last decades, the number of large research projects has increased and therewith the requirement for multidisciplinary, multisectoral collaboration. Such complex and large-scale projects pose new competencies to form, manage, and use large, diverse teams as a competitive advantage. For complex projects the effort is magnified because multiple large international research consortia involving academic and non-academic partners, including big industries, NGOs, private and public bodies, all with cultural differences, individually discrepant expectations on teamwork and differences in the collaboration between national and multi-national administrations and research organisations, challenge the organisation and management of such multi-partner research consortia. How many partners are needed to establish and conduct collaboration with a multidisciplinary and multisectoral approach? How much personnel effort and what kinds of management techniques are required for such projects. This presentation identifies advantages and challenges of large research projects based on the experiences made in the context of an Innovative Training Network (ITN) project within Marie Skłodowska-Curie Actions of the European HORIZON 2020 program. Possible strategies are discussed to circumvent and avoid conflicts already at the beginning of the project.

  18. Strategies for sustainable development of industrial park in Ulsan, South Korea--from spontaneous evolution to systematic expansion of industrial symbiosis.

    PubMed

    Park, Hung-Suck; Rene, Eldon R; Choi, Soo-Mi; Chiu, Anthony S F

    2008-04-01

    The Korea National Cleaner Production Center (KNCPC) affiliated to the Korea Institute of Industrial Technology (KITECH) has started a 15 year, 3-phase EIP master plan with the support of Ministry of Commerce, Industry, and Energy (MOCIE). A total of 6 industrial parks, including industrial parks in Ulsan city, known as the industrial capital of South Korea, are planning projects to find the feasibility of shifting existing industrial parks to eco-industrial parks. The basic survey shows that Ulsan industrial complex has been continuously evolving from conventional industrial complexes to eco-industrial parks by spontaneous industrial symbiosis. This paper describes the Korean national policies and the developmental activities of this vision to drive the global trend of innovation for converting the existing industrial parks to eco-industrial parks through inter-industry waste, energy, and material exchange in Ulsan Industrial complexes. In addition, the primary and supportive components of the Ulsan EIP pilot project, which will be implemented for 5 years is elaborated with its schedules and economic benefits.

  19. Biofuels. Engineering alcohol tolerance in yeast.

    PubMed

    Lam, Felix H; Ghaderi, Adel; Fink, Gerald R; Stephanopoulos, Gregory

    2014-10-03

    Ethanol toxicity in the yeast Saccharomyces cerevisiae limits titer and productivity in the industrial production of transportation bioethanol. We show that strengthening the opposing potassium and proton electrochemical membrane gradients is a mechanism that enhances general resistance to multiple alcohols. The elevation of extracellular potassium and pH physically bolsters these gradients, increasing tolerance to higher alcohols and ethanol fermentation in commercial and laboratory strains (including a xylose-fermenting strain) under industrial-like conditions. Production per cell remains largely unchanged, with improvements deriving from heightened population viability. Likewise, up-regulation of the potassium and proton pumps in the laboratory strain enhances performance to levels exceeding those of industrial strains. Although genetically complex, alcohol tolerance can thus be dominated by a single cellular process, one controlled by a major physicochemical component but amenable to biological augmentation. Copyright © 2014, American Association for the Advancement of Science.

  20. Overview of Superconductivity and Challenges in Applications

    NASA Astrophysics Data System (ADS)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  1. Carcinogens in the construction industry.

    PubMed

    Järvholm, Bengt

    2006-09-01

    The construction industry is a complex work environment. The work sites are temporary and rapidly changing. Asbestos has been widely used in construction industry, but the risks were primarily detected in specialized trades, such as insulation workers and plumbers. Today, the majority of cases related to asbestos exposure will occur in other occupational groups in the construction industry. In a large cohort of Swedish construction workers, insulators and plumbers constituted 37% of all cases of pleural mesothelioma between 1975 and 1984 while they constituted 21% of the cases between 1998 and 2002. It is estimated that 25-40% of all male cases of pleural mesothelioma in Sweden are caused by asbestos exposure in the construction trades. There are many other known carcinogens occurring in the construction industry, including PAHs, diesel exhausts, silica, asphalt fumes, solvents, etc., but it is difficult to estimate exposures and thus the size of the risk. The risk of cancer is less easy to detect with traditional epidemiological methods in the construction industry than in other industrial sectors. It is not sufficient to rely upon broad epidemiological data to estimate the risk of cancer due chemicals in the construction industry. Thus, a strategy to decrease exposure, e.g., to dust, seems a feasible way to reduce the risk.

  2. Starch Biorefinery Enzymes.

    PubMed

    Läufer, Albrecht

    2017-03-07

    Nature uses enzymes to build and convert biomass; mankind uses the same enzymes and produces them on a large scale to make optimum use of biomass in biorefineries. Bacterial α-amylases and fungal glucoamylases have been the workhorses of starch biorefineries for many decades. Pullulanases were introduced in the 1980s. Proteases, cellulases, hemicellulases, and phytases have been on the market for a few years as process aids, improving yields, performance, and costs. Detailed studies of the complex chemical structures of biomass and of the physicochemical limitations of industrial biorefineries have led enzyme developers to produce novel tailor-made solutions for improving yield and profitability in the industry. This chapter reviews the development of enzyme applications in the major starch biorefining processes.

  3. Creating Value with Long Term R&D: The life science industry

    NASA Astrophysics Data System (ADS)

    Soloman, Darlene J. S.

    2008-03-01

    Agilent Laboratories looks to the future to identify, invest and enable technologies and applications that will nurture the world’s people, environment and economies, and help ensure Agilent’s continuing leadership. Following a brief introduction to Agilent Technologies and Agilent Laboratories, Solomon will discuss how innovation and long-term R&D are transcending traditional boundaries. Focusing on the life sciences industry, she will discuss current trends in R&D and the importance of measurement in advancing the industry. She will describe some of the challenges that are disrupting the pharmaceutical industry where significant and sustained investment in R&D has not translated into large numbers of block-buster therapeutics. Much of this gap results from the profound complexity of biological systems. New discoveries quickly generate new questions, which in turn drive more research and necessitate new business models. Solomon will highlight examples of Agilent’s long-range R&D in life sciences, emphasizing the importance of physics. She’ll conclude with the importance of creating sustainable value with R&D.

  4. Comprehensive chemical characterization of industrial PM2.5 from steel industry activities

    NASA Astrophysics Data System (ADS)

    Sylvestre, Alexandre; Mizzi, Aurélie; Mathiot, Sébastien; Masson, Fanny; Jaffrezo, Jean L.; Dron, Julien; Mesbah, Boualem; Wortham, Henri; Marchand, Nicolas

    2017-03-01

    Industrial sources are among the least documented PM (Particulate Matter) source in terms of chemical composition, which limits our understanding of their effective impact on ambient PM concentrations. We report 4 chemical emission profiles of PM2.5 for multiple activities located in a vast metallurgical complex. Emissions profiles were calculated as the difference of species concentrations between an upwind and a downwind site normalized by the absolute PM2.5 enrichment between both sites. We characterized the PM2.5 emissions profiles of the industrial activities related to the cast iron (complex 1) and the iron ore conversion processes (complex 2), as well as 2 storage areas: a blast furnace slag area (complex 3) and an ore terminal (complex 4). PM2.5 major fractions (Organic Carbon (OC) and Elemental Carbon (EC), major ions), organic markers as well as metals/trace elements are reported for the 4 industrial complexes. Among the trace elements, iron is the most emitted for the complex 1 (146.0 mg g-1 of PM2.5), the complex 2 (70.07 mg g-1) and the complex 3 (124.4 mg g-1) followed by Al, Mn and Zn. A strong emission of Polycyclic Aromatic Hydrocarbons (PAH), representing 1.3% of the Organic Matter (OM), is observed for the iron ore transformation complex (complex 2) which merges the activities of coke and iron sinter production and the blast furnace processes. In addition to unsubstituted PAHs, sulfur containing PAHs (SPAHs) are also significantly emitted (between 0.011 and 0.068 mg g-1) by the complex 2 and could become very useful organic markers of steel industry activities. For the complexes 1 and 2 (cast iron and iron ore converters), a strong fraction of sulfate ranging from 0.284 to 0.336 g g-1) and only partially neutralized by ammonium, is observed indicating that sulfates, if not directly emitted by the industrial activity, are formed very quickly in the plume. Emission from complex 4 (Ore terminal) are characterized by high contribution of Al (125.7 mg g-1 of PM2.5) but also, in a lesser extent, of Fe, Mn, Ti and Zn. We also highlighted high contribution of calcium ranging from 0.123 to 0.558 g g-1 for all of the industrial complexes under study. Since calcium is also widely used as a proxy of the dust contributions in source apportionment studies, our results suggest that this assumption should be reexamined in environments impacted by industrial emissions.

  5. Incremental electrohydraulic forming - A new approach for the manufacture of structured multifunctional sheet metal blanks

    NASA Astrophysics Data System (ADS)

    Djakow, Eugen; Springer, Robert; Homberg, Werner; Piper, Mark; Tran, Julian; Zibart, Alexander; Kenig, Eugeny

    2017-10-01

    Electrohydraulic Forming (EHF) processes permit the production of complex, sharp-edged geometries even when high-strength materials are used. Unfortunately, the forming zone is often limited as compared to other sheet metal forming processes. The use of a special industrial-robot-based tool setup and an incremental process strategy could provide a promising solution for this problem. This paper describes such an innovative approach using an electrohydraulic incremental forming machine, which can be employed to manufacture the large multifunctional and complex part geometries in steel, aluminium, magnesium and reinforced plastic that are employed in lightweight constructions or heating elements.

  6. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cafferty, Kara Grace

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  7. Toxicity assessment of industrial chemicals and airborne contaminants: transition from in vivo to in vitro test methods: a review.

    PubMed

    Bakand, S; Winder, C; Khalil, C; Hayes, A

    2005-12-01

    Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.

  8. Animal health pharmaceutical industry.

    PubMed

    Carnevale, Richard A; Shryock, Thomas R

    2006-02-24

    The animal health pharmaceutical industry has proactively reported on the volumes of member company antimicrobial active ingredients sold in the U.S. At the individual company level, reporting of finished product distribution data to the FDA is a regulatory requirement, with applications to surveillance and pharmacovigilance. An accounting of product manufactured is done for purposes of good business practices, as well as marketing analyses. Additional applications of antimicrobial usage data might include use in risk assessments, such as for the FDA's Center for Veterinary Medicine Guidance for Industry #152 for the evaluation of the microbiological safety of antimicrobials intended for use in food animals. Compilation of national usage data will be a complex undertaking, hindered by issues such as confidentiality, auditing, field use practice variations, population dynamics (e.g. disease incidence, market conditions for poultry and livestock production), and generic usage. The amounts or volumes in pounds should be considered relative to the large number of animals under husbandry in the United States. Large volumes might seem impressive unless put into proper context. Until such time as a clearly defined application of national usage data is agreed, it is recommended that local usage programs will provide more useful information to perpetuate prudent antimicrobial use in animals.

  9. Human-resources strategies for managing HIV/AIDS: the case of the South African forestry industry.

    PubMed

    Gow, Jeff; Grant, Bligh

    2010-09-01

    Previous work has focused on HIV prevalence among forestry workers and the impact of HIV/AIDS on the sustainability of forest resources. Following a review of work examining the impacts of HIV/AIDS on the South African economy, this article presents original qualitative research examining the responses of company management to the HIV epidemic across a range of enterprises in the South African forestry industry, including large companies, contractors and cooperatives. At the level of the enterprise, management occupies a critical nexus, at which the intersecting requirements of complex government legislation, the wellbeing of workers and the demands of the business must be met. The research demonstrates that large forestry companies tend to provide only a small fraction of their workforces with HIV/AIDS education, prevention or treatment services, as they have essentially outsourced the requirement through the use of labour-supply contractors who, by and large, provide workers with scant HIV/AIDS-related programmes or benefits. Moreover, the extent to which the different types of forestry enterprises incorporate the management of HIV/AIDS in the workforce with the management of the business is highly variable, and in most instances falls short of legislative requirements that have been in place for over a decade. The implications of this for the forestry industry in South Africa are acute.

  10. Prospects for the domestic production of large-sized cast blades and vanes for industrial gas turbines

    NASA Astrophysics Data System (ADS)

    Kazanskiy, D. A.; Grin, E. A.; Klimov, A. N.; Berestevich, A. I.

    2017-10-01

    Russian experience in the production of large-sized cast blades and vanes for industrial gas turbines is analyzed for the past decades. It is noted that the production of small- and medium-sized blades and vanes made of Russian alloys using technologies for aviation, marine, and gas-pumping turbines cannot be scaled for industrial gas turbines. It is shown that, in order to provide manufacturability under large-scale casting from domestic nickel alloys, it is necessary to solve complex problems in changing their chemical composition, to develop new casting technologies and to optimize the heat treatment modes. An experience of PAO NPO Saturn in manufacturing the blades and vanes made of ChS88U-VI and IN738-LC foundry nickel alloys for the turbines of the GTE-110 gas turbine unit is considered in detail. Potentialities for achieving adopted target parameters for the mechanical properties of working blades cast from ChS88UM-VI modified alloy are established. For the blades made of IN738-LC alloy manufactured using the existing foundry technology, a complete compliance with the requirements of normative and technical documentation has been established. Currently, in Russia, the basis of the fleet of gas turbine plants is composed by foreign turbines, and, for the implementation of the import substitution program, one can use the positive experience of PAO NPO Saturn in casting blades from IN738-LC alloy based on a reverse engineering technique. A preliminary complex of studies of the original manufacturer's blades should be carried out, involving, first of all, the determination of geometric size using modern measurement methods as well as the studies on the chemical compositions of the used materials (base metal and protective coatings). Further, verifying the constructed calculation models based on the obtained data, one could choose available domestic materials that would meet the operating conditions of the blades according to their heat resistance and corrosion resistance.

  11. ‘Nothing can be done until everything is done’: the use of complexity arguments by food, beverage, alcohol and gambling industries

    PubMed Central

    Petticrew, Mark; Katikireddi, Srinivasa Vittal; Knai, Cécile; Cassidy, Rebecca; Maani Hessari, Nason; Thomas, James; Weishaar, Heide

    2017-01-01

    Background Corporations use a range of strategies to dispute their role in causing public health harms and to limit the scope of effective public health interventions. This is well documented in relation to the activities of the tobacco industry, but research on other industries is less well developed. We therefore analysed public statements and documents from four unhealthy commodity industries to investigate whether and how they used arguments about complexity in this way. Methods We analysed alcohol, food, soda and gambling industry documents and websites and minutes of reports of relevant health select committees, using standard document analysis methods. Results Two main framings were identified: (i) these industries argue that aetiology is complex, so individual products cannot be blamed; and (ii) they argue that population health measures are ‘too simple’ to address complex public health problems. However, in this second framing, there are inherent contradictions in how industry used ‘complexity’, as their alternative solutions are generally not, in themselves, complex. Conclusion The concept of complexity, as commonly used in public health, is also widely employed by unhealthy commodity industries to influence how the public and policymakers understand health issues. It is frequently used in response to policy announcements and in response to new scientific evidence (particularly evidence on obesity and alcohol harms). The arguments and language may reflect the existence of a cross-industry ‘playbook’, whose use results in the undermining of effective public health policies – in particular the undermining of effective regulation of profitable industry activities that are harmful to the public’s health. PMID:28978619

  12. Economic and environmental optimization of a multi-site utility network for an industrial complex.

    PubMed

    Kim, Sang Hun; Yoon, Sung-Geun; Chae, Song Hwa; Park, Sunwon

    2010-01-01

    Most chemical companies consume a lot of steam, water and electrical resources in the production process. Given recent record fuel costs, utility networks must be optimized to reduce the overall cost of production. Environmental concerns must also be considered when preparing modifications to satisfy the requirements for industrial utilities, since wastes discharged from the utility networks are restricted by environmental regulations. Construction of Eco-Industrial Parks (EIPs) has drawn attention as a promising approach for retrofitting existing industrial parks to improve energy efficiency. The optimization of the utility network within an industrial complex is one of the most important undertakings to minimize energy consumption and waste loads in the EIP. In this work, a systematic approach to optimize the utility network of an industrial complex is presented. An important issue in the optimization of a utility network is the desire of the companies to achieve high profits while complying with the environmental regulations. Therefore, the proposed optimization was performed with consideration of both economic and environmental factors. The proposed approach consists of unit modeling using thermodynamic principles, mass and energy balances, development of a multi-period Mixed Integer Linear Programming (MILP) model for the integration of utility systems in an industrial complex, and an economic/environmental analysis of the results. This approach is applied to the Yeosu Industrial Complex, considering seasonal utility demands. The results show that both the total utility cost and waste load are reduced by optimizing the utility network of an industrial complex. 2009 Elsevier Ltd. All rights reserved.

  13. Overview of Accelerator Applications in Energy

    NASA Astrophysics Data System (ADS)

    Garnett, Robert W.; Sheffield, Richard L.

    An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.

  14. The emission characteristics and the related malodor intensities of gaseous reduced sulfur compounds (RSC) in a large industrial complex

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Jeon, Eui-Chan; Choi, Ye-Jin; Koo, Youn-Seo

    In this study, the concentrations of major reduced sulfur compounds (RSC: H 2S, CH 3SH, DMS, CS 2 and DMDS) were determined from various emission sources located within the Ban-Wall (BW)/ Si-Hwa (SH) industrial complex in Ansan city, Korea. The measurement data were obtained from a total of 202 individual points at 77 individual companies during 2004-2005. The highest RSC concentration levels came most dominantly from H 2S (300 (mean) and 0.86 ppb (median)) followed by CS 2, while the results of CH 3, DMS, and DMDS are notably lower at the mean concentration levels of a few ppb. These data were evaluated further after being grouped into two different classification schemes: 9 industry sectors and 9 processing unit types. The strongest emissions of RSC, when evaluated among different industry sectors, are generally found from such industry types as leather, food, paper/pulp, as well as waste/sewage related ones. In contrast, when these RSC data are compared across different processing units, the highest values were seen most frequently from such units as junction boxes, aeration tanks, and settling tanks. The assessment of data in terms of relative contribution to malodor intensity showed that H 2S and CH 3SH are more important than others. The overall results of the present study suggest that information combining RSC speciation and types of anthropogenic activities may be used to distinguish the patterns of odorous pollution in areas affected by strong source processes.

  15. Climate change policies and capital vintage effects: the cases of US pulp and paper, iron and steel, and ethylene.

    PubMed

    Ruth, Matthias; Davidsdottir, Brynhildur; Amato, Anthony

    2004-03-01

    Changes in material use, energy use and emissions profiles of industry are the result of complex interrelationships among a multitude of technological and economic drivers. To better understand and guide such changes requires that attention is paid to the time-varying consequences that technology and economic influences have on an industry's choice of inputs and its associated (desired and undesired) outputs. This paper lays out an approach to improving our understanding of the dynamics of large industrial systems. The approach combines engineering and econometric analysis with a detailed representation of an industry's capital stock structure. A transparent dynamic computer modeling approach is chosen to integrate information from these analyses in ways that foster participation of stakeholders from industry and government agencies in all stages of the modeling process-from problem definition and determination of system boundaries to generation of scenarios and interpretation of results. Three case studies of industrial energy use in the USA are presented-one each for the iron and steel, pulp and paper, and ethylene industry. Dynamic models of these industries are described and then used to investigate alternative carbon emissions and investment-led policies. A comparison of results clearly points towards two key issues: the need for industry specific policy approaches in order to effectively influence industrial energy use, fuel mix and carbon emissions, and the need for longer time horizons than have typically been chosen for the analysis of industrial responses to climate change policies.

  16. Industrial methodology for process verification in research (IMPROVER): toward systems biology verification

    PubMed Central

    Meyer, Pablo; Hoeng, Julia; Rice, J. Jeremy; Norel, Raquel; Sprengel, Jörg; Stolle, Katrin; Bonk, Thomas; Corthesy, Stephanie; Royyuru, Ajay; Peitsch, Manuel C.; Stolovitzky, Gustavo

    2012-01-01

    Motivation: Analyses and algorithmic predictions based on high-throughput data are essential for the success of systems biology in academic and industrial settings. Organizations, such as companies and academic consortia, conduct large multi-year scientific studies that entail the collection and analysis of thousands of individual experiments, often over many physical sites and with internal and outsourced components. To extract maximum value, the interested parties need to verify the accuracy and reproducibility of data and methods before the initiation of such large multi-year studies. However, systematic and well-established verification procedures do not exist for automated collection and analysis workflows in systems biology which could lead to inaccurate conclusions. Results: We present here, a review of the current state of systems biology verification and a detailed methodology to address its shortcomings. This methodology named ‘Industrial Methodology for Process Verification in Research’ or IMPROVER, consists on evaluating a research program by dividing a workflow into smaller building blocks that are individually verified. The verification of each building block can be done internally by members of the research program or externally by ‘crowd-sourcing’ to an interested community. www.sbvimprover.com Implementation: This methodology could become the preferred choice to verify systems biology research workflows that are becoming increasingly complex and sophisticated in industrial and academic settings. Contact: gustavo@us.ibm.com PMID:22423044

  17. Structural interaction fingerprints: a new approach to organizing, mining, analyzing, and designing protein-small molecule complexes.

    PubMed

    Singh, Juswinder; Deng, Zhan; Narale, Gaurav; Chuaqui, Claudio

    2006-01-01

    The combination of advances in structure-based drug design efforts in the pharmaceutical industry in parallel with structural genomics initiatives in the public domain has led to an explosion in the number of structures of protein-small molecule complexes structures. This information has critical importance to both the understanding of the structural basis for molecular recognition in biological systems and the design of better drugs. A significant challenge exists in managing this vast amount of data and fully leveraging it. Here, we review our work to develop a simple, fast way to store, organize, mine, and analyze large numbers of protein-small molecule complexes. We illustrate the utility of the approach to the management of inhibitor complexes from the protein kinase family. Finally, we describe our recent efforts in applying this method to the design of target-focused chemical libraries.

  18. Anticipatory Life Cycle Analysis of In Vitro Biomass Cultivation for Cultured Meat Production in the United States.

    PubMed

    Mattick, Carolyn S; Landis, Amy E; Allenby, Braden R; Genovese, Nicholas J

    2015-10-06

    Cultured, or in vitro, meat consists of edible biomass grown from animal stem cells in a factory, or carnery. In the coming decades, in vitro biomass cultivation could enable the production of meat without the need to raise livestock. Using an anticipatory life cycle analysis framework, the study described herein examines the environmental implications of this emerging technology and compares the results with published impacts of beef, pork, poultry, and another speculative analysis of cultured biomass. While uncertainty ranges are large, the findings suggest that in vitro biomass cultivation could require smaller quantities of agricultural inputs and land than livestock; however, those benefits could come at the expense of more intensive energy use as biological functions such as digestion and nutrient circulation are replaced by industrial equivalents. From this perspective, large-scale cultivation of in vitro meat and other bioengineered products could represent a new phase of industrialization with inherently complex and challenging trade-offs.

  19. Innovative Technological Development of Russian Mining Regions (on Example of Kemerovo Region)

    NASA Astrophysics Data System (ADS)

    Shavina, Evgeniya; Kalenov, Oleg

    2017-11-01

    A characteristic trend of many countries modern development is the transition to an innovative economy. At present, this is the only opportunity to secure and maintain a high standard of living for the population. Moreover, innovative development of Russian can be achieved during technological progress in its regions. In this regard, it is necessary to assess the innovative potential of the region and identify the most actual problems that impede the transition to the trajectory of innovative development. The authors outline several main indicators that help to determine the level of innovation and technological development of one of the largest industrial areas of Russia - Kemerovo region. The special economic role of Kemerovo region as a large territorial old-industrial complex of Western Siberia requires a large-scale work to solve the most acute problems of regional development. It is necessary to find the answer for existing problems through the implementation of a system of state regulation aimed at making the innovation component a leading factor of the regional economy competitiveness.

  20. The extent and historical trend of metal pollution recorded in core sediments from the artificial Lake Shihwa, Korea.

    PubMed

    Ra, Kongtae; Bang, Jae-Hyun; Lee, Jung-Moo; Kim, Kyung-Tae; Kim, Eun-Soo

    2011-08-01

    The vertical distribution of trace metals in sediment cores was investigated to evaluate the extent and the historical record of metal pollution over 30 years in the artificial Lake Shihwa in Korea. A marked increase of trace metals after 1980 was observed due to the operation of two large industrial complexes and dike construction for a reclamation project. There was a decreasing trend of metal concentrations with the distance from the pollution source. The enrichment factor and pollution load index of the metals indicated that the metal pollution was mainly derived from Cu, Zn and Cd loads due to anthropogenic activities. The concentrations of Cr, Ni, Cu, Zn, As and Pb in the upper part of all core sediments exceeded the ERL criteria of NOAA. Our results indicate that inadequate planning and management of industrialization and a large reclamation project accomplished by dike construction have continued to strongly accelerate metal pollution in Lake Shihwa. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  1. Optimization of a method for preparing solid complexes of essential clove oil with β-cyclodextrins.

    PubMed

    Hernández-Sánchez, Pilar; López-Miranda, Santiago; Guardiola, Lucía; Serrano-Martínez, Ana; Gabaldón, José Antonio; Nuñez-Delicado, Estrella

    2017-01-01

    Clove oil (CO) is an aromatic oily liquid used in the food, cosmetics and pharmaceutical industries for its functional properties. However, its disadvantages of pungent taste, volatility, light sensitivity and poor water solubility can be solved by applying microencapsulation or complexation techniques. Essential CO was successfully solubilized in aqueous solution by forming inclusion complexes with β-cyclodextrins (β-CDs). Moreover, phase solubility studies demonstrated that essential CO also forms insoluble complexes with β-CDs. Based on these results, essential CO-β-CD solid complexes were prepared by the novel approach of microwave irradiation (MWI), followed by three different drying methods: vacuum oven drying (VO), freeze-drying (FD) or spray-drying (SD). FD was the best option for drying the CO-β-CD solid complexes, followed by VO and SD. MWI can be used efficiently to prepare essential CO-β-CD complexes with good yield on an industrial scale. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. An adaptive response surface method for crashworthiness optimization

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Ren-Jye; Zhu, Ping

    2013-11-01

    Response surface-based design optimization has been commonly used for optimizing large-scale design problems in the automotive industry. However, most response surface models are built by a limited number of design points without considering data uncertainty. In addition, the selection of a response surface in the literature is often arbitrary. This article uses a Bayesian metric to systematically select the best available response surface among several candidates in a library while considering data uncertainty. An adaptive, efficient response surface strategy, which minimizes the number of computationally intensive simulations, was developed for design optimization of large-scale complex problems. This methodology was demonstrated by a crashworthiness optimization example.

  3. 1.13 – Emerging contaminants

    USGS Publications Warehouse

    Barber, Larry B.

    2014-01-01

    Since the Industrial Revolution, a diversity of large-scale chemical innovations has impacted aquatic systems in urban environments. Beginning in the 1990s, there has been a growing scientific interest and public awareness of the effects of the chemicals used in domestic, commercial, industrial, and agricultural applications, referred to in this article as ‘emerging contaminants’ (ECs), on ecosystem and human health. The growing global population and its increasing demands on water supplies in conjunction with climate-induced changes in hydrologic regimes place stress on freshwater resources, resulting in a greater reliance on reuse of reclaimed municipal wastewater treatment plant (WWTP) effluents to meet human and environmental needs. WWTP effluents are a major source of ECs, and it is important to have an understanding of the chemical composition of the reclaimed water, because many ECs are biologically active and the effects of chronic exposure to low concentration complex mixtures are unknown. Several classes of ECs that have been shown to be widespread in the aquatic environment are discussed in this chapter, including surfactants, complexing agents, fragrances, antimicrobials, industrial chemicals, pharmaceuticals, natural and synthetic estrogens, and disinfection byproducts. All of these compounds are biologically active via a variety of modes of action, and can occur in aquatic systems at concentrations ranging from <0.001 to >100 μg l−1.

  4. People or systems? To blame is human. The fix is to engineer.

    PubMed

    Holden, Richard J

    2009-12-01

    Person-centered safety theories that place the burden of causality on human traits and actions have been largely dismissed in favor of systems-centered theories. Students and practitioners are now taught that accidents are caused by multiple factors and occur due to the complex interactions of numerous work system elements, human and non-human. Nevertheless, person-centered approaches to safety management still prevail. This paper explores the notion that attributing causality and blame to people persists because it is both a fundamental psychological tendency as well as an industry norm that remains strong in aviation, health care, and other industries. Consequences of that possibility are discussed and a case is made for continuing to invest in whole-system design and engineering solutions.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jun-hyung

    University education aims to supply qualified human resources for industries. In complex large scale engineering systems such as nuclear power plants, the importance of qualified human resources cannot be underestimated. The corresponding education program should involve many topics systematically. Recently a nuclear engineering program has been initiated in Dongguk University, South Korea. The current education program focuses on undergraduate level nuclear engineering students. Our main objective is to provide industries fresh engineers with the understanding on the interconnection of local parts and the entire systems of nuclear power plants and the associated systems. From the experience there is a hugemore » opportunity for chemical engineering disciple in the context of giving macroscopic overview on nuclear power plant and waste treatment management by strengthening the analyzing capability of fundamental situations. (authors)« less

  6. A methodology to incorporate life cycle analysis and the triple bottom line mechanism for sustainable management of industrial enterprises

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Lin, Li

    2004-02-01

    Since 1970"s, the environmental protection movement has challenged industries to increase their investment in Environmentally Conscious Manufacturing (ECM) techniques and management tools. Social considerations for global citizens and their descendants also motivated the examination on the complex issues of sustainable development beyond the immediate economic impact. Consequently, industrial enterprises have started to understand sustainable development in considering the Triple Bottom Line (TBL): economic prosperity, environmental quality and social justice. For the management, however, a lack of systematic ECM methodologies hinders their effort in planning, evaluating, reporting and auditing of sustainability. To address this critical need, this research develops a framework of a sustainable management system by incorporating a Life Cycle Analysis (LCA) of industrial operations with the TBL mechanism. A TBL metric system with seven sets of indices for the TBL elements and their complex relations is identified for the comprehensive evaluation of a company"s sustainability performance. Utilities of the TBL indices are estimated to represent the views of various stakeholders, including the company, investors, employees and the society at large. Costs of these indices are also captured to reflect the company"s effort in meeting the utilities. An optimization model is formulated to maximize the economic, environmental and social benefits by the company"s effort in developing sustainable strategies. To promote environmental and social consciousness, the methodology can significantly facilitate management decisions by its capabilities of including "non-business" values and external costs that the company has not contemplated before.

  7. Dynamic Uncertain Causality Graph for Knowledge Representation and Probabilistic Reasoning: Directed Cyclic Graph and Joint Probability Distribution.

    PubMed

    Zhang, Qin

    2015-07-01

    Probabilistic graphical models (PGMs) such as Bayesian network (BN) have been widely applied in uncertain causality representation and probabilistic reasoning. Dynamic uncertain causality graph (DUCG) is a newly presented model of PGMs, which can be applied to fault diagnosis of large and complex industrial systems, disease diagnosis, and so on. The basic methodology of DUCG has been previously presented, in which only the directed acyclic graph (DAG) was addressed. However, the mathematical meaning of DUCG was not discussed. In this paper, the DUCG with directed cyclic graphs (DCGs) is addressed. In contrast, BN does not allow DCGs, as otherwise the conditional independence will not be satisfied. The inference algorithm for the DUCG with DCGs is presented, which not only extends the capabilities of DUCG from DAGs to DCGs but also enables users to decompose a large and complex DUCG into a set of small, simple sub-DUCGs, so that a large and complex knowledge base can be easily constructed, understood, and maintained. The basic mathematical definition of a complete DUCG with or without DCGs is proved to be a joint probability distribution (JPD) over a set of random variables. The incomplete DUCG as a part of a complete DUCG may represent a part of JPD. Examples are provided to illustrate the methodology.

  8. Entomopathogenic and plant pathogenic nematodes as opposing forces in agriculture.

    PubMed

    Kenney, Eric; Eleftherianos, Ioannis

    2016-01-01

    Plant-parasitic nematodes are responsible for substantial damages within the agriculture industry every year, which is a challenge that has thus far gone largely unimpeded. Chemical nematicides have been employed with varying degrees of success, but their implementation can be cumbersome, and furthermore they could potentially be neutralising an otherwise positive effect from the entomopathogenic nematodes that coexist with plant-parasitic nematodes in soil environments and provide protection for plants against insect pests. Recent research has explored the potential of employing entomopathogenic nematodes to protect plants from plant-parasitic nematodes, while providing their standard degree of protection against insects. The interactions involved are highly complex, due to both the three-organism system and the assortment of variables present in a soil environment, but a strong collection of evidence has accumulated regarding the suppressive capacity of certain entomopathogenic nematodes and their mutualistic bacteria, in the context of limiting the infectivity of plant-parasitic nematodes. Specific factors produced by certain entomopathogenic nematode complexes during the process of insect infection appear to have a selectively nematicidal, or at least repellant, effect on plant-parasitic nematodes. Using this information, an opportunity has formed to adapt this relationship to large-scale, field conditions and potentially relieve the agricultural industry of one of its most substantial burdens. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory

    PubMed Central

    Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors’ long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests. PMID:27218468

  10. Spreading Effect in Industrial Complex Network Based on Revised Structural Holes Theory.

    PubMed

    Xing, Lizhi; Ye, Qing; Guan, Jun

    2016-01-01

    This paper analyzed the spreading effect of industrial sectors with complex network model under perspective of econophysics. Input-output analysis, as an important research tool, focuses more on static analysis. However, the fundamental aim of industry analysis is to figure out how interaction between different industries makes impacts on economic development, which turns out to be a dynamic process. Thus, industrial complex network based on input-output tables from WIOD is proposed to be a bridge connecting accurate static quantitative analysis and comparable dynamic one. With application of revised structural holes theory, flow betweenness and random walk centrality were respectively chosen to evaluate industrial sectors' long-term and short-term spreading effect process in this paper. It shows that industries with higher flow betweenness or random walk centrality would bring about more intensive industrial spreading effect to the industrial chains they stands in, because value stream transmission of industrial sectors depends on how many products or services it can get from the other ones, and they are regarded as brokers with bigger information superiority and more intermediate interests.

  11. Large Instrument Development for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Warnick, Karl F.; Jeffs, Brian D.; Norrod, Roger D.; Lockman, Felix J.; Cordes, James M.; Giovanelli, Riccardo

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  12. Internet-enabled collaborative agent-based supply chains

    NASA Astrophysics Data System (ADS)

    Shen, Weiming; Kremer, Rob; Norrie, Douglas H.

    2000-12-01

    This paper presents some results of our recent research work related to the development of a new Collaborative Agent System Architecture (CASA) and an Infrastructure for Collaborative Agent Systems (ICAS). Initially being proposed as a general architecture for Internet based collaborative agent systems (particularly complex industrial collaborative agent systems), the proposed architecture is very suitable for managing the Internet enabled complex supply chain for a large manufacturing enterprise. The general collaborative agent system architecture with the basic communication and cooperation services, domain independent components, prototypes and mechanisms are described. Benefits of implementing Internet enabled supply chains with the proposed infrastructure are discussed. A case study on Internet enabled supply chain management is presented.

  13. Systems metabolic engineering of microorganisms to achieve large-scale production of flavonoid scaffolds.

    PubMed

    Wu, Junjun; Du, Guocheng; Zhou, Jingwen; Chen, Jian

    2014-10-20

    Flavonoids possess pharmaceutical potential due to their health-promoting activities. The complex structures of these products make extraction from plants difficult, and chemical synthesis is limited because of the use of many toxic solvents. Microbial production offers an alternate way to produce these compounds on an industrial scale in a more economical and environment-friendly manner. However, at present microbial production has been achieved only on a laboratory scale and improvements and scale-up of these processes remain challenging. Naringenin and pinocembrin, which are flavonoid scaffolds and precursors for most of the flavonoids, are the model molecules that are key to solving the current issues restricting industrial production of these chemicals. The emergence of systems metabolic engineering, which combines systems biology with synthetic biology and evolutionary engineering at the systems level, offers new perspectives on strain and process optimization. In this review, current challenges in large-scale fermentation processes involving flavonoid scaffolds and the strategies and tools of systems metabolic engineering used to overcome these challenges are summarized. This will offer insights into overcoming the limitations and challenges of large-scale microbial production of these important pharmaceutical compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Industrialization and Household Complexity in Rural Taiwan.

    ERIC Educational Resources Information Center

    Lavely, William

    1990-01-01

    In 274 Taiwanese townships, farm household complexity in 1960 and 1970 was positively related to the proportion of the labor force in nonagricultural occupations. The close proximity of industry to family farms in Taiwan has reduced rural to urban migration usually associated with industrialization. Contains 46 references. (Author/SV)

  15. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike lewis

    2013-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  16. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  17. Conducting a paediatric multi-centre RCT with an industry partner: challenges and lessons learned.

    PubMed

    Maskell, Jessica; Newcombe, Peter; Martin, Graham; Kimble, Roy

    2012-11-01

    There are many benefits of multi-centred research including large sample sizes, statistical power, timely recruitment and generalisability of results. However, there are numerous considerations when planning and implementing a multi-centred study. This article reviews the challenges and successes of planning and implementing a multi-centred prospective randomised control trial involving an industry partner. The research investigated the impact on psychosocial functioning of a cosmetic camouflage product for children and adolescents with burn scarring. Multi-centred studies commonly have many stakeholders. Within this study, six Australian and New Zealand paediatric burn units as well as an industry partner were involved. The inclusion of an industry partner added complexities as they brought different priorities and expectations to the research. Further, multifaceted ethical and institutional approval processes needed to be negotiated. The challenges, successes, lessons learned and recommendations from this study regarding Australian and New Zealand ethics and research governance approval processes, collaboration with industry partners and the management of differing expectations will be outlined. Recommendations for future multi-centred research with industry partners include provision of regular written reports for the industry partner; continual monitoring and prompt resolution of concerns; basic research practices education for industry partners; minimisation of industry partner contact with participants; clear roles and responsibilities of all stakeholders and utilisation of single ethical review if available. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  18. Feasibility study for hydrocarbon complex in southern seaboard. Petroleum Authority of Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This study, conducted by Fluor Daniel, was funded by the U.S. Trade and Development Agency, on behalf of the Petroleum Authority of Thailand. The primary objective of the study was to investigate the economic viability of the related facilities and determine how each could help to industrialize and build up the Southern Seaboard area of Thailand. The focus of the report is in three areas including; Crude Oil Transportation System, Refinery, and Petrochemical Complex. Another objective of the study was to offer an alternative for large crude carrier traffic by proposing the completion of a crude oil pipeline. The reportmore » is divided into the following sections: (1) Executive Summary; (2) Introduction; (3) Crude Oil Transportation System; (4) Refinery Project; (5) Petrochemical Complex; (6) Key Issues & Considerations; (7) Financial Evaluations; (8) Summary & Conclusions.« less

  19. Measurement of fatigue in industries.

    PubMed

    Saito, K

    1999-04-01

    Fatigue of workers is a complex phenomenon resulting from various factors in technically innovated modern industries, and it appears as a feeling of exhaustion, lowering of physiological functions, breakdown of autonomic nervous balance, and decrease in work efficiency. On the other hand industrial fatigue is caused by excessive workload, remarkable alteration in working posture and diurnal and nocturnal rhythms in daily life. Working modes in modern industries have changed from work with the whole body into that with the hands, arms, legs and/or eyes which are parts of the body, and from physical work to mental work. Visual display terminal (VDT) work is one of the most characteristic jobs in the various kinds of workplaces. A large number of fatigue tests have already been adopted, but it is still hard to draw a generalized conclusion as to the method of selecting the most appropriate test battery for a given work load. As apparatus for fatigue measurement of VDT work we have developed VRT (Visual Reaction Test) and the Portable Fatigue Meter. Furthermore, we have presented immune parameters of peripheral blood and splenic T cells for physical fatigue.

  20. Evolution, Physics, and Cancer: Disrupting Traditional Approache

    NASA Astrophysics Data System (ADS)

    Austin, Robert

    Physicists who were recruited to try and assist with the stubbornly constant mortality rates of cancer world-wide over the past 100 years have basically had the invitation withdrawn by the oncology community. The oncologists became annoyed with the independence of thought and the skepticism of some physicists with continuation of the present paradigm of the cancer genome as the rosette stone as the key to cancer. To quote a recent letter in Physics Today: ``Curing cancer is a complex biological problem to be solved by biologists''. Apparently our mission as minions is is to be high-level technicians. But I think that is wrong and will lead to continuation of the string of failures and deceptions foisted on the public at large by the Medical Industrial Complex, I think we really need to re-think cancer as a phenomena which is driven by evolution and may be desired by the organism and be a product of both the aging of the proteome and the genome. Further, searching for mutations (The Cancer Genome) may be completely the wrong direction, searching for protected genes may be as important as looking for mutated genes. I'll try to present the case that physicists should not have been kicked out of the Medical Industrial Complex that keeps the cancer business humming and profitable.

  1. A Study of Ship Acquisition Cost Estimating in the Naval Sea Systems Command. Appendices

    DTIC Science & Technology

    1977-10-01

    Shipbuilding Is A Heovy Fabrication Industry Pro- ducing Small Numbers Of Expensive, Complex Units Of Output PAGE A-2 (1) Due to its heavy ...estimate future ship construction costs. - A-l 1. SHIPBUILDING IS A HEAVY FABRICATION INDUSTRY PRODUCING SMALL NUMBERS OF EXPENSIVE, COMPLEX...extensively in production line industries such as automotive products and the airframe industry. (1) Due To Its Heavy Construction Orientation

  2. Environmental practices of the auxiliary companies to the Spanish automobile industry

    NASA Astrophysics Data System (ADS)

    González-Torre, Pilar L.; González, Beatriz A.; Gupta, Surendra M.

    2005-11-01

    The automobile manufacturing industry plays a very important role in a country's economy. The importance of automobile manufacturing industry lies in its sheer size and complexity in terms of the direct and indirect influence it commands across many other industries. While millions of people are employed in the automobile manufacturing industry, it is estimated that more than two and half times that number are employed in the auxiliary companies that supply parts to the automobile manufacturing companies. The auxiliary companies represent a group of businesses of various sizes, types, and geographical locations, producing a vast variety of products ranging from the very simple to the extremely intricate. In this study, the current environmental practices of management in the core Spanish auxiliary companies that do business with the automobile manufacturing industry (and thus form a large part of the automobile manufacturing industry's supply chain) are investigated. We show that while automobile manufacturing companies are under scrutiny to become more and more environmentally friendly, not only at their manufacturing stage but also at their products' useful and EOL stages, there appears to be no such burden on the auxiliary companies. Our conclusion is based on an elaborate survey conducted during the fall of 2004 of Spanish auxiliary companies with questions about the characteristics, environmental practices and reverse logistics related activities carried out by the companies.

  3. Thermoeconomical Productivity Analysis in Manufacturing Sector in Indonesia

    NASA Astrophysics Data System (ADS)

    Liana Aji, Widya; Purqon, Acep

    2017-07-01

    Negative temperature is a phenomenon interesting to study. In negative temperature regime, Boltzmann distribution is inverted where many particles occupy the higher energy states than the lower one. Iyetomi proposed a negative temperature case in Japan and applied it to the labor productivity distribution where the particle and energy state are replaced by worker and labor productivity, respectively. In this paper, we investigate the negative temperature concept to the labor productivity distribution in manufacturing sector in Indonesia which is divided by three industry groups according to BPS (Center of Statistical Agency of Indonesia), i. e. large and medium industries, small industry, and micro industry. For all industry groups, food industry possesses maximum productivity. The results represent that the negative temperature of large and medium industries is around ten times lower than negative temperature of micro industry indicating large and medium industries is lack demand of worker, while the negative temperature of small industry is among the temperature negative of large and medium industries and micro industry.

  4. Large-scale structural analysis: The structural analyst, the CSM Testbed and the NAS System

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Mccleary, Susan L.; Macy, Steven C.; Aminpour, Mohammad A.

    1989-01-01

    The Computational Structural Mechanics (CSM) activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM testbed methods development environment is presented and some numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  5. An Analysis of the Impact of Multi-Year Procurement on Weapon System Acquisition

    DTIC Science & Technology

    1981-09-01

    contractor~ s accounting system. The cost must be identi- fiable to all cost objectives and allocated to each based on consistent and equitable...ity of the U. S . Defense industry to react in times of crisis. Growing evidence indicates that thsse cost and efficiency problems have been caused, in...politics [84t4]." Increased complexity and expanded technology of today’s defense systems accounts for a large portion of this cost growth (14:4; 85s26

  6. View SE of threestory steel and brick building. Part of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View SE of three-story steel and brick building. Part of large complex of buildings along Milwaukee Ave. (1920, 1950, & 1960 Milwaukee Ave. E) that is attached to the back of 1891 Trombly Ave. Openings on first floor are bricked up; second floor rectangular widows on the street facade are framed by an arched brick pattern. One brick course protrudes to form a cornice line between the second and third floors - 1900 East Milwaukee (Industrial Building), Detroit, Wayne County, MI

  7. Structure based design of 11β-HSD1 inhibitors.

    PubMed

    Singh, Suresh; Tice, Colin

    2010-11-01

    Controlling elevated tissue-specific levels of cortisol may provide a novel therapeutic approach for treating metabolic syndrome. This concept has spurred large scale medicinal chemistry efforts in the pharmaceutical industry for the design of 11β-HSD1 inhibitors. High resolution X-ray crystal structures of inhibitors in complex with the enzyme have facilitated the structure-based design of diverse classes of molecules. A summary of binding modes, trends in structure-activity relationships, and the pharmacodynamic data of inhibitors from each class is presented.

  8. Approaches to polymer-derived CMC matrices

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1992-01-01

    The use of polymeric precursors to ceramics permits the fabrication of large, complex-shaped ceramic matrix composites (CMC's) at temperatures which do not degrade the fiber. Processing equipment and techniques readily available in the resin matrix composite industry can be adapted for CMC fabrication using this approach. Criteria which influence the choice of candidate precursor polymers, the use of fillers, and the role of fiber architecture and ply layup are discussed. Three polymer systems, polycarbosilanes, polysilazanes, and polysilsesquioxanes, are compared as candidate ceramic matrix precursors.

  9. Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato

    PubMed Central

    Feldgarden, Michael; Kolter, Roberto; Mahillon, Jacques

    2013-01-01

    Bacillus cereus sensu lato is a species complex that includes the anthrax pathogen Bacillus anthracis and other bacterial species of medical, industrial, and ecological importance. Their phenotypes of interest are typically linked to large plasmids that are closely related to the anthrax plasmids pXO1 and pXO2. Here, we present the draft genome sequences of 94 isolates of B. cereus sensu lato, which were chosen for their plasmid content and environmental origins. PMID:24092776

  10. Design Of A Low Cost Anthropomorphic Robot Hand For Industrial Applications

    NASA Astrophysics Data System (ADS)

    Allen, P.; Raleigh, B.

    2009-11-01

    Autonomous grasping systems using anthropomorphic robotic end effectors have many applications, and the potential of such devices has inspired researchers to develop many types of grasping systems over the past 30 years. Their research has yielded significant advances in end effector dexterity and functionality. However, due to the cost and complexity associated with such devices, their role has been largely confined to that of being research tools in laboratories. Industry, by contrast, has largely opted for simple, single task, devices. This paper presents a novel low cost anthropomorphic robotic end effector, and in particular the design characteristics that make it more applicable to industrial application. The design brief was (i) to be broadly similar to the human hand in terms of size and performance (ii) be low cost (less than €5000 for the system) and (iii) to provide sufficient performance to allow use in industrial applications. Consisting of three fingers and an opposing thumb, the robotic hand developed has a total of 12 automated degrees of freedom. Another 4 degrees of freedom can be set manually. The specific design of the fingers and thumb, together with the drive arrangement utilizing synchronous belts, yields a simplified kinematics solution for the control of movement. The modular nature of the design is extended also to the palm, which can be easily modified to produce different overall work envelopes for the hand. The drive system and grasping strategies are also detailed.

  11. Characterization of Industrial Emission Sources and Photochemistry in Houston, Texas

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Atlas, E. L.; Degouw, J.; Flocke, F. M.; Fried, A.; Frost, G. J.; Holloway, J.; Richter, D.; Ryerson, T. B.; Schauffler, S.; Trainer, M.; Walega, J.; Warneke, C.; Weibring, P.; Zheng, W.

    2009-12-01

    The Houston-Galveston urban area contains a number of large industrial petrochemical emission sources that produce volatile organic compounds and nitrogen oxides. These co-located emissions result in rapid and efficient ozone production downwind. Unlike a single large power plant, the industrial complexes consist of numerous sources that can be difficult to quantify in emission inventories. During September - October 2006, the NOAA WP-3 aircraft conducted research flights as part of the second Texas Air Quality Study (TexAQS II). We examine measurements of NOx, SO2, and speciated hydrocarbons from the Houston Ship Channel, which contains a dense concentration of industrial petrochemical sources, and isolated petrochemical facilities. These measurements are used to derive source emission estimates, which are then compared to available emission inventories. We find that high hydrocarbon emissions are typical for the Houston Ship Channel and isolated petrochemical facilities. Ethene and propene are found to be major contributors to ozone formation. Ratios of C2H4 / NOx and C3H6 / NOx exceed emission inventory values by factors of 10 - 50. These findings are consistent with the first TexAQS study in 2000. We examine trends in C2H4 / NOx and C3H6 / NOx ratios between 2000 and 2006, and determine that day-to-day variability and within-plume variability exceeds any long-term reduction in ethene and propene emissions for the isolated petrochemical sources. We additionally examine downwind photochemical products formed by these alkenes.

  12. Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing Ma; Rudolf Addink; Sehun Yun

    2009-10-01

    In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust, soil, and leaves (of plants on the grounds of the facility) from a large-scale electronic wastes (e-waste) recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18,500 pg/g dw for electronic shredder residues, 716-80,0000 pg/g dw for soil samples, andmore » 89,600-14,3000 pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of {Sigma}PBDD/Fs and {Sigma}PBDEs (r = 0.769, p < 0.01) and between SPBDD/Fs and the previously reported SPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/Fs, calculated in our previous study. 45 refs., 2 figs., 2 tabs.« less

  13. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High power industrial picosecond laser from IR to UV

    NASA Astrophysics Data System (ADS)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  15. Big Data Analysis of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  16. Review of integrated digital systems: evolution and adoption

    NASA Astrophysics Data System (ADS)

    Fritz, Lawrence W.

    The factors that are influencing the evolution of photogrammetric and remote sensing technology to transition into fully integrated digital systems are reviewed. These factors include societal pressures for new, more timely digital products from the Spatial Information Sciencesand the adoption of rapid technological advancements in digital processing hardware and software. Current major developments in leading government mapping agencies of the USA, such as the Digital Production System (DPS) modernization programme at the Defense Mapping Agency, and the Automated Nautical Charting System II (ANCS-II) programme and Integrated Digital Photogrammetric Facility (IDPF) at NOAA/National Ocean Service, illustrate the significant benefits to be realized. These programmes are examples of different levels of integrated systems that have been designed to produce digital products. They provide insights to the management complexities to be considered for very large integrated digital systems. In recognition of computer industry trends, a knowledge-based architecture for managing the complexity of the very large spatial information systems of the future is proposed.

  17. A general path for large-scale solubilization of cellular proteins: From membrane receptors to multiprotein complexes

    PubMed Central

    Pullara, Filippo; Guerrero-Santoro, Jennifer; Calero, Monica; Zhang, Qiangmin; Peng, Ye; Spåhr, Henrik; Kornberg, Guy L.; Cusimano, Antonella; Stevenson, Hilary P.; Santamaria-Suarez, Hugo; Reynolds, Shelley L.; Brown, Ian S.; Monga, Satdarshan P.S.; Van Houten, Bennett; Rapić-Otrin, Vesna; Calero, Guillermo; Levine, Arthur S.

    2014-01-01

    Expression of recombinant proteins in bacterial or eukaryotic systems often results in aggregation rendering them unavailable for biochemical or structural studies. Protein aggregation is a costly problem for biomedical research. It forces research laboratories and the biomedical industry to search for alternative, more soluble, non-human proteins and limits the number of potential “druggable” targets. In this study we present a highly reproducible protocol that introduces the systematic use of an extensive number of detergents to solubilize aggregated proteins expressed in bacterial and eukaryotic systems. We validate the usefulness of this protocol by solubilizing traditionally difficult human protein targets to milligram quantities and confirm their biological activity. We use this method to solubilize monomeric or multimeric components of multi-protein complexes and demonstrate its efficacy to reconstitute large cellular machines. This protocol works equally well on cytosolic, nuclear and membrane proteins and can be easily adapted to a high throughput format. PMID:23137940

  18. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    NASA Astrophysics Data System (ADS)

    Shadananan Nair, K.

    2016-10-01

    Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  19. Effect of alkaline precipitation on Cr species of Cr(III)-bearing complexes typically used in the tannery industry.

    PubMed

    Wang, Dandan; Ye, Yuxuan; Liu, Hui; Ma, Hongrui; Zhang, Weiming

    2018-02-01

    Various organic compounds extensively used in the leather industry could influence the performance of alkaline precipitation with Cr(III). This study focused on two typical Cr(III)-bearing complexes (Cr(III)-collagen and Cr(III)-citrate) ubiquitous in tannery effluent yet with distinct treatment efficiencies, as Cr(III) was much more difficult to remove in the Cr(III)-citrate solution. Comprehensive analytical methods were employed to explore the intrinsic mechanism. It was found that a lower removal efficiency towards Cr(III) was significantly associated with higher oligomers. The molecular size of the Cr(III)-citrate complex continued to increase with rising pH, making it larger overall than Cr(III)-collagen species. The growing oligomer moiety of dissolved Cr(III)-complex species could persist in the stronger basic pH range, leading to the large amount of residual Cr(III) in the Cr(III)-citrate system. Combining this result with potentiometric titration and X-ray photoelectron spectroscopy data, it was believed that the polymeric species other than monomers facilitated resisting the attack from hydroxide ions, and the postulated Cr(III)-citrate species towards higher oligomers were discovered. Beyond that, both charge neutralization and sweeping effects were presented among the gradually emerging flocs in the Cr(III)-collagen system together with the electric double layer compression effect derived from salinity, thus resulting in a larger floc size and higher Cr(III) removal efficiency in saline solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Organization of complex networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how epidemics spread though networks. Our results indicate that a virus is more likely to infect a large area of a network if it originates at a node contained within k-core of high index k.

  1. Advanced Infusion Techniques with 3-D Printed Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nuttall, David; Elliott, Amy; Post, Brian K.

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanningmore » and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is a small business. Phase II as discussed herein is under consideration by MVP as of this writing. Overall, it is anticipated that developing this process for manufacturing tooling for complex contoured surfaces has applicability to naval and other watercraft as well as bathrooms and large trucks.« less

  2. Dynamic Uncertain Causality Graph for Knowledge Representation and Reasoning: Utilization of Statistical Data and Domain Knowledge in Complex Cases.

    PubMed

    Zhang, Qin; Yao, Quanying

    2018-05-01

    The dynamic uncertain causality graph (DUCG) is a newly presented framework for uncertain causality representation and probabilistic reasoning. It has been successfully applied to online fault diagnoses of large, complex industrial systems, and decease diagnoses. This paper extends the DUCG to model more complex cases than what could be previously modeled, e.g., the case in which statistical data are in different groups with or without overlap, and some domain knowledge and actions (new variables with uncertain causalities) are introduced. In other words, this paper proposes to use -mode, -mode, and -mode of the DUCG to model such complex cases and then transform them into either the standard -mode or the standard -mode. In the former situation, if no directed cyclic graph is involved, the transformed result is simply a Bayesian network (BN), and existing inference methods for BNs can be applied. In the latter situation, an inference method based on the DUCG is proposed. Examples are provided to illustrate the methodology.

  3. Hanford science and technology needs statements, 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BERLIN, G.T.

    In the aftermath of the Cold War, the United States has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex mission could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developedmore » to solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and colleges and universities on those needs. This document describes those needs that the Hanford Site has identified as requiring additional science or technology to complete.« less

  4. Hanford science and technology needs statements, 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, G.T.

    In the aftermath of the Cold War, the US has begun addressing the environmental consequences of five decades of nuclear weapons production. In November 1989, DOE established the Office of Environmental Restoration and Waste Management (EM) as the central authority for cleaning up the DOE weapons complex legacy of pollution, for preventing further environmental contamination, and for instituting responsible environmental management. While performing its tasks, EM found that many aspects of its large and complex decisions could not be achieved using existing science and technology or without incurring unreasonable costs, risks, or schedule impacts. Consequently, a process was developed tomore » solicit needs from around the DOE complex and focus the science and technology resources of EM-50, the National Laboratories, private industry, and collages and universities on those needs. This document describes those needs which the Hanford Site has identified as requiring additional science or technology to complete.« less

  5. Synthetic mixed-signal computation in living cells

    PubMed Central

    Rubens, Jacob R.; Selvaggio, Gianluca; Lu, Timothy K.

    2016-01-01

    Living cells implement complex computations on the continuous environmental signals that they encounter. These computations involve both analogue- and digital-like processing of signals to give rise to complex developmental programs, context-dependent behaviours and homeostatic activities. In contrast to natural biological systems, synthetic biological systems have largely focused on either digital or analogue computation separately. Here we integrate analogue and digital computation to implement complex hybrid synthetic genetic programs in living cells. We present a framework for building comparator gene circuits to digitize analogue inputs based on different thresholds. We then demonstrate that comparators can be predictably composed together to build band-pass filters, ternary logic systems and multi-level analogue-to-digital converters. In addition, we interface these analogue-to-digital circuits with other digital gene circuits to enable concentration-dependent logic. We expect that this hybrid computational paradigm will enable new industrial, diagnostic and therapeutic applications with engineered cells. PMID:27255669

  6. Impact of a complex fluid droplet on wettable and non wettable surfaces

    NASA Astrophysics Data System (ADS)

    Bolleddula, Daniel; Aliseda, Alberto

    2008-11-01

    The impact of liquid droplets is a phenomenon prevalent in many natural and industrial processes. Such events include rain drops, fuel injection, and ink-jet printing. To date, research in atomization and droplet impact has been focused on Newtonian fluids. In the coating of pharmaceutical tablets, the coating solutions contain polymers, surfactants, and large concentrations of insoluble solids in suspension which inherently exhibit non-Newtonian behavior. In this work, we will present ongoing droplet impact experiments using complex rheology fluids under a wide range of Weber and Ohnesorge numbers. Both hydrophilic and hydrophobic surfaces are been studied, and the effect of surface roughness has also been considered. We will describe the limits of bouncing, spreading, and splashing for these complex fluids. We will also discuss quantitative information such as spreading rates and contact angle measurements on wettable and non-wettable surfaces obtained from high speed images.

  7. Robotic implementation of assays: tissue-nonspecific alkaline phosphatase (TNAP) case study.

    PubMed

    Chung, Thomas D Y

    2013-01-01

    Laboratory automation and robotics have "industrialized" the execution and completion of large-scale, enabling high-capacity and high-throughput (100 K-1 MM/day) screening (HTS) campaigns of large "libraries" of compounds (>200 K-2 MM) to complete in a few days or weeks. Critical to the success these HTS campaigns is the ability of a competent assay development team to convert a validated research-grade laboratory "benchtop" assay suitable for manual or semi-automated operations on a few hundreds of compounds into a robust miniaturized (384- or 1,536-well format), well-engineered, scalable, industrialized assay that can be seamlessly implemented on a fully automated, fully integrated robotic screening platform for cost-effective screening of hundreds of thousands of compounds. Here, we provide a review of the theoretical guiding principles and practical considerations necessary to reduce often complex research biology into a "lean manufacturing" engineering endeavor comprising adaption, automation, and implementation of HTS. Furthermore we provide a detailed example specifically for a cell-free in vitro biochemical, enzymatic phosphatase assay for tissue-nonspecific alkaline phosphatase that illustrates these principles and considerations.

  8. Microgripper construction kit

    NASA Astrophysics Data System (ADS)

    Gengenbach, Ulrich K.; Hofmann, Andreas; Engelhardt, Friedhelm; Scharnowell, Rudolf; Koehler, Bernd

    2001-10-01

    A large number of microgrippers has been developed in industry and academia. Although the importance of hybrid integration techniques and hence the demand for assembly tools grows continuously a large part of these developments has not yet been used in industrial production. The first grippers developed for microassembly were basically vacuum grippers and downscaled tweezers. Due to increasingly complex assembly tasks more and more functionality such as sensing or additional functions such as adhesive dispensing has been integrated into gripper systems over the last years. Most of these gripper systems are incompatible since there exists no standard interface to the assembly machine and no standard for the internal modules and interfaces. Thus these tools are not easily interchangeable between assembly machines and not easily adaptable to assembly tasks. In order to alleviate this situation a construction kit for modular microgrippers is being developed. It is composed of modules with well defined interfaces that can be combined to build task specific grippers. An abstract model of a microgripper is proposed as a tool to structure the development of the construction kit. The modular concept is illustrated with prototypes.

  9. Patterning via optical saturable transitions

    NASA Astrophysics Data System (ADS)

    Cantu, Precious

    For the past 40 years, optical lithography has been the patterning workhorse for the semiconductor industry. However, as integrated circuits have become more and more complex, and as device geometries shrink, more innovative methods are required to meet these needs. In the far-field, the smallest feature that can be generated with light is limited to approximately half the wavelength. This, so called far-field diffraction limit or the Abbe limit (after Prof. Ernst Abbe who first recognized this), effectively prevents the use of long-wavelength photons >300nm from patterning nanostructures <100nm. Even with a 193nm laser source and extremely complicated processing, patterns below ˜20nm are incredibly challenging to create. Sources with even shorter wavelengths can potentially be used. However, these tend be much more expensive and of much lower brightness, which in turn limits their patterning speed. Multi-photon reactions have been proposed to overcome the diffraction limit. However, these require very large intensities for modest gain in resolution. Moreover, the large intensities make it difficult to parallelize, thus limiting the patterning speed. In this dissertation, a novel nanopatterning technique using wavelength-selective small molecules that undergo single-photon reactions, enabling rapid top-down nanopatterning over large areas at low-light intensities, thereby allowing for the circumvention of the far-field diffraction barrier is developed and experimentally verified. This approach, which I refer to as Patterning via Optical Saturable Transitions (POST) has the potential for massive parallelism, enabling the creation of nanostructures and devices at a speed far surpassing what is currently possible with conventional optical lithographic techniques. The fundamental understanding of this technique goes beyond optical lithography in the semiconductor industry and is applicable to any area that requires the rapid patterning of large-area two or three-dimensional complex geometries. At a basic level, this research intertwines the fields of electrochemistry, material science, electrical engineering, optics, physics, and mechanical engineering with the goal of developing a novel super-resolution lithographic technique.

  10. The Academic-Industrial Complexity: Failure to Launch.

    PubMed

    Levin, Leonard A; Behar-Cohen, Francine

    2017-12-01

    The pharmaceutical industry has long known that ∼80% of the results of academic laboratories cannot be reproduced when repeated in industry laboratories. Yet academic investigators are typically unaware of this problem, which severely impedes the drug development process. This academic-industrial complication is not one of deception, but rather a complex issue related to how scientific research is carried out and translated in strikingly different enterprises. This Opinion describes the reasons for inconsistencies between academic and industrial laboratories and what can be done to repair this failure of translation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. (FRANCE) USING THE QUIC MODEL (QUICK URBAN AND INDUSTRIAL COMPLEX) TO STUDY AIR FLOW AND DISPERSION PATTERNS IN DESERTS

    EPA Science Inventory

    As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...

  12. USING THE QUIC MODEL (QUICK URBAN AND INDUSTRIAL COMPLEX) TO STUDY AIR FLOW AND DISPERSION PATTERNS IN DESERTS

    EPA Science Inventory

    As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...

  13. Multivariate analysis in the pharmaceutical industry: enabling process understanding and improvement in the PAT and QbD era.

    PubMed

    Ferreira, Ana P; Tobyn, Mike

    2015-01-01

    In the pharmaceutical industry, chemometrics is rapidly establishing itself as a tool that can be used at every step of product development and beyond: from early development to commercialization. This set of multivariate analysis methods allows the extraction of information contained in large, complex data sets thus contributing to increase product and process understanding which is at the core of the Food and Drug Administration's Process Analytical Tools (PAT) Guidance for Industry and the International Conference on Harmonisation's Pharmaceutical Development guideline (Q8). This review is aimed at providing pharmaceutical industry professionals an introduction to multivariate analysis and how it is being adopted and implemented by companies in the transition from "quality-by-testing" to "quality-by-design". It starts with an introduction to multivariate analysis and the two methods most commonly used: principal component analysis and partial least squares regression, their advantages, common pitfalls and requirements for their effective use. That is followed with an overview of the diverse areas of application of multivariate analysis in the pharmaceutical industry: from the development of real-time analytical methods to definition of the design space and control strategy, from formulation optimization during development to the application of quality-by-design principles to improve manufacture of existing commercial products.

  14. Pollution characterization of liquid waste of the factory complex Fertial (Arzew, Algeria).

    PubMed

    Redouane, Fares; Mourad, Lounis

    2016-03-01

    The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial. The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.

  15. Tackling optimization challenges in industrial load control and full-duplex radios

    NASA Astrophysics Data System (ADS)

    Gholian, Armen

    In price-based demand response programs in smart grid, utilities set the price in accordance with the grid operating conditions and consumers respond to price signals by conducting optimal load control to minimize their energy expenditure while satisfying their energy needs. Industrial sector consumes a large portion of world electricity and addressing optimal load control of energy-intensive industrial complexes, such as steel industry and oil-refinery, is of practical importance. Formulating a general industrial complex and addressing issues in optimal industrial load control in smart grid is the focus of the second part of this dissertation. Several industrial load details are considered in the proposed formulation, including those that do not appear in residential or commercial load control problems. Operation under different smart pricing scenarios, namely, day-ahead pricing, time-of-use pricing, peak pricing, inclining block rates, and critical peak pricing are considered. The use of behind-the-meter renewable generation and energy storage is also considered. The formulated optimization problem is originally nonlinear and nonconvex and thus hard to solve. However, it is then reformulated into a tractable linear mixed-integer program. The performance of the design is assessed through various simulations for an oil refinery and a steel mini-mill. In the third part of this dissertation, a novel all-analog RF interference canceler is proposed. Radio self-interference cancellation (SIC) is the fundamental enabler for full-duplex radios. While SIC methods based on baseband digital signal processing and/or beamforming are inadequate, an all-analog method is useful to drastically reduce the self-interference as the first stage of SIC. It is shown that a uniform architecture with uniformly distributed RF attenuators has a performance highly dependent on the carrier frequency. It is also shown that a new architecture with the attenuators distributed in a clustered fashion has important advantages over the uniform architecture. These advantages are shown numerically through random multipath interference channels, number of control bits in step attenuators, attenuation-dependent phases, single and multi-level structures, etc.

  16. INDUSTRIAL RESEARCH AT THE EASTERN TELEGRAPH COMPANY, 1872-1929

    PubMed Central

    2015-01-01

    By the late nineteenth century the submarine telegraph cable industry, which had blossomed in the 1850s, had reached what historians regard as technological maturity. For a host of commercial, cultural and technical reasons, the industry seems to have become conservative in its attitude towards technological development, which is reflected in the small scale of its staff and facilities for research and development. This paper argues that the attitude of the cable industry towards research and development was less conservative and altogether more complex than historians have suggested. Focusing on the crucial case of the Eastern Telegraph Company, the largest single operator of submarine cables, it shows how the company encouraged inventive activity among outside and in-house electricians and, in 1903, established a small research laboratory where staff and outside scientific advisors pursued new methods of cable signalling and cable designs. The scale of research and development at the Eastern Telegraph Company, however, was small by comparison to that of its nearest competitor, Western Union, and dwarfed by that of large electrical manufacturers. This paper explores the reasons for this comparatively weak provision but also suggests that this was not inappropriate for a service-sector firm. PMID:25977587

  17. A Naturally Occurring Antioxidant Complex from Unripe Grapes: The Case of Sangiovese (v. Vitis vinifera)

    PubMed Central

    Gori, Claudio; Bucalossi, Ginevra; Borghini, Francesca; Zanoni, Bruno

    2018-01-01

    The wine industry is well known for its production of a large amount of wastes and by-products. Among them, unripe grapes from thinning operations are an undervalued by-product. Grapes are an interesting source of natural antioxidants such as flavonoids, non-flavonoids and stilbenes. A potential strategy to exploit unripe grapes was investigated in this study. Juice from unripe grapes, v. Sangiovese, was obtained by an innovative technique of solid-liquid extraction without the use of solvents. The juice was dried by a spray-drying technique with the addition of arabic gum as support to obtain powder; juice and powder were characterized for antioxidant activity, phenolic concentration and profile. Phenolic acids, flavonols, flava-3-ols, procyanidins and resveratrol were detected in the juice and powder. The powder was used as anti-browning additive in white wine to test the potential re-use of the unripe grapes in the wine industry. The results indicated that the antioxidant complex from unripe grapes contributed to increasing the anti-browning capacity of white wine. Other applications, such as food and nutraceutical products development, can be considered for the antioxidant complex extracted from unripe grapes. In conclusion, the method proposed in this study may contribute to the exploitation of unripe grapes as a by-product of the winemaking process. PMID:29419774

  18. The new medical-industrial complex.

    PubMed

    Relman, A S

    1980-10-23

    The most important health-care development of the day is the recent, relatively unheralded rise of a huge new industry that supplies health-care services for profit. Proprietary hospitals and nursing homes, diagnostic laboratories, home-care and emergency-room services, hemodialysis, and a wide variety of other services produced a gross income to this industry last year of about $35 billion to +40 billion. This new "medical-industrial complex" may be more efficient than its nonprofit competition, but it creates the problems of overuse and fragmentation of services, overemphasis on technology, and "cream-skimming," and it may also exercise undue influence on national health policy. In this medical market, physicians must act as discerning purchasing agents for their patients and therefore should have no conflicting financial interests. Closer attention from the public and the profession, and careful study, are necessary to ensure that the "medical-industrial complex" puts the interest of the public before those of its stockholders.

  19. Performance evaluation of functioning of natural-industrial system of mining-processing complex with help of analytical and mathematical models

    NASA Astrophysics Data System (ADS)

    Bosikov, I. I.; Klyuev, R. V.; Revazov, V. Ch; Pilieva, D. E.

    2018-03-01

    The article describes research and analysis of hazardous processes occurring in the natural-industrial system and effectiveness assessment of its functioning using mathematical models. Studies of the functioning regularities of the natural and industrial system are becoming increasingly relevant in connection with the formulation of the task of modernizing production and the economy of Russia as a whole. In connection with a significant amount of poorly structured data, it is complicated by regulations for the effective functioning of production processes, social and natural complexes, under which a sustainable development of the natural-industrial system of the mining and processing complex would be ensured. Therefore, the scientific and applied problems, the solution of which allows one to formalize the hidden structural functioning patterns of the natural-industrial system and to make managerial decisions of organizational and technological nature to improve the efficiency of the system, are very relevant.

  20. Top-down Estimates of Greenhouse Gas Intensities and Emissions for Individual Oil Sands Facilities in Alberta Canada

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Staebler, R. M.; Hayden, K. L.; Mittermeier, R. L.; McLaren, R.; Baray, S.; Darlington, A.; Worthy, D.; O'Brien, J.

    2017-12-01

    The oil sands (OS) region of Alberta contributes approximately 10% to Canada's overall anthropogenic greenhouse gas (GHG) emissions. Such emissions have traditionally been estimated through "bottom-up" methods which seek to account for all individual sources of GHGs within a given facility. However, it is recognized that bottom-up approaches for complex industrial facilities can be subject to uncertainties associated with incomplete or inaccurate emission factor and/or activity data. In order to quantify air pollutant emissions from oil sands activities an aircraft-based measurement campaign was performed in the summer of 2013. The aircraft measurements could also be used to quantify GHG emissions for comparison to the bottom up emissions estimates. Utilizing specific flight patterns, together with an emissions estimation algorithm and measurements of CO2 and methane, a "top-down" estimate of GHG intensities for several large surface mining operations was obtained. The results demonstrate that there is a wide variation in emissions intensities (≈80 - 220 kg CO2/barrel oil) across OS facilities, which in some cases agree with calculated intensities, and in other cases are larger than that estimated using industry reported GHG emission and oil production data. When translated to annual GHG emissions, the "top-down" approach results in a CO2 emission of approximately 41 Mega Tonnes (MT) CO2/year for the 4 OS facilities investigated, in contrast to the ≈26 MT CO2/year reported by industry. The results presented here highlight the importance of using "top-down" approaches as a complimentary method in evaluating GHG emissions from large industrial sources.

  1. Formation of Wear Resistant Steel Surfaces by Plasma Immersion Ion Implantation

    NASA Astrophysics Data System (ADS)

    Mändl, S.; Rauschenbach, B.

    2003-08-01

    Plasma immersion ion implantation (PIII) is a versatile and fast method for implanting energetic ions into large and complex shaped three-dimensional objects where the ions are accelerated by applying negative high voltage pulses to a substrate immersed in a plasma. As the line-of-sight restrictions of conventional implanters are circumvented, it results in a fast and cost-effective technology. Implantation of nitrogen at 30 - 40 keV at moderate temperatures of 200 - 400 °C into steel circumvents the diminishing thermal nitrogen activation encountered, e.g., in plasma nitriding in this temperature regime, thus enabling nitriding of additional steel grades. Nitride formation and improvement of the mechanical properties after PIII are presented for several steel grades, including AISI 316Ti (food industry), AISI D2 (used for bending tools) and AISI 1095 (with applications in the textile industry).

  2. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives.

    PubMed

    Zha, Jian; Koffas, Mattheos A G

    2017-12-01

    Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.

  3. Applying remote sensing expertise to crop improvement: progress and challenges to scale up high throughput field phenotyping from research to industry

    NASA Astrophysics Data System (ADS)

    Gouache, David; Beauchêne, Katia; Mini, Agathe; Fournier, Antoine; de Solan, Benoit; Baret, Fred; Comar, Alexis

    2016-05-01

    Digital and image analysis technologies in greenhouses have become commonplace in plant science research and started to move into the plant breeding industry. However, the core of plant breeding work takes place in fields. We will present successive technological developments that have allowed the migration and application of remote sensing approaches at large into the field of crop genetics and physiology research, with a number of projects that have taken place in France. These projects have allowed us to develop combined sensor plus vector systems, from tractor mounted and UAV (unmanned aerial vehicle) mounted spectroradiometry to autonomous vehicle mounted spectroradiometry, RGB (red-green-blue) imagery and Lidar. We have tested these systems for deciphering the genetics of complex plant improvement targets such as the robustness to nitrogen and water deficiency of wheat and maize. Our results from wheat experiments indicate that these systems can be used both to screen genetic diversity for nitrogen stress tolerance and to decipher the genetics behind this diversity. We will present our view on the next critical steps in terms of technology and data analysis that will be required to reach cost effective implementation in industrial plant breeding programs. If this can be achieved, these technologies will largely contribute to resolving the equation of increasing food supply in the resource limited world that lies ahead.

  4. Electricity market liberalization under the power of customer value evaluation and service model

    NASA Astrophysics Data System (ADS)

    Bai, Hong Kun; Wang, Jiang Bo; Song, Da Wei

    2018-06-01

    After the power reform No. 9 was released in March 2015, the state officially released the Opinions on the Implementation of the Reform on the Power Sales Side. From this document, we can see that the openness of sales of social capital to the electricity business, the sales side of the market competition through multiple ways to train the main competitors, the result is more users have the right to choose, sales service quality and user energy levels will significantly improve. With the gradual promotion of the electricity sales market, the national electricity sales companies have been established one after another. In addition to power grid outside the power generation companies, energy-saving service companies and distributed power companies may become the main selling power, while industrial parks, commercial complex, large residential area, industrial and commercial users, large industrial users in the new electricity demand appearing The new changes, some power customers have also self-built distributed power supply, installation of energy storage devices or equipment to participate in the transformation of the electricity market. The main body of the electricity sales market has gradually evolved from the traditional electricity generation main body to the multi-unit main body and emerged new value points. Therefore, the electricity sales companies need to establish a power customer value evaluation method and service mode to adapt to the new electricity reform, Provide supportive decision support.

  5. Diazo compounds in continuous-flow technology.

    PubMed

    Müller, Simon T R; Wirth, Thomas

    2015-01-01

    Diazo compounds are very versatile reagents in organic chemistry and meet the challenge of selective assembly of structurally complex molecules. Their leaving group is dinitrogen; therefore, they are very clean and atom-efficient reagents. However, diazo compounds are potentially explosive and extremely difficult to handle on an industrial scale. In this review, it is discussed how continuous flow technology can help to make these powerful reagents accessible on large scale. Microstructured devices can improve heat transfer greatly and help with the handling of dangerous reagents safely. The in situ formation and subsequent consumption of diazo compounds are discussed along with advances in handling diazomethane and ethyl diazoacetate. The potential large-scale applications of a given methodology is emphasized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. ERP (enterprise resource planning) systems can streamline healthcare business functions.

    PubMed

    Jenkins, E K; Christenson, E

    2001-05-01

    Enterprise resource planning (ERP) software applications are designed to facilitate the systemwide integration of complex processes and functions across a large enterprise consisting of many internal and external constituents. Although most currently available ERP applications generally are tailored to the needs of the manufacturing industry, many large healthcare systems are investigating these applications. Due to the significant differences between manufacturing and patient care, ERP-based systems do not easily translate to the healthcare setting. In particular, the lack of clinical standardization impedes the use of ERP systems for clinical integration. Nonetheless, an ERP-based system can help a healthcare organization integrate many functions, including patient scheduling, human resources management, workload forecasting, and management of workflow, that are not directly dependent on clinical decision making.

  7. Risk Management Technique for design and operation of facilities and equipment

    NASA Technical Reports Server (NTRS)

    Fedor, O. H.; Parsons, W. N.; Coutinho, J. De S.

    1975-01-01

    The Risk Management System collects information from engineering, operating, and management personnel to identify potentially hazardous conditions. This information is used in risk analysis, problem resolution, and contingency planning. The resulting hazard accountability system enables management to monitor all identified hazards. Data from this system are examined in project reviews so that management can decide to eliminate or accept these risks. This technique is particularly effective in improving the management of risks in large, complex, high-energy facilities. These improvements are needed for increased cooperation among industry, regulatory agencies, and the public.

  8. Defense Contractors SBIR/STTR Partnering Manual: A Primer on Technology Risk Management and Partnering Strategies

    DTIC Science & Technology

    2008-08-01

    supported. While this may not have been true during the SBIR/STTR adolescence of the 1990s, we in government realized by 1998 that small business/large...heard that SBIR/STTR topics submitted by industry, even when requested, are usu- ally rejected by DDR&E. Is this true , and if so, why – and what can do...contractors as problematic. This is especially true if a small firm lacks experience in the serial, complex steps involved in a systems engineer- ing

  9. Transportation Big Data: Unbiased Analysis and Tools to Inform Sustainable Transportation Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Today, transportation operation and energy systems data are generated at an unprecedented scale. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is the go-to source for expertise in providing data and analysis to inform industry and government transportation decision making. The lab's teams of data experts and engineers are mining and analyzing large sets of complex data -- or 'big data' -- to develop solutions that support the research, development, and deployment of market-ready technologies that reduce fuel consumption and greenhouse gas emissions.

  10. CSM Testbed Development and Large-Scale Structural Applications

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, R. E.; Mccleary, Susan L.; Lotts, C. G.; Poole, E. L.; Overman, A. L.; Macy, S. C.

    1989-01-01

    A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized.

  11. Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach

    NASA Technical Reports Server (NTRS)

    Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil

    2016-01-01

    Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.

  12. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    PubMed

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  13. Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?

    PubMed

    Thompson, Reid F; Valdes, Gilmer; Fuller, Clifton D; Carpenter, Colin M; Morin, Olivier; Aneja, Sanjay; Lindsay, William D; Aerts, Hugo J W L; Agrimson, Barbara; Deville, Curtiland; Rosenthal, Seth A; Yu, James B; Thomas, Charles R

    2018-06-12

    Artificial intelligence (AI) is emerging as a technology with the power to transform established industries, and with applications from automated manufacturing to advertising and facial recognition to fully autonomous transportation. Advances in each of these domains have led some to call AI the "fourth" industrial revolution [1]. In healthcare, AI is emerging as both a productive and disruptive force across many disciplines. This is perhaps most evident in Diagnostic Radiology and Pathology, specialties largely built around the processing and complex interpretation of medical images, where the role of AI is increasingly seen as both a boon and a threat. In Radiation Oncology as well, AI seems poised to reshape the specialty in significant ways, though the impact of AI has been relatively limited at present, and may rightly seem more distant to many, given the predominantly interpersonal and complex interventional nature of the specialty. In this overview, we will explore the current state and anticipated future impact of AI on Radiation Oncology, in detail, focusing on key topics from multiple stakeholder perspectives, as well as the role our specialty may play in helping to shape the future of AI within the larger spectrum of medicine. Published by Elsevier B.V.

  14. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples.

    PubMed

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M

    2015-10-08

    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Mathematical modeling and fuzzy availability analysis for serial processes in the crystallization system of a sugar plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram

    2017-03-01

    The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.

  16. Bio-nano interactions detected by nanochannel electrophoresis.

    PubMed

    Luan, Binquan

    2016-08-01

    Engineered nanoparticles have been widely used in industry and are present in many consumer products. However, their bio-safeties especially in a long term are largely unknown. Here, a nanochannel-electrophoresis-based method is proposed for detecting the potential bio-nano interactions that may further lead to damages to human health and/or biological environment. Through proof-of-concept molecular dynamics simulations, it was demonstrated that the transport of a protein-nanoparticle complex is very different from that of a protein along. By monitoring the change of ionic currents induced by a transported analyte as well as the transport velocities of the analyte, the complex (with bio-nano interaction) can be clearly distinguished from the protein alone (with no interaction with tested nanoparticles). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Applications of Neutron Scattering in the Chemical Industry: Proton Dynamics of Highly Dispersed Materials, Characterization of Fuel Cell Catalysts, and Catalysts from Large-Scale Chemical Processes

    NASA Astrophysics Data System (ADS)

    Albers, Peter W.; Parker, Stewart F.

    The attractiveness of neutron scattering techniques for the detailed characterization of materials of high degrees of dispersity and structural complexity as encountered in the chemical industry is discussed. Neutron scattering picks up where other analytical methods leave off because of the physico-chemical properties of finely divided products and materials whose absorption behavior toward electromagnetic radiation and electrical conductivity causes serious problems. This is demonstrated by presenting typical applications from large-scale production technology and industrial catalysis. These include the determination of the proton-related surface chemistry of advanced materials that are used as reinforcing fillers in the manufacture of tires, where interrelations between surface chemistry, rheological properties, improved safety, and significant reduction of fuel consumption are the focus of recent developments. Neutron scattering allows surface science studies of the dissociative adsorption of hydrogen on nanodispersed, supported precious metal particles of fuel cell catalysts under in situ loading at realistic gas pressures of about 1 bar. Insight into the occupation of catalytically relevant surface sites provides valuable information about the catalyst in the working state and supplies essential scientific input for tailoring better catalysts by technologists. The impact of deactivation phenomena on industrial catalysts by coke deposition, chemical transformation of carbonaceous deposits, and other processes in catalytic hydrogenation processes that result in significant shortening of the time of useful operation in large-scale plants can often be traced back in detail to surface or bulk properties of catalysts or materials of catalytic relevance. A better understanding of avoidable or unavoidable aspects of catalyst deactivation phenomena under certain in-process conditions and the development of effective means for reducing deactivation leads to more energy-efficient and, therefore, environmentally friendly processes and helps to save valuable resources. Even small or gradual improvements in all these fields are of considerable economic impact.

  18. Cause-specific sickness absence trends by occupational class and industrial sector in the context of recent labour market changes: a Finnish panel data study

    PubMed Central

    Leinonen, Taina; Viikari-Juntura, Eira; Husgafvel-Pursiainen, Kirsti; Solovieva, Svetlana

    2018-01-01

    Objectives We aimed to provide previously unestablished information on population-based differences in cause-specific sickness absence trends between occupational classes and further between four large industrial sectors within the different occupational classes while controlling for other socioeconomic factors and employment patterns. We focused on the period 2005–2013, during which the labour market underwent large economic and structural changes in many countries. Design Register-based panel data study. Setting Large representative datasets on Finnish wage earners aged 25–59 years. Outcome measure Annual risk of sickness absence (>10 working days) based on repeated logistic regression. Results Between 2005 and 2013, the proportion of employees with sickness absence decreased. Occupational class differences in sickness absence trends varied by disease group. Overall, the decrease in absences was smallest among lower non-manual employees. Sickness absence levels were highest in the health and social work sector and in the manufacturing sector within the non-manual and manual classes, respectively. Absences due to musculoskeletal diseases decreased temporarily during the peak of the economic recession in 2009, particularly in the manufacturing sector within the manual class. The decrease in absences due to musculoskeletal diseases was smallest in the trade sector within the lower occupational classes. Overall, education, income and employment patterns partly explained the differences in the absence levels, but not in the trends. Conclusions We found a complex interplay between the associations of occupational class and industrial sector with sickness absence trends. During the economic recession, absences due to musculoskeletal diseases decreased temporarily in a segment of wage earners who were known to have been hit hard by the recession. However, the trend differences were not explained by the measured structural changes in the characteristics of the study population. Both occupational class and industrial sector should be taken into account when tackling problems of work disability. PMID:29627810

  19. Deconstructing the Education-Industrial Complex in the Digital Age

    ERIC Educational Resources Information Center

    Loveless, Douglas, Ed.; Sullivan, Pamela, Ed.; Dredger, Katie, Ed.; Burns, Jim, Ed.

    2017-01-01

    Developments in the education field are affected by numerous, and often conflicting, social, cultural, and economic factors. With the increasing corporatization of education, teaching and learning paradigms are continuously altered. "Deconstructing the Education-Industrial Complex in the Digital Age" is an authoritative reference source…

  20. Assessment of exposure to the Penicillium glabrum complex in cork industry using complementing methods.

    PubMed

    Viegas, Carla; Sabino, Raquel; Botelho, Daniel; dos Santos, Mateus; Gomes, Anita Quintal

    2015-09-01

    Cork oak is the second most dominant forest species in Portugal and makes this country the world leader in cork export. Occupational exposure to Chrysonilia sitophila and the Penicillium glabrum complex in cork industry is common, and the latter fungus is associated with suberosis. However, as conventional methods seem to underestimate its presence in occupational environments, the aim of our study was to see whether information obtained by polymerase chain reaction (PCR), a molecular-based method, can complement conventional findings and give a better insight into occupational exposure of cork industry workers. We assessed fungal contamination with the P. glabrum complex in three cork manufacturing plants in the outskirts of Lisbon using both conventional and molecular methods. Conventional culturing failed to detect the fungus at six sampling sites in which PCR did detect it. This confirms our assumption that the use of complementing methods can provide information for a more accurate assessment of occupational exposure to the P. glabrum complex in cork industry.

  1. Polybrominated dibenzo-p-dioxins/ dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in eastern China.

    PubMed

    Ma, Jing; Addink, Rudolf; Yun, Sehun; Cheng, Jinping; Wang, Wenhua; Kannan, Kurunthachalam

    2009-10-01

    The formation and release of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the incineration of electronic wastes (e-waste) that contain brominated flame retardants (BFRs) are a concern. However, studies on the determination of PBDD/Fs in environmental samples collected from e-waste recycling facilities are scarce. In this study, 11 2,3,7,8-substituted PBDD/Fs and 10 polybrominated diphenyl ether (PBDE) congeners were determined in electronic shredder waste, workshop-floor dust soil, and leaves (of plants on the grounds of the facility) from a large-scale e-waste recycling facility and in surface soil from a chemical-industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) as well as agricultural areas in eastern China. Total PBDD/F concentrations in environmental samples were in the range of 113-818 pg/g dry wt (dw) for leaves, 392-18500 pg/g dw for electronic shredder residues, 716-800000 pg/g dw for soil samples, and 89600-pg/g dw for workshop-floor dust from the e-waste recycling facility and in a range from nondetect (ND) to 427 pg/g dw in soil from the chemical-industrial complex. The highest mean concentrations of total PBDD/Fs were found in soil samples and workshop-floor dust from the e-waste recycling facility. The dioxin-like toxic equivalent (measured as TEQ) concentrations of PBDD/Fs were greater than the TEQs of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) reported in our previous study for the same set of samples. The concentrations of PBDFs were several orders of magnitude higher than the concentrations of PBDDs in samples from the e-waste facility or from soil from the chemical-industrial complex. A significant correlation was found between the concentrations of sigmaPBDD/Fs and sigmaPBDEs (r = 0.769, p < 0.01) and between sigmaPBDD/Fs and the previously reported sigmaPCDD/F concentrations (r = 0.805, p < 0.01). The estimated daily human intakes of TEQs contributed by PBDD/Fs via soil/dust ingestion and dermal exposures in e-waste recycling facilities were higher than the intakes of TEQs contributed by PCDD/ Fs, calculated in our previous study.

  2. Trigger chemistries for better industrial formulations.

    PubMed

    Wang, Hsuan-Chin; Zhang, Yanfeng; Possanza, Catherine M; Zimmerman, Steven C; Cheng, Jianjun; Moore, Jeffrey S; Harris, Keith; Katz, Joshua S

    2015-04-01

    In recent years, innovations and consumer demands have led to increasingly complex liquid formulations. These growing complexities have provided industrial players and their customers access to new markets through product differentiation, improved performance, and compatibility/stability with other products. One strategy for enabling more complex formulations is the use of active encapsulation. When encapsulation is employed, strategies are required to effect the release of the active at the desired location and time of action. One particular route that has received significant academic research effort is the employment of triggers to induce active release upon a specific stimulus, though little has translated for industrial use to date. To address emerging industrial formulation needs, in this review, we discuss areas of trigger release chemistries and their applications specifically as relevant to industrial use. We focus the discussion on the use of heat, light, shear, and pH triggers as applied in several model polymeric systems for inducing active release. The goal is that through this review trends will emerge for how technologies can be better developed to maximize their value through industrial adaptation.

  3. The Effect of Social Trust on Citizens’ Health Risk Perception in the Context of a Petrochemical Industrial Complex

    PubMed Central

    López-Navarro, Miguel Ángel; Llorens-Monzonís, Jaume; Tortosa-Edo, Vicente

    2013-01-01

    Perceived risk of environmental threats often translates into psychological stress with a wide range of effects on health and well-being. Petrochemical industrial complexes constitute one of the sites that can cause considerable pollution and health problems. The uncertainty around emissions results in a perception of risk for citizens residing in neighboring areas, which translates into anxiety and physiological stress. In this context, social trust is a key factor in managing the perceived risk. In the case of industrial risks, it is essential to distinguish between trust in the companies that make up the industry, and trust in public institutions. In the context of a petrochemical industrial complex located in the port of Castellón (Spain), this paper primarily discusses how trust—both in the companies located in the petrochemical complex and in the public institutions—affects citizens’ health risk perception. The research findings confirm that while the trust in companies negatively affects citizens’ health risk perception, trust in public institutions does not exert a direct and significant effect. Analysis also revealed that trust in public institutions and health risk perception are essentially linked indirectly (through trust in companies). PMID:23337129

  4. [Process design in high-reliability organizations].

    PubMed

    Sommer, K-J; Kranz, J; Steffens, J

    2014-05-01

    Modern medicine is a highly complex service industry in which individual care providers are linked in a complicated network. The complexity and interlinkedness is associated with risks concerning patient safety. Other highly complex industries like commercial aviation have succeeded in maintaining or even increasing its safety levels despite rapidly increasing passenger figures. Standard operating procedures (SOPs), crew resource management (CRM), as well as operational risk evaluation (ORE) are historically developed and trusted parts of a comprehensive and systemic safety program. If medicine wants to follow this quantum leap towards increased patient safety, it must intensively evaluate the results of other high-reliability industries and seek step-by-step implementation after a critical assessment.

  5. Uncovering Randomness and Success in Society

    PubMed Central

    Jalan, Sarika; Sarkar, Camellia; Madhusudanan, Anagha; Dwivedi, Sanjiv Kumar

    2014-01-01

    An understanding of how individuals shape and impact the evolution of society is vastly limited due to the unavailability of large-scale reliable datasets that can simultaneously capture information regarding individual movements and social interactions. We believe that the popular Indian film industry, “Bollywood”, can provide a social network apt for such a study. Bollywood provides massive amounts of real, unbiased data that spans more than 100 years, and hence this network has been used as a model for the present paper. The nodes which maintain a moderate degree or widely cooperate with the other nodes of the network tend to be more fit (measured as the success of the node in the industry) in comparison to the other nodes. The analysis carried forth in the current work, using a conjoined framework of complex network theory and random matrix theory, aims to quantify the elements that determine the fitness of an individual node and the factors that contribute to the robustness of a network. The authors of this paper believe that the method of study used in the current paper can be extended to study various other industries and organizations. PMID:24533073

  6. Globalising Synthetic Nitrogen: The Interwar Inauguration of a New Industry.

    PubMed

    Travis, Anthony S

    2017-02-01

    The most spectacular development in industrial chemistry during the early twentieth century concerned the capture of atmospheric nitrogen by the Haber-Bosch high-pressure ammonia process at the German chemical enterprise Badische Anilin- & Soda-Fabrik (BASF), of Ludwigshafen. This firm, confident that its complex process could not be readily imitated, set out to dominate the global nitrogen fertiliser market. The response was the emergence of rival high-pressure ammonia processes in Western Europe, the United States, and Japan during the 1920s. This article is an historical appreciation of the settings in which several countries, often driven by concerns over national security, were encouraged to develop and adopt non-BASF high-pressure nitrogen capture technologies. Moreover, synthetic ammonia was at the forefront of large-scale strategic self-sufficiency and state sponsored programmes in three countries - Italy, Russia, and Japan - at the very same time when the newer technologies became available. As a result, the chemical industries of these nations, under the influences of fascism, communism, and colonial modernisation projects, began moving into the top ranks.

  7. Uncovering randomness and success in society.

    PubMed

    Jalan, Sarika; Sarkar, Camellia; Madhusudanan, Anagha; Dwivedi, Sanjiv Kumar

    2014-01-01

    An understanding of how individuals shape and impact the evolution of society is vastly limited due to the unavailability of large-scale reliable datasets that can simultaneously capture information regarding individual movements and social interactions. We believe that the popular Indian film industry, "Bollywood", can provide a social network apt for such a study. Bollywood provides massive amounts of real, unbiased data that spans more than 100 years, and hence this network has been used as a model for the present paper. The nodes which maintain a moderate degree or widely cooperate with the other nodes of the network tend to be more fit (measured as the success of the node in the industry) in comparison to the other nodes. The analysis carried forth in the current work, using a conjoined framework of complex network theory and random matrix theory, aims to quantify the elements that determine the fitness of an individual node and the factors that contribute to the robustness of a network. The authors of this paper believe that the method of study used in the current paper can be extended to study various other industries and organizations.

  8. Phased Array Feeds

    NASA Astrophysics Data System (ADS)

    Fisher, J. Richard; Bradley, Richard F.; Brisken, Walter F.; Cotton, William D.; Emerson, Darrel T.; Kerr, Anthony R.; Lacasse, Richard J.; Morgan, Matthew A.; Napier, Peter J.; Norrod, Roger D.; Payne, John M.; Pospieszalski, Marian W.; Symmes, Arthur; Thompson, A. Richard; Webber, John C.

    2009-03-01

    This white paper offers cautionary observations about the planning and development of new, large radio astronomy instruments. Complexity is a strong cost driver so every effort should be made to assign differing science requirements to different instruments and probably different sites. The appeal of shared resources is generally not realized in practice and can often be counterproductive. Instrument optimization is much more difficult with longer lists of requirements, and the development process is longer and less efficient. More complex instruments are necessarily further behind the technology state of the art because of longer development times. Including technology R&D in the construction phase of projects is a growing trend that leads to higher risks, cost overruns, schedule delays, and project de-scoping. There are no technology breakthroughs just over the horizon that will suddenly bring down the cost of collecting area. Advances come largely through careful attention to detail in the adoption of new technology provided by industry and the commercial market. Radio astronomy instrumentation has a very bright future, but a vigorous long-term R&D program not tied directly to specific projects needs to be restored, fostered, and preserved.

  9. Economically viable large-scale hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  10. Energy alternative for industry: the high-temperature gas-cooled reactor steamer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMain, A.T. Jr.; Blok, F.J.

    1978-04-01

    Large industrial complexes are faced with new requirements that will lead to a transition from such fluid fuels as natural gas and oil to such solid fuels as coal and uranium for supply of industrial energy. Power plants using these latter fuels will be of moderate size (800 to 1200 MW(thermal)) and will generally have the capability of co-generating electric power and process steam. A study has been made regarding use of the 840-MW(thermal) Fort St. Vrain high-temperature gas-cooled reactor (HTGR) design for industrial applications. The initial conceptual design (referred to as the HTGR Steamer) is substantially simplified relative tomore » Fort St. Vrain in that outlet helium and steam temperatures are lower and the reheat section is deleted from the steam generators. The Steamer has four independent steam generating loops producing a total of 277 kg/s (2.2 x 10/sup 6/ lb/h) of prime steam at 4.5 MPa/672 K (650 psia/750/sup 0/F). The unit co-generates 46 MW(electric) and provides process steam at 8.31 MPa/762 K(1200 psia/912/sup 0/F). The basic configuration and much of the equipment are retained from the Fort St. Vrain design. The system has inherent safety features important for industrial applications. These and other features indicate that the HTGR Steamer is an industrial energy option deserving additional evaluation. Subsequent work will focus on parallel design optimization and application studies.« less

  11. RoboPIV: how robotics enable PIV on a large industrial scale

    NASA Astrophysics Data System (ADS)

    Michaux, F.; Mattern, P.; Kallweit, S.

    2018-07-01

    This work demonstrates how the interaction between particle image velocimetry (PIV) and robotics can massively increase measurement efficiency. The interdisciplinary approach is shown using the complex example of an automated, large scale, industrial environment: a typical automotive wind tunnel application. Both the high degree of flexibility in choosing the measurement region and the complete automation of stereo PIV measurements are presented. The setup consists of a combination of three robots, individually used as a 6D traversing unit for the laser illumination system as well as for each of the two cameras. Synchronised movements in the same reference frame are realised through a master-slave setup with a single interface to the user. By integrating the interface into the standard wind tunnel management system, a single measurement plane or a predefined sequence of several planes can be requested through a single trigger event, providing the resulting vector fields within minutes. In this paper, a brief overview on the demands of large scale industrial PIV and the existing solutions is given. Afterwards, the concept of RoboPIV is introduced as a new approach. In a first step, the usability of a selection of commercially available robot arms is analysed. The challenges of pose uncertainty and importance of absolute accuracy are demonstrated through comparative measurements, explaining the individual pros and cons of the analysed systems. Subsequently, the advantage of integrating RoboPIV directly into the existing wind tunnel management system is shown on basis of a typical measurement sequence. In a final step, a practical measurement procedure, including post-processing, is given by using real data and results. Ultimately, the benefits of high automation are demonstrated, leading to a drastic reduction in necessary measurement time compared to non-automated systems, thus massively increasing the efficiency of PIV measurements.

  12. Strategies for analysing and improving the expression and quality of recombinant proteins made in mammalian cells.

    PubMed

    Jenkins, Nigel; Meleady, Paula; Tyther, Raymond; Murphy, Lisa

    2009-05-06

    The production of monoclonal antibodies and other recombinant proteins is one of the highest growth areas in the pharmaceutical industry. Mammalian cells are used to manufacture the majority of biotherapeutics, largely due to their ability to perform complex post-translational modifications. Although significant progress has been made recently in improving product yields and protein quality, many challenges still lie ahead to achieve consistently high yields while avoiding potentially damaging protein modifications. The present review first considers the strategies used to analyse and improve recombinant protein expression of industrial cell lines, with an emphasis on proteomic technologies. Next, cellular and environmental influences on protein production and quality are examined, and strategies for improvements in product yield and quality are reviewed. The analytical techniques required to detect these protein changes are also described, together with prospects for assay improvements.

  13. Enzymatic catalysis treatment method of meat industry wastewater using lacasse.

    PubMed

    Thirugnanasambandham, K; Sivakumar, V

    2015-01-01

    The process of meat industry produces in a large amount of wastewater that contains high levels of colour and chemical oxygen demand (COD). So they must be pretreated before their discharge into the ecological system. In this paper, enzymatic catalysis (EC) was adopted to treat the meat wastewater. Box-Behnken design (BBD), an experimental design for response surface methodology (RSM), was used to create a set of 29 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the colour and COD removals. The experimental results show that EC could effectively reduce colour (95 %) and COD (86 %) at the optimum conditions of enzyme dose of 110 U/L, incubation time of 100 min, pH of 7 and temperature of 40 °C. RSM could be effectively adopted to optimize the operating multifactors in complex EC process.

  14. The Military-Industrial-Scientific Complex and the Rise of New Powers: Conceptual, Theoretical and Methodological Contributions and the Brazilian Case

    DTIC Science & Technology

    2017-09-29

    Report: The Military-Industrial-Scientific Complex and the Rise of New Powers: Conceptual, Theoretical and Methodological Contributions and the... Methodological Contributions and the Brazilian Case Report Term: 0-Other Email: aminvielle@ucsd.edu Distribution Statement: 1-Approved for public

  15. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Kannan, K.; Cheng, J.

    2008-11-15

    Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less

  16. Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels.

    PubMed

    Wilkinson, Trevor C I

    2016-06-15

    The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  17. Life history of a large flake biface

    NASA Astrophysics Data System (ADS)

    Baena Preysler, Javier; Torres Navas, Concepción; Sharon, Gonen

    2018-06-01

    Bifaces, primarily handaxes and cleavers, are the hallmark of the Acheulian techno-complex lithic industry. They spread across Africa and Eurasia during the Early to Middle Pleistocene. While many attempts have been made to define and describe the typology and technology of these tools, most focus on a single stage in their manufacture and usage, from quarry to discard. These attempts are fragmented, primarily due to the fact that at no single site are all stages of biface manufacture and use represented. An additional factor that appears to impede attempts to present the full "life cycle" of bifaces is the view of all Acheulian assemblages as belonging to a single cultural entity. While all assemblages belong to the same techno-complex, distinct stages and phases should be recognized, each different in typology, technology, and probably also in chronology. This research focuses on the large flake stage of the Acheulian. Data accumulated over many years of research from different regions are analyzed together in an attempt to present a holistic view of the life cycle of a biface. The study of particular Acheulian sites from the Levant and Western Europe enables us to reconstruct all stages of the biface, from raw material exploitation to final discard. The result is a model more comprehensive and precise than those suggested previously for understanding the Large Flake Acheulian.

  18. Mapping the universe in three dimensions

    PubMed Central

    Haynes, Martha P.

    1996-01-01

    The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble’s law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin. PMID:11607714

  19. Mapping the universe in three dimensions.

    PubMed

    Haynes, M P

    1996-12-10

    The determination of the three-dimensional layout of galaxies is critical to our understanding of the evolution of galaxies and the structures in which they lie, to our determination of the fundamental parameters of cosmology, and to our understanding of both the past and future histories of the universe at large. The mapping of the large scale structure in the universe via the determination of galaxy red shifts (Doppler shifts) is a rapidly growing industry thanks to technological developments in detectors and spectrometers at radio and optical wavelengths. First-order application of the red shift-distance relation (Hubble's law) allows the analysis of the large-scale distribution of galaxies on scales of hundreds of megaparsecs. Locally, the large-scale structure is very complex but the overall topology is not yet clear. Comparison of the observed red shifts with ones expected on the basis of other distance estimates allows mapping of the gravitational field and the underlying total density distribution. The next decade holds great promise for our understanding of the character of large-scale structure and its origin.

  20. A Simplified and Reliable Damage Method for the Prediction of the Composites Pieces

    NASA Astrophysics Data System (ADS)

    Viale, R.; Coquillard, M.; Seytre, C.

    2012-07-01

    Structural engineers are often faced to test results on composite structures largely tougher than predicted. By attempting to reduce this frequent gap, a survey of some extensive synthesis works relative to the prediction methods and to the failure criteria was led. This inquiry dealts with the plane stress state only. All classical methods have strong and weak points wrt practice and reliability aspects. The main conclusion is that in the plane stress case, the best usaul industrial methods give predictions rather similar. But very generally they do not explain the often large discrepancies wrt the tests, mainly in the cases of strong stress gradients or of bi-axial laminate loadings. It seems that only the methods considering the complexity of the composites damages (so-called physical methods or Continuum Damage Mechanics “CDM”) bring a clear mending wrt the usual methods..The only drawback of these methods is their relative intricacy mainly in urged industrial conditions. A method with an approaching but simplified representation of the CDM phenomenology is presented. It was compared to tests and other methods: - it brings a fear improvement of the correlation with tests wrt the usual industrial methods, - it gives results very similar to the painstaking CDM methods and very close to the test results. Several examples are provided. In addition this method is really thrifty wrt the material characterization as well as for the modelisation and the computation efforts.

  1. Verification and Validation for Flight-Critical Systems (VVFCS)

    NASA Technical Reports Server (NTRS)

    Graves, Sharon S.; Jacobsen, Robert A.

    2010-01-01

    On March 31, 2009 a Request for Information (RFI) was issued by NASA s Aviation Safety Program to gather input on the subject of Verification and Validation (V & V) of Flight-Critical Systems. The responses were provided to NASA on or before April 24, 2009. The RFI asked for comments in three topic areas: Modeling and Validation of New Concepts for Vehicles and Operations; Verification of Complex Integrated and Distributed Systems; and Software Safety Assurance. There were a total of 34 responses to the RFI, representing a cross-section of academic (26%), small & large industry (47%) and government agency (27%).

  2. Dynamics of microbial growth and metabolic activity and their control by aeration.

    PubMed

    Kalina, V

    1993-01-01

    The optimization of fermentation processes depends to a large extent on the modelling of microbial activity under complex environmental conditions where aeration is an important limiting and control factor. Simple relationships are used to establish the sensitivity of cultures to oxygen stress. Specific limitation coefficients which can be determined in laboratory reactors allow a projection to industrial operation and the definition of appropriate aeration and agitation profiles. Optimum control can be assured on the basis of directly measurable process parameters. This is shown for the case of ethanol production using S. cerevisiae at high cell dry weight concentrations.

  3. The Need for Optical Means as an Alternative for Electronic Computing

    NASA Technical Reports Server (NTRS)

    Adbeldayem, Hossin; Frazier, Donald; Witherow, William; Paley, Steve; Penn, Benjamin; Bank, Curtis; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    An increasing demand for faster computers is rapidly growing to encounter the fast growing rate of Internet, space communication, and robotic industry. Unfortunately, the Very Large Scale Integration technology is approaching its fundamental limits beyond which the device will be unreliable. Optical interconnections and optical integrated circuits are strongly believed to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by conventional electronics. This paper demonstrates two ultra-fast, all-optical logic gates and a high-density storage medium, which are essential components in building the future optical computer.

  4. Heat Pipes

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Heat Pipes were originally developed by NASA and the Los Alamos Scientific Laboratory during the 1960s to dissipate excessive heat build- up in critical areas of spacecraft and maintain even temperatures of satellites. Heat pipes are tubular devices where a working fluid alternately evaporates and condenses, transferring heat from one region of the tube to another. KONA Corporation refined and applied the same technology to solve complex heating requirements of hot runner systems in injection molds. KONA Hot Runner Systems are used throughout the plastics industry for products ranging in size from tiny medical devices to large single cavity automobile bumpers and instrument panels.

  5. WIND VELOCITIES AND SAND FLUXES IN MESQUITE DUNE-LANDS IN THE NORTHERN CHIHUAHUAN DESERT: A COMPARISON BETWEEN FIELD MEASUREMENTS AND THE QUIC (QUICK URBAN AND INDUSTRIAL COMPLEX) MODEL

    EPA Science Inventory

    The poster shows comparisons of wind velocities and sand fluxes between field measurements and a computer model, called QUIC (Quick Urban & Industrial Complex). The comparisons were made for a small desert region in New Mexico.

  6. Complex Economies Have a Lateral Escape from the Poverty Trap

    PubMed Central

    Pugliese, Emanuele; Chiarotti, Guido L.; Zaccaria, Andrea; Pietronero, Luciano

    2017-01-01

    We analyze the decisive role played by the complexity of economic systems at the onset of the industrialization process of countries over the past 50 years. Our analysis of the input growth dynamics, considering a further dimension through a recently introduced measure of economic complexity, reveals that more differentiated and more complex economies face a lower barrier (in terms of GDP per capita) when starting the transition towards industrialization. As a consequence, we can extend the classical concept of a one-dimensional poverty trap, by introducing a two-dimensional poverty trap: a country will start the industrialization process if it is rich enough (as in neo-classical economic theories), complex enough (using this new dimension and laterally escaping from the poverty trap), or a linear combination of the two. This naturally leads to the proposal of a Complex Index of Relative Development (CIRD) which shows, when analyzed as a function of the growth due to input, a shape of an upside down parabola similar to that expected from the standard economic theories when considering only the GDP per capita dimension. PMID:28072867

  7. Complex Economies Have a Lateral Escape from the Poverty Trap.

    PubMed

    Pugliese, Emanuele; Chiarotti, Guido L; Zaccaria, Andrea; Pietronero, Luciano

    2017-01-01

    We analyze the decisive role played by the complexity of economic systems at the onset of the industrialization process of countries over the past 50 years. Our analysis of the input growth dynamics, considering a further dimension through a recently introduced measure of economic complexity, reveals that more differentiated and more complex economies face a lower barrier (in terms of GDP per capita) when starting the transition towards industrialization. As a consequence, we can extend the classical concept of a one-dimensional poverty trap, by introducing a two-dimensional poverty trap: a country will start the industrialization process if it is rich enough (as in neo-classical economic theories), complex enough (using this new dimension and laterally escaping from the poverty trap), or a linear combination of the two. This naturally leads to the proposal of a Complex Index of Relative Development (CIRD) which shows, when analyzed as a function of the growth due to input, a shape of an upside down parabola similar to that expected from the standard economic theories when considering only the GDP per capita dimension.

  8. Effects of Environmental Air Pollution on Pulmonary Function Level of Residents in Korean Industrial Complexes.

    PubMed

    Hong, Eunju; Lee, Seokwon; Kim, Geun-Bae; Kim, Tae-Jong; Kim, Hyoung-Wook; Lee, Kyoungho; Son, Bu-Soon

    2018-04-24

    This study aims to identify environmental air pollution adversely affecting pulmonary function among a community-based general population living in Korean industrial complexes. A total of 1963 residents participated in a pulmonary function test (PFT). The sample population consisted of an exposed group ( n = 1487) living within a radius of 5 km of industrial complexes and a control group ( n = 476) living over a radius of 10 km from the industrial complexes in Gwangyang and Yeosu cities. PFT results were calculated for each resident of the study population. On-site questionnaire surveys with face-to-face interviews were also conducted to collect more detailed information on personal lifestyles, medical history, exposure to air pollution, and respiratory disease and related symptoms. A total of 486 measured samples were collected by eight automated air-monitoring stations installed in four counties of Gwangyang and four counties of Yeosu in South Korea from January 2006 to February 2007. Mean levels of SO₂ (0.012 ppm), CO (0.648 ppm), NO₂ (0.02 ppm), O₃ (0.034 ppm), and PM 10 (43.07 μg/m³), collected within a radius of 5 km, were significantly higher than those collected over a radius of 10 km from Gwangyang and Yeosu industrial complexes. Prevalence odds ratio (OR) of abnormal pulmonary function in the exposed group of residents (<5 km) was elevated at 1.24 (95% CI 0.71⁻1.96), but not statistically significant ( p > 0.05). In multiple linear regression analysis, forced expiratory volume in one second (FEV₁) and forced vital capacity (FVC) levels significantly declined as SO₂, CO, and O₃ levels increased when adjusting for age, sex, body mass index (BMI), alcohol, smoking, secondhand smoke, and respiratory disease and related symptoms ( n = 1963) ( p < 0.05). These results suggest that exposure to air pollution affects pulmonary function levels of residents living in Korean industrial complexes.

  9. End-User Applications of Real-Time Earthquake Information in Europe

    NASA Astrophysics Data System (ADS)

    Cua, G. B.; Gasparini, P.; Giardini, D.; Zschau, J.; Filangieri, A. R.; Reakt Wp7 Team

    2011-12-01

    The primary objective of European FP7 project REAKT (Strategies and Tools for Real-Time Earthquake Risk Reduction) is to improve the efficiency of real-time earthquake risk mitigation methods and their capability of protecting structures, infrastructures, and populations. REAKT aims to address the issues of real-time earthquake hazard and response from end-to-end, with efforts directed along the full spectrum of methodology development in earthquake forecasting, earthquake early warning, and real-time vulnerability systems, through optimal decision-making, and engagement and cooperation of scientists and end users for the establishment of best practices for use of real-time information. Twelve strategic test cases/end users throughout Europe have been selected. This diverse group of applications/end users includes civil protection authorities, railway systems, hospitals, schools, industrial complexes, nuclear plants, lifeline systems, national seismic networks, and critical structures. The scale of target applications covers a wide range, from two school complexes in Naples, to individual critical structures, such as the Rion Antirion bridge in Patras, and the Fatih Sultan Mehmet bridge in Istanbul, to large complexes, such as the SINES industrial complex in Portugal and the Thessaloniki port area, to distributed lifeline and transportation networks and nuclear plants. Some end-users are interested in in-depth feasibility studies for use of real-time information and development of rapid response plans, while others intend to install real-time instrumentation and develop customized automated control systems. From the onset, REAKT scientists and end-users will work together on concept development and initial implementation efforts using the data products and decision-making methodologies developed with the goal of improving end-user risk mitigation. The aim of this scientific/end-user partnership is to ensure that scientific efforts are applicable to operational, real-world problems.

  10. Translations on Eastern Europe Political, Sociological, and Military Affairs No. 1567

    DTIC Science & Technology

    1978-07-21

    the industrial development of Jordan by building some industrial capital investments units, for instance electric power plants, cement and ceramics...independence and to the industrialization of these countries and at the same time creates possibilities for expanding imports of economically important raw...construction of important industrial projects, agro-complexes, industrial and agricultural cooperation, the use of new technologies in industry and

  11. The relation between air pollution data and planetary boundary layer quantities in a complex coastal industrial site nearby populated areas.

    NASA Astrophysics Data System (ADS)

    Mammarella, M. C.; Grandoni, G.; Fernando, J.; Cacciani, M.; di Sabatino, S.; Favaron, M.; Fedele, P.

    2010-09-01

    The connection among boundary layer phenomena, atmospheric pollutant dynamics and human health is an established fact, taking many different forms depending on local characteristics, including slope and position of relief and/or coastline, surface roughness, emission patterns. The problem is especially interesting in complex and coastal terrain, where concurrence of slope and sea induced local circulation interact reciprocally, yielding a complex pattern whose interpretation may go beyond pure modeling, and devise specific measurements among which the planetary boundary layer (PBL) height. An occasion for studying this important theme has been offered by Regione Molise and Valle del Biferno Consortium (COSIB), for the specific case of the industrial complex of Valle del Biferno, 3 km inland of Termoli, in Central Italy, on the Adriatic coast. The local government, sensitive to air quality and public health in the industrial area, together with COSIB has co-financed a research project aimed at gaining knowledge about local meteorology, PBL phenomena and atmospheric pollutant dispersion in the area. Expected results include new air quality monitoring and control methodologies in Valle del Biferno for a sustainable development in an environmentally respectful manner, at a site already characterized by a high environmental and landscape value. The research project, developed by ENEA, has began in 2007 and will conclude in December 2010. Project activities involve research group from Europe, the United States of America, and the Russian Federation. Scientific and practical results will be published and presented in occasion of the final workshop to be held on project conclusion. The scientific interest of Valle del Biferno case stems from the specific local characteristics at site. Given the valley orientation respect to mean synoptic circulation, local effects as sea and slope breezes are dominant, and a complex wind regime develops affecting local transport and diffusion of pollutants emitted in the area of the industrial complex. All effects studied, although influenced by local conditions, characterize not only this industrial area but all areas located along the coastline. This location is highly frequent in Italy and the World, as most industrial complexes in the World occur at coastal sites, where access to harbors and transport networks are facilitated. The Valle del Biferno case may then yield important data to many industrial sites.

  12. Neo-Industrial and Sustainable Development of Russia as Mineral Resources Exploiting Country

    NASA Astrophysics Data System (ADS)

    Prokudina, Marina; Zhironkina, Olga; Kalinina, Oksana; Gasanov, Magerram; Agafonov, Felix

    2017-11-01

    In the Russian economy, the world leadership in the extraction of different mineral resources is combined with the potential for their processing and a significant scientific sector. Innovative development of raw materials extraction is impossible without the parallel technological modernization of the high-tech sector. In general, the complex of these processes is a neo-industrialization of the economy. Neo-industrially oriented transformation of the economy reflects complex changes in its structure, the transformation of established stable relationships between various elements of the system of social production that determine macroeconomic proportions. Neo-industrial transformations come along with the modification of economic relations associated with investments, innovations, labor and income distribution, with the process of locating productive forces and regulating the economy by the government. Neo-industrialization of economy is not only significant changes in its technological and reproductive structure (the development of high-tech industries, the integration of science and industry), but, above all, the implementation of a system structural policy of innovative development of raw material industry and the recovery of manufacturing industries on a new technological basis.

  13. Highly Stereoselective Synthesis of a Compound Collection Based on the Bicyclic Scaffolds of Natural Products.

    PubMed

    Annamalai, Murali; Hristeva, Stanimira; Bielska, Martyna; Ortega, Raquel; Kumar, Kamal

    2017-05-18

    Despite the great contribution of natural products in the history of successful drug discovery, there are significant limitations that persuade the pharmaceutical industry to evade natural products in drug discovery research. The extreme scarcity as well as structural complexity of natural products renders their practical synthetic access and further modifications extremely challenging. Although other alternative technologies, particularly combinatorial chemistry, were embraced by the pharmaceutical industry to get quick access to a large number of small molecules with simple frameworks that often lack three-dimensional complexity, hardly any success was achieved in the discovery of lead molecules. To acquire chemotypes beholding structural features of natural products, for instance high sp ³ character, the synthesis of compound collections based on core-scaffolds of natural products presents a promising strategy. Here, we report a natural product inspired synthesis of six different chemotypes and their derivatives for drug discovery research. These bicyclic hetero- and carbocyclic scaffolds are highly novel, rich in sp ³ features and with ideal physicochemical properties to display drug likeness. The functional groups on the scaffolds were exploited further to generate corresponding compound collections. Synthesis of two of these collections exemplified with ca. 350 compounds are each also presented. The whole compound library is being exposed to various biological screenings within the European Lead Factory consortium.

  14. Machine Learning in Medicine

    PubMed Central

    Deo, Rahul C.

    2015-01-01

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games – tasks which would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in healthcare. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades – and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. PMID:26572668

  15. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khawli, Toufik Al; Eppelt, Urs; Hermanns, Torsten

    2016-06-08

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part ismore » to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.« less

  16. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    PubMed Central

    Kyne, Dean; Bolin, Bob

    2016-01-01

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives. PMID:27420080

  17. An integrated approach for the knowledge discovery in computer simulation models with a multi-dimensional parameter space

    NASA Astrophysics Data System (ADS)

    Khawli, Toufik Al; Gebhardt, Sascha; Eppelt, Urs; Hermanns, Torsten; Kuhlen, Torsten; Schulz, Wolfgang

    2016-06-01

    In production industries, parameter identification, sensitivity analysis and multi-dimensional visualization are vital steps in the planning process for achieving optimal designs and gaining valuable information. Sensitivity analysis and visualization can help in identifying the most-influential parameters and quantify their contribution to the model output, reduce the model complexity, and enhance the understanding of the model behavior. Typically, this requires a large number of simulations, which can be both very expensive and time consuming when the simulation models are numerically complex and the number of parameter inputs increases. There are three main constituent parts in this work. The first part is to substitute the numerical, physical model by an accurate surrogate model, the so-called metamodel. The second part includes a multi-dimensional visualization approach for the visual exploration of metamodels. In the third part, the metamodel is used to provide the two global sensitivity measures: i) the Elementary Effect for screening the parameters, and ii) the variance decomposition method for calculating the Sobol indices that quantify both the main and interaction effects. The application of the proposed approach is illustrated with an industrial application with the goal of optimizing a drilling process using a Gaussian laser beam.

  18. Economic development and wage inequality: A complex system analysis

    PubMed Central

    Pugliese, Emanuele; Pietronero, Luciano

    2017-01-01

    Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country’s economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990–2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990–2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States. PMID:28926577

  19. Economic development and wage inequality: A complex system analysis.

    PubMed

    Sbardella, Angelica; Pugliese, Emanuele; Pietronero, Luciano

    2017-01-01

    Adapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country's economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990-2008. Our empirical results show that globally the movement of wage inequality along with the ongoing industrialization of countries has followed a longitudinally persistent pattern comparable to the one theorized by Kuznets in the fifties: countries with an average level of development suffer the highest levels of wage inequality. Next, the study narrows its focus on wage inequality within the United States. By using data on wages and employment in the approximately 3100 US counties over the time interval 1990-2014, it generalizes the Fitness-Complexity metric for geographic units and industrial sectors, and then investigates wage inequality between NAICS industries. The empirical time and scale dependencies are consistent with a relation between wage inequality and development driven by institutional factors comparing countries, and by change in the structural compositions of sectors in a homogeneous institutional environment, such as the counties of the United States.

  20. Climate change trade measures : estimating industry effects

    DOT National Transportation Integrated Search

    2009-06-01

    Estimating the potential effects of domestic emissions pricing for industries in the United States is complex. If the United States were to regulate greenhouse gas emissions, production costs could rise for certain industries and could cause output, ...

  1. Racialized geography, corporate activity, and health disparities: tobacco industry targeting of inner cities.

    PubMed

    Yerger, Valerie B; Przewoznik, Jennifer; Malone, Ruth E

    2007-11-01

    Industry has played a complex role in the rise of tobacco-related diseases in the United States. The tobacco industry's activities, including targeted marketing, are arguably among the most powerful corporate influences on health and health policy. We analyzed over 400 internal tobacco industry documents to explore how, during the past several decades, the industry targeted inner cities populated predominantly by low-income African American residents with highly concentrated menthol cigarette marketing. We study how major tobacco companies competed against one another in menthol wars fought within these urban cores. Little previous work has analyzed the way in which the inner city's complex geography of race, class, and place shaped the avenues used by tobacco corporations to increase tobacco use in low-income, predominantly African American urban cores in the 1970s-1990s. Our analysis shows how the industry's activities contributed to the racialized geography of today's tobacco-related health disparities.

  2. Managing the Process of Protection Level Assessment of the Complex Organization and Technical Industrial Enterprises

    NASA Astrophysics Data System (ADS)

    Gorlov, A. P.; Averchenkov, V. I.; Rytov, M. Yu; Eryomenko, V. T.

    2017-01-01

    The article is concerned with mathematical simulation of protection level assessment of complex organizational and technical systems of industrial enterprises by creating automated system, which main functions are: information security (IS) audit, forming of the enterprise threats model, recommendations concerning creation of the information protection system, a set of organizational-administrative documentation.

  3. Re-Making the Incarceration-Nation: Naming the Participation of Schools in Our Prison Industrial Complex

    ERIC Educational Resources Information Center

    Meiners, Erica R.; Reyes, Karen Benita

    2008-01-01

    In this article, the authors seek to contribute to the growing engagement with the school-prison nexus by considering two, perhaps less obvious, factors that implicate schools in the business of the prison industrial complex (PIC)--the examples of gentrification and sex offender registries. By unpacking some of the rhetoric that surrounds…

  4. Large-scale, low-cost synthesis of monodispersed gold nanorods using a gemini surfactant

    NASA Astrophysics Data System (ADS)

    Xu, Yong; Zhao, Yang; Chen, Lei; Wang, Xuchun; Sun, Jianxia; Wu, Haihua; Bao, Feng; Fan, Jian; Zhang, Qiao

    2015-04-01

    In this work, we demonstrate that monodispersed gold nanorods (AuNRs) can be obtained in a large-scale and cost-effective way. By using an industrial grade gemini surfactant (P16-8-16), the cost of the synthesis of high-quality AuNRs can be significantly reduced by 90%. The synthesis can be scaled up to over 4 L. The aspect ratio of AuNRs can be well tuned from ~2.4 to ~6.3, resulting in a wide tunability of the SPR properties. Systematic studies reveal that P16-8-16 could have a dual function: it can not only act as a capping ligand to stabilize AuNRs but also it can pre-reduce Au3+ to Au+ by the unsaturated C&z.dbd;C bond. Furthermore, the shape of AuNRs can be tailored from straight nanorods to ``dog-bones'' by simply varying the concentration of the surfactant. A mechanistic study shows that the shape change can be attributed to the presence of excess bromide ions because of the complex effect between bromide ions and gold ions. This work will not only help to achieve the industrial production of AuNRs, but also promote research into practical applications of various nanomaterials.In this work, we demonstrate that monodispersed gold nanorods (AuNRs) can be obtained in a large-scale and cost-effective way. By using an industrial grade gemini surfactant (P16-8-16), the cost of the synthesis of high-quality AuNRs can be significantly reduced by 90%. The synthesis can be scaled up to over 4 L. The aspect ratio of AuNRs can be well tuned from ~2.4 to ~6.3, resulting in a wide tunability of the SPR properties. Systematic studies reveal that P16-8-16 could have a dual function: it can not only act as a capping ligand to stabilize AuNRs but also it can pre-reduce Au3+ to Au+ by the unsaturated C&z.dbd;C bond. Furthermore, the shape of AuNRs can be tailored from straight nanorods to ``dog-bones'' by simply varying the concentration of the surfactant. A mechanistic study shows that the shape change can be attributed to the presence of excess bromide ions because of the complex effect between bromide ions and gold ions. This work will not only help to achieve the industrial production of AuNRs, but also promote research into practical applications of various nanomaterials. Electronic supplementary information (ESI) available: Digital pictures during the growth process of AuNRs, TEM images of nanoparticles obtained without P16-8-16 or silver, and HRTEM image and SAED patterns of quadrupeds. See DOI: 10.1039/c5nr00343a

  5. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to themore » Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  6. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were dischargedmore » to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  7. Virtual environments from panoramic images

    NASA Astrophysics Data System (ADS)

    Chapman, David P.; Deacon, Andrew

    1998-12-01

    A number of recent projects have demonstrated the utility of Internet-enabled image databases for the documentation of complex, inaccessible and potentially hazardous environments typically encountered in the petrochemical and nuclear industries. Unfortunately machine vision and image processing techniques have not, to date, enabled the automatic extraction geometrical data from such images and thus 3D CAD modeling remains an expensive and laborious manual activity. Recent developments in panoramic image capture and presentation offer an alternative intermediate deliverable which, in turn, offers some of the benefits of a 3D model at a fraction of the cost. Panoramic image display tools such as Apple's QuickTime VR (QTVR) and Live Spaces RealVR provide compelling and accessible digital representations of the real world and justifiably claim to 'put the reality in Virtual Reality.' This paper will demonstrate how such technologies can be customized, extended and linked to facility management systems delivered over a corporate intra-net to enable end users to become familiar with remote sites and extract simple dimensional data. In addition strategies for the integration of such images with documents gathered from 2D or 3D CAD and Process and Instrumentation Diagrams (P&IDs) will be described as will techniques for precise 'As-Built' modeling using the calibrated images from which panoramas have been derived and the use of textures from these images to increase the realism of rendered scenes. A number of case studies relating to both nuclear and process engineering will demonstrate the extent to which such solution are scaleable in order to deal with the very large volumes of image data required to fully document the large, complex facilities typical of these industry sectors.

  8. Metallogel templated synthesis and stabilization of silver-particles and its application in catalytic reduction of nitro-arene.

    PubMed

    Sharma, Mukesh; Sarma, Plaban Jyoti; Goswami, Manash Jyoti; Bania, Kusum K

    2017-03-15

    Metallogel of iron-carboxylates was obtained from trans-1,2-cyclohexanedicarboxylic acid in dimethylformamide (DMF) at basic condition. Spectroscopic and SEM morphology study of the iron-metallogel revealed that the iron complex with dicarboxylic acid was linked together via carboxylates and led to a supramolecular helical like architecture. The synthesized metallogel served as an excellent template for in-situ reduction of silver ion to silver particles micro to nano scale range. Variation of AgNO 3 concentration shepherd to change the morphology of the Ag-particles. AgNO 3 concentration was found to affect the shape and size of silver particles. On going from lower to higher concentration shape of silver particles changed from spherical to large agglomerated particles. Cubic shape Ag-particles were found on treatment of 0.05M AgNO 3 solution with metallogel. Cubical shape silver particles were found to be effective catalyst for nitro-arene reduction in presence of NaBH 4 . Density functional theory (DFT) calculations were performed to rationalize the role of Ag-particles in catalytic reduction of 4-nitrophenol to 4-aminophenol. Based on DFT study, we proposed that catalytic reduction occurred via Ag-hydride complex formation. Since metallogels as well as the 4-aminophenol are finding large application in pharmaceuticals industries therefore the current work can provide an alternatives path in production of 4-aminophenols. In addition to this, the synthesis of Ag-nanomaterials using metallogel as template can pave a new direction in the development of nanotechnology and might find wide applications in catalytic industrial processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Blood lead levels, δ-ALAD inhibition, and hemoglobin content in blood of giant toad (Rhinella marina) to assess lead exposure in three areas surrounding an industrial complex in Coatzacoalcos, Veracruz, Mexico.

    PubMed

    Ilizaliturri-Hernández, César Arturo; González-Mille, Donaji Josefina; Mejía-Saavedra, Jesús; Espinosa-Reyes, Guillermo; Torres-Dosal, Arturo; Pérez-Maldonado, Iván

    2013-02-01

    The Coatzacoalcos Region in Veracruz, Mexico houses one of the most important industrial complexes in Mexico and Latin America. Lead is an ubiquitous environmental pollutant which represents a great risk to human health and ecosystems. Amphibian populations have been recognized as biomonitors of changes in environmental conditions. The purpose of this research is to measure exposure to lead and evaluate hematological and biochemical effects in specimens of giant toads (Rhinella marina) taken from three areas surrounding an industrial complex in the Coatzacoalcos River downstream. Lead levels in toads' blood are between 10.8 and 70.6 μg/dL and are significantly higher in industrial sites. We have found a significant decrease in the delta-aminolevulinic acid dehydratase (δ-ALAD) activity in blood from 35.3 to 78 % for the urban-industrial and industrial sites, respectively. In addition, we have identified a strong inverse relationship between the δ-ALAD activity and the blood lead levels (r = -0.84, p < 0.001). Hemoglobin and mean corpuscular hemoglobin levels, as well as the condition factor, are found to be lower at industrial sites compared with the reference sites. Our results suggest that the R. marina can be considered a good biomonitor of the δ-ALAD activity inhibition and hematological alterations at low lead concentrations.

  10. Saving Energy in Industrial Companies: Case Studies of Energy Efficiency Programs in Large U.S. Industrial Corporations and the Role of Ratepayer-Funded Support

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This paper is designed for companies looking to cut costs through energy savings, ratepayer-funded program administrators interested in increasing large industrial company participation in energy efficiency program offerings, and state utility commissions.

  11. Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line

    PubMed Central

    Chen, Qing; Xu, Pengfei; Liu, Wenzhong

    2016-01-01

    Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel–least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify) automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method. PMID:26986726

  12. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-gravemore » foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.« less

  13. Applied Geophysics Opportunities in the Petroleum Industry

    NASA Astrophysics Data System (ADS)

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.

    2012-12-01

    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  14. Occurrence, removal and release characteristics of dissolved brominated flame retardants and their potential metabolites in various kinds of wastewater.

    PubMed

    Kim, Un-Jung; Lee, In-Seok; Oh, Jeong-Eun

    2016-11-01

    The dissolved phase compound and congener specific distribution characteristics of three widely used brominated flame retardants (BFRs) comprising 27 polybrominated diphenyl ethers (PBDEs), 12 hydroxylated and methoxylated metabolites (OH- and MeO-BDEs), 3 hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) were investigated in influents and effluents of various kinds of wastewater treatment plants (WWTPs), with varying source of wastewater and type of treatment, and nearby rivers in Korea. The concentration of total BFRs were the highest in industrial WWTPs nearby large industrial complexes specialized in heavy chemicals. The distribution of BFRs was differed according to composition of wastewater, with predominance of TBBPA in WWTPs with higher portion of inflowing industrial wastewater. Among HBCD diastereomers, γ-HBCD was dominant in industrial wastewater as consistent to the previous reports, however, similar contribution of α- and γ-HBCD was found in sewage and human wastewater. Through treatment process, PBDEs were the most effectively removed with a mean removal efficiency of 68.3%. HBCDs and TBBPA had removal efficiencies of 41.3% and 48.7%, respectively. The lowest removal efficiency (10.3%) was observed for PBDE metabolites and their concentration in effluent of human wastewater was even increased at maximum 1.9 fold compared with influent, implying the possibility of transformation during treatment. The estimated dissolved phase daily load of PBDEs was highest in sewage while that of TBBPA was highest in industrial wastewater. Copyright © 2016. Published by Elsevier Ltd.

  15. Source apportionment of aerosol particles near a steel plant by electron microscopy.

    PubMed

    Ebert, Martin; Müller-Ebert, Dörthe; Benker, Nathalie; Weinbruch, Stephan

    2012-12-01

    The size, morphology and chemical composition of 37,715 individual particles collected over 22 sampling days in the vicinity of a large integrated steel production were studied by scanning and transmission electron microscopy. Based on the morphology, chemistry and beam stability the particles were classified into the following fourteen groups: silicates, sea salt, calcium sulfates, calcium carbonates, carbonate-silicate mixtures, sulfate-silicate mixtures, iron oxides, iron mixtures, metal oxide-metals, complex secondary particles, soot, Cl-rich particles, P-rich particles, and other particles. The majority of iron oxide (≈85%) and metal oxide-metal (≈70%) particles as well as ≈20% of the silicate particles are fly ashes from high temperature processes. The emissions from the steel work are dominated by iron oxide particles. For source apportionment, seven source categories and two sectors of local wind direction (industrial and urban background) were distinguished. In both sectors PM₁₀ consists of four major source categories: 35% secondary, 20% industrial, 17% soil and 16% soot in the urban background sector compared to 45% industrial, 20% secondary, 13% soil, and 9% soot in the industrial sector. As the secondary and the soot components are higher in the urban background sector than in the industrial sector, it is concluded that both components predominantly originate from urban background sources (traffic, coal burning, and domestic heating). Abatement measures should not only focus on the steel work but should also include the urban background aerosol.

  16. Co-operation in the Training of Students between Higher Education Institutions and Industry.

    ERIC Educational Resources Information Center

    Meshkov, N. N.

    1983-01-01

    The evolution, purposes, and administration of teaching-research-industry complexes in the Byelorussian Soviet Socialist Republic, established to improve the coordination of specialist training and industry productivity and technology, are described, and industry progress made in recent years as a result of these programs is outlined. (MSE)

  17. Assessment of Genetic Diversity and Structure of Large Garlic (Allium sativum) Germplasm Bank, by Diversity Arrays Technology “Genotyping-by-Sequencing” Platform (DArTseq)

    PubMed Central

    Egea, Leticia A.; Mérida-García, Rosa; Kilian, Andrzej; Hernandez, Pilar; Dorado, Gabriel

    2017-01-01

    Garlic (Allium sativum) is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and (iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming. PMID:28775737

  18. Assessment of Genetic Diversity and Structure of Large Garlic (Allium sativum) Germplasm Bank, by Diversity Arrays Technology "Genotyping-by-Sequencing" Platform (DArTseq).

    PubMed

    Egea, Leticia A; Mérida-García, Rosa; Kilian, Andrzej; Hernandez, Pilar; Dorado, Gabriel

    2017-01-01

    Garlic ( Allium sativum ) is used worldwide in cooking and industry, including pharmacology/medicine and cosmetics, for its interesting properties. Identifying redundancies in germplasm blanks to generate core collections is a major concern, mostly in large stocks, in order to reduce space and maintenance costs. Yet, similar appearance and phenotypic plasticity of garlic varieties hinder their morphological classification. Molecular studies are challenging, due to the large and expected complex genome of this species, with asexual reproduction. Classical molecular markers, like isozymes, RAPD, SSR, or AFLP, are not convenient to generate germplasm core-collections for this species. The recent emergence of high-throughput genotyping-by-sequencing (GBS) approaches, like DArTseq, allow to overcome such limitations to characterize and protect genetic diversity. Therefore, such technology was used in this work to: (i) assess genetic diversity and structure of a large garlic-germplasm bank (417 accessions); (ii) create a core collection; (iii) relate genotype to agronomical features; and (iv) describe a cost-effective method to manage genetic diversity in garlic-germplasm banks. Hierarchical-cluster analysis, principal-coordinates analysis and STRUCTURE showed general consistency, generating three main garlic-groups, mostly determined by variety and geographical origin. In addition, high-resolution genotyping identified 286 unique and 131 redundant accessions, used to select a reduced size germplasm-bank core collection. This demonstrates that DArTseq is a cost-effective method to analyze species with large and expected complex genomes, like garlic. To the best of our knowledge, this is the first report of high-throughput genotyping of a large garlic germplasm. This is particularly interesting for garlic adaptation and improvement, to fight biotic and abiotic stresses, in the current context of climate change and global warming.

  19. Cybersecurity in Hospitals: A Systematic, Organizational Perspective

    PubMed Central

    Kaiser, Jessica P

    2018-01-01

    Background Cybersecurity incidents are a growing threat to the health care industry in general and hospitals in particular. The health care industry has lagged behind other industries in protecting its main stakeholder (ie, patients), and now hospitals must invest considerable capital and effort in protecting their systems. However, this is easier said than done because hospitals are extraordinarily technology-saturated, complex organizations with high end point complexity, internal politics, and regulatory pressures. Objective The purpose of this study was to develop a systematic and organizational perspective for studying (1) the dynamics of cybersecurity capability development at hospitals and (2) how these internal organizational dynamics interact to form a system of hospital cybersecurity in the United States. Methods We conducted interviews with hospital chief information officers, chief information security officers, and health care cybersecurity experts; analyzed the interview data; and developed a system dynamics model that unravels the mechanisms by which hospitals build cybersecurity capabilities. We then use simulation analysis to examine how changes to variables within the model affect the likelihood of cyberattacks across both individual hospitals and a system of hospitals. Results We discuss several key mechanisms that hospitals use to reduce the likelihood of cybercriminal activity. The variable that most influences the risk of cyberattack in a hospital is end point complexity, followed by internal stakeholder alignment. Although resource availability is important in fueling efforts to close cybersecurity capability gaps, low levels of resources could be compensated for by setting a high target level of cybersecurity. Conclusions To enhance cybersecurity capabilities at hospitals, the main focus of chief information officers and chief information security officers should be on reducing end point complexity and improving internal stakeholder alignment. These strategies can solve cybersecurity problems more effectively than blindly pursuing more resources. On a macro level, the cyber vulnerability of a country’s hospital infrastructure is affected by the vulnerabilities of all individual hospitals. In this large system, reducing variation in resource availability makes the whole system less vulnerable—a few hospitals with low resources for cybersecurity threaten the entire infrastructure of health care. In other words, hospitals need to move forward together to make the industry less attractive to cybercriminals. Moreover, although compliance is essential, it does not equal security. Hospitals should set their target level of cybersecurity beyond the requirements of current regulations and policies. As of today, policies mostly address data privacy, not data security. Thus, policy makers need to introduce policies that not only raise the target level of cybersecurity capabilities but also reduce the variability in resource availability across the entire health care system. PMID:29807882

  20. Asian-American Studies in the Age of the Prison Industrial Complex: Departures and Re-Narrations

    ERIC Educational Resources Information Center

    Rodriguez, Dylan

    2005-01-01

    This essay offers a schematic reflection on the institutional formation and political location of Asian-American Studies in relation to the rise of the United Sates prison industrial complex over the last three decades. The author is generally concerned with the peculiar location of "Asian-Americans" as fabricated cultural figures within a U.S.…

  1. Universities in the Business of Repression: The Academic-Military-Industrial Complex and Central America.

    ERIC Educational Resources Information Center

    Feldman, Jonathan

    This book presents the thesis that U.S. universities have become part of an academic-military-industrial complex that support repression and murder in Central America. Part 1 explains how U.S. policies have been based on murder in Central America and examines the responsibility of transnational corporations and U.S. war planners in this…

  2. Battling Data Breaches: For Higher Education Institutions, Data Breach Prevention is More Complex than for Industry and Business

    ERIC Educational Resources Information Center

    Patton, Madeline

    2015-01-01

    Data breach prevention is a battle, rarely plain and never simple. For higher education institutions, the Sisyphean aspects of the task are more complex than for industry and business. Two-year colleges have payrolls and vendor contracts like those enterprises. They also have public record and student confidentiality requirements. Colleges must…

  3. A State-of-the-Art Review of Techniques and Procedures for the Measurement of Complex Human Performance. Consulting Report.

    ERIC Educational Resources Information Center

    Fink, C. Dennis; And Others

    Recent efforts to assess complex human performances in various work settings are reviewed. The review is based upon recent psychological, educational, and industrial literature, and technical reports sponsored by the military services. A few selected military and industrial locations were also visited in order to learn about current research and…

  4. Directed Evolution as a Powerful Synthetic Biology Tool

    PubMed Central

    Cobb, Ryan E.; Sun, Ning; Zhao, Huimin

    2012-01-01

    At the heart of synthetic biology lies the goal of rationally engineering a complete biological system to achieve a specific objective, such as bioremediation and synthesis of a valuable drug, chemical, or biofuel molecule. However, the inherent complexity of natural biological systems has heretofore precluded generalized application of this approach. Directed evolution, a process which mimics Darwinian selection on a laboratory scale, has allowed significant strides to be made in the field of synthetic biology by allowing rapid identification of desired properties from large libraries of variants. Improvement in biocatalyst activity and stability, engineering of biosynthetic pathways, tuning of functional regulatory systems and logic circuits, and development of desired complex phenotypes in industrial host organisms have all been achieved by way of directed evolution. Here, we review recent contributions of directed evolution to synthetic biology at the protein, pathway, network, and whole cell levels. PMID:22465795

  5. Probabilistic Analysis of Large-Scale Composite Structures Using the IPACS Code

    NASA Technical Reports Server (NTRS)

    Lemonds, Jeffrey; Kumar, Virendra

    1995-01-01

    An investigation was performed to ascertain the feasibility of using IPACS (Integrated Probabilistic Assessment of Composite Structures) for probabilistic analysis of a composite fan blade, the development of which is being pursued by various industries for the next generation of aircraft engines. A model representative of the class of fan blades used in the GE90 engine has been chosen as the structural component to be analyzed with IPACS. In this study, typical uncertainties are assumed in the level, and structural responses for ply stresses and frequencies are evaluated in the form of cumulative probability density functions. Because of the geometric complexity of the blade, the number of plies varies from several hundred at the root to about a hundred at the tip. This represents a extremely complex composites application for the IPACS code. A sensitivity study with respect to various random variables is also performed.

  6. Experimental and computational fluid dynamics studies of mixing of complex oral health products

    NASA Astrophysics Data System (ADS)

    Cortada-Garcia, Marti; Migliozzi, Simona; Weheliye, Weheliye Hashi; Dore, Valentina; Mazzei, Luca; Angeli, Panagiota; ThAMes Multiphase Team

    2017-11-01

    Highly viscous non-Newtonian fluids are largely used in the manufacturing of specialized oral care products. Mixing often takes place in mechanically stirred vessels where the flow fields and mixing times depend on the geometric configuration and the fluid physical properties. In this research, we study the mixing performance of complex non-Newtonian fluids using Computational Fluid Dynamics models and validate them against experimental laser-based optical techniques. To this aim, we developed a scaled-down version of an industrial mixer. As test fluids, we used mixtures of glycerol and a Carbomer gel. The viscosities of the mixtures against shear rate at different temperatures and phase ratios were measured and found to be well described by the Carreau model. The numerical results were compared against experimental measurements of velocity fields from Particle Image Velocimetry (PIV) and concentration profiles from Planar Laser Induced Fluorescence (PLIF).

  7. The dynamics of mergers and acquisitions: ancestry as the seminal determinant

    PubMed Central

    Viegas, Eduardo; Cockburn, Stuart P.; Jensen, Henrik J.; West, Geoffrey B.

    2014-01-01

    Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish ‘too big to fail’ entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems. PMID:25383025

  8. The dynamics of mergers and acquisitions: ancestry as the seminal determinant.

    PubMed

    Viegas, Eduardo; Cockburn, Stuart P; Jensen, Henrik J; West, Geoffrey B

    2014-11-08

    Understanding the fundamental mechanisms behind the complex landscape of corporate mergers and acquisitions is of crucial importance to economies across the world. Adapting ideas from the fields of complexity and evolutionary dynamics to analyse business ecosystems, we show here that ancestry, i.e. the cumulative sum of historical mergers across all ancestors, is the key characteristic to company mergers and acquisitions. We verify this by comparing an agent-based model to an extensive range of business data, covering the period from the 1830s to the present day and a range of industries and geographies. This seemingly universal mechanism leads to imbalanced business ecosystems, with the emergence of a few very large, but sluggish 'too big to fail' entities, and very small, niche entities, thereby creating a paradigm where a configuration akin to effective oligopoly or monopoly is a likely outcome for free market systems.

  9. Identifying sources of fugitive emissions in industrial facilities using trajectory statistical methods

    NASA Astrophysics Data System (ADS)

    Brereton, Carol A.; Johnson, Matthew R.

    2012-05-01

    Fugitive pollutant sources from the oil and gas industry are typically quite difficult to find within industrial plants and refineries, yet they are a significant contributor of global greenhouse gas emissions. A novel approach for locating fugitive emission sources using computationally efficient trajectory statistical methods (TSM) has been investigated in detailed proof-of-concept simulations. Four TSMs were examined in a variety of source emissions scenarios developed using transient CFD simulations on the simplified geometry of an actual gas plant: potential source contribution function (PSCF), concentration weighted trajectory (CWT), residence time weighted concentration (RTWC), and quantitative transport bias analysis (QTBA). Quantitative comparisons were made using a correlation measure based on search area from the source(s). PSCF, CWT and RTWC could all distinguish areas near major sources from the surroundings. QTBA successfully located sources in only some cases, even when provided with a large data set. RTWC, given sufficient domain trajectory coverage, distinguished source areas best, but otherwise could produce false source predictions. Using RTWC in conjunction with CWT could overcome this issue as well as reduce sensitivity to noise in the data. The results demonstrate that TSMs are a promising approach for identifying fugitive emissions sources within complex facility geometries.

  10. Investigation of the Utilization of Modern Industrial Methods, Processes, Ergonomics, and the Internet in the Scientific Environment

    NASA Technical Reports Server (NTRS)

    Myer, Spencer S., Jr.

    2005-01-01

    On Oct. 1, 2001 Cleveland State University and NASA Glenn Research Center embarked on the above named cooperative agreement. Because NASA's research facilities often exhibit instances where the failure to use state-of-the-art technologies and methods to improve on outmoded systems of interface and control, and this runs contrary to the NASA philosophy of "faster, better, and cheaper", it was deemed an ideal opportunity for this collaboration. The main objectives of the proposed effort were to research and investigate the use of the latest technologies, methods, techniques, etc. which pertain to control and interface with industrial and research systems and facilities. The work was done in large part at NASA Glenn Research Center, using selected research facilities as real-world laboratories; such as certain Microgravity Science Division and Space Station projects. Microgravity Science Division at Glenn Research Center designs and builds experiments to be flown on the Space Shuttle and eventually on the International Space Station. Economy of space, weight, complexity, data storage, ergonomics, and many other factors present problems that also exist in industry. Many of the solutions can come from the same areas of study mentioned above.

  11. Single crystal X-ray structure of the artists' pigment zinc yellow

    NASA Astrophysics Data System (ADS)

    Simonsen, Kim Pilkjær; Christiansen, Marie Bitsch; Vinum, Morten Gotthold; Sanyova, Jana; Bendix, Jesper

    2017-08-01

    The artists' pigment zinc yellow is in general described as a complex potassium zinc chromate with the empirical formula 4ZnCrO4·K2O·3H2O. Even though the pigment has been in use since the second half of the 19th century also in large-scale industrial applications, the exact structure had hitherto been unknown. In this work, zinc yellow was synthesised by precipitation from an aqueous solution of zinc nitrate and potassium chromate under both neutral and basic conditions, and the products were compared with the pigment used in industrial paints. Analyses by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and powder X-ray diffraction (PXRD), showed that the synthesised products and the industrial pigment were identical. Single-crystal X-ray crystallography determined the structure of zinc yellow as KZn2(CrO4)2(H2O)(OH) or as KZn2(CrO4)2(H3O2) emphasizing the μ-H3O2- moiety. Notably, the zinc yellow is isostructural to the recently structurally characterized cadmium analog and both belong to the natrochalcite structure type.

  12. Posture recognition associated with lifting of heavy objects using Kinect and Adaboost

    NASA Astrophysics Data System (ADS)

    Raut, Sayli; Navaneethakrishna, M.; Ramakrishnan, S.

    2017-12-01

    Lifting of heavy objects is the common task in the industries. Recent statistics from the Bureau of Labour indicate, back injuries account for one of every five injuries in the workplace. Eighty per cent of these injuries occur to the lower back and are associated with manual materials handling tasks. According to the Industrial ergonomic safety manual, Squatting is the correct posture for lifting a heavy object. In this work, an attempt has been made to monitor posture of the workers during squat and stoop using 3D motion capture and machine learning techniques. For this, Microsoft Kinect V2 is used for capturing the depth data. Further, Dynamic Time Warping and Euclidian distance algorithms are used for extraction of features. Ada-boost algorithm is used for classification of stoop and squat. The results show that the 3D image data is large and complex to analyze. The application of nonlinear and linear metrics captures the variation in the lifting pattern. Additionally, the features extracted from this metric resulted in a classification accuracy of 85% and 81% respectively. This framework may be put-upon to alert the workers in the industrial ergonomic environments.

  13. Hot air vulcanization of rubber profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, J.

    1995-07-01

    Elastomer profiles are deployed in quantity by the automobile industry as seals and wateproofing in coachwork. The high standards demanded by the industry; improvement in weather prediction, noise reduction, restriction of tolerances, together with powerful demand for EPDM force the rubber processing industry into development, particularly of elastomers. Complex proofing systems must also be achieved with extremely complicated profile forms. All too often such profiles have an extremely large surface together with a low cross-section density. They frequently consist of two or three rubber compounds and are steel reinforced. Sometimes they are flocked and coated with a low friction finish.more » Such high-tech seals require an adjustment of the vulcanization method. The consistent trend in the nineties towards lower quantities of elastomer per sealing unit and the dielectric factor, especially with EPDM, has brought an old fashioned vulcanization method once more to the fore, a method developed over the past years to an extremely high standard, namely the hot-air method. This paper describes various vulcanization and curing methods and their relative merits and disadvantages, the Gerlach hot-air concept, the hot air installation concept, and energy saving and efficiency afforded by this technique. 4 figs.« less

  14. Beef cattle growing and backgrounding programs.

    PubMed

    Peel, Derrell S

    2003-07-01

    The stocker industry is one of many diverse production and marketing activities that make up the United States beef industry. The stocker industry is probably the least understood industry sector and yet it plays a vital role in helping the industry exploit its competitive advantage of using forage resources and providing an economical means of adjusting the timing and volume of cattle and meat in a complex market environment.

  15. Cause-specific sickness absence trends by occupational class and industrial sector in the context of recent labour market changes: a Finnish panel data study.

    PubMed

    Leinonen, Taina; Viikari-Juntura, Eira; Husgafvel-Pursiainen, Kirsti; Solovieva, Svetlana

    2018-04-07

    We aimed to provide previously unestablished information on population-based differences in cause-specific sickness absence trends between occupational classes and further between four large industrial sectors within the different occupational classes while controlling for other socioeconomic factors and employment patterns. We focused on the period 2005-2013, during which the labour market underwent large economic and structural changes in many countries. Register-based panel data study. Large representative datasets on Finnish wage earners aged 25-59 years. Annual risk of sickness absence (>10 working days) based on repeated logistic regression. Between 2005 and 2013, the proportion of employees with sickness absence decreased. Occupational class differences in sickness absence trends varied by disease group. Overall, the decrease in absences was smallest among lower non-manual employees. Sickness absence levels were highest in the health and social work sector and in the manufacturing sector within the non-manual and manual classes, respectively. Absences due to musculoskeletal diseases decreased temporarily during the peak of the economic recession in 2009, particularly in the manufacturing sector within the manual class. The decrease in absences due to musculoskeletal diseases was smallest in the trade sector within the lower occupational classes. Overall, education, income and employment patterns partly explained the differences in the absence levels, but not in the trends. We found a complex interplay between the associations of occupational class and industrial sector with sickness absence trends. During the economic recession, absences due to musculoskeletal diseases decreased temporarily in a segment of wage earners who were known to have been hit hard by the recession. However, the trend differences were not explained by the measured structural changes in the characteristics of the study population. Both occupational class and industrial sector should be taken into account when tackling problems of work disability. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. On the Instability of Large Slopes in the Upstream of Wu River, Taiwan

    NASA Astrophysics Data System (ADS)

    Shou, Keh-Jian; Lin, Jia-Fei

    2015-04-01

    Considering the existence of various types of landslides (shallow and deep-seated) and the importance of protection targets (the landslide might affect a residential area, cut a road, isolate a village, etc.), this study aims to analyze the landslide susceptibility along the Lixing Industrial Road, i.e., Nantou County Road # 89, in the upstream of Wu River. Focusing on the selected typical large scale landslides, the data and information of the landslides were collected from the field and the government (including the local government, the Soil and Water Conservation Bureau, and the highway agencies). Based on the data of Li-DAR and the information from boreholes, the temporal behavior and the complex mechanism of large scale landslides were analyzed. To assess the spatial hazard of the landslides, probabilistic analysis was applied. The study of the landslide mechanism can help to understand the behavior of landslides in similar geologic conditions, and the results of hazard analysis can be applied for risk prevention and management in the study area.

  17. Industrialization of Superconducting RF Accelerator Technology

    NASA Astrophysics Data System (ADS)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project currently being designed by the international collaboration GDE (`global design effort'). If the ILC will be built, about 18,000 SRF cavities need to be manufactured worldwide within about five years. The industrialization of SRF accelerator technology is analyzed and reviewed in this article in view of the main accelerator projects of the last two to three decades.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less

  19. Marketization in Long-Term Care: A Cross-Country Comparison of Large For-Profit Nursing Home Chains.

    PubMed

    Harrington, Charlene; Jacobsen, Frode F; Panos, Justin; Pollock, Allyson; Sutaria, Shailen; Szebehely, Marta

    2017-01-01

    This article presents cross-country comparisons of trends in for-profit nursing home chains in Canada, Norway, Sweden, United Kingdom, and the United States. Using public and private industry reports, the study describes ownership, corporate strategies, costs, and quality of the 5 largest for-profit chains in each country. The findings show that large for-profit nursing home chains are increasingly owned by private equity investors, have had many ownership changes over time, and have complex organizational structures. Large for-profit nursing home chains increasingly dominate the market and their strategies include the separation of property from operations, diversification, the expansion to many locations, and the use of tax havens. Generally, the chains have large revenues with high profit margins with some documented quality problems. The lack of adequate public information about the ownership, costs, and quality of services provided by nursing home chains is problematic in all the countries. The marketization of nursing home care poses new challenges to governments in collecting and reporting information to control costs as well as to ensure quality and public accountability.

  20. Marketization in Long-Term Care: A Cross-Country Comparison of Large For-Profit Nursing Home Chains

    PubMed Central

    Harrington, Charlene; Jacobsen, Frode F; Panos, Justin; Pollock, Allyson; Sutaria, Shailen; Szebehely, Marta

    2017-01-01

    This article presents cross-country comparisons of trends in for-profit nursing home chains in Canada, Norway, Sweden, United Kingdom, and the United States. Using public and private industry reports, the study describes ownership, corporate strategies, costs, and quality of the 5 largest for-profit chains in each country. The findings show that large for-profit nursing home chains are increasingly owned by private equity investors, have had many ownership changes over time, and have complex organizational structures. Large for-profit nursing home chains increasingly dominate the market and their strategies include the separation of property from operations, diversification, the expansion to many locations, and the use of tax havens. Generally, the chains have large revenues with high profit margins with some documented quality problems. The lack of adequate public information about the ownership, costs, and quality of services provided by nursing home chains is problematic in all the countries. The marketization of nursing home care poses new challenges to governments in collecting and reporting information to control costs as well as to ensure quality and public accountability. PMID:28634428

  1. Collaboration between industry and academia--prospects for male fertility control.

    PubMed

    Stock, G; Habenicht, U F

    1999-12-01

    Drug development within the pharmaceutical industry is probably the field with the highest level of regulations. Due to the complexity of the different components of drug development and drug surveillance the need for a sophisticated organization and infrastructure is obvious. In addition, there is a necessity for sufficient resources and long-term commitment as well as logistic and long-term knowledge management. In order to secure high professional standards at all levels of this highly complex value creating chain, the number of cooperative arrangements in the pharmaceutical industry are increasing. The identification of new targets in the drug finding process calls in particular for outside partners. At the same time the preparedness of non-industrial researchers to cooperate with industry has also increased significantly. The area of fertility control, especially male fertility control, provides an excellent example for this kind of cooperation between industrial and non-industrial partners. Here a cooperative network is described which probably meets practically all relevant criteria for both the non-industrial but also the industrial partner. Some principles for the management of such a cooperative network are discussed. We believe that this kind of network can serve as a model for similar networks in other fields.

  2. An overproduction of astellolides induced by genetic disruption of chromatin-remodeling factors in Aspergillus oryzae.

    PubMed

    Shinohara, Yasutomo; Kawatani, Makoto; Futamura, Yushi; Osada, Hiroyuki; Koyama, Yasuji

    2016-01-01

    The filamentous fungus Aspergillus oryzae is an important industrial mold. Recent genomic analysis indicated that A. oryzae has a large number of biosynthetic genes for secondary metabolites (SMs), but many of the SMs they produce have not been identified. For better understanding of SMs production by A. oryzae, we screened a gene-disruption library of transcription factors including chromatin-remodeling factors and found two gene disruptions that show similarly altered SM production profiles. One is a homolog of Aspergillus nidulans cclA, a component of the histone 3 lysine 4 (H3K4) methyltransferase complex of proteins associated with Set1 complex, and the other, sppA, is an ortholog of Saccharomyces cerevisiae SPP1, another component of a complex of proteins associated with Set1 complex. The cclA and sppA disruptions in A. oryzae are deficient in trimethylation of H3K4. Furthermore, one of the SMs that increased in the cclA disruptant was identified as astellolide F (14-deacetyl astellolide B). These data indicate that both cclA and sppA affect production of SMs including astellolides by affecting the methylation status of H3K4 in A. oryzae.

  3. Two-Step Adsorption of PtCl 6 2– Complexes at a Charged Langmuir Monolayer: Role of Hydration and Ion Correlations

    DOE PAGES

    Uysal, Ahmet; Rock, William; Qiao, Baofu; ...

    2017-11-03

    Anion exchange at positively charged interfaces plays an important role in a variety of physical and chemical processes. However, the molecular-scale details of these processes, especially with heavy and large anionic complexes, are not well-understood. Here, we studied the adsorption of PtCl 6 2– anionic complexes to floating DPTAP monolayers in the presence of excess Cl– as a function of the bulk chlorometalate concentration. This system aims to simulate the industrial conditions for heavy metal separations with solvent extraction. In situ X-ray scattering and fluorescence measurements, which are element and depth sensitive, show that the chlorometalate ions only adsorb inmore » the diffuse layer at lower concentrations, while they adsorb predominantly in the Stern layer at higher concentrations. The response of DPTAP molecules to the adsorbed ions is determined independently by grazing incidence X-ray diffraction and supports this picture. Molecular dynamics simulations further elucidate the nanoscale structure of the interfacial complexes. The results suggest that ion hydration and ion–ion correlations play a key role in the competitive adsorption process.« less

  4. The impact of manufacturing complexity drivers on performance-a preliminary study

    NASA Astrophysics Data System (ADS)

    Huah Leang, Suh; Mahmood, Wan Hasrulnizzam Wan; Rahman, Muhamad Arfauz A.

    2018-03-01

    Manufacturing systems, in pursuit of cost, time and flexibility optimisation are becoming more and more complex, exhibiting a dynamic and nonlinear behaviour. Unpredictability is a distinct characteristic of such behaviour and effects production planning significantly. Therefore, this study was undertaken to investigate the priority level and current achievement of manufacturing performance in Malaysia’s manufacturing industry and the complexity drivers on manufacturing productivity performance. The results showed that Malaysia’s manufacturing industry prioritised product quality and they managed to achieve a good on time delivery performance. However, for other manufacturing performance, there was a difference where the current achievement of manufacturing performances in Malaysia’s manufacturing industry is slightly lower than the priority given to them. The strong correlation of significant value for priority status was observed between efficient production levelling (finished goods) and finish product management while the strong correlation of significant value for current achievement was minimised the number of workstation and factory transportation system. This indicates that complexity drivers have an impact towards manufacturing performance. Consequently, it is necessary to identify complexity drivers to achieve well manufacturing performance.

  5. Quantum Materials at the Nanoscale - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Stephen Lance

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the fundingmore » period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16 papers in Nature, Nature Physics, Nature Materials, or Nature Communications; 4 papers in Science, and 8 papers in Applied Physics Letters. In this report, we provide some key highlights of the collaborative projects in which the QMN cluster members have been involved since 2007.« less

  6. Screening and Quantification of Aliphatic Primary Alkyl Corrosion Inhibitor Amines in Water Samples by Paper Spray Mass Spectrometry.

    PubMed

    Jjunju, Fred P M; Maher, Simon; Damon, Deidre E; Barrett, Richard M; Syed, S U; Heeren, Ron M A; Taylor, Stephen; Badu-Tawiah, Abraham K

    2016-01-19

    Direct analysis and identification of long chain aliphatic primary diamine Duomeen O (n-oleyl-1,3-diaminopropane), corrosion inhibitor in raw water samples taken from a large medium pressure water tube boiler plant water samples at low LODs (<0.1 pg) has been demonstrated for the first time, without any sample preparation using paper spray mass spectrometry (PS-MS). The presence of Duomeen O in water samples was confirmed via tandem mass spectrometry using collision-induced dissociation and supported by exact mass measurement and reactive paper spray experiments using an LTQ Orbitrap Exactive instrument. Data shown herein indicate that paper spray ambient ionization can be readily used as a rapid and robust method for in situ direct analysis of polymanine corrosion inhibitors in an industrial water boiler plant and other related samples in the water treatment industry. This approach was applied for the analysis of three complex water samples including feedwater, condensate water, and boiler water, all collected from large medium pressure (MP) water tube boiler plants, known to be dosed with varying amounts of polyamine and amine corrosion inhibitor components. Polyamine chemistry is widely used for example in large high pressure (HP) boilers operating in municipal waste and recycling facilities to prevent corrosion of metals. The samples used in this study are from such a facility in Coventry waste treatment facility, U.K., which has 3 × 40 tonne/hour boilers operating at 17.5 bar.

  7. Controlled Fabrication of Silk Protein Sericin Mediated Hierarchical Hybrid Flowers and Their Excellent Adsorption Capability of Heavy Metal Ions of Pb(II), Cd(II) and Hg(II).

    PubMed

    Koley, Pradyot; Sakurai, Makoto; Aono, Masakazu

    2016-01-27

    Fabrication of protein-inorganic hybrid materials of innumerable hierarchical patterns plays a major role in the development of multifunctional advanced materials with their improved features in synergistic way. However, effective fabrication and applications of the hybrid structures is limited due to the difficulty in control and production cost. Here, we report the controlled fabrication of complex hybrid flowers with hierarchical porosity through a green and facile coprecipitation method by using industrial waste natural silk protein sericin. The large surface areas and porosity of the microsize hybrid flowers enable water purification through adsorption of different heavy metal ions. The high adsorption capacity depends on their morphology, which is changed largely by sericin concentration in their fabrication. Superior adsorption and greater selectivity of the Pb(II) ions have been confirmed by the characteristic growth of needle-shaped nanowires on the hierarchical surface of the hybrid flowers. These hybrid flowers show excellent thermal stability even after complete evaporation of the protein molecules, significantly increasing the porosity of the flower petals. A simple, cost-effective and environmental friendly fabrication method of the porous flowers will lead to a new solution to water pollution required in the modern industrial society.

  8. Rural Design Ethics Based on Four Dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxin; Zhu, Li

    2017-12-01

    China has a large rural area with a large population, whose architectural features, natural landscape, organizational structure and industrial structure are very different from that of cities. In the past, the contradictory between city and rural areas in China had negative effects on rural construction, resulting in a slow development. The excessive focus on city design has led to the neglect of rural design. Blindly using the concept and method of city design to renewed the countryside is a kind of destruction to the countryside, and also wastes a lot of construction resources. Design is influenced by ethical concepts, which needs to pay more attention to the culture tendency and society. Urban design makes theoretical investigation aiming at the ethical questions that emerged from city, then summarizes the design strategies of the city. While Chinese rural design has only begun to enter people’s horizon, and there is very little discussion about it. Due to the lack of ethical value guidance, Chinese rural design and construction has many problems at different levels of ecology, culture and industry. Therefore this paper primarily explores the domestic and foreign design ethics, attempting to provide a new perspective for Chinese rural design, aiming at finding a realistic and forward-looking solution for Chinese rural design concerning to the complex relation between city and rural areas.

  9. Will the river Irtysh survive the year 2030? Impact of long-term unsuitable land use and water management of the upper stretch of the river catchment (North Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Hrkal, Zbyněk; Gadalia, Alain; Rigaudiere, Pierre

    2006-07-01

    The Irtysh river basin all the way from river spring in China across Kazakhstan as far as the Russian part of Siberia is among the most ecologically endangered and affected regions on our planet. The study provides a summary of the historical reasons for anthropological interventions in this area, which began with the construction of plants of the military—industrial complexes in the forties of the last century during World War II. These plants have a major share in extreme high concentrations of heavy metals in surface as well in groundwaters locally. The Semipalatinsk nuclear polygon plays a specific role as a source of contamination of local waters. The release of top secret data enabled us to gain knowledge about serious problems related to high radioactivity of groundwaters, which should spread uncontrollably through a system of secondary fissures activated by nuclear blasts. Another serious problem in this region is the quantitative aspect of contamination. Model simulations of water balance indicate that large industrial development in the spring area in China and continuously increasing water consumption in Kazakhstan may lead to desiccation of the lower stretch of this large river in Siberia during the summer months of 2030.

  10. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS ...

    EPA Pesticide Factsheets

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low bioconcentration factors. However, evidence is growing that the large fluxes of these seemingly more environmentally friendly compounds (e.g., pesticides, prescription and non-prescription drugs, personal care and common consumer products, industrial and domestic-use chemicals and their degradation products) into aquatic systems on a world-wide basis may be responsible for incidents of acute toxicity and sub-lethal chronic abnormalities. These adverse effects include altered behavior, neurotoxicity, and severely impaired reproduction. Furthermore, the presence of these HpOCs likely plays a major role in the endocrine disrupting effects of complex mixtures of chemicals present in aquatic environments. In regard to physiological effects, pharmaceuticals are of particular concern because they are designed to elicit diverse pharmacological responses at very low doses. Unfortunately, the effects of this class of HpOCs on non-target, aquatic organisms are largely unknown. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are

  11. Standardisation of magnetic nanoparticles in liquid suspension

    NASA Astrophysics Data System (ADS)

    Wells, James; Kazakova, Olga; Posth, Oliver; Steinhoff, Uwe; Petronis, Sarunas; Bogart, Lara K.; Southern, Paul; Pankhurst, Quentin; Johansson, Christer

    2017-09-01

    Suspensions of magnetic nanoparticles offer diverse opportunities for technology innovation, spanning a large number of industry sectors from imaging and actuation based applications in biomedicine and biotechnology, through large-scale environmental remediation uses such as water purification, to engineering-based applications such as position-controlled lubricants and soaps. Continuous advances in their manufacture have produced an ever-growing range of products, each with their own unique properties. At the same time, the characterisation of magnetic nanoparticles is often complex, and expert knowledge is needed to correctly interpret the measurement data. In many cases, the stringent requirements of the end-user technologies dictate that magnetic nanoparticle products should be clearly defined, well characterised, consistent and safe; or to put it another way—standardised. The aims of this document are to outline the concepts and terminology necessary for discussion of magnetic nanoparticles, to examine the current state-of-the-art in characterisation methods necessary for the most prominent applications of magnetic nanoparticle suspensions, to suggest a possible structure for the future development of standardisation within the field, and to identify areas and topics which deserve to be the focus of future work items. We discuss potential roadmaps for the future standardisation of this developing industry, and the likely challenges to be encountered along the way.

  12. Complex anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA.

    PubMed

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas

    2013-09-17

    Platinum group elements (PGE) of anthropogenic origin have been reported in rainwater, snow, roadside soil and vegetation, industrial waste, and urban airborne particles around the world. As recent studies have shown that PGE are bioavailable in the environment and pose health risks at chronic levels, the extent of PGE pollution is of global concern. In this study, we report PGE concentrations and osmium isotope ((187)Os/(188)Os) ratios of airborne particles (particulate matter, PM10) collected in Woods Hole, a small coastal village on Cape Cod, Massachusetts, U.S.A. The sampling site is more than 100 km away from the nearest urban centers (Boston, Providence) and has no large industrial emission center within a 30 km radius. The study reveals that, although PGE concentrations in rural airborne particulate matter are orders of magnitude lower than in urban aerosols, 69% of the total osmium is of anthropogenic origin. Anthropogenic PGE signatures in airborne particles are thus not restricted to large cities with high traffic flows and substantial industries; they can also be found in rural environments. We further conclude that the combination of Pt/Rh concentration ratios and (187)Os/(188)Os composition can be used to trace PGE sources. The Pt/Rh and (187)Os/(188)Os composition of Woods Hole aerosols indicate that the anthropogenic PGE fraction is primarily sourced from ore smelting processes, with possible minor contributions from fossil fuel burning and automobile catalyst-derived materials. Our results further substantiate the use of (187)Os/(188)Os in source apportionment studies on continental scales.

  13. Minimization of organic and metallic industrial waste via lemna minor concentration. Final report, 1 September 1991-1 December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowers-Irons, G.L.

    1992-12-30

    In recent years, new strict environmental laws have required improved and cost-effective water purification methods by Air Force complexes. Naturally assisted primary units (microbiological) and secondary units (macrophyte) could bring waste treatment systems into tighter compliance. Aquatic macrophytes which have rapid growth rates and absorb large quantities of nutrients could provide a practical and economic method for more complete wastewater maintenance, hazardous waste clean-up or river, lake and ground water purification. This work has shown that Lemna minor, or Common Duckweed, can successfully and thoroughly accumulate organics and metals from Air Force wastewaters.

  14. A New Methodology for Turbulence Modelers Using DNS Database Analysis

    NASA Technical Reports Server (NTRS)

    Parneix, S.; Durbin, P.

    1996-01-01

    Many industrial applications in such fields as aeronautical, mechanical, thermal, and environmental engineering involve complex turbulent flows containing global separations and subsequent reattachment zones. Accurate prediction of this phenomena is very important because separations influence the whole fluid flow and may have an even bigger impact on surface heat transfer. In particular, reattaching flows are known to be responsible for large local variations of the local wall heat transfer coefficient as well as modifying the overall heat transfer. For incompressible, non-buoyant situations, the fluid mechanics have to be accurately predicted in order to have a good resolution of the temperature field.

  15. Climate Change Impacts and Vulnerability Assessment in Industrial Complexes

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Lee, D. K.

    2016-12-01

    Climate change has recently caused frequent natural disasters, such as floods, droughts, and heat waves. Such disasters have also increased industrial damages. We must establish climate change adaptation policies to reduce the industrial damages. It is important to make accurate vulnerability assessment to establish climate change adaptation policies. Thus, this study aims at establishing a new index to assess vulnerability level in industrial complexes. Most vulnerability indices have been developed with subjective approaches, such as the Delphi survey and the Analytic Hierarchy Process(AHP). The subjective approaches rely on the knowledge of a few experts, which provokes the lack of the reliability of the indices. To alleviate the problem, we have designed a vulnerability index incorporating objective approaches. We have investigated 42 industrial complex sites in Republic of Korea (ROK). To calculate weights of variables, we used entropy method as an objective method integrating the Delphi survey as a subjective method. Finally, we found our method integrating both subjective method and objective method could generate result. The integration of the entropy method enables us to assess the vulnerability objectively. Our method will be useful to establish climate change adaptation policies by reducing the uncertainties of the methods based on the subjective approaches.

  16. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    NASA Astrophysics Data System (ADS)

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-10-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bio-active compounds should also be proposed for a sustainable industry.

  17. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules.

    PubMed

    Delbarre-Ladrat, Christine; Sinquin, Corinne; Lebellenger, Lou; Zykwinska, Agata; Colliec-Jouault, Sylvia

    2014-01-01

    Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bioactive compounds should also be proposed for a sustainable industry.

  18. Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa

    NASA Astrophysics Data System (ADS)

    Venter, Andrew D.; van Zyl, Pieter G.; Beukes, Johan P.; Josipovic, Micky; Hendriks, Johan; Vakkari, Ville; Laakso, Lauri

    2017-03-01

    Atmospheric trace metals can cause a variety of health-related and environmental problems. Only a few studies on atmospheric trace metal concentrations have been conducted in South Africa. Therefore the aim of this study was to determine trace metal concentrations in aerosols collected at a regional background site, i.e. Welgegund, South Africa. PM1, PM1-2. 5 and PM2. 5-10 samples were collected for 13 months, and 31 atmospheric trace metal species were detected. Atmospheric iron (Fe) had the highest concentrations in all three size fractions, while calcium (Ca) was the second-most-abundant species. Chromium (Cr) and sodium (Na) concentrations were the third- and fourth-most-abundant species, respectively. The concentrations of the trace metal species in all three size ranges were similar, with the exception of Fe, which had higher concentrations in the PM1 size fraction. With the exception of titanium (Ti), aluminium (Al) and manganese (Mg), 70 % or more of the trace metal species detected were in the smaller size fractions, which indicated the influence of industrial activities. However, the large influence of wind-blown dust was reflected by 30 % or more of trace metals being present in the PM2. 5-10 size fraction. Comparison of trace metals determined at Welgegund to those in the western Bushveld Igneous Complex indicated that at both locations similar species were observed, with Fe being the most abundant. However, concentrations of these trace metal species were significantly higher in the western Bushveld Igneous Complex. Fe concentrations at the Vaal Triangle were similar to levels thereof at Welgegund, while concentrations of species associated with pyrometallurgical smelting were lower. Annual average Ni was 4 times higher, and annual average As was marginally higher than their respective European standard values, which could be attributed to regional influence of pyrometallurgical industries in the western Bushveld Igneous Complex. All three size fractions indicated elevated trace metal concentrations coinciding with the end of the dry season, which could partially be attributed to decreased wet removal and increases in wind generation of particulates. Principal component factor analysis (PCFA) revealed four meaningful factors in the PM1 size fraction, i.e. crustal, pyrometallurgical-related and Au slimes dams. No meaningful factors were determined for the PM1-2. 5 and PM2. 5-10 size fractions, which was attributed to the large influence of wind-blown dust on atmospheric trace metals determined at Welgegund. Pollution roses confirmed the influence of wind-blown dust on trace metal concentrations measured at Welgegund, while the impact of industrial activities was also substantiated.

  19. Industry's Struggle for Skilled Workers.

    ERIC Educational Resources Information Center

    Barker, Don

    1979-01-01

    The growing shortage of skilled workers in industrial maintenance, the growing complexity of equipment, and the automation of production processes call for improved and increased employee training and retraining. A General Motors training supervisor notes how education and industry can cooperate to provide this education and training. (MF)

  20. Bioassessment of the Effluents Discharged from Two Export Oriented Industrial Zones Located in Kelani River Basin, Sri Lanka Using Erythrocytic Responses of the Fish, Nile Tilapia (Oreochromis niloticus).

    PubMed

    Hemachandra, C K; Pathiratne, A

    2017-10-01

    Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.

  1. Undersea applications of dexterous robotics

    NASA Technical Reports Server (NTRS)

    Gittleman, Mark M.

    1994-01-01

    The revolution and application of dexterous robotics in the undersea energy production industry and how this mature technology has affected planned SSF dexterous robotic tasks are examined. Undersea telerobotics, or Remotely Operated Vehicles (ROV's), have evolved in design and use since the mid-1970s. Originally developed to replace commercial divers for both planned and unplanned tasks, they are now most commonly used to perform planned robotic tasks in all phases of assembly, inspection, and maintenance of undersea structures and installations. To accomplish these tasks, the worksites, the tasks themselves, and the tools are now engineered with both the telerobot's and the diver's capabilities in mind. In many cases, this planning has permitted a reduction in telerobot system complexity and cost. The philosophies and design practices that have resulted in the successful incorporation of telerobotics into the highly competitive and cost conscious offshore production industry have been largely ignored in the space community. Cases where these philosophies have been adopted or may be successfully adopted in the near future are explored.

  2. Remote Video Auditing in the Surgical Setting.

    PubMed

    Pedersen, Anne; Getty Ritter, Elizabeth; Beaton, Megan; Gibbons, David

    2017-02-01

    Remote video auditing, a method first adopted by the food preparation industry, was later introduced to the health care industry as a novel approach to improving hand hygiene practices. This strategy yielded tremendous and sustained improvement, causing leaders to consider the potential effects of such technology on the complex surgical environment. This article outlines the implementation of remote video auditing and the first year of activity, outcomes, and measurable successes in a busy surgery department in the eastern United States. A team of anesthesia care providers, surgeons, and OR personnel used low-resolution cameras, large-screen displays, and cell phone alerts to make significant progress in three domains: application of the Universal Protocol for preventing wrong site, wrong procedure, wrong person surgery; efficiency metrics; and cleaning compliance. The use of cameras with real-time auditing and results-sharing created an environment of continuous learning, compliance, and synergy, which has resulted in a safer, cleaner, and more efficient OR. Copyright © 2017 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  3. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater.

    PubMed

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-03-01

    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. A Review on Internet of Things for Defense and Public Safety

    PubMed Central

    Fraga-Lamas, Paula; Fernández-Caramés, Tiago M.; Suárez-Albela, Manuel; Castedo, Luis; González-López, Miguel

    2016-01-01

    The Internet of Things (IoT) is undeniably transforming the way that organizations communicate and organize everyday businesses and industrial procedures. Its adoption has proven well suited for sectors that manage a large number of assets and coordinate complex and distributed processes. This survey analyzes the great potential for applying IoT technologies (i.e., data-driven applications or embedded automation and intelligent adaptive systems) to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where Defense and Public Safety (PS) could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. This article reviews the main tactical requirements and the architecture, examining gaps and shortcomings in existing IoT systems across the military field and mission-critical scenarios. The review characterizes the open challenges for a broad deployment and presents a research roadmap for enabling an affordable IoT for defense and PS. PMID:27782052

  5. The agricultural-industrial partnership for eliminating micronutrient malnutrition: the investment bargain of the decade.

    PubMed

    Hunt, J M

    2001-06-01

    The limitations of conventional approaches to eliminating micronutrient deficiencies drives the search for a sustainable paradigm. This manuscript argues that the public and private sectors must embark on modernization of the Asian food industry and reorientation of the international agricultural research complex so that nutritionally enriched essential foods will be affordable and accessible to the poor. It is recommended that this partnership take special care of the needs of Asian children. The costs of chronic undernutrition, availability of cost-effective strategies, and benefits of sustained nutrition improvement to individuals, families and nations are reviewed. The roles of food fortification, plant breeding and biotechnology, both actual and imminent, are described. The paper concludes that a recast Green Revolution directed to dietary quality may be the key to enhancing the learning and earning capacity of young Asians of the new millenium. No other technology offers as large an opportunity to improve lives...at such a low cost and in such a short time..." World Bank (1).

  6. A Review on Internet of Things for Defense and Public Safety.

    PubMed

    Fraga-Lamas, Paula; Fernández-Caramés, Tiago M; Suárez-Albela, Manuel; Castedo, Luis; González-López, Miguel

    2016-10-05

    The Internet of Things (IoT) is undeniably transforming the way that organizations communicate and organize everyday businesses and industrial procedures. Its adoption has proven well suited for sectors that manage a large number of assets and coordinate complex and distributed processes. This survey analyzes the great potential for applying IoT technologies (i.e., data-driven applications or embedded automation and intelligent adaptive systems) to revolutionize modern warfare and provide benefits similar to those in industry. It identifies scenarios where Defense and Public Safety (PS) could leverage better commercial IoT capabilities to deliver greater survivability to the warfighter or first responders, while reducing costs and increasing operation efficiency and effectiveness. This article reviews the main tactical requirements and the architecture, examining gaps and shortcomings in existing IoT systems across the military field and mission-critical scenarios. The review characterizes the open challenges for a broad deployment and presents a research roadmap for enabling an affordable IoT for defense and PS.

  7. Flexible Friction Stir Joining Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Zhili; Lim, Yong Chae; Mahoney, Murray

    2015-07-23

    Reported herein is the final report on a U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) project with industry cost-share that was jointly carried out by Oak Ridge National Laboratory (ORNL), ExxonMobil Upstream Research Company (ExxonMobil), and MegaStir Technologies (MegaStir). The project was aimed to advance the state of the art of friction stir welding (FSW) technology, a highly energy-efficient solid-state joining process, for field deployable, on-site fabrications of large, complex and thick-sectioned structures of high-performance and high-temperature materials. The technology innovations developed herein attempted to address two fundamental shortcomings of FSW: 1) the inability for on-site welding andmore » 2) the inability to weld thick section steels, both of which have impeded widespread use of FSW in manufacturing. Through this work, major advance has been made toward transforming FSW technology from a “specialty” process to a mainstream materials joining technology to realize its pervasive energy, environmental, and economic benefits across industry.« less

  8. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    PubMed

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  9. Identifying future directions for subsurface hydrocarbon migration research

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Clark, J. F.; Luyendyk, B.; Valentine, D.

    Subsurface hydrocarbon migration is important for understanding the input and impacts of natural hydrocarbon seepage on the environment. Great uncertainties remain in most aspects of hydrocarbon migration, including some basic mechanisms of this four-phase flow of tar, oil, water, and gas through the complex fracture-network geometry particularly since the phases span a wide range of properties. Academic, government, and industry representatives recently attended a workshop to identify the areas of greatest need for future research in shallow hydrocarbon migration.Novel approaches such as studying temporal and spatial seepage variations and analogous geofluid systems (e.g., geysers and trickle beds) allow deductions of subsurface processes and structures that remain largely unclear. Unique complexities exist in hydrocarbon migration due to its multiphase flow and complex geometry, including in-situ biological weathering. Furthermore, many aspects of the role of hydrocarbons (positive and negative) in the environment are poorly understood, including how they enter the food chain (respiration, consumption, etc.) and “percolate” to higher trophic levels. But understanding these ecological impacts requires knowledge of the emissions' temporal and spatial variability and trajectories.

  10. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  11. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged tomore » the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  12. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  13. Air quality impacted by local pollution sources and beyond - Using a prominent petro-industrial complex as a study case.

    PubMed

    Chen, Sheng-Po; Wang, Chieh-Heng; Lin, Wen-Dian; Tong, Yu-Huei; Chen, Yu-Chun; Chiu, Ching-Jui; Chiang, Hung-Chi; Fan, Chen-Lun; Wang, Jia-Lin; Chang, Julius S

    2018-05-01

    The present study combines high-resolution measurements at various distances from a world-class gigantic petrochemical complex with model simulations to test a method to assess industrial emissions and their effect on local air quality. Due to the complexity in wind conditions which were highly seasonal, the dominant wind flow patterns in the coastal region of interest were classified into three types, namely northeast monsoonal (NEM) flows, southwest monsoonal (SEM) flows and local circulation (LC) based on six years of monitoring data. Sulfur dioxide (SO 2 ) was chosen as an indicative pollutant for prominent industrial emissions. A high-density monitoring network of 12 air-quality stations distributed within a 20-km radius surrounding the petrochemical complex provided hourly measurements of SO 2 and wind parameters. The SO 2 emissions from major industrial sources registered by the monitoring network were then used to validate model simulations and to illustrate the transport of the SO 2 plumes under the three typical wind patterns. It was found that the coupling of observations and modeling was able to successfully explain the transport of the industrial plumes. Although the petrochemical complex was seemingly the only major source to affect local air quality, multiple prominent sources from afar also played a significant role in local air quality. As a result, we found that a more complete and balanced assessment of the local air quality can be achieved only after taking into account the wind characteristics and emission factors of a much larger spatial scale than the initial (20 km by 20 km) study domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. [Evolution of technology and occupational exposures in petrochemical industry and in petroleum refining].

    PubMed

    Cottica, Danilo; Grignani, Elena

    2013-01-01

    The industry of oil refining and petrochemical play an important role in terms of number of employees in the Italian production. Often the terms "petroleum refining" and "petrochemical" are used interchangeably to define processes that occur in complex plants, which grow outdoors on large surfaces and a visual impact is not irrelevant. In reality, the two areas involve potential exposure to different chemical agents, related to raw materials processed and the specific products. The petrochemical uses as raw materials, the oil fractions, obtained by distillation in the refinery, or natural gas; petrochemical products are, usually, single compounds with a specific degree of purity, used as basic raw materials for the entire industry of organic chemistry, from the production of plastics to pharmaceuticals. The oil refining, that is the topic of this paper, processes mainly oil to obtain mixtures of hydrocarbon compounds, the products of which are specified on the basis of aptitude for use. For example gasolines, are obtained by mixing of fractions of the first distillation, reforming products, antiknock. The paper illustrates, necessarily broadly due to the complexity of the productive sectors, the technological and organizational changes that have led to a significant reduction of occupational exposure to chemical agents, the results of environmental monitoring carried out in some refineries both during routine conditions that during scheduled maintenance activities with plant shutdown and a store of petroleum products. The chemical agents measured are typical for presence, physico-chemical properties and toxicological characteristics of the manufacturing processes of petroleum products like benzene, toluene, xylenes, ethyl benzene, n-hexane, Volatile Hydrocarbons belonging to gasoline, kerosene, diesel fuel. Data related to both personal sampling and fixed positions.

  15. Directions of management for the development of fuel-and-energy complex as the key driver of the social-and-economic development of regions

    NASA Astrophysics Data System (ADS)

    Mottaeva, Asiiat

    2017-10-01

    The article is dedicated to the problems of the participation of the energy enterprises in the social-and-economic development of the regions and municipalities. The complex of mechanisms of the implementation of the Energy strategy in the form of strategic initiatives of the development of the energy industry representing the complex inter-industry state-private long-term projects is presented in the article. The author considers the development of the energy industry to be the key driver of the social-and-economic development of regions. The author proves, that the increase in competitiveness of Russian energy, geographical and grocery diversification of export and improvement of quality of export products might allow to solve some problems of the development of national economy.

  16. Synthetic humic substances and their use for remediation of contaminated environments

    NASA Astrophysics Data System (ADS)

    Dudare, Diana; Klavins, Maris

    2014-05-01

    Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal ions, which were reflected in their complexation properties towards metal ions. FTIR spectra gave evidence of the presence of metal ions, strongly bound and protected in inner sphere complexes. Considering a large scale of production of humic substances, the obtained synthetic humic substances with modified properties are perspective and sustainable areas of use. The obtained results of this study showed that synthetic humic substances can be used for remediation of environments contaminated with heavy metal ions.

  17. Detail of large industrial doors on north elevation; camera facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of large industrial doors on north elevation; camera facing south. - Mare Island Naval Shipyard, Defense Electronics Equipment Operating Center, I Street, terminus west of Cedar Avenue, Vallejo, Solano County, CA

  18. Measurements of complex impedance in microwave high power systems with a new bluetooth integrated circuit.

    PubMed

    Roussy, Georges; Dichtel, Bernard; Chaabane, Haykel

    2003-01-01

    By using a new integrated circuit, which is marketed for bluetooth applications, it is possible to simplify the method of measuring the complex impedance, complex reflection coefficient and complex transmission coefficient in an industrial microwave setup. The Analog Devices circuit AD 8302, which measures gain and phase up to 2.7 GHz, operates with variable level input signals and is less sensitive to both amplitude and frequency fluctuations of the industrial magnetrons than are mixers and AM crystal detectors. Therefore, accurate gain and phase measurements can be performed with low stability generators. A mechanical setup with an AD 8302 is described; the calibration procedure and its performance are presented.

  19. Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Stein, Ariel F.; Maldonado, Pabla Guerrero; Sanchez de la Campa, Ana M.; Gonzalez-Castanedo, Yolanda; Castell, Nuria; de la Rosa, Jesus D.

    2013-06-01

    This study presents a description of the emission, transport, dispersion, and deposition of heavy metals contained in atmospheric aerosols emitted from a large industrial complex in southern Spain using the HYSPLIT model coupled with high- (MM5) and low-resolution (GDAS) meteorological simulations. The dispersion model was configured to simulate eight size fractions (<0.33, 0.66, 1.3, 2.5, 5, 14, 17, and >17 μm) of metals based on direct measurements taken at the industrial emission stacks. Twelve stacks in four plants were studied and the stacks showed considerable differences for both emission fluxes and size ranges of metals. We model the dispersion of six major metals; Cr, Co, Ni, La, Zn, and Mo, which represent 77% of the total mass of the 43 measured elements. The prediction shows that the modeled industrial emissions produce an enrichment of heavy metals by a factor of 2-5 for local receptor sites when compared to urban and rural background areas in Spain. The HYSPLIT predictions based on the meteorological fields from MM5 show reasonable consistence with the temporal evolution of concentrations of Cr, Co, and Ni observed at three sites downwind of the industrial area. The magnitude of concentrations of metals at two receptors was underestimated for both MM5 (by a factor of 2-3) and GDAS (by a factor of 4-5) meteorological runs. The model prediction shows that heavy metal pollution from industrial emissions in this area is dominated by the ultra-fine (<0.66 μm) and fine (<2.5 μm) size fractions.

  20. Is scale-up of community mobilisation among sex workers really possible in complex urban environments? The case of Mumbai, India.

    PubMed

    Kongelf, Anine; Bandewar, Sunita V S; Bharat, Shalini; Collumbien, Martine

    2015-01-01

    In the last decade, community mobilisation (CM) interventions targeting female sex workers (FSWs) have been scaled-up in India's national response to the HIV epidemic. This included the Bill and Melinda Gates Foundation's Avahan programme which adopted a business approach to plan and manage implementation at scale. With the focus of evaluation efforts on measuring effectiveness and health impacts there has been little analysis thus far of the interaction of the CM interventions with the sex work industry in complex urban environments. Between March and July 2012 semi-structured, in-depth interviews and focus group discussions were conducted with 63 HIV intervention implementers, to explore challenges of HIV prevention among FSWs in Mumbai. A thematic analysis identified contextual factors that impact CM implementation. Large-scale interventions are not only impacted by, but were shown to shape the dynamic social context. Registration practices and programme monitoring were experienced as stigmatising, reflected in shifting client preferences towards women not disclosing as 'sex workers'. This combined with urban redevelopment and gentrification of traditional red light areas, forcing dispersal and more 'hidden' ways of solicitation, further challenging outreach and collectivisation. Participants reported that brothel owners and 'pimps' continued to restrict access to sex workers and the heterogeneous 'community' of FSWs remains fragmented with high levels of mobility. Stakeholder engagement was poor and mobilising around HIV prevention not compelling. Interventions largely failed to respond to community needs as strong target-orientation skewed activities towards those most easily measured and reported. Large-scale interventions have been impacted by and contributed to an increasingly complex sex work environment in Mumbai, challenging outreach and mobilisation efforts. Sex workers remain a vulnerable and disempowered group needing continued support and more comprehensive services.

  1. Recent Advances in X-ray Cone-beam Computed Laminography.

    PubMed

    O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas

    2016-10-06

    X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.

  2. Dynamic Responses of Flexible Cylinders with Low Mass Ratio

    NASA Astrophysics Data System (ADS)

    Olaoye, Abiodun; Wang, Zhicheng; Triantafyllou, Michael

    2017-11-01

    Flexible cylinders with low mass ratios such as composite risers are attractive in the offshore industry because they require lower top tension and are less likely to buckle under self-weight compared to steel risers. However, their relatively low stiffness characteristics make them more vulnerable to vortex induced vibrations. Additionally, numerical investigation of the dynamic responses of such structures based on realistic conditions is limited by high Reynolds number, complex sheared flow profile, large aspect ratio and low mass ratio challenges. In the framework of Fourier spectral/hp element method, the current technique employs entropy-viscosity method (EVM) based large-eddy simulation approach for flow solver and fictitious added mass method for structure solver. The combination of both methods can handle fluid-structure interaction problems at high Reynolds number with low mass ratio. A validation of the numerical approach is provided by comparison with experiments.

  3. Optimizing distance-based methods for large data sets

    NASA Astrophysics Data System (ADS)

    Scholl, Tobias; Brenner, Thomas

    2015-10-01

    Distance-based methods for measuring spatial concentration of industries have received an increasing popularity in the spatial econometrics community. However, a limiting factor for using these methods is their computational complexity since both their memory requirements and running times are in {{O}}(n^2). In this paper, we present an algorithm with constant memory requirements and shorter running time, enabling distance-based methods to deal with large data sets. We discuss three recent distance-based methods in spatial econometrics: the D&O-Index by Duranton and Overman (Rev Econ Stud 72(4):1077-1106, 2005), the M-function by Marcon and Puech (J Econ Geogr 10(5):745-762, 2010) and the Cluster-Index by Scholl and Brenner (Reg Stud (ahead-of-print):1-15, 2014). Finally, we present an alternative calculation for the latter index that allows the use of data sets with millions of firms.

  4. Advanced space system concepts and their orbital support needs (1980 - 2000). Volume 2: Final report

    NASA Technical Reports Server (NTRS)

    Bekey, I.; Mayer, H. L.; Wolfe, M. G.

    1976-01-01

    The results are presented of a study which identifies over 100 new and highly capable space systems for the 1980-2000 time period: civilian systems which could bring benefits to large numbers of average citizens in everyday life, much enhance the kinds and levels of public services, increase the economic motivation for industrial investment in space, expand scientific horizons; and, in the military area, systems which could materially alter current concepts of tactical and strategic engagements. The requirements for space transportation, orbital support, and technology for these systems are derived, and those requirements likely to be shared between NASA and the DoD in the time period identified. The high leverage technologies for the time period are identified as very large microwave antennas and optics, high energy power subsystems, high precision and high power lasers, microelectronic circuit complexes and data processors, mosaic solid state sensing devices, and long-life cryogenic refrigerators.

  5. Electronics manufacturing and assembly in Japan

    NASA Technical Reports Server (NTRS)

    Kukowski, John A.; Boulton, William R.

    1995-01-01

    In the consumer electronics industry, precision processing technology is the basis for enhancing product functions and for minimizing components and end products. Throughout Japan, manufacturing technology is seen as critical to the production and assembly of advanced products. While its population has increased less than 30 percent over twenty-five years, Japan's gross national product has increase thirtyfold; this growth has resulted in large part from rapid replacement of manual operations with innovative, high-speed, large-scale, continuously running, complex machines that process a growing number of miniaturized components. The JTEC panel found that introduction of next-generation electronics products in Japan goes hand-in-hand with introduction of new and improved production equipment. In the panel's judgment, Japan's advanced process technologies and equipment development and its highly automated factories are crucial elements of its domination of the consumer electronics marketplace - and Japan's expertise in manufacturing consumer electronics products gives it potentially unapproachable process expertise in all electronics markets.

  6. The morphology of streams restored for market and nonmarket purposes: Insights from a mixed natural-social science approach

    NASA Astrophysics Data System (ADS)

    Doyle, Martin W.; Singh, Jai; Lave, Rebecca; Robertson, Morgan M.

    2015-07-01

    We use geomorphic surveys to quantify the differences between restored and nonrestored streams, and the difference between streams restored for market purposes (compensatory mitigation) from those restored for nonmarket programs. We also analyze the social and political-economic drivers of the stream restoration and mitigation industry using analysis of policy documents and interviews with key personnel including regulators, mitigation bankers, stream designers, and scientists. Restored streams are typically wider and geomorphically more homogenous than nonrestored streams. Streams restored for the mitigation market are typically headwater streams and part of a large, complex of long restored main channels, and many restored tributaries; streams restored for nonmarket purposes are typically shorter and consist of the main channel only. Interviews reveal that designers integrate many influences including economic and regulatory constraints, but traditions of practice have a large influence as well. Thus, social forces shape the morphology of restored streams.

  7. Users matter : multi-agent systems model of high performance computing cluster users.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    North, M. J.; Hood, C. S.; Decision and Information Sciences

    2005-01-01

    High performance computing clusters have been a critical resource for computational science for over a decade and have more recently become integral to large-scale industrial analysis. Despite their well-specified components, the aggregate behavior of clusters is poorly understood. The difficulties arise from complicated interactions between cluster components during operation. These interactions have been studied by many researchers, some of whom have identified the need for holistic multi-scale modeling that simultaneously includes network level, operating system level, process level, and user level behaviors. Each of these levels presents its own modeling challenges, but the user level is the most complex duemore » to the adaptability of human beings. In this vein, there are several major user modeling goals, namely descriptive modeling, predictive modeling and automated weakness discovery. This study shows how multi-agent techniques were used to simulate a large-scale computing cluster at each of these levels.« less

  8. Integrated modeling and robust control for full-envelope flight of robotic helicopters

    NASA Astrophysics Data System (ADS)

    La Civita, Marco

    Robotic helicopters have attracted a great deal of interest from the university, the industry, and the military world. They are versatile machines and there is a large number of important missions that they could accomplish. Nonetheless, there are only a handful of documented examples of robotic-helicopter applications in real-world scenarios. This situation is mainly due to the poor flight performance that can be achieved and---more important---guaranteed under automatic control. Given the maturity of control theory, and given the large body of knowledge in helicopter dynamics, it seems that the lack of success in flying high-performance controllers for robotic helicopters, especially by academic groups and by small industries, has nothing to do with helicopters or control theory as such. The problem lies instead in the large amount of time and resources needed to synthesize, test, and implement new control systems with the approach normally followed in the aeronautical industry. This thesis attempts to provide a solution by presenting a modeling and control framework that minimizes the time, cost, and both human and physical resources necessary to design high-performance flight controllers. The work is divided in two main parts. The first consists of the development of a modeling technique that allows the designer to obtain a high-fidelity model adequate for both real-time simulation and controller design, with few flight, ground, and wind-tunnel tests and a modest level of complexity in the dynamic equations. The second consists of the exploitation of the predictive capabilities of the model and of the robust stability and performance guarantees of the Hinfinity loop-shaping control theory to reduce the number of iterations of the design/simulated-evaluation/flight-test-evaluation procedure. The effectiveness of this strategy is demonstrated by designing and flight testing a wide-envelope high-performance controller for the Carnegie Mellon University robotic helicopter.

  9. The Internationalization of Industry. Annex B. Offshore Production in the International Semiconductor Industry,

    DTIC Science & Technology

    1981-11-01

    essence of these arrangements is specialization based in international differentials in * 379 the costs of labor services. The availability of low...of electronic equipment vary with the complexity and cost of the equipment, a differentiated market for chips of varying densities, for use in...level of chip density, while more complex products will be most economically produced with higher levels of chip density. Thuse a differentiated

  10. The Politics of Knowledge and the Revitalization of American Democracy: A Response to Henry Giroux's "The University in Chains: Confronting the Military-Industrial-Academic Complex"

    ERIC Educational Resources Information Center

    Fraser, Cary

    2009-01-01

    This article presents the author's response to Henry Giroux's "The University in Chains: Confronting the Military-Industrial-Academic Complex." Henry Giroux has written a provocative assessment of the contemporary challenges facing the United States as a society, which over the course of the 20th century had assumed the role of leader and exemplar…

  11. Analysis of Metals Concentration in the Soils of SIPCOT Industrial Complex, Cuddalore, Tamil Nadu

    PubMed Central

    Mathivanan, V.; Prabavathi, R.; Prithabai, C.; Selvisabhanayakam

    2010-01-01

    Phytoremediation is a promising area of new research, both for its low cost and great benefit to society in the clean retrieval of contaminated sites. Phytoremediation is the use of living green plants for in situ risk reduction and/or removal of contaminants from contaminated soil, water, sediments, and air. Specially selected or engineered plants are used in the process. The soil samples were taken from Cuddalore Old Town (OT) and the samples from SIPCOT industrial complex, which was the study area and analyzed for various metals concentrations. Fifteen metals have been analyzed by adopting standard procedure. The detection limits of metal concentration are drawn as control. The various (15) metal concentrations in the soil samples were found higher in soil taken from SIPCOT industrial complex, compared with samples taken from Cuddalore OT. In all the observations, it was found that most of the metals like calcium, cadmium, chromium, cobalt, nickel, and zinc showed maximum concentrations, whereas arsenic, antimony, lead, magnesium, sodium have shown minimum concentrations, both when compared with control. From the present study, it was found that the soil collected from SIPCOT complex area were more polluted due to the presence of various industrial effluents, municipal wastes, and sewages when compared with the soil collected from Cuddalore OT. PMID:21170256

  12. ``Phantom'' Modes in Ab Initio Tunneling Calculations: Implications for Theoretical Materials Optimization, Tunneling, and Transport

    NASA Astrophysics Data System (ADS)

    Barabash, Sergey V.; Pramanik, Dipankar

    2015-03-01

    Development of low-leakage dielectrics for semiconductor industry, together with many other areas of academic and industrial research, increasingly rely upon ab initio tunneling and transport calculations. Complex band structure (CBS) is a powerful formalism to establish the nature of tunneling modes, providing both a deeper understanding and a guided optimization of materials, with practical applications ranging from screening candidate dielectrics for lowest ``ultimate leakage'' to identifying charge-neutrality levels and Fermi level pinning. We demonstrate that CBS is prone to a particular type of spurious ``phantom'' solution, previously deemed true but irrelevant because of a very fast decay. We demonstrate that (i) in complex materials, phantom modes may exhibit very slow decay (appearing as leading tunneling terms implying qualitative and huge quantitative errors), (ii) the phantom modes are spurious, (iii) unlike the pseudopotential ``ghost'' states, phantoms are an apparently unavoidable artifact of large numerical basis sets, (iv) a presumed increase in computational accuracy increases the number of phantoms, effectively corrupting the CBS results despite the higher accuracy achieved in resolving the true CBS modes and the real band structure, and (v) the phantom modes cannot be easily separated from the true CBS modes. We discuss implications for direct transport calculations. The strategy for dealing with the phantom states is discussed in the context of optimizing high-quality high- κ dielectric materials for decreased tunneling leakage.

  13. Gelation kinetics and characterization of enzymatically enhanced fish scale gelatin-pectin coacervate.

    PubMed

    Huang, Tao; Tu, Zong-Cai; Shangguan, Xinchen; Wang, Hui; Zhang, Nanhai; Zhang, Lu; Sha, Xiaomei

    2018-02-01

    Protein-polysaccharide complex coacervations have been considered extensively for the development of functional foods. The main problem of the complex coacervates is that they are highly unstable under different conditions and that cross-linking is necessary to stabilize them. In this study, the effects of pectin at different concentrations on the gel and structural properties of fish scale gelatin (FSG)-high methoxyl citrus pectin (HMP) coacervate enhanced by microbial transglutaminase (MTGase) were studied. The gelation rates and gel strength of the MTGase-enhanced FSG-HMP coacervate gels decreased with increasing HMP concentration. However, the enhanced coacervate gels exhibited better thermal behavior and mechanical properties compared with the original gels. Also, TG-P 8 exhibited the highest melting point (27.15 ± 0.12 °C), gelation point (15.65 ± 0.01 °C) and stress (15.36 ± 0.48 kPa) as HMP was 8 g kg -1 . Particle size distribution, fluorescence emission and UV absorbance spectra indicated that MTGase and HMP could make FSG form large aggregates. Moreover, confocal laser scanning microscopy of treated coacervate gels showed a continuous protein phase at low HMP concentrations. FSG and HMP could form soluble coacervate, and MTGase could improve the thermal and mechanical properties of coacervate gels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    PubMed

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Identification of specific sources of airborne particles emitted from within a complex industrial (steelworks) site

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Harrison, Roy M.

    2018-06-01

    A case study is provided of the development and application of methods to identify and quantify specific sources of emissions from within a large complex industrial site. Methods include directional analysis of concentrations, chemical source tracers and correlations with gaseous emissions. Extensive measurements of PM10, PM2.5, trace gases, particulate elements and single particle mass spectra were made at sites around the Port Talbot steelworks in 2012. By using wind direction data in conjunction with real-time or hourly-average pollutant concentration measurements, it has been possible to locate areas within the steelworks associated with enhanced pollutant emissions. Directional analysis highlights the Slag Handling area of the works as the most substantial source of elevated PM10 concentrations during the measurement period. Chemical analyses of air sampled from relevant wind directions is consistent with the anticipated composition of slags, as are single particle mass spectra. Elevated concentrations of PM10 are related to inverse distance from the Slag Handling area, and concentrations increase with increased wind speed, consistent with a wind-driven resuspension source. There also appears to be a lesser source associated with Sinter Plant emissions affecting PM10 concentrations at the Fire Station monitoring site. The results are compared with a ME2 study using some of the same data, and shown to give a clearer view of the location and characteristics of emission sources, including fugitive dusts.

  16. Machine Learning in Medicine.

    PubMed

    Deo, Rahul C

    2015-11-17

    Spurred by advances in processing power, memory, storage, and an unprecedented wealth of data, computers are being asked to tackle increasingly complex learning tasks, often with astonishing success. Computers have now mastered a popular variant of poker, learned the laws of physics from experimental data, and become experts in video games - tasks that would have been deemed impossible not too long ago. In parallel, the number of companies centered on applying complex data analysis to varying industries has exploded, and it is thus unsurprising that some analytic companies are turning attention to problems in health care. The purpose of this review is to explore what problems in medicine might benefit from such learning approaches and use examples from the literature to introduce basic concepts in machine learning. It is important to note that seemingly large enough medical data sets and adequate learning algorithms have been available for many decades, and yet, although there are thousands of papers applying machine learning algorithms to medical data, very few have contributed meaningfully to clinical care. This lack of impact stands in stark contrast to the enormous relevance of machine learning to many other industries. Thus, part of my effort will be to identify what obstacles there may be to changing the practice of medicine through statistical learning approaches, and discuss how these might be overcome. © 2015 American Heart Association, Inc.

  17. H2S-mediated thermal and photochemical methane activation.

    PubMed

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V

    2013-12-02

    Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Monte Carlo simulations of mixtures involving ketones and aldehydes by a direct bubble pressure calculation.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2010-07-08

    Ketone and aldehyde molecules are involved in a large variety of industrial applications. Because they are mainly present mixed with other compounds, the prediction of phase equilibrium of mixtures involving these classes of molecules is of first interest particularly to design and optimize separation processes. The main goal of this work is to propose a transferable force field for ketones and aldehydes that allows accurate molecular simulations of not only pure compounds but also complex mixtures. The proposed force field is based on the anisotropic united-atoms AUA4 potential developed for hydrocarbons, and it introduces only one new atom, the carbonyl oxygen. The Lennard-Jones parameters of this oxygen atom have been adjusted on saturated thermodynamic properties of both acetone and acetaldehyde. To simulate mixtures, Monte Carlo simulations are carried out in a specific pseudoensemble which allows a direct calculation of the bubble pressure. For polar mixtures involved in this study, we show that this approach is an interesting alternative to classical calculations in the isothermal-isobaric Gibbs ensemble. The pressure-composition diagrams of polar + polar and polar + nonpolar binary mixtures are well reproduced. Mutual solubilities as well as azeotrope location, if present, are accurately predicted without any empirical binary interaction parameters or readjustment. Such result highlights the transferability of the proposed force field, which is an essential feature toward the simulation of complex oxygenated mixtures of industrial interest.

  19. Sustainable Chemistry, the Spinning Tube-in-Tube (STT(R)) Reactor and GREENSCOPE: Innovation and Industrial Partnerships

    EPA Science Inventory

    The chemical industry faces environmental, social and health challenges that are common across all economic sectors. From worker exposure to toxic substances, to product design and use, to the cost and handling of waste disposal, the industry must overcome numerous complex hurdle...

  20. 48 CFR 315.201 - Exchanges with industry before receipt of proposals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Exchanges with industry... Receipt of Proposals and Information 315.201 Exchanges with industry before receipt of proposals. (e)(1... complex projects involving R & D, IT, construction, and other highly technical requirements. An RFI may...

  1. A multi-model approach to monitor emissions of CO2 and CO from an urban-industrial complex

    NASA Astrophysics Data System (ADS)

    Super, Ingrid; Denier van der Gon, Hugo A. C.; van der Molen, Michiel K.; Sterk, Hendrika A. M.; Hensen, Arjan; Peters, Wouter

    2017-11-01

    Monitoring urban-industrial emissions is often challenging because observations are scarce and regional atmospheric transport models are too coarse to represent the high spatiotemporal variability in the resulting concentrations. In this paper we apply a new combination of an Eulerian model (Weather Research and Forecast, WRF, with chemistry) and a Gaussian plume model (Operational Priority Substances - OPS). The modelled mixing ratios are compared to observed CO2 and CO mole fractions at four sites along a transect from an urban-industrial complex (Rotterdam, the Netherlands) towards rural conditions for October-December 2014. Urban plumes are well-mixed at our semi-urban location, making this location suited for an integrated emission estimate over the whole study area. The signals at our urban measurement site (with average enhancements of 11 ppm CO2 and 40 ppb CO over the baseline) are highly variable due to the presence of distinct source areas dominated by road traffic/residential heating emissions or industrial activities. This causes different emission signatures that are translated into a large variability in observed ΔCO : ΔCO2 ratios, which can be used to identify dominant source types. We find that WRF-Chem is able to represent synoptic variability in CO2 and CO (e.g. the median CO2 mixing ratio is 9.7 ppm, observed, against 8.8 ppm, modelled), but it fails to reproduce the hourly variability of daytime urban plumes at the urban site (R2 up to 0.05). For the urban site, adding a plume model to the model framework is beneficial to adequately represent plume transport especially from stack emissions. The explained variance in hourly, daytime CO2 enhancements from point source emissions increases from 30 % with WRF-Chem to 52 % with WRF-Chem in combination with the most detailed OPS simulation. The simulated variability in ΔCO :  ΔCO2 ratios decreases drastically from 1.5 to 0.6 ppb ppm-1, which agrees better with the observed standard deviation of 0.4 ppb ppm-1. This is partly due to improved wind fields (increase in R2 of 0.10) but also due to improved point source representation (increase in R2 of 0.05) and dilution (increase in R2 of 0.07). Based on our analysis we conclude that a plume model with detailed and accurate dispersion parameters adds substantially to top-down monitoring of greenhouse gas emissions in urban environments with large point source contributions within a ˜ 10 km radius from the observation sites.

  2. Future-oriented maintenance strategy based on automated processes is finding its way into large astronomical facilities at remote observing sites

    NASA Astrophysics Data System (ADS)

    Silber, Armin; Gonzalez, Christian; Pino, Francisco; Escarate, Patricio; Gairing, Stefan

    2014-08-01

    With expanding sizes and increasing complexity of large astronomical observatories on remote observing sites, the call for an efficient and recourses saving maintenance concept becomes louder. The increasing number of subsystems on telescopes and instruments forces large observatories, like in industries, to rethink conventional maintenance strategies for reaching this demanding goal. The implementation of full-, or semi-automatic processes for standard service activities can help to keep the number of operating staff on an efficient level and to reduce significantly the consumption of valuable consumables or equipment. In this contribution we will demonstrate on the example of the 80 Cryogenic subsystems of the ALMA Front End instrument, how an implemented automatic service process increases the availability of spare parts and Line Replaceable Units. Furthermore how valuable staff recourses can be freed from continuous repetitive maintenance activities, to allow focusing more on system diagnostic tasks, troubleshooting and the interchanging of line replaceable units. The required service activities are decoupled from the day-to-day work, eliminating dependencies on workload peaks or logistic constrains. The automatic refurbishing processes running in parallel to the operational tasks with constant quality and without compromising the performance of the serviced system components. Consequentially that results in an efficiency increase, less down time and keeps the observing schedule on track. Automatic service processes in combination with proactive maintenance concepts are providing the necessary flexibility for the complex operational work structures of large observatories. The gained planning flexibility is allowing an optimization of operational procedures and sequences by considering the required cost efficiency.

  3. Learning Human Aspects of Collaborative Software Development

    ERIC Educational Resources Information Center

    Hadar, Irit; Sherman, Sofia; Hazzan, Orit

    2008-01-01

    Collaboration has become increasingly widespread in the software industry as systems have become larger and more complex, adding human complexity to the technological complexity already involved in developing software systems. To deal with this complexity, human-centric software development methods, such as Extreme Programming and other agile…

  4. Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae

    PubMed Central

    Kidgell, Joel T.; de Nys, Rocky; Hu, Yi; Paul, Nicholas A.; Roberts, David A.

    2014-01-01

    Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent. PMID:24919058

  5. Diamonds in the rough: key performance indicators for reticles and design sets

    NASA Astrophysics Data System (ADS)

    Ackmann, Paul

    2008-10-01

    The discussion on reticle cost continues to raise questions by many in the semiconductor industry. The diamond industry developed a method to judge and grade diamonds. [1, 11] The diamond-marketing tool of "The 4Cs of Diamonds" and other slogans help explain the multiple, complex variables that determine the value of a particular stone. Understanding the critical factors of Carat, Clarity, Color, and Cut allows all customers to choose a gem that matches their unique desires. I apply the same principles of "The 4Cs of Diamonds" to develop an analogous method for rating and tracking reticle performance. I introduced the first 3Cs of reticle manufacturing during my BACUS presentation panel at SPIE in February 2008. [2] To these first 3Cs (Capital, Complexity, and Content), I now add a fourth, Cycle time. I will look at how our use of reticles changes by node and use "The 4Cs of Reticles" to develop the key performance indicators (KPI) that will help our industry set standards for evaluating reticle technology. Capital includes both cost and utilization. This includes tools, people, facilities, and support systems required for building the most critical reticles. Tools have highest value in the first two years of use, and each new technology node will likely increase the Capital cost of reticles. New technologies, specifications, and materials drive Complexity for reticles, including smaller feature size, increased optical proximity correction (OPC), and more levels at sub-wavelength. The large data files needed to create finer features require the use of the newest tools for writing, inspection, and repair. Content encompasses the customer's specifications and requirements, which the mask shop must meet. The specifications are critical because they drive wafer yield. A clear increase of the number of masking levels has occurred since the 90 nm node. Cycle time starts when the design is finished and lasts until the mask house ships the reticle to the fab. Depending on the level of Complexity, a reticle can take from as few as one, to more than forty, days to build. By using the 4Cs, I can show how the reticle build has changed from the 90 nm technology node. I will begin by delineating proposed KPIs for reticles.

  6. Towards sustainable infrastructure management: knowledge-based service-oriented computing framework for visual analytics

    NASA Astrophysics Data System (ADS)

    Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd

    2009-05-01

    Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.

  7. The Sines industrial complex monitoring programme: A preliminary report.

    PubMed

    Jones, M P; Catarino, F M; Sérgio, C; Bento-Pereira, F

    1981-06-01

    It is anticipated that the establishment of the industrial complex at Sines, Alentejo, Portugal, will have some impact on the environment. Details of the methods used in the monitoring programme are provided. Records of the epiphytic lichen vegetation in permanent quadrats have been made and changes shown in selected sites over a three year period are discussed. Material has been collected for analysis for heavy metals and the results discussed. There is considerable variation in replicates and in interspecies values. The problem of age and bio-accumulation is mentioned. Scanning electron microscopy has shown the accumulation of particulates, as yet unidentified, the quantity varying with increase in age and surface texture. A broadly based study of the local epiphytic flora is being carried out to record the present day diversity. There appears, as yet, to be no detectable influence of the industrial complex on the epiphytic flora of the permanent quadrats.

  8. Nevada National Security Site Industrial Sites Project Closeout - 12498

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabble, Kevin; Krauss, Mark; Matthews, Pat

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office is responsible for environmental restoration (ER) at the Nevada National Security Site (NNSS). This includes remediation at Industrial Sites where past nuclear testing activities and activities that supported nuclear testing may have or are known to have resulted in the release of contaminants into the environment. Industrial Sites at the NNSS have included nuclear facilities that supported the nuclear rocket/missile development programs, gas stations, landfills, spill sites, ordnance sites, and numerous other waste disposal and release sites. The NNSS Industrial Sites activities neared completion at the endmore » of fiscal year 2011 while other activities required under the Federal Facility Agreement and Consent Order (FFACO) and part of the same NNSS ER Project are forecasted to extend to 2027 or beyond. With the majority of Industrial Sites corrective action units (CAUs) completed (more than 250 CAUs and over 1,800 corrective action sites), it was determined that an activity closeout process should be implemented to ensure that the work completed over the past 15 years is well documented in a comprehensive and concise summary. While the process used to close each individual CAU is described in approved documents, no single document describes in summary fashion the work completed to close the many individual Industrial Sites. The activity closeout process will be used to develop an Industrial Sites closeout document that describes these years of work. This document will summarize the number of Industrial Sites closed under the FFACO and provide general descriptions of projects, contaminants removed, and sites closed in place with corresponding Use Restrictions. Other pertinent information related to Industrial Sites work such as the project history, closure decisions, historical declarations, remediation strategies, and final CAU status will be included in the closeout document, along with a table listing each CAU and corresponding corrective action sites within each CAU. Using this process of conducting the activity closeout and developing a closeout document may prove useful for other ER projects within the DOE complex in describing how a long period of ER can be summarized in a single document. The NNSS Industrial Sites activities were completed over the span of 15 years and involved the investigation, cleanup or Use Restriction, and closure of more than 260 CAUs and over 1,800 sites. These activities will conclude in FY 2012 (with the exception of one CAU). In order to capture the work completed over this length of time and document decisions made during the activities, a closeout effort was initiated. The closeout will review the work conducted during the Industrial Sites activities and produce a single document that summarizes Industrial Sites activities. This closeout is being conducted at an interim stage in the overall NNSA/NSO ER Project since the Soils and UGTA activities will continue for a number of years, but the completion of the Industrial Sites project warrants conducting a closeout now while personnel are available and information is still current. The process followed by NNSA/NSO in conducing project closeout for the Industrial Sites portion of the ER program may prove useful within the DOE complex in demonstrating how a large ER project can be summarized. (authors)« less

  9. Microbial Cellulases and Their Industrial Applications

    PubMed Central

    Kuhad, Ramesh Chander; Gupta, Rishi; Singh, Ajay

    2011-01-01

    Microbial cellulases have shown their potential application in various industries including pulp and paper, textile, laundry, biofuel production, food and feed industry, brewing, and agriculture. Due to the complexity of enzyme system and immense industrial potential, cellulases have been a potential candidate for research by both the academic and industrial research groups. Nowadays, significant attentions have been devoted to the current knowledge of cellulase production and the challenges in cellulase research especially in the direction of improving the process economics of various industries. Scientific and technological developments and the future prospects for application of cellulases in different industries are discussed in this paper. PMID:21912738

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klepper, O.H.

    One of the major obstacles to extensive application of nuclear power to industrial heat is the difference between the relatively small energy requirements of individual industrial plants and the large thermal capacity of current power reactors. A practical way of overcoming this obstacle would be to operate a centrally located dual-purpose power plant that would furnish process steam to a cluster of industrial plants, in addition to generating electrical power. The present study indicates that even relatively remote industrial plants could be served by the power plant, since it might be possible to convey steam economically as much as tenmore » miles or more. A survey of five major industries indicates a major potential market for industrial steam from large nuclear power stations.« less

  11. Structural Behavioral Study on the General Aviation Network Based on Complex Network

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Lu, Na

    2017-12-01

    The general aviation system is an open and dissipative system with complex structures and behavioral features. This paper has established the system model and network model for general aviation. We have analyzed integral attributes and individual attributes by applying the complex network theory and concluded that the general aviation network has influential enterprise factors and node relations. We have checked whether the network has small world effect, scale-free property and network centrality property which a complex network should have by applying degree distribution of functions and proved that the general aviation network system is a complex network. Therefore, we propose to achieve the evolution process of the general aviation industrial chain to collaborative innovation cluster of advanced-form industries by strengthening network multiplication effect, stimulating innovation performance and spanning the structural hole path.

  12. Megacities and Large Urban Complexes - WMO Role in Addressing Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Terblanche, Deon; Jalkanen, Liisa

    2013-04-01

    Megacities and Large Urban Complexes - WMO Role in Addressing Challenges and Opportunities Deon E. Terblanche and Liisa Jalkanen dterblanche@wmo.int ljalkanen@wmo.int World Meteorological Organization, Geneva, Switzerland The 21st Century could amongst others, become known as the century in which our species has evolved from Homo sapiens to Homo urbanus. By now the urban population has surpassed the rural population and the rate of urbanization will continue at such a pace that by 2050 urban dwellers could outnumber their rural counterpart by more than two to one. Most of this growth in urban population will occur in developing countries and along coastal areas. Urbanization is to a large extent the outcome of humans seeking a better life through improved opportunities presented by high-density communities. Megacities and large urban complexes provide more job opportunities and social structures, better transport and communication links and a relative abundance of physical goods and services when compared to most rural areas. Unfortunately these urban complexes also present numerous social and environmental challenges. Urban areas differ from their surroundings by morphology, population density, and with high concentration of industrial activities, energy consumption and transport. They also pose unique challenges to atmospheric modelling and monitoring and create a multi-disciplinary spectrum of potential threats, including air pollution, which need to be addressed in an integrated way. These areas are also vulnerable to the changing climate and its implications to sea-level and extreme events, air quality and related health impacts. Many urban activities are significantly impacted by weather events that would not be considered to be of high impact in less densely populated areas. For instance, moderate precipitation events can cause flooding and landslides as modified urban catchments generally have higher run-off to rainfall ratios than their more pristine rural counterparts. The urban environment also provides numerous opportunities. One example being the better use of weather and environmental predictions to proactively optimize the functioning of the urban environment in terms of the use of energy, goods and services. Another is the providing of air quality forecasting services to benefit the health of the population. To address the challenges and opportunities facing megacities and large urban complexes, WMO has established the Global Atmosphere Watch (GAW) Urban Research Meteorology and Environment (GURME). Air pollution questions in urban areas, in particular megacities, is the main focus, building observational and modelling capabilities in developing countries through pilot projects and transfer of scientific expertise. GURME contributes to improving capabilities to handle meteorological and related features of air pollution by addressing end-to-end aspects of air quality, linking observational capabilities with the needs of chemical weather prediction, with the goal of providing high quality air quality services. Using examples from around the world but with specific reference to Africa, the unique challenges and opportunities related to megacities and large urban complexes, as perceived by the World Meteorological Organization (WMO) are highlighted.

  13. Optimation and Determination of Fe-Oxinate Complex by Using High Performance Liquid Chromatography

    NASA Astrophysics Data System (ADS)

    Oktavia, B.; Nasra, E.; Sary, R. C.

    2018-04-01

    The need for iron will improve the industrial processes that require iron as its raw material. Control of industrial iron waste is very important to do. One method of iron analysis is to conduct indirect analysis of iron (III) ions by complexing with 8-Hydroxyquinoline or oxine. In this research, qualitative and quantitative tests of iron (III) ions in the form of complex with oxine. The analysis was performed using HPLC at a wavelength of 470 nm with an ODS C18 column. Three methods of analysis were performed: 1) Fe-oxinate complexes were prepared in an ethanol solvent so no need for separation anymore, (2) Fe-oxinate complexes were made in chloroform so that a solvent extraction was required before the complex was injected into the column while the third complex was formed in the column, wherein the eluent contains the oxide and the metal ions are then injected. The resulting chromatogram shows that the 3rd way provides a better chromatogram for iron analysis.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 15: Technical uncertainty and project complexity as correlates of information use by US industry-affiliated aerospace engineers and scientists: Results of an exploratory investigation

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    An exploratory study was conducted that investigated the influence of technical uncertainty and project complexity on information use by U.S. industry-affiliated aerospace engineers and scientists. The study utilized survey research in the form of a self-administered mail questionnaire. U.S. aerospace engineers and scientists on the Society of Automotive Engineers (SAE) mailing list served as the study population. The adjusted response rate was 67 percent. The survey instrument is appendix C to this report. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and information use. Statistically significant relationships were found to exist between technical uncertainty, project complexity, and the use of federally funded aerospace R&D. The results of this investigation are relevant to researchers investigating information-seeking behavior of aerospace engineers. They are also relevant to R&D managers and policy planners concerned with transferring the results of federally funded aerospace R&D to the U.S. aerospace industry.

  15. CarbonSAFE Illinois - Macon County

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whittaker, Steve

    CarbonSAFE Illinois is a a Feasibility study to develop an established geologic storage complex in Macon County, Illinois, for commercial-scale storage of industrially sourced CO2. Feasibility activities are focused on the Mt. Simon Storage Complex; a step-out well will be drilled near existing storage sites (i.e., the Midwest Geological Sequestration Consortium’s Illinois Basin – Decatur Project and the Illinois Industrial Carbon Capture and Storage Project) to further establish commercial viability of this complex and to evaluate EOR potential in a co-located oil-field trend. The Archer Daniels Midland facility (ethanol plant), City Water, Light, and Power in Springfield, Illinois (coal-fired powermore » station), and other regional industries are potential sources of anthropogenic CO2 for storage at this complex. Site feasibility will be evaluated through drilling results, static and dynamic modeling, and quantitative risk assessment. Both studies will entail stakeholder engagement, consideration of infrastructure requirements, existing policy, and business models. Project data will help calibrate the National Risk Assessment Partnership (NRAP) Toolkit to better understand the risks of commercial-scale carbon storage.« less

  16. Analytical characterization of human milk oligosaccharides - potential applications in pharmaceutical analysis.

    PubMed

    Grabarics, Márkó; Csernák, Orsolya; Balogh, Réka; Béni, Szabolcs

    2017-11-30

    Human breast milk is the gold standard for infant feeding and the best possible nourishment a new-born could have. Breastfeeding is the natural way to provide optimal nutritional, immunological and emotional nurturing for the healthy growth and development of infants. Human milk is a complex and dynamic biofluid comprised of many hundreds to thousands of distinct bioactive structures, among which one of the most abundant substances are the non-conjugated complex carbohydrates referred to as human milk oligosaccharides (HMOs). Due to their structural diversity and abundance, HMOs possess many beneficial biological functions. In order to understand human milk composition and HMO functions, state-of-the-art glycomic methods are inevitable. The industrial, large scale chemoenzymatic production of the most abundant HMOs became a reality in the last years and it evokes the need for straightforward and genuine analytical procedures to monitor the synthetic process and the quality of the products. It is obvious, that HMOs represent the next breakthrough in infant nutrition, as the addition of HMOs (such as 2'-fucosyllactose or lacto-N-neotetraose) to infant- and follow-on formulas, processed cereal-based food and baby foods for infants and young children etc. will revolutionize this field. This review highlights the potential applications of HMOs in the (bio)pharmaceutical industry, also summarizes the analytical methods available for the characterization of HMOs. An overview of the structure and function of HMOs along with their determination methods in complex matrices are provided. Various separation methods including liquid- and gas chromatography and capillary electrophoresis for the characterization and novel approaches for the quantitation of HMOs are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A History of Repeated Failures: Stratigraphy of the Currituck and Cape Fear Slide Complexes on the Central U.S. Atlantic Margin

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.

    2016-12-01

    The Currituck and Cape Fear Slide complexes, offshore of North Carolina, are two of the largest (>150 km3) submarine slope failure provinces on the U.S. Atlantic margin. Detailed stratigraphy of these slides and the surrounding regions is derived from a combination of high-resolution sparker multichannel seismic (MCS) data collected by the USGS in 2012, airgun MCS collected as part of the NSF GeoPRISMs Community Seismic Experiment in 2014 & legacy industry airgun MCS data collected in 1970s and 80s. Both the Currituck and Cape Fear Slide complexes are located in regions with high sediment input that resulted in the development of a broad, low gradient (<6°) margin with thick slope sediment accumulation since at least the Miocene. Bedding parallel failure planes highlight the influence of subsurface stratigraphy here. Differential compaction across buried scarps and other erosional surfaces found in proximity to many of the headwalls may have contributed to excess pore pressure in these zones, setting the stage for repeated failures. Within the Currituck Slide complex, there appear to be several buried mass transport deposits (MTDs) within both the Quaternary and Pliocene sections that may be related to buried scarps found beneath both the upper and lower headwalls. At the Cape Fear Slide, the Quaternary section upslope of a large salt diapir displays evidence of possible downslope creep folding within strata that downlap onto a possible buried failure plane. While submarine slope failure along this portion of the margin has long been linked with hydrate dissociation and/or salt tectonics, features that are pervasive along the margin, our new stratigraphic analyses suggest that antecedent margin physiography and sediment loading may be critical factors in determining the locations of large-scale slope failures.

  18. LCA and design for environment (DFE) -- Application to the automotive industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bensahel, J.F.; Teulon, H.

    End of life of large plastic parts is a major issue for the automotive industry, whereas metal parts are easily recycled. Ecobilan is carrying out a study on plastic bumpers, for the French car manufacturer Peugeot SA. This study aims at estimating the environmental impacts of three alternative treatments for plastic bumpers at the end of life of the car: (1 ) crushing and shredding with the whole automobile, screening of the metallic and mineral part, and incineration of the automobile shredder residue, (2) dismantling and separate incineration of bumpers, (3) dismantling and recycling of bumpers, as new plastic partsmore » for the automobile industry. Systems boundaries are defined so as to include into the systems only the steps which makes difference between the three options. The long term stake of the study is to include environmental data in the design of the car, along with technical and economic elements, that is to say to Design For Environment. The objective is to find economic, technical and environmental optimum for complex products, that makes sense on the whole life cycle of the product. Peugeot SA agrees to publish some results, which will be available by May 1995. These results will mix both environmental and economic analysis.« less

  19. Differences in the progress of the biopesticide revolution between the EU and other major crop-growing regions.

    PubMed

    Balog, Adalbert; Hartel, Tibor; Loxdale, Hugh D; Wilson, Kenneth

    2017-11-01

    The five-year value in the compound annual growth rate of the biopesticides sector is predicted to be 16% by 2017 and to produce a global market worth $US 10 billion. Despite this, several impediments occur within the EU that negatively affect biopesticide research and innovation. At present, there are fewer biopesticide-active substances registered in the EU compared with the United States, India, Brazil and China. The relatively low level of biopesticide research in the EU (6880 ISI papers) versus the United States (18 839), India (9501) and China (7875) relates to the greater complexity of EU-based biopesticide regulations compared with these other countries. In this light, it is worth noting that tensions may exist between regulators that emphasise the beneficial nature of biopesticides in environmentally friendly crop management and those that adopt a more technologically based approach dependent on a chemical-pesticide-driven model. Compared with the other aforementioned countries, far fewer biopesticide products are available in the EU market, mainly as a direct result of the severe regulatory factors present there. The extent to which this trend will continue depends largely on a range of interacting political and/or regulatory decisions that influence environmentally friendly agricultural industries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Computer Technology for Industry

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In this age of the computer, more and more business firms are automating their operations for increased efficiency in a great variety of jobs, from simple accounting to managing inventories, from precise machining to analyzing complex structures. In the interest of national productivity, NASA is providing assistance both to longtime computer users and newcomers to automated operations. Through a special technology utilization service, NASA saves industry time and money by making available already developed computer programs which have secondary utility. A computer program is essentially a set of instructions which tells the computer how to produce desired information or effect by drawing upon its stored input. Developing a new program from scratch can be costly and time-consuming. Very often, however, a program developed for one purpose can readily be adapted to a totally different application. To help industry take advantage of existing computer technology, NASA operates the Computer Software Management and Information Center (COSMIC)(registered TradeMark),located at the University of Georgia. COSMIC maintains a large library of computer programs developed for NASA, the Department of Defense, the Department of Energy and other technology-generating agencies of the government. The Center gets a continual flow of software packages, screens them for adaptability to private sector usage, stores them and informs potential customers of their availability.

  1. Semi-industrial scale (30 m3) fed-batch fermentation for the production of D-lactate by Escherichia coli strain HBUT-D15.

    PubMed

    Fu, Xiangmin; Wang, Yongze; Wang, Jinhua; Garza, Erin; Manow, Ryan; Zhou, Shengde

    2017-02-01

    D(-)-lactic acid is needed for manufacturing of stereo-complex poly-lactic acid polymer. Large scale D-lactic acid fermentation, however, has yet to be demonstrated. A genetically engineered Escherichia coli strain, HBUT-D, was adaptively evolved in a 15% calcium lactate medium for improved lactate tolerance. The resulting strain, HBUT-D15, was tested at a lab scale (7 L) by fed-batch fermentation with up to 200 g L -1 of glucose, producing 184-191 g L -1 of D-lactic acid, with a volumetric productivity of 4.38 g L -1  h -1 , a yield of 92%, and an optical purity of 99.9%. The HBUT-D15 was then evaluated at a semi-industrial scale (30 m 3 ) via fed-batch fermentation with up to 160 g L -1 of glucose, producing 146-150 g L -1 of D-lactic acid, with a volumetric productivity of 3.95-4.29 g L -1  h -1 , a yield of 91-94%, and an optical purity of 99.8%. These results are comparable to that of current industrial scale L(+)-lactic acid fermentation.

  2. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing.

    PubMed

    Malmberg, M Michelle; Shi, Fan; Spangenberg, German C; Daetwyler, Hans D; Cogan, Noel O I

    2018-01-01

    Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD). Complexity reduction genotyping-by-sequencing (GBS) methods, including GBS-transcriptomics (GBS-t), enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR) delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs), and identify structural variants (SVs). Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  3. Boosting-Based Optimization as a Generic Framework for Novelty and Fraud Detection in Complex Strategies

    NASA Astrophysics Data System (ADS)

    Gavrishchaka, Valeriy V.; Kovbasinskaya, Maria; Monina, Maria

    2008-11-01

    Novelty detection is a very desirable additional feature of any practical classification or forecasting system. Novelty and rare patterns detection is the main objective in such applications as fault/abnormality discovery in complex technical and biological systems, fraud detection and risk management in financial and insurance industry. Although many interdisciplinary approaches for rare event modeling and novelty detection have been proposed, significant data incompleteness due to the nature of the problem makes it difficult to find a universal solution. Even more challenging and much less formalized problem is novelty detection in complex strategies and models where practical performance criteria are usually multi-objective and the best state-of-the-art solution is often not known due to the complexity of the task and/or proprietary nature of the application area. For example, it is much more difficult to detect a series of small insider trading or other illegal transactions mixed with valid operations and distributed over long time period according to a well-designed strategy than a single, large fraudulent transaction. Recently proposed boosting-based optimization was shown to be an effective generic tool for the discovery of stable multi-component strategies/models from the existing parsimonious base strategies/models in financial and other applications. Here we outline how the same framework can be used for novelty and fraud detection in complex strategies and models.

  4. [Ecological misunderstanding, integrative approach, and potential industries in circular economy transition].

    PubMed

    Wang, Rusong

    2005-12-01

    Based on the Social-Economic-Natural Complex Ecosystem theory, this paper questioned 8 kinds of misunderstandings in current planning, incubation, development, and management of circular economy, which had led to either ultra-right or ultra-left actions in ecological and economic development. Rather than concentrated only on the 3-r micro-principles of "reduce-reuse-recycle", thise paper suggested 3-R macro-principles of "Rethinking-Reform-Refunction" for circular economy development. Nine kinds of eco-integrative strategies in industrial transition were put forward, i.e., food web-based horizontal/parallel coupling, life cycle-oriented vertical/serial coupling, functional service rather than products-oriented production, flexible and adaptive structure, ecosystem-based regional coupling, social integrity, comprehensive capacity building, employment enhancement, and respecting human dignity. Ten promising potential eco-industries in China's near-future circular economy development were proposed, such as the transition of traditional chemical fertilizer and pesticide industry to a new kind of industrial complex for agro-ecosystem management.

  5. Cybersecurity in Hospitals: A Systematic, Organizational Perspective.

    PubMed

    Jalali, Mohammad S; Kaiser, Jessica P

    2018-05-28

    Cybersecurity incidents are a growing threat to the health care industry in general and hospitals in particular. The health care industry has lagged behind other industries in protecting its main stakeholder (ie, patients), and now hospitals must invest considerable capital and effort in protecting their systems. However, this is easier said than done because hospitals are extraordinarily technology-saturated, complex organizations with high end point complexity, internal politics, and regulatory pressures. The purpose of this study was to develop a systematic and organizational perspective for studying (1) the dynamics of cybersecurity capability development at hospitals and (2) how these internal organizational dynamics interact to form a system of hospital cybersecurity in the United States. We conducted interviews with hospital chief information officers, chief information security officers, and health care cybersecurity experts; analyzed the interview data; and developed a system dynamics model that unravels the mechanisms by which hospitals build cybersecurity capabilities. We then use simulation analysis to examine how changes to variables within the model affect the likelihood of cyberattacks across both individual hospitals and a system of hospitals. We discuss several key mechanisms that hospitals use to reduce the likelihood of cybercriminal activity. The variable that most influences the risk of cyberattack in a hospital is end point complexity, followed by internal stakeholder alignment. Although resource availability is important in fueling efforts to close cybersecurity capability gaps, low levels of resources could be compensated for by setting a high target level of cybersecurity. To enhance cybersecurity capabilities at hospitals, the main focus of chief information officers and chief information security officers should be on reducing end point complexity and improving internal stakeholder alignment. These strategies can solve cybersecurity problems more effectively than blindly pursuing more resources. On a macro level, the cyber vulnerability of a country's hospital infrastructure is affected by the vulnerabilities of all individual hospitals. In this large system, reducing variation in resource availability makes the whole system less vulnerable-a few hospitals with low resources for cybersecurity threaten the entire infrastructure of health care. In other words, hospitals need to move forward together to make the industry less attractive to cybercriminals. Moreover, although compliance is essential, it does not equal security. Hospitals should set their target level of cybersecurity beyond the requirements of current regulations and policies. As of today, policies mostly address data privacy, not data security. Thus, policy makers need to introduce policies that not only raise the target level of cybersecurity capabilities but also reduce the variability in resource availability across the entire health care system. ©Mohammad S Jalali, Jessica P Kaiser. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 28.05.2018.

  6. Levels of blood lead and urinary cadmium in industrial complex residents in Ulsan.

    PubMed

    Kim, Sang Hoon; Kim, Yang Ho; An, Hyun Chan; Sung, Joo Hyun; Sim, Chang Sun

    2017-01-01

    Populations neighboring industrial complexes are at an increased health risk, due to constant exposure to various potentially hazardous compounds released during industrial production activity. Although there are many previous studies that focus on occupational exposure to heavy metals, studies that focused on environmental exposure to lead and cadmium are relatively rare. The purpose of this study is to evaluate the extent of the environmental exposure of heavy metals in residents of industrial area. Four areas in close proximity to the Ulsan petrochemical industrial complex and the Onsan national industrial complex were selected to be included in the exposure group, and an area remotely located from these industrial complexes was selected as the non-exposure group. Among the residents of our study areas, a total of 1573 subjects aged 20 years and older were selected and all study subjects completed a written questionnaire. Blood and urine samples were obtained from about one third of the subjects (465 subjects) who provided informed consent for biological sample collection. Total 429 subjects (320 subjects from exposure area, 109 subjects from non-exposure area) were included in final analysis. The geometric mean blood lead level among the subjects in the exposed group was 2.449 μg/dL, which was significantly higher than the non-exposure group's level of 2.172 μg/dL. Similarly, the geometric mean urine cadmium levels between the two groups differed significantly, at 1.077 μg/g Cr. for the exposed group, and 0.709 μg/g Cr. for the non-exposure group. In a multiple linear regression analysis to determine the relationship between blood lead level and related factors, the results showed that blood lead level had a significant positive correlation with age, the male, exposure area, and non-drinkers. In the same way, urine cadmium level was positively correlated with age, the female, exposure area, and smokers. This study found that blood lead levels and urine cadmium levels were significantly higher among the residents of industrial areas than among the non-exposure area residents, which is thought to be due to the difference in environmental exposure of lead and cadmium. Furthermore, it was clear that at a low level of exposure, differences in blood lead or urine cadmium levels based on age, gender, and smoking status were greater than the differences based on area of residence. Therefore, when evaluating heavy metal levels in the body at a low level of exposure, age, gender, and smoking status must be adjusted, as they are significant confounding factors.

  7. Engineering biosynthesis of high-value compounds in photosynthetic organisms.

    PubMed

    O'Neill, Ellis C; Kelly, Steven

    2017-09-01

    The photosynthetic, autotrophic lifestyle of plants and algae position them as ideal platform organisms for sustainable production of biomolecules. However, their use in industrial biotechnology is limited in comparison to heterotrophic organisms, such as bacteria and yeast. This usage gap is in part due to the challenges in generating genetically modified plants and algae and in part due to the difficulty in the development of synthetic biology tools for manipulating gene expression in these systems. Plant and algal metabolism, pre-installed with multiple biosynthetic modules for precursor compounds, bypasses the requirement to install these pathways in conventional production organisms, and creates new opportunities for the industrial production of complex molecules. This review provides a broad overview of the successes, challenges and future prospects for genetic engineering in plants and algae for enhanced or de novo production of biomolecules. The toolbox of technologies and strategies that have been used to engineer metabolism are discussed, and the potential use of engineered plants for industrial manufacturing of large quantities of high-value compounds is explored. This review also discusses the routes that have been taken to modify the profiles of primary metabolites for increasing the nutritional quality of foods as well as the production of specialized metabolites, cosmetics, pharmaceuticals and industrial chemicals. As the universe of high-value biosynthetic pathways continues to expand, and the tools to engineer these pathways continue to develop, it is likely plants and algae will become increasingly valuable for the biomanufacturing of high-value compounds.

  8. Saving lives: A meta-analysis of team training in healthcare.

    PubMed

    Hughes, Ashley M; Gregory, Megan E; Joseph, Dana L; Sonesh, Shirley C; Marlow, Shannon L; Lacerenza, Christina N; Benishek, Lauren E; King, Heidi B; Salas, Eduardo

    2016-09-01

    As the nature of work becomes more complex, teams have become necessary to ensure effective functioning within organizations. The healthcare industry is no exception. As such, the prevalence of training interventions designed to optimize teamwork in this industry has increased substantially over the last 10 years (Weaver, Dy, & Rosen, 2014). Using Kirkpatrick's (1956, 1996) training evaluation framework, we conducted a meta-analytic examination of healthcare team training to quantify its effectiveness and understand the conditions under which it is most successful. Results demonstrate that healthcare team training improves each of Kirkpatrick's criteria (reactions, learning, transfer, results; d = .37 to .89). Second, findings indicate that healthcare team training is largely robust to trainee composition, training strategy, and characteristics of the work environment, with the only exception being the reduced effectiveness of team training programs that involve feedback. As a tertiary goal, we proposed and found empirical support for a sequential model of healthcare team training where team training affects results via learning, which leads to transfer, which increases results. We find support for this sequential model in the healthcare industry (i.e., the current meta-analysis) and in training across all industries (i.e., using meta-analytic estimates from Arthur, Bennett, Edens, & Bell, 2003), suggesting the sequential benefits of training are not unique to medical teams. Ultimately, this meta-analysis supports the expanded use of team training and points toward recommendations for optimizing its effectiveness within healthcare settings. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Java Performance for Scientific Applications on LLNL Computer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapfer, C; Wissink, A

    2002-05-10

    Languages in use for high performance computing at the laboratory--Fortran (f77 and f90), C, and C++--have many years of development behind them and are generally considered the fastest available. However, Fortran and C do not readily extend to object-oriented programming models, limiting their capability for very complex simulation software. C++ facilitates object-oriented programming but is a very complex and error-prone language. Java offers a number of capabilities that these other languages do not. For instance it implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than C++. It also offers networking and security as part ofmore » the language standard, and cross-platform executables that make it architecture neutral, to name a few. These features have made Java very popular for industrial computing applications. The aim of this paper is to explain the trade-offs in using Java for large-scale scientific applications at LLNL. Despite its advantages, the computational science community has been reluctant to write large-scale computationally intensive applications in Java due to concerns over its poor performance. However, considerable progress has been made over the last several years. The Java Grande Forum [1] has been promoting the use of Java for large-scale computing. Members have introduced efficient array libraries, developed fast just-in-time (JIT) compilers, and built links to existing packages used in high performance parallel computing.« less

  10. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea.

    PubMed

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-08-05

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving the air quality of the city.

  11. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    PubMed Central

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-01-01

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving the air quality of the city. PMID:26251905

  12. Genome-wide association study reveals putative regulators of bioenergy traits in Populus deltoides

    DOE PAGES

    Fahrenkrog, Annette M.; Neves, Leandro G.; Resende, Jr., Marcio F. R.; ...

    2016-09-06

    Genome-wide association studies (GWAS) have been used extensively to dissect the genetic regulation of complex traits in plants. These studies have focused largely on the analysis of common genetic variants despite the abundance of rare polymorphisms in several species, and their potential role in trait variation. Here, we conducted the first GWAS in Populus deltoides, a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits, and common and low-frequency single-nucleotide polymorphisms detected by targeted resequencing of 18 153 genesmore » in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. Our results suggest that both common and low-frequency variants need to be considered for a comprehensive understanding of the genetic regulation of complex traits, particularly in species that carry large numbers of rare polymorphisms. Lastly, these polymorphisms may be critical for the development of specialized plant feedstocks for bioenergy.« less

  13. WATER QUALITY MONITORING OF PHARMACEUTICALS ...

    EPA Pesticide Factsheets

    The demand on freshwater to sustain the needs of the growing population is of worldwide concern. Often this water is used, treated, and released for reuse by other communities. The anthropogenic contaminants present in this water may include complex mixtures of pesticides, prescription and nonprescription drugs, personal care and common consumer products, industrial and domestic-use materials and degradation products of these compounds. Although, the fate of these pharmaceuticals and personal care products (PPCPs) in wastewater treatment facilities is largely unknown, the limited data that does exist suggests that many of these chemicals survive treatment and some others are returned to their biologically active form via deconjugation of metabolites.Traditional water sampling methods (i.e., grab or composite samples) often require the concentration of large amounts of water to detect trace levels of PPCPs. A passive sampler, the polar organic chemical integrative sampler (POCIS), has been developed to integratively concentrate the trace levels of these chemicals, determine the time-weighted average water concentrations, and provide a method of estimating the potential exposure of aquatic organisms to these complex mixtures of waterborne contaminants. The POCIS (U.S. Patent number 6,478,961) consists of a hydrophilic microporous membrane, acting as a semipermeable barrier, enveloping various solid-phase sorbents that retain the sampled chemicals. Sampling rates f

  14. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Investing In The Army Organic Industrial Base To Operate And Win In A Complex And Austere Environment

    DTIC Science & Technology

    2016-05-26

    Complex and Austere Environment Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER MAJ Sun Ryu Se. TASK NUMBER Sf...supports the United States Armed Forces to project combat power during hostilities. In 2014, TRADOC published the new Army Operating Concept (AOC...Sustaining the Army Organic Industrial Base in the Post- Afghanistan Conflict Era” (Civilian Research Project , US Army War College, 2014), 1. 8

  16. Widespread fatigue damage monitoring: Issues and concerns

    NASA Technical Reports Server (NTRS)

    Swift, T.

    1994-01-01

    This paper is intended to illustrate the considerable effect that small in-service undetectable multi-site-damage (MSD) can have on the residual strength capability of aging aircraft structures. In general, very few people in the industry believe that tiny cracks of undetectable size are a problem because they know that many aircraft have been able to survive much larger damage. In fact they have been certified for this large damage capability. However, this is not the issue. The real issue is the effect the tiny cracks, at multiple sites, have on the large damage capability which the industry has become accustomed to expect and which the aircraft have been certified to sustain. The concern is that this message does not appear to be fully understood by many people outside the fracture community. The prime purpose of this paper, therefore, has been to convey this message by describing in simple terms the net section yielding phenomenon in ductile materials which causes loss in lead crack residual strength in the presence of MSD. The explanation continues with a number of examples on complex stiffened structures, using the results of previous finite element analyses, which illustrate that the effect of MSD is extremely sensitive to structural configuration. It is hoped that those members of the aviation community who believe that tiny cracks are not a problem will read this paper very carefully.

  17. Development of an Online Climate and Fisheries Data Dashboard for Stakeholders in the Northeast Shelf Large Marine Ecosystem

    NASA Astrophysics Data System (ADS)

    Young Morse, R.

    2016-12-01

    Fisheries managers make decisions that shape the future of ecosystems and the communities that depend on them. These decisions are often made without reference to environmental conditions, or are made assuming that past conditions (physical conditions, productivity, and species distributions) will persist. The rapid changes experienced in the Northeast Shelf Large Marine Ecosystem (NES LME), as well as the high degree of natural variability in this system, are prompting new discussions about how to incorporate environmental information into fisheries policy and management and into the industry. Through this project, we are facilitating access to fisheries and climate data for fisheries stakeholders in the Northeast through the creation of an online dynamic data dashboard. The primary goal is to make complex climate-relevant data accessible and easy to understand. Information on past, present, and future environmental conditions in the NES LME are presented in the context of fisheries dependent data. Working with marine fisheries stakeholders, including fisheries management council members, industry leaders and non-profits, we have developed a suite of open source processes and tools to acquire and subset climate relevant data from a variety of sources (satellites, sensors, models), develop long range climatologies, and display through dynamically updated interactive data visualizations. The resulting dashboard allows users to quickly assess conditions in the ocean and evaluate them in the context of past and projected change.

  18. [Health maintenance strategy for construction industry workers].

    PubMed

    Perminova, I Iu; Logvinenko, I I

    2011-01-01

    The authors analyzed work conditions and health state of workers engaged into construction industry in Kemerovo city. Findings are that complex approach to carrying out the strategy "Health for all in XXI century" causes health preservation.

  19. Care coordination of multimorbidity: a scoping study

    PubMed Central

    Burau, Viola

    2015-01-01

    Background A key challenge in healthcare systems worldwide is the large number of patients who suffer from multimorbidity; despite this, most systems are organized within a single-disease framework. Objective The present study addresses two issues: the characteristics and preconditions of care coordination for patients with multimorbidity; and the factors that promote or inhibit care coordination at the levels of provider organizations and healthcare professionals. Design The analysis is based on a scoping study, which combines a systematic literature search with a qualitative thematic analysis. The search was conducted in November 2013 and included the PubMed, CINAHL, and Web of Science databases, as well as the Cochrane Library, websites of relevant organizations and a hand-search of reference lists. The analysis included studies with a wide range of designs, from industrialized countries, in English, German and the Scandinavian languages, which focused on both multimorbidity/comorbidity and coordination of integrated care. Results The analysis included 47 of the 226 identified studies. The central theme emerging was complexity. This related to both specific medical conditions of patients with multimorbidity (case complexity) and the organization of care delivery at the levels of provider organizations and healthcare professionals (care complexity). Conclusions In terms of how to approach care coordination, one approach is to reduce complexity and the other is to embrace complexity. Either way, future research must take a more explicit stance on complexity and also gain a better understanding of the role of professionals as a prerequisite for the development of new care coordination interventions. PMID:29090157

  20. Daddy, What's a Nuclear Reactor?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reisenweaver, Dennis W.

    2008-01-15

    No matter what we think of the nuclear industry, it is part of mankind's heritage. The decommissioning process is slowly making facilities associated with this industry disappear and not enough is being done to preserve the information for future generations. This paper provides some food for thought and provides a possible way forward. Industrial archaeology is an ever expanding branch of archaeology that is dedicated to preserving, interpreting and documenting our industrial past and heritage. Normally it begins with analyzing an old building or ruins and trying to determine what was done, how it was done and what changes mightmore » have occurred during its operation. We have a unique opportunity to document all of these issues and provide them before the nuclear facility disappears. Entombment is an acceptable decommissioning strategy; however we would have to change our concept of entombment. It is proposed that a number of nuclear facilities be entombed or preserved for future generations to appreciate. This would include a number of different types of facilities such as different types of nuclear power and research reactors, a reprocessing plant, part of an enrichment plant and a fuel manufacturing plant. One of the main issues that would require resolution would be that of maintaining information of the location of the buried facility and the information about its operation and structure, and passing this information on to future generations. This can be done, but a system would have to be established prior to burial of the facility so that no information would be lost. In general, our current set of requirements and laws may need to be re-examined and modified to take into account these new situations. As an alternative, and to compliment the above proposal, it is recommended that a study and documentation of the nuclear industry be considered as part of twentieth century industrial archaeology. This study should not only include the power and fuel cycle facilities, but also the nuclear weapons complex and the industrial and research sectors. This would be a large chore due to the considerable number of different types of facilities that have been used in these industries, but it would be a worthwhile endeavor. This study would gather information that would normally be lost due to the decommissioning process and allow future generations to appreciate these industries. Because of the volume and varying types of facilities, it might be more beneficial to produce a set of studies relating to different aspects of the industry. A logical division would be the separation of the commercial nuclear industry and the nuclear weapons complex. The separation of the fuel cycle facilities may also be considered. If done properly, this could result in a set of documents of interest to a wide audience. The current nuclear industry is slowly disappearing through the decommissioning process. This industry is unique and is part of mankind's heritage. It must not be forgotten and the information should be made available for future generations. The U.S. Department of Energy and the National Park Service are doing some limited preservation of information, but I do not believe its enough. It is not being done in a manner that will preserve the true activities that were performed. It is recommended that the American Nuclear Society, along with other organizations, evaluate this proposal and possibly provide funds for a set of studies to be prepared and ensure that this valuable part of our heritage is not lost.« less

  1. Space Industrialization: The Mirage of Abundance.

    ERIC Educational Resources Information Center

    Deudney, Daniel

    1982-01-01

    Large-scale space industrialization is not a viable solution to the population, energy, and resource problems of earth. The expense and technological difficulties involved in the development and maintenance of space manufacturing facilities, space colonies, and large-scale satellites for solar power are discussed. (AM)

  2. Navy Fact File 1984

    DTIC Science & Technology

    1984-10-01

    Textile Fibers/Products Foods , Feeds, Beverages Industrial Supplies Value of Goods Exported ($ billions) 1958 1968 1978 $18.1 billion...character of its government, the soundness of its economy, its industrial efficiency, the development of its internal communications, the quality...decades the United States produced more raw materials than its growing industrial complex could consume. From a raw-materials-surplus-nation we

  3. Petroleum accounting principles, procedures, and issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, H.R.; Klingstedt, J.P.; Jones, D.M.

    1985-01-01

    This book begins with the basics and leads one through the complexities of accounting and reporting for the industry. It presents the material one needs as an accountant in the petroleum industry. Examples deal with real problems and issues. It also includes numerous illustrations and examples, as well as sample forms, lease agreements, and industry and governmental regulations.

  4. PumpKin: A tool to find principal pathways in plasma chemical models

    NASA Astrophysics Data System (ADS)

    Markosyan, A. H.; Luque, A.; Gordillo-Vázquez, F. J.; Ebert, U.

    2014-10-01

    PumpKin is a software package to find all principal pathways, i.e. the dominant reaction sequences, in chemical reaction systems. Although many tools are available to integrate numerically arbitrarily complex chemical reaction systems, few tools exist in order to analyze the results and interpret them in relatively simple terms. In particular, due to the large disparity in the lifetimes of the interacting components, it is often useful to group reactions into pathways that recycle the fastest species. This allows a researcher to focus on the slow chemical dynamics, eliminating the shortest timescales. Based on the algorithm described by Lehmann (2004), PumpKin automates the process of finding such pathways, allowing the user to analyze complex kinetics and to understand the consumption and production of a certain species of interest. We designed PumpKin with an emphasis on plasma chemical systems but it can also be applied to atmospheric modeling and to industrial applications such as plasma medicine and plasma-assisted combustion.

  5. Cyclodextrins in delivery systems: Applications

    PubMed Central

    Tiwari, Gaurav; Tiwari, Ruchi; Rai, Awani K.

    2010-01-01

    Cyclodextrins (CDs) are a family of cyclic oligosaccharides with a hydrophilic outer surface and a lipophilic central cavity. CD molecules are relatively large with a number of hydrogen donors and acceptors and, thus in general, they do not permeate lipophilic membranes. In the pharmaceutical industry, CDs have mainly been used as complexing agents to increase aqueous solubility of poorly soluble drugs and to increase their bioavailability and stability. CDs are used in pharmaceutical applications for numerous purposes, including improving the bioavailability of drugs. Current CD-based therapeutics is described and possible future applications are discussed. CD-containing polymers are reviewed and their use in drug delivery is presented. Of specific interest is the use of CD-containing polymers to provide unique capabilities for the delivery of nucleic acids. Studies in both humans and animals have shown that CDs can be used to improve drug delivery from almost any type of drug formulation. Currently, there are approximately 30 different pharmaceutical products worldwide containing drug/CD complexes in the market. PMID:21814436

  6. Characterization of a Novel Polysaccharide-Iron(III) Complex and Its Anti-Anemia and Nonspecific Immune Regulating Activities.

    PubMed

    Zhang, Yun; Ma, Fanyi; Zhu, Jinhua; Du, Zuliang; Zhao, Ying-Yong; Liu, Xiuhua

    2017-01-01

    Dioscorea opposita Thunb is the famous food and traditional medicine in China and it was rich in polysaccharides. Polysaccharides of Dioscorea Opposita Thunb possess immunoregulatory activity, free radical scavenging activity and anti-diabetic activity. A novel polysaccharide- iron(III) complex (CYPIC) was synthesized by using crude polysaccharide extracted from Dioscorea opposita Thunb. The component, structure, morphology and molecular weights of CYPIC were analysed, and the anti-anemia, acute toxicity and nonspecific immune regulating activities of CYPIC were assayed. The results showed that CYPIC could increase red blood cell count (RBC), hemoglobin (Hb), hematocrit (HCT), thymus and spleen index of mice with iron deficiency anemia (IDA). Although the structure and deeper mechanisms of CYPIC should be further studied, CYPIC has the potential to be used as an iron supplement for the treatment of iron deficiency anemia. The large scale industrial production was suggested due to the simple preparation processing of CYPIC. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Dark solitons, modulation instability and breathers in a chain of weakly nonlinear oscillators with cyclic symmetry

    NASA Astrophysics Data System (ADS)

    Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.

    2018-01-01

    In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.

  8. Current status of deepwater oil spill modelling in the Faroe-Shetland Channel, Northeast Atlantic, and future challenges.

    PubMed

    Gallego, Alejandro; O'Hara Murray, Rory; Berx, Barbara; Turrell, William R; Beegle-Krause, C J; Inall, Mark; Sherwin, Toby; Siddorn, John; Wakelin, Sarah; Vlasenko, Vasyl; Hole, Lars R; Dagestad, Knut Frode; Rees, John; Short, Lucy; Rønningen, Petter; Main, Charlotte E; Legrand, Sebastien; Gutierrez, Tony; Witte, Ursula; Mulanaphy, Nicole

    2018-02-01

    As oil reserves in established basins become depleted, exploration and production moves towards relatively unexploited areas, such as deep waters off the continental shelf. The Faroe-Shetland Channel (FSC, NE Atlantic) and adjacent areas have been subject to increased focus by the oil industry. In addition to extreme depths, metocean conditions in this region characterise an environment with high waves and strong winds, strong currents, complex circulation patterns, sharp density gradients, and large small- and mesoscale variability. These conditions pose operational challenges to oil spill response and question the suitability of current oil spill modelling frameworks (oil spill models and their forcing data) to adequately simulate the behaviour of a potential oil spill in the area. This article reviews the state of knowledge relevant to deepwater oil spill modelling for the FSC area and identifies knowledge gaps and research priorities. Our analysis should be relevant to other areas of complex oceanography. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Complex and biofluids: From Maxwell to nowadays

    NASA Astrophysics Data System (ADS)

    Misbah, Chaouqi

    2009-11-01

    Complex fluids are the rule in biology and in many industrial applications. Typical examples are blood, cartilage, and polymer solutions. Unlike water (as well as domestic oils, soft clear drinks, and so on), the law(s) describing the behavior of complex fluids are not yet fully established. The complexity arises from strong coupling between microscopic scales (like the motion of a red blood cell in the case of blood, or a polymer molecule for a polymer solution) and the global scale of the flow (say at the scale of a blood artery, or a channel in laboratory experiments). In this issue entitled Complex and Biofluids a large panel of experimental and theoretical problems of complex fluids is exposed. The topics range from dilute polymer solutions, food products, to biology (blood flow, cell and tissue mechanics). One of the earliest model put forward as an attempt to describe a complex fluid was suggested a long time ago by James Clerk Maxwell (in 1867). Other famous scientists, like Einstein (in 1906), and Taylor (in 1932) have made important contributions to the field, but the topic of complex fluids still continues to pose a formidable challenge to science. This field has known during the past decade an unbelievable upsurge of interest in many branches of science (physics, mechanics, chemistry, biology, medical science, mathematics, and so on). Understanding complex fluids is viewed as one of the biggest challenge of the present century. This synthesis will provide a simple introduction to the topic, summarize the main contribution of this issue, and list major open questions in this field. To cite this article: C. Misbah, C. R. Physique 10 (2009).

  10. Province/Ministry-Coordinated Industry-University-Institute Cooperation and University Development: Based on the Experiences of Guangdong Province

    ERIC Educational Resources Information Center

    Yang, Liu

    2016-01-01

    The industry S&T missioners, industry-university-institute innovation alliances, industry-university-institute regional model bases, and other provincial-level industry-university-institute cooperation mechanisms that Guangdong Province has formed through its practical efforts play an important role in training a large batch of practical…

  11. SMEs, IT, and the Third Space: Colonization and Creativity in the Theatre Industry

    NASA Astrophysics Data System (ADS)

    Kendall, Julie E.; Kendall, Kenneth E.

    We examine how small and medium-sized, professional, nonprofit performing arts theatres in the US can improve the strategic use of information technology (IT), as well as other aspects of theatre management for large, commercial theatre productions in the West End of London and on Broadway in New York City. In this article we use the epistemology of the third space developed by Bhabha (1994) and extended by Frenkel (2008). Although both authors were discussing knowledge transfer, we use their conceptualizations to characterize and explore more deeply the transfer process of culture (and thereby useful practices and worthwhile lessons) from small and medium-sized professional, nonprofit theaters to large-scale commercial theatres. We include a discussion of Nonaka’s (1991) concept of ba, and how it relates to the third space. We specifically employ the metaphor of the third space developed by Bhabha (1994) to critique and understand the verbal and nonverbal cultural transmissions between small and large theatres. One of our contributions is to use the conceptualization and metaphor of the third space to understand the complex exchanges and relationships between small to medium-sized nonprofit professional theatres and large commercial theatres, and to identify what large commercial productions can learn from nonprofit theatres from these exchanges.

  12. Some ecological guidelines for large-scale biomass plantations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, W.; Cook, J.H.; Beyea, J.

    1993-12-31

    The National Audubon Society sees biomass as an appropriate and necessary source of energy to help replace fossil fuels in the near future, but is concerned that large-scale biomass plantations could displace significant natural vegetation and wildlife habitat, and reduce national and global biodiversity. We support the development of an industry large enough to provide significant portions of our energy budget, but we see a critical need to ensure that plantations are designed and sited in ways that minimize ecological disruption, or even provide environmental benefits. We have been studying the habitat value of intensively managed short-rotation tree plantations. Ourmore » results show that these plantations support large populations of some birds, but not all of the species using the surrounding landscape, and indicate that their value as habitat can be increased greatly by including small areas of mature trees within them. We believe short-rotation plantations can benefit regional biodiversity if they can be deployed as buffers for natural forests, or as corridors connecting forest tracts. To realize these benefits, and to avoid habitat degradation, regional biomass plantation complexes (e.g., the plantations supplying all the fuel for a powerplant) need to be planned, sited, and developed as large-scale units in the context of the regional landscape mosaic.« less

  13. View of an unknown industrial building in the Dolphin Jute ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of an unknown industrial building in the Dolphin Jute Mill Complex, looking southwest. Note Garret Mountain at upper left and historic Dexter-Lambert smokestack. - Dolphin Manufacturing Company, Spruce & Barbour Streets, Paterson, Passaic County, NJ

  14. Complex deformation routes for direct recycling aluminium alloy scrap via industrial hot extrusion

    NASA Astrophysics Data System (ADS)

    Paraskevas, Dimos; Kellens, Karel; Kampen, Carlos; Mohammadi, Amirahmad; Duflou, Joost R.

    2018-05-01

    This paper presents the final results of an industrial project, aiming for direct hot extrusion of wrought aluminium alloy scrap at an industrial scale. Two types of complex deformation/extrusion routes were tested for the production of the same profile, starting from AA6060 scrap in form of machining chips. More specifically scrap-based billets were extruded through: a 2-porthole and a 4-porthole die-set, modified for enhanced scrap consolidation and grain refinement. For comparison reasons, cast billets of the same alloy were extruded through the modified 2-porthole die set. The tensile testing results as well as microstructural investigations show that the 4-porthole extrusion route further improves scrap consolidation compared to the 2-porthole die output. The successful implementation of solid state recycling, directly at industrial level, indicates the technological readiness level of this research.

  15. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    PubMed

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  16. Occupational cancer in the European part of the Commonwealth of Independent States.

    PubMed Central

    Bulbulyan, M A; Boffetta, P

    1999-01-01

    Precise information on the number of workers currently exposed to carcinogens in the Commonwealth of Independent States (CIS) is lacking. However, the large number of workers employed in high-risk industries such as the chemical and metal industries suggests that the number of workers potentially exposed to carcinogens may be large. In the CIS, women account for almost 50% of the industrial work force. Although no precise data are available on the number of cancers caused by occupational exposures, indirect evidence suggests that the magnitude of the problem is comparable to that observed in Western Europe, representing some 20,000 cases per year. The large number of women employed in the past and at present in industries that create potential exposure to carcinogens is a special characteristic of the CIS. In recent years an increasing amount of high-quality research has been conducted on occupational cancer in the CIS; there is, however, room for further improvement. International training programs should be established, and funds from international research and development programs should be devoted to this area. In recent years, following privatization of many large-scale industries, access to employment and exposure data is becoming increasingly difficult. PMID:10350512

  17. Measuring the intangibles: a metrics for the economic complexity of countries and products.

    PubMed

    Cristelli, Matthieu; Gabrielli, Andrea; Tacchella, Andrea; Caldarelli, Guido; Pietronero, Luciano

    2013-01-01

    We investigate a recent methodology we have proposed to extract valuable information on the competitiveness of countries and complexity of products from trade data. Standard economic theories predict a high level of specialization of countries in specific industrial sectors. However, a direct analysis of the official databases of exported products by all countries shows that the actual situation is very different. Countries commonly considered as developed ones are extremely diversified, exporting a large variety of products from very simple to very complex. At the same time countries generally considered as less developed export only the products also exported by the majority of countries. This situation calls for the introduction of a non-monetary and non-income-based measure for country economy complexity which uncovers the hidden potential for development and growth. The statistical approach we present here consists of coupled non-linear maps relating the competitiveness/fitness of countries to the complexity of their products. The fixed point of this transformation defines a metrics for the fitness of countries and the complexity of products. We argue that the key point to properly extract the economic information is the non-linearity of the map which is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We present a detailed comparison of the results of this approach directly with those of the Method of Reflections by Hidalgo and Hausmann, showing the better performance of our method and a more solid economic, scientific and consistent foundation.

  18. Measuring the Intangibles: A Metrics for the Economic Complexity of Countries and Products

    PubMed Central

    Cristelli, Matthieu; Gabrielli, Andrea; Tacchella, Andrea; Caldarelli, Guido; Pietronero, Luciano

    2013-01-01

    We investigate a recent methodology we have proposed to extract valuable information on the competitiveness of countries and complexity of products from trade data. Standard economic theories predict a high level of specialization of countries in specific industrial sectors. However, a direct analysis of the official databases of exported products by all countries shows that the actual situation is very different. Countries commonly considered as developed ones are extremely diversified, exporting a large variety of products from very simple to very complex. At the same time countries generally considered as less developed export only the products also exported by the majority of countries. This situation calls for the introduction of a non-monetary and non-income-based measure for country economy complexity which uncovers the hidden potential for development and growth. The statistical approach we present here consists of coupled non-linear maps relating the competitiveness/fitness of countries to the complexity of their products. The fixed point of this transformation defines a metrics for the fitness of countries and the complexity of products. We argue that the key point to properly extract the economic information is the non-linearity of the map which is necessary to bound the complexity of products by the fitness of the less competitive countries exporting them. We present a detailed comparison of the results of this approach directly with those of the Method of Reflections by Hidalgo and Hausmann, showing the better performance of our method and a more solid economic, scientific and consistent foundation. PMID:23940633

  19. Dzhida Ore District: Geology, Structural and Metallogenic Regionalization, Genetic Types of Ore Deposits, Geodynamic Conditions of Their Formation, Forecast, and Outlook for Development

    NASA Astrophysics Data System (ADS)

    Gordienko, I. V.; Gorokhovsky, D. V.; Smirnova, O. K.; Lantseva, V. S.; Badmatsyrenova, R. A.; Orsoev, D. A.

    2018-01-01

    Based on complex structural, rheological, and metallogenic studies, taking into account the results of earlier subject-specific, prospecting, mapping, and exploration works, it has been established that the geological structure of the district was caused by the ensimatic evolution of the Vendian-Early Paleozoic Dzhida island-arc system, in which oceanic and island-arc complexes served as a melanocratic basement for Late Paleozoic-Mesozoic active within-plate (riftogenic) processes, which gave rise to the formation of ore deposits and occurrences of strategic mineral commodities (Mo, W, Au, Pt, Ag, and rare elements, including REE). Mantle plumes and flows of deep-seated transmagmatic solutions (ore-forming fluids) played a critical role in these processes, the significance of which increases in upper crustal swarms of dikes and fault systems. The forecasts and development prospects of the Dzhida ore district envisage the expansion of geological prospecting and exploration, scientific research, and technological testing of ore for insight into strategic mineral commodities, as well as reanimation of mining within the areas of the Dzhida's large territorial and industrial complex (TIC) in eastern Siberia.

  20. Ion-selective electrodes in potentiometric titrations; a new method for processing and evaluating titration data.

    PubMed

    Granholm, Kim; Sokalski, Tomasz; Lewenstam, Andrzej; Ivaska, Ari

    2015-08-12

    A new method to convert the potential of an ion-selective electrode to concentration or activity in potentiometric titration is proposed. The advantage of this method is that the electrode standard potential and the slope of the calibration curve do not have to be known. Instead two activities on the titration curve have to be estimated e.g. the starting activity before the titration begins and the activity at the end of the titration in the presence of large excess of titrant. This new method is beneficial when the analyte is in a complexed matrix or in a harsh environment which affects the properties of the electrode and the traditional calibration procedure with standard solutions cannot be used. The new method was implemented both in a method of linearization based on the Grans's plot and in determination of the stability constant of a complex and the concentration of the complexing ligand in the sample. The new method gave accurate results when using titrations data from experiments with samples of known composition and with real industrial harsh black liquor sample. A complexometric titration model was also developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The sh2-R allele of the maize shrunken-2 locus was caused by a complex chromosomal rearrangement.

    PubMed

    Kramer, Vance; Shaw, Janine R; Senior, M Lynn; Hannah, L Curtis

    2015-03-01

    The mutant that originally defined the shrunken - 2 locus of maize is shown here to be the product of a complex chromosomal rearrangement. The maize shrunken-2 gene (sh2) encodes the large subunit of the heterotetrameric enzyme, adenosine diphosphate glucose pyrophosphorylases and a rate-limiting enzyme in starch biosynthesis. The sh2 gene was defined approximately 72 years ago by the isolation of a loss-of-function allele conditioning a shrunken, but viable seed. In subsequent years, the realization that this allele, termed zsh2-R or sh2-Reference, causes an extremely high level of sucrose to accumulate in the developing seed led to a revolution in the sweet corn industry. Now, the vast majority of sweet corns grown throughout the world contain this mutant allele. Through initial Southern analysis followed by genomic sequencing, the work reported here shows that this allele arose through a complex set of events involving at least three breaks of chromosome 3 as well as an intra-chromosomal inversion. These findings provide an explanation for some previously reported, unexpected observations concerning rates of recombination within and between genes in this region.

  2. Projected Impact of Compositional Verification on Current and Future Aviation Safety Risk

    NASA Technical Reports Server (NTRS)

    Reveley, Mary S.; Withrow, Colleen A.; Leone, Karen M.; Jones, Sharon M.

    2014-01-01

    The projected impact of compositional verification research conducted by the National Aeronautic and Space Administration System-Wide Safety and Assurance Technologies on aviation safety risk was assessed. Software and compositional verification was described. Traditional verification techniques have two major problems: testing at the prototype stage where error discovery can be quite costly and the inability to test for all potential interactions leaving some errors undetected until used by the end user. Increasingly complex and nondeterministic aviation systems are becoming too large for these tools to check and verify. Compositional verification is a "divide and conquer" solution to addressing increasingly larger and more complex systems. A review of compositional verification research being conducted by academia, industry, and Government agencies is provided. Forty-four aviation safety risks in the Biennial NextGen Safety Issues Survey were identified that could be impacted by compositional verification and grouped into five categories: automation design; system complexity; software, flight control, or equipment failure or malfunction; new technology or operations; and verification and validation. One capability, 1 research action, 5 operational improvements, and 13 enablers within the Federal Aviation Administration Joint Planning and Development Office Integrated Work Plan that could be addressed by compositional verification were identified.

  3. Sphingolipid biosynthesis upregulation by TOR Complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress

    PubMed Central

    Guerreiro, Joana F.; Muir, Alexander; Ramachandran, Subramaniam; Thorner, Jeremy; Sá-Correia, Isabel

    2016-01-01

    Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus, understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for S. cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the Target of Rapamycin (TOR) Complex 2 (TORC2). We show here by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of L-serine: palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus, appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks. PMID:27671892

  4. Dedicated industrial oilseed crops as metabolic engineering platforms for sustainable industrial feedstock production

    USDA-ARS?s Scientific Manuscript database

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemi...

  5. Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils.

    PubMed

    Rueda-Holgado, F; Calvo-Blázquez, L; Cereceda-Balic, F; Pinilla-Gil, E

    2016-02-01

    Fractionation of elemental contents in atmospheric samples is useful to evaluate pollution levels for risk assessment and pollution sources assignment. We present here the main results of long-term characterization of atmospheric deposition by using a recently developed atmospheric elemental fractionation sampler (AEFS) for major and trace elements monitoring around an important industrial complex located in Puchuncaví region (Chile). Atmospheric deposition samples were collected during two sampling campaigns (2010 and 2011) at four sampling locations: La Greda (LG), Los Maitenes (LM), Puchuncaví (PU) and Valle Alegre (VA). Sample digestion and ICP-MS gave elements deposition values (Al, As, Ba, Cd, Co, Cu, Fe, K, Mn, Pb, Sb, Ti, V and Zn) in the insoluble fraction of the total atmospheric deposition. Results showed that LG location, the closest location to the industrial complex, was the more polluted sampling site having the highest values for the analyzed elements. PU and LM were the next more polluted and, finally, the lowest elements concentrations were registered at VA. The application of Principal Component Analysis and Cluster Analysis identified industrial, traffic and mineral-crustal factors. We found critical loads exceedances for Pb at all sampling locations in the area affected by the industrial emissions, more significant in LG close to the industrial complex, with a trend to decrease in 2011, whereas no exceedances due to atmospheric deposition were detected for Cd. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. 76 FR 66013 - Approval and Promulgation of Air Quality Implementation Plans; Missouri; Reasonably Available...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... 57215): Paper, Film, and Foil Coatings; Metal Furniture Coatings; and Large Appliance Coatings... Emissions Paper, Film, and Foil Coatings. From Industrial Surface Coating Operations. 10 CSR 10-5.220... Paneling Coatings Paper, Film, and Foil Coatings Miscellaneous Industrial Adhesives Large Appliance...

  7. Technology Evaluation for the Big Spring Water Treatment System at the Y-12 National Security Complex, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becthel Jacobs Company LLC

    2002-11-01

    The Y-12 National Security Complex (Y-12 Complex) is an active manufacturing and developmental engineering facility that is located on the U.S. Department of Energy (DOE) Oak Ridge Reservation. Building 9201-2 was one of the first process buildings constructed at the Y-12 Complex. Construction involved relocating and straightening of the Upper East Fork Poplar Creek (UEFPC) channel, adding large quantities of fill material to level areas along the creek, and pumping of concrete into sinkholes and solution cavities present within the limestone bedrock. Flow from a large natural spring designated as ''Big Spring'' on the original 1943 Stone & Webster Buildingmore » 9201-2 Field Sketch FS6003 was captured and directed to UEFPC through a drainpipe designated Outfall 51. The building was used from 1953 to 1955 for pilot plant operations for an industrial process that involved the use of large quantities of elemental mercury. Past operations at the Y-12 Complex led to the release of mercury to the environment. Significant environmental media at the site were contaminated by accidental releases of mercury from the building process facilities piping and sumps associated with Y-12 Complex mercury handling facilities. Releases to the soil surrounding the buildings have resulted in significant levels of mercury in these areas of contamination, which is ultimately transported to UEFPC, its streambed, and off-site. Bechtel Jacobs Company LLC (BJC) is the DOE-Oak Ridge Operations prime contractor responsible for conducting environmental restoration activities at the Y-12 Complex. In order to mitigate the mercury being released to UEFPC, the Big Spring Water Treatment System will be designed and constructed as a Comprehensive Environmental Response, Compensation, and Liability Act action. This facility will treat the combined flow from Big Spring feeding Outfall 51 and the inflow now being processed at the East End Mercury Treatment System (EEMTS). Both discharge to UEFPC adjacent to Bldg. 9201-2. The EEMTS treats mercury-contaminated groundwater that collects in sumps in the basement of Bldg. 9201-2. A pre-design study was performed to investigate the applicability of various treatment technologies for reducing mercury discharges at Outfall 51 in support of the design of the Big Spring Water Treatment System. This document evaluates the results of the pre-design study for selection of the mercury removal technology for the treatment system.« less

  8. The role of materials in global competitiveness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    A symposium on global competitiveness was sponsored by ASM`s Advisory Technical Awareness Council during Materials Week in Cleveland last October. Carpenter Technology`s approach to internationalization and diversification involves three steps: internationalization of core businesses, diversification into engineered products, and focused research and development. Aluminum`s potential was the basis of the Audi-Alcoa relationship, and the result was a true breakthrough: a spaceframe structure designed to integrate every component surface as a structural entity, featuring straight and curved extruded sections joined by complex diecast nodes at key intersections and connection points. Through the support of research and development, many federal departments andmore » agencies have long been involved directly or indirectly in the support of civilian as well as defense industries. New copper alloys and fabrication techniques are enhancing global competitiveness, based largely on copper`s natural advantages of conductivity and corrosion resistance. The heavy equipment industry is a major transformer and user of steel, rubber, aluminum, welding consumables and equipment; glass, plastics, microprocessors and electronics; machine tools, and energy. It comprises the construction, farming, mining, and powertrain equipment manufacturers.« less

  9. Guar gum as a promising starting material for diverse applications: A review.

    PubMed

    Thombare, Nandkishore; Jha, Usha; Mishra, Sumit; Siddiqui, M Z

    2016-07-01

    Guar gum is the powdered endosperm of the seeds of the Cyamopsis tetragonolobus which is a leguminous crop. The endosperm contains a complex polysaccharide called galactomannan, which is a polymer of d-galactose and d-mannose. This hydroxyl group rich polymer when added to water forms hydrogen bonding imparting significant viscosity and thickening to the solution. Due to its thickening, emulsifying, binding and gelling properties, quick solubility in cold water, wide pH stability, film forming ability and biodegradability, it finds applications in large number of industries. In last few decades a lot of research has been done on guar gum to fit it into particular application, as such or by its structural modifications. This review gives an overview of the nature, chemistry and properties of guar gum and discusses recent developments in its modifications and applications in major industries like hydraulic fracturing, explosives, food, agriculture, textile, paper, cosmetics, bioremediation, drug delivery, medical and pharmaceuticals. This article would help researchers engaged in biopolymer area and other end-users who want to begin research in natural polysaccharides. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Quantitative elemental imaging of heterogeneous catalysts using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Trichard, F.; Sorbier, L.; Moncayo, S.; Blouët, Y.; Lienemann, C.-P.; Motto-Ros, V.

    2017-07-01

    Currently, the use of catalysis is widespread in almost all industrial processes; its use improves productivity, synthesis yields and waste treatment as well as decreases energy costs. The increasingly stringent requirements, in terms of reaction selectivity and environmental standards, impose progressively increasing accuracy and control of operations. Meanwhile, the development of characterization techniques has been challenging, and the techniques often require equipment with high complexity. In this paper, we demonstrate a novel elemental approach for performing quantitative space-resolved analysis with ppm-scale quantification limits and μm-scale resolution. This approach, based on laser-induced breakdown spectroscopy (LIBS), is distinguished by its simplicity, all-optical design, and speed of operation. This work analyzes palladium-based porous alumina catalysts, which are commonly used in the selective hydrogenation process, using the LIBS method. We report an exhaustive study of the quantification capability of LIBS and its ability to perform imaging measurements over a large dynamic range, typically from a few ppm to wt%. These results offer new insight into the use of LIBS-based imaging in the industry and paves the way for innumerable applications.

  11. Past and present of adolescence in society: the 'teen brain' debate in perspective.

    PubMed

    Feixa, Carles

    2011-08-01

    Understood as the stage in individual life comprised between physiological puberty (a "natural" condition) and the recognition of the adult status (a "cultural" construction), adolescence has been envisaged as a universal condition, a stage in human development to be found in all societies and historical moments. Nevertheless, anthropological founding's across space and times depict a more complex panorama. The large variety of situations can be grouped into five big models of adolescence, which correspond to different types of society: "puber" from the primitive stateless societies; "ephebe" from ancient states; "boy and girl" from pre-industrial rural societies; "teenager" from the first industrialisation process and "youngsters" from modern post-industrial societies. In order to describe the features of these five models of youth, this article presents a series of ethnographical examples to illustrate the enormous plasticity of adolescence in past and present. This perspective is to be considered as the psycho-social and cultural environment for adolescent brain development, that will be discussed in depth along in this special issue. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using Ocimum basilicum.

    PubMed

    Mosaddeghi, Mohammad Reza; Pajoum Shariati, Farshid; Vaziri Yazdi, Seyed Ali; Nabi Bidhendi, Gholamreza

    2018-06-21

    The wastewater produced in a pulp and paper industry is one of the most polluted industrial wastewaters, and therefore its treatment requires complex processes. One of the simple and feasible processes in pulp and paper wastewater treatment is coagulation and flocculation. Overusing a chemical coagulant can produce a large volume of sludge and increase costs and health concerns. Therefore, the use of natural and plant-based coagulants has been recently attracted the attention of researchers. One of the advantages of using Ocimum basilicum as a coagulant is a reduction in the amount of chemical coagulant required. In this study, the effect of basil mucilage has been investigated as a plant-based coagulant together with alum for treatment of paper recycling wastewater. Response surface methodology (RSM) was used to optimize the process of chemical coagulation based on a central composite rotatable design (CCRD). Quadratic models for colour reduction and TSS removal with coefficients of determination of R 2 >96 were obtained using the analysis of variance. Under optimal conditions, removal efficiencies of colour and total suspended solids (TSS) were 85% and 82%, respectively.

  13. How can a policy foster local pharmaceutical production and still protect public health? Lessons from the health-industry complex in Brazil.

    PubMed

    da Fonseca, Elize Massard

    2018-04-01

    The global health community is increasingly advocating for the local production of pharmaceuticals in developing countries as a way to promote technology transfer, capacity building and improve access to medicines. However, efforts to advance drug manufacturing in these countries revive an old dilemma of fostering technological development versus granting access to social services, such as healthcare. This paper explores the case of Brazil, a country that has developed large-scale health-inspired industrial policies, but is, yet, little understood. Brazil's experience suggests that progressive healthcare bureaucrats can create innovative practices for technology and knowledge transfers. It also demonstrates that highly competitive pharmaceutical firms can collaborate with each other, if a government provides them the right incentives. Reforming regulatory policies is crucial for guaranteeing high-quality products in developing countries, but governments must play a crucial role in supporting local firms to adapt to these regulations. These findings send a strong message to global health policymakers and practitioners on the conditions to create a suitable environment for local production of medical products.

  14. Creating knowledge structures in the pharmaceutical industry: the increasing significance of virtual organisation.

    PubMed

    Salazar, A; Howells, J

    2000-01-01

    This paper explores the specific trend and challenges facing the pharmaceutical industry regarding the exploitation of Internet e-commerce technology and virtual organisation to develop and maintain competitive advantage. There are two important facets of the current trend. One is the rapid development of a complex network of alliances between the established pharmaceutical companies and the specialised biotechnology company start-ups. The other is the rapid growth of internet e-commerce companies dedicated to developing specialised technological platforms for acquiring and selling genetic and biochemical knowledge. The underlying challenge is how big pharmaceutical companies can emulate some of the innovation processes of smaller biotechnology company start-ups, and how they can appropriate and applied new technological knowledge on the development of new drugs. Pharmaceutical companies in order to retain competitive advantage need to continuously monitor all aspects of knowledge management with regard to the R&D and manufacturing process (as well as customer management and marketing). Technological change and organisational restructuring should be aimed at boosting the capacity of large firms to innovate rapidly.

  15. Healthcare applications of knowledge discovery in databases.

    PubMed

    DeGruy, K B

    2000-01-01

    Many healthcare leaders find themselves overwhelmed with data, but lack the information they need to make informed decisions. Knowledge discovery in databases (KDD) can help organizations turn their data into information. KDD is the process of finding complex patterns and relationships in data. The tools and techniques of KDD have achieved impressive results in other industries, and healthcare needs to take advantage of advances in this exciting field. Recent advances in the KDD field have brought it from the realm of research institutions and large corporations to many smaller companies. Software and hardware advances enable small organizations to tap the power of KDD using desktop PCs. KDD has been used extensively for fraud detection and focused marketing. There is a wealth of data available within the healthcare industry that would benefit from the application of KDD tools and techniques. Providers and payers have a vast quantity of data (such as, charges and claims), but not effective way to analyze the data to accurately determine relationships and trends. Organizations that take advantage of KDD techniques will find that they offer valuable assistance in the quest to lower healthcare costs while improving healthcare quality.

  16. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  17. On Parallelizing Single Dynamic Simulation Using HPC Techniques and APIs of Commercial Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diao, Ruisheng; Jin, Shuangshuang; Howell, Frederic

    Time-domain simulations are heavily used in today’s planning and operation practices to assess power system transient stability and post-transient voltage/frequency profiles following severe contingencies to comply with industry standards. Because of the increased modeling complexity, it is several times slower than real time for state-of-the-art commercial packages to complete a dynamic simulation for a large-scale model. With the growing stochastic behavior introduced by emerging technologies, power industry has seen a growing need for performing security assessment in real time. This paper presents a parallel implementation framework to speed up a single dynamic simulation by leveraging the existing stability model librarymore » in commercial tools through their application programming interfaces (APIs). Several high performance computing (HPC) techniques are explored such as parallelizing the calculation of generator current injection, identifying fast linear solvers for network solution, and parallelizing data outputs when interacting with APIs in the commercial package, TSAT. The proposed method has been tested on a WECC planning base case with detailed synchronous generator models and exhibits outstanding scalable performance with sufficient accuracy.« less

  18. Violence, television and the health of American youth.

    PubMed

    Somers, A R

    1976-04-08

    In 1973, 18,032 young Americans, 15 to 24 years of age, died in motor-vehicle accidents, 5182 were murdered, and 4098 committed suicide. The death rate, for this age group, was 19 per cent higher in 1973-74 than it had been in 1960-61, owing entirely to deaths by violence. The largest rise in deaths from homicide during the past two decades was at the ages of one to four. For a considerable proportion of American children and youth, the "culture of violence" is now both a major health threat and a way of life. One contributing factor is television's massive daily diet of symbolic crime and violence in "entertainment" programs. After numerous studies of televsion influence on real-life violence, including two major government commissions, the industry is experimenting with a 7 to 9 p.m. "Family Hour" (6 to 8 p.m. Central Time) from which violence, along with sex, has been largely banished. Three industry unions claim censorship and are suing. The medical profession is urged to concern itself with this serious and complex health hazard.

  19. Spatial variability in persistent organic pollutants and polycyclic aromatic hydrocarbons found in beach-stranded pellets along the coast of the state of São Paulo, southeastern Brazil.

    PubMed

    Taniguchi, Satie; Colabuono, Fernanda I; Dias, Patrick S; Oliveira, Renato; Fisner, Mara; Turra, Alexander; Izar, Gabriel M; Abessa, Denis M S; Saha, Mahua; Hosoda, Junki; Yamashita, Rei; Takada, Hideshige; Lourenço, Rafael A; Magalhães, Caio A; Bícego, Márcia C; Montone, Rosalinda C

    2016-05-15

    High spatial variability in polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides, such as DDTs, and polybrominated diphenylethers was observed in plastic pellets collected randomly from 41 beaches (15 cities) in 2010 from the coast of state of São Paulo, southeastern Brazil. The highest concentrations ranged, in ng g(-1), from 192 to 13,708, 3.41 to 7554 and <0.11 to 840 for PAHs, PCBs and DDTs, respectively. Similar distribution pattern was presented, with lower concentrations on the relatively less urbanized and industrialized southern coast, and the highest values in the central portion of the coastline, which is affected by both waste disposal and large port and industrial complex. Additional samples were collected in this central area and PCB concentrations, in ngg(-)(1), were much higher in 2012 (1569 to 10,504) than in 2009/2010 (173 to 309) and 2014 (411), which is likely related to leakages of the PCB commercial mixture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The role of the pharmaceutical industry in meeting the public health threat of antibacterial resistance.

    PubMed

    Bergström, Richard

    2011-04-01

    The established market model for pharmaceutical products, as for most other products, is heavily dependent on sales volumes. Thus, it is a primary interest of the producer to sell large quantities. This may be questionable for medicinal products and probably most questionable for antibacterial remedies. For these products, treatment indications are very complex and encompass both potential patient benefits, possible adverse effects in the actual patient and, which is unique for this therapeutic class, consideration about what effects the drug use will have on the future therapeutic value of the drug. This is because bacteria are sure to develop resistance. The European Federation of Pharmaceutical Industries and Associations (EFPIA) agrees with the general description of the antibacterial resistance problem and wants to participate in measures to counteract antibacterial resistance. Stakeholders should forge an alliance that will address the need for and prudent use of new antibiotics. A variety of incentives probably have to be applied, but having all in common that the financial return has to be separated from the use of the product. Copyright © 2011. Published by Elsevier Ltd.

  1. Smart Grid Interoperability Maturity Model Beta Version

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widergren, Steven E.; Drummond, R.; Giroti, Tony

    The GridWise Architecture Council was formed by the U.S. Department of Energy to promote and enable interoperability among the many entities that interact with the electric power system. This balanced team of industry representatives proposes principles for the development of interoperability concepts and standards. The Council provides industry guidance and tools that make it an available resource for smart grid implementations. In the spirit of advancing interoperability of an ecosystem of smart grid devices and systems, this document presents a model for evaluating the maturity of the artifacts and processes that specify the agreement of parties to collaborate across anmore » information exchange interface. You are expected to have a solid understanding of large, complex system integration concepts and experience in dealing with software component interoperation. Those without this technical background should read the Executive Summary for a description of the purpose and contents of the document. Other documents, such as checklists, guides, and whitepapers, exist for targeted purposes and audiences. Please see the www.gridwiseac.org website for more products of the Council that may be of interest to you.« less

  2. Curriculum Development for the Achievement of Multiple Goals in the Agri-Food Industry.

    ERIC Educational Resources Information Center

    Stonehouse, D. P.

    1994-01-01

    The agri-food industry is concerned with maximizing global food output while preventing environmental damage. Agricultural education focuses on multidisciplinary, holistic, and integrative approaches that enhance student capabilities to address this complex issue. (SK)

  3. Menthol: putting the pieces together.

    PubMed

    Lee, Youn Ok; Glantz, Stanton A

    2011-05-01

    To integrate information on cigarette companies' understanding and use of menthol as summarised in published research based on previously internal tobacco industry documents with results from large population-based surveys of tobacco use and other independent sources. Papers published in this supplement of Tobacco Control, together with papers identified using PubMed searches. Tobacco companies shaped consumer perceptions of menthol cigarettes. Menthol is not just a flavouring agent. Cigarette companies use menthol's ability to mask irritation and provide sensory effects to make menthol cigarettes appeal to youth and health-concerned smokers, in part because menthol makes low-tar cigarettes more palatable. Consistent with targeted marketing, youths, women and African Americans disproportionately smoke menthols. There appear to be complex interactions with addictive effects of nicotine. The ubiquitous addition of menthol by tobacco companies to over 90% of all tobacco products, whether labelled 'menthol' or not, demonstrates that menthol is not simply a flavour or brand. Menthol imparts sensory characteristics to cigarettes and has a complex interaction with nicotine that affects smoking behaviour whether it is perceived or not, or whether cigarettes containing menthol are marketed as 'menthol' or not. Adding menthol increases fine particles in cigarette smoke, which have immediate adverse effects on the risk of heart attack. Information from industry documents, confirmed by independent scientific literature, consistently demonstrates that menthol increases population harm from smoking by increasing initiation and reducing cessation in some groups. Menthol facilitates and increases smoking, which causes disease and death.

  4. Deposition parameterizations for the Industrial Source Complex (ISC3) model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wesely, Marvin L.; Doskey, Paul V.; Shannon, J. D.

    2002-06-01

    Improved algorithms have been developed to simulate the dry and wet deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex version 3 (ISC3) model system. The dry deposition velocities (concentrations divided by downward flux at a specified height) of the gaseous HAPs are modeled with algorithms adapted from existing dry deposition modules. The dry deposition velocities are described in a conventional resistance scheme, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake at the ground and in vegetative canopies are depicted with several resistances that are affected by variations inmore » air temperature, humidity, solar irradiance, and soil moisture. The role of soil moisture variations in affecting the uptake of gases through vegetative plant leaf stomata is assessed with the relative available soil moisture, which is estimated with a rudimentary budget of soil moisture content. Some of the procedures and equations are simplified to be commensurate with the type and extent of information on atmospheric and surface conditions available to the ISC3 model system user. For example, standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed providing a means of evaluating the role of lipid solubility in uptake by the waxy outer cuticle of vegetative plant leaves.« less

  5. H2S mediated thermal and photochemical methane activation

    PubMed Central

    Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric

    2013-01-01

    Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813

  6. Menthol: putting the pieces together

    PubMed Central

    Lee, Youn Ok

    2011-01-01

    Objective To integrate information on cigarette companies' understanding and use of menthol as summarised in published research based on previously internal tobacco industry documents with results from large population-based surveys of tobacco use and other independent sources. Data sources Papers published in this supplement of Tobacco Control, together with papers identified using PubMed searches. Results Tobacco companies shaped consumer perceptions of menthol cigarettes. Menthol is not just a flavouring agent. Cigarette companies use menthol's ability to mask irritation and provide sensory effects to make menthol cigarettes appeal to youth and health-concerned smokers, in part because menthol makes low-tar cigarettes more palatable. Consistent with targeted marketing, youths, women and African Americans disproportionately smoke menthols. There appear to be complex interactions with addictive effects of nicotine. The ubiquitous addition of menthol by tobacco companies to over 90% of all tobacco products, whether labelled ‘menthol’ or not, demonstrates that menthol is not simply a flavour or brand. Menthol imparts sensory characteristics to cigarettes and has a complex interaction with nicotine that affects smoking behaviour whether it is perceived or not, or whether cigarettes containing menthol are marketed as ‘menthol’ or not. Adding menthol increases fine particles in cigarette smoke, which have immediate adverse effects on the risk of heart attack. Conclusion Information from industry documents, confirmed by independent scientific literature, consistently demonstrates that menthol increases population harm from smoking by increasing initiation and reducing cessation in some groups. Menthol facilitates and increases smoking, which causes disease and death. PMID:21504926

  7. Enhancing Capacity for Success in the Creative Industries: Undergraduate Student Reflections on the Implementation of Work-Integrated Learning Strategies

    ERIC Educational Resources Information Center

    Daniel, Ryan; Daniel, Leah

    2015-01-01

    This article reflects on ongoing research-led teaching in the area of creative industries in higher education. Specifically it reports on key work-integrated learning strategies designed to better prepare graduates for the employment sector. The creative industries sector is complex and competitive, characterized by non-linear career paths driven…

  8. Research Interactions between Industry and Higher-Education: An Examination of the Major Legal Issues Involved in Four Representative Contracts.

    ERIC Educational Resources Information Center

    Reams, Bernard Dinsmore

    The use of complex research agreements for joint research activities between industry and universities is assessed, with attention to the legal rights of the contracting parties. The focus is research relationships between a university and a company or an individual scientist and industry. The historical development and legal foundation of…

  9. The Nubian Complex of Dhofar, Oman: an African middle stone age industry in Southern Arabia.

    PubMed

    Rose, Jeffrey I; Usik, Vitaly I; Marks, Anthony E; Hilbert, Yamandu H; Galletti, Christopher S; Parton, Ash; Geiling, Jean Marie; Cerný, Viktor; Morley, Mike W; Roberts, Richard G

    2011-01-01

    Despite the numerous studies proposing early human population expansions from Africa into Arabia during the Late Pleistocene, no archaeological sites have yet been discovered in Arabia that resemble a specific African industry, which would indicate demographic exchange across the Red Sea. Here we report the discovery of a buried site and more than 100 new surface scatters in the Dhofar region of Oman belonging to a regionally-specific African lithic industry--the late Nubian Complex--known previously only from the northeast and Horn of Africa during Marine Isotope Stage 5, ∼128,000 to 74,000 years ago. Two optically stimulated luminescence age estimates from the open-air site of Aybut Al Auwal in Oman place the Arabian Nubian Complex at ∼106,000 years ago, providing archaeological evidence for the presence of a distinct northeast African Middle Stone Age technocomplex in southern Arabia sometime in the first half of Marine Isotope Stage 5.

  10. The Nubian Complex of Dhofar, Oman: An African Middle Stone Age Industry in Southern Arabia

    PubMed Central

    Rose, Jeffrey I.; Usik, Vitaly I.; Marks, Anthony E.; Hilbert, Yamandu H.; Galletti, Christopher S.; Parton, Ash; Geiling, Jean Marie; Černý, Viktor; Morley, Mike W.; Roberts, Richard G.

    2011-01-01

    Despite the numerous studies proposing early human population expansions from Africa into Arabia during the Late Pleistocene, no archaeological sites have yet been discovered in Arabia that resemble a specific African industry, which would indicate demographic exchange across the Red Sea. Here we report the discovery of a buried site and more than 100 new surface scatters in the Dhofar region of Oman belonging to a regionally-specific African lithic industry - the late Nubian Complex - known previously only from the northeast and Horn of Africa during Marine Isotope Stage 5, ∼128,000 to 74,000 years ago. Two optically stimulated luminescence age estimates from the open-air site of Aybut Al Auwal in Oman place the Arabian Nubian Complex at ∼106,000 years ago, providing archaeological evidence for the presence of a distinct northeast African Middle Stone Age technocomplex in southern Arabia sometime in the first half of Marine Isotope Stage 5. PMID:22140561

  11. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  12. [Complex technology for water and wastewater disinfection and its industrial realization in prototype unit].

    PubMed

    Arakcheev, E N; Brunman, V E; Brunman, M V; Konyashin, A V; Dyachenko, V A; Petkova, A P

    Usage of complex automated electrolysis unit for drinking water disinfection and wastewater oxidation and coagulation is scoped, its ecological and energy efficiency is shown. Properties of technological process of anolyte production using membrane electrolysis of brine for water disinfection in municipal pipelines and potassium ferrate production using electrochemical dissolution of iron anode in NaOH solution for usage in purification plants are listed. Construction of modules of industrial prototype for anolyte and ferrate production and applied aspects of automation of complex electrolysis unit are proved. Results of approbation of electrolytic potassium ferrate for drinking water disinfection and wastewater, rain water and environmental water oxidation and coagulation are shown.

  13. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs: An Assessment of Performance Incentive Models

    NASA Astrophysics Data System (ADS)

    Gosman, Nathaniel

    For energy utilities faced with expanded jurisdictional energy efficiency requirements and pursuing demand-side management (DSM) incentive programs in the large industrial sector, performance incentive programs can be an effective means to maximize the reliability of planned energy savings. Performance incentive programs balance the objectives of high participation rates with persistent energy savings by: (1) providing financial incentives and resources to minimize constraints to investment in energy efficiency, and (2) requiring that incentive payments be dependent on measured energy savings over time. As BC Hydro increases its DSM initiatives to meet the Clean Energy Act objective to reduce at least 66 per cent of new electricity demand with DSM by 2020, the utility is faced with a higher level of DSM risk, or uncertainties that impact the costeffective acquisition of planned energy savings. For industrial DSM incentive programs, DSM risk can be broken down into project development and project performance risks. Development risk represents the project ramp-up phase and is the risk that planned energy savings do not materialize due to low customer response to program incentives. Performance risk represents the operational phase and is the risk that planned energy savings do not persist over the effective measure life. DSM project development and performance risks are, in turn, a result of industrial economic, technological and organizational conditions, or DSM risk factors. In the BC large industrial sector, and characteristic of large industrial sectors in general, these DSM risk factors include: (1) capital constraints to investment in energy efficiency, (2) commodity price volatility, (3) limited internal staffing resources to deploy towards energy efficiency, (4) variable load, process-based energy saving potential, and (5) a lack of organizational awareness of an operation's energy efficiency over time (energy performance). This research assessed the capacity of alternative performance incentive program models to manage DSM risk in BC. Three performance incentive program models were assessed and compared to BC Hydro's current large industrial DSM incentive program, Power Smart Partners -- Transmission Project Incentives, itself a performance incentive-based program. Together, the selected program models represent a continuum of program design and implementation in terms of the schedule and level of incentives provided, the duration and rigour of measurement and verification (M&V), energy efficiency measures targeted and involvement of the private sector. A multi criteria assessment framework was developed to rank the capacity of each program model to manage BC large industrial DSM risk factors. DSM risk management rankings were then compared to program costeffectiveness, targeted energy savings potential in BC and survey results from BC industrial firms on the program models. The findings indicate that the reliability of DSM energy savings in the BC large industrial sector can be maximized through performance incentive program models that: (1) offer incentives jointly for capital and low-cost operations and maintenance (O&M) measures, (2) allow flexible lead times for project development, (3) utilize rigorous M&V methods capable of measuring variable load, process-based energy savings, (4) use moderate contract lengths that align with effective measure life, and (5) integrate energy management software tools capable of providing energy performance feedback to customers to maximize the persistence of energy savings. While this study focuses exclusively on the BC large industrial sector, the findings of this research have applicability to all energy utilities serving large, energy intensive industrial sectors.

  14. Optimal Model-Based Fault Estimation and Correction for Particle Accelerators and Industrial Plants Using Combined Support Vector Machines and First Principles Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayyar-Rodsari, Bijan; Schweiger, Carl; /SLAC /Pavilion Technologies, Inc., Austin, TX

    2010-08-25

    Timely estimation of deviations from optimal performance in complex systems and the ability to identify corrective measures in response to the estimated parameter deviations has been the subject of extensive research over the past four decades. The implications in terms of lost revenue from costly industrial processes, operation of large-scale public works projects and the volume of the published literature on this topic clearly indicates the significance of the problem. Applications range from manufacturing industries (integrated circuits, automotive, etc.), to large-scale chemical plants, pharmaceutical production, power distribution grids, and avionics. In this project we investigated a new framework for buildingmore » parsimonious models that are suited for diagnosis and fault estimation of complex technical systems. We used Support Vector Machines (SVMs) to model potentially time-varying parameters of a First-Principles (FP) description of the process. The combined SVM & FP model was built (i.e. model parameters were trained) using constrained optimization techniques. We used the trained models to estimate faults affecting simulated beam lifetime. In the case where a large number of process inputs are required for model-based fault estimation, the proposed framework performs an optimal nonlinear principal component analysis of the large-scale input space, and creates a lower dimension feature space in which fault estimation results can be effectively presented to the operation personnel. To fulfill the main technical objectives of the Phase I research, our Phase I efforts have focused on: (1) SVM Training in a Combined Model Structure - We developed the software for the constrained training of the SVMs in a combined model structure, and successfully modeled the parameters of a first-principles model for beam lifetime with support vectors. (2) Higher-order Fidelity of the Combined Model - We used constrained training to ensure that the output of the SVM (i.e. the parameters of the beam lifetime model) are physically meaningful. (3) Numerical Efficiency of the Training - We investigated the numerical efficiency of the SVM training. More specifically, for the primal formulation of the training, we have developed a problem formulation that avoids the linear increase in the number of the constraints as a function of the number of data points. (4) Flexibility of Software Architecture - The software framework for the training of the support vector machines was designed to enable experimentation with different solvers. We experimented with two commonly used nonlinear solvers for our simulations. The primary application of interest for this project has been the sustained optimal operation of particle accelerators at the Stanford Linear Accelerator Center (SLAC). Particle storage rings are used for a variety of applications ranging from 'colliding beam' systems for high-energy physics research to highly collimated x-ray generators for synchrotron radiation science. Linear accelerators are also used for collider research such as International Linear Collider (ILC), as well as for free electron lasers, such as the Linear Coherent Light Source (LCLS) at SLAC. One common theme in the operation of storage rings and linear accelerators is the need to precisely control the particle beams over long periods of time with minimum beam loss and stable, yet challenging, beam parameters. We strongly believe that beyond applications in particle accelerators, the high fidelity and cost benefits of a combined model-based fault estimation/correction system will attract customers from a wide variety of commercial and scientific industries. Even though the acquisition of Pavilion Technologies, Inc. by Rockwell Automation Inc. in 2007 has altered the small business status of the Pavilion and it no longer qualifies for a Phase II funding, our findings in the course of the Phase I research have convinced us that further research will render a workable model-based fault estimation and correction for particle accelerators and industrial plants feasible.« less

  15. Rubber pad forming - Efficient approach for the manufacturing of complex structured sheet metal blanks for food industry

    NASA Astrophysics Data System (ADS)

    Spoelstra, Paul; Djakow, Eugen; Homberg, Werner

    2017-10-01

    The production of complex organic shapes in sheet metals is gaining more importance in the food industry due to increasing functional and hygienic demands. Hence it is necessary to produce parts with complex geometries promoting cleanability and general sanitation leading to improvement of food safety. In this context, and especially when stainless steel has to be formed into highly complex geometries while maintaining desired surface properties, it is inevitable that alternative manufacturing processes will need to be used which meet these requirements. Rubber pad forming offers high potential when it comes to shaping complex parts with excellent surface quality, with virtually no tool marks and scratches. Especially in cases where only small series are to be produced, rubber pad forming processes offers both technological and economic advantages. Due to the flexible punch, variation in metal thickness can be used with the same forming tool. The investments to set-up Rubber pad forming is low in comparison to conventional sheet metal forming processes. The process facilitates production of shallow sheet metal parts with complex contours and bends. Different bending sequences in a multiple tool set-up can also be conducted. The planned contribution thus describes a brief overview of the rubber pad technology. It shows the prototype rubber pad forming machine which can be used to perform complex part geometries made from stainless steel (1.4301). Based on an analysis of the already existing systems and new machines for rubber pad forming processes, together with their process properties, influencing variables and areas of application, some relevant parts for the food industry are presented.

  16. Effects of Acerola (Malpighia emarginata DC.) Juice Intake on Brain Energy Metabolism of Mice Fed a Cafeteria Diet.

    PubMed

    Leffa, Daniela Dimer; Rezin, Gislaine Tezza; Daumann, Francine; Longaretti, Luiza M; Dajori, Ana Luiza F; Gomes, Lara Mezari; Silva, Milena Carvalho; Streck, Emílio L; de Andrade, Vanessa Moraes

    2017-03-01

    Obesity is a multifactorial disease that comes from an imbalance between food intake and energy expenditure. Moreover, studies have shown a relationship between mitochondrial dysfunction and obesity. In the present study, we investigated the effect of acerola juices (unripe, ripe, and industrial) and its main pharmacologically active components (vitamin C and rutin) on the activity of enzymes of energy metabolism in the brain of mice fed a palatable cafeteria diet. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into six subgroups, each of which received a different supplement for one further month (water, unripe, ripe or industrial acerola juices, vitamin C, or rutin) by gavage. Our results demonstrated that CAF diet inhibited the activity of citrate synthase in the prefrontal cortex, hippocampus, and hypothalamus. Moreover, CAF diet decreased the complex I activity in the hypothalamus, complex II in the prefrontal cortex, complex II-III in the hypothalamus, and complex IV in the posterior cortex and striatum. The activity of succinate dehydrogenase and creatine kinase was not altered by the CAF diet. However, unripe acerola juice reversed the inhibition of the citrate synthase activity in the prefrontal cortex and hypothalamus. Ripe acerola juice reversed the inhibition of citrate synthase in the hypothalamus. The industrial acerola juice reversed the inhibition of complex I activity in the hypothalamus. The other changes were not reversed by any of the tested substances. In conclusion, we suggest that alterations in energy metabolism caused by obesity can be partially reversed by ripe, unripe, and industrial acerola juice.

  17. Future float zone development in industry

    NASA Technical Reports Server (NTRS)

    Sandfort, R. M.

    1980-01-01

    The present industrial requirements for float zone silicon are summarized. Developments desired by the industry in the future are reported. The five most significant problems faced today by the float zone crystal growth method in industry are discussed. They are economic, large diameter, resistivity uniformity, control of carbon, and swirl defects.

  18. Design of General-purpose Industrial signal acquisition system in a large scientific device

    NASA Astrophysics Data System (ADS)

    Ren, Bin; Yang, Lei

    2018-02-01

    In order to measure the industrial signal of a large scientific device experiment, a set of industrial data general-purpose acquisition system has been designed. It can collect 4~20mA current signal and 0~10V voltage signal. Through the practical experiments, it shows that the system is flexible, reliable, convenient and economical, and the system has characters of high definition and strong anti-interference ability. Thus, the system fully meets the design requirements..

  19. A modelling case study to evaluate control strategies for ozone reduction in Southwestern Spain

    NASA Astrophysics Data System (ADS)

    Castell, N.; Mantilla, E.; Salvador, R.; Stein, A. F.; Millán, M.

    2009-09-01

    Ozone is a strong oxidant and when certain concentrations are reached it has adverse effects on health, vegetation and materials. With the aim of protecting human health and ecosystems, European Directive 2008/50/EC establishes target values for ozone concentrations, to be achieved from 2010 onwards. In our study area, located in southwestern Spain, ozone levels regularly exceed the human health protection threshold defined in the European Directive. Indeed, this threshold was exceeded on 92 days in 2007, despite the fact that the Directive stipulates that it should not be exceeded on more than 25 days per calendar year averaged over three years. It is urgent, therefore, to reduce the current ozone levels, but because ozone is a secondary pollutant, this reduction must necessarily involve limiting the emission of its precursors, primarily nitrogen oxides (NOx) and volatile organic compounds (VOC). During the central months of the year, southwestern Spain is under strong insolation and weak synoptic forcing, promoting the development of sea breezes and mountain-induced winds and creating re-circulations of pollutants. The complex topography of the area induces the formation of vertical layers, into which the pollutants are injected and subjected to long distance transport and compensatory subsidence. The characteristics of these highly complex flows have important effects on the pollutant dispersion. In this study two ozone pollution episodes have been selected to assess the ozone response to reductions in NOx and VOC emissions from industry and traffic. The first corresponds to a typical summer episode, with the development of breezes in an anticyclonic situation with low gradient pressure and high temperatures, while the second episode presents a configuration characteristic of spring or early summer, with a smooth westerly flow and more moderate temperatures. Air pollution studies in complex terrain require the use of high-resolution models to resolve the complex structures of the local flows and their impact on emissions; nevertheless, these mesoscale systems are developed within the scope of a synoptic circulation, which also affects both the breeze development and the pollutant transport. In order to take the relationship between the different atmospheric scales into account, we used the CAMx photochemical model coupled with the MM5 meteorological model, both configured with a system of nested grids. The study domain covers an area of 28224 km2, with 2 km horizontal resolution and 18 vertical layers up to a height of 5 km with high resolution in the levels close to the ground. This paper assesses the impact over the hourly and 8-hourly maximum daily ozone concentrations of four reduction strategies in an area with complex terrain: (i) 25% reduction in VOC and NOx from industry and traffic, (ii) 50% reduction in NOx and VOC from the industry, (iii) 50% reduction in NOx and VOC from traffic, and (iv) 100% reduction in NOx and VOC from the petrochemical plant and the refinery. The study area has large industrial sources, such as a petroleum refinery, a petrochemical plant, several chemical complexes and co-generation power plants, among others. The study area includes the cities of Huelva (148,000 inhabitants), Seville (699,760 inhabitants) and Cadiz (127,200 inhabitants). The analyses presented in this work provide an assessment of the effectiveness of several strategies to reduce ozone pollution in different meteorological scenarios.

  20. Trends in the US hardwood lumber distribution industry: changing products, customers, and services

    Treesearch

    Urs Buehlmann; Omar Espinoza; Matthew Bumgardner; Bob Smith

    2010-01-01

    Efficient and effective supply chains are the backbone of any industry, including the forest products industry. As the US secondary hardwood industry has undergone a profound transformation and large parts of the industry have moved offshore, the supply chain is adapting to these new realities. Remaining and new customers of US hardwood lumber distributors tend to be...

  1. Land use in the Paraiba Valley through remotely sensed data. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

    1980-01-01

    A methodology for land use survey was developed and land use modification rates were determined using LANDSAT imagery of the Paraiba Valley (state of Sao Paulo). Both visual and automatic interpretation methods were employed to analyze seven land use classes: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation and natural vegetation. By means of visual interpretation, little spectral differences are observed among those classes. The automatic classification of LANDSAT MSS data using maximum likelihood algorithm shows a 39% average error of omission and a 3.4% error of inclusion for the seven classes. The complexity of land uses in the study area, the large spectral variations of analyzed classes, and the low resolution of LANDSAT data influenced the classification results.

  2. Bridgework ahead! Innovation ecosystems vis-à-vis responsible innovation

    NASA Astrophysics Data System (ADS)

    Foley, Rider; Wiek, Arnim

    2017-02-01

    Public funding agencies largely support academic research as an effort to stimulate future product commercialization and foster broader societal benefits. Yet, translating research nurtured in academic settings into such outcomes is complex and demands functional interactions between government, academic, and industry, i.e., "triple helix," organizations within an innovation ecosystem. This article argues that in the spirit of responsible innovation, research funding should build bridges that extend beyond the triple helix stakeholders to connect to peripheral organizations. To support that argument, evidence from agent network analysis gathered from two case studies reveals strong and weak connections, as well as gaps within innovation ecosystems in Switzerland and metropolitan Phoenix, USA. This article offers insights on how innovation ecosystems are aligned or misaligned with responsible innovation.

  3. Helping science to succeed: improving processes in R&D.

    PubMed

    Sewing, Andreas; Winchester, Toby; Carnell, Pauline; Hampton, David; Keighley, Wilma

    2008-03-01

    Bringing drugs to the market remains a costly and, until now, often unpredictable challenge. Although understanding the underlying science is key to further progress, our imperfect knowledge of disease and complex biological systems leaves excellence in execution as the most tangible lever to sustain our serendipitous approach to drug discovery. The problems encountered in pharmaceutical R&D are not unique, but to learn from other industries it is important to recognise similarity, rather than differences, and to advance industrialisation of R&D beyond technology and automation. Tools like Lean and Six Sigma, already applied to increase business excellence across diverse organisations, can equally be introduced to pharmaceutical R&D and offer the potential to transform operations without large-scale investment.

  4. Scada Malware, a Proof of Concept

    NASA Astrophysics Data System (ADS)

    Carcano, Andrea; Fovino, Igor Nai; Masera, Marcelo; Trombetta, Alberto

    Critical Infrastructures are nowadays exposed to new kind of threats. The cause of such threats is related to the large number of new vulnerabilities and architectural weaknesses introduced by the extensive use of ICT and Network technologies into such complex critical systems. Of particular interest are the set of vulnerabilities related to the class of communication protocols normally known as “SCADA” protocols, under which fall all the communication protocols used to remotely control the RTU devices of an industrial system. In this paper we present a proof of concept of the potential effects of a set of computer malware specifically designed and created in order to impact, by taking advantage of some vulnerabilities of the ModBUS protocol, on a typical Supervisory Control and Data Acquisition system.

  5. Active marks structure optimization for optical-electronic systems of spatial position control of industrial objects

    NASA Astrophysics Data System (ADS)

    Sycheva, Elena A.; Vasilev, Aleksandr S.; Lashmanov, Oleg U.; Korotaev, Valery V.

    2017-06-01

    The article is devoted to the optimization of optoelectronic systems of the spatial position of objects. Probabilistic characteristics of the detection of an active structured mark on a random noisy background are investigated. The developed computer model and the results of the study allow us to estimate the probabilistic characteristics of detection of a complex structured mark on a random gradient background, and estimate the error of spatial coordinates. The results of the study make it possible to improve the accuracy of measuring the coordinates of the object. Based on the research recommendations are given on the choice of parameters of the optimal mark structure for use in opticalelectronic systems for monitoring the spatial position of large-sized structures.

  6. Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market.

    PubMed

    Long, Haiming; Zhang, Ji; Tang, Nengyu

    2017-01-01

    This study considers the effect of an industry's network topology on its systemic risk contribution to the stock market using data from the CSI 300 two-tier industry indices from the Chinese stock market. We first measure industry's conditional-value-at-risk (CoVaR) and the systemic risk contribution (ΔCoVaR) using the fitted time-varying t-copula function. The network of the stock industry is established based on dynamic conditional correlations with the minimum spanning tree. Then, we investigate the connection characteristics and topology of the network. Finally, we utilize seemingly unrelated regression estimation (SUR) of panel data to analyze the relationship between network topology of the stock industry and the industry's systemic risk contribution. The results show that the systemic risk contribution of small-scale industries such as real estate, food and beverage, software services, and durable goods and clothing, is higher than that of large-scale industries, such as banking, insurance and energy. Industries with large betweenness centrality, closeness centrality, and clustering coefficient and small node occupancy layer are associated with greater systemic risk contribution. In addition, further analysis using a threshold model confirms that the results are robust.

  7. Space Shuttle Projects

    NASA Image and Video Library

    1993-10-01

    Designed by the mission crew members, the STS-61 crew insignia depicts the astronaut symbol superimposed against the sky with the Earth underneath. Also seen are two circles representing the optical configuration of the Hubble Space Telescope (HST). Light is focused by reflections from a large primary mirror and a smaller secondary mirror. The light is analyzed by various instruments and, according to the crew members, brings to us on Earth knowledge about planets, stars, galaxies and other celestial objects, allowing us to better understand the complex physical processes at work in the universe. The Space Shuttle Endeavour is also represented as the fundamental tool that allows the crew to perform the first servicing of the Hubble Space Telescope so its scientific deep space mission may be extended for several years to come. The overall design of the emblem, with lines converging to a high point, is also a symbolic representation of the large-scale Earth-based effort which involves space agencies, industry, and the universities to reach goals of knowledge and perfection.

  8. Systems Engineering Applied to the Development of a Wave Energy Farm.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Bull, Diana L.; Costello, Ronan Patrick

    A motivation for undertaking this stakeholder requirements analysis and Systems Engineering exercise is to document the requirements for successful wave energy farms to facilitate better design and better design assessments. A difficulty in wave energy technology development is the absence to date of a verifiable minimum viable product against which the merits of new products might be measured. A consequence of this absence is that technology development progress, technology value, and technology funding have largely been measured, associated with, and driven by technology readiness, measured in technology readiness levels (TRLs). Originating primarily from the space and defense industries, TRLs focusmore » on procedural implementation of technology developments of large and complex engineering projects, where cost is neither mission critical nor a key design driver. The key deficiency with the TRL approach in the context of wave energy conversion is that WEC technology development has been too focused on commercial readiness and not enough on the stakeholder requirements and particularly economic viability required for market entry.« less

  9. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  10. The potential benefits of photonics in the computing platform

    NASA Astrophysics Data System (ADS)

    Bautista, Jerry

    2005-03-01

    The increase in computational requirements for real-time image processing, complex computational fluid dynamics, very large scale data mining in the health industry/Internet, and predictive models for financial markets are driving computer architects to consider new paradigms that rely upon very high speed interconnects within and between computing elements. Further challenges result from reduced power requirements, reduced transmission latency, and greater interconnect density. Optical interconnects may solve many of these problems with the added benefit extended reach. In addition, photonic interconnects provide relative EMI immunity which is becoming an increasing issue with a greater dependence on wireless connectivity. However, to be truly functional, the optical interconnect mesh should be able to support arbitration, addressing, etc. completely in the optical domain with a BER that is more stringent than "traditional" communication requirements. Outlined are challenges in the advanced computing environment, some possible optical architectures and relevant platform technologies, as well roughly sizing these opportunities which are quite large relative to the more "traditional" optical markets.

  11. Computational Modeling in Structural Materials Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    High temperature materials such as silicon carbide, a variety of nitrides, and ceramic matrix composites find use in aerospace, automotive, machine tool industries and in high speed civil transport applications. Chemical vapor deposition (CVD) is widely used in processing such structural materials. Variations of CVD include deposition on substrates, coating of fibers, inside cavities and on complex objects, and infiltration within preforms called chemical vapor infiltration (CVI). Our current knowledge of the process mechanisms, ability to optimize processes, and scale-up for large scale manufacturing is limited. In this regard, computational modeling of the processes is valuable since a validated model can be used as a design tool. The effort is similar to traditional chemically reacting flow modeling with emphasis on multicomponent diffusion, thermal diffusion, large sets of homogeneous reactions, and surface chemistry. In the case of CVI, models for pore infiltration are needed. In the present talk, examples of SiC nitride, and Boron deposition from the author's past work will be used to illustrate the utility of computational process modeling.

  12. Spatiotemporal variability and meteorological control of particulate matter pollution in a large open-pit coal mining region in Colombia

    NASA Astrophysics Data System (ADS)

    Morales Rincon, L. A.; Jimenez-Pizarro, R.; Porras-Diaz, H.

    2012-12-01

    Luis Morales-Rincon (1), Hernan Porras-Diaz (1), Rodrigo Jiménez (2,*) (1) Geomatic Research Group, Department of Civil Engineering, Universidad Industrial de Santander, Bucaramanga, Santander 680002, Colombia; (2) Air Quality Research Group, Department of Chemical and Environmental Engineering, Universidad Nacional de Colombia, Bogota, DC 111321, Colombia *Corresponding author: phone +57-1-316-5000 ext. 14099, fax +57-1-316-5334, e-mail rjimenezp@unal.edu.co The semi-desertic area of Central Cesar, Colombia, produced approximately 44 million tons of coal in 2011. This mining activity has been intensively developed since 2005. There are currently 7 large-scale mining projects in that area. The coal industry has strongly impacted not only the ecosystems, but also the neighboring communities around the coal mines. The main goal of the research work was to characterize spatial and temporal variations of particulate matter (total suspended particulates - TSP - and particulate matter below 10 μm - PM10) as measured at various air quality monitoring stations in Cesar's coal industry region as well as to study the relationship between these variability and meteorological factors. The analysis of the meteorological time series of revealed a complex atmospheric circulation in the region. No clear repetitive diurnal circulation patterns were observed, i.e. statistical mean patterns do not physically represent the actual atmospheric circulation. We attribute this complexity to the interdependence between local and synoptic phenomena over a low altitude, relatively flat area. On the other hand, a comparison of air quality in the mining area with a perimeter station indicates that coal industry in central Cesar has a mayor effect on the levels of particulate matter in the region. Particulate matter concentration is highly variable throughout the year. The strong correlation between TSP and PM10 indicates that secondary aerosols are of minor importance. Furthermore, particle concentrations are the highest in January and February, being the correlation between the TSP and PM10 measurements not as strong during this time period. This could be associated with the spatial and temporal variability of wet deposition as well as a larger mechanical and eolic resuspension of particles. We found that precipitation drastically reduces the levels of particulate matter. In order to describe the effect of wet deposition, a mathematical model was developed based on a first order relaxation proportional to the precipitation rate. Daily average concentrations and daily accumulated precipitation were used in this model, which showed high concentration reductions even for low precipitation levels essentially for all stations. Monthly precipitation values showed a better correlation with TSP concentrations. Finally, we found evidence of a significant decrease in global radiation due to particulate matter, particularly during the dry season, which could potentially affect farming and agricultural activities in the region.

  13. [Pneumoconioses in contemporary industry].

    PubMed

    Pliukhin, A E; Bourmistrova, T B; Postnikova, L V; Kovalyova, A S

    2013-01-01

    The article deals with features of development and formation of various pneumoconioses diagnosed after 1996: less benign course, early complaints, marked functional and X-ray changes in lungs, early complications--these result mainly from lower content of chemicals with fibrogenous effect in industrial aerosol and presence of allergic, cytotoxic and irritating agents. That helped to formulate a concept of contemporary pneumoconiosis caused by complex industrial aerosol over last 10-15 years.

  14. Bonding with the Nuclear Industry: A Technical Communication Professor and His Students Partner With Y-12 National Security Complex

    ERIC Educational Resources Information Center

    Hirst, Russel

    2016-01-01

    This article describes how a special kind of academe-industry collaboration--based on a joint appointment agreement between a university and an industry site--was set up, promoted, and experienced by a professor of technical communication and his student interns. To illustrate the nature and value of this kind of collaboration, the article…

  15. Technological and organizational diversity and technical advance in the early history of the American semiconductor industry

    NASA Astrophysics Data System (ADS)

    Cohen, W.; Holbrook, D.; Klepper, S.

    1994-06-01

    This study examines the early years of the semiconductor industry and focuses on the roles played by different size firms in technologically innovative processes. A large and diverse pool of firms participated in the growth of the industry. Three related technological areas were chosen for in-depth analysis: integrated circuits, materials technology, and device packaging. Large business producing vacuum tubes dominated the early production of semiconductor devices. As the market for new devices grew during the 1950's, new firms were founded and existing firms from other industries, e.g. aircraft builders and instrument makers, began to pursue semiconductor electronics. Small firms began to cater to the emerging industry by supplying materials and equipment. These firms contributed to the development of certain aspects of one thousand firms that were playing some part in the semiconductor industry.

  16. [Genome editing of industrial microorganism].

    PubMed

    Zhu, Linjiang; Li, Qi

    2015-03-01

    Genome editing is defined as highly-effective and precise modification of cellular genome in a large scale. In recent years, such genome-editing methods have been rapidly developed in the field of industrial strain improvement. The quickly-updating methods thoroughly change the old mode of inefficient genetic modification, which is "one modification, one selection marker, and one target site". Highly-effective modification mode in genome editing have been developed including simultaneous modification of multiplex genes, highly-effective insertion, replacement, and deletion of target genes in the genome scale, cut-paste of a large DNA fragment. These new tools for microbial genome editing will certainly be applied widely, and increase the efficiency of industrial strain improvement, and promote the revolution of traditional fermentation industry and rapid development of novel industrial biotechnology like production of biofuel and biomaterial. The technological principle of these genome-editing methods and their applications were summarized in this review, which can benefit engineering and construction of industrial microorganism.

  17. Effective executive management in the pharmaceutical industry.

    PubMed

    Tran, Hoang; Kleiner, Brian H

    2005-01-01

    Along with the boom in information technology and vast development in genomic and proteomic discoveries, the pharmaceutical and biotech industries have been provided the means and tools to create a new page in medicinal history. They are now able to alter the classic ways to cure complex diseases thanks to the completion of the human genome project. To be able to compete in this industry, pharmaceutical management has to be effective not only internally but also externally in socially acceptable conduct. The first department that requires focus is marketing and sales. As the main driving force to increase revenues and profits, marketing and sales employees should be highly motivated by compensation. Also, customer relationships should be maintained for long-term gain. As important as marketing, research and development requires the financial support as well as the critical decision making to further expand the product pipeline. Similarly, finance and technologies should be adequately monitored and invested to provide support as well as prepare for future expansion. On top of that, manufacturing processes and operations are operated per quality systems and FDA guidelines to ensure high quality. Human Resources, on the other hand, should carry the managing and motivation from upper management through systematic recruitment, adequate training, and fair compensation. Moreover, effective management in a pharmaceutical would also require the social welfare and charity to help patients who cannot afford the treatment as well as improving the organization's image. Last but not least, the management should also prepare for the globalization of the industry. Inevitably, large pharmaceutical companies are merging with each other or acquiring smaller companies to enhance the competitive advantages as well as expand their product mix. For effectiveness in a pharmaceutical industry, management should focus more than just the daily routine tasks and short-term goals. Rather, they need vision as well as commitment regarding the unique requirements of the industry.

  18. Computationally efficient simulation of unsteady aerodynamics using POD on the fly

    NASA Astrophysics Data System (ADS)

    Moreno-Ramos, Ruben; Vega, José M.; Varas, Fernando

    2016-12-01

    Modern industrial aircraft design requires a large amount of sufficiently accurate aerodynamic and aeroelastic simulations. Current computational fluid dynamics (CFD) solvers with aeroelastic capabilities, such as the NASA URANS unstructured solver FUN3D, require very large computational resources. Since a very large amount of simulation is necessary, the CFD cost is just unaffordable in an industrial production environment and must be significantly reduced. Thus, a more inexpensive, yet sufficiently precise solver is strongly needed. An opportunity to approach this goal could follow some recent results (Terragni and Vega 2014 SIAM J. Appl. Dyn. Syst. 13 330-65 Rapun et al 2015 Int. J. Numer. Meth. Eng. 104 844-68) on an adaptive reduced order model that combines ‘on the fly’ a standard numerical solver (to compute some representative snapshots), proper orthogonal decomposition (POD) (to extract modes from the snapshots), Galerkin projection (onto the set of POD modes), and several additional ingredients such as projecting the equations using a limited amount of points and fairly generic mode libraries. When applied to the complex Ginzburg-Landau equation, the method produces acceleration factors (comparing with standard numerical solvers) of the order of 20 and 300 in one and two space dimensions, respectively. Unfortunately, the extension of the method to unsteady, compressible flows around deformable geometries requires new approaches to deal with deformable meshes, high-Reynolds numbers, and compressibility. A first step in this direction is presented considering the unsteady compressible, two-dimensional flow around an oscillating airfoil using a CFD solver in a rigidly moving mesh. POD on the Fly gives results whose accuracy is comparable to that of the CFD solver used to compute the snapshots.

  19. Total mercury, methyl mercury, and heavy metal concentrations in Hyeongsan River and its tributaries in Pohang city, South Korea.

    PubMed

    Bailon, Mark Xavier; David, Anneschel Sheehan; Park, Yeongeon; Kim, Eunhee; Hong, Yongseok

    2018-04-11

    Heavy metal contamination in aquatic systems is a big problem in many areas around the world. In 2016, high mercury concentrations were reported in bivalves (Corbicula leana) and sediments near the confluence of the Hyeongsan River and Chilseong Creek located in Pohang, a steel industrial city in the south-east coast of the Korean peninsula. Given that both the Chilseong and Gumu creeks run through the Pohang industrial complex and ultimately flow to the Hyeongsan River, it is imperative to determine if the industrial effluents have any impact on the mercury contamination in these two streams and the Hyeongsan River. In this work, we investigated the concentration levels of different heavy metals using cold vapor atomic fluorescence spectroscopy and inductively coupled plasma-mass spectroscopy. The metal concentration in the water samples from the Hyeongsan River, Gumu Creek, and Chilseong Creek did not exceed the limits for drinking water quality set by the US EPA and World Health Organization. However, the sediment samples were found to be heavily contaminated by Hg with levels exceeding the toxic effect threshold. Gumu Creek was found to be heavily contaminated. The concentrations of the different heavy metals increased downstream, and the samples collected from the sites in the Hyeongsan River near the Gumu Creek, an open channel for wastewater discharge of companies in the Pohang Industrial Complex, showed higher contamination levels, indicating that the effluents from the industrial complex are a possible source of contamination in the river.

  20. Malondialdehyde–Deoxyguanosine Adducts among Workers of a Thai Industrial Estate and Nearby Residents

    PubMed Central

    Peluso, Marco; Srivatanakul, Petcharin; Munnia, Armelle; Jedpiyawongse, Adisorn; Ceppi, Marcello; Sangrajrang, Suleeporn; Piro, Sara; Boffetta, Paolo

    2010-01-01

    Background Humans living near industrial point emissions can experience high levels of exposures to air pollutants. Map Ta Phut Industrial Estate in Thailand is the location of the largest steel, oil refinery, and petrochemical factory complexes in Southeast Asia. Air pollution is an important source of oxidative stress and reactive oxygen species, which interact with DNA and lipids, leading to oxidative damage and lipid peroxidation, respectively. Objective We measured the levels of malondialdehyde–deoxyguanosine (dG) adducts, a biomarker of oxidative stress and lipid peroxidation, in petrochemical workers, nearby residents, and subjects living in a control district without proximity to industrial sources. Design We conducted a cross-sectional study to compare the prevalence of malondialdehyde-dG adducts in groups of subjects experiencing various degrees of air pollution. Results The multivariate regression analysis shows that the adduct levels were associated with occupational and environmental exposures to air pollution. The highest adduct level was observed in the steel factory workers. In addition, the formation of DNA damage tended to be associated with tobacco smoking, but without reaching statistical significance. A nonsignificant increase in DNA adducts was observed after 4–6 years of employment among the petrochemical complexes. Conclusions Air pollution emitted from the Map Ta Phut Industrial Estate complexes was associated with increased adduct levels in petrochemical workers and nearby residents. Considering the mutagenic potential of DNA lesions in the carcinogenic process, we recommend measures aimed at reducing the levels of air pollution. PMID:20056580

  1. Automated validation of a computer operating system

    NASA Technical Reports Server (NTRS)

    Dervage, M. M.; Milberg, B. A.

    1970-01-01

    Programs apply selected input/output loads to complex computer operating system and measure performance of that system under such loads. Technique lends itself to checkout of computer software designed to monitor automated complex industrial systems.

  2. The regulation of crystalline silica: an industry perspective.

    PubMed

    Elzea, J M

    1997-01-01

    Silica is ubiquitous in the earth's crust. It occurs in trace to large quantities in rocks and soil. Because it is so common, the regulation of silica has affected a large number of industries, including the mining industry and any industry that uses quartz in the manufacture of a products. Mineral commodities that contain silica include diatomite, bentonite, kaolinite, talc, pyrophyllite, sand and gravel, perlite, pumice, dimension stone, and barite. Products that contain minerals, many of which are associated with silica, include paint, paper, rubber, plastic, pharmaceuticals, food, cement, plaster, cat litter, potting soil, plaster board, and miscellaneous construction materials. In collaboration with some agencies and academic centers, the silica industry is supporting research to lower health risks and to improve the methods of detecting this common material.

  3. Mechanically flexible optically transparent silicon fabric with high thermal budget devices from bulk silicon (100)

    NASA Astrophysics Data System (ADS)

    Hussain, Muhammad M.; Rojas, Jhonathan P.; Torres Sevilla, Galo A.

    2013-05-01

    Today's information age is driven by silicon based electronics. For nearly four decades semiconductor industry has perfected the fabrication process of continuingly scaled transistor - heart of modern day electronics. In future, silicon industry will be more pervasive, whose application will range from ultra-mobile computation to bio-integrated medical electronics. Emergence of flexible electronics opens up interesting opportunities to expand the horizon of electronics industry. However, silicon - industry's darling material is rigid and brittle. Therefore, we report a generic batch fabrication process to convert nearly any silicon electronics into a flexible one without compromising its (i) performance; (ii) ultra-large-scale-integration complexity to integrate billions of transistors within small areas; (iii) state-of-the-art process compatibility, (iv) advanced materials used in modern semiconductor technology; (v) the most widely used and well-studied low-cost substrate mono-crystalline bulk silicon (100). In our process, we make trenches using anisotropic reactive ion etching (RIE) in the inactive areas (in between the devices) of a silicon substrate (after the devices have been fabricated following the regular CMOS process), followed by a dielectric based spacer formation to protect the sidewall of the trench and then performing an isotropic etch to create caves in silicon. When these caves meet with each other the top portion of the silicon with the devices is ready to be peeled off from the bottom silicon substrate. Release process does not need to use any external support. Released silicon fabric (25 μm thick) is mechanically flexible (5 mm bending radius) and the trenches make it semi-transparent (transparency of 7%).

  4. Airline Safety Improvement Through Experience with Near-Misses: A Cautionary Tale.

    PubMed

    Madsen, Peter; Dillon, Robin L; Tinsley, Catherine H

    2016-05-01

    In recent years, the U.S. commercial airline industry has achieved unprecedented levels of safety, with the statistical risk associated with U.S. commercial aviation falling to 0.003 fatalities per 100 million passengers. But decades of research on organizational learning show that success often breeds complacency and failure inspires improvement. With accidents as rare events, can the airline industry continue safety advancements? This question is complicated by the complex system in which the industry operates where chance combinations of multiple factors contribute to what are largely probabilistic (rather than deterministic) outcomes. Thus, some apparent successes are realized because of good fortune rather than good processes, and this research intends to bring attention to these events, the near-misses. The processes that create these near-misses could pose a threat if multiple contributing factors combine in adverse ways without the intervention of good fortune. Yet, near-misses (if recognized as such) can, theoretically, offer a mechanism for continuing safety improvements, above and beyond learning gleaned from observable failure. We test whether or not this learning is apparent in the airline industry. Using data from 1990 to 2007, fixed effects Poisson regressions show that airlines learn from accidents (their own and others), and from one category of near-misses-those where the possible dangers are salient. Unfortunately, airlines do not improve following near-miss incidents when the focal event has no clear warnings of significant danger. Therefore, while airlines need to and can learn from certain near-misses, we conclude with recommendations for improving airline learning from all near-misses. © 2015 Society for Risk Analysis.

  5. Estimated Water Use in Washington, 2005

    USGS Publications Warehouse

    Lane, R.C.

    2009-01-01

    Water use in the State of Washington has evolved in the past century from meager domestic and stock water needs to the current complex requirements of domestic-water users, large irrigation projects, industrial plants, and numerous other uses such as fish habitat and recreational activities. Since 1950, the U.S. Geological Survey (USGS) has, at 5-year intervals, compiled data on the amount of water used in homes, businesses, industries, and on farms throughout the State. This water-use data, combined with other related USGS information, has facilitated a unique understanding of the effects of human activity on the State's water resources. As water availability continues to emerge as an important issue in the 21st century, the need for consistent, long-term water-use data will increase to support wise use of this essential natural resource. This report presents state and county estimates of the amount of public- and self-supplied water used for domestic, irrigation, livestock, aquaculture, industrial, mining, and thermoelectric power purposes in the State of Washington during 2005. Offstream fresh-water use was estimated to be 5,780 million gallons per day (Mgal/d). Domestic water use was estimated to be 648 Mgal/d or 11 percent of the total. Irrigation water use was estimated to be 3,520 Mgal/d, or 61 percent of the total. Industrial fresh-water use was estimated to be 520 Mgal/d, or 9 percent of the total. These three categories accounted for about 81 percent (4,690 Mgal/d) of the total of the estimated offstream freshwater use in Washington during 2005.

  6. Offshore Installations and Their Relevance to the Coast Guard through the Next Twenty-Five Years. Volume III. Appendices.

    DTIC Science & Technology

    1980-11-01

    facility common to all facilities as well as a separate municipal waste treatment plant . The crude refinery and petrochemicals plant produces high...offshore: refinery L M H I power plant I L L M I industrial complex I L L L I II Extensive use of sub-sea production systems I M H I up to 5,000 ft. I... petrochemicals factory or a refinery acting as the core around which an in- dustrial complex is built. The type of core industry selected would depend

  7. Lifetime evaluation of large format CMOS mixed signal infrared devices

    NASA Astrophysics Data System (ADS)

    Linder, A.; Glines, Eddie

    2015-09-01

    New large scale foundry processes continue to produce reliable products. These new large scale devices continue to use industry best practice to screen for failure mechanisms and validate their long lifetime. The Failure-in-Time analysis in conjunction with foundry qualification information can be used to evaluate large format device lifetimes. This analysis is a helpful tool when zero failure life tests are typical. The reliability of the device is estimated by applying the failure rate to the use conditions. JEDEC publications continue to be the industry accepted methods.

  8. International Union of Theoretical and Applied Mechanics (IUTAM) Symposium on Aerothermodynamics in Combustors

    NASA Astrophysics Data System (ADS)

    Lee, Richard S.; Whitelaw, J. H.; Wung, T.-S.

    1991-06-01

    The subject of aerothermodynamics is playing an ever increasingly critical role in a variety of important industrial and technical problems in the design of combustors. In recent years, it has become the focus of attention among investigators from research laboratories and industries around the world resulting in a large number of meetings on its various aspects every year. However, most of these meetings deal with a certain problem area, for instance that of the global combustion of fuel droplets in a flow. Because of the inherent complexities involved in such flows, the analytical effort has been mostly confined to over-simplified and over-idealized flow systems while the experimental effort has been mostly directed towards global measurements of flows found in industrial applications. With the rapid and phenomenal developments of key research tools mostly in the last two decades, in particular those of modern digital computers, laser optics, and electronics, many of the previously unthinkable, rigorous investigations in real-life flows have gradually become feasible. It is against this background that this international conference on the aerothermodynamics in combustors is being held at this point in time. This symposium involves the presentation of papers concerned with flow and thermodynamic characteristics of combustors, with emphasis on gas-turbine combustors and including information relevant to rocket motors, internal combustion engines and furnaces.

  9. Groundwater flow in the Venice lagoon and remediation of the Porto Marghera industrial area (Italy)

    NASA Astrophysics Data System (ADS)

    Beretta, Giovanni Pietro; Terrenghi, Jacopo

    2017-05-01

    This study aims to determine the groundwater flow in a large area of the Venice (northeast Italy) lagoon that is under great anthropogenic pressure, which is influencing the regional flow in the surficial aquifer (about 30 m depth). The area presents several elements that condition the groundwater flow: extraction by means of drainage pumps and wells; tidal fluctuation; impermeable barriers that define part of the coastline, rivers and artificial channels; precipitation; recharge, etc. All the elements were studied separately, and then they were brought together in a numerical groundwater flow model to estimate the impact of each one. Identification of the impact of each element will help to optimise the characteristics of the Porto Marghera remediation systems. Longstanding industrial activity has had a strong impact on the soil and groundwater quality, and expensive and complex emergency remediation measures in problematic locations have been undertaken to ensure the continuity of industrial and maritime activities. The land reclamation and remediation works withdraw 56-74% of the water budget, while recharge from the river accounts for about 21-48% of the input. Only 21-42% of groundwater in the modelled area is derived from natural recharge sources, untouched by human activity. The drop of the piezometric level due to the realization of the upgradient impermeable barrier can be counteracted with the reduction of the pumping rate of the remediation systems.

  10. Test Protocols for Advanced Inverter Interoperability Functions – Main Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Gonzalez, Sigifredo; Ralph, Mark E.

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated onmore » grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not currently required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.« less

  11. Test Protocols for Advanced Inverter Interoperability Functions - Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Gonzalez, Sigifredo; Ralph, Mark E.

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated onmore » grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not now required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.« less

  12. 75 FR 22744 - Procurement List: Proposed Additions and Deletions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ..., Industrial/Non-Medical Grade, 100 Gloves/Box, Small. NSN: 8415-00-NIB-0811--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves/Box, Medium. NSN: 8415-00-NIB-0812--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves/Box, Large. NSN: 8415-00-NIB-0813--Glove, Vinyl, Industrial/Non-Medical Grade, 100 Gloves...

  13. Mobile multiwave lidar

    NASA Astrophysics Data System (ADS)

    Gritsuta, A. N.; Klimkin, A. V.; Kokhanenko, G. P.; Kuryak, A. N.; Osipov, K. Y.; Ponomarev, Yu. N.; Simonova, G. V.

    2018-04-01

    The task that faced the authors was construction of a mobile lidar complex for detection and investigation of aerosol-gas formations in the atmosphere. The complex must be constructed of commercial industrially produced components as much as possible. Many of engineering solutions had been previously worked out by the authors when the first lidar of such type was developed. The complex is designed for study of capabilities of lidar sensing for remote investigation of aerosol-gas formations by their fluorescence and Raman scattering spectra, as well as topographyc objects by fluorescence spectra of their surfaces. The complex has been tested in 2016, and may be applied for atmospheric sensing, for detection of potentially hazardous and dangerous admixtures above the cities, industrial and agricultural emissions, including emissions after disclosures of agricultural animal burial sites. The complex is mounted on a motor vehicle chassis and is energy-independent, and that allow using it for remote sensing of different objects in different natural conditions. Probing distance: 30 000 meters in elastic scattering channel and 5 000 meters in fluorescence channel.

  14. Is Scale-Up of Community Mobilisation among Sex Workers Really Possible in Complex Urban Environments? The Case of Mumbai, India

    PubMed Central

    Kongelf, Anine; Bandewar, Sunita V. S.; Bharat, Shalini; Collumbien, Martine

    2015-01-01

    Background In the last decade, community mobilisation (CM) interventions targeting female sex workers (FSWs) have been scaled-up in India’s national response to the HIV epidemic. This included the Bill and Melinda Gates Foundation’s Avahan programme which adopted a business approach to plan and manage implementation at scale. With the focus of evaluation efforts on measuring effectiveness and health impacts there has been little analysis thus far of the interaction of the CM interventions with the sex work industry in complex urban environments. Methods and Findings Between March and July 2012 semi-structured, in-depth interviews and focus group discussions were conducted with 63 HIV intervention implementers, to explore challenges of HIV prevention among FSWs in Mumbai. A thematic analysis identified contextual factors that impact CM implementation. Large-scale interventions are not only impacted by, but were shown to shape the dynamic social context. Registration practices and programme monitoring were experienced as stigmatising, reflected in shifting client preferences towards women not disclosing as ‘sex workers’. This combined with urban redevelopment and gentrification of traditional red light areas, forcing dispersal and more ‘hidden’ ways of solicitation, further challenging outreach and collectivisation. Participants reported that brothel owners and ‘pimps’ continued to restrict access to sex workers and the heterogeneous ‘community’ of FSWs remains fragmented with high levels of mobility. Stakeholder engagement was poor and mobilising around HIV prevention not compelling. Interventions largely failed to respond to community needs as strong target-orientation skewed activities towards those most easily measured and reported. Conclusion Large-scale interventions have been impacted by and contributed to an increasingly complex sex work environment in Mumbai, challenging outreach and mobilisation efforts. Sex workers remain a vulnerable and disempowered group needing continued support and more comprehensive services. PMID:25811484

  15. New Class of Hybrid Materials for Detection, Capture, and "On-Demand" Release of Carbon Monoxide.

    PubMed

    Pitto-Barry, Anaïs; Lupan, Alexandru; Ellingford, Christopher; Attia, Amr A A; Barry, Nicolas P E

    2018-04-25

    Carbon monoxide (CO) is both a substance hazardous to health and a side product of a number of industrial processes, such as methanol steam reforming and large-scale oxidation reactions. The separation of CO from nitrogen (N 2 ) in industrial processes is considered to be difficult because of the similarities of their electronic structures, sizes, and physicochemical properties (e.g., boiling points). Carbon monoxide is also a major poison in fuel cells because of its adsorption onto the active sites of the catalysts. It is therefore of the utmost economic importance to discover new materials that enable effective CO capture and release under mild conditions. However, methods to specifically absorb and easily release CO in the presence of contaminants, such as water, nitrogen, carbon dioxide, and oxygen, at ambient temperature are not available. Here, we report the simple and versatile fabrication of a new class of hybrid materials that allows capture and release of carbon monoxide under mild conditions. We found that carborane-containing metal complexes encapsulated in networks made of poly(dimethylsiloxane) react with CO, even when immersed in water, leading to dramatic color and infrared signature changes. Furthermore, we found that the CO can be easily released from the materials by simply dipping the networks into an organic solvent for less than 1 min, at ambient temperature and pressure, which not only offers a straightforward recycling method, but also a new method for the "on-demand" release of carbon monoxide. We illustrated the utilization of the on-demand release of CO from the networks by carrying out a carbonylation reaction on an electron-deficient metal complex that led to the formation of the CO-adduct, with concomitant recycling of the gel. We anticipate that our sponge-like materials and scalable methodology will open up new avenues for the storage, transport, and controlled release of CO, the silent killer and a major industrial poison.

  16. Airborne trace elements near a petrochemical industrial complex in Thailand assessed by the lichen Parmotrema tinctorum (Despr. ex Nyl.) Hale.

    PubMed

    Boonpeng, Chaiwat; Polyiam, Wetchasart; Sriviboon, Chutima; Sangiamdee, Duangkamon; Watthana, Santi; Nimis, Pier Luigi; Boonpragob, Kansri

    2017-05-01

    Several trace elements discharged by the petrochemical industry are toxic to humans and the ecosystem. In this study, we assessed airborne trace elements in the vicinity of the Map Ta Phut petrochemical industrial complex in Thailand by transplanting the lichen Parmotrema tinctorum to eight industrial, two rural, and one clean air sites between October 2013 and June 2014. After 242 days, the concentrations of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Ti, V, and Zn in lichens at most industrial sites were higher than those at the rural and the control sites; in particular, As, Cu, Mo, Sb, V, and Zn were significantly higher than at the control site (p < 0.05). Contamination factors (CFs) indicated that Cd, Cu, Mo, and Sb, which have severe health impacts, heavily contaminated at most industrial sites. Principal component analysis (PCA) showed that most elements were associated with industry, with lesser contributions from traffic and agriculture. Based on the pollution load indexes (PLIs), two industrial sites were highly polluted, five were moderately polluted, and one had a low pollution level, whereas the pollution load at the rural sites was comparable to background levels. This study reinforces the utility of lichens as cost-effective biomonitors of airborne elements, suitable for use in developing countries, where adequate numbers of air monitoring instruments are unavailable due to financial, technical, and policy constraints.

  17. Trees as bioindicators of industrial air pollution during implementation of pro-environmental policy in Silesia region (Poland).

    NASA Astrophysics Data System (ADS)

    Sensuła, Barbara; Wilczyński, Slawomir; Opała, Magdalena; Pawełczyk, Sławomira; Piotrowska, Natalia

    2015-04-01

    The aim of research conducted within the project entitled "Trees as bioindicators of industrial air pollutants during the implementation of pro-environmental policies in the area of Silesia" (acronym BIOPOL) is the reconstruction of climate changes and anthropogenic effects and monitoring of the influence of human activities related to industrial development and the introduction of pro-environmental policy. The analysis will concern the climatic and anthropogenic signals recorded in annual tree rings width of Scots pine and in the isotopic composition of wood and its compenents (such as alpha-cellulose and glucose). Only a few studies made a complex multiproxies analysis of the influence of industrial air pollutants on changes in the tree rings width and their isotopic composition in any selected region. In addition, research is usually for a period of industrial development, is a lack of analysis for the period of implementation of EU law and standards on air quality to Polish law. The research area are the forests close to 3 different industrial plants (chemical- nitrogen plants, steel mills, power plants), in Silesia, where operating companies have strategic importance for the region and country. By analyzing the structure of land in Silesia noted a significant advantage of forest land and agricultural land. A large percentage of forest land providing protection for residents in case of failure in any of the plants. A cloud of noxious fumes is possible in large part retained in the trees. Waste generated by the chemical industry, metallurgy and energy represent the largest proportion of waste generated in the region. Already in the beginning of 21stcentury, the Waste Management Plans for various cities in Silesia are set out various strategic objectives to 2015, including in the economic sector: the implementation of non-waste technology and less and the best available techniques (BAT), the introduction of the principles of "cleaner production". The BIOPOL innovation is: a) multiproxy spatio-temporal analysis of the effects of climate changes and emission of air industrial pollution on trees during the development of industry and the implementation of pro-environmental policies in Silesia: - Analysis of the width of annual tree rings (since 1975) - Analysis of underestimation of the 14C concentration during the implementation of European standards (since 2000) - Analysis of the recorded signals of environmental changes in the composition of stable isotopes in annual tree rings - wood and its components b) modeling of the influence of pollutants emitted into the atmosphere on the width of annual growth of trees and C,O,N stable isotopes and radiocarbon - Spatio-temporal model of environmental change in the tree rings width and their isotopic composition close to each of the selected plants - comparison to the impact of climate change and industrial pollution for 3 different industries (steel mills, power plants, nitrogen plants) in the period from 1975 to present - Space model of environmental changes in the isotopic composition of trees near each of the selected plants (at varying distances from the chosen site) based on analysis of isotopic composition of annual shoots of pine trees in three consecutive years: from 2012 to 2014) - Estimation of emission components originating from industrial pollution for individual plants This project was funded by the National Science Centre allocated on the basis of the decision number DEC-2011/03/D/ST10/05251

  18. Evaluation of the nephrotoxicity of complex mixtures containing organics and metals: advantages and disadvantages of the use of real-world complex mixtures.

    PubMed

    Simmons, J E; Yang, R S; Berman, E

    1995-02-01

    As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures.

  19. Discrete elements for 3D microfluidics.

    PubMed

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  20. Clove essential oil-in-cyclodextrin-in-liposomes in the aqueous and lyophilized states: From laboratory to large scale using a membrane contactor.

    PubMed

    Sebaaly, Carine; Charcosset, Catherine; Stainmesse, Serge; Fessi, Hatem; Greige-Gerges, Hélène

    2016-03-15

    This work is dedicated to prepare liposomal dry powder formulations of inclusion complexes of clove essential oil (CEO) and its main component eugenol (Eug). Ethanol injection method and membrane contactor were applied to prepare liposomes at laboratory and large scale, respectively. Various liposomal formulations were tested: (1) free hydroxypropyl-β-cyclodextrin loaded liposomes; (2) drug in hydroxypropyl-β-cyclodextrin in liposomes (DCL); (3) DCL2 obtained by double loading technique, where the drug is added in the organic phase and the inclusion complex in the aqueous phase. Liposomes were characterized for their particle size, polydispersity index, Zeta potential, morphology, encapsulation efficiency of CEO components and Eug loading rate. Reproducible results were obtained with both injection devices. Compared to Eug-loaded liposomes, DCL and DCL2 improved the loading rate of Eug and possessed smaller vesicles size. The DPPH(•) scavenging activity of Eug and CEO was maintained upon incorporation of Eug and CEO into DCL and DCL2. Contrary to DCL2, DCL formulations were stable after 1 month of storage at 4°C and upon reconstitution of the dried lyophilized cakes. Hence, DCL in aqueous and lyophilized forms, are considered as a promising carrier system to preserve volatile and hydrophobic drugs enlarging their application in cosmetic, pharmaceutical and food industries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  2. The vulnerability of the global container shipping network to targeted link disruption

    NASA Astrophysics Data System (ADS)

    Viljoen, Nadia M.; Joubert, Johan W.

    2016-11-01

    Using complex network theory to describe the relational geography of maritime networks has provided great insights regarding their hierarchy and evolution over the past two decades. Unlike applications in other transport fields, notably air transport, complex network theory has had limited application in studying the vulnerability of maritime networks. This study uses targeted link disruption to investigate the strategy specific vulnerability of the network. Although nodal infrastructure such as ports can render a network vulnerable as a result of labour strikes, trade embargoes or natural disasters, it is the shipping lines connecting the ports that are more probably disrupted, either from within the industry, or outside. In this paper, we apply and evaluate two link-based disruption strategies on the global container shipping network, one based on link betweenness, and the other on link salience, to emulate the impact of large-scale service reconfiguration affecting priority links. The results show that the network is by and large robust to such reconfiguration. Meanwhile the flexibility of the network is reduced by both strategies, but to a greater degree by betweenness, resulting in a reduction of transshipment and dynamic rerouting potential amongst the busiest port regions. The results further show that the salience strategy is highly effective in reducing the commonality of shortest path sets, thereby diminishing opportunities for freight consolidation and scale economies.

  3. In the Shadow of Coal: How Large-Scale Industries Contributed to Present-Day Regional Differences in Personality and Well-Being.

    PubMed

    Obschonka, Martin; Stuetzer, Michael; Rentfrow, Peter J; Shaw-Taylor, Leigh; Satchell, Max; Silbereisen, Rainer K; Potter, Jeff; Gosling, Samuel D

    2017-11-20

    Recent research has identified regional variation of personality traits within countries but we know little about the underlying drivers of this variation. We propose that the Industrial Revolution, as a key era in the history of industrialized nations, has led to a persistent clustering of well-being outcomes and personality traits associated with psychological adversity via processes of selective migration and socialization. Analyzing data from England and Wales, we examine relationships between the historical employment share in large-scale coal-based industries (coal mining and steam-powered manufacturing industries that used this coal as fuel for their steam engines) and today's regional variation in personality and well-being. Even after controlling for possible historical confounds (historical energy supply, education, wealth, geology, climate, population density), we find that the historical local dominance of large-scale coal-based industries predicts today's markers of psychological adversity (lower Conscientiousness [and order facet scores], higher Neuroticism [and anxiety and depression facet scores], lower activity [an Extraversion facet], and lower life satisfaction and life expectancy). An instrumental variable analysis, using the historical location of coalfields, supports the causal assumption behind these effects (with the exception of life satisfaction). Further analyses focusing on mechanisms hint at the roles of selective migration and persisting economic hardship. Finally, a robustness check in the U.S. replicates the effect of the historical concentration of large-scale industries on today's levels of psychological adversity. Taken together, the results show how today's regional patterns of personality and well-being (which shape the future trajectories of these regions) may have their roots in major societal changes underway decades or centuries earlier. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Shocked and Stressed, Metals Get Stronger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackel, L

    2002-03-12

    People who know their way around metalworking are no doubt familiar with peening--using a ball-peen hammer to pound a piece of metal into shape and strengthen it against fatigue failure. For the past 50 years, an industrialized equivalent has been shot peening, in which metal or ceramic beads as large as marbles or as small as salt and pepper grains pneumatically bombard a metal surface. Laser peening, a process based on a superior laser technology developed at Lawrence Livermore, replaces the hammer blows and streams of beads with short blasts of laser light. The end result is a piece ofmore » metal with significantly improved performance. Lawrence Livermore and Metal Improvement Company, Inc., won a coveted R and D 100 Award for their laser-peening process in 1998 (see S and TR, October 1998, pp. 12-13). Since that time, they've been developing uses for the technology with a number of industries, including automotive, medical, and aerospace. They've also developed an offshoot technique--laser peenmarking{trademark}--which provides a way to easily and clearly identify parts with a mark that is extremely difficult to counterfeit. Another outgrowth is a new peen-forming technology that allows complex contouring of problematic thick metal components such as the thick sections of large aircraft wings. There have also been spinback applications to the Department of Energy's programs for stockpile stewardship, fuel-efficient vehicles, and long-term nuclear waste storage.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Rakesh

    This project sought and successfully answered two big challenges facing the creation of low-energy, cost-effective, zeotropic multi-component distillation processes: first, identification of an efficient search space that includes all the useful distillation configurations and no undesired configurations; second, development of an algorithm to search the space efficiently and generate an array of low-energy options for industrial multi-component mixtures. Such mixtures are found in large-scale chemical and petroleum plants. Commercialization of our results was addressed by building a user interface allowing practical application of our methods for industrial problems by anyone with basic knowledge of distillation for a given problem. Wemore » also provided our algorithm to a major U.S. Chemical Company for use by the practitioners. The successful execution of this program has provided methods and algorithms at the disposal of process engineers to readily generate low-energy solutions for a large class of multicomponent distillation problems in a typical chemical and petrochemical plant. In a petrochemical complex, the distillation trains within crude oil processing, hydrotreating units containing alkylation, isomerization, reformer, LPG (liquefied petroleum gas) and NGL (natural gas liquids) processing units can benefit from our results. Effluents from naphtha crackers and ethane-propane crackers typically contain mixtures of methane, ethylene, ethane, propylene, propane, butane and heavier hydrocarbons. We have shown that our systematic search method with a more complete search space, along with the optimization algorithm, has a potential to yield low-energy distillation configurations for all such applications with energy savings up to 50%.« less

  6. The 'dirty downside' of global sporting events: focus on human trafficking for sexual exploitation.

    PubMed

    Finkel, R; Finkel, M L

    2015-01-01

    Human trafficking is as complex human rights and public health issue. The issue of human trafficking for sexual exploitation at large global sporting events has proven to be elusive given the clandestine nature of the industry. This piece examines the issue from a public health perspective. This is a literature review of the 'most comprehensive' studies published on the topic. A PubMed search was done using MeSH terms 'human traffickings' and 'sex trafficking' and 'human rights abuses'. Subheadings included 'statistics and numerical data', 'legislation and jurispudence', 'prevention and control', and 'therapy'. Only papers published in English were reviewed. The search showed that very few well-designed empirical studies have been conducted on the topic and only one pertinent systematic review was identified. Findings show a high prevalence of physical violence among those trafficked compared to non-trafficked women. Sexually transmitted infections and HIV AIDS are prevalent and preventive care is virtually non-existent. Quantifying human trafficking for sexual exploitation at large global sporting events has proven to be elusive given the clandestine nature of the industry. This is not to say that human trafficking for sex as well as forced sexual exploitation does not occur. It almost certainly exists, but to what extent is the big question. It is a hidden problem on a global scale in plain view with tremendous public health implications. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  7. Virtualization for the LHCb Online system

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, Enrico; Brarda, Loic; Moine, Gary; Neufeld, Niko

    2011-12-01

    Virtualization has long been advertised by the IT-industry as a way to cut down cost, optimise resource usage and manage the complexity in large data-centers. The great number and the huge heterogeneity of hardware, both industrial and custom-made, has up to now led to reluctance in the adoption of virtualization in the IT infrastructure of large experiment installations. Our experience in the LHCb experiment has shown that virtualization improves the availability and the manageability of the whole system. We have done an evaluation of available hypervisors / virtualization solutions and find that the Microsoft HV technology provides a high level of maturity and flexibility for our purpose. We present the results of these comparison tests, describing in detail, the architecture of our virtualization infrastructure with a special emphasis on the security for services visible to the outside world. Security is achieved by a sophisticated combination of VLANs, firewalls and virtual routing - the cost and benefits of this solution are analysed. We have adapted our cluster management tools, notably Quattor, for the needs of virtual machines and this allows us to migrate smoothly services on physical machines to the virtualized infrastructure. The procedures for migration will also be described. In the final part of the document we describe our recent R&D activities aiming to replacing the SAN-backend for the virtualization by a cheaper iSCSI solution - this will allow to move all servers and related services to the virtualized infrastructure, excepting the ones doing hardware control via non-commodity PCI plugin cards.

  8. Application of NIR hyperspectral imaging for post-consumer polyolefins recycling

    NASA Astrophysics Data System (ADS)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-06-01

    An efficient large-scale recycling approach of particulate solid wastes is always accomplished according to the quality of the materials fed to the recycling plant and/or to any possible continuous and reliable control of the different streams inside the processing plants. Processing technologies addressed to recover plastics need to be extremely powerful, since they must be relatively simple to be cost-effective, but also accurate enough to create high-purity products and able to valorize a substantial fraction of the plastic waste materials into useful products of consistent quality in order to be economical. On the other hand, the potential market for such technologies is large and the boost of environmental regulations, and the oil price increase, has made many industries interested both in "general purpose" waste sorting technologies, as well as in developing more specialized sensing devices and/or inspection logics for a better quality assessment of plastic products. In this perspective recycling strategies have to be developed taking into account some specific aspects as i) mixtures complexity: the valuable material has to be extracted from the residue, ii) overall production: the profitability of plastic can be achieved only with mass production and iii) costs: low-cost sorting processes are required. In this paper new analytical strategies, based on hyperspectral imaging in the near infrared field (1000-1700 nm), have been investigated and set up in order to define sorting and/or quality control logics that could be profitably applied, at industrial plant level, for polyolefins recycling.

  9. Navigating the fifth dimension: new concepts in interactive multimodality and multidimensional image navigation

    NASA Astrophysics Data System (ADS)

    Ratib, Osman; Rosset, Antoine; Dahlbom, Magnus; Czernin, Johannes

    2005-04-01

    Display and interpretation of multi dimensional data obtained from the combination of 3D data acquired from different modalities (such as PET-CT) require complex software tools allowing the user to navigate and modify the different image parameters. With faster scanners it is now possible to acquire dynamic images of a beating heart or the transit of a contrast agent adding a fifth dimension to the data. We developed a DICOM-compliant software for real time navigation in very large sets of 5 dimensional data based on an intuitive multidimensional jog-wheel widely used by the video-editing industry. The software, provided under open source licensing, allows interactive, single-handed, navigation through 3D images while adjusting blending of image modalities, image contrast and intensity and the rate of cine display of dynamic images. In this study we focused our effort on the user interface and means for interactively navigating in these large data sets while easily and rapidly changing multiple parameters such as image position, contrast, intensity, blending of colors, magnification etc. Conventional mouse-driven user interface requiring the user to manipulate cursors and sliders on the screen are too cumbersome and slow. We evaluated several hardware devices and identified a category of multipurpose jogwheel device that is used in the video-editing industry that is particularly suitable for rapidly navigating in five dimensions while adjusting several display parameters interactively. The application of this tool will be demonstrated in cardiac PET-CT imaging and functional cardiac MRI studies.

  10. ACE: A distributed system to manage large data archives

    NASA Technical Reports Server (NTRS)

    Daily, Mike I.; Allen, Frank W.

    1993-01-01

    Competitive pressures in the oil and gas industry are requiring a much tighter integration of technical data into E and P business processes. The development of new systems to accommodate this business need must comprehend the significant numbers of large, complex data objects which the industry generates. The life cycle of the data objects is a four phase progression from data acquisition, to data processing, through data interpretation, and ending finally with data archival. In order to implement a cost effect system which provides an efficient conversion from data to information and allows effective use of this information, an organization must consider the technical data management requirements in all four phases. A set of technical issues which may differ in each phase must be addressed to insure an overall successful development strategy. The technical issues include standardized data formats and media for data acquisition, data management during processing, plus networks, applications software, and GUI's for interpretation of the processed data. Mass storage hardware and software is required to provide cost effective storage and retrieval during the latter three stages as well as long term archival. Mobil Oil Corporation's Exploration and Producing Technical Center (MEPTEC) has addressed the technical and cost issues of designing, building, and implementing an Advanced Computing Environment (ACE) to support the petroleum E and P function, which is critical to the corporation's continued success. Mobile views ACE as a cost effective solution which can give Mobile a competitive edge as well as a viable technical solution.

  11. On Convergence of Development Costs and Cost Models for Complex Spaceflight Instrument Electronics

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Patel, Umeshkumar D.; Kasa, Robert L.; Hestnes, Phyllis; Brown, Tammy; Vootukuru, Madhavi

    2008-01-01

    Development costs of a few recent spaceflight instrument electrical and electronics subsystems have diverged from respective heritage cost model predictions. The cost models used are Grass Roots, Price-H and Parametric Model. These cost models originated in the military and industry around 1970 and were successfully adopted and patched by NASA on a mission-by-mission basis for years. However, the complexity of new instruments recently changed rapidly by orders of magnitude. This is most obvious in the complexity of representative spaceflight instrument electronics' data system. It is now required to perform intermediate processing of digitized data apart from conventional processing of science phenomenon signals from multiple detectors. This involves on-board instrument formatting of computational operands from row data for example, images), multi-million operations per second on large volumes of data in reconfigurable hardware (in addition to processing on a general purpose imbedded or standalone instrument flight computer), as well as making decisions for on-board system adaptation and resource reconfiguration. The instrument data system is now tasked to perform more functions, such as forming packets and instrument-level data compression of more than one data stream, which are traditionally performed by the spacecraft command and data handling system. It is furthermore required that the electronics box for new complex instruments is developed for one-digit watt power consumption, small size and that it is light-weight, and delivers super-computing capabilities. The conflict between the actual development cost of newer complex instruments and its electronics components' heritage cost model predictions seems to be irreconcilable. This conflict and an approach to its resolution are addressed in this paper by determining the complexity parameters, complexity index, and their use in enhanced cost model.

  12. Analysis of the use of industrial control systems in simulators: state of the art and basic guidelines.

    PubMed

    Carrasco, Juan A; Dormido, Sebastián

    2006-04-01

    The use of industrial control systems in simulators facilitates the execution of engineering activities related with the installation and the optimization of the control systems in real plants. "Industrial control system" intends to be a valid term that would represent all the control systems which can be installed in an industrial plant, ranging from complex distributed control systems and SCADA packages to small single control devices. This paper summarizes the current alternatives for the development of simulators of industrial plants and presents an analysis of the process of integrating an industrial control system into a simulator, with the aim of helping in the installation of real control systems in simulators.

  13. Academic-industrial partnerships in drug discovery in the age of genomics.

    PubMed

    Harris, Tim; Papadopoulos, Stelios; Goldstein, David B

    2015-06-01

    Many US FDA-approved drugs have been developed through productive interactions between the biotechnology industry and academia. Technological breakthroughs in genomics, in particular large-scale sequencing of human genomes, is creating new opportunities to understand the biology of disease and to identify high-value targets relevant to a broad range of disorders. However, the scale of the work required to appropriately analyze large genomic and clinical data sets is challenging industry to develop a broader view of what areas of work constitute precompetitive research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Influence of pea protein aggregates on the structure and stability of pea protein/soybean polysaccharide complex emulsions.

    PubMed

    Yin, Baoru; Zhang, Rujing; Yao, Ping

    2015-03-20

    The applications of plant proteins in the food and beverage industry have been hampered by their precipitation in acidic solution. In this study, pea protein isolate (PPI) with poor dispersibility in acidic solution was used to form complexes with soybean soluble polysaccharide (SSPS), and the effects of PPI aggregates on the structure and stability of PPI/SSPS complex emulsions were investigated. Under acidic conditions, high pressure homogenization disrupts the PPI aggregates and the electrostatic attraction between PPI and SSPS facilitates the formation of dispersible PPI/SSPS complexes. The PPI/SSPS complex emulsions prepared from the PPI containing aggregates prove to possess similar droplet structure and similar stability compared with the PPI/SSPS emulsions produced from the PPI in which the aggregates have been previously removed by centrifugation. The oil droplets are protected by PPI/SSPS complex interfacial films and SSPS surfaces. The emulsions show long-term stability against pH and NaCl concentration changes. This study demonstrates that PPI aggregates can also be used to produce stable complex emulsions, which may promote the applications of plant proteins in the food and beverage industry.

  15. Training in the Food and Beverages Sector in Ireland. Report for the FORCE Programme. First Edition.

    ERIC Educational Resources Information Center

    Hunt, Deirdre; And Others

    The food and beverage industry is of overwhelming strategic importance to the Irish economy. It is also one of the fastest changing sectors. Recent trends in this largely indigenous industry in recent years include the following: globalization, large and accelerating capital outlay, company consolidation, added value product, enhanced quality…

  16. An information transfer based novel framework for fault root cause tracing of complex electromechanical systems in the processing industry

    NASA Astrophysics Data System (ADS)

    Wang, Rongxi; Gao, Xu; Gao, Jianmin; Gao, Zhiyong; Kang, Jiani

    2018-02-01

    As one of the most important approaches for analyzing the mechanism of fault pervasion, fault root cause tracing is a powerful and useful tool for detecting the fundamental causes of faults so as to prevent any further propagation and amplification. Focused on the problems arising from the lack of systematic and comprehensive integration, an information transfer-based novel data-driven framework for fault root cause tracing of complex electromechanical systems in the processing industry was proposed, taking into consideration the experience and qualitative analysis of conventional fault root cause tracing methods. Firstly, an improved symbolic transfer entropy method was presented to construct a directed-weighted information model for a specific complex electromechanical system based on the information flow. Secondly, considering the feedback mechanisms in the complex electromechanical systems, a method for determining the threshold values of weights was developed to explore the disciplines of fault propagation. Lastly, an iterative method was introduced to identify the fault development process. The fault root cause was traced by analyzing the changes in information transfer between the nodes along with the fault propagation pathway. An actual fault root cause tracing application of a complex electromechanical system is used to verify the effectiveness of the proposed framework. A unique fault root cause is obtained regardless of the choice of the initial variable. Thus, the proposed framework can be flexibly and effectively used in fault root cause tracing for complex electromechanical systems in the processing industry, and formulate the foundation of system vulnerability analysis and condition prediction, as well as other engineering applications.

  17. Improvement of Automated POST Case Success Rate Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.

    2017-01-01

    During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases.3 As noted in [4] work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points.

  18. Industry Perceptions of Industry-University Partnerships Related to Doctoral Education in South Africa

    ERIC Educational Resources Information Center

    Herman, Chaya

    2013-01-01

    An assessment of the extent to which industry-university partnerships in doctoral education, which have become increasingly prevalent in the knowledge economy, have begun to penetrate the South African higher education milieu, is reported. The factors that motivate large industries in developing countries such as South Africa to invest in doctoral…

  19. Hardwood lumber distribution yards: Output, demands, and perceptions of their role

    Treesearch

    Urs Buehlmann; Omar Espinoza; Robert Smith; Matthew Bumgardner

    2011-01-01

    Efficient and effective supply chains strengthen the entire forest products industry value chain. As the secondary wood products industry has been transformed by the decline of large manufacturers in some industry segments, the industry's supply chain has responded to these new realities. Remaining and new customers tend to be smaller and have unique needs and...

  20. Socio-Economics of Lake Victoria's Fisheries: An Analysis of the Shifting Roles and Status of Women Fish Traders

    ERIC Educational Resources Information Center

    Craig, Heather

    2007-01-01

    Fishing industries around the world are currently undergoing a process of industrialization and commercialization. A similar story is unfolding in many fishing communities: large-scale industrial fishers who possess enormous capital and advanced technologies are threatening the lives of small-scale fisherfolk. The fishing industry in Lake Victoria…

Top