NASA Astrophysics Data System (ADS)
Chan, Duo; Zhang, Yang; Wu, Qigang
2013-04-01
East Asian Jet Stream (EASJ) is charactered by obvious interannual variability in strength and position (latitude), with wide impacts on East Asian climate in all seasons. In this study, two indices are established to measure the interannual variability in intensity and position of EAJS. Possible causing factors, including both local signals and non-local large-scale circulation, are examined using NCAP-NCAR reanalysis data to investigate their relations with jet variation. Our analysis shows that the relationship between the interannual variations of EASJ and these factors depends on seasons. In the summer, both the intensity and position of EASJ are closely related to the meridional gradient of local surface temperature, but display no apparent relationship with the larg-scale circulation. In cold seasons (autumn, winter and spring), both the local factor and the large-scale circulation, i.e. the Pacific/North American teleconnection pattern (PNA), play important roles in the interannual variability of the jet intensity. The variability in the jet position, however, is more correlated to the Arctic Oscillation (AO), especially in winter. Diagnostic analysis indicates that transient eddy activity plays an important role in connecting the interannual variability of EASJ position with AO.
January and July global distributions of atmospheric heating for 1986, 1987, and 1988
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1994-01-01
Three-dimensional global distributions of atmospheric heating are estimated for January and July of the 3-year period 1986-88 from the European Center for Medium Weather Forecasts (ECMWF) Tropical Ocean Global Atmosphere (TOGA) assimilated datasets. Emphasis is placed on the interseasonal and interannual variability of heating both locally and regionally. Large fluctuations in the magnitude of heating and the disposition of maxima/minima in the Tropics occur over the 3-year period. This variability, which is largely in accord with anomalous precipitation expected during the El Nino-Southern Oscillation (ENSO) cycle, appears realistic. In both January and July, interannual differences of 1.0-1.5 K/day in the vertically averaged heating occur over the tropical Pacific. These interannual regional differences are substantial in comparison with maximum monthly averaged heating rates of 2.0-2.5 K/day. In the extratropics, the most prominent interannual variability occurs along the wintertime North Atlantic cyclone track. Vertical profiles of heating from selected regions also reveal large interannual variability. Clearly evident is the modulation of the heating within tropical regions of deep moist convection associated with the evolution of the ENSO cycle. The heating integrated over continental and oceanic basins emphasizes the impact of land and ocean surfaces on atmospheric energy balance and depicts marked interseasonal and interannual large-scale variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackman, C.H.; Douglass, A.R., Chandra, S.; Stolarski, R.S.
1991-03-20
Eight years of NMC (National Meteorological Center) temperature and SBUV (solar backscattered ultraviolet) ozone data were used to calculate the monthly mean heating rates and residual circulation for use in a two-dimensional photochemical model in order to examine the interannual variability of modeled ozone. Fairly good correlations were found in the interannual behavior of modeled and measured SBUV ozone in the upper stratosphere at middle to low latitudes, where temperature dependent photochemistry is thought to dominate ozone behavior. The calculated total ozone is found to be more sensitive to the interannual residual circulation changes than to the interannual temperature changes.more » The magnitude of the modeled ozone variability is similar to the observed variability, but the observed and modeled year to year deviations are mostly uncorrelated. The large component of the observed total ozone variability at low latitudes due to the quasi-biennial oscillation (QBO) is not seen in the modeled total ozone, as only a small QBO signal is present in the heating rates, temperatures, and monthly mean residual circulation. Large interanual changes in tropospheric dynamics are believed to influence the interannual variability in the total ozone, especially at middle and high latitudes. Since these tropospheric changes and most of the QBO forcing are not included in the model formulation, it is not surprising that the interannual variability in total ozione is not well represented in the model computations.« less
Basinwide response of the Atlantic Meridional Overturning Circulation to interannual wind forcing
NASA Astrophysics Data System (ADS)
Zhao, Jian
2017-12-01
An eddy-resolving Ocean general circulation model For the Earth Simulator (OFES) and a simple wind-driven two-layer model are used to investigate the role of momentum fluxes in driving the Atlantic Meridional Overturning Circulation (AMOC) variability throughout the Atlantic basin from 1950 to 2010. Diagnostic analysis using the OFES results suggests that interior baroclinic Rossby waves and coastal topographic waves play essential roles in modulating the AMOC interannual variability. The proposed mechanisms are verified in the context of a simple two-layer model with realistic topography and only forced by surface wind. The topographic waves communicate high-latitude anomalies into lower latitudes and account for about 50% of the AMOC interannual variability in the subtropics. In addition, the large scale Rossby waves excited by wind forcing together with topographic waves set up coherent AMOC interannual variability patterns across the tropics and subtropics. The comparisons between the simple model and OFES results suggest that a large fraction of the AMOC interannual variability in the Atlantic basin can be explained by wind-driven dynamics.
The interannual variability of the Haines Index over North America
Lejiang Yu; Shiyuan Zhong; Xindi Bian; Warren E. Heilman; Joseph J. Charney
2013-01-01
The Haines index (HI) is a fire-weather index that is widely used as an indicator of the potential for dry, low-static-stability air in the lower atmosphere to contribute to erratic fire behavior or large fire growth. This study examines the interannual variability of HI over North America and its relationship to indicators of large-scale circulation anomalies. The...
NASA Astrophysics Data System (ADS)
Choi, Byoung-Ju; Cho, Seong Hun; Jung, Hee Seok; Lee, Sang-Ho; Byun, Do-Seong; Kwon, Kyungman
2018-03-01
The interannual variation of surface ocean currents can be as large as seasonal variation in the Japan/East Sea (JES). To identify the major factors that cause such interannual variability of surface ocean circulation in the JES, surface circulation was simulated from 1998 to 2009 using a three-dimensional model. Contributions of atmospheric forcing (ATM), open boundary data (OBC), and intrinsic variability (ITV) of the surface flow in the JES on the interannual variability of surface ocean circulation were separately examined using numerical simulations. Variability in surface circulation was quantified in terms of variance in sea surface height, 100-m depth water temperature, and surface currents. ITV was found to be the dominant factor that induced interannual variabilities of surface circulation, the main path of the East Korea Warm Current (EKWC), and surface kinetic energy on a time scale of 2-4 years. OBC and ATM were secondary factors contributing to the interannual variation of surface circulation. Interannual variation of ATM changed the separation latitude of EKWC and increased the variability of surface circulation in the Ulleung Basin. Interannual variation of OBC enhanced low-frequency changes in surface circulation and eddies in the Yamato Basin. It also modulated basin-wide uniform oscillations of sea level. This study suggests that precise estimation of initial conditions using data assimilation is essential for long-term prediction of surface circulation in the JES.
Zscheischler, Jakob; Fatichi, Simone; Wolf, Sebastian; ...
2016-08-08
Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their explanatory power is limited and uncertainties remain as to their relative contributions. Recent results show that the annual count of hours where evapotranspiration (ET) is larger than its 95th percentile is strongly correlated with the annual variability of ET and gross primary production (GPP) in an ecosystem model. This suggests that the occurrence ofmore » favorable conditions has a strong influence on the annual carbon budget. Here we analyzed data from eight forest sites of the AmeriFlux network with at least 7 years of continuous measurements. We show that for ET and the carbon fluxes GPP, ecosystem respiration (RE), and net ecosystem production, counting the “most active hours/days” (i.e., hours/days when the flux exceeds a high percentile) correlates well with the respective annual sums, with correlation coefficients generally larger than 0.8. Phenological transitions have much weaker explanatory power. By exploiting the relationship between most active hours and interannual variability, we classify hours as most active or less active and largely explain interannual variability in ecosystem fluxes, particularly for GPP and RE. Our results suggest that a better understanding and modeling of the occurrence of large values in high-frequency ecosystem fluxes will result in a better understanding of interannual variability of these fluxes.« less
NASA Astrophysics Data System (ADS)
Stone, H. B.; Banas, N. S.; Hickey, B. M.; MacCready, P.
2016-02-01
The Pacific Northwest coast is an unusually productive area with a strong river influence and highly variable upwelling-favorable and downwelling-favorable winds, but recent trends in hypoxia and ocean acidification in this region are troubling to both scientists and the general public. A new ROMS hindcast model of this region makes possible a study of interannual variability. This study of the interannual temperature and salinity variability on the Pacific Northwest coast is conducted using a coastal hindcast model (43°N - 50°N) spanning 2002-2009 from the University of Washington Coastal Modeling Group, with a resolution of 1.5 km over the shelf and slope. Analysis of hindcast model results was used to assess the relative importance of source water variability, including the poleward California Undercurrent, local and remote wind forcing, winter wind-driven mixing, and river influence in explaining the interannual variations in the shelf bottom layer (40 - 80 m depth, 10 m thick) and over the slope (150 - 250 m depth, <100 km from shelf break) at each latitude within the model domain. Characterized through tracking of the fraction of Pacific Equatorial Water (PEW) relative to Pacific Subarctic Upper Water (PSUW) present on the slope, slope water properties at all latitudes varied little throughout the time series, with the largest variability due to patterns of large north-south advection of water masses over the slope. Over the time series, the standard deviation of slope temperature was 0.09 ˚C, while slope salinity standard deviation was 0.02 psu. Results suggest that shelf bottom water interannual variability is not driven primarily by interannual variability in slope water as shelf bottom water temperature and salinity vary nearly 10 times more than those over the slope. Instead, interannual variability in shelf bottom water properties is likely driven by other processes, such as local and remote wind forcing, and winter wind-driven mixing. The relative contributions of these processes to interannual variability in shelf bottom water properties will be addressed. Overall, these results highlight the importance of shelf processes relative to large-scale influences on the interannual timescale in particular. Implications for variability in hypoxia and ocean acidification impacts will be discussed.
NASA Astrophysics Data System (ADS)
Renju, R.; Suresh Raju, C.; Mathew, Nizy; Antony, Tinu; Krishna Moorthy, K.
2015-05-01
The intraseasonal and interannual characteristics and the vertical distribution of atmospheric water vapor from the tropical coastal station Thiruvananthapuram (TVM) located in the southwestern region of the Indian Peninsula are examined from continuous multiyear, multifrequency microwave radiometer profiler (MRP) measurements. The accuracy of MRP for precipitable water vapor (PWV) estimation, particularly during a prolonged monsoon period, has been demonstrated by comparing with the PWV derived from collocated GPS measurements based on regression model between PWV and GPS wet delay component which has been developed for TVM station. Large diurnal and intraseasonal variations of PWV are observed during winter and premonsoon seasons. There is large interannual PWV variability during premonsoon, owing to frequent local convection and summer thunderstorms. During monsoon period, low interannual PWV variability is attributed to the persistent wind from the ocean which brings moisture to this coastal station. However, significant interannual humidity variability is seen at 2 to 6 km altitude, which is linked to the monsoon strength over the station. Prior to monsoon onset over the station, the specific humidity increases up to 5-10 g/kg in the altitude region above 5 km and remains consistently so throughout the active spells.
NASA Technical Reports Server (NTRS)
Thomas, A. C.; Strub, P. T.
1989-01-01
A 5-year time series of coastal zone color scanner imagery (1980-1983, 1986) is used to examine changes in the large-scale pattern of chlorophyll pigment concentration coincident with the spring transition in winds and currents along the west coast of North America. The data show strong interannual variability in the timing and spatial patterns of pigment concentration at the time of the transition event. Interannual variability in the response of pigment concentration to the spring transition appears to be a function of spatial and temporal variability in vertical nutrient flux induced by wind mixing and/or the upwelling initiated at the time of the transition. Interannual differences in the mixing regime are illustrated with a one-dimensional mixing model.
Interannual rainfall variability and SOM-based circulation classification
NASA Astrophysics Data System (ADS)
Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher
2018-01-01
Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained variance, is consistent with the general understanding of the dominant processes and atmospheric variables that affect rainfall variability at a particular location.
Interannual variability of Indian Ocean subtropical mode water subduction rate
NASA Astrophysics Data System (ADS)
Ma, Jie; Lan, Jian
2017-06-01
The interannual variation of Indian Ocean subtropical mode water (IOSTMW) subduction rate in the Southwest Indian Ocean from 1980 to 2007 is investigated in this paper based on Simple Ocean Data Assimilation (SODA) outputs. Climatology of subduction rate exceeds 75 m/year in the IOSTMW formation area. The renewal time of permanent pycnocline water mass based on the subduction rate is calculated for each density class: 3-6 years for IOSTMW (25.8 < σ θ < 26.2 kg m-3). Subduction rate in the Southwest Indian Ocean subtropical gyre exhibits a great year-to-year variability. This interannual variations of the IOSTMW subduction rate is primarily dominated by the lateral induction term, associated with the interannual variations of strong meridional gradient of winter mixed layer depth (MLD). The slope of the mixed layer depth in the mode water is closely linked to the large variations of deep late winter MLD in the mid-latitudes and negligible variations of shallow winter MLD in lower latitudes. It is further identified that the interannual variation of late winter MLD in this area is largely controlled by the latent and sensible heat flux components. The water volume of the permanent pycnocline in the IOSTMW distribution area is also found to show a significant interannual variability, and it is well correlated with the interannual variation of subduction rate.
NASA Astrophysics Data System (ADS)
Geddes, J.
2017-12-01
Due to successful NOx emission controls, summertime ozone production chemistry in urban areas across North America is transitioning from VOC-limited to increasingly NOx-limited. In some regions where ozone production sensitivity is in transition, interannual variability in surrounding biogenic VOC emissions could drive fluctuations in the prevailing chemical regime and modify the impact of anthropogenic emission changes. I use satellite observations of HCHO and NO2 column density, along with a long-term simulation of atmospheric chemistry, to investigate the impact of interannual variability in biogenic isoprene sources near large metro areas. Peak emissions of isoprene in the model can vary by up to 20-60% in any given year compared to the long term mean, and this variability drives the majority of the variability in simulated local HCHO:NO2 ratios (a common proxy for ozone production sensitivity). The satellite observations confirm increasingly NOx-limited chemical regimes with large interannual variability. In several instances, the model and satellite observations suggest that variability in biogenic isoprene emissions could shift summertime ozone production from generally VOC- to generally NOx- sensitive (or vice versa). This would have implications for predicting the air quality impacts of anthropogenic emission changes in any given year, and suggests that drivers of biogenic emissions need to be well understood.
NASA Astrophysics Data System (ADS)
Maher, Nicola; Marotzke, Jochem
2017-04-01
Natural climate variability is found in observations, paleo-proxies, and climate models. Such climate variability can be intrinsic internal variability or externally forced, for example by changes in greenhouse gases or large volcanic eruptions. There are still questions concerning how external forcing, both natural (e.g., volcanic eruptions and solar variability) and anthropogenic (e.g., greenhouse gases and ozone) may excite both interannual modes of variability in the climate system. This project aims to address some of these problems, utilising the large ensemble of the MPI-ESM-LR climate model. In this study we investigate the statistics of four modes of interannual variability, namely the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), the Southern Annular Mode (SAM) and the El Niño Southern Oscillation (ENSO). Using the 100-member ensemble of MPI-ESM-LR the statistical properties of these modes (amplitude and standard deviation) can be assessed over time. Here we compare the properties in the pre-industrial control run, historical run and future scenarios (RCP4.5, RCP2.6) and present preliminary results.
NASA Astrophysics Data System (ADS)
Hess, P.; Kinnison, D.; Tang, Q.
2015-03-01
Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953-2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30-90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30-90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30-90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere-troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño-Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.
Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui
2014-01-01
Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003-2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003-2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May-June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation.
Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui
2014-01-01
Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610
NASA Astrophysics Data System (ADS)
Nieto, R.; Gimeno, L.; de La Torre, L.; Ribera, P.; Barriopedro, D.; García-Herrera, R.; Serrano, A.; Gordillo, A.; Redaño, A.; Lorente, J.
2007-04-01
An earlier developed multidecadal database of Northern Hemisphere cut-off low systems (COLs), covering a 41 years period (from 1958 to 1998) is used to study COLs interannual variability in the European sector (25°-47.5° N, 50° W-40° E) and the major factors controlling it. The study focus on the influence on COLs interannual variability, of larger scale phenomena such as blocking events and other main circulation modes defined over the Euro-Atlantic region. It is shown that there is a very large interannual variability in the COLs occurrence at the annual and seasonal scales, although without significant trends. The influence of larger scale phenomena is seasonal dependent, with the positive phase of the NAO favoring autumn COL development, while winter COL occurrence is mostly related to blocking events. During summer, the season when more COLs occur, no significant influences were found.
AVHRR channel selection for land cover classification
Maxwell, S.K.; Hoffer, R.M.; Chapman, P.L.
2002-01-01
Mapping land cover of large regions often requires processing of satellite images collected from several time periods at many spectral wavelength channels. However, manipulating and processing large amounts of image data increases the complexity and time, and hence the cost, that it takes to produce a land cover map. Very few studies have evaluated the importance of individual Advanced Very High Resolution Radiometer (AVHRR) channels for discriminating cover types, especially the thermal channels (channels 3, 4 and 5). Studies rarely perform a multi-year analysis to determine the impact of inter-annual variability on the classification results. We evaluated 5 years of AVHRR data using combinations of the original AVHRR spectral channels (1-5) to determine which channels are most important for cover type discrimination, yet stabilize inter-annual variability. Particular attention was placed on the channels in the thermal portion of the spectrum. Fourteen cover types over the entire state of Colorado were evaluated using a supervised classification approach on all two-, three-, four- and five-channel combinations for seven AVHRR biweekly composite datasets covering the entire growing season for each of 5 years. Results show that all three of the major portions of the electromagnetic spectrum represented by the AVHRR sensor are required to discriminate cover types effectively and stabilize inter-annual variability. Of the two-channel combinations, channels 1 (red visible) and 2 (near-infrared) had, by far, the highest average overall accuracy (72.2%), yet the inter-annual classification accuracies were highly variable. Including a thermal channel (channel 4) significantly increased the average overall classification accuracy by 5.5% and stabilized interannual variability. Each of the thermal channels gave similar classification accuracies; however, because of the problems in consistently interpreting channel 3 data, either channel 4 or 5 was found to be a more appropriate choice. Substituting the thermal channel with a single elevation layer resulted in equivalent classification accuracies and inter-annual variability.
Ahlström, Anders; Raupach, Michael R; Schurgers, Guy; Smith, Benjamin; Arneth, Almut; Jung, Martin; Reichstein, Markus; Canadell, Josep G; Friedlingstein, Pierre; Jain, Atul K; Kato, Etsushi; Poulter, Benjamin; Sitch, Stephen; Stocker, Benjamin D; Viovy, Nicolas; Wang, Ying Ping; Wiltshire, Andy; Zaehle, Sönke; Zeng, Ning
2015-05-22
The growth rate of atmospheric carbon dioxide (CO2) concentrations since industrialization is characterized by large interannual variability, mostly resulting from variability in CO2 uptake by terrestrial ecosystems (typically termed carbon sink). However, the contributions of regional ecosystems to that variability are not well known. Using an ensemble of ecosystem and land-surface models and an empirical observation-based product of global gross primary production, we show that the mean sink, trend, and interannual variability in CO2 uptake by terrestrial ecosystems are dominated by distinct biogeographic regions. Whereas the mean sink is dominated by highly productive lands (mainly tropical forests), the trend and interannual variability of the sink are dominated by semi-arid ecosystems whose carbon balance is strongly associated with circulation-driven variations in both precipitation and temperature. Copyright © 2015, American Association for the Advancement of Science.
Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.
2014-01-01
Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.
Knowles, Noah
2002-01-01
Understanding the processes controlling the physics, chemistry, and biology of the San Francisco Estuary and their relation to climate variability is complicated by the combined influence on freshwater inflows of natural variability and upstream management. To distinguish these influences, alterations of estuarine inflow due to major reservoirs and freshwater pumping in the watershed were inferred from available data. Effects on salinity were estimated by using reconstructed estuarine inflows corresponding to differing levels of impairment to drive a numerical salinity model. Both natural and management inflow and salinity signals show strong interannual variability. Management effects raise salinities during the wet season, with maximum influence in spring. While year‐to‐year variations in all signals are very large, natural interannual variability can greatly exceed the range of management effects on salinity in the estuary.
NASA Astrophysics Data System (ADS)
Guo, Liang; Klingaman, Nicholas P.; Demory, Marie-Estelle; Vidale, Pier Luigi; Turner, Andrew G.; Stephan, Claudia C.
2018-01-01
We investigate the contribution of the local and remote atmospheric moisture fluxes to East Asia (EA) precipitation and its interannual variability during 1979-2012. We use and expand the Brubaker et al. (J Clim 6:1077-1089,1993) method, which connects the area-mean precipitation to area-mean evaporation and the horizontal moisture flux into the region. Due to its large landmass and hydrological heterogeneity, EA is divided into five sub-regions: Southeast (SE), Tibetan Plateau (TP), Central East (CE), Northwest (NW) and Northeast (NE). For each region, we first separate the contributions to precipitation of local evaporation from those of the horizontal moisture flux by calculating the precipitation recycling ratio: the fraction of precipitation over a region that originates as evaporation from the same region. Then, we separate the horizontal moisture flux across the region's boundaries by direction. We estimate the contributions of the horizontal moisture fluxes from each direction, as well as the local evaporation, to the mean precipitation and its interannual variability. We find that the major contributors to the mean precipitation are not necessarily those that contribute most to the precipitation interannual variability. Over SE, the moisture flux via the southern boundary dominates the mean precipitation and its interannual variability. Over TP, in winter and spring, the moisture flux via the western boundary dominates the mean precipitation; however, variations in local evaporation dominate the precipitation interannual variability. The western moisture flux is the dominant contributor to the mean precipitation over CE, NW and NE. However, the southern or northern moisture flux or the local evaporation dominates the precipitation interannual variability over these regions, depending on the season. Potential mechanisms associated with interannual variability in the moisture flux are identified for each region. The methods and results presented in this study can be readily applied to model simulations, to identify simulation biases in precipitation that relate to the simulated moisture supplies and transport.
Smith, Molly B.; Mahowald, Natalie M.; Albani, Samuel; ...
2017-03-07
Interannual variability in desert dust is widely observed and simulated, yet the sensitivity of these desert dust simulations to a particular meteorological dataset, as well as a particular model construction, is not well known. Here we use version 4 of the Community Atmospheric Model (CAM4) with the Community Earth System Model (CESM) to simulate dust forced by three different reanalysis meteorological datasets for the period 1990–2005. We then contrast the results of these simulations with dust simulated using online winds dynamically generated from sea surface temperatures, as well as with simulations conducted using other modeling frameworks but the same meteorological forcings, in order tomore » determine the sensitivity of climate model output to the specific reanalysis dataset used. For the seven cases considered in our study, the different model configurations are able to simulate the annual mean of the global dust cycle, seasonality and interannual variability approximately equally well (or poorly) at the limited observational sites available. Altogether, aerosol dust-source strength has remained fairly constant during the time period from 1990 to 2005, although there is strong seasonal and some interannual variability simulated in the models and seen in the observations over this time period. Model interannual variability comparisons to observations, as well as comparisons between models, suggest that interannual variability in dust is still difficult to simulate accurately, with averaged correlation coefficients of 0.1 to 0.6. Because of the large variability, at least 1 year of observations at most sites are needed to correctly observe the mean, but in some regions, particularly the remote oceans of the Southern Hemisphere, where interannual variability may be larger than in the Northern Hemisphere, 2–3 years of data are likely to be needed.« less
Fasullo, John T.; Nerem, Robert S.
2016-10-31
To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasullo, John T.; Nerem, Robert S.
To better understand global mean sea level (GMSL) as an indicator of climate variability and change, contributions to its interannual variation are quantified in the Community Earth System Model (CESM) Large Ensemble and Last Millennium Ensemble. Consistent with expectations, the El Niño/Southern Oscillation (ENSO) is found to exert a strong influence due to variability in rainfall over land (PL) and terrestrial water storage (TWS). Other important contributors include changes in ocean heat content (OHC) and precipitable water (PW). The temporal evolution of individual contributing terms is documented. The magnitude of peak GMSL anomalies associated with ENSO generally are of themore » order of 0.5 mm·K -1 with significant inter-event variability, with a standard deviation (σ) that is about half as large The results underscore the exceptional rarity of the 2010/2011 La Niña-related GMSL drop and estimate the frequency of such an event to be about only once in every 75 years. In addition to ENSO, major volcanic eruptions are found to be a key driver of interannual variability. Associated GMSL variability contrasts with that of ENSO as TWS and PW anomalies initially offset the drop due to OHC reductions but short-lived relative to them. Furthermore, responses up to 25 mm are estimated for the largest eruptions of the Last Millennium.« less
Climate change enhances interannual variability of the Nile river flow
NASA Astrophysics Data System (ADS)
Siam, Mohamed S.; Eltahir, Elfatih A. B.
2017-04-01
The human population living in the Nile basin countries is projected to double by 2050, approaching one billion. The increase in water demand associated with this burgeoning population will put significant stress on the available water resources. Potential changes in the flow of the Nile River as a result of climate change may further strain this critical situation. Here, we present empirical evidence from observations and consistent projections from climate model simulations suggesting that the standard deviation describing interannual variability of total Nile flow could increase by 50% (+/-35%) (multi-model ensemble mean +/- 1 standard deviation) in the twenty-first century compared to the twentieth century. We attribute the relatively large change in interannual variability of the Nile flow to projected increases in future occurrences of El Niño and La Niña events and to observed teleconnection between the El Niño-Southern Oscillation and Nile River flow. Adequacy of current water storage capacity and plans for additional storage capacity in the basin will need to be re-evaluated given the projected enhancement of interannual variability in the future flow of the Nile river.
European Wintertime Windstorms and its Links to Large-Scale Variability Modes
NASA Astrophysics Data System (ADS)
Befort, D. J.; Wild, S.; Walz, M. A.; Knight, J. R.; Lockwood, J. F.; Thornton, H. E.; Hermanson, L.; Bett, P.; Weisheimer, A.; Leckebusch, G. C.
2017-12-01
Winter storms associated with extreme wind speeds and heavy precipitation are the most costly natural hazard in several European countries. Improved understanding and seasonal forecast skill of winter storms will thus help society, policy-makers and (re-) insurance industry to be better prepared for such events. We firstly assess the ability to represent extra-tropical windstorms over the Northern Hemisphere of three seasonal forecast ensemble suites: ECMWF System3, ECMWF System4 and GloSea5. Our results show significant skill for inter-annual variability of windstorm frequency over parts of Europe in two of these forecast suites (ECMWF-S4 and GloSea5) indicating the potential use of current seasonal forecast systems. In a regression model we further derive windstorm variability using the forecasted NAO from the seasonal model suites thus estimating the suitability of the NAO as the only predictor. We find that the NAO as the main large-scale mode over Europe can explain some of the achieved skill and is therefore an important source of variability in the seasonal models. However, our results show that the regression model fails to reproduce the skill level of the directly forecast windstorm frequency over large areas of central Europe. This suggests that the seasonal models also capture other sources of variability/predictability of windstorms than the NAO. In order to investigate which other large-scale variability modes steer the interannual variability of windstorms we develop a statistical model using a Poisson GLM. We find that the Scandinavian Pattern (SCA) in fact explains a larger amount of variability for Central Europe during the 20th century than the NAO. This statistical model is able to skilfully reproduce the interannual variability of windstorm frequency especially for the British Isles and Central Europe with correlations up to 0.8.
NASA Astrophysics Data System (ADS)
Mei, W.; Kamae, Y.; Xie, S. P.
2017-12-01
Forced and internal variability of North Atlantic hurricane frequency during 1951-2010 is studied using a large ensemble of climate simulations by a 60-km atmospheric general circulation model that is forced by observed sea surface temperatures (SSTs). The simulations well capture the interannual-to-decadal variability of hurricane frequency in best track data, and further suggest a possible underestimate of hurricane counts in the current best track data prior to 1966 when satellite measurements were unavailable. A genesis potential index (GPI) averaged over the Main Development Region (MDR) accounts for more than 80% of the forced variations in hurricane frequency, with potential intensity and vertical wind shear being the dominant factors. In line with previous studies, the difference between MDR SST and tropical mean SST is a simple but useful predictor; a one-degree increase in this SST difference produces 7.1±1.4 more hurricanes. The hurricane frequency also exhibits internal variability that is comparable in magnitude to the interannual variability. The 100-member ensemble allows us to address the following important questions: (1) Are the observations equivalent to one realization of such a large ensemble? (2) How many ensemble members are needed to reproduce the variability in observations and in the forced component of the simulations? The sources of the internal variability in hurricane frequency will be identified and discussed. The results provide an explanation for the relatively week correlation ( 0.6) between MDR GPI and hurricane frequency on interannual timescales in observations.
On the Interannual Variability and on Trends of the Temperature in the Middle Atmosphere
NASA Technical Reports Server (NTRS)
Labitzke, K.; Naujokat, B.
1985-01-01
The new Reference Atmosphere presented here is based on global satellite data and forms a very useful basis for climatological studies. When using such climatologies it is important to be aware of the well known interannual variability which n themiddle atmosphere is particularly large during the northern winters and southern springs. Variability ofthe upper and lower stratospheres is discussed in detail. Areas covered included the polar region and the middile and lower latitudes. Temperature trends, notably the alteration of the global temperature structure by a number of anthropogenically influenced tract gases or the greenhouse effect is discussed.
NASA Astrophysics Data System (ADS)
Stone, Hally B.; Banas, Neil S.; MacCready, Parker
2018-01-01
The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin-scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N-50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well-explained (R2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large-scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large-scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale.
Analysis of the trade-off between high crop yield and low yield instability at the global scale
NASA Astrophysics Data System (ADS)
Ben-Ari, Tamara; Makowski, David
2016-10-01
Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.
Low-frequency variability of the Atlantic MOC in the eddying regime : the intrinsic component.
NASA Astrophysics Data System (ADS)
Gregorio, S.; Penduff, T.; Barnier, B.; Molines, J.-M.; Le Sommer, J.
2012-04-01
A 327-year 1/4° global ocean/sea-ice simulation has been produced by the DRAKKAR ocean modeling consortium. This simulation is forced by a repeated seasonal atmospheric forcing but nevertheless exhibits a substantial low-frequency variability (at interannual and longer timescales), which is therefore of intrinsic origin. This nonlinearly-generated intrinsic variability is almost absent from the coarse-resolution (2°) version of this simulation. Comparing the 1/4° simulation with its fully-forced counterpart, Penduff et al. (2011) have shown that the low-frequency variability of local sea-level is largely generated by the ocean itself in eddying areas, rather than directly forced by the atmosphere. Using the same simulations, the present study quantifies the imprint of the intrinsic low-frequency variability on the Meridional Overturning Circulation (MOC) at interannual-to-decadal timescales in the Atlantic. We first compare the intrinsic and atmospherically-forced interannual variances of the Atlantic MOC calculated in geopotential coordinates. This analysis reveals substantial sources of intrinsic MOC variability in the South Atlantic (driven by the Agulhas mesoscale activity according to Biastoch et al. (2008)), but also in the North Atlantic. We extend our investigation to the MOC calculated in isopycnal coordinates, and identify regions in the basin where the water mass transformation exhibits low-frequency intrinsic variability. In this eddy-permitting regime, intrinsic processes are shown to generate about half the total (geopotential and isopycnal) MOC interannual variance in certain key regions of the Atlantic. This intrinsic variability is absent from 2° simulations. Penduff, T., Juza, M., Barnier, B., Zika, J., Dewar, W.K., Treguier, A.-M., Molines, J.-M., Audiffren, N., 2011: Sea-level expression of intrinsic and forced ocean variabilities at interannual time scales. J. Climate, 24, 5652-5670. doi: 10.1175/JCLI-D-11-00077.1. Biastoch, A., Böning, C. W., Lutjeharms, J. R. E., 2008: Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation. Nature, 456, 489-492, doi: 10.1038/nature07426.
NASA Astrophysics Data System (ADS)
Zhang, Heng; Cheng, Weicong; Chen, Yuren; Yu, Liuqian; Gong, Wenping
2018-06-01
Coastal embayments located downwind of large rivers under an upwelling-favorable wind are prone to develop low-oxygen or hypoxic conditions in their bottom water. One such embayment is Mirs Bay, off the Guangdong coast, which is affected by upwelling and the Pearl River Estuary (PRE) plume during summer. The relative importance of physical and biochemical processes on the interannual variability of hypoxia in Mirs Bay and its adjacent waters was investigated using statistical analyses of monthly hydrographic and water quality monitoring data from 2001 to 2015. The results reveal that the southwesterly wind duration and the PRE river discharge together explain 49% of the interannual variability in the size of the hypoxic area, whereas inclusion of the nutrient concentrations inside Mirs Bay and phytoplankton on the shelf explains 75% of the interannual variability in the size of the hypoxic area. This finding suggests that the interannual variability of hypoxia in Mirs Bay is regulated by coupled physical and biochemical processes. Increase of the hypoxic area under a longer-lasting southwesterly wind is caused by increased stratification, extended bottom water residence time, and onshore transport of a low-oxygen water mass induced by stable upwelling. In contrast, a reduction in the size of the hypoxic area may be attributed to a decrease in the surface water residence time of the particulate organic matter outside Mirs Bay due to increased discharge from the PRE. The results also show that the effects of allochthonous particulate organic matter outside Mirs Bay on bottom hypoxia cannot be neglected.
Storm-tracks interannual variability and large-scale climate modes
NASA Astrophysics Data System (ADS)
Liberato, Margarida L. R.; Trigo, Isabel F.; Trigo, Ricardo M.
2013-04-01
In this study we focus on the interannual variability and observed changes in northern hemisphere mid-latitude storm-tracks and relate them to large scale atmospheric circulation variability modes. Extratropical storminess, cyclones dominant paths, frequency and intensity have long been the object of climatological studies. The analysis of storm characteristics and historical trends presented here is based on the cyclone detecting and tracking algorithm first developed for the Mediterranean region (Trigo et al. 1999) and recently extended to a larger Euro-Atlantic region (Trigo 2006). The objective methodology, which identifies and follows individual lows as minima in SLP fields, fulfilling a set of conditions regarding the central pressure and the pressure gradient, is applied to the northern hemisphere 6-hourly geopotential data at 1000 hPa from the 20th Century Reanalyses (20CRv2) project and from reanalyses datasets provided by the European Centre for Medium-Range Weather Forecasts (ECMWF): ERA-40 and ERA Interim reanalyses. First, we assess the interannual variability and cyclone frequency trends for each of the datasets, for the 20th century and for the period between 1958 and 2002 using the highest spatial resolution available (1.125° x 1.125°) from the ERA-40 data. Results show that winter variability of storm paths, cyclone frequency and travel times is in agreement with the reported variability in a number of large-scale climate patterns (including the North Atlantic Oscillation, the East Atlantic Pattern and the Scandinavian Pattern). In addition, three storm-track databases are built spanning the common available extended winter seasons from October 1979 to March 2002. Although relatively short, this common period allows a comparison of systems represented in reanalyses datasets with distinct horizontal resolutions. This exercise is mostly focused on the key areas of cyclogenesis and cyclolysis and main cyclone characteristics over the northern hemisphere. Trigo IF., TD Davies, GR Bigg (1999) Objective climatology of cyclones in the Mediterranean region. J. Climate 12: 1685-1696. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim. Dyn. 26: 127-143.
North-South precipitation patterns in western North America on interannual-to-decadal timescales
Dettinger, M.D.; Cayan, D.R.; Diaz, Henry F.; Meko, D.M.
1998-01-01
The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25??to 55??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both timescales, two leading EOFs describe 1) a north-south seesaw of precipitation pivoting near 40??N and 2) variations in precipitation near 40??N, respectively. The amount of overall precipitation variability is only about 10% of the mean and is largely determined by precipitation variations around 40??-45??N and most consistently influenced by nearby circulation patterns; in this sense, domain-average precipitation is closely related to the second EOF. The central latitude and latitudinal spread of precipitation distributions are strongly influenced by precipitation variations in the southern parts of western North America and are closely related to the first EOF. Central latitude of precipitation moves south (north) with tropical warming (cooling) in association with midlatitude western Pacific SLP variations, on both interannual and decadal timescales. Regional patterns and zonal averages of precipitation-sensitive tree-ring series are used to corroborate these patterns and to extend them into the past and appear to share much long- and short-term information with the instrumentally based zonal precipitation EOFs and moments.The overall amount of precipitation deposited along the West Coast and western cordillera of North America from 25?? to 55 ??N varies from year to year, and superimposed on this domain-average variability are varying north-south contrasts on timescales from at least interannual to interdecadal. In order to better understand the north-south precipitation contrasts, their interannual and decadal variations are studied in terms of how much they affect overall precipitation amounts and how they are related to large-scale climatic patterns. Spatial empirical orthogonal functions (EOFs) and spatial moments (domain average, central latitude, and latitudinal spread) of zonally averaged precipitation anomalies along the westernmost parts of North America are analyzed, and each is correlated with global sea level pressure (SLP) and sea surface temperature series, on interannual (defined here as 3-7 yr) and decadal (>7 yr) timescales. The interannual band considered here corresponds to timescales that are particularly strong in tropical climate variations and thus is expected to contain much precipitation variability that is related to El Nino-Southern Oscillation; the decadal scale is defined so as to capture the whole range of long-term climatic variations affecting western North America. Zonal EOFs of the interannual and decadal filtered versions of the zonal-precipitation series are remarkably similar. At both tim
Interannual rainfall variability over China in the MetUM GA6 and GC2 configurations
NASA Astrophysics Data System (ADS)
Stephan, Claudia Christine; Klingaman, Nicholas P.; Vidale, Pier Luigi; Turner, Andrew G.; Demory, Marie-Estelle; Guo, Liang
2018-05-01
Six climate simulations of the Met Office Unified Model Global Atmosphere 6.0 and Global Coupled 2.0 configurations are evaluated against observations and reanalysis data for their ability to simulate the mean state and year-to-year variability of precipitation over China. To analyse the sensitivity to air-sea coupling and horizontal resolution, atmosphere-only and coupled integrations at atmospheric horizontal resolutions of N96, N216 and N512 (corresponding to ˜ 200, 90 and 40 km in the zonal direction at the equator, respectively) are analysed. The mean and interannual variance of seasonal precipitation are too high in all simulations over China but improve with finer resolution and coupling. Empirical orthogonal teleconnection (EOT) analysis is applied to simulated and observed precipitation to identify spatial patterns of temporally coherent interannual variability in seasonal precipitation. To connect these patterns to large-scale atmospheric and coupled air-sea processes, atmospheric and oceanic fields are regressed onto the corresponding seasonal mean time series. All simulations reproduce the observed leading pattern of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are the four leading patterns associated with the observed physical mechanisms. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. However, finer resolution does not improve the fidelity of these patterns or their associated mechanisms. This shows that evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient. The EOT analysis adds knowledge about coherent variability and associated mechanisms.
NASA Astrophysics Data System (ADS)
Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike
2015-04-01
In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.
NASA Astrophysics Data System (ADS)
Choi, N.; Lee, M. I.; Lim, Y. K.; Kim, K. M.
2017-12-01
Heatwave is an extreme hot weather event which accompanies fatal damage to human health. The heatwave has a strong relationship with the large-scale atmospheric teleconnection patterns. In this study, we examine the spatial pattern of heatwave in East Asia by using the EOF analysis and the relationship between heatwave frequency and large-scale atmospheric teleconnection patterns. We also separate the time scale of heatwave frequency as the time scale longer than a decade and the interannual time scale. The long-term variation of heatwave frequency in East Asia shows a linkage with the sea surface temperature (SST) variability over the North Atlantic with a decadal time scale (a.k.a. the Atlantic Multidecadal Oscillation; AMO). On the other hands, the interannual variation of heatwave frequency is linked with the two dominant spatial patterns associated with the large-scale teleconnection patterns mimicking the Scandinavian teleconnection (SCAND-like) pattern and the circumglobal teleconnection (CGT-like) pattern, respectively. It is highlighted that the interannual variation of heatwave frequency in East Asia shows a remarkable change after mid-1990s. While the heatwave frequency was mainly associated with the CGT-like pattern before mid-1990s, the SCAND-like pattern becomes the most dominant one after mid-1990s, making the CGT-like pattern as the second. This study implies that the large-scale atmospheric teleconnection patterns play a key role in developing heatwave events in East Asia. This study further discusses possible mechanisms for the decadal change in the linkage between heatwave frequency and the large-scale teleconnection patterns in East Asia such as early melting of snow cover and/or weakening of East Asian jet stream due to global warming.
Global modeling of land water and energy balances. Part III: Interannual variability
Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.
2002-01-01
The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.
A sensitivity study of the coupled simulation of the Northeast Brazil rainfall variability
NASA Astrophysics Data System (ADS)
Misra, Vasubandhu
2007-06-01
Two long-term coupled ocean-land-atmosphere simulations with slightly different parameterization of the diagnostic shallow inversion clouds in the atmospheric general circulation model (AGCM) of the Center for Ocean-Land-Atmosphere Studies (COLA) coupled climate model are compared for their annual cycle and interannual variability of the northeast Brazil (NEB) rainfall variability. It is seen that the solar insolation affected by the changes to the shallow inversion clouds results in large scale changes to the gradients of the SST and the surface pressure. The latter in turn modulates the surface convergence and the associated Atlantic ITCZ precipitation and the NEB annual rainfall variability. In contrast, the differences in the NEB interannual rainfall variability between the two coupled simulations is attributed to their different remote ENSO forcing.
A century of hydrological variability and trends in the Fraser River Basin
NASA Astrophysics Data System (ADS)
Déry, Stephen J.; Hernández-Henríquez, Marco A.; Owens, Philip N.; Parkes, Margot W.; Petticrew, Ellen L.
2012-06-01
This study examines the 1911-2010 variability and trends in annual streamflow at 139 sites across the Fraser River Basin (FRB) of British Columbia (BC), Canada. The Fraser River is the largest Canadian waterway flowing to the Pacific Ocean and is one of the world’s greatest salmon rivers. Our analyses reveal high runoff rates and low interannual variability in alpine and coastal rivers, and low runoff rates and high interannual variability in most streams in BC’s interior. The interannual variability in streamflow is also low in rivers such as the Adams, Chilko, Quesnel and Stuart where the principal salmon runs of the Fraser River occur. A trend analysis shows a spatially coherent signal with increasing interannual variability in streamflow across the FRB in recent decades, most notably in spring and summer. The upward trend in the coefficient of variation in annual runoff coincides with a period of near-normal annual runoff for the Fraser River at Hope. The interannual variability in streamflow is greater in regulated rather than natural systems; however, it is unclear whether it is predominantly flow regulation that leads to these observed differences. Environmental changes such as rising air temperatures, more frequent polarity changes in large-scale climate teleconnections such as El Niño-Southern Oscillation and Pacific Decadal Oscillation, and retreating glaciers may be contributing to the greater range in annual runoff fluctuations across the FRB. This has implications for ecological processes throughout the basin, for example affecting migrating and spawning salmon, a keystone species vital to First Nations communities as well as to commercial and recreational fisheries. To exemplify this linkage between variable flows and biological responses, the unusual FRB runoff anomalies observed in 2010 are discussed in the context of that year’s sockeye salmon run. As the climate continues to warm, greater variability in annual streamflow, and hence in hydrological extremes, may influence ecological processes and human usage throughout the FRB in the 21st century.
Variability and Predictability of Land-Atmosphere Interactions: Observational and Modeling Studies
NASA Technical Reports Server (NTRS)
Roads, John; Oglesby, Robert; Marshall, Susan; Robertson, Franklin R.
2002-01-01
The overall goal of this project is to increase our understanding of seasonal to interannual variability and predictability of atmosphere-land interactions. The project objectives are to: 1. Document the low frequency variability in land surface features and associated water and energy cycles from general circulation models (GCMs), observations and reanalysis products. 2. Determine what relatively wet and dry years have in common on a region-by-region basis and then examine the physical mechanisms that may account for a significant portion of the variability. 3. Develop GCM experiments to examine the hypothesis that better knowledge of the land surface enhances long range predictability. This investigation is aimed at evaluating and predicting seasonal to interannual variability for selected regions emphasizing the role of land-atmosphere interactions. Of particular interest are the relationships between large, regional and local scales and how they interact to account for seasonal and interannual variability, including extreme events such as droughts and floods. North and South America, including the Global Energy and Water Cycle Experiment Continental International Project (GEWEX GCIP), MacKenzie, and LBA basins, are currently being emphasized. We plan to ultimately generalize and synthesize to other land regions across the globe, especially those pertinent to other GEWEX projects.
NASA Astrophysics Data System (ADS)
Harlaß, Jan; Latif, Mojib; Park, Wonsun
2018-04-01
We investigate the quality of simulating tropical Atlantic (TA) sector climatology and interannual variability in integrations of the Kiel climate model (KCM) with varying atmosphere model resolution. The ocean model resolution is kept fixed. A reasonable simulation of TA sector annual-mean climate, seasonal cycle and interannual variability can only be achieved at sufficiently high horizontal and vertical atmospheric resolution. Two major reasons for the improvements are identified. First, the western equatorial Atlantic westerly surface wind bias in spring can be largely eliminated, which is explained by a better representation of meridional and especially vertical zonal momentum transport. The enhanced atmospheric circulation along the equator in turn greatly improves the thermal structure of the upper equatorial Atlantic with much reduced warm sea surface temperature (SST) biases. Second, the coastline in the southeastern TA and steep orography are better resolved at high resolution, which improves wind structure and in turn reduces warm SST biases in the Benguela upwelling region. The strongly diminished wind and SST biases at high atmosphere model resolution allow for a more realistic latitudinal position of the intertropical convergence zone. Resulting stronger cross-equatorial winds, in conjunction with a shallower thermocline, enable a rapid cold tongue development in the eastern TA in boreal spring. This enables simulation of realistic interannual SST variability and its seasonal phase locking in the KCM, which primarily is the result of a stronger thermocline feedback. Our findings suggest that enhanced atmospheric resolution, both vertical and horizontal, could be a key to achieving more realistic simulation of TA climatology and interannual variability in climate models.
Quantifying the increasing sensitivity of power systems to climate variability
NASA Astrophysics Data System (ADS)
Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.
2016-12-01
Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.
2004-01-01
Long-wavelength time-variable gravity recently derived from satellite laser ranging (SLR) analysis have focused to a large extent on the effects of the recent (since 1998) large anomalous change in J2, or the Earth's oblateness, and the potential causes. However, it is relatively more difficult to determine whether there are corresponding signals in the shorter wavelength zonal harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic components have significant interannual signal that appears to be related to mass transport. The non-zonal degree-2 components show reasonable temporal correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a look at other low-degree components of the interannual variations of gravity, complete through degree 4. We will examine the possible geophysical and climatic causes of these low-degree time-variable gravity related to oceanic and hydrological mass transports, for example some anomalous but prominent signals found in the extratropic Pacific ocean related to the Pacific Decadal Oscillation.
Ault, Toby R.; Schwartz, Mark D.; Zurita-Milla, Raul; Weltzin, Jake F.; Betancourt, Julio L.
2015-01-01
Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous United States. This dataset is derived from daily interpolated meteorological data, and the results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from 20.8 to 21.6 days decade21, while first bloom index trends are between20.4 and 21.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal time scales. Finally, there is some potential for successful subseasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.
NASA Astrophysics Data System (ADS)
Ault, T.; Schwartz, M. D.; Zurita-Milla, R.; Weltzin, J. F.; Betancourt, J. L.
2015-12-01
Climate change is expected to modify the timing of seasonal transitions this century, impacting wildlife migrations, ecosystem function, and agricultural activity. Tracking seasonal transitions in a consistent manner across space and through time requires indices that can be used for monitoring and managing biophysical and ecological systems during the coming decades. Here a new gridded dataset of spring indices is described and used to understand interannual, decadal, and secular trends across the coterminous US. This dataset is derived from daily interpolated meteorological data, and results are compared with historical station data to ensure the trends and variations are robust. Regional trends in the first leaf index range from -0.8 to -1.6 days per decade, while first bloom index trends are between -0.4 and -1.2 for most regions. However, these trends are modulated by interannual to multidecadal variations, which are substantial throughout the regions considered here. These findings emphasize the important role large-scale climate modes of variability play in modulating spring onset on interannual to multidecadal timescales. Finally, there is some potential for successful sub-seasonal forecasts of spring onset, as indices from most regions are significantly correlated with antecedent large-scale modes of variability.
Analysis of the Relationship Between Climate and NDVI Variability at Global Scales
NASA Technical Reports Server (NTRS)
Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro
2011-01-01
interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology
Jakob Zscheischler; Simone Fatichi; Sebastian Wolf; Peter D. Blanken; Gil Bohrer; Ken Clark; Ankur R. Desai; David Hollinger; Trevor Keenan; Kimberly A. Novick; Sonia I. Seneviratne
2016-01-01
Ecosystem models often perform poorly in reproducing interannual variability in carbon and water fluxes, resulting in considerable uncertainty when estimating the land-carbon sink. While many aggregated variables (growing season length, seasonal precipitation, or temperature) have been suggested as predictors for interannual variability in carbon fluxes, their...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomita, Tomohiko; Yanai, Michio
The link between the Asian monsoon and the El Nino/Southern Oscillation (ENSO) has been demonstrated by a number of studies. This study examines two ENSO withdrawal periods and discusses if the Asian monsoon played a role in the differences between them. The 1986 event occurred in the later half of 1986 and retreated in 1988. The 1951 and 1991 events were similar to each other and seemed to continue to the second year after onset and not to have the clear La Nina phase after the events. In the central and eastern Pacific, three variables progress in phase as themore » ENSO cycle: sea surface temperature (SST), heat source (Q1), and divergence. Correlation coefficients were calculated and examined with the mean SST on the equator and with the standard deviation of the interannual components of SST. In the central and eastern Pacific, the standard deviation is large and three correlation coefficients are large (over 0.6). Strong air-sea interaction associated with ENSO cycle is deduced. In the Indian Ocean and the western Pacific, the correlation coefficients with SST become small rapidly, while the correlation coefficient between Q1 and the divergence is still large. The interannual variability of SSt may not be crucial for those of Q1 and of the divergence in this region because of the potential to generate well organized convection through the high mean SST. This suggests that various factors, such as effects from mid-latitudes, may modify the interannual variability in the region. To examine the effects of the Asian winter monsoon, the anomalous wind field at 850 hPa was investigated. The conditions of the Asian winter monsoon were quite different between the withdrawal periods in the 1986 and 1991 ENSO events. The Asian winter monsoon seems to be a factor to modify the ENSO cycle, especially in the retreat periods. In addition, the SST from the tropical Indian Ocean to western Pacific may be important for the modulation of the ENSO/monsoon system. 9 refs., 10 figs.« less
Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew; ...
2018-04-05
The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew
The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less
Mechanisms driving variability in the ocean forcing of Pine Island Glacier
Webber, Benjamin G. M.; Heywood, Karen J.; Stevens, David P.; Dutrieux, Pierre; Abrahamsen, E. Povl; Jenkins, Adrian; Jacobs, Stanley S.; Ha, Ho Kyung; Lee, Sang Hoon; Kim, Tae Wan
2017-01-01
Pine Island Glacier (PIG) terminates in a rapidly melting ice shelf, and ocean circulation and temperature are implicated in the retreat and growing contribution to sea level rise of PIG and nearby glaciers. However, the variability of the ocean forcing of PIG has been poorly constrained due to a lack of multi-year observations. Here we show, using a unique record close to the Pine Island Ice Shelf (PIIS), that there is considerable oceanic variability at seasonal and interannual timescales, including a pronounced cold period from October 2011 to May 2013. This variability can be largely explained by two processes: cumulative ocean surface heat fluxes and sea ice formation close to PIIS; and interannual reversals in ocean currents and associated heat transport within Pine Island Bay, driven by a combination of local and remote forcing. Local atmospheric forcing therefore plays an important role in driving oceanic variability close to PIIS. PMID:28211473
NASA Technical Reports Server (NTRS)
Chou, Shu-Hsien; Chou, Ming-Dah; Chan, Pui-King; Lin, Po-Hsiung; Wang, Kung-Hwa
2003-01-01
Seasonal and interannual variations of the net surface heating F(sub NET) and sea surface temperature tendency (T(sub s)/dt) in the tropical eastern Indian and western Pacific Oceans are studied. The surface heat fluxes are derived from the Special Sensor Microwave/Imager and Japanese Geostationary Meteorological Satellite radiance measurements for the period October 1997-September 2000. It is found that the magnitude of solar heating is lager than that of evaporative cooling, but the spatial variation of the latter is significantly large than the former. As a result, the spatial variations of seasonal and interannual variability of F(sub NET), follow closely that of evaporative cooling. Seasonal variations of F(sub NET) and T(sub s)/dt are significantly correlated, except for the equatorial western Pacific. The high correlation is primarily attributable to high correlation between seasonal cycles of solar heating and T(sub s)/dt. The change of F(sub NET) between 1997-98 El Nino and 1998-99 La Nina is significantly larger in the tropical eastern Indian Ocean than tropical western Pacific. For the former region, the reduced evaporative cooling arising from weakened winds during the El Nino is generally associated with enhanced solar heating due to decreased cloudiness, and thus increases the interannual variability of F(sub NET). For the latter region, the reduced evaporative cooling due to weakened winds is generally associated with but exceeds the reduced solar heating arising from increased cloudiness, and vise versa. Thus the interannual variability of F(sub NET) is reduced due to this offsetting effect. Interannual variations of F(sub NET) and T(sub s)/dt have very low correlation. This is most likely related to interannual variability of ocean dynamics, which includes the variations of solar radiation penetrating through oceanic mixed layer, upwelling of cold thermocline water, Indonesian throughflow for transporting heat from the Pacific to Indian Ocean, and interhemispheric transport in the Indian Ocean.
Are revised models better models? A skill score assessment of regional interannual variability
NASA Astrophysics Data System (ADS)
Sperber, Kenneth R.; Participating AMIP Modelling Groups
1999-05-01
Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.
Are revised models better models? A skill score assessment of regional interannual variability
NASA Astrophysics Data System (ADS)
Participating AMIP Modelling Groups,; Sperber, Kenneth R.
Various skill scores are used to assess the performance of revised models relative to their original configurations. The interannual variability of all-India, Sahel and Nordeste rainfall and summer monsoon windshear is examined in integrations performed under the experimental design of the Atmospheric Model Intercomparison Project. For the indices considered, the revised models exhibit greater fidelity at simulating the observed interannual variability. Interannual variability of all-India rainfall is better simulated by models that have a more realistic rainfall climatology in the vicinity of India, indicating the beneficial effect of reducing systematic model error.
NASA Astrophysics Data System (ADS)
Nath, Oindrila; Sridharan, S.; Naidu, C. V.
2018-01-01
Tropical water vapour volume mixing ratio (WVMR) data for October 2004-September 2015 obtained from the Microwave Limb Sounder are used to study its long-term variabilities and tendencies in the height region 12.1-0.002 hPa. Above 0.01 hPa, the WVMR shows minimum March-May and September-November (∼0.7-0.8 ppmv) and maximum during June-August. It shows a large interannual variability at 31-64 km. The results from multivariate regression analysis show an increasing trend with maximum value of ∼0.045 ppmv/yr at 1.21-0.41 hPa. It shows a significant negative solar cycle response at mesospheric heights.
Inter-annual and spatial variability in hillslope runoff and mercury flux during spring snowmelt.
Haynes, Kristine M; Mitchell, Carl P J
2012-08-01
Spring snowmelt is an important period of mercury (Hg) export from watersheds. Limited research has investigated the potential effects of climate variability on hydrologic and Hg fluxes during spring snowmelt. The purpose of this research was to assess the potential impacts of inter-annual climate variability on Hg mobility in forested uplands, as well as spatial variability in hillslope hydrology and Hg fluxes. We compared hydrological flows, Hg and solute mobility from three adjacent hillslopes in the S7 watershed of the Marcell Experimental Forest, Minnesota during two very different spring snowmelt periods: one following a winter (2009-2010) with severely diminished snow accumulation (snow water equivalent (SWE) = 48 mm) with an early melt, and a second (2010-2011) with significantly greater winter snow accumulation (SWE = 98 mm) with average to late melt timing. Observed inter-annual differences in total Hg (THg) and dissolved organic carbon (DOC) yields were predominantly flow-driven, as the proportion by which solute yields increased was the same as the increase in runoff. Accounting for inter-annual differences in flow, there was no significant difference in THg and DOC export between the two snowmelt periods. The spring 2010 snowmelt highlighted the important contribution of melting soil frost in the timing of a considerable portion of THg exported from the hillslope, accounting for nearly 30% of the THg mobilized. Differences in slope morphology and soil depths to the confining till layer were important in controlling the large observed spatial variability in hydrological flowpaths, transmissivity feedback responses, and Hg flux trends across the adjacent hillslopes.
NASA Astrophysics Data System (ADS)
Li, Puxi; Zhou, Tianjun; Zou, Liwei
2016-04-01
The authors evaluated the performance of Meteorological Research Institute (MRI) AGCM3.2 models in the simulations of climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. The possible impacts of different horizontal resolutions were also investigated based on the experiments with three different horizontal resolutions (i.e., 120, 60, and 20km). The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with 120 simulation, it revealed that 60km and 20km simulations show the superiority in simulating rainfall centers anchored by the Nanling-Wuyi Mountains, but overestimate rainfall intensity. Water vapor budget diagnosis showed that, the 60km and 20km simulations tended to overestimate the water vapor convergence over southeastern China, which leads to wet biases. In the aspect of interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in El Niño decaying spring. Compared with the 120km resolution, the large positive biases are substantially reduced in the mid and high resolution models which evidently improve the simulation of horizontal moisture advection in El Niño decaying spring. We highlight the importance of developing high resolution climate model as it could potentially improve the climatology and interannual variability of SPR.
On the fog variability over south Asia
NASA Astrophysics Data System (ADS)
Syed, F. S.; Körnich, H.; Tjernström, M.
2012-12-01
An increasing trend in fog frequencies over south Asia during winter in the last few decades has resulted in large economical losses and has caused substantial difficulties in the daily lives of people. In order to better understand the fog phenomenon, we investigated the climatology, inter-annual variability and trends in the fog occurrence from 1976 to 2010 using observational data from 82 stations, well distributed over India and Pakistan. Fog blankets large area from Pakistan to Bangladesh across north India from west to east running almost parallel to south of the Himalayas. An EOF analysis revealed that the fog variability over the whole region is coupled and therefore must be governed by some large scale phenomenon on the inter-annual time scale. Significant positive trends were found in the fog frequency but this increase is not gradual, as with the humidity, but comprises of two distinct regimes shifts, in 1990 and 1998, with respect to both mean and variance. The fog is also detected in ERA-Interim 3 hourly, surface and model level forecast data when using the concept of "cross-over temperature" combined with boundary layer stability. This fog index is able to reproduce the regime shift around 1998 and shows that the method can be applied to analyze fog over south Asia. The inter-annual variability seems to be associated with the wave train originating from the North Atlantic in the upper troposphere that when causing higher pressure over the region results in an increased boundary layer stability and surface-near relative humidity. The trend and shifts in the fog occurrence seems to be associated with the gradual increasing trend in relative humidity from 1990 onwards.
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hua
2016-10-01
Tropical Instability Waves (TIWs) and the El Niño-Southern Oscillation (ENSO) are two air-sea coupling phenomena that are prominent in the tropical Pacific, occurring at vastly different space-time scales. It has been challenging to adequately represent both of these processes within a large-scale coupled climate model, which has led to a poor understanding of the interactions between TIW-induced feedback and ENSO. In this study, a novel modeling system was developed that allows representation of TIW-scale air-sea coupling and its interaction with ENSO. Satellite data were first used to derive an empirical model for TIW-induced sea surface wind stress perturbations (τTIW). The model was then embedded in a basin-wide hybrid-coupled model (HCM) of the tropical Pacific. Because τTIW were internally determined from TIW-scale sea surface temperatures (SSTTIW) simulated in the ocean model, the wind-SST coupling at TIW scales was interactively represented within the large-scale coupled model. Because the τTIW-SSTTIW coupling part of the model can be turned on or off in the HCM simulations, the related TIW wind feedback effects can be isolated and examined in a straightforward way. Then, the TIW-scale wind feedback effects on the large-scale mean ocean state and interannual variability in the tropical Pacific were investigated based on this embedded system. The interactively represented TIW-scale wind forcing exerted an asymmetric influence on SSTs in the HCM, characterized by a mean-state cooling and by a positive feedback on interannual variability, acting to enhance ENSO amplitude. Roughly speaking, the feedback tends to increase interannual SST variability by approximately 9%. Additionally, there is a tendency for TIW wind to have an effect on the phase transition during ENSO evolution, with slightly shortened interannual oscillation periods. Additional sensitivity experiments were performed to elucidate the details of TIW wind effects on SST evolution during ENSO cycles.
The impact of inter-annual rainfall variability on food production in the Ganges basin
NASA Astrophysics Data System (ADS)
Siderius, Christian; Biemans, Hester; van Walsum, Paul; hellegers, Petra; van Ierland, Ekko; Kabat, Pavel
2014-05-01
Rainfall variability is expected to increase in the coming decades as the world warms. Especially in regions already water stressed, a higher rainfall variability will jeopardize food security. Recently, the impact of inter-annual rainfall variability has received increasing attention in regional to global analysis on water availability and food security. But the description of the dynamics behind it is still incomplete in most models. Contemporary land surface and hydrological models used for such analyses describe variability in production primarily as a function of yield, a process driven by biophysical parameters, thereby neglecting yearly variations in cropped area, a process driven largely by management decisions. Agricultural statistics for northern India show that the latter process could explain up to 40% of the observed inter-annual variation in food production in various states. We added a simple dynamic land use decision module to a land surface model (LPJmL) and analyzed to what extent this improved the estimation of variability in food production. Using this improved modelling framework we then assessed if and at which scale rainfall variability affects meeting the food self-sufficiency threshold. Early results for the Ganges Basin indicate that, while on basin level variability in crop production is still relatively low, several districts and states are highly affected (RSTD > 50%). Such insight can contribute to better recommendations on the most effective measures, at the most appropriate scale, to buffer variability in food production.
NASA Astrophysics Data System (ADS)
Fernández de Puelles, Maria Luz; Alemany, Francisco; Jansá, Javier
2007-08-01
Studies of plankton time-series from the Balearic islands waters are presented for the past decade, with main emphasis on the variability of zooplankton and how it relates to the environment. The seasonal and interannual patterns of temperature, salinity, nutrients, chlorophyll concentration and zooplankton abundance are described with data obtained between 1994 and 2003. Samples were collected every 10 days at a monitoring station in the Mallorca channel, an area with marked hydrographic variability in the Western Mediterranean. Mesoscale variability was also assessed using data from monthly sampling survey carried out between 1994 and 1999 in a three station transect located in the same study area. The copepods were the most abundant group with three higher peaks (March, May and September) distinguished during the annual cycle and a clear coastal-offshore decreasing gradient. Analysis of the zooplankton community revealed two distinct periods: the mixing period during winter and early spring, where copepods, siphonophores and ostracods were most abundant and, the stratified period characterised by an increase of cladocerans and meroplankton abundances. Remarkable interannual zooplankton variability was observed in relation to hydrographic regime with higher abundances of main groups during cool years, when northern Mediterranean waters prevailed in the area. The warmer years showed the lowest zooplankton abundances, associated with the inflow of less saline and nutrient-depleted Atlantic Waters. Moreover, the correlation found between copepod abundance and large scale climatic factors (e.g., NAO) suggested that they act as main driver of the zooplankton variability. Therefore, the seasonal but particularly the interannual variation observed in plankton abundance and structure patterns of the Balearic Sea seems to be highly modulated by large-scale forcing and can be considered an ideal place where to investigate potential consequences of global climate change.
Global linkages between teleconnection patterns and the terrestrial biosphere
NASA Astrophysics Data System (ADS)
Dahlin, Kyla M.; Ault, Toby R.
2018-07-01
Interannual variability in the global carbon cycle is largely due to variations in carbon uptake by terrestrial ecosystems, yet linkages between climate variability and variability in the terrestrial carbon cycle are not well understood at the global scale. Using a 30-year satellite record of semi-monthly leaf area index (LAI), we show that four modes of climate variability - El Niño/Southern Oscillation, the North Atlantic Oscillation, the Atlantic Meridional Mode, and the Indian Ocean Dipole Mode - strongly impact interannual vegetation growth patterns, with 68% of the land surface impacted by at least one of these teleconnection patterns, yet the spatial distribution of these impacts is heterogeneous. Considering the patterns' impacts by biome, none has an exclusively positive or negative relationship with LAI. Our findings imply that future changes in the frequency and/or magnitude of teleconnection patterns will lead to diverse changes to the terrestrial biosphere and the global carbon cycle.
Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability
NASA Astrophysics Data System (ADS)
Hui, Chang; Zheng, Xiao-Tong
2018-01-01
The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.
Delpierre, Nicolas; Berveiller, Daniel; Granda, Elena; Dufrêne, Eric
2016-04-01
Although the analysis of flux data has increased our understanding of the interannual variability of carbon inputs into forest ecosystems, we still know little about the determinants of wood growth. Here, we aimed to identify which drivers control the interannual variability of wood growth in a mesic temperate deciduous forest. We analysed a 9-yr time series of carbon fluxes and aboveground wood growth (AWG), reconstructed at a weekly time-scale through the combination of dendrometer and wood density data. Carbon inputs and AWG anomalies appeared to be uncorrelated from the seasonal to interannual scales. More than 90% of the interannual variability of AWG was explained by a combination of the growth intensity during a first 'critical period' of the wood growing season, occurring close to the seasonal maximum, and the timing of the first summer growth halt. Both atmospheric and soil water stress exerted a strong control on the interannual variability of AWG at the study site, despite its mesic conditions, whilst not affecting carbon inputs. Carbon sink activity, not carbon inputs, determined the interannual variations in wood growth at the study site. Our results provide a functional understanding of the dependence of radial growth on precipitation observed in dendrological studies. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Interannual variability in CO2 and CH4 exchange in a brackish tidal marsh in Northern California
NASA Astrophysics Data System (ADS)
Knox, S. H.; Windham-Myers, L.; Anderson, F. E.; Bergamaschi, B. A.
2017-12-01
Carbon (C) cycling in coastal wetlands is difficult to measure and model due to extremely dynamic atmospheric and hydrologic fluxes, as well as sensitivities to dynamic land- and ocean-based drivers. To date, few studies have begun continuous measurements of net ecosystem CO2 exchange (NEE) in these systems, and as such our understanding of the key drivers of NEE in coastal wetlands remain poorly understood. Recent eddy covariance measurements of NEE in these environments show considerable variability both within and across sites, with daily CO2 uptake and annual net CO2 budgets varying by nearly an order of magnitude between years and across locations. Furthermore, measurements of CH4 fluxes in these systems are even more limited, despite the potential for CH4 emissions from brackish and freshwater coastal wetlands. Here we present 3 years of near-continuous eddy covariance measurements of CO2 and CH4 fluxes from a brackish tidal marsh in Northern California and explore the drivers of interannual variability in CO2 and CH4 exchange. CO2 fluxes showed significant interannual variability; net CO2 uptake was near-zero in 2014 (6 ± 26 g C-CO2 m-2 yr-1), while much greater uptake was observed in 2015 and 2016 (209 ± 27 g C- CO2 m-2 yr-1 and 243 ± 26 g C-CO2 m-2 yr-1, respectively). Conversely, annual CH4 emissions were small and consistent across years, with the wetland emitting on average 1 ± 0.1 g C-CH4 m-2 yr-1. With respect to the net atmospheric GHG budget (assuming a sustained global warming potential (SGWP) of 45, expressed in units of CO2 equivalents), the wetland was near neutral in 2014, but a net GHG sink of 706 ± 105 g CO2 eq m-2 yr-1 and 836 ± 83 g CO2 eq m-2 yr-1 in 2015 and 2016, respectively. The large interannual variability in CO2 exchange was driven by notable year-to-year differences in temperature and precipitation as California experienced a severe drought and record high temperatures from 2012 to 2015. The large interannual variability in NEE and GHG budgets observed in this study emphasizes the need for long-term measurements of C fluxes in coastal wetlands, particularly under changing climatic conditions.
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Jia, Beixi; Wang, Sing-Chun; Estes, Mark; Shen, Lu; Xie, Yuanyu
2016-12-01
The Bermuda High (BH) quasi-permanent pressure system is the key large-scale circulation pattern influencing summertime weather over the eastern and southern US. Here we developed a multiple linear regression (MLR) model to characterize the effect of the BH on year-to-year changes in monthly-mean maximum daily 8 h average (MDA8) ozone in the Houston-Galveston-Brazoria (HGB) metropolitan region during June, July, and August (JJA). The BH indicators include the longitude of the BH western edge (BH-Lon) and the BH intensity index (BHI) defined as the pressure gradient along its western edge. Both BH-Lon and BHI are selected by MLR as significant predictors (p < 0.05) of the interannual (1990-2015) variability of the HGB-mean ozone throughout JJA, while local-scale meridional wind speed is selected as an additional predictor for August only. Local-scale temperature and zonal wind speed are not identified as important factors for any summer month. The best-fit MLR model can explain 61-72 % of the interannual variability of the HGB-mean summertime ozone over 1990-2015 and shows good performance in cross-validation (R2 higher than 0.48). The BH-Lon is the most important factor, which alone explains 38-48 % of such variability. The location and strength of the Bermuda High appears to control whether or not low-ozone maritime air from the Gulf of Mexico can enter southeastern Texas and affect air quality. This mechanism also applies to other coastal urban regions along the Gulf Coast (e.g., New Orleans, LA, Mobile, AL, and Pensacola, FL), suggesting that the BH circulation pattern can affect surface ozone variability through a large portion of the Gulf Coast.
Variability of Arctic Sea Ice as Determined from Satellite Observations
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1999-01-01
The compiled, quality-controlled satellite multichannel passive-microwave record of polar sea ice now spans over 18 years, from November 1978 through December 1996, and is revealing considerable information about the Arctic sea ice cover and its variability. The information includes data on ice concentrations (percent areal coverages of ice), ice extents, ice melt, ice velocities, the seasonal cycle of the ice, the interannual variability of the ice, the frequency of ice coverage, and the length of the sea ice season. The data reveal marked regional and interannual variabilities, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 sq km, while individual regions experienced much greater percent variations, for instance, with the Greenland Sea having a range of 740,000 - 1,110,000 sq km in its yearly maximum ice coverage. In spite of the large variations from year to year and region to region, overall the Arctic ice extents showed a statistically significant, 2.80% / decade negative trend over the 18.2-year period. Ice season lengths, which vary from only a few weeks near the ice margins to the full year in the large region of perennial ice coverage, also experienced interannual variability, along with spatially coherent overall trends. Linear least squares trends show the sea ice season to have lengthened in much of the Bering Sea, Baffin Bay, the Davis Strait, and the Labrador Sea, but to have shortened over a much larger area, including the Sea of Okhotsk, the Greenland Sea, the Barents Sea, and the southeastern Arctic.
Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret
2016-06-01
Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ashjian, C. J.; Okkonen, S. R.; Campbell, R. G.; Alatalo, P.
2014-12-01
Late summer physical and biological conditions along a 37-km transect crossing Barrow Canyon have been described for the past ten years as part of an ongoing program, supported by multiple funding sources including the NSF AON, focusing on inter-annual variability and the formation of a bowhead whale feeding hotspot near Barrow. These repeated transects (at least two per year, separated in time by days-weeks) provide an opportunity to assess the inter-annual and shorter term (days-weeks) changes in hydrographic structure, ocean temperature, current velocity and transport, chlorophyll fluorescence, nutrients, and micro- and mesozooplankton community composition and abundance. Inter-annual variability in all properties was high and was associated with larger scale, meteorological forcing. Shorter-term variability could also be high but was strongly influenced by changes in local wind forcing. The sustained sampling at this location provided critical measures of inter-annual variability that should permit detection of longer-term trends that are associated with ongoing climate change.
NASA Astrophysics Data System (ADS)
Pohl, Benjamin; Douville, Hervé
2011-10-01
The CNRM atmospheric general circulation model Arpege-Climat is relaxed towards atmospheric reanalyses outside the 10°S-32°N 30°W-50°E domain in order to disentangle the regional versus large-scale sources of climatological biases and interannual variability of the West African monsoon (WAM). On the one hand, the main climatological features of the monsoon, including the spatial distribution of summer precipitation, are only weakly improved by the nudging, thereby suggesting the regional origin of the Arpege-Climat biases. On the other hand, the nudging technique is relatively efficient to control the interannual variability of the WAM dynamics, though the impact on rainfall variability is less clear. Additional sensitivity experiments focusing on the strong 1994 summer monsoon suggest that the weak sensitivity of the model biases is not an artifact of the nudging design, but the evidence that regional physical processes are the main limiting factors for a realistic simulation of monsoon circulation and precipitation in the Arpege-Climat model. Sensitivity experiments to soil moisture boundary conditions are also conducted and highlight the relevance of land-atmosphere coupling for the amplification of precipitation biases. Nevertheless, the land surface hydrology is not the main explanation for the model errors that are rather due to deficiencies in the atmospheric physics. The intraseasonal timescale and the model internal variability are discussed in a companion paper.
Variability of the Labrador Sea Surface Eddy Kinetic Energy Observed by Altimeter From 1993 to 2012
NASA Astrophysics Data System (ADS)
Zhang, Weiwei; Yan, Xiao-Hai
2018-01-01
A merged along track altimeter data set is used to study the variability of eddy kinetic energy (EKE) in the Labrador Sea from 1993 to 2012. The EKE near the west Greenland current (WGC) has strong interannual variability without long-term trend from 1993 to 2012. The propagation direction of the Irminger Rings (IRs) originating from the WGC can be inferred from the EKE derived from altimeter, and the southward propagation of the IRs varies interannually. The central Labrador Sea EKE increases significantly from 1993 to 2012. The central Labrador Sea temperature difference between the end and the beginning of the winter convections is defined as restratification index to measure the restratification strengths. The relation between the central Labrador Sea EKE and the restratification index shows that the enhanced eddy activity originating from the west of the central Labrador Sea may cool the central Labrador Sea significantly. The interannual variability of the WGC EKE is likely to be driven by the large scale Subpolar Gyre (SPG) circulation variability and the North Atlantic Oscillation (NAO). The NAO also affects the central Labrador Sea EKE through its fingerprint in the local wind stress and surface heat flux. The NAO affects the WGC EKE by changing the SPG circulation strength, which will subsequently affect the WGC EKE through unknown physical processes.
NASA Astrophysics Data System (ADS)
Willmes, S.; Haas, C.; Nicolaus, M.; Bareiss, J.
2009-04-01
Snowmelt processes on Antarctic sea ice are examined. We present a simple snowmelt indicator based on diurnal brightness temperature variations from microwave satellite data. The method is validated through extensive field data from the western Weddell Sea and lends itself to the investigation of interannual and spatial variations of the typical snowmelt on Antarctic sea ice. We use in situ measurements of physical snow properties to show that despite the absence of strong melting, the summer period is distinct from all other seasons with enhanced diurnal variations of snow wetness. A microwave emission model reveals that repeated thawing and refreezing causes the typical microwave emissivity signatures that are found on perennial Antarctic sea ice during summer. The proposed melt indicator accounts for the characteristic phenomenological stages of snowmelt in the Southern Ocean and detects the onset of diurnal snow wetting. An algorithm is presented to map large-scale snowmelt onset, based on satellite data from the period between 1988 and 2006. The results indicate strong meridional gradients of snowmelt onset with the Weddell, Amundsen and Ross Seas showing earliest (beginning of October) and most frequent snowmelt. Moreover, a distinct interannual variability of melt onset dates and large areas of first-year ice where no diurnal freeze-thawing occurs at the surface are determined.
NASA Astrophysics Data System (ADS)
Willmes, Sascha; Haas, Christian; Nicolaus, Marcel; Bareiss, JöRg
2009-03-01
Snowmelt processes on Antarctic sea ice are examined. We present a simple snowmelt indicator based on diurnal brightness temperature variations from microwave satellite data. The method is validated through extensive field data from the western Weddell Sea and lends itself to the investigation of interannual and spatial variations of the typical snowmelt on Antarctic sea ice. We use in-situ measurements of physical snow properties to show that despite the absence of strong melting, the summer period is distinct from all other seasons with enhanced diurnal variations of snow wetness. A microwave emission model reveals that repeated thawing and refreezing cause the typical microwave emissivity signatures that are found on perennial Antarctic sea ice during summer. The proposed melt indicator accounts for the characteristic phenomenological stages of snowmelt in the Southern Ocean and detects the onset of diurnal snow wetting. An algorithm is presented to map large-scale snowmelt onset based on satellite data from the period between 1988 and 2006. The results indicate strong meridional gradients of snowmelt onset with the Weddell, Amundsen, and Ross Seas showing earliest (beginning of October) and most frequent snowmelt. Moreover, a distinct interannual variability of melt onset dates and large areas of first-year ice where no diurnal freeze thawing occurs at the surface are determined.
Coral radiocarbon constraints on the source of the Indonesian throughflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, M.D.; Schrag, D.P.; Kashgarian, M.
1997-06-01
Radiocarbon variability in {ital Porites} spp. corals from Guam and the Makassar Strait (Indonesian Seaway) was used to identify the source waters contributing to the Indonesian throughflow. Time series with bimonthly resolution were constructed using accelerator mass spectrometry. The seasonal variability ranges from 15 to 60{per_thousand}, with large interannual variability. {Delta}{sup 14}C values from Indonesia and Guam have a nearly identical range. Annual mean {Delta}{sup 14}C values from Indonesia are 50 to 60{per_thousand} higher than in corals from Canton in the South Equatorial Current [{ital Druffel}, 1987]. These observations support a year-round North Pacific source for the Indonesian throughflow andmore » imply negligible contribution by South Equatorial Current water. The large seasonality in {Delta}{sup 14}C values from both sites emphasizes the dynamic behavior of radiocarbon in the surface ocean and suggests that {Delta}{sup 14}C time series of similar resolution can help constrain seasonal and interannual changes in ocean circulation in the Pacific over the last several decades.{copyright} 1997 American Geophysical Union« less
Interannual to decadal variability of circulation in the northern Japan/East Sea, 1958-2006
NASA Astrophysics Data System (ADS)
Stepanov, Dmitry; Stepanova, Victoriia; Gusev, Anatoly
2015-04-01
We use a numerical ocean model INMOM (Institute of Numerical Mathematics Ocean Model) and atmospheric forcing data extracted from the CORE (Coordinated Ocean Reference Experiments) dataset and reconstruct a circulation in the Japan/East Sea (JES) from 1958 to 2006 and its interannual and decadal variability in the intermediate and abyssal layers in the northern JES. It is founded that the circulation is cyclonic over the course of a climatological year. The circulation increases in spring and decreases in autumn. We analyzes the relative vorticity (RV) averaged over the Japan Basin (JB) and show that the variability is characterized by the interannual oscillations (2.3, 3.7 and 4.7 years) and decadal variability (9.5 and 14.3 years). The spectrum structure of the average RV variability does not change with depth; however, the energy of the decadal oscillations decreases in contrast to that of the interannual oscillations. We analyze monthly anomalies of the wind stress curl and sensible heat flux and reveal that interannual variability (3-4 years) of the circulation over the JB result from 4-year variability of the wind stress curl. In contrast, the decadal variability (period of 9.5 years) of the circulation over the JB is generated by both the wind stress curl and the decadal variability in deep convection.
Interannual Variability of Snow and Ice and Impact on the Carbon Cycle
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2004-01-01
The goal of this research is to assess the impact of the interannual variability in snow/ice using global satellite data sets acquired in the last two decades. This variability will be used as input to simulate the CO2 interannual variability at high latitudes using a biospheric model. The progress in the past few years is summarized as follows: 1) Albedo decrease related to spring snow retreat; 2) Observed effects of interannual summertime sea ice variations on the polar reflectance; 3) The Northern Annular Mode response to Arctic sea ice loss and the sensitivity of troposphere-stratosphere interaction; 4) The effect of Arctic warming and sea ice loss on the growing season in northern terrestrial ecosystem.
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Molinari, John; Thorncroft, Chris D,
2010-01-01
The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from TRMM data as a cluster of pixels with an 85 GHz polarization-corrected brightness temperature below 255 K and with an area at least 64 km 2. The study database consisted of convective systems in West Africa from May Sep for 1998-2007 and in the western Pacific from May Nov 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences among the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Sub-setting the database revealed some sensitivity in distribution shape to the size of the sampling area, length of sample period, and climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is wetter or drier than normal.
NASA Astrophysics Data System (ADS)
Schwartz, Rachel E.; Gershunov, Alexander; Iacobellis, Sam F.; Cayan, Daniel R.
2014-05-01
Six decades of observations at 20 coastal airports, from Alaska to southern California, reveal coherent interannual to interdecadal variation of coastal low cloudiness (CLC) from summer to summer over this broad region. The leading mode of CLC variability represents coherent variation, accounting for nearly 40% of the total CLC variance spanning 1950-2012. This leading mode and the majority of individual airports exhibit decreased low cloudiness from the earlier to the later part of the record. Exploring climatic controls on CLC, we identify North Pacific Sea Surface Temperature anomalies, largely in the form of the Pacific Decadal Oscillation (PDO) as well correlated with, and evidently helping to organize, the coherent patterns of summer coastal cloud variability. Links from the PDO to summer CLC appear a few months in advance of the summer. These associations hold up consistently in interannual and interdecadal frequencies.
Vogeler, Iris; Mackay, Alec; Vibart, Ronaldo; Rendel, John; Beautrais, Josef; Dennis, Samuel
2016-09-15
Farm system and nutrient budget models are increasingly being used in analysis to inform on farm decision making and evaluate land use policy options at regional scales. These analyses are generally based on the use of average annual pasture yields. In New Zealand (NZ), like in many countries, there is considerable inter-annual variation in pasture growth rates, due to climate. In this study a modelling approach was used to (i) include inter-annual variability as an integral part of the analysis and (ii) test the approach in an economic analysis of irrigation in a case study within the Hawkes Bay Region of New Zealand. The Agricultural Production Systems Simulator (APSIM) was used to generate pasture dry matter yields (DMY) for 20 different years and under both dryland and irrigation. The generated DMY were linked to outputs from farm-scale modelling for both Sheep and Beef Systems (Farmaxx Pro) and Dairy Systems (Farmax® Dairy Pro) to calculate farm production over 20 different years. Variation in DMY and associated livestock production due to inter-annual variation in climate was large, with a coefficient of variations up to 20%. Irrigation decreased this inter-annual variation. On average irrigation, with unlimited available water, increased income by $831 to 1195/ha, but when irrigation was limited to 250mm/ha/year income only increased by $525 to 883/ha. Using pasture responses in individual years to capturing the inter-annual variation, rather than the pasture response averaged over 20years resulted in lower financial benefits. In the case study income from irrigation based on an average year were 10 to >20% higher compared with those obtained from individual years. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Rong-Hua; Gao, Chuan; Kang, Xianbiao; Zhi, Hai; Wang, Zhanggui; Feng, Licheng
2015-01-01
Recent studies have identified clear climate feedbacks associated with interannual variations in freshwater forcing (FWF) and ocean biology-induced heating (OBH) in the tropical Pacific. The interrelationships among the related anomaly fields are analyzed using hybrid coupled model (HCM) simulations to illustrate their combined roles in modulating the El Niño-Southern Oscillation (ENSO). The HCM-based supporting experiments are performed to isolate the related feedbacks, with interannually varying FWF and OBH being represented individually or collectively, which allows their effects to be examined in a clear way. It is demonstrated that the interannual freshwater forcing enhances ENSO variability and slightly prolongs the simulated ENSO period, while the interannual OBH reduces ENSO variability and slightly shortens the ENSO period, with their feedback effects tending to counteract each other. PMID:26678931
NASA Astrophysics Data System (ADS)
Saba, Vincent S.; Hyde, Kimberly J. W.; Rebuck, Nathan D.; Friedland, Kevin D.; Hare, Jonathan A.; Kahru, Mati; Fogarty, Michael J.
2015-02-01
The continental shelf of the Northeast United States and Nova Scotia is a productive marine ecosystem that supports a robust biomass of living marine resources. Understanding marine ecosystem sensitivity to changes in the physical environment can start with the first-order response of phytoplankton (i.e., chlorophyll a), the base of the marine food web. However, the primary physical associations to the interannual variability of chlorophyll a in these waters are unclear. Here we used ocean color satellite measurements and identified the local and remote physical associations to interannual variability of spring surface chlorophyll a from 1998 to 2013. The highest interannual variability of chlorophyll a occurred in March and April on the northern flank of Georges Bank, the western Gulf of Maine, and Nantucket Shoals. Complex interactions between winter wind speed over the Shelf, local winter water levels, and the relative proportions of Atlantic versus Labrador Sea source waters entering the Gulf of Maine from the previous summer/fall were associated with the variability of March/April chlorophyll a in Georges Bank and the Gulf of Maine. Sea surface temperature and sea surface salinity were not robust correlates to spring chlorophyll a. Surface nitrate in the winter was not a robust correlate to chlorophyll a or the physical variables in every case suggesting that nitrate limitation may not be the primary constraint on the interannual variability of the spring bloom throughout all regions. Generalized linear models suggest that we can resolve 88% of March chlorophyll a interannual variability in Georges Bank using lagged physical data.
Banas, Neil S.; MacCready, Parker
2018-01-01
Abstract The Northern California Current System experiences highly variable seasonal upwelling in addition to larger basin‐scale variability, both of which can significantly affect its water chemistry. Salinity and temperature fields from a 7 year ROMS hindcast model of this region (43°N–50°N), along with extensive particle tracking, were used to study interannual variability in water properties over both the upper slope and the midshelf bottom. Variation in slope water properties was an order of magnitude smaller than on the shelf. Furthermore, the primary relationship between temperature and salinity anomalies in midshelf bottom water consisted of variation in density (cold/salty versus warm/fresh), nearly orthogonal to the anomalies along density levels (cold/fresh versus warm/salty) observed on the upper slope. These midshelf anomalies were well‐explained (R 2 = 0.6) by the combination of interannual variability in local and remote alongshore wind stress, and depth of the California Undercurrent (CUC) core. Lagrangian analysis of upper slope and midshelf bottom water shows that both are affected simultaneously by large‐scale alongcoast advection of water through the northern and southern boundaries. The amplitude of anomalies in bottom oxygen and dissolved inorganic carbon (DIC) on the shelf associated with upwelling variability are larger than those associated with typical variation in alongcoast advection, and are comparable to observed anomalies in this region. However, a large northern intrusion event in 2004 illustrates that particular, large‐scale alongcoast advection anomalies can be just as effective as upwelling variability in changing shelf water properties on the interannual scale. PMID:29938149
NASA Astrophysics Data System (ADS)
Theissen, K. M.; Dunbar, R. B.
2005-12-01
In tropical regions, there are few paleoclimate archives with the necessary resolution to investigate climate variability at interannual-to-decadal timescales prior to the onset of the instrumental record. Interannual variability associated with the El Niño Southern Oscillation (ENSO) is well documented in the instrumental record and the importance of the precessional forcing of millennial variability has been established in studies of tropical paleoclimate records. In contrast, decade-to-century variability is still poorly understood. Here, we examine interannual to decadal variability in the northern Altiplano of South America using digital image analysis of a floating interval of varved sediments of middle Holocene age (~6160-6310 yr BP) from Lake Titicaca. Multi-taper method (MTM) and wavelet frequency-domain analyses were performed on a time series generated from a gray-scaled digital image of the mm-thick laminations. Our results indicate significant power at a decadal periodicity (10-12 years) associated with the Schwabe cycle of solar activity. Frequency-domain analysis also indicates power at 2-2.5 year periodicities associated with ENSO. Similarly, spectral analysis of a 75 year instrumental record of Titicaca lake level shows significant power at both solar and ENSO periodicities. Although both of the examined records are short, our results imply that during both the mid-Holocene and modern times, solar and ENSO variability may have contributed to high frequency climate fluctuations over the northern Altiplano. We suspect that solar influence on large-scale atmospheric circulation features may account for the decadal variability in the mid-Holocene and present-day water balance of the Altiplano.
NASA Technical Reports Server (NTRS)
Helfand, H. M.; Schubert, S. D.; Atlas, Robert (Technical Monitor)
2002-01-01
Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable features of the low-level continental flow during the warm-season months, May through August. We have first used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine and validate its climatology and mean diurnal cycle and to study its interannual variability. Interannual variability of the GPLLJ is much smaller than mean diurnal and random intraseasonal variability and comparable in magnitude, but not location, to mean seasonal variability. There are three maxima of interannual low-level meridional flow variability of the GPLLJ over the upper Great Plains, southeastern Texas, and the western Gulf of Mexico. Cross-sectional profiles of mean southerly wind through the Texas maximum remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six years of the reanalysis period and only then. Each of the three variability maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are three prominent modes of interannual. variability. These include the intermittent biennial oscillation (IBO), local to the Texas maximum. Its signal is evident in surface pressure, surface temperature, ground wetness and upper air flow, as well. A larger-scale continental convergence pattern (CCP) of covariance, exhibiting strong anti-correlation between the flow near the Texas and the upper Great Plains variability maxima, is revealed only when the IBO is removed from the interannual time series. A third, subtropical mode of covariance is associated with the Gulf of Mexico variability maximum. Significant interannual anti-correlations of the southeasterly flow over the Arizona/New Mexico region with the CCP and the subtropical mode are enhanced when restricted to the month of July. These anti-correlations may relate to an observed out-of-phase precipitation relationship between the Great Plains and the southwestern U.S.. The typical duration of interannual low-level meridional wind anomalies within a given season increases over the continent with decreasing latitude from two to three weeks over the upper Great Plains to six to seven weeks over eastern Texas.
Inter-annual Variability in Tundra Phenology Captured with Digital Photography
NASA Astrophysics Data System (ADS)
Melendez, M.; Vargas, S. A.; Tweedie, C. E.
2012-12-01
The need to improve multi-scale phenological monitoring of arctic terrestrial ecosystems has been a persistent research challenge. Although there has been a range of advances in remote sensing capacities over the past decade, these present costly, and sometimes logistically challenging and technically demanding solutions for arctic terrestrial ecosystems. In this poster and undergraduate research project, we demonstrate how seasonal and inter-annual variability in landscape phenology can be derived for multiple tundra ecosystems using a low-cost and low-tech kite aerial photography (KAP) system that has been developed as a contribution to the US Arctic Observing Network. Seasonal landscape phenology was observed over the Networked Info-Mechanical Systems (NIMS) grids (2 x 50 meters) located in Barrow and Atqasuk, Alaska using imagery acquired with KAP and analyzed for a range of greenness indices. Preliminary results showed that the 2G-RB greenness index correlated the best with NDVI values calculated from ground based hyperspectral reflectance measurements. 2012 had the highest 2G-RB greenness index values for both Barrow and Atqasuk sites, which correlated well with NDVI values acquired from ground-based hyperspectral reflectance measurements. Wet vegetation types showed the most interannual variability at the Atqasuk site based on the 2G-RB greenness index while in Barrow the moist vegetation types showed the most interannual variability. These results show that vegetation indices similar to those acquired from hyperspectral remote sensing platforms can be derived using low-cost and low-tech techniques. Further analysis using these same techniques is required in order to link relatively small scale vegetation dynamics measured with KAP with those documented at large scales using satellite imagery.
NASA Technical Reports Server (NTRS)
Fisher, J. A.; Jacob, D. J.; Purdy, M. T.; Kopacz, M.; LeSager, P.; Carouge, C.; Holmes, C. D.; Yantosca, R. M.; Batchelor, R. L.; Strong, K.;
2009-01-01
We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003-2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month-1 for Asian anthropogenic, 9.1 for European anthropogenic, 4.2 for North American anthropogenic, 9.3 for Russian biomass burning (anomalously large that year), and 21 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Synoptic pollution influences in the Arctic free troposphere include contributions of comparable magnitude from Russian biomass burning and from North American, European, and Asian anthropogenic sources. European pollution dominates synoptic variability near the surface. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS is capable of observing pollution transport to the Arctic in the mid-troposphere. The 2003-2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Nino Index, suggesting a link between El Nino and northward pollution transport. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007-2008 La Nina. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Nino conditions.
Mars dust storms - Interannual variability and chaos
NASA Technical Reports Server (NTRS)
Ingersoll, Andrew P.; Lyons, James R.
1993-01-01
The hypothesis is that the global climate system, consisting of atmospheric dust interacting with the circulation, produces its own interannual variability when forced at the annual frequency. The model has two time-dependent variables representing the amount of atmospheric dust in the northern and southern hemispheres, respectively. Absorption of sunlight by the dust drives a cross-equatorial Hadley cell that brings more dust into the heated hemisphere. The circulation decays when the dust storm covers the globe. Interannual variability manifests itself either as a periodic solution in which the period is a multiple of the Martian year, or as an aperiodic (chaotic) solution that never repeats. Both kinds of solution are found in the model, lending support to the idea that interannual variability is an intrinsic property of the global climate system. The next step is to develop a hierarchy of dust-circulation models capable of being integrated for many years.
Multi-Wheat-Model Ensemble Responses to Interannual Climate Variability
NASA Technical Reports Server (NTRS)
Ruane, Alex C.; Hudson, Nicholas I.; Asseng, Senthold; Camarrano, Davide; Ewert, Frank; Martre, Pierre; Boote, Kenneth J.; Thorburn, Peter J.; Aggarwal, Pramod K.; Angulo, Carlos
2016-01-01
We compare 27 wheat models' yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981e2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models' climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R2 0.24) was found between the models' sensitivities to interannual temperature variability and their response to long-termwarming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts.
Compensatory Water Effects Link Yearly Global Land CO2 Sink Changes to Temperature
NASA Technical Reports Server (NTRS)
Jung, Martin; Reichstein, Markus; Tramontana, Gianluca; Viovy, Nicolas; Schwalm, Christopher R.; Wang, Ying-Ping; Weber, Ulrich; Weber, Ulrich; Zaehle, Soenke; Zeng, Ning;
2017-01-01
Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems13. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales314. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of the local interannual variability in GPP and TER. To a lesser extent this is true also for NEE at the local scale, but when integrated globally, temporal NEE variability is mostly driven by temperature fluctuations. We suggest that this apparent paradox can be explained by two compensatory water effects. Temporal water-driven GPP and TER variations compensate locally, dampening water-driven NEE variability. Spatial water availability anomalies also compensate, leaving a dominant temperature signal in the year-to-year fluctuations of the land carbon sink. These findings help to reconcile seemingly contradictory reports regarding the importance of temperature and water in controlling the interannual variability of the terrestrial carbon balance36,9,11,12,14. Our study indicates that spatial climate covariation drives the global carbon cycle response.
Process contributions of Australian ecosystems to interannual variations in the carbon cycle
NASA Astrophysics Data System (ADS)
Haverd, Vanessa; Smith, Benjamin; Trudinger, Cathy
2016-05-01
New evidence is emerging that semi-arid ecosystems dominate interannual variability (IAV) of the global carbon cycle, largely via fluctuating water availability associated with El Niño/Southern Oscillation. Recent evidence from global terrestrial biosphere modelling and satellite-based inversion of atmospheric CO2 point to a large role of Australian ecosystems in global carbon cycle variability, including a large contribution from Australia to the record land sink of 2011. However the specific mechanisms governing this variability, and their bioclimatic distribution within Australia, have not been identified. Here we provide a regional assessment, based on best available observational data, of IAV in the Australian terrestrial carbon cycle and the role of Australia in the record land sink anomaly of 2011. We find that IAV in Australian net carbon uptake is dominated by semi-arid ecosystems in the east of the continent, whereas the 2011 anomaly was more uniformly spread across most of the continent. Further, and in contrast to global modelling results suggesting that IAV in Australian net carbon uptake is amplified by lags between production and decomposition, we find that, at continental scale, annual variations in production are dampened by annual variations in decomposition, with both fluxes responding positively to precipitation anomalies.
On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?
NASA Astrophysics Data System (ADS)
Couldrey, Matthew; Oliver, Kevin; Yool, Andrew; Halloran, Paul; Achterberg, Eric
2016-04-01
The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2and k both contribute significantly to interannual F variability, but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here, we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of non-seasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer term flux variability.
On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?
NASA Astrophysics Data System (ADS)
Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.
2016-05-01
The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.
On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?
NASA Astrophysics Data System (ADS)
Couldrey, M.; Oliver, K. I. C.; Yool, A.; Halloran, P. R.; Achterberg, E. P.
2016-02-01
The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability, but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here, we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2 and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of non-seasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer term flux variability.
Interannual Variations in Synoptic-Scale Disturbances over the Western North Pacific
NASA Astrophysics Data System (ADS)
Zhou, Xingyan; Lu, Riyu; Chen, Guanghua; Wu, Liang
2018-05-01
The present study investigates the interannual variation of June-November synoptic disturbance activity over the western North Pacific (WNP) and its relationship with large-scale circulation for the period 1958-2014. Two leading modes of eddy kinetic energy for the disturbance variability over the WNP are obtained by EOF analysis, characterized by anomalous eddy kinetic energy over the subtropical WNP and around the Philippines, respectively. These modes explain a large portion of the interannual variance of synoptic disturbance activity over the WNP. Both are associated with lower-level cyclonic anomalies, but with different locations: over the subtropical WNP for the first mode and over the South China Sea for the second mode. Considering the impact of ENSO on synoptic disturbance activity over the WNP, we repeat the analyses after removing the effect of ENSO, which is simply defined as the components linearly regressed onto the Niño3.4 index, and find similar results, suggesting that the leading modes and their relationships with large-scale circulation exist without SST effects. Further analyses suggest that the meridional shear of zonal winds caused by cyclonic anomalies is crucial for maintaining the leading modes through barotropic conversion.
NASA Astrophysics Data System (ADS)
Guillermo Nuñez Ramirez, Tonatiuh; Houweling, Sander; Marshall, Julia; Williams, Jason; Brailsford, Gordon; Schneising, Oliver; Heimann, Martin
2013-04-01
The atmospheric hydroxyl radical concentration (OH) varies due to changes in the incoming UV radiation, in the abundance of atmospheric species involved in the production, recycling and destruction of OH molecules and due to climate variability. Variability in carbon monoxide emissions from biomass burning induced by El Niño Southern Oscillation are particularly important. Although the OH sink accounts for the oxidation of approximately 90% of atmospheric CH4, the effect of the variability in the distribution and strength of the OH sink on the interannual variability of atmospheric methane (CH4) mixing ratio and stable carbon isotope composition (δ13C-CH4) has often been ignored. To show this effect we simulated the atmospheric signals of CH4 in a three-dimensional atmospheric transport model (TM3). ERA Interim reanalysis data provided the atmospheric transport and temperature variability from 1990 to 2010. We performed simulations using time dependent OH concentration estimations from an atmospheric chemistry transport model and an atmospheric chemistry climate model. The models assumed a different set of reactions and algorithms which caused a very different strength and distribution of the OH concentration. Methane emissions were based on published bottom-up estimates including inventories, upscaled estimations and modeled fluxes. The simulations also included modeled concentrations of atomic chlorine (Cl) and excited oxygen atoms (O(1D)). The isotopic signal of the sources and the fractionation factors of the sinks were based on literature values, however the isotopic signal from wetlands and enteric fermentation processes followed a linear relationship with a map of C4 plant fraction. The same set of CH4emissions and stratospheric reactants was used in all simulations. Two simulations were done per OH field: one in which the CH4 sources were allowed to vary interannually, and a second where the sources were climatological. The simulated mixing ratios and isotopic compositions at global reference stations were used to construct more robust indicators such as global and zonal means and interhemispheric differences. We also compared the model CH4 mixing ratio to satellite observations, for the period 2003 to 2004 with SCIAMACHY and from 2009 to 2010 with GOSAT. The interannual variability of the different OH fields imprinted an interannual variation of the atmospheric CH4 mixing ratio with a magnitude of ±10 ppb, which is comparable to the effect of all sources combined. Meanwhile its effect on the interannual variability of δ13C-CH4 was minor (< 10%). The interannual variability of the mixing ratio interhemispheric difference is dominated by the sources because the OH sink is concentrated in the tropics, thus its interannual variability affects both hemispheres. Meanwhile, although the OH plays an important role in the establishment of an interhemispheric gradient of δ13C-CH4, the interannual variation of this gradient is negligibly affected by the choice of OH field. Overall the study showed that the variability of the OH sink plays a significant role in the interannual variability of the atmospheric methane mixing ratio, and must be considered to improve our understanding of the recent trends in the global methane budget.
Interannual variability in the gravity wave drag - vertical coupling and possible climate links
NASA Astrophysics Data System (ADS)
Šácha, Petr; Miksovsky, Jiri; Pisoft, Petr
2018-05-01
Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño-Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.
NASA Astrophysics Data System (ADS)
Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu
2017-03-01
Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.; Au, Andrew Y.
2004-01-01
Recent Satellite Laser Ranging derived long wavelength gravity time series analysis has focused to a large extent on the effects of the recent large changes in the Earth s 52, and the potential causes. However, it is difficult to determine whether there are corresponding signals in the shorter wavelength zonals from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal spherical harmonic coefficient series have significant interannual signal that appears to be related to mass transport. The non-zonal degree 2 terms show reasonable correlation with atmospheric signals, as well as climatic effects such as El Nino Southern Oscillation. While the formal uncertainty of these terms is significantly higher than that for J2, it is also clear that there is useful signal to be extracted. Consequently, the SLR time series is being reprocessed to improve the time variable gravity field recovery. We will present recent updates on the J2 evolution, as well as a look at other components of the interannual variations of the gravity field, complete through degree 4, and possible geophysical and climatic causes.
NASA Astrophysics Data System (ADS)
Rao, R. R.; Horii, T.; Masumoto, Y.; Mizuno, K.
2017-08-01
The observed variability of zonal currents (ZC) at the Equator, 90°E shows a strong seasonal cycle in the near-surface 40-350 m water column with periodic east-west reversals most pronounced at semiannual frequency. Superposed on this, a strong intraseasonal variability of 30-90 day periodicity is also prominently seen in the near-surface layer (40-80 m) almost throughout the year with the only exception of February-March. An eastward flowing equatorial undercurrent (EUC) is present in the depth range of 80-160 m during March-April and October-November. The observed intraseasonal variability in the near-surface layer is primarily determined by the equatorial zonal westerly wind bursts (WWBs) through local frictional coupling between the zonal flow in the surface layer and surface zonal winds and shows large interannual variability. The eastward flowing EUC maintained by the ZPG set up by the east-west slope of the thermocline remotely controlled by the zonal wind (ZW) and zonally propagating wave fields also shows significant interannual variability. This observed variability on interannual time scales appears to be controlled by the corresponding variability in the alongshore winds off the Somalia coast during the preceding boreal winter, the ZW field along the equator, and the associated zonally propagating Kelvin and Rossby waves. The salinity induced vertical stratification observed in the near-surface layer through barrier layer thickness (BLT) effects also shows a significant influence on the ZC field on intraseasonal time scale. Interestingly, among all the 8 years (2001-2008), relatively weaker annual cycle is seen in both ZC in the 40-350 m water column and boreal spring sea surface temperature (SST) only during 2001 and 2008 along the equator caused through propagating wave dynamics.
NASA Technical Reports Server (NTRS)
Mohr, Karen I.; Molinari, John; Thorncroft, Chris
2009-01-01
The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 square kilometers. The study database consisted of convective systems in West Africa from May to September 1998-2007, and in the western Pacific from May to November 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.
Simulation of seasonal US precipitation and temperature by the nested CWRF-ECHAM system
NASA Astrophysics Data System (ADS)
Chen, Ligang; Liang, Xin-Zhong; DeWitt, David; Samel, Arthur N.; Wang, Julian X. L.
2016-02-01
This study investigates the refined simulation skill that results when the regional Climate extension of the Weather Research and Forecasting (CWRF) model is nested in the ECMWF Hamburg version 4.5 (ECHAM) atmospheric general circulation model over the United States during 1980-2009, where observed sea surface temperatures are used in both models. Over the contiguous US, for each of the four seasons from winter to fall, CWRF reduces the root mean square error of the ECHAM seasonal mean surface air temperature simulation by 0.19, 0.82, 2.02 and 1.85 °C, and increases the equitable threat score of seasonal mean precipitation by 0.18, 0.11, 0.09 and 0.12. CWRF also simulates much more realistically daily precipitation frequency and heavy precipitation events, typically over the Central Great Plains, Cascade Mountains and Gulf Coast States. These CWRF skill enhancements are attributed to the increased spatial resolution and physics refinements in representing orographic, terrestrial hydrology, convection, and cloud-aerosol-radiation effects and their interactions. Empirical orthogonal function analysis of seasonal mean precipitation and surface air temperature interannual variability shows that, in general, CWRF substantially improves the spatial distribution of both quantities, while temporal evolution (i.e. interannual variability) of the first 3 primary patterns is highly correlated with that of the driving ECHAM (except for summer precipitation), and they both have low temporal correlations against observations. During winter, when large-scale forcing dominates, both models also have similar responses to strong ENSO signals where they successfully capture observed precipitation composite anomalies but substantially fail to reproduce surface air temperature anomalies. When driven by the ECMWF Reanalysis Interim, CWRF produces a very realistic interannual evolution of large-scale precipitation and surface air temperature patterns where the temporal correlations with observations are significant. These results indicate that CWRF can greatly improve mesoscale regional climate structures but it cannot change interannual variations of the large-scale patterns, which are determined by the driving lateral boundary conditions.
Interannual Variability in Soil Trace Gas (CO2, N2O, NO) Fluxes and Analysis of Controllers
NASA Technical Reports Server (NTRS)
Potter, C.; Klooster, S.; Peterson, David L. (Technical Monitor)
1997-01-01
Interannual variability in flux rates of biogenic trace gases must be quantified in order to understand the differences between short-term trends and actual long-term change in biosphere-atmosphere interactions. We simulated interannual patterns (1983-1988) of global trace gas fluxes from soils using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been recalibrated for simulations driven by satellite vegetation index data from the NOAA Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. The predicted interannual pattern of soil heterotropic CO2 emissions indicates that relatively large increases in global carbon flux from soils occurred about three years following the strong El Nino Southern Oscillation (ENSO) event of 1983. Results for the years 1986 and 1987 showed an annual increment of +1 Pg (1015 g) C-CO2 emitted from soils, which tended to dampen the estimated global increase in net ecosystem production with about a two year lag period relative to plant carbon fixation. Zonal discrimination of model results implies that 80-90 percent of the yearly positive increments in soil CO2 emission during 1986-87 were attributable to soil organic matter decomposition in the low-latitudes (between 30 N and 30 S). Soils of the northern middle-latitude zone (between 30 N and 60 N) accounted for the residual of these annual increments. Total annual emissions of nitrogen trace gases (N2O and NO) from soils were estimated to vary from 2-4 percent over the time period modeled, a level of variability which is consistent with predicted interannual fluctuations in global soil CO2 fluxes. Interannual variability of precipitation in tropical and subtropical zones (30 N to 20 S appeared to drive the dynamic inverse relationship between higher annual emissions of NO versus emissions of N2O. Global mean emission rates from natural (heterotrophic) soil sources over the period modeled (1983-1988) were estimated at 57.1 Pg C-CO2yr-1, 9.8Tg (1012 g) N-NO yr-1, and 9.7 Tg N-N2O yr-1. Chemical fertilizer contributions to global soil N gas fluxes were estimated at between 1.3 to 7.3 Tg N-NO yr-1, and 1.2 to 4.0 Tg N-N2O yr-1.
NASA Technical Reports Server (NTRS)
Cakmur, R. V.; Miller, R. L.; Tegen, Ina; Hansen, James E. (Technical Monitor)
2001-01-01
The seasonal cycle and interannual variability of two estimates of soil (or 'mineral') dust aerosols are compared: Advanced Very High Resolution Radiometer (AVHRR) aerosol optical thickness (AOT) and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Both data sets, comprising more than a decade of global, daily images, are commonly used to evaluate aerosol transport models. The present comparison is based upon monthly averages, constructed from daily images of each data set for the period between 1984 and 1990, a period that excludes contamination from volcanic eruptions. The comparison focuses upon the Northern Hemisphere subtropical Atlantic Ocean, where soil dust aerosols make the largest contribution to the aerosol load, and are assumed to dominate the variability of each data set. While each retrieval is sensitive to a different aerosol radiative property - absorption for the TOMS AI versus reflectance for the AVHRR AOT - the seasonal cycles of dust loading implied by each retrieval are consistent, if seasonal variations in the height of the aerosol layer are taken into account when interpreting the TOMS AI. On interannual time scales, the correlation is low at most locations. It is suggested that the poor interannual correlation is at least partly a consequence of data availability. When the monthly averages are constructed using only days common to both data sets, the correlation is substantially increased: this consistency suggests that both TOMS and AVHRR accurately measure the aerosol load in any given scene. However, the two retrievals have only a few days in common per month so that these restricted monthly averages have a large uncertainty. Calculations suggest that at least 7 to 10 daily images are needed to estimate reliably the average dust load during any particular month, a threshold that is rarely satisfied by the AVHRR AOT due to the presence of clouds in the domain. By rebinning each data set onto a coarser grid, the availability of the AVHRR AOT is increased during any particular month, along with its interannual correlation with the TOMS AI The latter easily exceeds the sampling threshold due to its greater ability to infer the aerosol load in the presence of clouds. Whether the TOMS AI should be regarded as a more reliable indicator of interannual variability depends upon the extent of contamination by sub-pixel clouds.
NASA Astrophysics Data System (ADS)
Kim, Young-Ha; Yoo, Changhyun
2017-04-01
We investigate activities of tropical waves represented in reanalysis products. The wave activities are quantified by the Eliassen-Palm (EP) flux at 100 hPa, after decomposed into the following four components: equatorially trapped Kelvin waves and mixed Rossby-gravity waves, gravity waves, and Rossby waves. Monthly EP fluxes of the four waves exhibit considerable temporal variations at intraseasonal and interannual, along with seasonal, time scales. These variations are discussed with the tropical large-scale variabilities, including the Madden-Julian Oscillation (MJO), the El Ninõ-Southern Oscillation, and the stratospheric quasi-biennial oscillation (QBO). We find that during boreal winter, the interannual variation of Kelvin wave activity is in phase with that of the MJO amplitude, while such a simultaneous variation cannot be seen in other seasons. The gravity wave is dominated by a semi-annual cycle, while the departure from its semi-annual cycle is largely correlated with the QBO phase in the stratosphere. Potential impacts of the variations in the wave activity upon the QBO properties will be assessed using a simple one-dimensional QBO model.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Sohn, B. J.
1990-01-01
Global cloudiness and radiation budget data from Nimbus 6 and 7 are used to investigate the role of cloud and surface radiative forcing and elements of the earth's general circulation. Although globally integrated cloud forcing is nearly zero, there are large regional imbalances and well regulated processes in the shortwave and longwave spectrum that control the meridional gradient structure of the net radiation balance and the factors modulating the east-west oriented North Africa-western Pacific energy transport dipole. The analysis demonstrates that clouds play a dual role in both the shortwave and longwave spectra in terms of tropical and midlatitude east-west gradients. The key result is that cloud forcing, although not always the principle regulator of interannual variability of the global climate, serves to reinforce the basic three-cell meridional circulation.
NASA Astrophysics Data System (ADS)
Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin
2018-04-01
The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity
. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Douglass, Anne R.; Chandra, Sushil; Stolarski, Richard S.; Rosenfield, Joan E.; Kaye, Jack A.
1991-01-01
Values of the monthly mean heating rates and the residual circulation characteristics were calculated using NMC data for temperature and the solar backscattered UV ozone for the period between 1979 and 1986. The results were used in a two-dimensional photochemical model in order to examine the effects of temperature and residual circulation on the interannual variability of ozone. It was found that the calculated total ozone was more sensitive to variations in interannual residual circulation than in the interannual temperature. The magnitude of the modeled ozone variability was found to be similar to the observed variability, but the observed and modeled year-to-year deviations were, for the most part, uncorrelated, due to the fact that the model did not account for most of the QBO forcing and for some of the observed tropospheric changes.
NASA Astrophysics Data System (ADS)
Nogueira, Miguel; Soares, Pedro M. M.; Tomé, Ricardo; Cardoso, Rita M.
2018-05-01
We present a detailed evaluation of wind energy density (WED) over Portugal, based on the EURO-CORDEX database of high-resolution regional climate model (RCM) simulations. Most RCMs showed reasonable accuracy in reproducing the observed near-surface wind speed. The climatological patterns of WED displayed large sub-regional heterogeneity, with higher values over coastal regions and steep orography. Subsequently, we investigated the future changes of WED throughout the twenty-first century, considering mid- and end-century periods, and two emission scenarios (RCP4.5 and RCP8.5). On the yearly average, the multi-model ensemble WED changes were below 10% (15%) under RCP4.5 (RCP8.5). However, the projected WED anomalies displayed strong seasonality, dominated by low positive values in summer (< 10% for both scenarios), negative values in winter and spring (up to - 10% (- 20%) under RCP4.5 (RCP8.5)), and stronger negative anomalies in autumn (up to - 25% (- 35%) under RCP4.5 (RCP8.5)). These projected WED anomalies displayed large sub-regional variability. The largest reductions (and lowest increases) are linked to the northern and central-eastern elevated terrain, and the southwestern coast. In contrast, the largest increases (and lowest reductions) are linked to the central-western orographic features of moderate elevation. The projections also showed changes in inter-annual variability of WED, with small increases for annual averages, but with distinct behavior when considering year-to-year variability over a specific season: small increases in winter, larger increases in summer, slight decrease in autumn, and no relevant change in spring. The changes in inter-annual variability also displayed strong dependence on the underlying terrain. Finally, we found significant model spread in the magnitude of projected WED anomalies and inter-annual variability, affecting even the signal of the changes.
NASA Astrophysics Data System (ADS)
Liu, Yongwen; Wang, Tao; Huang, Mengtian; Yao, Yitong; Ciais, Philippe; Piao, Shilong
2016-03-01
Terrestrial carbon fluxes are sensitive to climate change, but the interannual climate sensitivity of the land carbon cycle can also change with time. We analyzed the changes in responses of net biome production (NBP), net primary production (NPP), and heterotrophic respiration (Rh) to interannual climate variations over the 21st century in the Earth System Models (ESMs) from the Coupled Model Intercomparison Project 5. Under Representative Concentration Pathway (RCP) 4.5, interannual temperature sensitivities of NBP (γTempNBP), NPP (γTempNPP), and Rh (γTempRh) remain relatively stable at global scale, yet with large differences among ESMs and spatial heterogeneity. Modeled γTempNPP and γTempRh appear to increase in parallel in boreal regions, resulting in unchanged γTempNBP. Tropical γTempNBP decreases in most models, due to decreasing γTempNPP and relatively stable γTempRh. Across models, the changes in γTempNBP can be mainly explained by changes in γTempNPP rather than changes in γTempRh, at both global and regional scales. Interannual precipitation sensitivities of global NBP (γPrecNBP), NPP (γPrecNPP), and Rh (γPrecRh) are predicted not to change significantly, with large differences among ESMs. Across models, the changes in γPrecNBP can be mainly explained by changes in γPrecNPP rather than changes in γPrecRh in temperate regions, but not in other regions. Changes in the interannual climate sensitivities of carbon fluxes are consistent across RCPs 4.5, 6.0, and 8.5 but larger in more intensive scenarios. More effort should be considered to improve terrestrial carbon flux responses to interannual climate variability, e.g., incorporating biogeochemical processes of nutrient limitation, permafrost dynamics, and microbial decomposition.
NASA Astrophysics Data System (ADS)
Sperber, K. R.; Palmer, T. N.
1996-11-01
The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall variability was also best reproduced. However, for all regions the skill was less than that of the ECMWF model.The relationships of the all-India and Sahel rainfall/SST teleconnections with horizontal resolution, convection scheme closure, and numerics have been evaluated. Models with resolution T42 performed more poorly than lower-resolution models. The higher resolution models were predominantly spectral. At low resolution, spectral versus gridpoint numerics performed with nearly equal verisimilitude. At low resolution, moisture convergence closure was slightly more preferable than other convective closure techniques. At high resolution, the models that used moisture convergence closure performed very poorly, suggesting that moisture convergence may be problematic for models with horizontal resolution T42.
1996-2007 Interannual Spatio-Temporal Variability in Snowmelt in Two Montane Watersheds
NASA Astrophysics Data System (ADS)
Jepsen, S. M.; Molotch, N. P.; Williams, M. W.; Rittger, K. E.; Sickman, J. O.
2010-12-01
Snowmelt is a primary water resource for urban/agricultural centers and ecosystems near mountain regions. Stream chemistry from montane catchments is controlled by the flowpaths of water from snowmelt and the timing and duration of snow coverage. A process level understanding of the variability in these processes requires an understanding of the effect of changing climate and anthropogenic loading on spatio-temporal snowmelt patterns. With this as our objective, we applied a snow reconstruction model (SRM) to two well-studied montane watersheds, Tokopah Basin (TOK), California and Green Lake 4 Valley (GLV), Colorado, to examine interannual variability in the timing and location of snowmelt in response to variable climate conditions during the period from 1996 to 2007. The reconstruction model back solves for snowmelt by combining surface energy fluxes, inferred from meteorological data, with sequences of melt season snow images derived from satellite data (i.e., snowmelt depletion curves). The SRM explained 84% of the observed interannual variability in maximum watershed SWE in TOK, with errors ranging from -23 to +27% for the different years. For GLV4, the SRM explained 61% of the interannual variability, with errors ranging from -37 to +34%. In GLV4, interannual variability in snowmelt timing is a factor of four greater than the variability in streamflow timing, unlike in TOK where the ratio is nearly 1:1. We attribute this difference primarily to differences in the magnitude of the turbulent fluxes and the hydrogeology of the two study areas.
Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander
2008-04-27
The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.
Trophic status drives interannual variability in nesting numbers of marine turtles.
Broderick, A C; Godley, B J; Hays, G C
2001-07-22
Large annual fluctuations are seen in breeding numbers in many populations of non-annual breeders. We examined the interannual variation in nesting numbers of populations of green (Chelonia mydas) (n = 16 populations), loggerhead (Caretta caretta) (n = 10 populations), leatherback (Dermochelys coriacea) (n = 9 populations) and hawksbill turtles (Eretmochelys imbricata) (n = 10 populations). Interannual variation was greatest in the green turtle. When comparing green and loggerhead turtles nesting in Cyprus we found that green turtles were more likely to change the interval between laying seasons and showed greater variation in the number of clutches laid in a season. We suggest that these differences are driven by the varying trophic statuses of the different species. Green turtles are herbivorous, feeding on sea grasses and macro-algae, and this primary production will be more tightly coupled with prevailing environmental conditions than the carnivorous diet of the loggerhead turtle.
Trends in Ocean Irradiance using a Radiative Model Forced with Terra Aerosols and Clouds
NASA Technical Reports Server (NTRS)
Gregg, Watson; Casey, Nancy; Romanou, Anastasia
2010-01-01
Aerosol and cloud information from MODIS on Terra provide enhanced capability to understand surface irradiance over the oceans and its variability. These relationships can be important for ocean biology and carbon cycles. An established radiative transfer model, the Ocean-Atmosphere Spectral Irradiance Model (OASIM) is used to describe ocean irradiance variability on seasonal to decadal time scales. The model is forced with information on aerosols and clouds from the MODIS sensor on Terra and Aqua. A 7-year record (2000-2006) showed no trends in global ocean surface irradiance or photosynthetic available irradiance (PAR). There were significant (P<0.05) negative trends in the Mediterranean Sea, tropical Pacific) and tropical Indian Oceans, of -7.0, -5.0 and -2.7 W/sq m respectively. Global interannual variability was also modest. Regional interannual variability was quite large in some ocean basins, where monthly excursions from climatology were often >20 W/sq m. The trends using MODIS data contrast with results from OASIM using liquid water path estimates from the International Satellite Cloud Climatology Project (ISCCP). Here, a global trend of -2 W/sq m was observed, largely dues to a large negative trend in the Antarctic -12 W/sq m. These results suggest the importance of the choice of liquid water path data sets in assessments of medium-length trends in ocean surface irradiance. The choices also impact the evaluation of changes in ocean biogeochemistry.
Spatial and temporal variability of interhemispheric transport times
NASA Astrophysics Data System (ADS)
Wu, Xiaokang; Yang, Huang; Waugh, Darryn W.; Orbe, Clara; Tilmes, Simone; Lamarque, Jean-Francois
2018-05-01
The seasonal and interannual variability of transport times from the northern midlatitude surface into the Southern Hemisphere is examined using simulations of three idealized age
tracers: an ideal age tracer that yields the mean transit time from northern midlatitudes and two tracers with uniform 50- and 5-day decay. For all tracers the largest seasonal and interannual variability occurs near the surface within the tropics and is generally closely coupled to movement of the Intertropical Convergence Zone (ITCZ). There are, however, notable differences in variability between the different tracers. The largest seasonal and interannual variability in the mean age is generally confined to latitudes spanning the ITCZ, with very weak variability in the southern extratropics. In contrast, for tracers subject to spatially uniform exponential loss the peak variability tends to be south of the ITCZ, and there is a smaller contrast between tropical and extratropical variability. These differences in variability occur because the distribution of transit times from northern midlatitudes is very broad and tracers with more rapid loss are more sensitive to changes in fast transit times than the mean age tracer. These simulations suggest that the seasonal-interannual variability in the southern extratropics of trace gases with predominantly NH midlatitude sources may differ depending on the gases' chemical lifetimes.
Interannual variations of tropical convection impact atmospheric circulation and influence year-to-year variations of the transport of trace constituents in the troposphere. This study examines how two modes of convective variability-anomalous intensification and meridional disp...
Underestimated interannual variability of East Asian summer rainfall under climate change
NASA Astrophysics Data System (ADS)
Ren, Yongjian; Song, Lianchun; Xiao, Ying; Du, Liangmin
2018-02-01
This study evaluates the performance of climate models in simulating the climatological mean and interannual variability of East Asian summer rainfall (EASR) using Coupled Model Intercomparison Project Phase 5 (CMIP5). Compared to the observation, the interannual variability of EASR during 1979-2005 is underestimated by the CMIP5 with a range of 0.86 16.08%. Based on bias correction of CMIP5 simulations with historical data, the reliability of future projections will be enhanced. The corrected EASR under representative concentration pathways (RCPs) 4.5 and 8.5 increases by 5.6 and 7.5% during 2081-2100 relative to the baseline of 1986-2005, respectively. After correction, the areas with both negative and positive anomalies decrease, which are mainly located in the South China Sea and central China, and southern China and west of the Philippines, separately. In comparison to the baseline, the interannual variability of EASR increases by 20.8% under RCP4.5 but 26.2% under RCP8.5 in 2006-2100, which is underestimated by 10.7 and 11.1% under both RCPs in the original CMIP5 simulation. Compared with the mean precipitation, the interannual variability of EASR is notably larger under global warming. Thus, the probabilities of floods and droughts may increase in the future.
NASA Astrophysics Data System (ADS)
Capet, A.; Beckers, J.-M.; Grégoire, M.
2012-12-01
The Black Sea north-western shelf (NWS) is a~shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3-D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14 500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N, C) and climate (T, D) predictors explain a similar amount of variability (~35%) when considered separately. A typical timescale of 9.3 yr is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.
Hays, G C
2000-09-21
Sea turtles nest on sandy beaches and tend to show high fidelity to specific nesting areas, but, despite this fidelity, the inter-annual variation in nesting numbers may be large. This variation may reflect the fact that turtles do not usually nest in consecutive years. Here, theoretical models are developed in which the interval between successive nesting years (the remigration interval) reflects conditions encountered on the feeding grounds, with good feeding years leading to a reduction in the remigration interval and vice versa. These simple models produce high levels of inter-annual variation in nesting numbers with, on occasion, almost no turtles nesting in some years even when the population is large and stable. The implications for assessing the size of sea turtle populations are considered. Copyright 2000 Academic Press.
NASA Astrophysics Data System (ADS)
Zhou, Z. Q.; Xie, S. P.; Zhou, W.
2016-12-01
Atmosphere general circulation model (AGCM), forced with specified SST, has been widely used in climate studies. On one hand, AGCM is much faster to run compared to coupled general circulation model (CGCM). Also, the identical SST forcing allows a clean evaluation of the atmospheric component of CGCM. On the other hand, the coupling between atmosphere and ocean is missed in such atmosphere-only simulations. It is not clear how such simplification could affect the simulate of the atmosphere. In this study, the impact of ocean-atmosphere coupling is studied by comparing a CGCM simulation with an AGCM simulation which is forced with monthly SSTs specified from the CGCM simulation. Particularly, we focus on the climatology and interannual variability of rainfall over the IONWP during boreal summer. The IONWP is a unique region with a strong negative correlation between sea surface temperature (SST) and rainfall during boreal summer on the interannual time scale. The lead/lag correlation analysis suggests a negative feedback of rainfall on SST, which is only reasonably captured by CGCMs. We find that the lack of the negative feedback in AGCM not only enhances the climatology and interannual variability of rainfall but also increases the internal variability of rainfall over the IONWP. A simple mechanism is proposed to explain such enhancement. In addition, AGCM is able to capture the large-scale rainfall pattern over the IONWP during boreal summer, this is because that rainfall here is caused by remote ENSO effect on the interannual time scale. Our results herein suggest that people should be more careful when using an AGCM for climate change studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Zhang, Yaocun; Qian, Yun
In this study, we apply an efficient sampling approach and conduct a large number of simulations to explore the sensitivity of the simulated Asian summer monsoon (ASM) precipitation, including the climatological state and interannual variability, to eight parameters related to the cloud and precipitation processes in the Beijing Climate Center AGCM version 2.1 (BCC_AGCM2.1). Our results show that BCC_AGCM2.1 has large biases in simulating the ASM precipitation. The precipitation efficiency and evaporation coefficient for deep convection are the most sensitive parameters in simulating the ASM precipitation. With optimal parameter values, the simulated precipitation climatology could be remarkably improved, e.g. increasedmore » precipitation over the equator Indian Ocean, suppressed precipitation over the Philippine Sea, and more realistic Meiyu distribution over Eastern China. The ASM precipitation interannual variability is further analyzed, with a focus on the ENSO impacts. It shows the simulations with better ASM precipitation climatology can also produce more realistic precipitation anomalies during El Niño decaying summer. In the low-skill experiments for precipitation climatology, the ENSO-induced precipitation anomalies are most significant over continents (vs. over ocean in observation) in the South Asian monsoon region. More realistic results are derived from the higher-skill experiments with stronger anomalies over the Indian Ocean and weaker anomalies over India and the western Pacific, favoring more evident easterly anomalies forced by the tropical Indian Ocean warming and stronger Indian Ocean-western Pacific tele-connection as observed. Our model results reveal a strong connection between the simulated ASM precipitation climatological state and interannual variability in BCC_AGCM2.1 when key parameters are perturbed.« less
Effect of interannual climate variability on carbon storage in Amazonian ecosystems
Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.
1998-01-01
The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.
Stauffer, Beth A.; Miksis-Olds, Jennifer; Goes, Joaquim I.
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009–2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios. PMID:26110822
Investigating the Interannual Variability of the Circulation and Water Mass Formation in the Red Sea
NASA Astrophysics Data System (ADS)
Sofianos, S. S.; Papadopoulos, V. P.; Denaxa, D.; Abualnaja, Y.
2014-12-01
The interannual variability of the circulation and water mass formation in the Red Sea is investigated with the use of a numerical model and the combination of satellite and in-situ observations. The response of Red Sea to the large-scale variability of atmospheric forcing is studied through a 30-years simulation experiment, using MICOM model. The modeling results demonstrate significant trends and variability that are mainly located in the central and northern parts of the basin. On the other hand, the exchange pattern between the Red Sea and the Indian Ocean at the strait of Bab el Mandeb presents very weak interannual variability. The results verify the regularity of the water mass formation processes in the northern Red Sea but also show significant variability of the circulation and thermohaline conditions in the areas of formation. Enhanced water mass formation conditions are observed during specific years of the simulation (approximately five years apart). Analysis of recent warm and cold events in the northernmost part of the basin, based on a combination of atmospheric reanalysis results and oceanic satellite and in-situ observations, shows the importance of the cyclonic gyre that is prevailing in this part of the basin. This gyre can effectively influence the sea surface temperature (SST) and intensify or mitigate the winter effect of the atmospheric forcing. Upwelling induced by persistent periods of the gyre functioning drops the SST over the northernmost part of the Red Sea and can produce colder than normal winter SST even without extreme atmospheric forcing. These mechanisms are crucial for the formation of intermediate and deep water masses in the Red Sea and the strength of the subsequent thermohaline cells.
Stauffer, Beth A; Miksis-Olds, Jennifer; Goes, Joaquim I
2015-01-01
Variability of hydrographic conditions and primary and secondary productivity between cold and warm climatic regimes in the Bering Sea has been the subject of much study in recent years, while interannual variability within a single regime and across multiple trophic levels has been less well-documented. Measurements from an instrumented mooring on the southeastern shelf of the Bering Sea were analyzed for the spring-to-summer transitions within the cold regime years of 2009-2012 to investigate the interannual variability of hydrographic conditions, primary producer biomass, and acoustically-derived secondary producer and consumer abundance and community structure. Hydrographic conditions in 2012 were significantly different than in 2009, 2010, and 2011, driven largely by increased ice extent and thickness, later ice retreat, and earlier stratification of the water column. Primary producer biomass was more tightly coupled to hydrographic conditions in 2012 than in 2009 or 2011, and shallow and mid-column phytoplankton blooms tended to occur independent of one another. There was a high degree of variability in the relationships between different classes of secondary producers and hydrographic conditions, evidence of significant intra-consumer interactions, and trade-offs between different consumer size classes in each year. Phytoplankton blooms stimulated different populations of secondary producers in each year, and summer consumer populations appeared to determine dominant populations in the subsequent spring. Overall, primary producers and secondary producers were more tightly coupled to each other and to hydrographic conditions in the coldest year compared to the warmer years. The highly variable nature of the interactions between the atmospherically-driven hydrographic environment, primary and secondary producers, and within food webs underscores the need to revisit how climatic regimes within the Bering Sea are defined and predicted to function given changing climate scenarios.
Projected Changes in Mean and Interannual Variability of Surface Water over Continental China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Tang, Qiuhong; Huang, Maoyi
Five General Circulation Model (GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity (VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). Results showed much larger fractional changes of annual mean Evaportranspiration (ET) per unit warming than the corresponding fractional changes of Precipitation (P) per unit warming across the country especially for South China,more » which led to notable decrease of surface water variability (P-E). Specifically, negative trends for annual mean runoff up to -0.33%/decade and soil moisture trends varying between -0.02 to -0.13%/decade were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 38 0.41%/decade and 0.90%/decade, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks (e.g. floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with steady increase of interannual variability throughout the 21st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide muti-scale guidance for assessing effective adaptation strategies for the country on a river basin, regional, or as whole.« less
The Potential for Predicting Precipitation on Seasonal-to-Interannual Timescales
NASA Technical Reports Server (NTRS)
Koster, R. D.
1999-01-01
The ability to predict precipitation several months in advance would have a significant impact on water resource management. This talk provides an overview of a project aimed at developing this prediction capability. NASA's Seasonal-to-Interannual Prediction Project (NSIPP) will generate seasonal-to-interannual sea surface temperature predictions through detailed ocean circulation modeling and will then translate these SST forecasts into forecasts of continental precipitation through the application of an atmospheric general circulation model and a "SVAT"-type land surface model. As part of the process, ocean variables (e.g., height) and land variables (e.g., soil moisture) will be updated regularly via data assimilation. The overview will include a discussion of the variability inherent in such a modeling system and will provide some quantitative estimates of the absolute upper limits of seasonal-to-interannual precipitation predictability.
Examination of snowmelt over Western Himalayas using remote sensing data
NASA Astrophysics Data System (ADS)
Tiwari, Sarita; Kar, Sarat C.; Bhatla, R.
2016-07-01
Snowmelt variability in the Western Himalayas has been examined using remotely sensed snow water equivalent (SWE) and snow-covered area (SCA) datasets. It is seen that climatological snowfall and snowmelt amount varies in the Himalayan region from west to east and from month to month. Maximum snowmelt occurs at the elevation zone between 4500 and 5000 m. As the spring and summer approach and snowmelt begins, a large amount of snow melts in May. Strength and weaknesses of temperature-based snowmelt models have been analyzed for this region by computing the snowmelt factor or the degree-day factor (DDF). It is seen that average DDF in the Himalayas is more in April and less in July. During spring and summer months, melting rate is higher in the areas that have height above 2500 m. The region that lies between 4500 and 5000 m elevation zones contributes toward more snowmelt with higher melting rate. Snowmelt models have been developed to estimate interannual variations of monthly snowmelt amount using the DDF, observed SWE, and surface air temperature from reanalysis datasets. In order to further improve the estimate snowmelt, regression between observed and modeled snowmelt has been carried out and revised DDF values have been computed. It is found that both the models do not capture the interannual variability of snowmelt in April. The skill of the model is moderate in May and June, but the skill is relatively better in July. In order to explain this skill, interannual variability (IAV) of surface air temperature has been examined. Compared to July, in April, the IAV of temperature is large indicating that a climatological value of DDF is not sufficient to explain the snowmelt rate in April. Snow area and snow amount depletion curves over Himalayas indicate that in a small area at high altitude, snow is still observed with large SWE whereas over most of the region, all the snow has melted.
How important is interannual variability in the climatic interpretation of moraine sequences?
NASA Astrophysics Data System (ADS)
Leonard, E. M.; Laabs, B. J. C.; Plummer, M. A.
2017-12-01
Mountain glaciers respond to both long-term climate and interannual forcing. Anderson et al. (2014) pointed out that kilometer-scale fluctuations in glacier length may result from interannual variability in temperature and precipitation given a "steady" climate with no long-term trends in mean or variability of temperature and precipitation. They cautioned that use of outermost moraines from the Last Glacial Maximum (LGM) as indicators of LGM climate will, because of the role of interannual forcing, result in overestimation of the magnitude of long-term temperature depression and/or precipitation enhancement. Here we assess the implications of these ideas, by examining the effect of interannual variability on glacier length and inferred magnitude of LGM climate change from present under both an assumed steady LGM climate and an LGM climate with low-magnitude, long-period variation in summer temperature and annual precipitation. We employ both the original 1-stage linear glacier model (Roe and O'Neal, 2009) used by Anderson et al. (2014) and a newer 3-stage linear model (Roe and Baker, 2014). We apply the models to two reconstructed LGM glaciers in the Colorado Sangre de Cristo Mountains. Three-stage-model results indicate that, absent long-term variations through a 7500-year-long LGM, interannual variability would result in overestimation of mean LGM temperature depression from the outermost moraine of 0.2-0.6°C. If small long-term cyclic variations of temperature (±0.5°C) and precipitation (±5%) are introduced, the overestimation of LGM temperature depression reduces to less than 0.4°C, and if slightly greater long-term variation (±1.0°C and ±10% precipitation) is introduced, the magnitude of overestimation is 0.3°C or less. Interannual variability may produce a moraine sequence that differs from the sequence that would be expected were glacier length forced only by long-term climate. With small amplitude (±0.5°C and ±5% precipitation) long-term variation, the moraine sequence expected if forced by a combination of interannual variability and long-term climate differs from that expected based on long-term climate forcing alone in 38% of model runs. With the larger amplitude long-term forcing (±1.0°C and ±10% precipitation) this difference occurs in 20% of model runs.
Interannual variability of ammonia concentrations over the United States: sources and implications
NASA Astrophysics Data System (ADS)
Schiferl, Luke D.; Heald, Colette L.; Van Damme, Martin; Clarisse, Lieven; Clerbaux, Cathy; Coheur, Pierre-François; Nowak, John B.; Neuman, J. Andrew; Herndon, Scott C.; Roscioli, Joseph R.; Eilerman, Scott J.
2016-09-01
The variability of atmospheric ammonia (NH3), emitted largely from agricultural sources, is an important factor when considering how inorganic fine particulate matter (PM2.5) concentrations and nitrogen cycling are changing over the United States. This study combines new observations of ammonia concentration from the surface, aboard aircraft, and retrieved by satellite to both evaluate the simulation of ammonia in a chemical transport model (GEOS-Chem) and identify which processes control the variability of these concentrations over a 5-year period (2008-2012). We find that the model generally underrepresents the ammonia concentration near large source regions (by 26 % at surface sites) and fails to reproduce the extent of interannual variability observed at the surface during the summer (JJA). Variability in the base simulation surface ammonia concentration is dominated by meteorology (64 %) as compared to reductions in SO2 and NOx emissions imposed by regulation (32 %) over this period. Introduction of year-to-year varying ammonia emissions based on animal population, fertilizer application, and meteorologically driven volatilization does not substantially improve the model comparison with observed ammonia concentrations, and these ammonia emissions changes have little effect on the simulated ammonia concentration variability compared to those caused by the variability of meteorology and acid-precursor emissions. There is also little effect on the PM2.5 concentration due to ammonia emissions variability in the summer when gas-phase changes are favored, but variability in wintertime emissions, as well as in early spring and late fall, will have a larger impact on PM2.5 formation. This work highlights the need for continued improvement in both satellite-based and in situ ammonia measurements to better constrain the magnitude and impacts of spatial and temporal variability in ammonia concentrations.
Understanding recent eastern Horn of Africa rainfall variability and change
Liebmann, Brant; Hoerling, Martin P.; Funk, Christopher C.; Blade, Ileana; Dole, Randall M.; Allured, Dave; Quan, Xiaowei; Eischeid, Jon K.
2014-01-01
The recent upward trend in the October–December wet season is rather weak, however, and its statistical significance is compromised by strong year-to-year fluctuations. October–December eastern Horn rain variability is strongly associated with El Niño–Southern Oscillation and Indian Ocean dipole phenomena on interannual scales, in both model and observations. The interannual October–December correlation between the ensemble-average and observed Horn rainfall 0.87. By comparison, interannual March–May Horn precipitation is only weakly constrained by SST anomalies.
The frequency response of a coupled ice sheet-ice shelf-ocean system to climate forcing variability
NASA Astrophysics Data System (ADS)
Goldberg, D.; Snow, K.; Jordan, J. R.; Holland, P.; Arthern, R. J.
2017-12-01
Changes at the West Antarctic ice-ocean boundary in recent decades has triggered significant increases in the regions contribution to global sea-level rise, coincident with large scale, and in some cases potentially unstable, grounding line retreat. Much of the induced change is thought to be driven by fluctuations in the oceanic heat available at the ice-ocean boundary, transported on-shelf via warm Circumpolar Deep Water (CDW). However, the processes in which ocean heat drives ice-sheet loss remains poorly understood, with observational studies routinely hindered by the extreme environment notorious to the Antarctic region. In this study we apply a novel synchronous coupled ice-ocean model, developed within the MITgcm, and are thus able to provide detailed insight into the impacts of short time scale (interannual to decadal) climate variability and feedbacks within the ice-ocean system. Feedbacks and response are assessed in an idealised ice-sheet/ocean-cavity configuration in which the far field ocean condition is adjusted to emulate periodic climate variability patterns. We reveal a non-linear response of the ice-sheet to periodic variations in thermocline depth. These non-linearities illustrate the heightened sensitivity of fast flowing ice-shelves to periodic perturbations in heat fluxes occurring at interannual and decadal time scales. The results thus highlight how small perturbations in variable climate forcing, like that of ENSO, may trigger large changes in ice-sheet response.
NASA Astrophysics Data System (ADS)
Dassié, Emilie P.; Hasson, Audrey; Khodri, Myriam; Linsley, Braddock K.
2017-04-01
The South Pacific Convergence Zone (SPCZ) is a major atmospheric feature of the southern hemisphere. It is a low atmospheric convergence band associated with intense precipitations. Its position and intensity responds to global changes but also modulates regional weather patterns. Interannual to long-term SPCZ modifications result in extreme events such as severe droughts or flooding with profound socio-economic consequences. The SPCZ oceanic counterpart is a large body of fresh water (SSS<34.5 pss) extending southeast from the Maritime Continent to the dateline. This freshpool is separated from the high-salinity waters of the South Pacific gyre to the west by a steep salinity front. Various studies have shown a freshening of the freshpool and its south-eastward expansion since the 1970s, modulated by interannual to interdecadal variability (Cravatte et al., 2009). The scarcity of traditional SSS measurements limits our ability to describe accurately this variability. This study validates the use of coral d18O as a proxy for the reconstruction of SSS over the last 200 years. Derived SSS is validated against insitu data at 3 different locations along the SSS front (Fiji, Tonga and Rarotonga Islands). This new dataset enables us to investigate the spatio-temporal variations of the SSS front prior to the instrumental data. Two robust modes of variability are present in the reconstructed SSS datasets: interannual variability and a secular trend. The reconstructed SSS variability follows El Niño Southern Oscillation index. The three sites present secular trends toward fresher conditions, but do not present similar variability, neither in timing nor strength over their total length. Furthermore, the role of atmospheric freshwater fluxes on SSS variability is evaluated by comparing reconstructed SSS to available historical rain gauge data. Results highlight the role of both atmospheric freshwater fluxes and ocean dynamics on SSS variability.
Interannual to Decadal Variability of Ocean Evaporation as Viewed from Climate Reanalyses
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Bosilovich, Michael G.; Roberts, Jason B.; Wang, Hailan
2015-01-01
Questions we'll address: Given the uncoupled framework of "AMIP" (Atmosphere Model Inter-comparison Project) experiments, what can they tell us regarding evaporation variability? Do Reduced Observations Reanalyses (RedObs) using Surface Fluxes and Clouds (SFC) pressure (and wind) provide a more realistic picture of evaporation variability? What signals of interannual variability (e.g. El Nino/Southern Oscillation (ENSO)) and decadal variability (Interdecadal Pacific Oscillation (IPO)) are detectable with this hierarchy of evaporation estimates?
NASA Astrophysics Data System (ADS)
Yoon, J.; Zeng, N.; Mariotti, A.; Swenson, S.
2007-12-01
In an approach termed the P-E-R (or simply PER) method, we apply the basin water budget equation to diagnose the long-term variability of the total terrestrial water storage (TWS). The key input variables are observed precipitation (P) and runoff (R), and estimated evaporation (E). Unlike typical offline land-surface model estimate where only atmospheric variables are used as input, the direct use of observed runoff in the PER method imposes an important constraint on the diagnosed TWS. Although there lack basin-scale observations of evaporation, the tendency of E to have significantly less variability than the difference between precipitation and runoff (P-R) minimizes the uncertainties originating from estimated evaporation. Compared to the more traditional method using atmospheric moisture convergence (MC) minus R (MCR method), the use of observed precipitation in PER method is expected to lead to general improvement, especially in regions atmospheric radiosonde data are too sparse to constrain the atmospheric model analyzed MC such as in the remote tropics. TWS was diagnosed using the PER method for the Amazon (1970-2006) and the Mississippi Basin (1928-2006), and compared with MCR method, land-surface model and reanalyses, and NASA's GRACE satellite gravity data. The seasonal cycle of diagnosed TWS over the Amazon is about 300 mm. The interannual TWS variability in these two basins are 100-200 mm, but multi-dacadal changes can be as large as 600-800 mm. Major droughts such as the Dust Bowl period had large impact with water storage depleted by 500 mm over a decade. Within the short period 2003-2006 when GRACE data was available, PER and GRACE show good agreement both for seasonal cycle and interannual variability, providing potential to cross-validate each other. In contrast, land-surface model results are significantly smaller than PER and GRACE, especially towards longer timescales. While we currently lack independent means to verify these long-term changes, simple error analysis using 3 precipitation datasets and 3 evaporation estimates suggest that the multi-decadal amplitude can be uncertain up to a factor of 2, while the agreement is high on interannual timescales. The large TWS variability implies the remarkable capacity of land-surface in storing and taking up water that may be under-represented in models. The results also suggest the existence of water storage memories on multi-year time scales, significantly longer than typically assumed seasonal timescales associated with surface soil moisture.
The CH2O column as a possible constraint on methane oxidation
NASA Astrophysics Data System (ADS)
Valin, L. C.; Fiore, A. M.; Lin, M.
2013-12-01
We explore the potential for space-based measurements of the CH2O column to quantify variations of methane oxidation in the remote atmosphere due to changes in climate (e.g., T, H2O, stratospheric O3) and atmospheric composition (e.g., NOxO, O3, CO, CH4). We investigate the variability of methane oxidation and the formaldehyde column using available global simulations (MOZART-2 chemistry-transport model, GFDL AM3 climate-chemistry model). Over a large region (135° - 175° W; 0° - 16° S), the rate of methane oxidation simulated in the models varies intraseasonally (×10%), seasonally (×20%) and interannually (×5%), and is well correlated with the simulated variability of the CH2O column (R2 = 0.75; ~1x1015 molecules cm-2). The precision of a single space-based measurement is approximately 1×1016 molecules cm-2, an order of magnitude larger than the simulated variability of the CH2O column. However, in a large region such as the tropical Pacific, UV/Vis spectrometers are capable of making thousands of measurements daily, enough sampling to theoretically increase the precision by √N, such that variations on the order of 1×1015 molecules cm-2 should be observable on intraseasonal and interannual timescales.
NASA Technical Reports Server (NTRS)
Watson, Gregg W.
2000-01-01
The Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) has observed 2.5 years of routine global chlorophyll observations from space. The mission was launched into a record El Nino event, which eventually gave way to one of the most intensive and longest-lasting La Nina events ever recorded. The SeaWiFS chlorophyll record captured the response of ocean phytoplankton to these significant events in the tropical Indo-Pacific basins, but also indicated significant interannual variability unrelated to the El Nino/La Nina events. This included large variability in the North Atlantic and Pacific basins, in the North Central and equatorial Atlantic, and milder patterns in the North Central Pacific. This SeaWiFS record was tracked with a coupled physical/biogeochemical/radiative model of the global oceans using near-real-time forcing data such as wind stresses, sea surface temperatures, and sea ice. This provided an opportunity to offer physically and biogeochemically meaningful explanations of the variability observed in the SeaWiFS data set, since the causal mechanisms and interrelationships of the model are completely understood. The coupled model was able to represent the seasonal distributions of chlorophyll during the SeaWiFS era, and was capable of differentiating among the widely different processes and dynamics occurring in the global oceans. The model was also reasonably successful in representing the interannual signal, especially when it was large, such as, the El Nino and La Nina events in the tropical Pacific and Indian Oceans. The model provided different phytoplankton group responses for the different events in these regions: diatoms were predominant in the tropical Pacific during the La Nina but other groups were predominant during El Nino. The opposite condition occurred in the tropical Indian Ocean. Both situations were due to the different responses of the basins to El Nino. The interannual variability in the North Atlantic, which was exhibited in SeaWiFS data as a decline in the spring/summer bloom in 1999 relative to 1998, resulted in the model from a more slowly shoaling mixed layer, allowing herbivore populations to keep pace with increasing phytoplankton populations. However, several aspects of the interannual cycle were not well-represented by the model. Explanations ranged from inherent model deficiencies, to monthly averaging of forcing fields, to biases in SeaWiFS atmospheric correction procedures.
Explaining and forecasting interannual variability in the flow of the Nile River
NASA Astrophysics Data System (ADS)
Siam, M. S.; Eltahir, E. A. B.
2014-05-01
The natural interannual variability in the flow of Nile River had a significant impact on the ancient civilizations and cultures that flourished on the banks of the river. This is evident from stories in the Bible and Koran, and from the numerous Nilometers discovered near ancient temples. Here, we analyze extensive data sets collected during the 20th century and define four modes of natural variability in the flow of Nile River, identifying a new significant potential for improving predictability of floods and droughts. Previous studies have identified a significant teleconnection between the Nile flow and the Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) explains about 25% of the interannual variability in the Nile flow. Here, we identify, for the first time, a region in the southern Indian Ocean with similarly strong teleconnection to the Nile flow. Sea Surface Temperature (SST) in the region (50-80° E and 25-35° S) explains 28% of the interannual variability in the Nile flow. During those years with anomalous SST conditions in both Oceans, we estimate that indices of the SSTs in the Pacific and Indian Oceans can collectively explain up to 84% of the interannual variability in the flow of Nile. Building on these findings, we use classical Bayesian theorem to develop a new hybrid forecasting algorithm that predicts the Nile flow based on global models predictions of indices of the SST in the Eastern Pacific and Southern Indian Oceans.
Ascoli, Davide; Vacchiano, Giorgio; Turco, Marco; Conedera, Marco; Drobyshev, Igor; Maringer, Janet; Motta, Renzo; Hacket-Pain, Andrew
2017-12-20
Climate teleconnections drive highly variable and synchronous seed production (masting) over large scales. Disentangling the effect of high-frequency (inter-annual variation) from low-frequency (decadal trends) components of climate oscillations will improve our understanding of masting as an ecosystem process. Using century-long observations on masting (the MASTREE database) and data on the Northern Atlantic Oscillation (NAO), we show that in the last 60 years both high-frequency summer and spring NAO, and low-frequency winter NAO components are highly correlated to continent-wide masting in European beech and Norway spruce. Relationships are weaker (non-stationary) in the early twentieth century. This finding improves our understanding on how climate variation affects large-scale synchronization of tree masting. Moreover, it supports the connection between proximate and ultimate causes of masting: indeed, large-scale features of atmospheric circulation coherently drive cues and resources for masting, as well as its evolutionary drivers, such as pollination efficiency, abundance of seed dispersers, and natural disturbance regimes.
NASA Astrophysics Data System (ADS)
Hasson, A. E. A.; Dassie, E. P.; Khodri, M.; Linsley, B. K.
2016-12-01
The South Pacific Convergence Zone (SPCZ) is a major atmospheric feature of the southern hemisphere. It is a low atmospheric convergence band associated with intense precipitations. Its position and intensity responds to global changes but also modulates regional weather patterns. Interannual to long-term SPCZ modifications result in extreme events such as severe droughts or flooding with profound socio-economic consequences. The SPCZ oceanic counterpart is a large body of fresh water (SSS<34.5 pss) extending southeast from the Maritime Continent to the dateline. This freshpool is separated from the high-salinity waters of the South Pacific gyre to the west by a steep salinity front. Various studies have shown a freshening of the freshpool and its southeastward expansion since the 1950s, modulated by interannual to interdecadal variability (Cravatte et al., 2009). The scarcity of traditional SSS measurements limits our ability to describe accurately this variability. This study validates the use of coral d18O as a proxy for the reconstruction of SSS over the last 200 years. Derived SSS is validated against insitu data at 3 different locations along the SSS front (Fiji, Tonga and Rarotonga Islands). This new dataset enables us to investigate the spatio-temporal variations of the SSS front prior to the instrumental data. Two robust modes of variability are present in the reconstructed SSS datasets: interannual variability and a secular trend. The reconstructed SSS variability follows the major El Niño Southern Oscillation indices. The relative SSS anomalies at each site provide information on the possible strength of the captured El Niño events. The three sites present secular trends toward fresher conditions. Furthermore, the role of atmospheric freshwater fluxes on SSS variability is evaluated by comparing reconstructed SSS to available historical rain gauge data. Results highlight the role of both atmospheric freshwater fluxes and ocean dynamics on SSS variability.
van de Pol, Martijn; Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar; Ens, Bruno J.; Oosterbeek, Kees; Tinbergen, Joost M.
2011-01-01
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms—which probably act in many species—can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought. PMID:21561978
Variability of Extreme Precipitation Events in Tijuana, Mexico During ENSO Years
NASA Astrophysics Data System (ADS)
Cavazos, T.; Rivas, D.
2007-05-01
We present the variability of daily precipitation extremes (top 10 percecnt) in Tijuana, Mexico during 1950-2000. Interannual rainfall variability is significantly modulated by El Nino/Southern Oscillation. The interannual precipitation variability exhibits a large change with a relatively wet period and more variability during 1976- 2000. The wettest years and the largest frequency of daily extremes occurred after 1976-1977, with 6 out of 8 wet years characterized by El Nino episodes and 2 by neutral conditions. However, more than half of the daily extremes during 1950-2000 occurred in non-ENSO years, evidencing that neutral conditions also contribute significantly to extreme climatic variability in the region. Extreme events that occur in neutral (strong El Nino) conditions are associated with a pineapple express and a neutral PNA (negative TNH) teleconnection pattern that links an anomalous tropical convective forcing west (east) of the date line with a strong subtropical jet over the study area. At regional scale, both types of extremes are characterized by a trough in the subtropical jet over California/Baja California, which is further intensified by thermal interaction with an anomalous warm California Current off Baja California, low-level moisture advection from the subtropical warm sea-surface region, intense convective activity over the study area and extreme rainfall from southern California to Baja California.
NASA Technical Reports Server (NTRS)
Han, Rongqing; Wang, Hui; Hu, Zeng-Zhen; Kumar, Arun; Li, Weijing; Long, Lindsey N.; Schemm, Jae-Kyung E.; Peng, Peitao; Wang, Wanqiu; Si, Dong;
2016-01-01
An assessment of simulations of the interannual variability of tropical cyclones (TCs) over the western North Pacific (WNP) and its association with El Niño-Southern Oscillation (ENSO), as well as a subsequent diagnosis for possible causes of model biases generated from simulated large-scale climate conditions, are documented in the paper. The model experiments are carried out by the Hurricane Work Group under the U.S. Climate Variability and Predictability Research Program (CLIVAR) using five global climate models (GCMs) with a total of 16 ensemble members forced by the observed sea surface temperature and spanning the 28-yr period from 1982 to 2009. The results show GISS and GFDL model ensemble means best simulate the interannual variability of TCs, and the multimodel ensemble mean (MME) follows. Also, the MME has the closest climate mean annual number of WNP TCs and the smallest root-mean-square error to the observation. Most GCMs can simulate the interannual variability of WNP TCs well, with stronger TC activities during two types of El Niño-namely, eastern Pacific (EP) and central Pacific (CP) El Niño-and weaker activity during La Niña. However, none of the models capture the differences in TC activity between EP and CP El Niño as are shown in observations. The inability of models to distinguish the differences in TC activities between the two types of El Niño events may be due to the bias of the models in response to the shift of tropical heating associated with CP El Niño.
Dissolved organic carbon and its potential predictors in eutrophic lakes.
Toming, Kaire; Kutser, Tiit; Tuvikene, Lea; Viik, Malle; Nõges, Tiina
2016-10-01
Understanding of the true role of lakes in the global carbon cycle requires reliable estimates of dissolved organic carbon (DOC) and there is a strong need to develop remote sensing methods for mapping lake carbon content at larger regional and global scales. Part of DOC is optically inactive. Therefore, lake DOC content cannot be mapped directly. The objectives of the current study were to estimate the relationships of DOC and other water and environmental variables in order to find the best proxy for remote sensing mapping of lake DOC. The Boosted Regression Trees approach was used to clarify in which relative proportions different water and environmental variables determine DOC. In a studied large and shallow eutrophic lake the concentrations of DOC and coloured dissolved organic matter (CDOM) were rather high while the seasonal and interannual variability of DOC concentrations was small. The relationships between DOC and other water and environmental variables varied seasonally and interannually and it was challenging to find proxies for describing seasonal cycle of DOC. Chlorophyll a (Chl a), total suspended matter and Secchi depth were correlated with DOC and therefore are possible proxies for remote sensing of seasonal changes of DOC in ice free period, while for long term interannual changes transparency-related variables are relevant as DOC proxies. CDOM did not appear to be a good predictor of the seasonality of DOC concentration in Lake Võrtsjärv since the CDOM-DOC coupling varied seasonally. However, combining the data from Võrtsjärv with the published data from six other eutrophic lakes in the world showed that CDOM was the most powerful predictor of DOC and can be used in remote sensing of DOC concentrations in eutrophic lakes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Gerkema, Theo; Duran-Matute, Matias
2017-12-01
The relationship between the annual wind records from a weather station and annual mean sea level in an inter-tidal basin, the Dutch Wadden Sea, is examined. Recent, homogeneous wind records are used, covering the past 2 decades. It is demonstrated that even such a relatively short record is sufficient for finding a convincing relationship. The interannual variability of mean sea level is largely explained by the west-east component of the net wind energy, with some further improvement if one also includes the south-north component and the annual mean atmospheric pressure. Using measured data from a weather station is found to give a slight improvement over reanalysis data, but for both the correlation between annual mean sea level and wind energy in the west-east direction is high. For different tide gauge stations in the Dutch Wadden Sea and along the coast, we find the same qualitative characteristics, but even within this small region, different locations show a different sensitivity of annual mean sea level to wind direction. Correcting observed values of annual mean level for meteorological factors reduces the margin of error (expressed as 95 % confidence interval) by more than a factor of 4 in the trends of the 20-year sea level record. Supplementary data from a numerical hydrodynamical model are used to illustrate the regional variability in annual mean sea level and its interannual variability at a high spatial resolution. This study implies that climatic changes in the strength of winds from a specific direction may affect local annual mean sea level quite significantly.
Tropospheric Ozone and Biomass Burning
NASA Astrophysics Data System (ADS)
Chandra, S.; Ziemke, J. R.; Bhartia, P. K.
2001-05-01
This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (AI) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Niño-induced dry condition. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the dateline. The net increase in TCO integrated over the tropical region between 15N and 15S was about 6-8 Tg (terragram) over the mean climatological value of about 72 Tg. This increase is within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasi-biennial oscillations.
Tropospheric Ozone and Biomass Burning
NASA Technical Reports Server (NTRS)
Chandra, Sushil; Ziemke, J. R.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)
2001-01-01
This paper studies the significance of pyrogenic (e.g., biomass burning) emissions in the production of tropospheric ozone in the tropics associated with the forest and savanna fires in the African, South American, and Indonesian regions. Using aerosol index (Al) and tropospheric column ozone (TCO) time series from 1979 to 2000 derived from the Nimbus-7 and Earth Probe TOMS measurements, our study shows significant differences in the seasonal and spatial characteristics of pyrogenic emissions north and south of the equator in the African region and Brazil in South America. In general, they are not related to the seasonal and spatial characteristics of tropospheric ozone in these regions. In the Indonesian region, the most significant increase in TCO occurred during September and October 1997, following large-scale forest and savanna fires associated with the El Nino-induced dry season. However, the increase in TCO extended over most of the western Pacific well outside the burning region and was accompanied by a decrease in the eastern Pacific resembling a west-to-east dipole about the date-line. The net increase in TCO integrated over the tropical region between 15 deg N and 15 deg S was about 6-8 Tg (1 Tg = 10(exp 12) gm) over the mean climatological value of about 72 Tg. This increase is well within the range of interannual variability of TCO in the tropical region and does not necessarily suggest a photochemical source related to biomass burning. The interannual variability in TCO appears to be out of phase with the interannual variability of stratospheric column ozone (SCO). These variabilities seem to be manifestations of solar cycle and quasibiennial oscillations.
Pérez-Ramos, Ignacio M; Aponte, Cristina; García, Luis V; Padilla-Díaz, Carmen M; Marañón, Teodoro
2014-01-01
Mast-seeding species exhibit not only a large inter-annual variability in seed production but also considerable variability among individuals within the same year. However, very little is known about the causes and consequences for population dynamics of this potentially large between-individual variability. Here, we quantified seed production over ten consecutive years in two Mediterranean oak species - the deciduous Quercus canariensis and the evergreen Q. suber - that coexist in forests of southern Spain. First, we calibrated likelihood models to identify which abiotic and biotic variables best explain the magnitude (hereafter seed productivity) and temporal variation of seed production at the individual level (hereafter CVi), and infer whether reproductive effort results from the available soil resources for the plant or is primarily determined by selectively favoured strategies. Second, we explored the contribution of between-individual variability in seed production as a potential mechanism of satiation for predispersal seed predators. We found that Q. canariensis trees inhabiting moister and more fertile soils were more productive than those growing in more resource-limited sites. Regarding temporal variation, individuals of the two studied oak species inhabiting these resource-rich environments also exhibited larger values of CVi. Interestingly, we detected a satiating effect on granivorous insects at the tree level in Q. suber, which was evident in those years where between-individual variability in acorn production was higher. These findings suggest that individual seed production (both in terms of seed productivity and inter-annual variability) is strongly dependent on soil resource heterogeneity (at least for one of the two studied oak species) with potential repercussions for recruitment and population dynamics. However, other external factors (such as soil heterogeneity in pathogen abundance) or certain inherent characteristics of the tree might be also involved in this process.
Ramírez, Alonso; Pringle, Catherine M.
2018-01-01
Understanding how environmental variables influence the distribution and density of organisms over relatively long temporal scales is a central question in ecology given increased climatic variability (e.g., precipitation, ENSO events). The primary goal of our study was to evaluate long-term (15y time span) patterns of climate, as well as environmental parameters in two Neotropical streams in lowland Costa Rica, to assess potential effects on aquatic macroinvertebrates. We also examined the relative effects of an 8y whole-stream P-enrichment experiment on macroinvertebrate assemblages against the backdrop of this long-term study. Climate, environmental variables and macroinvertebrate samples were measured monthly for 7y and then quarterly for an additional 8y in each stream. Temporal patterns in climatic and environmental variables showed high variability over time, without clear inter-annual or intra-annual patterns. Macroinvertebrate richness and abundance decreased with increasing discharge and was positively related to the number of days since the last high discharge event. Findings show that fluctuations in stream physicochemistry and macroinvertebrate assemblage structure are ultimately the result of large-scale climatic phenomena, such as ENSO events, while the 8y P-enrichment did not appear to affect macroinvertebrates. Our study demonstrates that Neotropical lowland streams are highly dynamic and not as stable as is commonly presumed, with high intra- and inter-annual variability in environmental parameters that change the structure and composition of freshwater macroinvertebrate assemblages. PMID:29420548
NASA Technical Reports Server (NTRS)
Zwally, J.
1988-01-01
The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.
NASA Astrophysics Data System (ADS)
Campioli, M.; Gielen, B.; Göckede, M.; Papale, D.; Bouriaud, O.; Granier, A.
2011-09-01
The allocation of carbon (C) taken up by the tree canopy for respiration and production of tree organs with different construction and maintenance costs, life span and decomposition rate, crucially affects the residence time of C in forests and their C cycling rate. The carbon-use efficiency, or ratio between net primary production (NPP) and gross primary production (GPP), represents a convenient way to analyse the C allocation at the stand level. In this study, we extend the current knowledge on the NPP-GPP ratio in forests by assessing the temporal variability of the NPP-GPP ratio at interannual (for 8 years) and seasonal (for 1 year) scales for a young temperate beech stand, reporting dynamics for both leaves and woody organs, in particular stems. NPP was determined with biometric methods/litter traps, whereas the GPP was estimated via the eddy covariance micrometeorological technique. The interannual variability of the proportion of C allocated to leaf NPP, wood NPP and leaf plus wood NPP (on average 11% yr-1, 29% yr-1 and 39% yr-1, respectively) was significant among years with up to 12% yr-1 variation in NPP-GPP ratio. Studies focusing on the comparison of NPP-GPP ratio among forests and models using fixed allocation schemes should take into account the possibility of such relevant interannual variability. Multiple linear regressions indicated that the NPP-GPP ratio of leaves and wood significantly correlated with environmental conditions. Previous year drought and air temperature explained about half of the NPP-GPP variability of leaves and wood, respectively, whereas the NPP-GPP ratio was not decreased by severe drought, with large NPP-GPP ratio on 2003 due mainly to low GPP. During the period between early May and mid June, the majority of GPP was allocated to leaf and stem NPP, whereas these sinks were of little importance later on. Improved estimation of seasonal GPP and of the contribution of previous-year reserves to stem growth, as well as reduction of data uncertainty, will be of relevance to increase the accuracy of the seasonal assessment of the NPP-GPP ratio in forests.
Improving uncertainty estimates: Inter-annual variability in Ireland
NASA Astrophysics Data System (ADS)
Pullinger, D.; Zhang, M.; Hill, N.; Crutchley, T.
2017-11-01
This paper addresses the uncertainty associated with inter-annual variability used within wind resource assessments for Ireland in order to more accurately represent the uncertainties within wind resource and energy yield assessments. The study was undertaken using a total of 16 ground stations (Met Eireann) and corresponding reanalysis datasets to provide an update to previous work on this topic undertaken nearly 20 years ago. The results of the work demonstrate that the previously reported 5.4% of wind speed inter-annual variability is considered to be appropriate, guidance is given on how to provide a robust assessment of IAV using available sources of data including ground stations, MERRA-2 and ERA-Interim.
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, M. J.; Heiser, M.
1998-01-01
In an earlier GCM study, we showed that interactive land surface processes generally contribute more to continental precipitation variance than do variable sea surface temperatures (SSTs). A new study extends this result through an analysis of 16-member ensembles of multi-decade GCM simulations. We can now show that in many regions, although land processes determine the amplitude of the interannual precipitation anomalies, variable SSTs nevertheless control their timing. The GCM data can be processed into indices that describe geographical variations in (1) the potential for seasonal-to-interannual prediction, and (2) the extent to which the predictability relies on the proper representation of land-atmosphere feedback.
Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien
Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less
Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires
Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien
2016-11-23
Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m −2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effectmore » is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m −2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m −2), while over Boreal Asia the overestimation is +43 % (−1.9 W m −2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less
Variability of Tropical Cyclone Heat Potential and Barrier layers in the South Indian Ocean
NASA Astrophysics Data System (ADS)
Mawren, D.; Reason, C. J. C.
2016-02-01
This study investigates the influence of Tropical Cyclone Heat Potential (TCHP) as well as salinity stratification during the passage of intense tropical cyclones. Using in-situ observations, reanalysis data and ocean model simulations, this study indicates that TC intensification is affected by high TCHP values and deep barrier layers. TCHP computed from 1/5° resolution regional ocean model (ROMS) agrees well with that derived from Argo float data and SODA which extends over a longer period (1950-2010). Time series of TCHP in the South Indian Ocean shows strongest interannual variability during 1997-1998, 2003, 2007 and is relatively highly correlated at 1 month lag with ENSO (r = 0.67, significant at 95 %). The interannual variability of barrier layer thickness (BLT) was analyzed over the Seychelles-Chagos thermocline ridge (SCTR) and high-amplitude fluctuations in BLT appear to overlay with large positive TCHP values. Analysis also shows that both BLT and TCHP are modulated by the westward propagating Rossby waves. A case study of Category 5 Tropical cyclone BANSI that developed over and east of Madagascar during 11-18 Jan 2015 is presented.
2017-06-01
Coronas , 1920). The dominant pattern of interannual variability is the El Nino Southern Oscillation (ENSO), which has two quasi-periodic states...Validation of Wavewatch-III using TOPEX/ Poseidon data. J. Atmos. Oceanic Technol., 21, 1718–1733. Coronas , J., 1920: The climate and weather of the
NASA Astrophysics Data System (ADS)
Best, Sara; Lundrigan, Sarah; Demirov, Entcho; Wroblewski, Joe
2011-10-01
Gilbert Bay on the southeast coast of Labrador is the site of the first Marine Protected Area (MPA) established in the subarctic coastal zone of eastern Canada. The MPA was created to conserve a genetically distinctive population of Atlantic cod, Gadus morhua. This article presents results from a study of the interannual variability in atmospheric and physical oceanographic characteristics of Gilbert Bay over the period 1949-2006. We describe seasonal and interannual variability of the atmospheric parameters at the sea surface in the bay. The interannual variability of the atmosphere in the Gilbert Bay region is related to the North Atlantic Oscillation (NAO) and a recent warming trend in the local climate of coastal Labrador. The related changes in seawater temperature, salinity and sea-ice thickness in winter are simulated with a one-dimensional water column model, the General Ocean Turbulence Model (GOTM). A warming Gilbert Bay ecosystem would be favorable for cod growth, but reduced sea-ice formation during the winter months increases the danger of traveling across the bay by snowmobile.
Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology
NASA Technical Reports Server (NTRS)
Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus
2013-01-01
Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.
Regional simulation of interannual variability over South America
NASA Astrophysics Data System (ADS)
Misra, V.; Dirmeyer, P. A.; Kirtman, B. P.; Juang, H.-M. Henry; Kanamitsu, M.
2002-08-01
Three regional climate simulations covering the austral summer season during three contrasting phases of the El Niño-Southern Oscillation cycle were conducted with the Regional Spectral Model (RSM) developed at the National Centers for Environmental Prediction (NCEP). The simulated interannual variability of precipitation over the Amazon River Basin, the Intertropical Convergence Zone, the Pacific and Atlantic Ocean basins, and extratropical South America compare reasonably well with observations. The RSM optimally filters the peturbations about a time-varying base field, thereby enhancing the information content of the global NCEP reanalysis. The model is better than the reanalysis in reproducing the observed interannual variability of outgoing longwave radiation at both high frequencies (3-30 days) and intraseasonal (30-60 days) scales. The low-level jet shows a peak in its speed in 1998 and a minimum in the 1999 simulations. The lag correlation of the jet index with convection over various areas in continental South America indicates that the jet induces precipitation over the Pampas region downstream. A detailed moisture budget was conducted over various subregions. This budget reveals that moisture flux convergence determines most of the interannual variability of precipitation over the Amazon Basin, the Atlantic Intertropical Convergence Zone, and the Nordeste region of Brazil. However, both surface evaporation and surface moisture flux convergence were found to be critical in determining the interannual variability of precipitation over the southern Pampas, Gran Chaco area, and the South Atlantic Convergence Zone.
NASA Astrophysics Data System (ADS)
Wellen, Christopher; Arhonditsis, George B.; Labencki, Tanya; Boyd, Duncan
2012-10-01
Regression-type, hybrid empirical/process-based models (e.g., SPARROW, PolFlow) have assumed a prominent role in efforts to estimate the sources and transport of nutrient pollution at river basin scales. However, almost no attempts have been made to explicitly accommodate interannual nutrient loading variability in their structure, despite empirical and theoretical evidence indicating that the associated source/sink processes are quite variable at annual timescales. In this study, we present two methodological approaches to accommodate interannual variability with the Spatially Referenced Regressions on Watershed attributes (SPARROW) nonlinear regression model. The first strategy uses the SPARROW model to estimate a static baseline load and climatic variables (e.g., precipitation) to drive the interannual variability. The second approach allows the source/sink processes within the SPARROW model to vary at annual timescales using dynamic parameter estimation techniques akin to those used in dynamic linear models. Model parameterization is founded upon Bayesian inference techniques that explicitly consider calibration data and model uncertainty. Our case study is the Hamilton Harbor watershed, a mixed agricultural and urban residential area located at the western end of Lake Ontario, Canada. Our analysis suggests that dynamic parameter estimation is the more parsimonious of the two strategies tested and can offer insights into the temporal structural changes associated with watershed functioning. Consistent with empirical and theoretical work, model estimated annual in-stream attenuation rates varied inversely with annual discharge. Estimated phosphorus source areas were concentrated near the receiving water body during years of high in-stream attenuation and dispersed along the main stems of the streams during years of low attenuation, suggesting that nutrient source areas are subject to interannual variability.
NASA Astrophysics Data System (ADS)
Manfron, Giacinto; Delmotte, Sylvestre; Busetto, Lorenzo; Hossard, Laure; Ranghetti, Luigi; Brivio, Pietro Alessandro; Boschetti, Mirco
2017-05-01
Crop simulation models are commonly used to forecast the performance of cropping systems under different hypotheses of change. Their use on a regional scale is generally constrained, however, by a lack of information on the spatial and temporal variability of environment-related input variables (e.g., soil) and agricultural practices (e.g., sowing dates) that influence crop yields. Satellite remote sensing data can shed light on such variability by providing timely information on crop dynamics and conditions over large areas. This paper proposes a method for analyzing time series of MODIS satellite data in order to estimate the inter-annual variability of winter wheat sowing dates. A rule-based method was developed to automatically identify a reliable sample of winter wheat field time series, and to infer the corresponding sowing dates. The method was designed for a case study in the Camargue region (France), where winter wheat is characterized by vernalization, as in other temperate regions. The detection criteria were chosen on the grounds of agronomic expertise and by analyzing high-confidence time-series vegetation index profiles for winter wheat. This automatic method identified the target crop on more than 56% (four-year average) of the cultivated areas, with low commission errors (11%). It also captured the seasonal variability in sowing dates with errors of ±8 and ±16 days in 46% and 66% of cases, respectively. Extending the analysis to the years 2002-2012 showed that sowing in the Camargue was usually done on or around November 1st (±4 days). Comparing inter-annual sowing date variability with the main local agro-climatic drivers showed that the type of preceding crop and the weather conditions during the summer season before the wheat sowing had a prominent role in influencing winter wheat sowing dates.
Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations
NASA Astrophysics Data System (ADS)
Zhang, Yongyong; Shao, Quanxi; Zhao, Tongtiegang
2017-09-01
Assessing the impact of human intervention on flow regimes is important in policy making and resource management. Previous impact assessments of dam regulation on flow regimes have focused on long-term average patterns, but interannual variations, which are important characteristics to be considered, have been ignored. In this study, the entire signatures of hydrograph variations of Miyun Reservoir in northern China were described by forty flow regime metrics that incorporate magnitude, variability and frequency, duration, timing, and rate of change for flow events based on a long-term synchronous observation series of inflow and outflow. Principal component analysis and cluster analysis were used to reduce the multidimensionality of the metrics and time and to determine impact patterns and their interannual shifts. Statistically significant driving factors of impact pattern variations were identified. We found that dam regulation resulted in four main impact classes on the flow regimes and that the regulated capacity was interannually attenuated from 1973 to 2010. The impact patterns alternated between the highly regulated class with extremely decreasing flow magnitude, slight variability, and extreme intermittency and the slightly regulated class with extremely increasing flow magnitude, slight variability, and extreme intermittency from 1973 to 1987 and then stabilized in the latter class from 1988 to 2001. After 2001, the pattern gradually changed from the moderately regulated class with moderately decreasing flow magnitude, extreme variability, and extreme intermittency to the slightly regulated class with slightly decreasing flow magnitude, slight variability, and no intermittency. Decreasing precipitation and increasing drought were the primary drivers for the interannual variations of the impact patterns, and inflow variability was the most significant factor affecting the patterns, followed by flow event frequency and duration, magnitude, and timing. This study shows that the use of interannual characteristics can help to gain more insight into the impact of dam regulation on flow regimes and will provide important information to scientifically guide the multi-purpose regulation of dams.
NASA Astrophysics Data System (ADS)
Zhang, Yang; Wang, Kai; He, Jian
2017-09-01
Following a comprehensive evaluation of WRF-CAM5 in Part I, Part II describes analyses of interannual variability, multi-year variation trends, and the direct, indirect, and total effects of anthropogenic aerosols. The interannual variations of chemical column and surface concentrations, and ozone (O3)/particulate matter (PM) indicators are strongly correlated to anthropogenic emission changes. Despite model biases, the model captures well the observed interannual variations of temperature at 2-m, cloud fraction, shortwave cloud forcing, downwelling shortwave radiation, cloud droplet number concentration, column O3, and column formaldehyde (HCHO) for the whole domain. While the model reproduces the volatile organic compound (VOC)-limited regimes of O3 chemistry at sites in Hong Kong, Taiwan, Japan, South Korea, and from the Acid Deposition Monitoring Network in East Asia (EANET) and the degree of sulfate neutralization at the EANET sites, it has limited capability in capturing the interannual variations of the ratio of O3 and nitrogen dioxide (O3/NO2) and PM chemical regime indicators, due to uncertainties in the emissions of precursors for O3 and secondary PM, the model assumption for ammonium bisulfate (NH4HSO4) as well as lack of gas/particle partitioning of total ammonia and total nitrate. While the variation trends in multi-year periods in aerosol optical depth and column concentrations of carbon monoxide, sulfur dioxide, and NO2 are mainly caused by anthropogenic emissions, those of major meteorological and cloud variables partly reflect feedbacks of chemistry to meteorological variables. The impacts of anthropogenic aerosol indirect effects either dominate or play an important role in the aerosol total effects for most cloud and chemical predictions, whereas anthropogenic aerosol direct effects influence most meteorological and radiation variables. The direct, indirect, and total effects of anthropogenic aerosols exhibit a strong interannual variability in 2001, 2006, and 2011.
Response of Marine Taxa to Climate Variability in the Southeast U.S.
NASA Astrophysics Data System (ADS)
Morley, J. W.; Pinsky, M. L.; Batt, R. D.
2016-02-01
Climate change has led to large-scale redistributions of marine taxa in many coastal regions around North America. Specifically, marine populations respond to spatial shifts in their preferred temperature conditions, or thermal envelope, as they shift across a seascape. The influence of climate change on the coastal fisheries of the southeast U.S. has been largely unexplored. We analyzed 25 years of trawl survey data (1990-2014) from the Southeast Area Monitoring and Assessment Program (SEAMAP), which samples the nearshore continental shelf of the South Atlantic Bight during spring, summer, and fall. Bottom temperatures exhibited no trend over this period and the assemblage showed no net shift north or south. However, taxa distributions were sensitive to interannual temperature variation. Annual projections of taxa thermal envelopes explained variation in centroid location for many species, particularly during spring. Accordingly, long-term latitudinal shifts in taxa-specific thermal envelopes, which trended to the north or south depending on the species, were highly correlated with centroid shifts during spring. One explanation for our results is that the phenology of taxa migration is adaptable to temperature variation. In particular, the inshore-offshore movement of species during spring and fall appears quite responsive to interannual temperature variability.
Regional variability in sea ice melt in a changing Arctic
Perovich, Donald K.; Richter-Menge, Jacqueline A.
2015-01-01
In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323
The role of ecosystem memory in predicting inter-annual variations of the tropical carbon balance.
NASA Astrophysics Data System (ADS)
Bloom, A. A.; Liu, J.; Bowman, K. W.; Konings, A. G.; Saatchi, S.; Worden, J. R.; Worden, H. M.; Jiang, Z.; Parazoo, N.; Williams, M. D.; Schimel, D.
2017-12-01
Understanding the trajectory of the tropical carbon balance remains challenging, in part due to large uncertainties in the integrated response of carbon cycle processes to climate variability. Satellite observations atmospheric CO2 from GOSAT and OCO-2, together with ancillary satellite measurements, provide crucial constraints on continental-scale terrestrial carbon fluxes. However, an integrated understanding of both climate forcings and legacy effects (or "ecosystem memory") on the terrestrial carbon balance is ultimately needed to reduce uncertainty on its future trajectory. Here we use the CARbon DAta-MOdel fraMework (CARDAMOM) diagnostic model-data fusion approach - constrained by an array of C cycle satellite surface observations, including MODIS leaf area, biomass, GOSAT solar-induced fluorescence, as well as "top-down" atmospheric inversion estimates of CO2 and CO surface fluxes from the NASA Carbon Monitoring System Flux (CMS-Flux) - to constrain and predict spatially-explicit tropical carbon state variables during 2010-2015. We find that the combined assimilation of land surface and atmospheric datasets places key constraints on the temperature sensitivity and first order carbon-water feedbacks throughout the tropics and combustion factors within biomass burning regions. By varying the duration of the assimilation period, we find that the prediction skill on inter-annual net biospheric exchange is primarily limited by record length rather than model structure and process representation. We show that across all tropical biomes, quantitative knowledge of memory effects - which account for 30-50% of interannual variations across the tropics - is critical for understanding and ultimately predicting the inter-annual tropical carbon balance.
Strecker, Angela L; Casselman, John M; Fortin, Marie-Josée; Jackson, Donald A; Ridgway, Mark S; Abrams, Peter A; Shuter, Brian J
2011-07-01
Species present in communities are affected by the prevailing environmental conditions, and the traits that these species display may be sensitive indicators of community responses to environmental change. However, interpretation of community responses may be confounded by environmental variation at different spatial scales. Using a hierarchical approach, we assessed the spatial and temporal variation of traits in coastal fish communities in Lake Huron over a 5-year time period (2001-2005) in response to biotic and abiotic environmental factors. The association of environmental and spatial variables with trophic, life-history, and thermal traits at two spatial scales (regional basin-scale, local site-scale) was quantified using multivariate statistics and variation partitioning. We defined these two scales (regional, local) on which to measure variation and then applied this measurement framework identically in all 5 study years. With this framework, we found that there was no change in the spatial scales of fish community traits over the course of the study, although there were small inter-annual shifts in the importance of regional basin- and local site-scale variables in determining community trait composition (e.g., life-history, trophic, and thermal). The overriding effects of regional-scale variables may be related to inter-annual variation in average summer temperature. Additionally, drivers of fish community traits were highly variable among study years, with some years dominated by environmental variation and others dominated by spatially structured variation. The influence of spatial factors on trait composition was dynamic, which suggests that spatial patterns in fish communities over large landscapes are transient. Air temperature and vegetation were significant variables in most years, underscoring the importance of future climate change and shoreline development as drivers of fish community structure. Overall, a trait-based hierarchical framework may be a useful conservation tool, as it highlights the multi-scaled interactive effect of variables over a large landscape.
NASA Astrophysics Data System (ADS)
Akanda, A. S.; Jutla, A. S.; Islam, S.
2009-12-01
Despite ravaging the continents through seven global pandemics in past centuries, the seasonal and interannual variability of cholera outbreaks remain a mystery. Previous studies have focused on the role of various environmental and climatic factors, but provided little or no predictive capability. Recent findings suggest a more prominent role of large scale hydroclimatic extremes - droughts and floods - and attempt to explain the seasonality and the unique dual cholera peaks in the Bengal Delta region of South Asia. We investigate the seasonal and interannual nature of cholera epidemiology in three geographically distinct locations within the region to identify the larger scale hydroclimatic controls that can set the ecological and environmental ‘stage’ for outbreaks and have significant memory on a seasonal scale. Here we show that two distinctly different, pre and post monsoon, cholera transmission mechanisms related to large scale climatic controls prevail in the region. An implication of our findings is that extreme climatic events such as prolonged droughts, record floods, and major cyclones may cause major disruption in the ecosystem and trigger large epidemics. We postulate that a quantitative understanding of the large-scale hydroclimatic controls and dominant processes with significant system memory will form the basis for forecasting such epidemic outbreaks. A multivariate regression method using these predictor variables to develop probabilistic forecasts of cholera outbreaks will be explored. Forecasts from such a system with a seasonal lead-time are likely to have measurable impact on early cholera detection and prevention efforts in endemic regions.
NASA Technical Reports Server (NTRS)
Geller, M. A.; Wu, M.-F.; Gelman, M. E.
1984-01-01
Individual monthly mean general circulation statistics for the Northern Hemisphere winters of 1978-79, 1979-80, 1980-81, and 1981-82 are examined for the altitude region from the earth's surface to 55 km. Substantial interannual variability is found in the mean zonal geostrophic wind; planetary waves with zonal wavenumber one and two; the heat and momentum fluxes; and the divergence of the Eliassen-Palm flux. These results are compared with previous studies by other workers. This variability in the monthly means is examined further by looking at both time-latitude sections at constant pressure levels and time-height sections at constant latitudes. The implications of this interannual variability for verifying models and interpreting observations are discussed.
Interannual Atmospheric Variability Simulated by a Mars GCM: Impacts on the Polar Regions
NASA Technical Reports Server (NTRS)
Bridger, Alison F. C.; Haberle, R. M.; Hollingsworth, J. L.
2003-01-01
It is often assumed that in the absence of year-to-year dust variations, Mars weather and climate are very repeatable, at least on decadal scales. Recent multi-annual simulations of a Mars GCM reveal however that significant interannual variations may occur with constant dust conditions. In particular, interannual variability (IAV) appears to be associated with the spectrum of atmospheric disturbances that arise due to baroclinic instability. One quantity that shows significant IAV is the poleward heat flux associated with these waves. These variations and their impacts on the polar heat balance will be examined here.
Inter-annual Variability of Snowfall in the Lower Peninsula of Michigan, USA
NASA Astrophysics Data System (ADS)
Meng, L.
2016-12-01
Winter snowfall, particularly lake-effect snowfall, impacts all aspects of Michigan life in the wintertime, from motorsports and tourism to impacting the day-to-day lives of residents. Understanding the inter-annual variability of winter snowfall will provide sound basis for local community safety management and improve weather forecasting. This study attempts to understand the trend in winter snowfall and the influencing factors of winter snowfall variability in the Lower Peninsula of Michigan (LPM) using station snowfall measurements and statistical analysis. Our study demonstrates that snowfall has significantly increased from 1932 to 2015. Correlation analysis suggests that regionally average air temperatures have a strong negative relationship with snowfall in LPM. On average, approximately 27% of inter-annual variability in snowfall can be explained by regionally average air temperatures. ENSO events are also negatively related to snowfall in LPM and can explain 8% of inter-annual variability. North Atlantic Oscillation (NAO) does not have strong influence on snowfall. Composite analysis demonstrates that on annual basis, more winter snowfall occurs during the years with higher maximum ice cover (MIC) than during the years with lower MIC in Lake Michigan. Higher MIC is often associated with lower air temperatures which are negatively related to winter snowfall. This study could provide insight on future snow related climate model improvement and weather forecasting.
Regional contribution to variability and trends of global gross primary productivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Min; Rafique, Rashid; Asrar, Ghassem R.
Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117±13 Pg C yr-1 (mean ± 1 standard deviation), whichmore » was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.« less
Regional contribution to variability and trends of global gross primary productivity
NASA Astrophysics Data System (ADS)
Chen, Min; Rafique, Rashid; Asrar, Ghassem R.; Bond-Lamberty, Ben; Ciais, Philippe; Zhao, Fang; Reyer, Christopher P. O.; Ostberg, Sebastian; Chang, Jinfeng; Ito, Akihiko; Yang, Jia; Zeng, Ning; Kalnay, Eugenia; West, Tristram; Leng, Guoyong; Francois, Louis; Munhoven, Guy; Henrot, Alexandra; Tian, Hanqin; Pan, Shufen; Nishina, Kazuya; Viovy, Nicolas; Morfopoulos, Catherine; Betts, Richard; Schaphoff, Sibyll; Steinkamp, Jörg; Hickler, Thomas
2017-10-01
Terrestrial gross primary productivity (GPP) is the largest component of the global carbon cycle and a key process for understanding land ecosystems dynamics. In this study, we used GPP estimates from a combination of eight global biome models participating in the Inter-Sectoral Impact-Model Intercomparison Project phase 2a (ISIMIP2a), the Moderate Resolution Spectroradiometer (MODIS) GPP product, and a data-driven product (Model Tree Ensemble, MTE) to study the spatiotemporal variability of GPP at the regional and global levels. We found the 2000-2010 total global GPP estimated from the model ensemble to be 117 ± 13 Pg C yr-1 (mean ± 1 standard deviation), which was higher than MODIS (112 Pg C yr-1), and close to the MTE (120 Pg C yr-1). The spatial patterns of MODIS, MTE and ISIMIP2a GPP generally agree well, but their temporal trends are different, and the seasonality and inter-annual variability of GPP at the regional and global levels are not completely consistent. For the model ensemble, Tropical Latin America contributes the most to global GPP, Asian regions contribute the most to the global GPP trend, the Northern Hemisphere regions dominate the global GPP seasonal variations, and Oceania is likely the largest contributor to inter-annual variability of global GPP. However, we observed large uncertainties across the eight ISIMIP2a models, which are probably due to the differences in the formulation of underlying photosynthetic processes. The results of this study are useful in understanding the contributions of different regions to global GPP and its spatiotemporal variability, how the model- and observational-based GPP estimates differ from each other in time and space, and the relative strength of the eight models. Our results also highlight the models’ ability to capture the seasonality of GPP that are essential for understanding the inter-annual and seasonal variability of GPP as a major component of the carbon cycle.
Future Interannual Variability of Arctic Sea Ice Area and its Implications for Marine Navigation
NASA Astrophysics Data System (ADS)
Vavrus, S. J.; Mioduszewski, J.; Holland, M. M.; Wang, M.; Landrum, L.
2016-12-01
As both a symbol and driver of ongoing climate change, the diminishing Arctic sea ice pack has been widely studied in a variety of contexts. Most research, however, has focused on time-mean changes in sea ice, rather than on short-term variations that also have important physical and societal consequences. In this study we test the hypothesis that interannual Arctic sea ice variability will increase in the future by utilizing a set of 40 independent simulations from the Community Earth System Model's Large Ensemble for the 1920-2100 period. The model projects that ice variability will indeed grow substantially in all months but with a strong seasonal dependence in magnitude and timing. The variability increases most during late autumn (November-December) and least during spring. This increase proceeds in a time-transgressive manner over the course of the year, peaking soonest (2020s) in late-summer months and latest (2090s) during late spring. The variability in every month is inversely correlated with the average melt rate, resulting in an eventual decline in both terms as the ice pack becomes seasonal by late century. These projected changes in sea ice variations will likely have significant consequences for marine navigation, which we assess with the empirical Ice Numeral (IN) metric. A function of ice concentration and thickness, the IN quantifies the difficulty in traversing a transect of sea ice-covered ocean as a function of vessel strength. Our results show that although increasingly open Arctic seas will mean generally more favorable conditions for navigation, the concurrent rise in the variability of ice cover poses a competing risk. In particular, future intervals featuring the most rapid declines in ice area that coincide with the highest interannual ice variations will offer more inviting shipping opportunities tempered by less predictable navigational conditions.
Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)
Raich, James W. [Iowa State University, Ames, IA (USA); Potter, Christopher S. [NASA Ames Research Center (ARC), Moffett Field, Mountain View, CA (United States); Bhagawat, Dwipen [Iowa State Univ., Ames, IA (United States); Olson, L. M. [CDIAC, Oak Ridge National Laboratory, Oak Ridge, TN
2003-08-01
The Principal Investigators used a climate-driven regression model to develop spatially resolved estimates of soil-CO2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO2 fluxes. The mean annual global soil-CO2 flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO2 emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO2 emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreen broad-leaved forests contributed more soil-derived CO2 to the atmosphere than did any other vegetation type (~30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO2 emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO2 production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO2 concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO2 emmissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO2 fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY-1 per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO2 emissions, global warming is likely to stimulate CO2 emissions from soils.
NASA Astrophysics Data System (ADS)
Williams, P.
2015-12-01
Ecological studies are increasingly recognizing the importance of atmospheric vapor-pressure deficit (VPD) as a driver of forest drought stress and disturbance processes such as wildfire. Because of the nonlinear Clausius-Clapeyron relationship between temperature and saturation vapor pressure, small variations in temperature can have large impacts on VPD, and therefore drought, particularly in warm, dry areas and particularly during the warm season. It is also clear that VPD and drought affect forest fire nonlinearly, as incremental drying leads to increasingly large burned areas. Forest fire is also affected by fuel amount and connectivity, which are promoted by vegetation growth in previous years, which is in turn promoted by lack of drought, highlighting the importance of nuances in the sequencing of natural interannual climate variations in modulating the impacts of drought on wildfire. The many factors affecting forest fire, and the nonlinearities embedded within the climate and wildfire systems, cause interannual variability in forest-fire area and frequency to be wildly variable and strongly affected by internal climate variability. In addition, warming over the past century has produced a background increase in forest fire frequency and area in many regions. In this talk I focus on the western United States and will explore whether the relationships between internal climate variability on forest fire area have been amplified by the effects of warming as a result of the compounding nonlinearities described above. I will then explore what this means for future burned area in the western United States and make the case that uncertainties in the future global greenhouse gas emissions trajectory, model projections of mean temperatures, model projections of precipitation, and model projections of natural climate variability translate to very large uncertainties in the effects of future climate variability on forest fire area in the United States and globally.
Observations of the Winter Thermal Structure of Lake Superior
NASA Astrophysics Data System (ADS)
Titze, Daniel James
Moored thermistor strings that span the water column have been deployed at up to seven locations throughout Lake Superior from 2005 through present, producing a unique year-round record of the thermal structure of a large lake. This extensive temperature record reveals significant interannual and spatial variability in Lake Superior's winter heat content, thermocline depth, and phenology. Of particular mention is a stark contrast in thermal structure between the cold, icy winter of 2009 and the much warmer winter of 2012, during which especially strong and weak negative stratification was observed, respectively. Significant interannual and spatial variability was also observed in Lake Superior ice cover, as shown through data extracted from Ice Mapping System satellite imagery (NOAA/NESDIS 2004). When water column heat content was estimated from temperature data and analyzed in concert with lake ice-cover data, it was found that ice cover can inhibit heat flux between the lake and the atmosphere, and that spatial variability in ice cover can translate into spatial variability in end-of-winter heat content. Such variability in end-of-winter heat content is found to be preserved through the spring warming season, and is strongly correlated with variability in the timing of the onset of summer stratification, with regions that have warmer end-of-winter water columns stratifying earlier than regions with colder end-of-winter water-columns.
Interannual and spatial variability of maple syrup yield as related to climatic factors
Houle, Daniel
2014-01-01
Sugar maple syrup production is an important economic activity for eastern Canada and the northeastern United States. Since annual variations in syrup yield have been related to climate, there are concerns about the impacts of climatic change on the industry in the upcoming decades. Although the temporal variability of syrup yield has been studied for specific sites on different time scales or for large regions, a model capable of accounting for both temporal and regional differences in yield is still lacking. In the present study, we studied the factors responsible for interregional and interannual variability in maple syrup yield over the 2001–2012 period, by combining the data from 8 Quebec regions (Canada) and 10 U.S. states. The resulting model explained 44.5% of the variability in yield. It includes the effect of climatic conditions that precede the sapflow season (variables from the previous growing season and winter), the effect of climatic conditions during the current sapflow season, and terms accounting for intercountry and temporal variability. Optimal conditions for maple syrup production appear to be spatially restricted by less favourable climate conditions occurring during the growing season in the north, and in the south, by the warmer winter and earlier spring conditions. This suggests that climate change may favor maple syrup production northwards, while southern regions are more likely to be negatively affected by adverse spring conditions. PMID:24949244
Methane from the Tropospheric Emission Spectrometer (TES)
NASA Technical Reports Server (NTRS)
Payne, Vivienne; Worden, John; Kulawik, Susan; Frankenberg, Christian; Bowman, Kevin; Wecht, Kevin
2012-01-01
TES V5 CH4 captures latitudinal gradients, regional variability and interannual variation in the free troposphere. V5 joint retrievals offer improved sensitivity to lower troposphere. Time series extends from 2004 to present. V5 reprocessing in progress. Upper tropospheric bias. Mitigated by N2O correction. Appears largely spatially uniform, so can be corrected. How to relate free-tropospheric values to surface emissions.
DCERP Annual Technical Report III: March 2009-February 2010. Executive Summary
2010-04-01
groundwater passing though marshes to the estuary. Loading estimates may vary considerably depending on inter-annual hydrologic (storm versus drought ...climatic events (i.e., hurricanes and droughts ); and integrate results with the other DCERP modules. The benefits of the Aquatic/Estuarine Module...inter-annual hydrologic (storm versus drought years) variability. ▪ Several large phytoplankton blooms in mid-estuary to upper estuary locations
1996-2007 Interannual Spatio-Temporal Variability in Snowmelt in Two Montane Watersheds
NASA Astrophysics Data System (ADS)
Jepsen, S. M.; Molotch, N. P.; Rittger, K. E.
2009-12-01
Snowmelt is a primary water source for ecosystems within, and urban/agricultural centers near, mountain regions. Stream chemistry from montane catchments is controlled by the flowpaths of water from snowmelt and the timing and duration of snow coverage. A process level understanding of the variability in these processes requires an understanding of the effect of changing climate and anthropogenic loading on spatio-temporal snowmelt patterns. With this as our objective, we are applying a snow reconstruction model to two well-studied montane watersheds, Tokopah Basin (TOK), California and Green Lakes Valley (GLV), Colorado, to examine interannual variability in the timing and location of snowmelt in response to variable climate conditions during the period from 1996 to 2007. The reconstruction model back solves for snowmelt by combining surface energy fluxes, inferred from meteorological data, with sequences of melt season snow images derived from satellite data (i.e., snowmelt depletion curves). Preliminary model results for 2002 were tested against measured snow water equivalent (SWE) and hydrograph data for the two watersheds. The computed maximum SWE averaged over TOK and GLV were 94 cm (~+17% error) and 50.2 cm (~+1% error), respectively. We present an analysis of interannual variability in these errors, in addition to reconstructed snowmelt maps over different land cover types under changing climate conditions between 1996-2007, focusing on the variability with interannual variation in climate.
Climate Downscaling over Nordeste, Brazil, Using the NCEP RSM97.
NASA Astrophysics Data System (ADS)
Sun, Liqiang; Ferran Moncunill, David; Li, Huilan; Divino Moura, Antonio; de Assis de Souza Filho, Francisco
2005-02-01
The NCEP Regional Spectral Model (RSM), with horizontal resolution of 60 km, was used to downscale the ECHAM4.5 AGCM (T42) simulations forced with observed SSTs over northeast Brazil. An ensemble of 10 runs for the period January-June 1971-2000 was used in this study. The RSM can resolve the spatial patterns of observed seasonal precipitation and capture the interannual variability of observed seasonal precipitation as well. The AGCM bias in displacement of the Atlantic ITCZ is partially corrected in the RSM. The RSM probability distribution function of seasonal precipitation anomalies is in better agreement with observations than that of the driving AGCM. Good potential prediction skills are demonstrated by the RSM in predicting the interannual variability of regional seasonal precipitation. The RSM can also capture the interannual variability of observed precipitation at intraseasonal time scales, such as precipitation intensity distribution and dry spells. A drought index and a flooding index were adopted to indicate the severity of drought and flooding conditions, and their interannual variability was reproduced by the RSM. The overall RSM performance in the downscaled climate of the ECHAM4.5 AGCM is satisfactory over Nordeste. The primary deficiency is a systematic dry bias for precipitation simulation.
NASA Astrophysics Data System (ADS)
Savina, M.; Lunghi, M.; Archambault, B.; Baulier, L.; Huret, M.; Le Pape, O.
2016-05-01
Simulating fish larval drift helps assess the sensitivity of recruitment variability to early life history. An individual-based model (IBM) coupled to a hydrodynamic model was used to simulate common sole larval supply from spawning areas to coastal and estuarine nursery grounds at the meta-population scale (4 assessed stocks), from the southern North Sea to the Bay of Biscay (Western Europe) on a 26-yr time series, from 1982 to 2007. The IBM allowed each particle released to be transported by currents, to grow depending on temperature, to migrate vertically depending on development stage, to die along pelagic stages or to settle on a nursery, representing the life history from spawning to metamorphosis. The model outputs were analysed to explore interannual patterns in the amounts of settled sole larvae at the population scale; they suggested: (i) a low connectivity between populations at the larval stage, (ii) a moderate influence of interannual variation in the spawning biomass, (iii) dramatic consequences of life history on the abundance of settling larvae and (iv) the effects of climate variability on the interannual variability of the larvae settlement success.
Consistency of Bottom Fish Communities in the Beaufort Sea Within and Between Years
NASA Astrophysics Data System (ADS)
Norcross, B.; Holladay, B.
2016-02-01
Fish communities in the Arctic may be indicators of change due to climate and oil and gas exploration. An initial benchmark is generally established by sampling a set of sites in multiple years sequentially to estimate interannual variability. Standard practice is to conduct one trawl haul per station. Establishing the annual frequency of sampling and minimum number of hauls per station necessary to detect changes in demersal fish communities is essential to designing a monitoring program. Using small bottom trawls, we assessed interannual variability of bottom fish communities between 2013 and 2014 in the eastern US Beaufort Sea at eight depths 20-1000 m on each of four transects. In 2014, to determine if one haul per station was representative of a site, replicate hauls were made at stations along one transect at the US-Canada border. The similarity among replicate hauls within a single year was excellent, indicating that one haul per station was representative of fish communities. There were distinctly different bottom fish communities on the Beaufort Sea shelf (20-100 m) and slope (200-1000 m). Shelf communities had higher abundances of smaller fishes; whereas slope communities had fewer, but larger, individuals. There was no change in fish abundance between years, but there was interannual variability in the biomass of fish communities on the slope. However, as few fishes were captured at deep stations, the difference between catching and not catching a single large heavy fish affected relative biomass significantly, which may distort the conclusion of interannual variability. Furthermore, these replicate hauls occurred in the eastern Beaufort Sea, which appears to have fewer fish species and in lower abundance than the western Beaufort Sea. The similarity within replicates may not be as striking in a more diverse environment, however this study shows that in this region of the Arctic, it is likely sufficient to forego replicate sampling at a station in one year and season, and sequential years of sampling in that season, when characterizing bottom fish communities within a long-term study of community stability.
Terrestrial Waters and Sea Level Variations on Interannual Time Scale
NASA Technical Reports Server (NTRS)
Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.
2011-01-01
On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.
Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget
NASA Technical Reports Server (NTRS)
Wielicki, Bruce A.; Wong, Takmeng; Allan, Richard; Slingo, Anthony; Kiehl, Jeffrey T.; Soden, Brian J.; Gordon, C. T.; Miller, Alvin J.; Yang, Shi-Keng; Randall, David R.;
2001-01-01
It is widely assumed that variations in the radiative energy budget at large time and space scales are very small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. We demonstrate that the radiation budget changes are caused by changes In tropical mean cloudiness. The results of several current climate model simulations fall to predict this large observed variation In tropical energy budget. The missing variability in the models highlights the critical need to Improve cloud modeling in the tropics to support Improved prediction of tropical climate on Inter-annual and decadal time scales. We believe that these data are the first rigorous demonstration of decadal time scale changes In the Earth's tropical cloudiness, and that they represent a new and necessary test of climate models.
Akanda, Ali Shafqat; Jutla, Antarpreet S.; Gute, David M.; Sack, R. Bradley; Alam, Munirul; Huq, Anwar; Colwell, Rita R.; Islam, Shafiqul
2013-01-01
The highly populated floodplains of the Bengal Delta have a long history of endemic and epidemic cholera outbreaks, both coastal and inland. Previous studies have not addressed the spatio-temporal dynamics of population vulnerability related to the influence of underlying large-scale processes. We analyzed spatial and temporal variability of cholera incidence across six surveillance sites in the Bengal Delta and their association with regional hydroclimatic and environmental drivers. More specifically, we use salinity and flood inundation modeling across the vulnerable districts of Bangladesh to test earlier proposed hypotheses on the role of these environmental variables. Our results show strong influence of seasonal and interannual variability in estuarine salinity on spring outbreaks and inland flooding on fall outbreaks. A large segment of the population in the Bengal Delta floodplains remain vulnerable to these biannual cholera transmission mechanisms that provide ecologic and environmental conditions for outbreaks over large geographic regions. PMID:24019441
An underestimated role of precipitation frequency in regulating summer soil moisture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Chaoyang; Chen, Jing M.; Pumpanen, Jukka
2012-04-26
Soil moisture induced droughts are expected to become more frequent under future global climate change. Precipitation has been previously assumed to be mainly responsible for variability in summer soil moisture. However, little is known about the impacts of precipitation frequency on summer soil moisture, either interannually or spatially. To better understand the temporal and spatial drivers of summer drought, 415 site yr measurements observed at 75 flux sites world wide were used to analyze the temporal and spatial relationships between summer soil water content (SWC) and the precipitation frequencies at various temporal scales, i.e., from half-hourly, 3, 6, 12 andmore » 24 h measurements. Summer precipitation was found to be an indicator of interannual SWC variability with r of 0.49 (p < 0.001) for the overall dataset. However, interannual variability in summer SWC was also significantly correlated with the five precipitation frequencies and the sub-daily precipitation frequencies seemed to explain the interannual SWC variability better than the total of precipitation. Spatially, all these precipitation frequencies were better indicators of summer SWC than precipitation totals, but these better performances were only observed in non-forest ecosystems. Our results demonstrate that precipitation frequency may play an important role in regulating both interannual and spatial variations of summer SWC, which has probably been overlooked or underestimated. However, the spatial interpretation should carefully consider other factors, such as the plant functional types and soil characteristics of diverse ecoregions.« less
NASA Astrophysics Data System (ADS)
Hirano, Soichiro; Kohma, Masashi; Sato, Kaoru
2016-07-01
Stratospheric final warming (SFW) in the Southern Hemisphere is examined in terms of their interannual variability and climatology using reanalysis data from January 1979 to March 2014. First, it is shown from a two-dimensional transformed Eulerian mean (TEM) analysis that a time-integrated vertical component of Eliassen-Palm flux during the spring is significantly related with SFW date. To clarify the role of residual mean flow in the interannual variability of the SFW date, SFWs are categorized into early and late groups according to the SFW date and their differences are examined. Significant difference in potential temperature tendency is observed in the middle and lower stratosphere in early October. Their structure in the meridional cross section accords well with that of vertical potential temperature advection by the residual mean flow. Difference in heating rate by shortwave radiation is minor. These results suggest that the adiabatic heating associated with the residual mean flow largely affects polar stratospheric temperature during austral spring and SFW date. The analysis is extended to investigate the longitudinal structure by using a three-dimensional (3-D) TEM theory. The significant difference in potential temperature tendency is mainly observed around the Weddell Sea at 10 hPa. Next, climatological 3-D structure of a vertical component of the residual mean flow in association with SFW is examined in terms of the effect on the troposphere. The results suggest that a downward residual mean flow from the stratosphere penetrates into underlying troposphere over East Antarctica and partly influences tropospheric temperature there.
NASA Astrophysics Data System (ADS)
Hayashi, Masaki; Farrow, Christopher R.
2014-12-01
Groundwater recharge sets a constraint on aquifer water balance in the context of water management. Historical data on groundwater and other relevant hydrological processes can be used to understand the effects of climatic variability on recharge, but such data sets are rare. The climate of the Canadian prairies is characterized by large inter-annual and inter-decadal variability in precipitation, which provides opportunities to examine the response of groundwater recharge to changes in meteorological conditions. A decadal study was conducted in a small (250 km2) prairie watershed in Alberta, Canada. Relative magnitude of annual recharge, indicated by water-level rise, was significantly correlated with a combination of growing-season precipitation and snowmelt runoff, which drives depression-focussed infiltration of meltwater. Annual precipitation was greater than vapour flux at an experimental site in some years and smaller in other years. On average precipitation minus vapour flux was 10 mm y-1, which was comparable to the magnitude of watershed-scale groundwater recharge estimated from creek baseflow. Average baseflow showed a distinct shift from a low value (4 mm y-1) in 1982-1995 to a high value (15 mm y-1) in 2003-2013, indicating the sensitivity of groundwater recharge to a decadal-scale variability of meteorological conditions.
NASA Astrophysics Data System (ADS)
Turney, C. S.; Fogwill, C. J.; Palmer, J. G.; VanSebille, E.; Thomas, Z.; McGlone, M.; Richardson, S.; Wilmshurst, J.; Fenwick, P.; Zunz, V.; Goosse, H.; Wilson, K. J.; Carter, L.; Lipson, M.; Jones, R. T.; Harsch, M.; Clark, G.; Marzinelli, E.; Rogers, T.; Rainsley, E.; Ciasto, L.; Waterman, S.; Thomas, E. R.; Visbeck, M.
2017-12-01
Occupying about 14 % of the world's surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on south-west Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52-54˚S). Our annually resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the 1940s, a phenomenon predating the observational record, and coincident with major changes in mammalian and bird populations. Climate reanalysis and modelling show a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer. Our results suggest that modern observed high interannual variability was established across the mid-twentieth century, and that the influence of contemporary equatorial Pacific temperatures may now be a permanent feature across the mid- to high latitudes.
Nonlinear dynamics and predictability in the atmospheric sciences
NASA Technical Reports Server (NTRS)
Ghil, M.; Kimoto, M.; Neelin, J. D.
1991-01-01
Systematic applications of nonlinear dynamics to studies of the atmosphere and climate are reviewed for the period 1987-1990. Problems discussed include paleoclimatic applications, low-frequency atmospheric variability, and interannual variability of the ocean-atmosphere system. Emphasis is placed on applications of the successive bifurcation approach and the ergodic theory of dynamical systems to understanding and prediction of intraseasonal, interannual, and Quaternary climate changes.
NASA Astrophysics Data System (ADS)
Harvey, J. E.; Smith, D. J.
2016-12-01
We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.
Multi-year predictability in a coupled general circulation model
NASA Astrophysics Data System (ADS)
Power, Scott; Colman, Rob
2006-02-01
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “ wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15-20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.
Bonebrake, Timothy C; Mastrandrea, Michael D
2010-07-13
Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.
Linking crop yield anomalies to large-scale atmospheric circulation in Europe.
Ceglar, Andrej; Turco, Marco; Toreti, Andrea; Doblas-Reyes, Francisco J
2017-06-15
Understanding the effects of climate variability and extremes on crop growth and development represents a necessary step to assess the resilience of agricultural systems to changing climate conditions. This study investigates the links between the large-scale atmospheric circulation and crop yields in Europe, providing the basis to develop seasonal crop yield forecasting and thus enabling a more effective and dynamic adaptation to climate variability and change. Four dominant modes of large-scale atmospheric variability have been used: North Atlantic Oscillation, Eastern Atlantic, Scandinavian and Eastern Atlantic-Western Russia patterns. Large-scale atmospheric circulation explains on average 43% of inter-annual winter wheat yield variability, ranging between 20% and 70% across countries. As for grain maize, the average explained variability is 38%, ranging between 20% and 58%. Spatially, the skill of the developed statistical models strongly depends on the large-scale atmospheric variability impact on weather at the regional level, especially during the most sensitive growth stages of flowering and grain filling. Our results also suggest that preceding atmospheric conditions might provide an important source of predictability especially for maize yields in south-eastern Europe. Since the seasonal predictability of large-scale atmospheric patterns is generally higher than the one of surface weather variables (e.g. precipitation) in Europe, seasonal crop yield prediction could benefit from the integration of derived statistical models exploiting the dynamical seasonal forecast of large-scale atmospheric circulation.
Satellite Observation of El Nino Effects on Amazon Forest Phenology and Productivity
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Townsend, Alan R.; Braswell, Bobby H.
2000-01-01
Climate variability may affect the functioning of Amazon moist tropical forests, and recent modeling analyses suggest that the carbon dynamics of the region vary interannually in response to precipitation and temperature anomalies. However, due to persistent orbital and atmospheric artifacts in the satellite record, remote sensing observations have not provided quantitative evidence that climate variation affects Amazon forest phenology or productivity, We developed a method to minimize and quantify non-biological artifacts in NOAA AVHRR satellite data, providing a record of estimated forest phenological variation from 1982-1993. The seasonal Normalized Difference Vegetation Index (NDVI) amplitude (a proxy for phenology) increased throughout much of the basin during El Nino periods when rainfall was anomalously low. Wetter La Nina episodes brought consistently smaller NDVI amplitudes. Using radiative transfer and terrestrial biogeochemical models driven by these satellite data, we estimate that canopy-energy absorption and net primary production of Amazon forests varied interannually by as much as 21% and 18%, respectively. These results provide large-scale observational evidence for interannual sensitivity to El Nino of plant phenology and carbon flux in Amazon forests.
NASA Astrophysics Data System (ADS)
Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.
2010-05-01
The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential sites for medium-scale infrastructure projects. These catchments are placed in their context within the hydrological regime classification using the spatial data and (remote sensing) observations as well as river gauging measurements. The study assesses the degree of similarity with the larger basins of the same hydrological regime. This assessment focuses on the measured response to observed climate variable anomalies. The smallest scale considered is comprised of a number of case studies at the ungauged village/valley scale. These examples are based on the delineation of areas to which specific communities (villages) have customary (riparian) water rights. These examples were suggested by non-governmental organisations working on grassroots economic development initiatives and small-scale infrastructure projects in the region. The direct observations available for these subcatchments are limited to spatial data (elevation, snow parameters). The challenge at this level is to accurately extrapolate areal values (precipitation, temperature, runoff) from point observations at the basin scale. The study assesses both the degree of similarity in the distribution of spatial parameters to the larger gauged basins and the interannual variability (spatial heterogeneity) of remotely-sensed snow cover and snow-water-equivalent at this subcatchment scale. Based upon the characterisation of spatial and interannual variability at these three spatial scales, the challenges facing local water resource managers and infrastructure operators are enumerated. Local vulnerabilities include, but are not limited to, varying thresholds in irrigation water requirements based on crop-type, minimum base flows for micro-hydropower generation during winter (high load) months and relatively small but growing demand for domestic water usage. In conclusion the study posits potential strategies for managing interannual variability and potential emerging trends. Suggested strategies are guided by the principles of low-risk adaptation, participative decision making and local capacity building.
Arctic sea ice trends, variability and implications for seasonal ice forecasting
Serreze, Mark C.; Stroeve, Julienne
2015-01-01
September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. PMID:26032315
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan E.; Kummerow, Christian D.; Arnold, James E. (Technical Monitor)
2002-01-01
Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30 deg N/S) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Time series of rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM Precipitation Radar (PR) over the tropical oceans show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. We show that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series. Further analysis of the frequency distribution of PR (2A25 product) rain rates suggests that the algorithm incorporates the attenuation measurement in a very conservative fashion so as to optimize the instantaneous rain rates. Such an optimization appears to come at the expense of monitoring interannual climate variability.
Bryce, Richard; Losada Carreño, Ignacio; Kumler, Andrew; Hodge, Bri-Mathias; Roberts, Billy; Brancucci Martinez-Anido, Carlo
2018-08-01
This article contains data and summary statistics of solar irradiance and dry bulb temperature across the Hawaiian archipelago resolved on a monthly basis and spanning years 1998-2015. This data was derived in association with an article titled "Consequences of Neglecting the Interannual Variability of the Solar Resource: A Case Study of Photovoltaic Power Among the Hawaiian Islands" (Bryce et al., 2018 [7]). The solar irradiance data is presented in terms of Direct Normal Irradiance (DNI), Diffuse Horizontal Irradiance (DHI), and Global Horizontal Irradiance (GHI) and was obtained from the satellite-derived data contained in the National Solar Radiation Database (NSRDB). The temperature data is also obtained from this source. We have processed the NSRDB data and compiled these monthly resolved data sets, along with interannual summary statistics including the interannual coefficient of variability.
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1999-01-01
Satellite data have revealed overall decreases in the Arctic sea ice cover since the late 1970s, although with substantial interannual variability. The ice reductions are likely tied to an overall warming in the Arctic region over the same time period, although both the warming and the ice reductions could be connected to large-scale oscillations within the system. Should the ice reductions continue, consequences to the Arctic ecosystems and climate could be considerable.
T.F. Eck; B.N. Holben; J.S. Reid; A. Sinyuk; E.J. Hyer; N.T. O' Neill; G.E. Shaw; J.R. Vande Castle; F.S. Chapin; O. Dubovik; A. Smirnov; E. Vermote; J.S. Schafer; D. Giles; I. Slutsker; M. Sorokine; W.W. Newcomb
2009-01-01
Long-term monitoring of aerosol optical properties at a boreal forest AERONET site in interior Alaska was performed from 1994 through 2008 (excluding winter), Large interannual variability was observed, with some years showing near background aerosol optical depth (AOD) levels while 2004 and 2005 had August monthly means similar in magnitude to peak months at major...
Intraseasonal and Interannual Variability of Mars Present Climate
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.
1996-01-01
This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to investigate the nature of intraseasonal and interannual variability of Mars'present climate. We have applied a three-dimensional climate model based on the full hydrostatic primitive equations to determine the spatial, but primarily, the temporal structures of the planet's large-scale circulation as it evolves during a given seasonal advance, and, over multi-annual cycles. The particular climate model applies simplified physical parameterizations and is computationally efficient. It could thus easily be integrated in a perpetual season or advancing season configuration, as well as over many Mars years. We have assessed both high and low-frequency components of the circulation (i.e., motions having periods of Omicron(2-10 days) or greater than Omicron(10 days), respectively). Results from this investigation have explored the basic issue whether Mars' climate system is naturally 'chaotic' associated with nonlinear interactions of the large-scale circulation-regardless of any allowance for year-to-year variations in external forcing mechanisms. Titles of papers presented at scientific conferences and a manuscript to be submitted to the scientific literature are provided. An overview of a areas for further investigation is also presented.
Do Offshore Wind Farms Influence Marine Primary Production?
NASA Astrophysics Data System (ADS)
Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.
2016-02-01
Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.
Regional variability in sea ice melt in a changing Arctic.
Perovich, Donald K; Richter-Menge, Jacqueline A
2015-07-13
In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernández, V.; Dietrich, D. E.; Haney, R. L.; Tintoré, J.
In situ and satellite data obtained during the last ten years have shown that the circula- tion in the Mediterranean Sea is extremely complex in space, with significant features ranging from mesoscale to sub-basin and basin scale, and highly variable in time, with mesoscale to seasonal and interannual signals. Also, the steep bottom topography and the variable atmospheric conditions from one sub-basin to another, make the circula- tion to be composed of numerous energetic and narrow coastal currents, density fronts and mesoscale structures that interact at sub-basin scale with the large scale circula- tion. To simulate numerically and better understand these features, besides high grid resolution, a low numerical dispersion and low physical dissipation ocean model is required. We present the results from a 1/8z horizontal resolution numerical simula- tion of the Mediterranean Sea using DieCAST ocean model, which meets the above requirements since it is stable with low general dissipation and uses accurate fourth- order-accurate approximations with low numerical dispersion. The simulations are carried out with climatological surface forcing using monthly mean winds and relax- ation towards climatological values of temperature and salinity. The model reproduces the main features of the large basin scale circulation, as well as the seasonal variabil- ity of sub-basin scale currents that are well documented by observations in straits and channels. In addition, DieCAST brings out natural fronts and eddies that usually do not appear in numerical simulations of the Mediterranean and that lead to a natural interannual variability. The role of this intrinsic variability in the general circulation will be discussed.
Recent Climate Variability in Antarctica from Satellite-derived Temperature Data
NASA Technical Reports Server (NTRS)
Schneider, David P.; Steig, Eric J.; Comiso, Josefino C.
2004-01-01
Recent Antarctic climate variability on month-to-month to interannual time scales is assessed through joint analysis of surface temperatures from satellite thermal infrared observations (T(sub IR)) and passive microwave brightness temperatures (T(sub B)). Although Tw data are limited to clear-sky conditions and T(sub B) data are a product of the temperature and emissivity of the upper approx. 1m of snow, the two data sets share significant covariance. This covariance is largely explained by three empirical modes, which illustrate the spatial and temporal variability of Antarctic surface temperatures. T(sub B) variations are damped compared to TIR variations, as determined by the period of the temperature forcing and the microwave emission depth; however, microwave emissivity does not vary significantly in time. Comparison of the temperature modes with Southern Hemisphere (SH) 500-hPa geopotential height anomalies demonstrates that Antarctic temperature anomalies are predominantly controlled by the principal patterns of SH atmospheric circulation. The leading surface temperature mode strongly correlates with the Southern Annular Mode (SAM) in geopotential height. The second temperature mode reflects the combined influences of the zonal wavenumber-3 and Pacific South American (PSA) patterns in 500-hPa height on month-to-month timescales. ENSO variability projects onto this mode on interannual timescales, but is not by itself a good predictor of Antarctic temperature anomalies. The third temperature mode explains winter warming trends, which may be caused by blocking events, over a large region of the East Antarctic plateau. These results help to place recent climate changes in the context of Antarctica's background climate variability and will aid in the interpretation of ice core paleoclimate records.
What is the Effect of Interannual Hydroclimatic Variability on Water Supply Reservoir Operations?
NASA Astrophysics Data System (ADS)
Galelli, S.; Turner, S. W. D.
2015-12-01
Rather than deriving from a single distribution and uniform persistence structure, hydroclimatic data exhibit significant trends and shifts in their mean, variance, and lagged correlation through time. Consequentially, observed and reconstructed streamflow records are often characterized by features of interannual variability, including long-term persistence and prolonged droughts. This study examines the effect of these features on the operating performance of water supply reservoirs. We develop a Stochastic Dynamic Programming (SDP) model that can incorporate a regime-shifting climate variable. We then compare the performance of operating policies—designed with and without climate variable—to quantify the contribution of interannual variability to standard policy sub-optimality. The approach uses a discrete-time Markov chain to partition the reservoir inflow time series into small number of 'hidden' climate states. Each state defines a distinct set of inflow transition probability matrices, which are used by the SDP model to condition the release decisions on the reservoir storage, current-period inflow and hidden climate state. The experimental analysis is carried out on 99 hypothetical water supply reservoirs fed from pristine catchments in Australia—all impacted by the Millennium drought. Results show that interannual hydroclimatic variability is a major cause of sub-optimal hedging decisions. The practical import is that conventional optimization methods may misguide operators, particularly in regions susceptible to multi-year droughts.
NASA Technical Reports Server (NTRS)
Min, Wei; Schubert, Siegfried D.; Suarez, Max J. (Editor)
1997-01-01
The Data Assimilation Office (DAO) at Goddard Space Flight Center and the National Center for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) have produced multi-year global assimilations of historical data employing fixed analysis systems. These "reanalysis" products are ideally suited for studying short-term climatic variations. The availability of multiple reanalysis products also provides the opportunity to examine the uncertainty in the reanalysis data. The purpose of this document is to provide an updated estimate of seasonal and interannual variability based on the DAO and NCEP/NCAR reanalyses for the 15-year period 1980-1995. Intercomparisons of the seasonal means and their interannual variations are presented for a variety of prognostic and diagnostic fields. In addition, atmospheric potential predictability is re-examined employing selected DAO reanalysis variables.
NASA Astrophysics Data System (ADS)
Hou, Xueyan; Dong, Qing; Xue, Cunjin; Wu, Shuchao
2016-06-01
Based on long-term satellite-derived ocean data sets and methods of empirical orthogonal function and singular value decomposition, we investigated the spatiotemporal variability of the chlorophyll-a concentration (CHL) on seasonal and interannual timescales in the western tropical Pacific associated with physical ocean variables of sea surface temperature (SST), sea level anomaly (SLA) and sea surface wind (SSW), and the El Niño Southern Oscillation (ENSO) index. The bio-physical synchronous variation on interannual timescale was also confirmed in terms of the scales of variability and oscillation periods in the time-frequency space using the methods of Fourier transform, Morlet wavelet transform, and wavelet coherence analysis. On a seasonal timescale, the first two modes of the monthly mean CHL fields described the consecutive spatiotemporal variation in CHL in the western tropical Pacific. CHL reached the maximum during late winter-early spring and minimum during summer-early autumn with the exception of the northeast of Papua New Guinea and the Solomon Islands. The CHL bloom in boreal winter-spring was closely associated with cold SST, high sea level along the North Equatorial Countercurrent meanders, and strong wind. On an interannual timescale, the variability of CHL exhibited a close correlation with SST, SLA, SSW, and ENSO. During El Niño, CHL increased in the oligotrophic western basin of the warm pool associated with cold SST, low SLA, and strong westerly winds but decreased in the mesotrophic eastern basin of the warm pool in association with warm SST, high SLA, and weak easterly trade winds. There may exist time-lag for the bio-physical covariation, i.e., CHL and SST varied simultaneously within 1 month, and CHL variations led SLA by approximately 0-3 months but lagged wind speed by about 1 month. In the time-frequency domain, the interannual variability in CHL and physical ocean variables had high common power, indicating that the variability scales and oscillation periods of CHL were significantly related to these of SST, SLA, and ENSO index. The significant anti-phase relationships were also shown between CHL and SST, CHL and SLA, and CHL and multivariate ENSO index through the wavelet coherence analysis.
Using TRMM Data To Understand Interannual Variations In the Tropical Water Balance
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.; Fitzjarrald, Dan; Arnold, James E. (Technical Monitor)
2002-01-01
A significant element of the science rationale for TRMM centered on assembling rainfall data needed to validate climate models-- climatological estimates of precipitation, its spatial and temporal variability, and vertical modes of latent heat release. Since the launch of TRMM, a great interest in the science community has emerged for quantifying interannual variability (IAV) of precipitation and its relationship to sea-surface temperature (SST) changes. The fact that TRMM has sampled one strong warm/ cold ENSO couplet, together with the prospect for a mission lifetime approaching ten years, has bolstered this interest in these longer time scales. Variability on a regional basis as well as for the tropics as a whole is of concern. Our analysis of TRMM results so far has shown surprising lack of concordance between various algorithms in quantifying IAV of precipitation. The first objective of this talk is to quantify the sensitivity of tropical precipitation to changes in SSTs. We analyze performance of the 3A11, 3A25, and 3B31 algorithms and investigate their relationship to scattering-- based algorithms constructed from SSM/I and TRMM 85 kHz data. The physical basis for the differences (and similarities) in depicting tropical oceanic and land rainfall will be discussed. We argue that scattering-based estimates of variability constitute a useful upper bound for precipitation variations. These results lead to the second question addressed in this talk-- How do TRMM precipitation / SST sensitivities compare to estimates of oceanic evaporation and what are the implications of these uncertainties in determining interannual changes in large-scale moisture transport? We summarize results of an analysis performed using COADS data supplemented by SSM/I estimates of near-surface variables to assess evaporation sensitivity to SST. The response of near 5 W sq m/K is compared to various TRMM precipitation sensitivities. Implied moisture convergence over the tropics and its sensitivity to errors of these algorithms is discussed.
Paleoclimatological perspective on the hydrometeorology of the Mekong Basin
NASA Astrophysics Data System (ADS)
Räsänen, T. A.; Lehr, C.; Mellin, I.; Ward, P. J.; Kummu, M.
2012-11-01
During recent decades the Mekong River has experienced substantial interannual variations between droughts and major floods. The causes of these variations have been sought in climate change and dam construction. However, so far little research has addressed whether these recent variations are significantly different to long-term variations in the past. Hence, the aim of our paper is to place the recent variations between droughts and floods into a historical and paleoclimatological context. To achieve this we analysed the Mekong's meteorological conditions over the period 1300-2005 with a basin scale approach by using the Monsoon Asia Drought Atlas (MADA), which is a Palmer Drought Severity Index (PDSI) dataset derived from tree-ring growth records. The correlation analyses, both in time and frequency domains, showed correlation between MADA and the Mekong's discharge over the period 1910-2005 which suggests that MADA can be used as proxy for the hydrometeorology of the Mekong Basin. We found that the meteorological conditions of the Mekong varied at multi-annual, decadal and centennial scales over the study period. We found two especially distinct features: firstly, multi-annual and decadal variation between prolonged wet and dry epochs; and secondly, epochs with higher or lower interannual variability between very dry and wet years. Furthermore we found two epochs with exceptionally large interannual variability, one at the beginning of 17th century and the other in the post 1950 epoch. Both epochs are characterized by distinct increases in variability between very wet and dry years. The variability in the post 1950 epoch is much higher compared to any of the other epochs included in this study. Thus, during recent decades the climate in the Mekong has exhibited features that have not been experienced for at least several centuries. These findings call for further climate research, particularly regarding increased climate variability, and resilient adaptation and development approaches in the basin.
Using Empirical Orthogonal Teleconnections to Analyze Interannual Precipitation Variability in China
NASA Astrophysics Data System (ADS)
Stephan, C.; Klingaman, N. P.; Vidale, P. L.; Turner, A. G.; Demory, M. E.; Guo, L.
2017-12-01
Interannual rainfall variability in China affects agriculture, infrastructure and water resource management. A consistent and objective method, Empirical Orthogonal Teleconnection (EOT) analysis, is applied to precipitation observations over China in all seasons. Instead of maximizing the explained space-time variance, the method identifies regions in China that best explain the temporal variability in domain-averaged rainfall. It produces known teleconnections, that include high positive correlations with ENSO in eastern China in winter, along the Yangtze River in summer, and in southeast China during spring. New findings include that variability along the southeast coast in winter, in the Yangtze valley in spring, and in eastern China in autumn, are associated with extratropical Rossby wave trains. The same analysis is applied to six climate simulations of the Met Office Unified Model with and without air-sea coupling and at various horizontal resolutions of 40, 90 and 200 km. All simulations reproduce the observed patterns of interannual rainfall variability in winter, spring and autumn; the leading pattern in summer is present in all but one simulation. However, only in two simulations are all patterns associated with the observed physical mechanism. Coupled simulations capture more observed patterns of variability and associate more of them with the correct physical mechanism, compared to atmosphere-only simulations at the same resolution. Finer resolution does not improve the fidelity of these patterns or their associated mechanisms. Evaluating climate models by only geographical distribution of mean precipitation and its interannual variance is insufficient; attention must be paid to associated mechanisms.
Bratkovich, A.; Dinnel, S.P.; Goolsby, D.A.
1994-01-01
Time histories of riverine water discharge, nitrate concentration, and nitrate, flux have been analyzed for the Mississippi and Atchafalaya rivers. Results indicate that water discharge variability is dominated by the annual cycle and shorter-time-scale episodic events presumably associated with snowmelt runoff and spring or summer rains. Interannual variability in water discharge is relatively small compared to the above. In contrast, nitrate concentration exhibits strongest variability at decadal time scales. The interannual variability is not monotonic but more complicated in structure. Weak covariability between water discharge and nitrate concentration leads to a relatively “noisy” nitrate flux signal. Nitrate flux variations exhibit a low-amplitude, long-term modulation of a dominant annual cycle. Predictor-hindcastor analyses indicate that skilled forecasts of nitrate concentration and nitrate flux fields are feasible. Water discharge was the most reliably hindcast (on seasonal to interannual time scales) due to the fundamental strength of the annual hydrologic cycle. However, the forecasting effort for this variable was less successful than the hindcasting effort, mostly due to a phase shift in the annual cycle during our relatively short test period (18 mo). Nitrate concentration was more skillfully predicted (seasonal to interannual time scales) due to the relative dominance of the decadal-scale portion of the signal. Nitrate flux was also skillfully forecast even though historical analyses seemed to indicate that it should be more difficult to predict than either water discharge or nitrate concentration.
NASA Astrophysics Data System (ADS)
Capet, Arthur; Beckers, Jean-Marie; Grégoire, Marilaure
2013-04-01
The Black Sea North-western shelf (NWS) is a shallow eutrophic area in which seasonal stratification of the water column isolates bottom waters from the atmosphere and prevents ventilation to compensate for the large consumption of oxygen, due to respiration in the bottom waters and in the sediments. A 3D coupled physical biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS at different temporal scales from seasonal to interannual (1981-2009) and to differentiate the driving factors (climatic versus eutrophication) of hypoxic conditions in bottom waters. Model skills are evaluated by comparison with 14500 in-situ oxygen measurements available in the NOAA World Ocean Database and the Black Sea Commission data. The choice of skill metrics and data subselections orientate the validation procedure towards specific aspects of the oxygen dynamics, and prove the model's ability to resolve the seasonal cycle and interannual variability of oxygen concentration as well as the spatial location of the oxygen depleted waters and the specific threshold of hypoxia. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS, receiving large inputs of nutrients from the Danube, Dniestr and Dniepr rivers, and extends, during the years of severe hypoxia, towards the Romanian Bay of Constanta. In order to explain the interannual variability of bottom hypoxia and to disentangle its drivers, a statistical model (multiple linear regression) is proposed using the long time series of model results as input variables. This statistical model gives a general relationships that links the intensity of hypoxia to eutrophication and climate related variables. The use of four predictors allows to reproduce 78% of hypoxia interannual variability: the annual nitrate discharge (N), the sea surface temperature in the month preceding stratification (T ), the amount of semi-labile organic matter in the sediments (C) and the duration of the stratification (D). Eutrophication (N,C) and climate (T ,D) predictors explain a similar amount of variability (~ 35%) when considered separately. A typical timescale of 9.3 years is found to describe the inertia of sediments in the recovering process after eutrophication. From this analysis, we find that under standard conditions (i.e. average atmospheric conditions, sediments in equilibrium with river discharges), the intensity of hypoxia can be linked to the level of nitrate discharge through a non-linear equation (power law). Bottom hypoxia does not affect the whole Black Sea NWS but rather exhibits an important spatial variability. This heterogeneous distribution, in addition to the seasonal fluctuations, complicates the monitoring of bottom hypoxia leading to contradictory conclusions when the interpretation is done from different sets of data. We find that it was the case after 1995 when the recovery process was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses out the urging need of a dedicated monitoring effort in the NWS of the Black Sea focused on the areas and the period of the year concerned by recurrent hypoxic events.
How potentially predictable are midlatitude ocean currents?
Nonaka, Masami; Sasai, Yoshikazu; Sasaki, Hideharu; Taguchi, Bunmei; Nakamura, Hisashi
2016-01-01
Predictability of atmospheric variability is known to be limited owing to significant uncertainty that arises from intrinsic variability generated independently of external forcing and/or boundary conditions. Observed atmospheric variability is therefore regarded as just a single realization among different dynamical states that could occur. In contrast, subject to wind, thermal and fresh-water forcing at the surface, the ocean circulation has been considered to be rather deterministic under the prescribed atmospheric forcing, and it still remains unknown how uncertain the upper-ocean circulation variability is. This study evaluates how much uncertainty the oceanic interannual variability can potentially have, through multiple simulations with an eddy-resolving ocean general circulation model driven by the observed interannually-varying atmospheric forcing under slightly different conditions. These ensemble “hindcast” experiments have revealed substantial uncertainty due to intrinsic variability in the extratropical ocean circulation that limits potential predictability of its interannual variability, especially along the strong western boundary currents (WBCs) in mid-latitudes, including the Kuroshio and its eastward extention. The intrinsic variability also greatly limits potential predictability of meso-scale oceanic eddy activity. These findings suggest that multi-member ensemble simulations are essential for understanding and predicting variability in the WBCs, which are important for weather and climate variability and marine ecosystems. PMID:26831954
Travis J. Woolley; Mark E. Harmon; Kari B. O’Connell
2015-01-01
Inter-annual variability (IAV) of forest Net Primary Productivity (NPP) is a function of both extrinsic (e.g., climate) and intrinsic (e.g., stand dynamics) drivers. As estimates of NPP in forests are scaled from trees to stands to the landscape, an understanding of the relative effects of these factors on spatial and temporal behavior of NPP is important. Although a...
NASA Astrophysics Data System (ADS)
Li, Yun; Ji, Rubao; Fratantoni, Paula S.; Chen, Changsheng; Hare, Jonathan A.; Davis, Cabell S.; Beardsley, Robert C.
2014-04-01
In this study, we examine the importance of regional wind forcing in modulating advective processes and hydrographic properties along the Northwest Atlantic shelf, with a focus on the Nova Scotian Shelf (NSS)-Gulf of Maine (GoM) region. Long-term observational data of alongshore wind stress, sea level slope, and along-shelf flow are analyzed to quantify the relationship between wind forcing and hydrodynamic responses on interannual time scales. Additionally, a simplified momentum balance model is used to examine the underlying mechanisms. Our results show significant correlation among the observed interannual variability of sea level slope, along-shelf flow, and alongshore wind stress in the NSS-GoM region. A mechanism is suggested to elucidate the role of wind in modulating the sea level slope and along-shelf flow: stronger southwesterly (northeastward) winds tend to weaken the prevailing southwestward flow over the shelf, building sea level in the upstream Newfoundland Shelf region, whereas weaker southwesterly winds allow stronger southwestward flow to develop, raising sea level in the GoM region. The wind-induced flow variability can influence the transport of low-salinity water from the Gulf of St. Lawrence to the GoM, explaining interannual variations in surface salinity distributions within the region. Hence, our results offer a viable mechanism, besides the freshening of remote upstream sources, to explain interannual patterns of freshening in the GoM.
Interannual variability of ring formations in the Gulf Stream region
NASA Astrophysics Data System (ADS)
Sasaki, Y. N.
2016-02-01
An oceanic ring in the Gulf Stream (GS) region plays important roles in across-jet transport of heat, salt, momentum, and nutrients. This study examines interannual variability of rings shed from the GS jet and their properties using satellite altimeter observations from 1993 to 2013. An objective method is used to capture a ring shedding from the GS jet and track its movement. A spatial distribution of the ring formations in the GS region showed that both cyclonic (cold-core) and anticyclonic (warm-core) rings were most frequently formed around the New England Seamount chain between 62°-65°W, suggesting the importance of the bottom topography on the pinch-off process. These rings moved westward, although about two-third of these rings was reabsorbed by the GS jet. The number of ring formations, especially cyclonic ring formations, indicated prominent fluctuations on interannual to decadal timescales. The annual maximum number of the pinched-off rings is four times larger than the annual minimum number of the rings. These fluctuations of the ring formations were negatively correlated with the strength of the GS. This situation is similar that in the Kuroshio Extension region. The interannual variability of the number of ring formations is also negatively correlated with the North Atlantic Oscillation (NAO) index with one-year lag (NAO leads). Interannual variations of the propagation tendency and shape of rings are also discussed.
NASA Astrophysics Data System (ADS)
Ramier, David; Boulain, Nicolas; Cappelaere, Bernard; Timouk, Franck; Rabanit, Manon; Lloyd, Colin R.; Boubkraoui, Stéphane; Métayer, Frédéric; Descroix, Luc; Wawrzyniak, Vincent
2009-08-01
SummaryThis paper presents an analysis of the coupled cycling of energy and water by semi-arid Sahelian surfaces, based on two years of continuous vertical flux measurements from two homogeneous recording stations in the Wankama catchment, in the West Niger meso-site of the AMMA project. The two stations, sited in a millet field and in a semi-natural fallow savanna plot, sample the two dominant land cover types in this area typical of the cultivated Sahel. The 2-year study period enables an analysis of seasonal variations over two full wet-dry seasons cycles, characterized by two contrasted rain seasons that allow capturing a part of the interannual variability. All components of the surface energy budget (four-component radiation budget, soil heat flux and temperature, eddy fluxes) are measured independently, allowing for a quality check through analysis of the energy balance closure. Water cycle monitoring includes rainfall, evapotranspiration (from vapour eddy flux), and soil moisture at six depths. The main modes of observed variability are described, for the various energy and hydrological variables investigated. Results point to the dominant role of water in the energy cycle variability, be it seasonal, interannual, or between land cover types. Rainfall is responsible for nearly as much seasonal variations of most energy-related variables as solar forcing. Depending on water availability and plant requirements, evapotranspiration pre-empts the energy available from surface forcing radiation, over the other dependent processes (sensible and ground heat, outgoing long wave radiation). In the water budget, pre-emption by evapotranspiration leads to very large variability in soil moisture and in deep percolation, seasonally, interannually, and between vegetation types. The wetter 2006 season produced more evapotranspiration than 2005 from the fallow but not from the millet site, reflecting differences in plant development. Rain-season evapotranspiration is nearly always lower at the millet site. Higher soil moisture at this site suggests that this difference arises from lower vegetation requirements rather than from lower infiltration/higher runoff. This difference is partly compensated for during the next dry season. Effects of water and vegetation on the energy budget appear to occur more through latent heat than through albedo. A large part of albedo variability comes from soil wetting and drying. Prior to the onset of monsoon rain, the change in air mass temperature and wind produces, through modulation of sensible heat, a marked chilling effect on the components of the surface energy budget.
Rethinking "normal": The role of stochasticity in the phenology of a synchronously breeding seabird.
Youngflesh, Casey; Jenouvrier, Stephanie; Hinke, Jefferson T; DuBois, Lauren; St Leger, Judy; Trivelpiece, Wayne Z; Trivelpiece, Susan G; Lynch, Heather J
2018-05-01
Phenological changes have been observed in a variety of systems over the past century. There is concern that, as a consequence, ecological interactions are becoming increasingly mismatched in time, with negative consequences for ecological function. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can make it difficult to separate intrinsic, extrinsic and stochastic drivers of phenological variability. The goal of this study was to understand the timing and variability in breeding phenology of Adélie penguins under fixed environmental conditions and to use those data to identify a "null model" appropriate for disentangling the sources of variation in wild populations. Data on clutch initiation were collected from both wild and captive populations of Adélie penguins. Clutch initiation in the captive population was modelled as a function of year, individual and age to better understand phenological patterns observed in the wild population. Captive populations displayed as much inter-annual variability in breeding phenology as wild populations, suggesting that variability in breeding phenology is the norm and thus may be an unreliable indicator of environmental forcing. The distribution of clutch initiation dates was found to be moderately asymmetric (right skewed) both in the wild and in captivity, consistent with the pattern expected under social facilitation. The role of stochasticity in phenological processes has heretofore been largely ignored. However, these results suggest that inter-annual variability in breeding phenology can arise independent of any environmental or demographic drivers and that synchronous breeding can enhance inherent stochasticity. This complicates efforts to relate phenological variation to environmental variability in the wild. Accordingly, we must be careful to consider random forcing in phenological processes, lest we fit models to data dominated by random noise. This is particularly true for colonial species where breeding synchrony may outweigh each individual's effort to time breeding with optimal environmental conditions. Our study highlights the importance of identifying appropriate null models for studying phenology. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
The impact of inter-annual rainfall variability on African savannas changes with mean rainfall.
Synodinos, Alexis D; Tietjen, Britta; Lohmann, Dirk; Jeltsch, Florian
2018-01-21
Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zeyringer, Marianne; Price, James; Fais, Birgit; Li, Pei-Hao; Sharp, Ed
2018-05-01
The design of cost-effective power systems with high shares of variable renewable energy (VRE) technologies requires a modelling approach that simultaneously represents the whole energy system combined with the spatiotemporal and inter-annual variability of VRE. Here, we soft-link a long-term energy system model, which explores new energy system configurations from years to decades, with a high spatial and temporal resolution power system model that captures VRE variability from hours to years. Applying this methodology to Great Britain for 2050, we find that VRE-focused power system design is highly sensitive to the inter-annual variability of weather and that planning based on a single year can lead to operational inadequacy and failure to meet long-term decarbonization objectives. However, some insights do emerge that are relatively stable to weather-year. Reinforcement of the transmission system consistently leads to a decrease in system costs while electricity storage and flexible generation, needed to integrate VRE into the system, are generally deployed close to demand centres.
Interannual Variability in Global Soil Respiration on a 0.5 Degree Grid Cell Basis (1980-1994)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raich, J.W.
2003-09-15
We used a climate-driven regression model to develop spatially resolved estimates of soil-CO{sub 2} emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil-to-atmosphere CO{sub 2} fluxes. The mean annual global soil-CO{sub 2} flux over this 15-y period was estimated to be 80.4 (range 79.3-81.8) Pg C. Monthly variations in global soil-CO{sub 2} emissions followed closely the mean temperature cycle of the Northern Hemisphere. Globally, soil-CO{sub 2} emissions reached their minima in February and peaked in July and August. Tropical and subtropical evergreenmore » broad-leaved forests contributed more soil-derived CO{sub 2} to the atmosphere than did any other vegetation type ({approx}30% of the total) and exhibited a biannual cycle in their emissions. Soil-CO{sub 2} emissions in other biomes exhibited a single annual cycle that paralleled the seasonal temperature cycle. Interannual variability in estimated global soil-CO{sub 2} production is substantially less than is variability in net carbon uptake by plants (i.e., net primary productivity). Thus, soils appear to buffer atmospheric CO{sub 2} concentrations against far more dramatic seasonal and interannual differences in plant growth. Within seasonally dry biomes (savannas, bushlands, and deserts), interannual variability in soil-CO{sub 2} emissions correlated significantly with interannual differences in precipitation. At the global scale, however, annual soil-CO{sub 2} fluxes correlated with mean annual temperature, with a slope of 3.3 PgCY{sup -1} per degree Celsius. Although the distribution of precipitation influences seasonal and spatial patterns of soil-CO{sub 2} emissions, global warming is likely to stimulate CO{sub 2} emissions from soils.« less
A methodology for probabilistic assessment of solar thermal power plants yield
NASA Astrophysics Data System (ADS)
Fernández-Peruchena, Carlos M.; Lara-Faneho, Vicente; Ramírez, Lourdes; Zarzalejo, Luis F.; Silva, Manuel; Bermejo, Diego; Gastón, Martín; Moreno, Sara; Pulgar, Jesús; Pavon, Manuel; Macías, Sergio; Valenzuela, Rita X.
2017-06-01
A detailed knowledge of the solar resource is a critical point to perform an economic feasibility analysis of Concentrating Solar Power (CSP) plants. This knowledge must include its magnitude (how much solar energy is available at an area of interest over a long time period), and its variability over time. In particular, DNI inter-annual variations may be large, increasing the return of investment risk in CSP plant projects. This risk is typically evaluated by means of the simulation of the energy delivered by the CSP plant during years with low solar irradiation, which are typically characterized by annual solar radiation datasets with high probability of exceedance of their annual DNI values. In this context, this paper proposes the use meteorological years representative of a given probability of exceedance of annual DNI in order to realistically assess the inter-annual variability of energy yields. The performance of this approach is evaluated in the location of Burns station (University of Oregon Solar Radiation Monitoring Laboratory), where a 34-year (from 1980 to 2013) measured data set of solar irradiance and temperature is available.
On the interannual oscillations in the northern temperate total ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krzyscin, J.W.
1994-07-01
The interannual variations in total ozone are studied using revised Dobson total ozone records (1961-1990) from 17 stations located within the latitude band 30 deg N - 60 deg N. To obtain the quasi-biennial oscillation (QBO), El Nino-Southern Oscillation (ENSO), and 11-year solar cycle manifestation in the `northern temperate` total ozone data, various multiple regression models are constructed by the least squares fitting to the observed ozone. The statistical relationships between the selected indices of the atmospheric variabilities and total ozone are described in the linear and nonlinear regression models. Nonlinear relationships to the predictor variables are found. That is,more » the total ozone variations are statistically modeled by nonlinear terms accounting for the coupling between QBO and ENSO, QBO and solar activity, and ENSO and solar activity. It is suggested that large reduction of total ozone values over the `northern temperate` region occurs in cold season when a strong ENSO warm event meets the west phase of the QBO during the period of high solar activity.« less
NASA Astrophysics Data System (ADS)
Hopkins, J.; Balch, W. M.; Henson, S.; Poulton, A. J.; Drapeau, D.; Bowler, B.; Lubelczyk, L.
2016-02-01
Coccolithophores, the single celled phytoplankton that produce an outer covering of calcium carbonate coccoliths, are considered to be the greatest contributors to the global oceanic particulate inorganic carbon (PIC) pool. The reflective coccoliths scatter light back out from the ocean surface, enabling PIC concentration to be quantitatively estimated from ocean color satellites. Here we use datasets of AQUA MODIS PIC concentration from 2003-2014 (using the recently-revised PIC algorithm), as well as statistics on coccolithophore vertical distribution derived from cruises throughout the world ocean, to estimate the average global (surface and integrated) PIC standing stock and its associated inter-annual variability. In addition, we divide the global ocean into Longhurst biogeochemical provinces, update the PIC biomass statistics and identify those regions that have the greatest inter-annual variability and thus may exert the greatest influence on global PIC standing stock and the alkalinity pump.
2013-09-30
Circulation (HC) in terms of the meridional streamfunction. The interannual variability of the Atlantic HC in boreal summer was examined using the EOF...large-scale circulations in the NAVGEM model and the source of predictability for the seasonal variation of the Atlantic TCs. We have been working...EOF analysis of Meridional Circulation (JAS). (a) The leading mode (M1); (b) variance explained by the first 10 modes. 9
NASA Technical Reports Server (NTRS)
Jin, Zhonghai; Wielicki, Bruce A.; Loukachine, Constantin; Charlock, Thomas P.; Young, David; Noeel, Stefan
2011-01-01
The radiative kernel approach provides a simple way to separate the radiative response to different climate parameters and to decompose the feedback into radiative and climate response components. Using CERES/MODIS/Geostationary data, we calculated and analyzed the solar spectral reflectance kernels for various climate parameters on zonal, regional, and global spatial scales. The kernel linearity is tested. Errors in the kernel due to nonlinearity can vary strongly depending on climate parameter, wavelength, surface, and solar elevation; they are large in some absorption bands for some parameters but are negligible in most conditions. The spectral kernels are used to calculate the radiative responses to different climate parameter changes in different latitudes. The results show that the radiative response in high latitudes is sensitive to the coverage of snow and sea ice. The radiative response in low latitudes is contributed mainly by cloud property changes, especially cloud fraction and optical depth. The large cloud height effect is confined to absorption bands, while the cloud particle size effect is found mainly in the near infrared. The kernel approach, which is based on calculations using CERES retrievals, is then tested by direct comparison with spectral measurements from Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) (a different instrument on a different spacecraft). The monthly mean interannual variability of spectral reflectance based on the kernel technique is consistent with satellite observations over the ocean, but not over land, where both model and data have large uncertainty. RMS errors in kernel ]derived monthly global mean reflectance over the ocean compared to observations are about 0.001, and the sampling error is likely a major component.
Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T
2014-01-01
Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001–2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001–2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Key Points Wildland, cropland, and prescribed fires had different trends and patterns Sensitivity to climate varied with fire type Intensity of air quality regulation influenced cropland burning trends PMID:26213662
Lin, Hsiao-Wen; McCarty, Jessica L; Wang, Dongdong; Rogers, Brendan M; Morton, Douglas C; Collatz, G James; Jin, Yufang; Randerson, James T
2014-04-01
Fires in croplands, plantations, and rangelands contribute significantly to fire emissions in the United States, yet are often overshadowed by wildland fires in efforts to develop inventories or estimate responses to climate change. Here we quantified decadal trends, interannual variability, and seasonality of Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations of active fires (thermal anomalies) as a function of management type in the contiguous U.S. during 2001-2010. We used the Monitoring Trends in Burn Severity database to identify active fires within the perimeter of large wildland fires and land cover maps to identify active fires in croplands. A third class of fires defined as prescribed/other included all residual satellite active fire detections. Large wildland fires were the most variable of all three fire types and had no significant annual trend in the contiguous U.S. during 2001-2010. Active fires in croplands, in contrast, increased at a rate of 3.4% per year. Cropland and prescribed/other fire types combined were responsible for 77% of the total active fire detections within the U.S and were most abundant in the south and southeast. In the west, cropland active fires decreased at a rate of 5.9% per year, likely in response to intensive air quality policies. Potential evaporation was a dominant regulator of the interannual variability of large wildland fires, but had a weaker influence on the other two fire types. Our analysis suggests it may be possible to modify landscape fire emissions within the U.S. by influencing the way fires are used in managed ecosystems. Wildland, cropland, and prescribed fires had different trends and patternsSensitivity to climate varied with fire typeIntensity of air quality regulation influenced cropland burning trends.
NASA Astrophysics Data System (ADS)
Blanco, E. L.; Lund, M.; Williams, M. D.; Christensen, T. R.; Tamstorf, M. P.
2015-12-01
An improvement in our process-based understanding of CO2 exchanges in the Arctic, and their climate sensitivity, is critical for examining the role of tundra ecosystems in changing climates. Arctic organic carbon storage has seen increased attention in recent years due to large potential for carbon releases following thaw. Our knowledge about the exact scale and sensitivity for a phase-change of these C stocks are, however, limited. Minor variations in Gross Primary Production (GPP) and Ecosystem Respiration (Reco) driven by changes in the climate can lead to either C sink or C source states, which likely will impact the overall C cycle of the ecosystem. Eddy covariance data is usually used to partition Net Ecosystem Exchange (NEE) into GPP and Reco achieved by flux separation algorithms. However, different partitioning approaches lead to different estimates. as well as undefined uncertainties. The main objectives of this study are to use model-data fusion approaches to (1) determine the inter-annual variability in C source/sink strength for an Arctic fen, and attribute such variations to GPP vs Reco, (2) investigate the climate sensitivity of these processes and (3) explore the uncertainties in NEE partitioning. The intention is to elaborate on the information gathered in an existing catchment area under an extensive cross-disciplinary ecological monitoring program in low Arctic West Greenland, established under the auspices of the Greenland Ecosystem Monitoring (GEM) program. The use of such a thorough long-term (7 years) dataset applied to the exploration in inter-annual variability of carbon exchange, related driving factors and NEE partition uncertainties provides a novel input into our understanding about land-atmosphere CO2 exchange.
Variations in atmospheric CO2 growth rates coupled with tropical temperature
Wang, Weile; Ciais, Philippe; Nemani, Ramakrishna R.; Canadell, Josep G.; Piao, Shilong; Sitch, Stephen; White, Michael A.; Hashimoto, Hirofumi; Milesi, Cristina; Myneni, Ranga B.
2013-01-01
Previous studies have highlighted the occurrence and intensity of El Niño–Southern Oscillation as important drivers of the interannual variability of the atmospheric CO2 growth rate, but the underlying biogeophysical mechanisms governing such connections remain unclear. Here we show a strong and persistent coupling (r2 ≈ 0.50) between interannual variations of the CO2 growth rate and tropical land–surface air temperature during 1959 to 2011, with a 1 °C tropical temperature anomaly leading to a 3.5 ± 0.6 Petagrams of carbon per year (PgC/y) CO2 growth-rate anomaly on average. Analysis of simulation results from Dynamic Global Vegetation Models suggests that this temperature–CO2 coupling is contributed mainly by the additive responses of heterotrophic respiration (Rh) and net primary production (NPP) to temperature variations in tropical ecosystems. However, we find a weaker and less consistent (r2 ≈ 0.25) interannual coupling between CO2 growth rate and tropical land precipitation than diagnosed from the Dynamic Global Vegetation Models, likely resulting from the subtractive responses of tropical Rh and NPP to precipitation anomalies that partly offset each other in the net ecosystem exchange (i.e., net ecosystem exchange ≈ Rh − NPP). Variations in other climate variables (e.g., large-scale cloudiness) and natural disturbances (e.g., volcanic eruptions) may induce transient reductions in the temperature–CO2 coupling, but the relationship is robust during the past 50 y and shows full recovery within a few years after any such major variability event. Therefore, it provides an important diagnostic tool for improved understanding of the contemporary and future global carbon cycle. PMID:23884654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilderson, T.P.; Schrag, D.P.; Kashgarian, M.
1998-10-01
We have generated a high resolution coral {Delta}{sup 14}C record spanning the last 50 years to document the seasonal and interannual redistribution of surface waters in the western tropical Pacific. Prebomb (1947{endash}1956) {Delta}{sup 14}C values average {minus}63{per_thousand} and have a total range of 30{per_thousand}. Values begin to increase in 1957, reaching a maximum of 137{per_thousand} in mid-1983. Large interannual variability of up to 80{per_thousand} closely follows the El Ni{tilde n}o-Southern Oscillation (ENSO). During each ENSO warm phase, {Delta}{sup 14}C values begin to increase, reflecting the reduction of low-{sup 14}C water upwelling in the east and the invasion of subtropical watermore » into the western equatorial tropical Pacific. Maximum {Delta}{sup 14}C values are in phase or lag the corresponding sea surface temperature maxima in the eastern tropical Pacific, whereas the rapid return to more negative {Delta}{sup 14}C is in phase with eastern Pacific ENSO indices. The highest-amplitude excursions occur during the 1965/1966 and 1972/1973 events, when the {sup 14}C contrast is highest between the eastern Pacific and subtropics. The 1982/1983 El Ni{tilde n}o, although a larger ENSO event, has a lower {Delta}{sup 14}C amplitude, reflecting the penetration of bomb radiocarbon into the equatorial undercurrent and the reduced contrast in {Delta}{sup 14}C between thermocline and subtropical surface waters at that time. This coral record demonstrates the potential for using similar radiocarbon time series for documenting variability in Pacific shallow circulation over interannual and decadal timescales. {copyright} 1998 American Geophysical Union« less
NASA Technical Reports Server (NTRS)
Perovich, Donald K.; Nghiem, Son V.; Markus, Thorsten; Schwieger, Axel
2007-01-01
The melt season of the Arctic sea ice cover is greatly affected by the partitioning of the incident solar radiation between reflection to the atmosphere and absorption in the ice and ocean. This partitioning exhibits a strong seasonal cycle and significant interannual variability. Data in the period 1998, 2000-2004 were analyzed in this study. Observations made during the 1997-1998 SHEBA (Surface HEat Budget of the Arctic Ocean) field experiment showed a strong seasonal dependence of the partitioning, dominated by a five-phase albedo evolution. QuikSCAT scatterometer data from the SHEBA region in 1999-2004 were used to further investigate solar partitioning in summer. The time series of scatterometer data were used to determine the onset of melt and the beginning of freezeup. This information was combined with SSM/I-derived ice concentration, TOVS-based estimates of incident solar irradiance, and SHEBA results to estimate the amount of solar energy absorbed in the ice-ocean system for these years. The average total solar energy absorbed in the ice-ocean system from April through September was 900 MJ m(sup -2). There was considerable interannual variability, with a range of 826 to 1044 MJ m(sup -2). The total amount of solar energy absorbed by the ice and ocean was strongly related to the date of melt onset, but only weakly related to the total duration of the melt season or the onset of freezeup. The timing of melt onset is significant because the incident solar energy is large and a change at this time propagates through the entire melt season, affecting the albedo every day throughout melt and freezeup.
Antarctic Ice Mass Balance from GRACE
NASA Astrophysics Data System (ADS)
Boening, C.; Firing, Y. L.; Wiese, D. N.; Watkins, M. M.; Schlegel, N.; Larour, E. Y.
2014-12-01
The Antarctic ice mass balance and rates of change of ice mass over the past decade are analyzed based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellites, in the form of JPL RL05M mascon solutions. Surface mass balance (SMB) fluxes from ERA-Interim and other atmospheric reanalyses successfully account for the seasonal GRACE-measured mass variability, and explain 70-80% of the continent-wide mass variance at interannual time scales. Trends in the residual (GRACE mass - SMB accumulation) mass time series in different Antarctic drainage basins are consistent with time-mean ice discharge rates based on radar-derived ice velocities and thicknesses. GRACE also resolves accelerations in regional ice mass change rates, including increasing rates of mass gain in East Antarctica and accelerating ice mass loss in West Antarctica. The observed East Antarctic mass gain is only partially explained by anomalously large SMB events in the second half of the record, potentially implying that ice discharge rates are also decreasing in this region. Most of the increasing mass loss rate in West Antarctica, meanwhile, is explained by decreasing SMB (principally precipitation) over this time period, part of the characteristic decadal variability in regional SMB. The residual acceleration of 2+/-1 Gt/yr, which is concentrated in the Amundsen Sea Embayment (ASE) basins, represents the contribution from increasing ice discharge rates. An Ice Sheet System Model (ISSM) run with constant ocean forcing and stationary grounding lines both underpredicts the largest trends in the ASE and produces negligible acceleration or interannual variability in discharge, highlighting the potential importance of ocean forcing for setting ice discharge rates at interannual to decadal time scales.
NASA Astrophysics Data System (ADS)
Ane Dionizio, Emily; Heil Costa, Marcos; de Almeida Castanho, Andrea D.; Ferreira Pires, Gabrielle; Schwantes Marimon, Beatriz; Hur Marimon-Junior, Ben; Lenza, Eddie; Martins Pimenta, Fernando; Yang, Xiaojuan; Jain, Atul K.
2018-02-01
Climate, fire and soil nutrient limitation are important elements that affect vegetation dynamics in areas of the forest-savanna transition. In this paper, we use the dynamic vegetation model INLAND to evaluate the influence of interannual climate variability, fire and phosphorus (P) limitation on Amazon-Cerrado transitional vegetation structure and dynamics. We assess how each environmental factor affects net primary production, leaf area index and aboveground biomass (AGB), and compare the AGB simulations to an observed AGB map. We used two climate data sets (monthly average climate for 1961-1990 and interannual climate variability for 1948-2008), two data sets of total soil P content (one based on regional field measurements and one based on global data), and the INLAND fire module. Our results show that the inclusion of interannual climate variability, P limitation and fire occurrence each contribute to simulating vegetation types that more closely match observations. These effects are spatially heterogeneous and synergistic. In terms of magnitude, the effect of fire is strongest and is the main driver of vegetation changes along the transition. Phosphorus limitation, in turn, has a stronger effect on transitional ecosystem dynamics than interannual climate variability does. Overall, INLAND typically simulates more than 80 % of the AGB variability in the transition zone. However, the AGB in many places is clearly not well simulated, indicating that important soil and physiological factors in the Amazon-Cerrado border region, such as lithology, water table depth, carbon allocation strategies and mortality rates, still need to be included in the model.
Trenkel, Verena M.; Daurès, Fabienne; Rochet, Marie-Joëlle; Lorance, Pascal
2013-01-01
According to portfolio theory applied to fisheries management, economic returns are stabilised by harvesting in a portfolio stocks of species whose returns are negatively correlated and for which the portfolio economic return variance is smaller than the sum of stock specific return variances. Also, variability is expected to decrease with portfolio width. Using a range of indicators, these predictions were tested for the French fishing fleets in the Bay of Biscay (Northeast Atlantic) during the period 2001–2009. For this, vessels were grouped into eight fishing fleets based on the gears used and exploited species were grouped into five functional groups. The portfolio width of fleets ranged from 1–3 functional groups, or 4–19 species. Economic fleet returns (sale revenues minus fishing costs) varied strongly between years; the interannual variability was independent of portfolio width (species or functional groups). Energy ratio expressed by the ratio between fuel energy used for fishing and energy contained in landings varied from 0.3 for purse seines to 9.7 for trawlers using bottom trawls alone or in combination with pelagic trawls independent of portfolio width. Interannual variability in total sale revenues was larger than the sum of species specific sales revenue variability, except for fleets using hooks and pelagic trawlers; it increased with the number of species exploited. In conclusion, the interannual variability of economic returns or energy ratios of French fisheries in the Bay of Biscay did not decrease with the number of species or functional groups exploited, though it varied between fleets. PMID:23922951
NASA Astrophysics Data System (ADS)
Gonsamo, Alemu; Chen, Jing M.; Shindell, Drew T.; Asner, Gregory P.
2016-08-01
A lack of long-term measurements across Earth's biological and physical systems has made observation-based detection and attribution of climate change impacts to anthropogenic forcing and natural variability difficult. Here we explore coherence among land, cryosphere and ocean responses to recent climate change using 3 decades (1980-2012) of observational satellite and field data throughout the Northern Hemisphere. Our results show coherent interannual variability among snow cover, spring phenology, solar radiation, Scandinavian Pattern, and North Atlantic Oscillation. The interannual variability of the atmospheric peak-to-trough CO2 amplitude is mostly impacted by temperature-mediated effects of El Niño/Southern Oscillation (ENSO) and Pacific/North American Pattern (PNA), whereas CO2 concentration is affected by Polar Pattern control on sea ice extent dynamics. This is assuming the trend in anthropogenic CO2 emission remains constant, or the interannual changes in the trends are negligible. Our analysis suggests that sea ice decline-related CO2 release may outweigh increased CO2 uptake through longer growing seasons and higher temperatures. The direct effects of variation in solar radiation and leading teleconnections, at least in part via their impacts on temperature, dominate the interannual variability of land, cryosphere and ocean indicators. Our results reveal a coherent long-term changes in multiple physical and biological systems that are consistent with anthropogenic forcing of Earth's climate and inconsistent with natural drivers.
NASA Astrophysics Data System (ADS)
Chen, M.; Keenan, T. F.; Hufkens, K.; Munger, J. W.; Bohrer, G.; Brzostek, E. R.; Richardson, A. D.
2014-12-01
Carbon dynamics in terrestrial ecosystems are influenced by both abiotic and biotic factors. Abiotic factors, such as variation in meteorological conditions, directly drive biophysical and biogeochemical processes; biotic factors, referring to the inherent properties of the ecosystem components, reflect the internal regulating effects including temporal dynamics and memory. The magnitude of the effect of abiotic and biotic factors on forest ecosystem carbon exchange has been suggested to vary at different time scales. In this study, we design and conduct a model-data fusion experiment to investigate the role and relative importance of the biotic and abiotic factors for inter-annual variability of the net ecosystem CO2 exchange (NEE) of temperate deciduous forest ecosystems in the Northeastern US. A process-based model (FöBAAR) is parameterized at four eddy-covariance sites using all available flux and biometric measurements. We conducted a "transplant" modeling experiment, that is, cross- site and parameter simulations with different combinations of site meteorology and parameters. Using wavelet analysis and variance partitioning techniques, analysis of model predictions identifies both spatial variant and spatially invariant parameters. Variability of NEE was primarily modulated by gross primary productivity (GPP), with relative contributions varying from hourly to yearly time scales. The inter-annual variability of GPP and NEE is more regulated by meteorological forcing, but spatial variability in certain model parameters (biotic response) has more substantial effects on the inter-annual variability of ecosystem respiration (Reco) through the effects on carbon pools. Both the biotic and abiotic factors play significant roles in modulating the spatial and temporal variability in terrestrial carbon cycling in the region. Together, our study quantifies the relative importance of both, and calls for better understanding of them to better predict regional CO2 exchanges.
Interannual to Decadal SST Variability in the Tropical Indian Ocean
NASA Astrophysics Data System (ADS)
Wang, G.; Newman, M.; Han, W.
2017-12-01
The Indian Ocean has received increasing attention in recent years for its large impacts on regional and global climate. However, due mainly to the close interdependence of the climate variation within the Tropical Pacific and the Indian Ocean, the internal sea surface temperature (SST) variability within the Indian Ocean has not been studied extensively on longer time scales. In this presentation we will show analysis of the interannual to decadal SST variability in the Tropical Indian Ocean in observations and Linear Inverse Model (LIM) results. We also compare the decoupled Indian Ocean SST variability from the Pacific against fully coupled one based on LIM integrations, to test the factors influence the features of the leading SST modes in the Indian Ocean. The result shows the Indian Ocean Basin (IOB) mode, which is strongly related to global averaged SST variability, passively responses to the Pacific variation. Without tropical Indo-Pacific coupling interaction, the intensity of IOB significantly decreases by 80%. The Indian Ocean Dipole (IOD) mode demonstrates its independence from the Pacific SST variability since the IOD does not change its long-term characteristics at all without inter-basin interactions. The overall SSTA variance decreases significantly in the Tropical Indian Ocean in the coupling restricted LIM runs, especially when the one-way impact from the Pacific to the Indian Ocean is turned off, suggesting that most of the variability in the Indian Ocean comes from the Pacific influence. On the other hand, the Indian Ocean could also transport anomalies to the Pacific, making the interaction a complete two-way process.
NASA Astrophysics Data System (ADS)
Wen, Tzai-Hung; Chen, Tzu-Hsin
2017-04-01
Dengue fever is one of potentially life-threatening mosquito-borne diseases and IPCC Fifth Assessment Report (AR5) has confirmed that dengue incidence is sensitive to the critical weather conditions, such as effects of temperature. However, previous literature focused on the effects of monthly or weekly average temperature or accumulative precipitation on dengue incidence. The influence of intra- and inter-annual meteorological variability on dengue outbreak is under investigated. The purpose of the study focuses on measuring the effect of the intra- and inter-annual variations of temperature and precipitation on dengue outbreaks. We developed the indices of intra-annual temperature variability are maximum continuity, intermittent, and accumulation of most suitable temperature (MST) for dengue vectors; and also the indices of intra-annual precipitation variability, including the measure of continuity of wetness or dryness during a pre-epidemic period; and rainfall intensity during an epidemic period. We used multi-level modeling to investigate the intra- and inter-annual meteorological variations on dengue outbreaks in southern Taiwan from 1998-2015. Our results indicate that accumulation and maximum continuity of MST are more significant than average temperature on dengue outbreaks. The effect of continuity of wetness during the pre-epidemic period is significantly more positive on promoting dengue outbreaks than the rainfall effect during the epidemic period. Meanwhile, extremely high or low rainfall density during an epidemic period do not promote the spread of dengue epidemics. Our study differentiates the effects of intra- and inter-annual meteorological variations on dengue outbreaks and also provides policy implications for further dengue control under the threats of climate change. Keywords: dengue fever, meteorological variations, multi-level model
NASA Astrophysics Data System (ADS)
Severine, A.; Cyril, M.; Yves, D.; Laurent, B.; Hubert, L.
2006-12-01
The fate of fixed organic carbon in the ocean strongly varies with the phytoplankton group that makes photosynthesis. The monitoring of phytoplankton groups in the global ocean is thus of primary importance to evaluate and improve ocean carbon models. A new method (PHYSAT; Alvain et al., 2005) enables to distinguish between four different groups from space using SeaWiFS ocean color measurements. In addition to these four initial phytoplankton groups, which are diatoms, Prochlorococcus, Synecochoccus and haptophytes, we show that PHYSAT is also capable of identifying blooms of phaeocystis and coccolithophorids. Daily global SeaWiFS level-3 data from September 1997 to December 2004 were processed using PHYSAT. We present here the first monthly mean global climatology of the dominant phytoplankton groups. The seasonal cycle is discussed, with particular emphasis on the succession of phytoplankton groups during the North Atlantic spring bloom and on the coexistence of large phaeocystis and diatoms blooms during winter in the Austral Ocean. We also present the inter-annual variability for the 1998-2004 period. The contribution of diatoms to the total chlorophyll is highly variable (up to a factor of two) from one year to the other in both Atlantic and Austral Oceans, suggesting a significant variability in organic carbon export by diatoms in these regions. On the opposite, the phaeocystis contribution is less variable in the Austral Ocean.
Internal and forced eddy variability in the Labrador Sea
NASA Astrophysics Data System (ADS)
Bracco, A.; Luo, H.; Zhong, Y.; Lilly, J.
2009-04-01
Water mass transformation in the Labrador Sea, widely believed to be one of the key regions in the Atlantic Meridional Overturning Circulation (AMOC), now appears to be strongly impacted by vortex dynamics of the unstable boundary current. Large interannual variations in both eddy shedding and buoyancy transport from the boundary current have been observed but not explained, and are apparently sensitive to the state of the inflowing current. Heat and salinity fluxes associated with the eddies drive ventilation changes not accounted for by changes in local surface forcing, particularly during occasional years of extreme eddy activity, and constitute a predominant source of "internal" oceanic variability. The nature of this variable eddy-driven restratification is one of the outstanding questions along the northern transformation pathway. Here we investigate the eddy generation mechanism and the associated buoyancy fluxes by combining realistic and idealized numerical modeling, data analysis, and theory. Theory, supported by idealized experiments, provides criteria to test hypotheses as to the vortex formation process (by baroclinic instability linked to the bottom topography). Ensembles of numerical experiments with a high-resolution regional model (ROMS) allow for quantifying the sensitivity of eddy generation and property transport to variations in local and external forcing parameters. For the first time, we reproduce with a numerical simulation the observed interannual variability in the eddy kinetic energy in the convective region of the Labrador Basin and along the West Greenland Current.
An assessment of precipitation and surface air temperature over China by regional climate models
NASA Astrophysics Data System (ADS)
Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu
2016-12-01
An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.
Using altimetry to help explain patchy changes in hydrographic carbon measurements
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Key, Robert M.; Gnanadesikan, Anand; Sarmiento, Jorge L.; Aumont, Olivier; Bopp, Laurent; Doney, Scott C.; Dunne, John P.; Glover, David M.; Ishida, Akio; Ishii, Masao; Jacobson, Andrew R.; Lo Monaco, Claire; Maier-Reimer, Ernst; Mercier, Herlé; Metzl, Nicolas; PéRez, Fiz F.; Rios, Aida F.; Wanninkhof, Rik; Wetzel, Patrick; Winn, Christopher D.; Yamanaka, Yasuhiro
2009-09-01
Here we use observations and ocean models to identify mechanisms driving large seasonal to interannual variations in dissolved inorganic carbon (DIC) and dissolved oxygen (O2) in the upper ocean. We begin with observations linking variations in upper ocean DIC and O2 inventories with changes in the physical state of the ocean. Models are subsequently used to address the extent to which the relationships derived from short-timescale (6 months to 2 years) repeat measurements are representative of variations over larger spatial and temporal scales. The main new result is that convergence and divergence (column stretching) attributed to baroclinic Rossby waves can make a first-order contribution to DIC and O2 variability in the upper ocean. This results in a close correspondence between natural variations in DIC and O2 column inventory variations and sea surface height (SSH) variations over much of the ocean. Oceanic Rossby wave activity is an intrinsic part of the natural variability in the climate system and is elevated even in the absence of significant interannual variability in climate mode indices. The close correspondence between SSH and both DIC and O2 column inventories for many regions suggests that SSH changes (inferred from satellite altimetry) may prove useful in reducing uncertainty in separating natural and anthropogenic DIC signals (using measurements from Climate Variability and Predictability's CO2/Repeat Hydrography program).
Sierra, Carlos A; Loescher, Henry W; Harmon, Mark E; Richardson, Andrew D; Hollinger, David Y; Perakis, Steven S
2009-10-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed approximately 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data.
NASA Astrophysics Data System (ADS)
Liu, Jiping; Zhang, Zhanhai; Hu, Yongyun; Chen, Liqi; Dai, Yongjiu; Ren, Xiaobo
2008-05-01
The surface air temperature (SAT) over the Arctic Ocean in reanalyses and global climate model simulations was assessed using the International Arctic Buoy Programme/Polar Exchange at the Sea Surface (IABP/POLES) observations for the period 1979-1999. The reanalyses, including the National Centers for Environmental Prediction Reanalysis II (NCEP2) and European Centre for Medium-Range Weather Forecast 40-year Reanalysis (ERA40), show encouraging agreement with the IABP/POLES observations, although some spatiotemporal discrepancies are noteworthy. The reanalyses have warm annual mean biases and underestimate the observed interannual SAT variability in summer. Additionally, NCEP2 shows an excessive warming trend. Most model simulations (coordinated by the International Panel on Climate Change for its Fourth Assessment Report) reproduce the annual mean, seasonal cycle, and trend of the observed SAT reasonably well, particularly the multi-model ensemble mean. However, large discrepancies are found. Some models have the annual mean SAT biases far exceeding the standard deviation of the observed interannul SAT variability and the across-model standard deviation. Spatially, the largest inter-model variance of the annual mean SAT is found over the North Pole, Greenland Sea, Barents Sea and Baffin Bay. Seasonally, a large spread of the simulated SAT among the models is found in winter. The models show interannual variability and decadal trend of various amplitudes, and can not capture the observed dominant SAT mode variability and cooling trend in winter. Further discussions of the possible attributions to the identified SAT errors for some models suggest that the model's performance in the sea ice simulation is an important factor.
NASA Astrophysics Data System (ADS)
Fiechter, J.; Rose, K.; Curchitser, E. N.; Huckstadt, L. A.; Costa, D. P.; Hedstrom, K.
2016-12-01
A fully coupled ecosystem model is used to describe the impact of regional and climate variability on changes in abundance and distribution of forage fish and apex predators in the California Current Large Marine Ecosystem. The ecosystem model consists of a biogeochemical submodel (NEMURO) embedded in a regional ocean circulation submodel (ROMS), and both coupled with a multi-species individual-based submodel for two forage fish species (sardine and anchovy) and one apex predator (California sea lion). Sardine and anchovy are specifically included in the model as they exhibit significant interannual and decadal variability in population abundances, and are commonly found in the diet of California sea lions. Output from the model demonstrates how regional-scale (i.e., upwelling intensity) and basin-scale (i.e., PDO and ENSO signals) physical processes control species distributions and predator-prey interactions on interannual time scales. The results also illustrate how variability in environmental conditions leads to the formation of seasonal hotspots where prey and predator spatially overlap. While specifically focused on sardine, anchovy and sea lions, the modeling framework presented here can provide new insights into the physical and biological mechanisms controlling trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.
Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie
2016-01-01
Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. PMID:28003452
Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C
2017-11-01
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Keyser, Alisa; Westerling, Anthony LeRoy
2017-05-01
A long history of fire suppression in the western United States has significantly changed forest structure and ecological function, leading to increasingly uncharacteristic fires in terms of size and severity. Prior analyses of fire severity in California forests showed that time since last fire and fire weather conditions predicted fire severity very well, while a larger regional analysis showed that topography and climate were important predictors of high severity fire. There has not yet been a large-scale study that incorporates topography, vegetation and fire-year climate to determine regional scale high severity fire occurrence. We developed models to predict the probability of high severity fire occurrence for the western US. We predict high severity fire occurrence with some accuracy, and identify the relative importance of predictor classes in determining the probability of high severity fire. The inclusion of both vegetation and fire-year climate predictors was critical for model skill in identifying fires with high fractional fire severity. The inclusion of fire-year climate variables allows this model to forecast inter-annual variability in areas at future risk of high severity fire, beyond what slower-changing fuel conditions alone can accomplish. This allows for more targeted land management, including resource allocation for fuels reduction treatments to decrease the risk of high severity fire.
Bichet, Coraline; Allainé, Dominique; Sauzet, Sandrine; Cohas, Aurélie
2016-12-28
Despite being identified an area that is poorly understood regarding the effects of climate change, behavioural responses to climatic variability are seldom explored. Climatic variability is likely to cause large inter-annual variation in the frequency of extra-pair litters produced, a widespread alternative mating tactic to help prevent, correct or minimize the negative consequences of sub-optimal mate choice. In this study, we investigated how climatic variability affects the inter-annual variation in the proportion of extra-pair litters in a wild population of Alpine marmots. During 22 years of monitoring, the annual proportion of extra-pair litters directly increased with the onset of earlier springs and indirectly with increased snow in winters. Snowier winters resulted in a higher proportion of families with sexually mature male subordinates and thus, created a social context within which extra-pair paternity was favoured. Earlier spring snowmelt could create this pattern by relaxing energetic, movement and time constraints. Further, deeper snow in winter could also contribute by increasing litter size and juvenile survival. Optimal mate choice is particularly relevant to generate adaptive genetic diversity. Understanding the influence of environmental conditions and the capacity of the individuals to cope with them is crucial within the context of rapid climate change. © 2016 The Author(s).
Interannual SST Variability in the Japan/East Sea and Relationship with Environmental Variables
2006-01-01
Soya Strait (SS), and Tartar Strait (TTS). (b) Regional geography. Interannual SST Variability in the Japan/East Sea 117 200 interruptions due to...caused by differential seasonal forcing. During the summer strong solar radiation penetrates into the entire Longitude(oE) La tit ud e( o N ) 50 50 100...1988.6 1988.8 1989 1989.2 1989.4 1989.6 1989.8 1990 1990.2 -3 -2 -1 0 1 2 3 Time(year) Te m pe ra tu re (o C ) Longitude(oE) La tit ud e( o N ) (a) 5
NASA Astrophysics Data System (ADS)
MacBean, N.; Scott, R. L.; Biederman, J. A.; Vuichard, N.; Hudson, A.; Barnes, M.; Fox, A. M.; Smith, W. K.; Peylin, P. P.; Maignan, F.; Moore, D. J.
2017-12-01
Recent studies based on analysis of atmospheric CO2 inversions, satellite data and terrestrial biosphere model simulations have suggested that semi-arid ecosystems play a dominant role in the interannual variability and long-term trend in the global carbon sink. These studies have largely cited the response of vegetation activity to changing moisture availability as the primary mechanism of variability. However, some land surface models (LSMs) used in these studies have performed poorly in comparison to satellite-based observations of vegetation dynamics in semi-arid regions. Further analysis is therefore needed to ensure semi-arid carbon cycle processes are well represented in global scale LSMs before we can fully establish their contribution to the global carbon cycle. In this study, we evaluated annual net ecosystem exchange (NEE) simulated by CMIP5 land surface models using observations from 20 Ameriflux sites across semi-arid southwestern North America. We found that CMIP5 models systematically underestimate the magnitude and sign of NEE inter-annual variability; therefore, the true role of semi-arid regions in the global carbon cycle may be even more important than previously thought. To diagnose the factors responsible for this bias, we used the ORCHIDEE LSM to test different climate forcing data, prescribed vegetation fractions and model structures. Climate and prescribed vegetation do contribute to uncertainty in annual NEE simulations, but the bias is primarily caused by incorrect timing and magnitude of peak gross carbon fluxes. Modifications to the hydrology scheme improved simulations of soil moisture in comparison to data. This in turn improved the seasonal cycle of carbon uptake due to a more realistic limitation on photosynthesis during water stress. However, the peak fluxes are still too low, and phenology is poorly represented for desert shrubs and grasses. We provide suggestions on model developments needed to tackle these issues in the future.
Girardin, Martin P; Hogg, Edward H; Bernier, Pierre Y; Kurz, Werner A; Guo, Xiao Jing; Cyr, Guillaume
2016-02-01
An increasing number of studies conclude that water limitations and heat stress may hinder the capacity of black spruce (Picea mariana (Mill.) B.S.P.) trees, a dominant species of Canada's boreal forests, to grow and assimilate atmospheric carbon. However, there is currently no scientific consensus on the future of these forests over the next century in the context of widespread climate warming. The large spatial extent of black spruce forests across the Canadian boreal forest and associated variability in climate, demography, and site conditions pose challenges for projecting future climate change responses. Here we provide an evaluation of the impacts of climate warming and drying, as well as increasing [CO2 ], on the aboveground productivity of black spruce forests across Canada south of 60°N for the period 1971 to 2100. We use a new extensive network of tree-ring data obtained from Canada's National Forest Inventory, spatially explicit simulations of net primary productivity (NPP) and its drivers, and multivariate statistical modeling. We found that soil water availability is a significant driver of black spruce interannual variability in productivity across broad areas of the western to eastern Canadian boreal forest. Interannual variability in productivity was also found to be driven by autotrophic respiration in the warmest regions. In most regions, the impacts of soil water availability and respiration on interannual variability in productivity occurred during the phase of carbohydrate accumulation the year preceding tree-ring formation. Results from projections suggest an increase in the importance of soil water availability and respiration as limiting factors on NPP over the next century due to warming, but this response may vary to the extent that other factors such as carbon dioxide fertilization, and respiration acclimation to high temperature, contribute to dampening these limitations. © 2015 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Natural Resources Canada.
Tagesson, Torbern; Fensholt, Rasmus; Guiro, Idrissa; Rasmussen, Mads Olander; Huber, Silvia; Mbow, Cheikh; Garcia, Monica; Horion, Stéphanie; Sandholt, Inge; Holm-Rasmussen, Bo; Göttsche, Frank M; Ridler, Marc-Etienne; Olén, Niklas; Lundegard Olsen, Jørgen; Ehammer, Andrea; Madsen, Mathias; Olesen, Folke S; Ardö, Jonas
2015-01-01
The Dahra field site in Senegal, West Africa, was established in 2002 to monitor ecosystem properties of semiarid savanna grassland and their responses to climatic and environmental change. This article describes the environment and the ecosystem properties of the site using a unique set of in situ data. The studied variables include hydroclimatic variables, species composition, albedo, normalized difference vegetation index (NDVI), hyperspectral characteristics (350-1800 nm), surface reflectance anisotropy, brightness temperature, fraction of absorbed photosynthetic active radiation (FAPAR), biomass, vegetation water content, and land-atmosphere exchanges of carbon (NEE) and energy. The Dahra field site experiences a typical Sahelian climate and is covered by coexisting trees (~3% canopy cover) and grass species, characterizing large parts of the Sahel. This makes the site suitable for investigating relationships between ecosystem properties and hydroclimatic variables for semiarid savanna ecosystems of the region. There were strong interannual, seasonal and diurnal dynamics in NEE, with high values of ~-7.5 g C m(-2) day(-1) during the peak of the growing season. We found neither browning nor greening NDVI trends from 2002 to 2012. Interannual variation in species composition was strongly related to rainfall distribution. NDVI and FAPAR were strongly related to species composition, especially for years dominated by the species Zornia glochidiata. This influence was not observed in interannual variation in biomass and vegetation productivity, thus challenging dryland productivity models based on remote sensing. Surface reflectance anisotropy (350-1800 nm) at the peak of the growing season varied strongly depending on wavelength and viewing angle thereby having implications for the design of remotely sensed spectral vegetation indices covering different wavelength regions. The presented time series of in situ data have great potential for dryland dynamics studies, global climate change related research and evaluation and parameterization of remote sensing products and dynamic vegetation models. © 2014 John Wiley & Sons Ltd.
Stable Carbon Isotopes in Treerings; Revisiting the Paleocloud Proxy.
NASA Astrophysics Data System (ADS)
Gagen, M.; Zorita, E.; Dorado Liñán, I.; Loader, N.; McCarroll, D.; Robertson, I.; Young, G.
2017-12-01
The long term relationship between cloud cover and temperature is one of the most important climate feedbacks contributing to determining the value of climate sensitivity. Climate models still reveal a large spread in the simulation of changes in cloud cover under future warming scenarios and clarity might be aided by a picture of the past variability of cloudiness. Stable carbon isotope ratios from tree ring records have been successfully piloted as a palaeocloud proxy in geographical areas traditionally producing strong dendroclimatological reconstructions (high northern latitudes in the Northern Hemisphere) and with some notable successes elsewhere too. An expansion of tree-ring based palaeocloud reconstructions might help to estimate past variations of cloud cover in periods colder or warmer than the 20th century, providing a way to test model test this specific aspect. Calibration with measured instrumental sunshine and cloud data reveals stable carbon isotope ratios from tree rings as an indicator of incoming short wave solar radiation (SWR) in non-moisture stressed sites, but the statistical identification of the SWR signal is hampered by its interannual co-variability with air temperature during the growing season. Here we present a spatio-temporal statistical analysis of a multivariate stable carbon isotope tree ring data set over Europe to assess its usefulness to reconstruct past solar radiation changes. The interannual co-variability of the tree ring records stronger covariation with SWR than with air temperature. The resulting spatial patterns of interannual co-variability are strongly linked to atmospheric circulation in a physically consistent manner. However, the multidecadal variations in the proxy records show a less physically coherent picture. We explore whether atmospheric corrections applied to the proxy series are contributing to differences in the multi decadal signal and investigate whether multidecadal variations in soil moisture perturb the SWR. Preliminary results of strategies to bypass these problems are explored.
Detection of carbon monoxide trends in the presence of interannual variability
NASA Astrophysics Data System (ADS)
Strode, Sarah A.; Pawson, Steven
2013-11-01
in fossil fuel emissions are a major driver of changes in atmospheric CO, but detection of trends in CO from anthropogenic sources is complicated by the presence of large interannual variability (IAV) in biomass burning. We use a multiyear model simulation of CO with year-specific biomass burning to predict the number of years needed to detect the impact of changes in Asian anthropogenic emissions on downwind regions. Our study includes two cases for changing anthropogenic emissions: a stepwise change of 15% and a linear trend of 3% yr-1. We first examine how well the model reproduces the observed IAV of CO over the North Pacific, since this variability impacts the time needed to detect significant anthropogenic trends. The modeled IAV over the North Pacific correlates well with that seen from the Measurements of Pollution in the Troposphere (MOPITT) instrument but underestimates the magnitude of the variability. The model predicts that a 3% yr-1 trend in Asian anthropogenic emissions would lead to a statistically significant trend in CO surface concentration in the western United States within 12 years, and accounting for Siberian boreal biomass-burning emissions greatly reduces the number of years needed for trend detection. Combining the modeled trend with the observed MOPITT variability at 500 hPa, we estimate that the 3% yr-1 trend could be detectable in satellite observations over Asia in approximately a decade. Our predicted timescales for trend detection highlight the importance of long-term measurements of CO from satellites.
NASA Astrophysics Data System (ADS)
Shimizu, K.; von Storch, J. S.; Haak, H.; Nakayama, K.; Marotzke, J.
2014-12-01
Surface wind stress is considered to be an important forcing of the seasonal and interannual variability of Atlantic Meridional Overturning Circulation (AMOC) volume transports. A recent study showed that even linear response to wind forcing captures observed features of the mean seasonal cycle. However, the study did not assess the contribution of wind-driven linear response in realistic conditions against the RAPID/MOCHA array observation or Ocean General Circulation Model (OGCM) simulations, because it applied a linear two-layer model to the Atlantic assuming constant upper layer thickness and density difference across the interface. Here, we quantify the contribution of wind-driven linear response to the seasonal and interannual variability of AMOC transports by comparing wind-driven linear simulations under realistic continuous stratification against the RAPID observation and OCGM (MPI-OM) simulations with 0.4º resolution (TP04) and 0.1º resolution (STORM). All the linear and MPI-OM simulations capture more than 60% of the variance in the observed mean seasonal cycle of the Upper Mid-Ocean (UMO) and Florida Strait (FS) transports, two components of the upper branch of the AMOC. The linear and TP04 simulations also capture 25-40% of the variance in the observed transport time series between Apr 2004 and Oct 2012; the STORM simulation does not capture the observed variance because of the stochastic signal in both datasets. Comparison of half-overlapping 12-month-long segments reveals some periods when the linear and TP04 simulations capture 40-60% of the observed variance, as well as other periods when the simulations capture only 0-20% of the variance. These results show that wind-driven linear response is a major contributor to the seasonal and interannual variability of the UMO and FS transports, and that its contribution varies in an interannual timescale, probably due to the variability of stochastic processes.
Jiang, Chongya; Ryu, Youngryel; Fang, Hongliang; Myneni, Ranga; Claverie, Martin; Zhu, Zaichun
2017-10-01
Understanding the long-term performance of global satellite leaf area index (LAI) products is important for global change research. However, few effort has been devoted to evaluating the long-term time-series consistencies of LAI products. This study compared four long-term LAI products (GLASS, GLOBMAP, LAI3g, and TCDR) in terms of trends, interannual variabilities, and uncertainty variations from 1982 through 2011. This study also used four ancillary LAI products (GEOV1, MERIS, MODIS C5, and MODIS C6) from 2003 through 2011 to help clarify the performances of the four long-term LAI products. In general, there were marked discrepancies between the four long-term LAI products. During the pre-MODIS period (1982-1999), both linear trends and interannual variabilities of global mean LAI followed the order GLASS>LAI3g>TCDR>GLOBMAP. The GLASS linear trend and interannual variability were almost 4.5 times those of GLOBMAP. During the overlap period (2003-2011), GLASS and GLOBMAP exhibited a decreasing trend, TCDR no trend, and LAI3g an increasing trend. GEOV1, MERIS, and MODIS C6 also exhibited an increasing trend, but to a much smaller extent than that from LAI3g. During both periods, the R 2 of detrended anomalies between the four long-term LAI products was smaller than 0.4 for most regions. Interannual variabilities of the four long-term LAI products were considerably different over the two periods, and the differences followed the order GLASS>LAI3g>TCDR>GLOBMAP. Uncertainty variations quantified by a collocation error model followed the same order. Our results indicate that the four long-term LAI products were neither intraconsistent over time nor interconsistent with each other. These inconsistencies may be due to NOAA satellite orbit changes and MODIS sensor degradation. Caution should be used in the interpretation of global changes derived from the four long-term LAI products. © 2017 John Wiley & Sons Ltd.
Two-Dimensional Model Simulations of Interannual Variability in the Tropical Stratosphere
NASA Technical Reports Server (NTRS)
Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Rosenfeld, Joan; Bhartia, P. K. (Technical Monitor)
2001-01-01
Meteorological data from the United Kingdom Meteorological Office (UKMO) and constituent data from the Upper Atmospheric Research Satellite (UARS) are used to construct yearly zonal mean dynamical fields for the 1990s for use in the GSFC 2-D chemistry and transport model. This allows for interannual dynamical variability to be included in the model constituent simulations. In this study, we focus on the tropical stratosphere. We find that the phase of quasi-biennial oscillation (QBO) signals in equatorial CH4, and profile and total column 03 data is resolved quite well using this empirically- based 2-D model transport framework. However. the QBO amplitudes in the model constituents are systematically underestimated relative to the observations at most levels. This deficiency is probably due in part to the limited vertical resolutions of the 2-D model and the UKMO and UARS input data sets. We find that using different heating rate calculations in the model affects the interannual and QBO amplitudes in the constituent fields, but has little impact on the phase. Sensitivity tests reveal that the QBO in transport dominates the ozone interannual variability in the lower stratosphere. with the effect of the temperature QBO being dominant in the tipper stratosphere via the strong temperature dependence of the ozone loss reaction rates. We also find that the QBO in odd nitrogen radicals, which is caused by the QBO modulated transport of NOy, plays a significant but not dominant role in determining the ozone QBO variability in the middle stratosphere. The model mean age of air is in good overall agreement with that determined from tropical lower,middle stratospheric OMS balloon observations of SF6 and CO2. The interannual variability of tile equatorial mean age in the model increases with altitude and maximizes near 40 km, with a range, of 4-5 years over the 1993-2000 time period.
Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Tian, Yong-jun; Chen, Jia-hua
2015-03-01
Data sets of 26 fisheries target species from the fishery-depen-dent and fishery-independent surveys in the overwintering ground of open waters of northern East China Sea (OW-NECS), combined sea surface temperature (SST), were used to examine the links between diversity index, pattern of common variability and climate changes based on the principal component analysis (PCA) and generalized additive model (GAM). The results showed that the shift from a cold regime to a warm regime was detected in SST during the 1970s-2011 with step changes around 1982/ 1983. SST increased during the cold regime and the warm regime before 1998 (warming trend period, 1972-1998), and decreased during the warm regime after 1998 (cooling trend period, 1999-2011). Shannon diversity index was largely dependent on the filefish, which contributed up to 50% of the total production as a single species, with low diversity in the waters of the OW-NECS, during the late 1980s and early 1990s. Excluding the filefish, the diversity index linearly increased and decreased during 1972-1998 and 1999-2011, respectively. The variation pattern generally corresponds with the trend in water temperature, strongly suggesting the effect of the SST on the diversity. The first two components (PC1 and PC2) of PCA for target species, which accounted for 32.43% of the total variance, showed evident decadal variation patterns with a step change during 1992-1999 and inter-annual variability with short-period fluctuation, respectively. It seems that PC1 was associated with large scale climatic change, while PC2 was related to inter-annual oceanographic variability such as ENSO events. Linear fitting results showed winEOF1 had significant effect on PC1, and GAM analysis for PC1 showed that winter EOF1 (winEOF1) and summer EOF2 (sumEOF2) can explain 88.9% of the total variance. Nonlinear effect was also found between PC2 and win EOF1, indicating that the fish community structure, which had predominantly decadal/inter-annual variation patterns, was influenced by inter-annual variations in oceanographic conditions.
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Goulden, M.; Litvak, M. E.; Kolb, T.; Yepez, E. A.; Garatuza, J.; Oechel, W. C.; Krofcheck, D. J.; Ponce-Campos, G. E.; Bowling, D. R.; Meyers, T. P.; Maurer, G.
2016-12-01
Global carbon cycle studies reveal that semiarid ecosystems dominate the increasing trend and interannual variability of the land CO2 sink. However, the regional terrestrial biome models (TBM) and remote sensing products (RSP) used in large-scale analyses are poorly constrained by ecosystem flux measurements in semiarid regions, which are under-represented in global flux datasets. Here we present eddy covariance measurements from 25 diverse ecosystems in semiarid southwestern North America with ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (150 site-years in total). We identified seven subregions with unique seasonal dynamics in climate and ecosystem-atmosphere exchange, including net and gross CO2 exchange (photosynthesis and respiration) and evapotranspiration (ET), and we evaluated how well measured dynamics were captured by satellite-based greenness observations of the Enhanced Vegetation Index (EVI). Annual flux integrals were calculated based on site-appropriate ecohydrologic years. Net ecosystem production (NEP) varied between -550 and + 420 g C m-2, highlighting the wide range of regional sink/source function. Annual photosynthesis and respiration were positively related to water availability but were suppressed in warmer years at a given site and at climatically warmer sites, in contrast to positive temperature responses at wetter sites. When precipitation anomalies were spatially coherent across sites (e.g. related to El Niño Southern Oscillation), we found large regional annual anomalies in net and gross CO2 uptake. TBM and RSP were less effective in capturing spatial gradients in mean ET and CO2 exchange across this semiarid region as compared to wetter regions. Measured interannual variability of ET and gross CO2 exchange was 3 - 5 times larger than estimates from TBM or RSP. These results suggest that semiarid regions play an even larger role in regulating interannual variability of the global carbon cycle than currently estimated by models and remote sensing. In on-going work, we expand this spatial-temporal analysis across a broader gradient of water availability using the Fluxnet 2015 dataset.
Tropical storm interannual and interdecadal variability in an ensemble of GCM integrations
NASA Astrophysics Data System (ADS)
Vitart, Frederic Pol.
1999-11-01
A T42L18 Atmospheric General Circulation Model forced by observed SSTs has been integrated for 10 years with 9 different initial conditions. An objective procedure for tracking model-generated tropical storms has been applied to this ensemble. Statistical tools have been applied to the ensemble frequency, intensity and location of tropical storms, leading to the conclusion that the potential predictability is particularly strong over the western North Pacific, the eastern North Pacific and the western North Atlantic. An EOF analysis of local SSts and a combined EOF analysis of vertical wind shear, 200 mb and 850 mb vorticity indicate that the simulated tropical storm interannual variability is mostly constrained by the large scale circulation as in observations. The model simulates a realistic interannual variability of tropical storms over the western North Atlantic, eastern North Pacific, western North Pacific and Australian basin where the model simulates a realistic large scale circulation. Several experiments with the atmospheric GCM forced by imposed SSTs demonstrate that the GCM simulates a realistic impact of ENSO on the simulated Atlantic tropical storms. In addition the GCM simulates fewer tropical storms over the western North Atlantic with SSTs of the 1950s than with SSTs of the 1970s in agreement with observations. Tropical storms simulated with RAS and with MCA have been compared to evaluate their sensitivity to a change in cumulus parameterization. Composites of tropical storm structure indicate stronger tropical storms with higher warm cores with MCA. An experiment using the GFDL hurricane model and several theoretical calculations indicate that the mean state may be responsible for the difference in intensity and in the height of the warm core. With the RAS scheme, increasing the threshold which determines when convection can occur increases the tropical storm frequency almost linearly. The increase of tropical storm frequency seems to be linked to an increase of CAPE. Tropical storms predicted by a coupled model produce a strong cooling of SSTs and their intensity is lower than in the simulations. An ensemble of coupled GCM integrations displays some skill in forecasting the tropical storm frequency when starting on July 1st.
NASA Astrophysics Data System (ADS)
Reason, C. J. C.
2018-04-01
Variability in summer rainfall over tropical Australia, defined here as that part of the continent north of 25° S, and its linkages with regional circulation are examined. In particular, relationships with the mid-level anticyclone (termed the Bilybara High) that exists over the northwestern Australia/Timor Sea region between August and April are considered. This High forms to the southwest of the upper-level anticyclone via a balance between the upper-level divergence over the region of tropical precipitation maximum and planetary vorticity advection and moves south and strengthens during the spring and summer. It is shown that variations in the strength and position of the Bilybara High are related to anomalies in precipitation and temperature over large parts of tropical Australia as well as some areas in the south and southeast of the landmass. Some of the interannual variations in the High are related to ENSO, but there are also a number of neutral years with large anomalies in the High and hence in rainfall. On decadal time scales, a strong relationship exists between the leading mode of tropical Australian rainfall and the Bilybara High. On both interannual and decadal scales, the relationships between the High and the regional rainfall involve changes in the monsoonal northwesterlies blowing towards northern Australia, and further south, in the easterly trade winds over the region.
NASA Astrophysics Data System (ADS)
Horecka, Hannah M.; Thomas, Andrew C.; Weatherbee, Ryan A.
2014-05-01
The Gulf of Maine experiences annual closures of shellfish harvesting due to the accumulation of toxins produced by dinoflagellates of the genus Alexandrium. Factors controlling the timing, location, and magnitude of these events in eastern Maine remain poorly understood. Previous work identified possible linkages between interannual variability of oceanographic variables and shellfish toxicity along the western Maine coastline but no such linkages were evident along the eastern Maine coast in the vicinity of Cobscook Bay, where strong tidal mixing tends to reduce seasonal variability in oceanographic properties. Using 21 years (1985-2005) of shellfish toxicity data, interannual variability in two metrics of annual toxicity, maximum magnitude and total annual toxicity, from stations in the Cobscook Bay region are examined for relationships to a suite of available environmental variables. Consistent with earlier work, no (or only weak) correlations were found between toxicity and oceanographic variables, even those very proximate to the stations such as local sea surface temperature. Similarly no correlations were evident between toxicity and air temperature, precipitation or relative humidity. The data suggest possible connections to local river discharge, but plausible mechanisms are not obvious. Correlations between toxicity and two variables indicative of local meteorological conditions, dew point and atmospheric pressure, both suggest a link between increased toxicity in these eastern Maine stations and weather conditions characterized by clearer skies/drier air (or less stormy/humid conditions). As no correlation of opposite sign was evident between toxicity and local precipitation, one plausible link is through light availability and its positive impact on phytoplankton production in this persistently foggy section of coast. These preliminary findings point to both the value of maintaining long-term shellfish toxicity sampling and a need for inclusion of weather variability in future modeling studies aimed at development of a more mechanistic understanding of factors controlling interannual differences in eastern Gulf of Maine shellfish toxicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, L.; Paudel, R.; Hess, P. G. M.
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
Meng, L.; Paudel, R.; Hess, P. G. M.; ...
2015-07-03
Understanding the temporal and spatial variation of wetland methane emissions is essential to the estimation of the global methane budget. Our goal for this study is three-fold: (i) to evaluate the wetland methane fluxes simulated in two versions of the Community Land Model, the Carbon-Nitrogen (CN; i.e., CLM4.0) and the Biogeochemistry (BGC; i.e., CLM4.5) versions using the methane emission model CLM4Me' so as to determine the sensitivity of the emissions to the underlying carbon model; (ii) to compare the simulated atmospheric methane concentrations to observations, including latitudinal gradients and interannual variability so as to determine the extent to which themore » atmospheric observations constrain the emissions; (iii) to understand the drivers of seasonal and interannual variability in atmospheric methane concentrations. Simulations of the transport and removal of methane use the Community Atmosphere Model with chemistry (CAM-chem) model in conjunction with CLM4Me' methane emissions from both CN and BGC simulations and other methane emission sources from literature. In each case we compare model-simulated atmospheric methane concentration with observations. In addition, we simulate the atmospheric concentrations based on the TransCom wetland and rice paddy emissions derived from a different terrestrial ecosystem model, Vegetation Integrative Simulator for Trace gases (VISIT). Our analysis indicates CN wetland methane emissions are higher in the tropics and lower at high latitudes than emissions from BGC. In CN, methane emissions decrease from 1993 to 2004 while this trend does not appear in the BGC version. In the CN version, methane emission variations follow satellite-derived inundation wetlands closely. However, they are dissimilar in BGC due to its different carbon cycle. CAM-chem simulations with CLM4Me' methane emissions suggest that both prescribed anthropogenic and predicted wetlands methane emissions contribute substantially to seasonal and interannual variability in atmospheric methane concentration. Simulated atmospheric CH 4 concentrations in CAM-chem are highly correlated with observations at most of the 14 measurement stations evaluated with an average correlation between 0.71 and 0.80 depending on the simulation (for the period of 1993–2004 for most stations based on data availability). Our results suggest that different spatial patterns of wetland emissions can have significant impacts on Northern and Southern hemisphere (N–S) atmospheric CH 4 concentration gradients and growth rates. In conclusion, this study suggests that both anthropogenic and wetland emissions have significant contributions to seasonal and interannual variations in atmospheric CH 4 concentrations. However, our analysis also indicates the existence of large uncertainties in terms of spatial patterns and magnitude of global wetland methane budgets, and that substantial uncertainty comes from the carbon model underlying the methane flux modules.« less
NASA Technical Reports Server (NTRS)
McDonald, Kyle; Kimball, John; Zimmermann, Reiner; Way, JoBea; Frolking, Steve; Running, Steve
1994-01-01
Landscape freeze/thaw transitions coincide with marked shifts in albedo, surface energy and mass exchange, and associated snow dynamics. monitoring landscape freeze/thaw dynamics would improve our ability to quantify the interannual variability of boreal hydrology and river runoff/flood dynamics, The annual duration of frost-free period also bounds the period of photosynthetic activity in borel and arctic regions thus affecting the carbon budget and the interannual variability fo regional carbon fluxes.
Interannual Similarity in the Martian Atmosphere During the Dust Storm Season
NASA Technical Reports Server (NTRS)
Kass, D. M.; Kleinboehl, A.; McCleese, D. J.; Schofield, J. T.; Smith, M. D.
2016-01-01
We find that during the dusty season on Mars (southern spring and summer) of years without a global dust storm there are three large regional-scale dust storms. The storms are labeled A, B, and C in seasonal order. This classification is based on examining the zonal mean 50 Pa (approximately 25 km) daytime temperature retrievals from TES/MGS and MCS/MRO over 6 Mars Years. Regional-scale storms are defined as events where the temperature exceeds 200 K. Examining the MCS dust field at 50 Pa indicates that warming in the Southern Hemisphere is dominated by direct heating, while northern high latitude warming is a dynamical response. A storms are springtime planet encircling Southern Hemisphere events. B storms are southern polar events that begin near perihelion and last through the solstice. C storms are southern summertime events starting well after the end of the B storm. C storms show the most interannual variability.
Interannual similarity in the Martian atmosphere during the dust storm season
NASA Astrophysics Data System (ADS)
Kass, D. M.; Kleinböhl, A.; McCleese, D. J.; Schofield, J. T.; Smith, M. D.
2016-06-01
We find that during the dusty season on Mars (southern spring and summer) of years without a global dust storm there are three large regional-scale dust storms. The storms are labeled A, B, and C in seasonal order. This classification is based on examining the zonal mean 50 Pa (˜25 km) daytime temperature retrievals from TES/MGS and MCS/MRO over 6 Mars Years. Regional-scale storms are defined as events where the temperature exceeds 200 K. Examining the MCS dust field at 50 Pa indicates that warming in the Southern Hemisphere is dominated by direct heating, while northern high latitude warming is a dynamical response. A storms are springtime planet encircling Southern Hemisphere events. B storms are southern polar events that begin near perihelion and last through the solstice. C storms are southern summertime events starting well after the end of the B storm. C storms show the most interannual variability.
Overview of o3 and CO Interannual Variabilities and Trends Based on the Mozaic Data
NASA Astrophysics Data System (ADS)
Thouret, V.; Cammas, J.; Elguindi, N.; Zbinden, R.; Athier, G.; Nedelec, P.; Cousin, J.; Karcher, F.
2010-12-01
The MOZAIC program (http://mozaic.aero.obs-mip.fr) measures O3 and thermodynamical parameters since August 1994 along with CO since December 2001, on board 5 commercial aircraft operated by European airlines. Thus, most of the sampling data have been recorded at northern mid-latitudes, between 9 and 12 km altitude, in the upper troposphere - lower stratosphere (UTLS). To better assess the O3 distribution and its seasonal and regional behavior, measurements have been referenced to the tropopause altitude. The tropopause is defined as being a transition zone 30 hPa thick centered on the surface PV=2 pvu. Two other layers are defined on either side of the tropopause to encompass all the cruise levels of the MOZAIC flights, as fully described in Thouret et al., (2006). Then, we have access to the upper tropospheric and lower stratospheric O3 and CO distributions independently of any ozone threshold and regardless of the seasonal variations of the tropopause. We will present a climatology of O3 and CO in the UTLS for different regions of the northern hemisphere, from Western US to Japan, via North Atlantic and Europe. We will focus on the seasonal and regional differences to better highlight the O3 and CO behavior in this critical region. We also aim to further assess their interannual variability and “trends”. The first analysis presented in Thouret et al., (2006) showed an increase of O3 of about 1%/year between 1994 and 2003 in both the UT and the LS over a large North Atlantic area. This time period was actually characterized by the so-called (positive) anomaly 1998-1999. Later on, Koumoutsaris et al., (2008) have shown the role of the strong El-Nino event in 1997 in this positive ozone anomaly observed at hemispheric scale. In this present study, thanks to a longer time series now available (up to 2009), we go a step further. We will show that recent data actually reveal a levelling off of O3 since 2000 over the US and Europe while it is still increasing over Asia (less than 1%/year). On the other hand, CO distributions actually show a strong interannual variability partly linked to the intensity of boreal fires (Elguindi et al., 2010). We will present a detailed seasonal and regional analysis to better assess the leading processes. Elguindi et al., Current status of the ability of the GEMS/MACC models to reproduce the tropospheric CO vertical distribution as measured by MOZAIC… GMDD, 2010 Koumoutsaris S., Bey I., Generoso S., Thouret V., Influence of El Nino-Southern Oscillation on the interannual variability of tropospheric ozone in the northern midlatitudes, J. Geophys. Res., 113, D19301, 2008. Thouret V., J.-P. Cammas, B. Sauvage, G. Athier, R. Zbinden, P. Nédélec, P. Simon, and F. Karcher, Tropopause referenced ozone climatology and inter-annual variability (1994-2003) from the MOZAIC programme, Atmos. Chem. Phys., 2006.
Wave climate simulation for southern region of the South China Sea
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil
2013-08-01
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.
NASA Astrophysics Data System (ADS)
Pinchuk, Alexei I.; Eisner, Lisa B.
2017-01-01
Interest in the Arctic shelf ecosystems has increased in recent years as the climate has rapidly warmed and sea ice declined. These changing conditions prompted the broad-scale multidisciplinary Arctic Ecosystem integrated survey (Arctic Eis) aimed at systematic, comparative analyses of interannual variability of the shelf ecosystem. In this study, we compared zooplankton composition and geographical distribution in relation to water properties on the eastern Chukchi and northern Bering Sea shelves during the summers of 2012 and 2013. In 2012, waters of Pacific origin prevailed over the study area carrying expatriate oceanic species (e.g. copepods Neocalanus spp., Eucalanus bungii) from the Bering Sea outer shelf well onto the northeastern Chukchi shelf. In contrast, in 2013, zooplankton of Pacific origin was mainly distributed over the southern Chukchi shelf, suggesting a change of advection pathways into the Arctic. These changes also manifested in the emergence of large lipid-rich Arctic zooplankton (e.g. Calanus hyperboreus) on the northeastern Chukchi shelf in 2013. The predominant copepod Calanus glacialis was composed of two distinct populations originating from the Bering Sea and from the Arctic, with the Arctic population expanding over a broader range in 2013. The observed interannual variability in zooplankton distribution on the Chukchi Sea shelf may be explained by previously described systematic oceanographic patterns derived from long-term observations. Variability in oceanic circulation and related zooplankton distributions (e.g. changes in southwestward advection of C. hyperboreus) may impact keystone predators such as Arctic Cod (Boreogadus saida) that feed on energy-rich zooplankton.
Arctic sea ice trends, variability and implications for seasonal ice forecasting.
Serreze, Mark C; Stroeve, Julienne
2015-07-13
September Arctic sea ice extent over the period of satellite observations has a strong downward trend, accompanied by pronounced interannual variability with a detrended 1 year lag autocorrelation of essentially zero. We argue that through a combination of thinning and associated processes related to a warming climate (a stronger albedo feedback, a longer melt season, the lack of especially cold winters) the downward trend itself is steepening. The lack of autocorrelation manifests both the inherent large variability in summer atmospheric circulation patterns and that oceanic heat loss in winter acts as a negative (stabilizing) feedback, albeit insufficient to counter the steepening trend. These findings have implications for seasonal ice forecasting. In particular, while advances in observing sea ice thickness and assimilating thickness into coupled forecast systems have improved forecast skill, there remains an inherent limit to predictability owing to the largely chaotic nature of atmospheric variability. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Convective organization in the Pacific ITCZ: Merging OLR, TOVS, and SSM/I information
NASA Technical Reports Server (NTRS)
Hayes, Patrick M.; Mcguirk, James P.
1993-01-01
One of the most striking features of the planet's long-time average cloudiness is the zonal band of concentrated convection lying near the equator. Large-scale variability of the Intertropical Convergence Zone (ITCZ) has been well documented in studies of the planetary spatial scales and seasonal/annual/interannual temporal cycles of convection. Smaller-scale variability is difficult to study over the tropical oceans for several reasons. Conventional surface and upper-air data are virtually non-existent in some regions; diurnal and annual signals overwhelm fluctuations on other time scales; and analyses of variables such as geopotential and moisture are generally less reliable in the tropics. These problems make the use of satellite data an attractive alternative and the preferred means to study variability of tropical weather systems.
Dewes, Candida F; Rangwala, Imtiaz; Barsugli, Joseph J; Hobbins, Michael T; Kumar, Sanjiv
2017-01-01
Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models' expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified relative to other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor, where future E0 trends are comparatively much larger than for Penman-Monteith. When comparing Penman-Monteith E0 responses between different choices of input variables related to wind speed, surface roughness, and net radiation, we found differences in E0 trends, although these choices had a much smaller influence on E0 trends than did the E0 formulation choices. These methodological choices and specific climate model selection, also have a large influence on the estimation of trends in standardized drought indices used for drought assessment operationally. We find that standardization tends to amplify divergences between the E0 trends calculated using different E0 formulations, because standardization is sensitive to both the climatology and amplitude of interannual variability of E0. For different methodological choices and GCM output considered in estimating E0, we examine potential sources of uncertainty in 21st century trends in the Standardized Precipitation Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over selected regions of the CONUS to demonstrate the practical implications of these methodological choices for the quantification of drought risk under climate change.
NASA Astrophysics Data System (ADS)
Parés-Escobar, Fernanda; Lavaniegos, Bertha E.; Ambriz-Arreola, Israel
2018-01-01
Euphausiids are a major component of the zooplankton biomass due to their large size, contributing with high carbon content to other trophic levels in the pelagic ecosystem. We analyzed the summer interannual variability in euphausiid species composition based on carbon mass of the Baja California oceanic domain during 1998-2008. Selection of one exclusive season allowed the emphasis of interannual changes in order to research possible biological impacts. During the period 1998-2008 prevailed intense interannual activity, with four El Niño events, two of them (1997-1998 and 2006-2007) with SST anomalies propagating toward the eastern Pacific (EP-El Niño), while the other two (2002-2003 and 2004-2005) had SST anomalies limited to the central Pacific (CP-El Niño). There were also La Niña events in 1998-2000 and 2007-2008. The species with higher biomass contribution off Baja California were Nematoscelis difficilis, Euphausia gibboides, Thysanoessa gregaria, Euphausia eximia, Nyctiphanes simplex, and Euphausia pacifica, with a global geometric mean of 156, 66, 38, 30, 21, and 13 μg C m-3 respectively. N. difficilis and E. pacifica were dominant in the northern area (29.5-32°N), N. difficilis and E. gibboides in the central area (27-29.5°N), and E. eximia dominated in the southern area (24.5-27°N). 1998-2008 biomass anomalies showed a variety of patterns by species with the clearest footprint, in most of the species, during the strong EP-El Niño 1997-1998. CP-El Niño events also left a footprint in the biomass of some species but this was not always by anomalies of the same nature as EP-El Niño. The best examples were N. difficilis and N. simplex, which presented lightly positive anomalies during July 1998 but were strongly negative in the summer of 2003 and 2004. The opposite was observed in E. recurva, with a negative anomaly in July 1998 but positive in 2004 and 2005. The biophysical coupling between the species assemblage and environmental variables, using canonical correspondence analysis (CCA), explained 22% of the biomass variability. The first axis was responsible for thermal conditions in the upper layer (temperature at 10 m, 50 m, and the gradient between 10 and 100 m depth), while the second axis concentrated the oxygen gradient, oxygen and salinity at 50 m depth, and 200 m temperature. A large group of tropical-subtropical species showed covariance with axis-1, while E. pacifica and T. spinifera had an inverse covariance. The equatorial species E. distinguenda and E. lamelligera were close to axis-2, though the stations were limited to slope water where intense upwelling bring oxygen depleted deep water. Transition zone species (E. gibboides, N. difficilis, T. gregaria, and N. simplex) were relatively inert to both axes. Their response to climatic variability was less predictable and new variables should be explored, including bottom-up and top-down mechanisms.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.; Li, J. Y.
2001-01-01
In this Chapter, aspects of global teleconnections associated with the interannual variability of the Asian summer monsoon (ASM) are discussed. The basic differences in the basic dynamics of the South Asian Monsoon and the East Asian monsoon, and their implications on global linkages are discussed. Two teleconnection modes linking ASM variability to summertime precipitation over the continental North America were identified. These modes link regional circulation and precipitation anomalies over East Asia and continental North America, via coupled atmosphere-ocean variations over the North Pacific. The first mode has a large zonally symmetrical component and appears to be associated with subtropical jetstream variability and the second mode with Rossby wave dispersion. Both modes possess strong sea surface temperature (SST) expressions in the North Pacific. Results show that the two teleconnection modes may have its origin in intrinsic modes of sea surface temperature variability in the extratropical oceans, which are forced in part by atmospheric variability and in part by air-sea interaction. The potential predictability of the ASM associated with SST variability in different ocean basins is explored using a new canonical ensemble correlation prediction scheme. It is found that SST anomalies in tropical Pacific, i.e., El Nino, is the most dominant forcing for the ASM, especially over the maritime continent and eastern Australia. SST anomalies in the India Ocean may trump the influence from El Nino in western Australia and western maritime continent. Both El Nino, and North Pacific SSTs contribute to monsoon precipitation anomalies over Japan, southern Korea, northern and central China. By optimizing SST variability signals from the world ocean basins using CEC, the overall predictability of ASM can be substantially improved.
Liu, Yang; Lü, Yi-he; Zheng, Hai-feng; Chen, Li-ding
2010-05-01
Based on the 10-day SPOT VEGETATION NDVI data and the daily meteorological data from 1998 to 2007 in Yan' an City, the main meteorological variables affecting the annual and interannual variations of NDVI were determined by using regression tree. It was found that the effects of test meteorological variables on the variability of NDVI differed with seasons and time lags. Temperature and precipitation were the most important meteorological variables affecting the annual variation of NDVI, and the average highest temperature was the most important meteorological variable affecting the inter-annual variation of NDVI. Regression tree was very powerful in determining the key meteorological variables affecting NDVI variation, but could not build quantitative relations between NDVI and meteorological variables, which limited its further and wider application.
NASA Astrophysics Data System (ADS)
Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.
2012-02-01
The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996-2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54-0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.
Flo, Víctor; Bosch, Jordi; Arnan, Xavier; Primante, Clara; Martín González, Ana M; Barril-Graells, Helena; Rodrigo, Anselm
2018-01-01
Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change.
Jepsen, Steven M.; Molotch, Noah P.; Williams, Mark W.; Rittger, Karl E.; Sickman, James O.
2012-01-01
The distribution of snow and the energy flux components of snowmelt are intrinsic characteristics of the alpine water cycle controlling the location of source waters and the effect of climate on streamflow. Interannual variability of these characteristics is relevant to the effect of climate change on alpine hydrology. Our objective is to characterize the interannual variability in the spatial distribution of snow and energy fluxes of snowmelt in watersheds of a maritime setting, Tokopah Basin (TOK) in California's southern Sierra Nevada, and a continental setting, Green Lake 4 Valley (GLV4) in Colorado's Front Range, using a 12 year database (1996–2007) of hydrometeorological observations and satellite-derived snow cover. Snowpacks observed in GLV4 exhibit substantially greater spatial variability than in TOK (0.75 versus 0.28 spatial coefficient of variation). In addition, modeling results indicate that the net turbulent energy flux contribution to snowmelt in GLV4 is, on average, 3 times greater in magnitude (mean 29% versus 10%) and interannual variability (standard deviation 17% versus 6%) than in TOK. These energy flux values exhibit strong seasonality, increasing as the melt season progresses to times later in the year (R2 = 0.54–0.77). This seasonality of energy flux appears to be associated with snowmelt rates that generally increase with onset date of melt (0.02 cm d-2). This seasonality in snowmelt rate, coupled to differences in hydrogeology, may account for the observed differences in correspondence between the timing of snowmelt and timing of streamflow in these watersheds.
Primante, Clara; Martín González, Ana M.; Barril-Graells, Helena
2018-01-01
Species flower production and flowering phenology vary from year to year due to extrinsic factors. Inter-annual variability in flowering patterns may have important consequences for attractiveness to pollinators, and ultimately, plant reproductive output. To understand the consequences of flowering pattern variability, a community approach is necessary because pollinator flower choice is highly dependent on flower context. Our objectives were: 1) To quantify yearly variability in flower density and phenology; 2) To evaluate whether changes in flowering patterns result in significant changes in pollen/nectar composition. We monitored weekly flowering patterns in a Mediterranean scrubland community (23 species) over 8 years. Floral resource availability was estimated based on field measures of pollen and nectar production per flower. We analysed inter-annual variation in flowering phenology (duration and date of peak bloom) and flower production, and inter-annual and monthly variability in flower, pollen and nectar species composition. We also investigated potential phylogenetic effects on inter-annual variability of flowering patterns. We found dramatic variation in yearly flower production both at the species and community levels. There was also substantial variation in flowering phenology. Importantly, yearly fluctuations were far from synchronous across species, and resulted in significant changes in floral resources availability and composition at the community level. Changes were especially pronounced late in the season, at a time when flowers are scarce and pollinator visitation rates are particularly high. We discuss the consequences of our findings for pollinator visitation and plant reproductive success in the current scenario of climate change. PMID:29346453
Sea ice and oceanic processes on the Ross Sea continental shelf
NASA Technical Reports Server (NTRS)
Jacobs, S. S.; Comiso, J. C.
1989-01-01
The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.
The predicted CLARREO sampling error of the inter-annual SW variability
NASA Astrophysics Data System (ADS)
Doelling, D. R.; Keyes, D. F.; Nguyen, C.; Macdonnell, D.; Young, D. F.
2009-12-01
The NRC Decadal Survey has called for SI traceability of long-term hyper-spectral flux measurements in order to monitor climate variability. This mission is called the Climate Absolute Radiance and Refractivity Observatory (CLARREO) and is currently defining its mission requirements. The requirements are focused on the ability to measure decadal change of key climate variables at very high accuracy. The accuracy goals are set using anticipated climate change magnitudes, but the accuracy achieved for any given climate variable must take into account the temporal and spatial sampling errors based on satellite orbits and calibration accuracy. The time period to detect a significant trend in the CLARREO record depends on the magnitude of the sampling calibration errors relative to the current inter-annual variability. The largest uncertainty in climate feedbacks remains the effect of changing clouds on planetary energy balance. Some regions on earth have strong diurnal cycles, such as maritime stratus and afternoon land convection; other regions have strong seasonal cycles, such as the monsoon. However, when monitoring inter-annual variability these cycles are only important if the strength of these cycles vary on decadal time scales. This study will attempt to determine the best satellite constellations to reduce sampling error and to compare the error with the current inter-annual variability signal to ensure the viability of the mission. The study will incorporate Clouds and the Earth's Radiant Energy System (CERES) (Monthly TOA/Surface Averages) SRBAVG product TOA LW and SW climate quality fluxes. The fluxes are derived by combining Terra (10:30 local equator crossing time) CERES fluxes with 3-hourly 5-geostationary satellite estimated broadband fluxes, which are normalized using the CERES fluxes, to complete the diurnal cycle. These fluxes were saved hourly during processing and considered the truth dataset. 90°, 83° and 74° inclination precessionary orbits as well as sun-synchronous orbits will be evaluated. This study will focus on the SW radiance, since these low earth orbits are only in daylight for half the orbit. The precessionary orbits were designed to cycle through all solar zenith angles over the course of a year. The inter-annual variability sampling error will be stratified globally/zonally and annually/seasonally and compared with the corresponding truth anomalies.
Guérin, Marceau; Martin-Benito, Dario; von Arx, Georg; Andreu-Hayles, Laia; Griffin, Kevin L; Hamdan, Rayann; McDowell, Nate G; Muscarella, Robert; Pockman, William; Gentine, Pierre
2018-02-01
In the southwestern USA, recent large-scale die-offs of conifers raise the question of their resilience and mortality under droughts. To date, little is known about the interannual structural response to droughts. We hypothesized that piñon pines ( Pinus edulis ) respond to drought by reducing the drop of leaf water potential in branches from year to year through needle morphological adjustments. We tested our hypothesis using a 7-year experiment in central New Mexico with three watering treatments (irrigated, normal, and rain exclusion). We analyzed how variation in "evaporative structure" (needle length, stomatal diameter, stomatal density, stomatal conductance) responded to watering treatment and interannual climate variability. We further analyzed annual functional adjustments by comparing yearly addition of needle area (LA) with yearly addition of sapwood area (SA) and distance to tip ( d ), defining the yearly ratios SA:LA and SA:LA/ d . Needle length ( l ) increased with increasing winter and monsoon water supply, and showed more interannual variability when the soil was drier. Stomatal density increased with dryness, while stomatal diameter was reduced. As a result, anatomical maximal stomatal conductance was relatively invariant across treatments. SA:LA and SA:LA/ d showed significant differences across treatments and contrary to our expectation were lower with reduced water input. Within average precipitation ranges, the response of these ratios to soil moisture was similar across treatments. However, when extreme soil drought was combined with high VPD, needle length, SA:LA and SA:LA/ d became highly nonlinear, emphasizing the existence of a response threshold of combined high VPD and dry soil conditions. In new branch tissues, the response of annual functional ratios to water stress was immediate (same year) and does not attempt to reduce the drop of water potential. We suggest that unfavorable evaporative structural response to drought is compensated by dynamic stomatal control to maximize photosynthesis rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaguru, Karthik; Leung, Lai-Yung R.; Yoon, Jin-Ho
Despite the strong dependence of the Power Dissipation Index (PDI), which is a measure of the intensity of Tropical Cyclone (TC) activity, on tropical sea-surface temperatures (SSTs), the variations in PDI are not completely explained by SST. Here we show, using an analysis of a string of observational data sets, that the variability of the thermocline depth (TD) in the east Pacific exerts a significant degree of control on the variability of PDI in that region. On average, a deep thermocline with a larger reservoir of heat favors TC intensification by reducing SST cooling while a shallow thermocline with amore » smaller heat reservoir promotes enhanced SST cooling that contributes to TC decay. At interannual time scales, the variability of basin-mean TD accounts for nearly 30% of the variability in the PDI during the TC season. Also, about 20% of the interannual variability in the east Pacific basin-mean TD is due to the El Niño and the Southern Oscillation (ENSO), a dominant climate signal in this region. This study suggests that a better understanding of the factors governing the interannual variability of the TD conditions in the east Pacific and how they may change over time, may lead to an improved projection of future east Pacific TC activity.« less
Variance and Predictability of Precipitation at Seasonal-to-Interannual Timescales
NASA Technical Reports Server (NTRS)
Koster, Randal D.; Suarez, Max J.; Heiser, Mark
1999-01-01
A series of atmospheric general circulation model (AGCM) simulations, spanning a total of several thousand years, is used to assess the impact of land-surface and ocean boundary conditions on the seasonal-to-interannual variability and predictability of precipitation in a coupled modeling system. In the first half of the analysis, which focuses on precipitation variance, we show that the contributions of ocean, atmosphere, and land processes to this variance can be characterized, to first order, with a simple linear model. This allows a clean separation of the contributions, from which we find: (1) land and ocean processes have essentially different domains of influence, i.e., the amplification of precipitation variance by land-atmosphere feedback is most important outside of the regions (mainly in the tropics) that are most affected by sea surface temperatures; and (2) the strength of land-atmosphere feedback in a given region is largely controlled by the relative availability of energy and water there. In the second half of the analysis, the potential for seasonal-to-interannual predictability of precipitation is quantified under the assumption that all relevant surface boundary conditions (in the ocean and on land) are known perfectly into the future. We find that the chaotic nature of the atmospheric circulation imposes fundamental limits on predictability in many extratropical regions. Associated with this result is an indication that soil moisture initialization or assimilation in a seasonal-to-interannual forecasting system would be beneficial mainly in transition zones between dry and humid regions.
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
NASA Astrophysics Data System (ADS)
Esselborn, Saskia; Rudenko, Sergei; Schöne, Tilo
2018-03-01
Interannual to decadal sea level trends are indicators of climate variability and change. A major source of global and regional sea level data is satellite radar altimetry, which relies on precise knowledge of the satellite's orbit. Here, we assess the error budget of the radial orbit component for the TOPEX/Poseidon mission for the period 1993 to 2004 from a set of different orbit solutions. The errors for seasonal, interannual (5-year), and decadal periods are estimated on global and regional scales based on radial orbit differences from three state-of-the-art orbit solutions provided by different research teams: the German Research Centre for Geosciences (GFZ), the Groupe de Recherche de Géodésie Spatiale (GRGS), and the Goddard Space Flight Center (GSFC). The global mean sea level error related to orbit uncertainties is of the order of 1 mm (8 % of the global mean sea level variability) with negligible contributions on the annual and decadal timescales. In contrast, the orbit-related error of the interannual trend is 0.1 mm yr-1 (27 % of the corresponding sea level variability) and might hamper the estimation of an acceleration of the global mean sea level rise. For regional scales, the gridded orbit-related error is up to 11 mm, and for about half the ocean the orbit error accounts for at least 10 % of the observed sea level variability. The seasonal orbit error amounts to 10 % of the observed seasonal sea level signal in the Southern Ocean. At interannual and decadal timescales, the orbit-related trend uncertainties reach regionally more than 1 mm yr-1. The interannual trend errors account for 10 % of the observed sea level signal in the tropical Atlantic and the south-eastern Pacific. For decadal scales, the orbit-related trend errors are prominent in a several regions including the South Atlantic, western North Atlantic, central Pacific, South Australian Basin, and the Mediterranean Sea. Based on a set of test orbits calculated at GFZ, the sources of the observed orbit-related errors are further investigated. The main contributors on all timescales are uncertainties in Earth's time-variable gravity field models and on annual to interannual timescales discrepancies of the tracking station subnetworks, i.e. satellite laser ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).
NASA Technical Reports Server (NTRS)
Jacobs, Stanley S.
1998-01-01
Year-round satellite records of sea ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric interactions with Antarctic sea ice. In the Amundsen & Bellingshausen Seas, sea ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where air temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The sea ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of sea ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can interact more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross Sea, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of sea ice range, which correlate positively with meridinal winds, regional air temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade since the late 1950's. That could have slowed the thermohaline circulation beneath the Ross Ice Shelf and the properties or volume of local bottom water production.
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.
1998-01-01
Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.
NASA Astrophysics Data System (ADS)
Toda, M.; Yokozawa, M.; Richardson, A. D.; Kohyama, T.
2011-12-01
The effects of wind disturbance on interannual variability in ecosystem CO2 exchange have been assessed in two forests in northern Japan, i.e., a young, even-aged, monocultured, deciduous forest and an uneven-aged mixed forest of evergreen and deciduous trees, including some over 200 years old using eddy covariance (EC) measurements during 2004-2008. The EC measurements have indicated that photosynthetic recovery of trees after a huge typhoon occurred during early September in 2004 activated annual carbon uptake of both forests due to changes in physiological response of tree leaves during their growth stages. However, little have been resolved about what biotic and abiotic factors regulated interannual variability in heat, water and carbon exchange between an atmosphere and forests. In recent years, an inverse modeling analysis has been utilized as a powerful tool to estimate biotic and abiotic parameters that might affect heat, water and CO2 exchange between the atmosphere and forest of a parsimonious physiologically based model. We conducted the Bayesian inverse model analysis for the model with the EC measurements. The preliminary result showed that the above model-derived NEE values were consistent with observed ones on the hourly basis with optimized parameters by Baysian inversion. In the presentation, we would examine interannual variability in biotic and abiotic parameters related to heat, water and carbon exchange between the atmosphere and forests after disturbance by typhoon.
Study of Tropospheric Ozone and UV Reflectivity Using TOMS Data
NASA Technical Reports Server (NTRS)
Yung, Yuk L.
2002-01-01
Perhaps the single most important result from the study of Chuang and Yung is that the interannual variability of the Earth's albedo (especially in Spring) on land is dominated by snow/ice, and not by clouds. This interannual variability could be the major driver of changes in the atmosphere and the biosphere. It is plausible that the interannual variability of snow/ice, through interactions with the atmosphere and biosphere, is responsible for the interannual variability of atmospheric CO2. By carefully studying the albedo variations off the Peru coast, we found evidence for indirect aerosol effect on clouds. Based on a detailed analysis of the cloud data obtained by the International Satellite Cloud Climatology Project (SCCP) in the years 1983-1991, we show that besides the reported 3 % variation in global cloudiness, the global mean cloud optical thickness (MCOT) also has significant variation which is out of phase with that of the global cloudiness. The combined effect of the two opposing variations may be a null effect on the cloud reflectivity. These results are consistent with the Total Ozone Mapping Spectrometer (TOMS) reflectively measurements. The MCOT variation is further shown to be correlated with both the solar cycle and the ENSO (El Nino Southern Oscillation) cycle. Our present analysis cannot distinguish which of the above two provides better correlation, although independent data from the High resolution Infrared Radiation Sounder (HIRS) from 1990 to 1996 favor the solar cycle. Future data are needed to identify the true cause of these changes.
NASA Astrophysics Data System (ADS)
Bielli, Soline; Douville, Hervé; Pohl, Benjamin
2010-07-01
General circulation models still show deficiencies in simulating the basic features of the West African Monsoon at intraseasonal, seasonal and interannual timescales. It is however, difficult to disentangle the remote versus regional factors that contribute to such deficiencies, and to diagnose their possible consequences for the simulation of the global atmospheric variability. The aim of the present study is to address these questions using the so-called grid point nudging technique, where prognostic atmospheric fields are relaxed either inside or outside the West African Monsoon region toward the ERA40 reanalysis. This regional or quasi-global nudging is tested in ensembles of boreal summer simulations. The impact is evaluated first on the model climatology, then on intraseasonal timescales with an emphasis on North Atlantic/Europe weather regimes, and finally on interannual timescales. Results show that systematic biases in the model climatology over West Africa are mostly of regional origin and have a limited impact outside the domain. A clear impact is found however on the eddy component of the extratropical circulation, in particular over the North Atlantic/European sector. At intraseasonal timescale, the main regional biases also resist to the quasi-global nudging though their magnitude is reduced. Conversely, nudging the model over West Africa exerts a strong impact on the frequency of the two North Atlantic weather regimes that favor the occurrence of heat waves over Europe. Significant impacts are also found at interannual timescale. Not surprisingly, the quasi-global nudging allows the model to capture the variability of large-scale dynamical monsoon indices, but exerts a weaker control on rainfall variability suggesting the additional contribution of regional processes. Conversely, nudging the model toward West Africa suppresses the spurious ENSO teleconnection that is simulated over Europe in the control experiment, thereby emphasizing the relevance of a realistic West African monsoon simulation for seasonal prediction in the extratropics. Further experiments will be devoted to case studies aiming at a better understanding of regional processes governing the monsoon variability and of the possible monsoon teleconnections, especially over Europe.
NASA Astrophysics Data System (ADS)
Graco, Michelle I.; Purca, Sara; Dewitte, Boris; Castro, Carmen G.; Morón, Octavio; Ledesma, Jesús; Flores, Georgina; Gutiérrez, Dimitri
2017-10-01
Over the last decades, the Humboldt Current upwelling ecosystem, particularly the northern component off the coast of Peru, has drawn the interest of the scientific community because of its unique characteristics: it is the upwelling system with the biggest catch productivity despite the fact it is embedded in a shallow and intense oxygen minimum zone (OMZ). It is also an area of intense nitrogen loss and anammox activity and experiences large interannual variability associated with the equatorial remote forcing. In this context, we examined the oceanographic and biogeochemical variability associated with the OMZ off central Peru from a monthly time series (1996-2011) recorded off the coast of Callao (12° 02' S, 77° 29' W). The data reveal a rich spectrum of variability in the OMZ that includes frequencies ranging from seasonal to interannual scales. Due to the efficient oceanic teleconnection off Peru, the observed variability is interpreted in the light of an estimate of the equatorial Kelvin wave contribution to sea level anomalies considering the peculiarities of its vertical structure (i.e., the first two baroclinic modes). The span of the data set allows us to contrast two OMZ regimes. The strong regime is associated with the strong 1997-1998 equatorial Pacific El Niño, during which the OMZ adjusted to Kelvin-wave-induced downwelling conditions that switched off the upwelling and drastically reduced nutrient availability. The weak regime corresponds to the post-2000 period associated with the occurrence of moderate central Pacific El Niño events and enhanced equatorial Kelvin wave activity, in which mean upwelling conditions are maintained. It is shown that the characteristics of the coupling between physics and biogeochemistry is distinct between the two regimes with the weak regime being associated with a larger explained variance in biogeochemical properties not linearly related to the ENSO oceanic teleconnection. The data also reveal a long-term trend from 1999 corresponding to a deepening of the oxygen-deficient waters and warming. The implications of our results for understanding the OMZ dynamics off Peru are discussed.
Hydroclimate variations in central and monsoonal Asia over the past 700 years.
Fang, Keyan; Chen, Fahu; Sen, Asok K; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki
2014-01-01
Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia.
Hydroclimate Variations in Central and Monsoonal Asia over the Past 700 Years
Fang, Keyan; Chen, Fahu; Sen, Asok K.; Davi, Nicole; Huang, Wei; Li, Jinbao; Seppä, Heikki
2014-01-01
Hydroclimate variations since 1300 in central and monsoonal Asia and their interplay on interannual and interdecadal timescales are investigated using the tree-ring based Palmer Drought Severity Index (PDSI) reconstructions. Both the interannual and interdecadal variations in both regions are closely to the Pacific Decadal Oscillation (PDO). On interannual timescale, the most robust correlations are observed between PDO and hydroclimate in central Asia. Interannual hydroclimate variations in central Asia are more significant during the warm periods with high solar irradiance, which is likely due to the enhanced variability of the eastern tropical Pacific Ocean, the high-frequency component of PDO, during the warm periods. We observe that the periods with significant interdecadal hydroclimate changes in central Asia often correspond to periods without significant interdecadal variability in monsoonal Asia, particularly before the 19th century. The PDO-hydroclimate relationships appear to be bridged by the atmospheric circulation between central North Pacific Ocean and Tibetan Plateau, a key area of PDO. While, in some periods the atmospheric circulation between central North Pacific Ocean and monsoonal Asia may lead to significant interdecadal hydroclimate variations in monsoonal Asia. PMID:25119567
Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate
Su, Hui; Jiang, Jonathan H.; Neelin, J. David; Shen, T. Janice; Zhai, Chengxing; Yue, Qing; Wang, Zhien; Huang, Lei; Choi, Yong-Sang; Stephens, Graeme L.; Yung, Yuk L.
2017-01-01
The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study. PMID:28589940
NASA Astrophysics Data System (ADS)
Scarascia, Luca; Lionello, Piero
2016-04-01
The Adriatic Sea and the Black Sea are two semienclosed basins connected to the Mediterranean Sea by the Otranto and the Bosporus straits, respectively. This work aims to reconstruction the sea level for both basins in the 20th century and to investigate main sources of interannual variability. Using 7 tide gauge timeseries located along the Adriatic coast and 5 along the Black Sea coast, provided by the PSMSL (Permanent service of mean sea level), a seamless sea level timeseries (1900-2009) has been obtained for each basin on the basis of statistical procedure involving PCA and Least Square Method. The comparison with satellite data in the period 1993 - 2009 confirms that these are reliable representations of the observed sea level for the whole basin, showing a great agreement with a correlation value of 0.87 and 0.72 for Adriatic and Black Sea respectively. The sea level has been decomposed in various contributions in order to analyze the role of the factors responsible for its interannual variability. The annual cycles of the local effect of pressure (inverse barometer effect IB), of the steric effect due to temperature and salinity variation and of the wind effect have been computed. The largest contribute for the Adriatic Sea is due to the wind, whilst inverse barometer effect plays a minor role and the steric effect seems to be almost negligible. For the Black Sea, on the contrary, wind effect is negligible, and the largest source of variability is due to the Danube river, which is estimated from the available discharge data of Sulina (one of the exits of the Danube delta. Steric and IB effects play both a minor role in this basin. A linear regression model, built considering as predictor the SLP gradient identified at large scale after having carried out the correlation analysis, is capable to explain a further percentage of variability (about 20-25%) of the sea level after subtracting all the factors considered above. Finally, residual sea levels show a positive correlation (0.42 about) revealing the likely action of a common boundary forcing associated to the mass exchange with Mediterranean sea. The present analysis is still unable to explain a non-negligible fraction of interannual variability of sea level, in particular for Black Sea. This is likely to a substantial extent due to uncertainties of hydrographic data caused by their irregular distribution in space and time and on the lack of regular records of past river discharge. This study is part of the activities of RISES-AM project (FP7-EU-603396).
Wetland inventory and variability over the last two decades at a global scale
NASA Astrophysics Data System (ADS)
Prigent, C.; Papa, F.; Aires, F.; Rossow, W. B.; Matthews, E.
2011-12-01
Remote sensing techniques employing visible, infrared, and microwave observations offer varying success in estimating wetlands and inundation extent and in monitoring their natural and anthropogenic variations. Low spatial resolution (e.g., 30 km) limits detection to large wetlands but has the advantage of frequent coverage. High spatial resolution (e.g., 100 m), while providing more environmental information, suffers from poor temporal resolution, with observations for just high/low water or warm/cold seasons. Most existing wetland data sets are limited to a few regions, for specific times in the year. The only global inventories of wetland dynamics over a long period of time is derived from a remote-sensing technique employing a suite of complementary satellite observations: it uses passive microwave land-surface microwave emissivities, scatterometer responses, and visible and near infrared reflectances. Combining observations from different instruments makes it possible to capitalize on their complementary strengths, and to extract maximum information about inundation characteristics. The technique is globally applicable without any tuning for particular environments. The satellite data are used to calculate monthly-mean inundated fractions of equal-area grid cells (0.25°x0.25° at the equator), taking into account the contribution of vegetation to the passive microwave signal (Prigent et al., 2001, 2007). Several adjustments to the initial technique have been applied to account for changes in satellite instruments (Papa et al., 2010). The resulting data set now covers 1993-2008 and has been carefully evaluated. We will present the inter-annual variability of the water surface extents under different environments, and relate these variations to other hydrological variables such as river height, precipitation, water runoff, or Grace data. Natural wetlands are the world's largest methane source and dominate the inter-annual variability of atmospheric methane concentrations, with up to 90% of the global methane flux anomalies related to variations in the wetland extent from some estimation. Our data set quantifying inundation dynamics throughout the world's natural wetlands provides a unique opportunity to reduce uncertainties in the role of natural wetlands in the inter-annual variability of the growth rate of atmospheric methane. Papa, F., C. Prigent, C. Jimenez, F. Aires, and W. B. Rossow, Interannual variability of surface water extent at global scale, 1993-2004, JGR, 115, D12111, doi:10.1029/2009JD012674, 2010. Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews, Global inundation dynamics inferred from multiple satellite observations, 1993-2000, JGR, 112, D12107, doi:10.1029/2006JD007847, 2007. Prigent, C., E. Matthews, F. Aires, and W. B. Rossow, Remote sensing of global wetland dynamics with multiple satellite data sets, GRL, 28 , 4631-4634, 2001.
2014-08-12
2007 , a period of intensive field observations in the northern South China Sea. Internal solitary waves are detected in the plots of the surface...of cold, fresh water [see Long- worth and Bryden, 2007 ; Richardson, 2008, for historical review]. Because of its large heat and freshwater transports...al., 2008]. It may also have triggered the recent rapid melting of the Arctic sea ice [Serreze et al., 2007 ] and Greenland glaciers [Holland et al
NASA Astrophysics Data System (ADS)
Schiferl, L. D.; Heald, C. L.; Van Damme, M.; Pierre-Francois, C.; Clerbaux, C.
2015-12-01
Modern agricultural practices have greatly increased the emission of ammonia (NH3) to the atmosphere. Recent controls to reduce the emissions of sulfur and nitrogen oxides (SOX and NOX) have increased the importance of understanding the role ammonia plays in the formation of surface fine inorganic particulate matter (PM2.5) in the United States. In this study, we identify the interannual variability in ammonia concentration, explore the sources of this variability and determine their contribution to the variability in surface PM2.5 concentration. Over the summers of 2008-2012, measurements from the Ammonia Monitoring Network (AMoN) and the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument show considerable variability in both surface and column ammonia concentrations (+/- 29% and 28% of the mean), respectively. This observed variability is larger than that simulated by the GEOS-Chem chemical transport model, where meteorology dominates the variability in ammonia and PM2.5 concentrations compared to the changes caused by SOX and NOX reductions. Our initial simulation does not include year-to-year changes in ammonia agricultural emissions. We use county-wide information on fertilizer sales and livestock populations, as well as meteorological variations to account for the interannual variability in agricultural activity and ammonia volatilization. These sources of ammonia emission variability are important for replicating observed variations in ammonia and PM2.5, highlighting how accurate ammonia emissions characterization is central to PM air quality prediction.
NASA Astrophysics Data System (ADS)
Li, Xin; Babovic, Vladan
2017-04-01
Observed studies on inter-annual variation of precipitation provide insight into the response of precipitation to anthropogenic climate change and natural climate variability. Inter-annual variation of precipitation results from the concurrent variations of precipitation frequency and intensity, understanding of the relative importance of frequency and intensity in the variability of precipitation can help fathom its changing properties. Investigation of the long-term changes of precipitation schemes has been extensively carried out in many regions across the world, however, detailed studies of the relative importance of precipitation frequency and intensity in inter-annual variation of precipitation are still limited, especially in the tropics. Therefore, this study presents a comprehensive framework to investigate the inter-annual variation of precipitation and the dominance of precipitation frequency and intensity in a tropical urban city-state, Singapore, based on long-term (1980-2013) daily precipitation series from 22 rain gauges. First, an iterative Mann-Kendall trend test method is applied to detect long-term trends in precipitation total, frequency and intensity at both annual and seasonal time scales. Then, the relative importance of precipitation frequency and intensity in inducing the inter-annual variation of wet-day precipitation total is analyzed using a dominance analysis method based on linear regression. The results show statistically significant upward trends in wet-day precipitation total, frequency and intensity at annual time scale, however, these trends are not evident during the monsoon seasons. The inter-annual variation of wet-day precipitation is mainly dominated by precipitation intensity for most of the stations at annual time scale and during the Northeast monsoon season. However, during the Southwest monsoon season, the inter-annual variation of wet-day precipitation is mainly dominated by precipitation frequency. These results have implications for water resources management practices in Singapore.
Transport and Thermohaline Structure in the Western Tropical North Pacific
NASA Astrophysics Data System (ADS)
Schonau, Martha Coakley
Transport and thermohaline structure of water masses and their respective variability are observed and modeled in the western tropical North Pacific using autonomous underwater gliders, Argo climatology and a numerical ocean state estimate. The North Equatorial Current (NEC) advects subtropical and subpolar water masses into the region that are transported equatorward by the Mindanao Current (MC). Continuous glider observations of these two currents from June 2009 to December 2013 provide absolute geostrophic velocity, water mass structure, and transport. The observations are compared to Argo climatology (Roemmich and Gilson, 2009), wind and precipitation to assess forcing, and annual and interannual variability. Observations are assimilated into a regional ocean state estimate (1/6°) to examine regional transport variability and its relationship to the El Nino-Southern Oscillation phenomena (ENSO). The NEC, described in Chapter 1, is observed along 134.3°E, from 8.5°N to 16.5°N. NEC thermocline transport is relatively constant, with a variable subthermocline transport that is distinguished by countercurrents centered at 9.6°N and 13.1°N. Correlation between thermocline and subthermocline transport is strong. Isopycnals with subducted water masses, the North Pacific Tropical Water and North Pacific Intermediate Water, have the greatest fine-scale thermohaline variance. The NEC advects water masses into the MC, described in Chapter 2, that flows equatorward along the coast of Mindanao. Gliders observed the MC at a mean latitude of 8.5°N. The Mindanao Undercurrent (MUC) persists in the subthermocline offshore of the MC, with a net poleward transport of intermediate water typical of South Pacific origin. The variable subthermocline transport in the MC/MUC has an inverse linear relationship with the Nino 3.4 index and strongly impacts total transport variability. For each the MC and NEC, surface salinity and thermocline depth have a strong relationship with ENSO, and there is relationship between the fine-scale and large-scale isopycnal thermohaline structure. In Chapter 3, a numerical ocean state estimates shows strong interannual variability of regional transport with ENSO. Prior to mature ENSO events, transport in each the NEC, MC and North Equatorial Counter Current (NECC) increase. The increase is from meridional gradients in isopycnal depth related to interannual wind anomalies.
Syed, Tajdarul H.; Famiglietti, James S.; Chambers, Don P.; Willis, Josh K.; Hilburn, Kyle
2010-01-01
Freshwater discharge from the continents is a key component of Earth’s water cycle that sustains human life and ecosystem health. Surprisingly, owing to a number of socioeconomic and political obstacles, a comprehensive global river discharge observing system does not yet exist. Here we use 13 years (1994–2006) of satellite precipitation, evaporation, and sea level data in an ocean mass balance to estimate freshwater discharge into the global ocean. Results indicate that global freshwater discharge averaged 36,055 km3/y for the study period while exhibiting significant interannual variability driven primarily by El Niño Southern Oscillation cycles. The method described here can ultimately be used to estimate long-term global discharge trends as the records of sea level rise and ocean temperature lengthen. For the relatively short 13-year period studied here, global discharge increased by 540 km3/y2, which was largely attributed to an increase of global-ocean evaporation (768 km3/y2). Sustained growth of these flux rates into long-term trends would provide evidence for increasing intensity of the hydrologic cycle. PMID:20921364
The Spatial Coherence of Interannual Temperature Variations in the Antarctic Peninsula
NASA Technical Reports Server (NTRS)
King, John C.; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)
2002-01-01
Over 50 years of observations from climate stations on the west coast of the Antarctic Peninsula show that this is a region of extreme interannual variability in near-surface temperatures. The region has also experienced more rapid warming than any other part of the Southern Hemisphere. In this paper we use a new dataset of satellite-derived surface temperatures to define the extent of the region of extreme variability more clearly than was possible using the sparse station data. The region in which satellite surface temperatures correlate strongly with west Peninsula station temperatures is found to be quite small and is largely confined to the seas just west of the Peninsula, with a northward and eastward extension into the Scotia Sea and a southward extension onto the western slopes of Palmer Land. Correlation of Peninsula surface temperatures with surface temperatures over the rest of continental Antarctica is poor confirming that the west Peninsula is in a different climate regime. The analysis has been used to identify sites where ice core proxy records might be representative of variations on the west coast of the Peninsula. Of the five existing core sites examined, only one is likely to provide a representative record for the west coast.
NASA Astrophysics Data System (ADS)
Rodríguez-Valentino, Camilo; Landaeta, Mauricio F.; Castillo-Hidalgo, Gissella; Bustos, Claudia A.; Plaza, Guido; Ojeda, F. Patricio
2015-09-01
The interannual variation (2010-2013) of larval abundance, growth and hatching patterns of the Chilean sand stargazer Sindoscopus australis (Pisces: Dactyloscopidae) was investigated through otolith microstructure analysis from samples collected nearshore (<500 m from shore) during austral late winter-early spring off El Quisco bay, central Chile. In the studied period, the abundance of larval stages in the plankton samples varied from 2.2 to 259.3 ind. 1000 m-3; larval abundance was similar between 2010 and 2011, and between 2012 and 2013, but increased significantly from 2011 to 2012. The estimated growth rates increased twice, from 0.09 to 0.21 mm day-1, between 2011 and 2013. Additionally, otolith size (radius, perimeter and area), related to body length of larvae, significantly decreased from 2010 to 2012, but increases significantly in 2013. Although the mean values of microincrement widths of sagitta otoliths were similar between 2010 and 2011 (around 0.6-0.7 μm), the interindividual variability increases in 2011 and 2013, suggesting large environmental variability experienced by larvae during these years. Finally, the hatching pattern of S. australis changed significantly from semi-lunar to lunar cycle after 2012.
Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange
NASA Astrophysics Data System (ADS)
van der Velde, I. R.; Miller, J. B.; Schaefer, K.; Masarie, K. A.; Denning, S.; White, J. W. C.; Tans, P. P.; Krol, M. C.; Peters, W.
2013-09-01
Previous studies suggest that a large part of the variability in the atmospheric ratio of 13CO2/12CO2originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here investigate the contribution of interannual variability (IAV) in biospheric exchange to the observed atmospheric 13C variations. We use the Simple Biosphere - Carnegie-Ames-Stanford Approach biogeochemical model, including a detailed isotopic fractionation scheme, separate 12C and 13C biogeochemical pools, and satellite-observed fire disturbances. This model of 12CO2 and 13CO2 thus also produces return fluxes of 13CO2from its differently aged pools, contributing to the so-called disequilibrium flux. Our simulated terrestrial 13C budget closely resembles previously published model results for plant discrimination and disequilibrium fluxes and similarly suggests that variations in C3 discrimination and year-to-year variations in C3and C4 productivity are the main drivers of their IAV. But the year-to-year variability in the isotopic disequilibrium flux is much lower (1σ=±1.5 PgC ‰ yr-1) than required (±12.5 PgC ‰ yr-1) to match atmospheric observations, under the common assumption of low variability in net ocean CO2 fluxes. This contrasts with earlier published results. It is currently unclear how to increase IAV in these drivers suggesting that SiBCASA still misses processes that enhance variability in plant discrimination and relative C3/C4productivity. Alternatively, 13C budget terms other than terrestrial disequilibrium fluxes, including possibly the atmospheric growth rate, must have significantly different IAV in order to close the atmospheric 13C budget on a year-to-year basis.
Configuration and Intraseasonal Duration of Interannual Anomalies of the Great Plains Low-Level Jet
NASA Technical Reports Server (NTRS)
Helfand, H. M.
2002-01-01
Despite the fact that the low-level jet of the southern Great Plains (the GPLLJ) of the U.S. is primarily a nocturnal phenomenon that virtually vanishes during the daylight hours, it is one of the most persistent and stable climatological features of the low-level continental flow during the warm-season months, May through August. We have used significant-level data to validate the skill of the GEOS-1 Data Assimilation System (DAS) in realistically detecting this jet and inferring its structure and evolution. We have then carried out a 15-year reanalysis with the GEOS-1 DAS to determine its climatology and mean diurnal cycle and to study its interannual variability. Interannual anomalies of the meridional flow associated with the GPLLJ are much smaller than the mean diurnal fluctuations, than random intraseasonal anomalies, and than the mean wind itself. There are three maxima of low-level meridional flow variance over the Great Plains and the Gulf of Mexico: a 1.2 m2 s-2 peak over the southeast Texas, to the east and south of the mean velocity peak, a 1.0 m2 s-2 peak over the western Gulf of Mexico, and a .8 m2 s-2 peak over the upper Great Plains (UGP), near the Nebraska/South Dakota border. Each of the three variance maxima corresponds to a spatially coherent, jet-like pattern of low-level flow interannual variability. There are also three dominant modes of interannual variability corresponding to the three variance maxima, but not in a simple one-to-one relationship. Cross-sectional profiles of mean southerly wind over Texas remain relatively stable and recognizable from year to year with only its eastward flank showing significant variability. This variability, however, exhibits a distinct, biennial oscillation during the first six to seven years of the reanalysis period and only then. This intermittent biennial oscillation (IBO, one of the three modes discussed in the previous paragraph) in the lowlevel flow is restricted to the region surrounding eastern Texas and is also evident in the NCEP/NCAR reanalysis data set from about 1978 to 1985 or 1986 and again from 1995 to 2000. It is evident as well in surface pressure in both the GEOS-1 and NCEP/NCAR sets. The interannual anomalies do not necessarily persist uniformly throughout an entire season, but can fluctuate from one part of the season to the next. To estimate the characteristic sub-seasonal time scales for coherence of these fluctuations, we have taken the weekly anomaly of low-level wind at each point of the domain from the climatological average for that given point and that given week of the season and computed the covariance of its fluctuations over all weeks and over all years with the weekly climatological anomaly of the meridional wind at each of the three reference points discussed above. The typical duration of a coherent interannual anomaly within a given warm season increases with decreasing latitude from 2 to 3 weeks over the UGP, to 6 to 7 weeks over eastern Texas. Coherence over the western Gulf of Mexico is intermediate between the two with a typical duration of 4 to 5 weeks. There appears to be evidence that the interannual anomalies over Texas the Gulf propagate to the UGP after a week and those over the Gulf propagate there after 2 to 3 weeks. There also appears to be some reverse propagation of interannual anomalies over the UGP to Texas and to the Gulf after a period of about one week. The interannual anomalies in southerly flow over eastern Texas seem to correlate well with interannual anomalies of surface temperature and (negative) ground wetness and over western Texas.
NASA Astrophysics Data System (ADS)
Nurhati, I. S.; Cobb, K.; Di Lorenzo, E.
2011-12-01
Accurate forecasts of regional climate changes in many regions of the world largely depend on quantifying anthropogenic trends in tropical Pacific climate against its rich background of interannual to decadal-scale climate variability. However, the strong natural climate variability combined with limited instrumental climate datasets have obscured potential anthropogenic climate signals in the region. Here, we present coral-based sea-surface temperature (SST) and salinity proxy records over the 20th century (1898-1998) from the central tropical Pacific - a region sensitive to El Niño-Southern Oscillation (ENSO) whose variability strongly impacts the global climate. The SST and salinity proxy records are reconstructed via coral Sr/Ca and the oxygen isotopic composition of seawater (δ18Osw), respectively. On interannual (2-7yr) timescales, the SST proxy record tracks both eastern- and central-Pacific flavors of ENSO variability (R=0.65 and R=0.67, respectively). Interannual-scale salinity variability in our coral record highlights profound differences in precipitation and ocean advections during the two flavors of ENSO. On decadal (8yr-lowpassed) timescales, the central tropical Pacific SST and salinity proxy records are controlled by different sets of dynamics linked to the leading climate modes of North Pacific climate variability. Decadal-scale central tropical Pacific SST is highly correlated to the recently discovered North Pacific Gyre Oscillation (NPGO; R=-0.85), reflecting strong dynamical links between the central Pacific warming mode and extratropical decadal climate variability. Whereas decadal-scale salinity variations in the central tropical Pacific are significantly correlated with the Pacific Decadal Oscillation (PDO; R=0.54), providing a better understanding on low-frequency salinity variability in the region. Having characterized natural climate variability in this region, the coral record shows a +0.5°C warming trend throughout the last century. However, the most prominent feature of the new coral records is an unprecedented freshening trend since the mid-20th century, in line with global climate models (GCMs) projections of enhanced hydrological patterns (wet areas are getting wetter and vice versa) under greenhouse forcing. Taken together, the coral records provide key constraints on tropical Pacific climate trends that may improve regional climate projections in areas affected by tropical Pacific climate variability.
Central Tropical Pacific SST and Salinity Proxy Records
Snow-atmosphere coupling and its impact on temperature variability and extremes over North America
NASA Astrophysics Data System (ADS)
Diro, G. T.; Sushama, L.; Huziy, O.
2018-04-01
The impact of snow-atmosphere coupling on climate variability and extremes over North America is investigated using modeling experiments with the fifth generation Canadian Regional Climate Model (CRCM5). To this end, two CRCM5 simulations driven by ERA-Interim reanalysis for the 1981-2010 period are performed, where snow cover and depth are prescribed (uncoupled) in one simulation while they evolve interactively (coupled) during model integration in the second one. Results indicate systematic influence of snow cover and snow depth variability on the inter-annual variability of soil and air temperatures during winter and spring seasons. Inter-annual variability of air temperature is larger in the coupled simulation, with snow cover and depth variability accounting for 40-60% of winter temperature variability over the Mid-west, Northern Great Plains and over the Canadian Prairies. The contribution of snow variability reaches even more than 70% during spring and the regions of high snow-temperature coupling extend north of the boreal forests. The dominant process contributing to the snow-atmosphere coupling is the albedo effect in winter, while the hydrological effect controls the coupling in spring. Snow cover/depth variability at different locations is also found to affect extremes. For instance, variability of cold-spell characteristics is sensitive to snow cover/depth variation over the Mid-west and Northern Great Plains, whereas, warm-spell variability is sensitive to snow variation primarily in regions with climatologically extensive snow cover such as northeast Canada and the Rockies. Furthermore, snow-atmosphere interactions appear to have contributed to enhancing the number of cold spell days during the 2002 spring, which is the coldest recorded during the study period, by over 50%, over western North America. Additional results also provide useful information on the importance of the interactions of snow with large-scale mode of variability in modulating temperature extreme characteristics.
NASA Technical Reports Server (NTRS)
Smith, Eric A.; Nicholson, Sharon
1987-01-01
The status of the data sets is discussed. Progress was made in both data analysis and modeling areas. The atmospheric and land surface contributions to the net radiation budget over the Sahara-Sahel region is being decoupled. The interannual variability of these two processes was investigated and this variability related to seasonal rainfall fluctuations. A modified Barnes objective analysis scheme was developed which uses an eliptic scan pattern and a 3-pass iteration of the difference fields.
NASA Astrophysics Data System (ADS)
Reichstein, M.; Jung, M.; Bodesheim, P.; Mahecha, M. D.; Gans, F.; Rodner, E.; Camps-Valls, G.; Papale, D.; Tramontana, G.; Denzler, J.; Baldocchi, D. D.
2016-12-01
Machine learning tools have been very successful in describing and predicting instantaneous climatic influences on the spatial and seasonal variability of biosphere-atmosphere exchange, while interannual variability is harder to model (e.g. Jung et al. 2011, JGR Biogeosciences). Here we hypothesize that innterannual variability is harder to describe for two reasons. 1) The signal-to-noise ratio in both, predictors (e.g. remote sensing) and target variables (e.g. net ecosystem exchange) is relatively weak, 2) The employed machine learning methods do not sufficiently account for dynamic lag and carry-over effects. In this presentation we can largely confirm both hypotheses: 1) We show that based on FLUXNET data and an ensemble of machine learning methods we can arrive at estimates of global NEE that correlate well with the residual land sink overall and CO2 flux inversions over latitudinal bands. Furthermore these results highlight the importance of variations in water availability for variations in carbon fluxes locally, while globally, as a scale-emergent property, tropical temperatures correlate well with the atmospheric CO2 growth rate, because of spatial anticorrelation and compensation of water availability. 2) We evidence with synthetic and real data that machine learning methods with embed dynamic memory effects of the system such as recurrent neural networks (RNNs) are able to better capture lag and carry-over effect which are caused by dynamic carbon pools in vegetation and soils. For these methods, long-term replicate observations are an essential asset.
NASA Astrophysics Data System (ADS)
Li, Y.; Jones, D. B. A.; Dyer, E.; Nusbaumer, J. M.; Noone, D.
2017-12-01
Seasonal variation of precipitation in mainland southeast Asia (SEA) is dominated by the Indian summer monsoon system and the western Pacific winter monsoon system, while the interannual variability of precipitation in this region can be related to remote variability, such as variations in sea surface temperatures in the Pacific Ocean associated with El Niño Southern Oscillation (ENSO) events. Here we use a version of the Community Earth System Model (CESM1.2) with water tagging capability, to examine the impact of ENSO on precipitation in mainland Southeast Asia during the onset of the Indian summer monsoon. In the model, water is tagged as it is evaporated from geographically defined regions and tracked through phase changes in the atmosphere until it is precipitated. The model simulates well the seasonal variability in SEA precipitation as captured by multiple observational data sets, and the variations in precipitation during the monsoon onset is well correlated with the Oceanic Niño Index. We examine the changes in the large-scale atmospheric circulation associated with El Niño and La Niña conditions, and the implication of these changes for moisture transport to SEA. In particular, we quantify the relative ENSO-induced changes in the local and Pacific and Indian Ocean moisture sources for SEA precipitation. We also assess the changes in the moisture source regions over the seasonal cycle to obtain an understanding of the variability in the moisture sources for SEA precipitation from seasonal to interannual time scales.
Locally driven interannual variability of near-surface pH and ΩA in the Strait of Georgia
NASA Astrophysics Data System (ADS)
Moore-Maley, Ben L.; Allen, Susan E.; Ianson, Debby
2016-03-01
Declines in mean ocean pH and aragonite saturation state (ΩA) driven by anthropogenic CO2 emissions have raised concerns regarding the trends of pH and ΩA in estuaries. Low pH and ΩA can be harmful to a variety of marine organisms, especially those with calcium carbonate shells, and so may threaten the productive ecosystems and commercial fisheries found in many estuarine environments. The Strait of Georgia is a large, temperate, productive estuarine system with numerous wild and aquaculture shellfish and finfish populations. We determine the seasonality and variability of near-surface pH and ΩA in the Strait using a one-dimensional, biophysical, mixing layer model. We further evaluate the sensitivity of these quantities to local wind, freshwater, and cloud forcing by running the model over a wide range of scenarios using 12 years of observations. Near-surface pH and ΩA demonstrate strong seasonal cycles characterized by low pH, aragonite-undersaturated waters in winter and high pH, aragonite-supersaturated waters in summer. The aragonite saturation horizon generally lies at ˜20 m depth except in winter and during strong Fraser River freshets when it shoals to the surface. Periods of strong interannual variability in pH and aragonite saturation horizon depth arise in spring and summer. We determine that at different times of year, each of wind speed, freshwater flux, and cloud fraction are the dominant drivers of this variability. These results establish the mechanisms behind the emerging observations of highly variable near-surface carbonate chemistry in the Strait.
Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities
NASA Astrophysics Data System (ADS)
Ward, Daniel S.; Shevliakova, Elena; Malyshev, Sergey; Rabin, Sam
2018-01-01
Globally, fires are a major source of carbon from the terrestrial biosphere to the atmosphere, occurring on a seasonal cycle and with substantial interannual variability. To understand past trends and variability in sources and sinks of terrestrial carbon, we need quantitative estimates of global fire distributions. Here we introduce an updated version of the Fire Including Natural and Agricultural Lands model, version 2 (FINAL.2), modified to include multiday burning and enhanced fire spread rate in forest crowns. We demonstrate that the improved model reproduces the interannual variability and spatial distribution of fire emissions reported in present-day remotely sensed inventories. We use FINAL.2 to simulate historical (post-1700) fires and attribute past fire trends and variability to individual drivers: land use and land cover change, population growth, and lightning variability. Global fire emissions of carbon increase by about 10% between 1700 and 1900, reaching a maximum of 3.4 Pg C yr-1 in the 1910s, followed by a decrease to about 5% below year 1700 levels by 2010. The decrease in emissions from the 1910s to the present day is driven mainly by land use change, with a smaller contribution from increased fire suppression due to increased human population and is largest in Sub-Saharan Africa and South Asia. Interannual variability of global fire emissions is similar in the present day as in the early historical period, but present-day wildfires would be more variable in the absence of land use change.
NASA Astrophysics Data System (ADS)
Sicard, Emeline; Sabatier, Robert; Niel, HéLèNe; Cadier, Eric
2002-12-01
The objective of this paper is to implement an original method for spatial and multivariate data, combining a method of three-way array analysis (STATIS) with geostatistical tools. The variables of interest are the monthly amounts of rainfall in the Nordeste region of Brazil, recorded from 1937 to 1975. The principle of the technique is the calculation of a linear combination of the initial variables, containing a large part of the initial variability and taking into account the spatial dependencies. It is a promising method that is able to analyze triple variability: spatial, seasonal, and interannual. In our case, the first component obtained discriminates a group of rain gauges, corresponding approximately to the Agreste, from all the others. The monthly variables of July and August strongly influence this separation. Furthermore, an annual study brings out the stability of the spatial structure of components calculated for each year.
NASA Astrophysics Data System (ADS)
Ray, E. A.; Daniel, J. S.; Montzka, S. A.; Portmann, R. W.; Yu, P.; Rosenlof, K. H.; Moore, F. L.
2017-12-01
We use surface measurements of a number of long-lived trace gases, including CFC-11, CFC-12 and N2O, and a 3-box model to estimate the interannual variability of bulk stratospheric transport characteristics. Coherent features among the different surface measurements suggest that there have been periods over the last two decades with significant variability in the amount of stratospheric loss transported downward to the troposphere both globally and between the NH and SH. This is especially apparent around the year 2000 and in the recent period since 2013 when surface measurements suggest an overall slowdown of the transport of stratospheric air to the troposphere as well as a shift towards a relatively stronger stratospheric circulation in the SH compared to the NH. We compare these results to stratospheric satellite measurements, residual circulation estimates and global model simulations to check for consistency. The implications of not accounting for interannual variability in stratospheric loss transported to the surface in emission estimates of long-lived trace gases can be significant, including for those gases monitored by the Montreal Protocol and/or of climatic importance.
Brasso, Rebecka L; Polito, Michael J; Emslie, Steven D
2014-10-01
Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007-2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ(15)N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins' pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.
Humphrey, Vincent; Gudmundsson, Lukas; Seneviratne, Sonia I
Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in terrestrial water storage. While an increasing number of case studies have provided a rich overview on regional analyses, a global assessment on the dominant features of GRACE variability is still lacking. To address this, we survey key features of temporal variability in the GRACE record by decomposing gridded time series of monthly equivalent water height into linear trends, inter-annual, seasonal, and subseasonal (intra-annual) components. We provide an overview of the relative importance and spatial distribution of these components globally. A correlation analysis with precipitation and temperature reveals that both the inter-annual and subseasonal anomalies are tightly related to fluctuations in the atmospheric forcing. As a novelty, we show that for large regions of the world high-frequency anomalies in the monthly GRACE signal, which have been partly interpreted as noise, can be statistically reconstructed from daily precipitation once an adequate averaging filter is applied. This filter integrates the temporally decaying contribution of precipitation to the storage changes in any given month, including earlier precipitation. Finally, we also survey extreme dry anomalies in the GRACE record and relate them to documented drought events. This global assessment sets regional studies in a broader context and reveals phenomena that had not been documented so far.
Environmental assessment of metal exposure to corals living in Castle Harbour, Bermuda
Prouty, N.G.; Goodkin, N.F.; Jones, R.; Lamborg, C.H.; Storlazzi, C.D.; Hughen, K.A.
2013-01-01
Environmental contamination in Castle Harbour, Bermuda, has been linked to the dissolution and leaching of contaminants from the adjacent marine landfill. This study expands the evidence for environmental impact of leachate from the landfill by quantitatively demonstrating elevated metal uptake over the last 30 years in corals growing in Castle Harbour. Coral Pb/Ca, Zn/Ca and Mn/Ca ratios and total Hg concentrations are elevated relative to an adjacent control site in John Smith's Bay. The temporal variability in the Castle Harbour coral records suggests that while the landfill has increased in size over the last 35 years, the dominant input of metals is through periodic leaching of contaminants from the municipal landfill and surrounding sediment. Elevated contaminants in the surrounding sediment suggest that resuspension is an important transport medium for transferring heavy metals to corals. Increased winds, particularly during the 1990s, were accompanied by higher coral metal composition at Castle Harbour. Coupled with wind-induced resuspension, interannual changes in sea level within the Harbour can lead to increased bioavailability of sediment-bound metals and subsequent coral metal assimilation. At John Smith's Bay, large scale convective mixing may be driving interannual metal variability in the coral record rather than impacts from land-based activities. Results from this study provide important insights into the coupling of natural variability and anthropogenic input of contaminants to the nearshore environment.
NASA Astrophysics Data System (ADS)
Hsu, C. W.; Velicogna, I.
2017-12-01
The mid-ocean geostrophic transport accounts for more than half of the seasonal and inter-annual variabilities in Atlantic meridional overturning circulation (AMOC) based on the in-situ measurement from RAPID MOC/MOCHA array since 2004. Here, we demonstrate that the mid-ocean geostrophic transport estimates derived from ocean bottom pressure (OBP) are affected by the sea level fingerprint (SLF), which is a variation of the equi-geopotential height (relative sea level) due to rapid mass unloading of the entire Earth system and in particular from glaciers and ice sheets. This potential height change, although it alters the OBP, should not be included in the derivation of the mid-ocean geostrophic transport. This "pseudo" geostrophic-transport due to the SLF is in-phase with the seasonal and interannual signal in the upper mid-ocean geostrophic transport. The east-west SLF gradient across the Atlantic basin could be mistaken as a north-south geostrophic transport that increases by 54% of its seasonal variability and by 20% of its inter-annual variability. This study demonstrates for the first time the importance of this pseudo transport in both the annual and interannual signals by comparing the SLF with in-situ observation from RAPID MOC/MOCHA array. The pseudo transport needs to be taken into account if OBP measurements and remote sensing are used to derive mid-ocean geostrophic transport.
The Seasonal and Interannual Variability of the Budgets of N2O and CCl3F
NASA Technical Reports Server (NTRS)
Wong, Sun; Prather, Michael J.; Rind, David H.
1999-01-01
The 6-year wind archives from the Goddard Institute for Space Studies/Global Climate-Middle Atmosphere Model (GISS/GCMAM) were in- put to the GISS/Harvard/Irvine Chemical Transport Model (G/H/I CTM) to study the seasonal and interannual variability of the budgets and distributions of nitrous oxide (N2O) and trichlorofluoromethane (CCl3F), with the corresponding chemical loss frequencies recycled and boundary conditions kept unchanged from year to year. The effects of ozone feedback and quasi-biennial oscillation (QBO) were not included. However, the role of circulation variation in driving the lifetime variability is investigated. It was found that the global loss rates of these tracers are related to the extratropical planetary wave activity, which drives the tropical upward mass flux. For N2O, a semiannual signal in the loss rate variation is associated with the interhemispheric asymmetry in the upper stratospheric wave activity. For CCl3F, the semiannual signal is weaker, associated with the comparatively uniform wave episodes in the lower stratosphere. The loss rates lag behind the wave activity by about 1-2 months. The interannual variation of the GCM generated winds drives the interannual variation of the annually averaged lifetime. The year-to-year variations of the annually averaged lifetimes can be about 3% for N2O and 4% for CCl3F.
Coral-inferred Variability of Upstream Kuroshio Current from 1953-2004 AD
NASA Astrophysics Data System (ADS)
Li, X.; Yi, L.; Shen, C. C.; Hsin, Y. C.
2016-12-01
The Kuroshio Current (KC), one of the most important western boundary currents in the North Pacific Ocean, strongly impacts regional climate in East Asia and upper-ocean thermal structure. However, the responses of KC to regional and remote climate forcing are poorly understood owing to lacking of long-term KC observations. Here, we present a sea surface temperature (SST) record from 1953 to 2004 AD derived from monthly skeletal δ18O data of a living coral Porites core, drilled in Nanwan, southern Taiwan (22°N, 121°E), located on the western front of the Upstream KC. The increased/reduced Kuroshio transport would generate stronger/weaker upwelling in Southern Taiwan, which can cause lower/higher SST. Agreement between dynamics of interannual coral δ18O and modern KC data shows that the regional coral δ18O can be used as a promising proxy for Upstream KC intensity. The KC-induced SST anomaly record reveals prominent interannual and decadal variability predominantly controlled by the bifurcation latitude of North Equatorial Current. We also find that the reconstructed KC intensity at east of Taiwan and south of Japan have nearly simultaneous interannual changes, suggesting the same dominant forcing(s) for the entire KC system. Additional work is needed to understand the KC system with respect to the interannual to decadal climate variability and the influences of global warming.
NASA Technical Reports Server (NTRS)
Robertson, F. R.; Miller, T. L.; Bosilovich, M. G.
2008-01-01
Ocean surface turbulent and radiative fluxes are critical links in the climate system since they mediate energy exchange between the two fluid systems (ocean and atmosphere) whose combined heat transport determines the basic character of Earth's climate. Moreover, interannual to decadal climate variability depends crucially on the nature of these exchange processes. For example, addressing the question of the degree to which the global hydrologic cycle is changing depends on our ability to observe and model these fluxes accurately. In this work we investigate the interannual to decadal variation of fluxes over the global tropics, especially the tropical oceans. Recent versions of satellite-derived fresh water flux estimates as well as some reanalyses (e.g. products from Remote Sensing Systems, the Woods Hole Oceanographic Institute, and Global Precipitation Climatology Project) suggest that increases in evaporation and precipitation over the past 20 years exceed those expected on the basis of climate model projected responses to greenhouse gas forcing. At the same time, it is well known that E1 Nino / Southern Oscillation behavior in the Pacific exhibits significant variability at scales longer than interannual. We examine here the degree to which surface fluxes attending these interannual to decadal fluctuations are related to ENSO. We examine consistency between these data sets and explore relationships between SST variations, flux changes and modulation of tropical Walker and Hadley circulations.
NASA Astrophysics Data System (ADS)
Capet, A.; Beckers, J.-M.; Grégoire, M.
2013-06-01
The Black Sea northwestern shelf (NWS) is a shallow eutrophic area in which the seasonal stratification of the water column isolates the bottom waters from the atmosphere. This prevents ventilation from counterbalancing the large consumption of oxygen due to respiration in the bottom waters and in the sediments, and sets the stage for the development of seasonal hypoxia. A three-dimensional (3-D) coupled physical-biogeochemical model is used to investigate the dynamics of bottom hypoxia in the Black Sea NWS, first at seasonal and then at interannual scales (1981-2009), and to differentiate its driving factors (climatic versus eutrophication). Model skills are evaluated by a quantitative comparison of the model results to 14 123 in situ oxygen measurements available in the NOAA World Ocean and the Black Sea Commission databases, using different error metrics. This validation exercise shows that the model is able to represent the seasonal and interannual variability of the oxygen concentration and of the occurrence of hypoxia, as well as the spatial distribution of oxygen-depleted waters. During the period 1981-2009, each year exhibits seasonal bottom hypoxia at the end of summer. This phenomenon essentially covers the northern part of the NWS - which receives large inputs of nutrients from the Danube, Dniester and Dnieper rivers - and extends, during the years of severe hypoxia, towards the Romanian bay of Constanta. An index H which merges the aspects of the spatial and temporal extension of the hypoxic event is proposed to quantify, for each year, the intensity of hypoxia as an environmental stressor. In order to explain the interannual variability of H and to disentangle its drivers, we analyze the long time series of model results by means of a stepwise multiple linear regression. This statistical model gives a general relationship that links the intensity of hypoxia to eutrophication and climate-related variables. A total of 82% of the interannual variability of H is explained by the combination of four predictors: the annual riverine nitrate load (N), the sea surface temperature in the month preceding stratification (Ts), the amount of semi-labile organic matter accumulated in the sediments (C) and the sea surface temperature during late summer (Tf). Partial regression indicates that the climatic impact on hypoxia is almost as important as that of eutrophication. Accumulation of organic matter in the sediments introduces an important inertia in the recovery process after eutrophication, with a typical timescale of 9.3 yr. Seasonal fluctuations and the heterogeneous spatial distribution complicate the monitoring of bottom hypoxia, leading to contradictory conclusions when the interpretation is done from different sets of data. In particular, it appears that the recovery reported in the literature after 1995 was overestimated due to the use of observations concentrated in areas and months not typically affected by hypoxia. This stresses the urgent need for a dedicated monitoring effort in the Black Sea NWS focused on the areas and months concerned by recurrent hypoxic events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sperber, K.R., LLNL
The Madden-Julian Oscillation (MJO) is the dominant mode of tropical variability at intraseasonal timescales. It displays substantial interannual variability in intensity which may have important implications for the predictability of the coupled system. The reasons for this interannual variability are not understood. The aim of this paper is to investigate whether the interannual behavior of the MJO is related to tropical sea surface temperature (SST) anomalies, particularly El Nino, and hence whether it is predictable. The interannual behavior of the MJO has been diagnosed initially in the 40-year NCEP/ NCAR Reanalysis. The results suggest that prior to the mid-1970s themore » activity of the MJO was consistently lower than during the latter part of the record. This may be related to either inadequacies in the data coverage, particularly over the tropical Indian Ocean prior to the introduction of satellite observations, or to the real effects of a decadal timescale warming in the tropical SSTs. The teleconnection patterns between interannual variations in MJO activity and SST show only a weak, barely significant, influence of El Nino in which the MJO is more active during the cold phase. As well as the NCEP/NCAR Reanalysis, a 4-member ensemble of 45 year integrations with the Hadley Centre climate model (HadAM2a), forced by observed SSTs for 1949-93, has been used to investigate the relationship between MJO activity and SST. HadAM2a is known to give a reasonable simulation of the MJO and the extended record provided by this ensemble of integrations allows a more robust investigation of the predictability of MJO activity than was possible with the 40-year NCEP/NCAR Reanalysis. The results have shown that, for the uncoupled system, with the atmosphere being driven by imposed SSTS, there is no reproducibility for the activity of the MJO from year to year. The interannual behavior of the MJO is not controlled by the phase of El Nino and would appear to be chaotic in character. However, the model results have confirmed the low frequency, decadal timescale variability of MJO activity seen in the NCEP/NCAR Reanalysis. The activity of the MJO is consistently lower in all realizations prior to the mid 1970s, suggesting that the MJO may become more active as tropical SSTs become warmer. This result may have implications for the effects of global warming on the coupled tropical atmosphere-ocean system.« less
NASA Astrophysics Data System (ADS)
Carmona, Alejandra M.; Sivapalan, Murugesu; Yaeger, Mary A.; Poveda, Germán.
2014-12-01
Patterns of interannual variability of the annual water balance are explored using data from 190 MOPEX catchments across the continental U.S. This analysis has led to the derivation of a quantitative, dimensionless, Budyko-type framework to characterize the observed interannual variability of annual water balances. The resulting model is expressed in terms of a humidity index that measures the competition between water and energy availability at the annual time scale, and a similarity parameter (α) that captures the net effects of other short-term climate features and local landscape characteristics. This application of the model to the 190 study catchments revealed the existence of space-time symmetry between spatial (between-catchment) variability and general trends in the temporal (between-year) variability of the annual water balances. The MOPEX study catchments were classified into eight similar catchment groups on the basis of magnitudes of the similarity parameter α. Interesting regional trends of α across the continental U.S. were brought out through identification of similarities between the spatial positions of the catchment groups with the mapping of distinctive ecoregions that implicitly take into account common climatic and vegetation characteristics. In this context, this study has introduced a deep sense of similarity that is evident in observed space-time variability of water balances that also reflect the codependence and coevolution of climate and landscape properties.
How much of the interannual variability of East Asian summer rainfall is forced by SST?
NASA Astrophysics Data System (ADS)
He, Chao; Wu, Bo; Li, Chunhui; Lin, Ailan; Gu, Dejun; Zheng, Bin; Zhou, Tianjun
2016-07-01
It is widely accepted that the interannual variability of East Asian summer rainfall is forced by sea surface temperature (SST), and SST anomalies are widely used as predictors of East Asian summer rainfall. But it is still not very clear what percentage of the interannual rainfall variability is contributed by SST anomalies. In this study, Atmospheric general circulation model simulations forced by observed interannual varying SST are compared with those forced by the fixed annual cycle of SST climatology, and their ratios of interannual variance (IAV) are analyzed. The output of 12 models from the 5th Phase of Coupled Model Intercomparison Project (CMIP5) are adopted, and idealized experiments are done by Community Atmosphere Model version 4 (CAM4). Both the multi-model median of CMIP5 models and CAM4 experiments show that only about 18 % of the IAV of rainfall over East Asian land (EAL) is explained by SST, which is significantly lower than the tropical western Pacific, but comparable to the mid-latitude western Pacific. There is no significant difference between the southern part and the northern part of EAL in the percentages of SST contribution. The remote SST anomalies regulates rainfall over EAL probably by modulating the horizontal water vapor transport rather than the vertical motion, since the horizontal water vapor transport into EAL is strongly modulated by SST but the vertical motion over EAL is not. Previous studies argued about the relative importance of tropical Indian Ocean and tropical Pacific Ocean to East Asian summer rainfall anomalies. Our idealized experiments performed by CAM4 suggest that the contributions from these two ocean basins are comparable to each other, both of which account for approximately 6 % of the total IAV of rainfall over EAL.
Interannual evolutions of (sub)mesoscale dynamics in the Bay of Biscay and the English Channel
NASA Astrophysics Data System (ADS)
Charria, G.; Vandermeirsch, F.; Theetten, S.; Yelekçi, Ö.; Assassi, C.; Audiffren, N. J.
2016-02-01
In a context of global change, ocean regions as the Bay of the Biscay and the English Channel represent key domains to estimate the local impact on the coasts of interannual evolutions. Indeed, the coastal (considering in this project regions above the continental shelf) and regional (including the continental slope and the abyssal plain) environments are sensitive to the long-term fluctuations driven by the open ocean, the atmosphere and the watersheds. These evolutions can have impacts on the whole ecosystem. To understand and, by extension, forecast evolutions of these ecosystems, we need to go further in the description and the analysis of the past interannual variability over decadal to pluri-decadal periods. This variability can be described at different spatial scales from small (< 1 km) to basin scales (> 100 km). With a focus on smaller scales, the modelled dynamics, using a Coastal Circulation Model on national computing resources (GENCI/CINES), is discussed from interannual simulations (10 to 53 years) with different spatial (4 km to 1 km) and vertical (40 to 100 sigma levels) resolutions compared with available in situ observations. Exploring vorticity and kinetic energy based diagnostics; dynamical patterns are described including the vertical distribution of the mesoscale activity. Despite the lack of deep and spatially distributed observations, present numerical experiments draw a first picture of the 3D mesoscale distribution and its evolution at interannual time scales.
Interannual variability of monthly Southern Ocean sea ice distributions
NASA Technical Reports Server (NTRS)
Parkinson, Claire L.
1992-01-01
The interannual variability of the Southern-Ocean sea-ice distributions was mapped and analyzed using data from Nimbus-5 ESMR and Nimbus-7 SMMR, collected from 1973 to 1987. The set of 12 monthly maps obtained reveals many details on spatial variability that are unobtainable from time series of ice extents. These maps can be used as baseline maps for comparisons against future Southern Ocean sea ice distributions. The maps are supplemented by more detailed maps of the frequency of ice coverage, presented in this paper for one month within each of the four seasons, and by the breakdown of these results to the periods covered individually by each of the two passive-microwave imagers.
NASA Astrophysics Data System (ADS)
Doyle, Thomas K.; Haberlin, Damien; Clohessy, Jim; Bennison, Ashley; Jessopp, Mark
2017-04-01
For many marine migratory fish, comparatively little is known about the movement of individuals rather than the population. Yet, such individual-based movement data is vitally important to understand variability in migratory strategies and fidelity to foraging locations. A case in point is the economically important European sea bass (Dicentrarchus labrax L.) that inhabits coastal waters during the summer months before migrating offshore to spawn and overwinter. Beyond this broad generalisation we have very limited information on the movements of individuals at coastal foraging grounds. We used acoustic telemetry to track the summer movements and seasonal migrations of individual sea bass in a large tidally and estuarine influenced coastal environment. We found that the vast majority of tagged sea bass displayed long-term residency (mean, 167 days) and inter-annual fidelity (93% return rate) to specific areas. We describe individual fish home ranges of 3 km or less, and while fish clearly had core resident areas, there was movement of fish between closely located receivers. The combination of inter-annual fidelity to localised foraging areas makes sea bass very susceptible to local depletion; however, the designation of protected areas for sea bass may go a long way to ensuring the sustainability of this species.
Doyle, Thomas K.; Haberlin, Damien; Clohessy, Jim; Bennison, Ashley; Jessopp, Mark
2017-01-01
For many marine migratory fish, comparatively little is known about the movement of individuals rather than the population. Yet, such individual-based movement data is vitally important to understand variability in migratory strategies and fidelity to foraging locations. A case in point is the economically important European sea bass (Dicentrarchus labrax L.) that inhabits coastal waters during the summer months before migrating offshore to spawn and overwinter. Beyond this broad generalisation we have very limited information on the movements of individuals at coastal foraging grounds. We used acoustic telemetry to track the summer movements and seasonal migrations of individual sea bass in a large tidally and estuarine influenced coastal environment. We found that the vast majority of tagged sea bass displayed long-term residency (mean, 167 days) and inter-annual fidelity (93% return rate) to specific areas. We describe individual fish home ranges of 3 km or less, and while fish clearly had core resident areas, there was movement of fish between closely located receivers. The combination of inter-annual fidelity to localised foraging areas makes sea bass very susceptible to local depletion; however, the designation of protected areas for sea bass may go a long way to ensuring the sustainability of this species. PMID:28374772
NASA Astrophysics Data System (ADS)
Pillai, Prasanth A.; Aher, Vaishali R.
2018-01-01
Intraseasonal oscillation (ISO), which appears as "active" and "break" spells of rainfall, is an important component of Indian summer monsoon (ISM). The present study investigates the potential of new National Centre for Environmental Prediction (NCEP) climate forecast system version 2 (CFSv2) in simulating the ISO with emphasis to its interannual variability (IAV) and its possible role in the seasonal mean rainfall. The present analysis shows that the spatial distribution of CFSv2 rainfall has noticeable differences with observations in both ISO and IAV time scales. Active-break cycle of CFSv2 has similar evolution during both strong and weak years. Regardless of a reasonable El Niño Southern Oscillation (ENSO)-monsoon teleconnection in the model, the overestimated Arabian Sea (AS) sea surface temperature (SST)-convection relationship hinters the large-scale influence of ENSO over the ISM region and adjacent oceans. The ISO scale convections over AS and Bay of Bengal (BoB) have noteworthy contribution to the seasonal mean rainfall, opposing the influence of boundary forcing in these areas. At the same time, overwhelming contribution of ISO component over AS towards the seasonal mean modifies the effect of slow varying boundary forcing to large-scale summer monsoon. The results here underline that, along with the correct simulation of monsoon ISO, its IAV and relationship with the boundary forcing also need to be well captured in coupled models for the accurate simulation of seasonal mean anomalies of the monsoon and its teleconnections.
Interannual variability of Indian monsoon rainfall
NASA Technical Reports Server (NTRS)
Paolino, D. A.; Shukla, J.
1984-01-01
The interannual variability of the Indian summer monsoon and its relationships with other atmospheric fluctuations were studied in hopes of gaining some insight into the predicability of the rainfall. Rainfall data for 31 meteorological subdivisions over India were provided by the India Meteorological Department (IMD). Fifty-three years of seasonal mean anomaly sea-level pressure (SLP) fields were used to determine if any relationships could be detected between fluctuations in Northern Hemisphere surface pressure and Indian monsoon rainfall. Three month running mean sea-level pressure anomalies at Darwin (close to one of the centers of the Southern Oscillation) were compiled for months preceding and following extreme years for rainfall averaged over all of India. Anomalies are small before the monsoon, but are quite large in months following the summer season. However, there is a large decrease in Darwin pressure for months preceding a heavy monsoon, while a deficient monsoon is preceded by a sharp increase in Darwin pressure. If a time series is constructed of the tendency of Darwin SLP between the Northern Hemisphere winter (DJF) and spring (MAM) and a correlation coefficient is computed between it and 81 years of rainfall average over all of India, one gets a C. C. of -.46, which is higher than any other previously computed predictor of the monsoon rainfall. This relationship can also be used to make a qualitative forecast for rainfall over the whole of India by considering the sign of the tendency in extreme monsoon years.
Regional Relationship between CO and O3 in New England
NASA Astrophysics Data System (ADS)
Mao, H.; Talbot, R.
2003-12-01
The seasonality and interannual variability in the mixing ratios of ozone (O3) and carbon monoxide (CO) and their inter-relationship were investigated at the rural low elevation site Thompson Farm (TF) and the hill site Castle Springs (400 m above ground level) in southern New Hampshire using continuous observations (2001-2003) from the Atmospheric Investigation, Regional Modeling, Analysis and Prediction (AIRMAP) program at University of New Hampshire (UNH). Our results show distinct site-dependent characteristics in temporal variations on various time scales in O3 and CO and particularly large interannual variability in fall and winter at both sites. The grouped O3 and CO data, based on wind speed and direction over different time periods of the day, showed largely varying probability distribution functions (PDF). It was found that only 10% of the seasonal observations formed a positive O3-CO linear correlation, leading to an estimate of 370 M moles d-1 for O3 export from the northeastern U.S. This estimate is three times smaller than previous studies. We used a ratio analysis (NO/NOy and NOy/CO) to show that the linear O3-CO relationships were a result of multiple processes rather than simply either photochemical or depositonal loss processes as proposed by previous work. One of the most important features of the O3-CO relationship is the lower CO boundary, for which we attempeted to provide physical and chemical interpretations.
NASA Astrophysics Data System (ADS)
Wang, J.; Zeng, N.; Wang, M. R.
2015-12-01
The interannual variability (IAV) in atmospheric CO2 growth rate (CGR) is closely connected with the El Niño-Southern Oscillation. However, sensitivities of CGR to temperature and precipitation remain largely uncertain. This paper analyzed the relationship between Mauna Loa CGR and tropical land climatic elements. We find that Mauna Loa CGR lags precipitation by 4 months with a correlation coefficient of -0.63, leads temperature by 1 month (0.77), and correlates with soil moisture (-0.65) with zero lag. Additionally, precipitation and temperature are highly correlated (-0.66), with precipitation leading by 4-5 months. Regression analysis shows that sensitivities of Mauna Loa CGR to temperature and precipitation are 2.92 ± 0.20 Pg C yr-1 K-1 and -0.46 ± 0.07 Pg C yr-1 100 mm-1, respectively. Unlike some recent suggestions, these empirical relationships favor neither temperature nor precipitation as the dominant factor of CGR IAV. We further analyzed seven terrestrial carbon cycle models, from the TRENDY project, to study the processes underlying CGR IAV. All models capture well the IAV of tropical land-atmosphere carbon flux (CFTA). Sensitivities of the ensemble mean CFTA to temperature and precipitation are 3.18 ± 0.11 Pg C yr-1 K-1 and -0.67 ± 0.04 Pg C yr-1 100 mm-1, close to Mauna Loa CGR. Importantly, the models consistently show the variability in net primary productivity (NPP) dominates CGR, rather than soil respiration. Because NPP is largely driven by precipitation, this suggests a key role of precipitation in CGR IAV despite the higher CGR correlation with temperature. Understanding the relative contribution of CO2 sensitivity to precipitation and temperature has important implications for future carbon-climate feedback using such "emergent constraint".
Vegetation response to rainfall seasonality and interannual variability in tropical dry forests
NASA Astrophysics Data System (ADS)
Feng, X.; Silva Souza, R. M.; Souza, E.; Antonino, A.; Montenegro, S.; Porporato, A. M.
2015-12-01
We analyzed the response of tropical dry forests to seasonal and interannual rainfall variability, focusing on the caatinga biome in semi-arid in Northeast Brazil. We selected four sites across a gradient of rainfall amount and seasonality and analyzed daily rainfall and biweekly Normalized Difference Vegetation Index (NDVI) in the period 2000-2014. The seasonal and interannual rainfall statistics were characterized using recently developed metrics describing duration, location, and intensity of wet season and compared them with those of NDVI time series and modelled soil moisture. A model of NDVI was also developed and forced by different rainfall scenarios (combination amount of rainfall and duration of wet season). The results show that the caatinga tends to have a more stable response characterized by longer and less variable growing seasons (of duration 3.1±0.1 months) compared to the rainfall wet seasons (2.0±0.5 months). Even for more extreme rainfall conditions, the ecosystem shows very little sensitivity to duration of wet season in relation to the amount of rainfall, however the duration of wet season is most evident for wetter sites. This ability of the ecosystem in buffering the interannual variability of rainfall is corroborated by the stability of the centroid location of the growing season compared to the wet season for all sites. The maximal biomass production was observed at intermediate levels of seasonality, suggesting a possible interesting trade-off in the effects of intensity (i.e., amount) and duration of the wet season on vegetation growth.
Deep Bering Sea Circulation and Variability, 2001-2016, From Argo Data
NASA Astrophysics Data System (ADS)
Johnson, Gregory C.; Stabeno, Phyllis J.
2017-12-01
The mean structure, seasonal cycle, and interannual variability of temperature and salinity are analyzed in the deep Bering Sea basin using Argo profile data collected from 2001 to 2016. Gyre transports are estimated using geostrophic stream function maps of Argo profile data referenced to a 1,000 dbar nondivergent absolute velocity stream function mapped from Argo parking pressure displacement data. Relatively warm and salty water from the North Pacific enters the basin through the Near Strait and passages between Aleutian Islands to the east. This water then flows in a cyclonic (counterclockwise) direction around the region, cooling (and freshening) along its path. Aleutian North Slope Current transports from 0 to 1,890 dbar are estimated at 3-6 Sverdrups (1 Sv = 106 m3 s-1) eastward, feeding into the northwestward Bering Slope Current with transports of mostly 5-6 Sv. The Kamchatka Current has transports of ˜6 Sv north of Shirshov Ridge, increasing to 14-16 Sv south of the ridge, where it is augmented by westward flow from Near Strait. Temperature exhibits strong interannual variations in the upper ocean, with warm periods in 2004-2005 and 2015-2016, and cold periods around 2009 and 2012. In contrast, upper ocean salinity generally decreases from 2001 to 2016. As a result of this salinity decrease, the density of the subsurface temperature minimum decreased over this time period, despite more interannual variability in the minimum temperature value. The subsurface temperature maximum also exhibits interannual variability, but with values generally warmer than those previously reported for the 1970s and 1980s.
NASA Astrophysics Data System (ADS)
Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.
2015-07-01
We examine interannual variability of phytoplankton blooms in northwestern Arabian Sea and Gulf of Oman. Satellite data (SeaWIFS ocean color) shows two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. A pronounced anti-correlation between the AVISO sea surface height anomaly (SSHA) and chlorophyll is found during the wintertime bloom. On a regional scale, interannual variability of the wintertime bloom is thus dominated by cyclonic eddies which vary in location from one year to another. These results were compared against the outputs from three different 3-D Earth System models. We show that two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The southern part of the domain is a region with a much sharper thermocline and nutricline relatively close to the surface, in which eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). We suggest that for the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf.
NASA Astrophysics Data System (ADS)
Jiang, Peng; Gautam, Mahesh R.; Zhu, Jianting; Yu, Zhongbo
2013-02-01
SummaryMulti-scale temporal variability of precipitation has an established relationship with floods and droughts. In this paper, we present the diagnostics on the ability of 16 General Circulation Models (GCMs) from Bias Corrected and Downscaled (BCSD) World Climate Research Program's (WCRP's) Coupled Model Inter-comparison Project Phase 3 (CMIP3) projections and 10 Regional Climate Models (RCMs) that participated in the North American Regional Climate Change Assessment Program (NARCCAP) to represent multi-scale temporal variability determined from the observed station data. Four regions (Los Angeles, Las Vegas, Tucson, and Cimarron) in the Southwest United States are selected as they represent four different precipitation regions classified by clustering method. We investigate how storm properties and seasonal, inter-annual, and decadal precipitation variabilities differed between GCMs/RCMs and observed records in these regions. We find that current GCMs/RCMs tend to simulate longer storm duration and lower storm intensity compared to those from observed records. Most GCMs/RCMs fail to produce the high-intensity summer storms caused by local convective heat transport associated with the summer monsoon. Both inter-annual and decadal bands are present in the GCM/RCM-simulated precipitation time series; however, these do not line up to the patterns of large-scale ocean oscillations such as El Nino/La Nina Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Our results show that the studied GCMs/RCMs can capture long-term monthly mean as the examined data is bias-corrected and downscaled, but fail to simulate the multi-scale precipitation variability including flood generating extreme events, which suggests their inadequacy for studies on floods and droughts that are strongly associated with multi-scale temporal precipitation variability.
Ecosystem variability in the offshore northeastern Chukchi Sea
NASA Astrophysics Data System (ADS)
Blanchard, Arny L.; Day, Robert H.; Gall, Adrian E.; Aerts, Lisanne A. M.; Delarue, Julien; Dobbins, Elizabeth L.; Hopcroft, Russell R.; Questel, Jennifer M.; Weingartner, Thomas J.; Wisdom, Sheyna S.
2017-12-01
Understanding influences of cumulative effects from multiple stressors in marine ecosystems requires an understanding of the sources for and scales of variability. A multidisciplinary ecosystem study in the offshore northeastern Chukchi Sea during 2008-2013 investigated the variability of the study area's two adjacent sub-ecosystems: a pelagic system influenced by interannual and/or seasonal temporal variation at large, oceanographic (regional) scales, and a benthic-associated system more influenced by small-scale spatial variations. Variability in zooplankton communities reflected interannual oceanographic differences in waters advected northward from the Bering Sea, whereas variation in benthic communities was associated with seafloor and bottom-water characteristics. Variations in the planktivorous seabird community were correlated with prey distributions, whereas interaction effects in ANOVA for walruses were related to declines of sea-ice. Long-term shifts in seabird distributions were also related to changes in sea-ice distributions that led to more open water. Although characteristics of the lower trophic-level animals within sub-ecosystems result from oceanographic variations and interactions with seafloor topography, distributions of apex predators were related to sea-ice as a feeding platform (walruses) or to its absence (i.e., open water) for feeding (seabirds). The stability of prey resources appears to be a key factor in mediating predator interactions with other ocean characteristics. Seabirds reliant on highly-variable zooplankton prey show long-term changes as open water increases, whereas walruses taking benthic prey in biomass hotspots respond to sea-ice changes in the short-term. A better understanding of how variability scales up from prey to predators and how prey resource stability (including how critical prey respond to environmental changes over space and time) might be altered by climate and anthropogenic stressors is essential to predicting the future state of both the Chukchi and other arctic systems.
NASA Technical Reports Server (NTRS)
Berg, Wesley; Avery, Susan K.
1994-01-01
Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the Special Sensor Microwave/Imager (SSM/I) for the preiod from July 1987 through December 1991. The monthly estimates were calibrated using measurements from a network of Pacific atoll rain gauges and compared to other satellite-based rainfall estimation techniques. Based on these monthly estimates, an analysis of the variability of large-scale features over intraseasonal to interannual timescales has been performed. While the major precipitation features as well as the seasonal variability distributions show good agreement with expected values, the presence of a moderately intense El Nino during 1986-87 and an intense La Nina during 1988-89 highlights this time period.
ENSO Related Interannual Lightning Variability from the Full TRMM LIS Lightning Climatology
NASA Technical Reports Server (NTRS)
Clark, Austin; Cecil, Daniel J.
2018-01-01
It has been shown that the El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production in the tropics and subtropics more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics. Using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) and the Oceanic Nino Index (ONI) for ENSO phase, lightning data were averaged into corresponding mean annual warm, cold, and neutral 'years' for analysis of the different phases. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases. These processes were then studied for inter-annual variance and subsequent correlation to ENSO during the study period to best describe the observed lightning deviations from year to year at each location.
Transport variability of the Brazil Current from observations and a data assimilation model
NASA Astrophysics Data System (ADS)
Schmid, Claudia; Majumder, Sudip
2018-06-01
The Brazil Current transports from observations and the Hybrid Coordinate Model (HYCOM) model are analyzed to improve our understanding of the current's structure and variability. A time series of the observed transport is derived from a three-dimensional field of the velocity in the South Atlantic covering the years 1993 to 2015 (hereinafter called Argo & SSH). The mean transports of the Brazil Current increases from 3.8 ± 2.2 Sv (1 Sv is 106 m3 s-1) at 25° S to 13.9 ± 2.6 Sv at 32° S, which corresponds to a mean slope of 1.4 ± 0.4 Sv per degree. Transport estimates derived from HYCOM fields are somewhat higher (5.2 ± 2.7 and 18.7 ± 7.1 Sv at 25 and 32° S, respectively) than those from Argo & SSH, but these differences are small when compared with the standard deviations. Overall, the observed latitude dependence of the transport of the Brazil Current is in agreement with the wind-driven circulation in the super gyre of the subtropical South Atlantic. A mean annual cycle with highest (lowest) transports in austral summer (winter) is found to exist at selected latitudes (24, 35, and 38° S). The significance of this signal shrinks with increasing latitude (both in Argo & SSH and HYCOM), mainly due to mesoscale and interannual variability. Both Argo & SSH, as well as HYCOM, reveal interannual variability at 24 and 35° S that results in relatively large power at periods of 2 years or more in wavelet spectra. It is found that the interannual variability at 24° S is correlated with the South Atlantic Subtropical Dipole Mode (SASD), the Southern Annular Mode (SAM), and the Niño 3.4 index. Similarly, correlations between SAM and the Brazil Current transport are also found at 35° S. Further investigation of the variability reveals that the first and second mode of a coupled empirical orthogonal function of the meridional transport and the sea level pressure explain 36 and 15 % of the covariance, respectively. Overall, the results indicate that SAM, SASD, and El Niño-Southern Oscillation have an influence on the transport of the Brazil Current.
NASA Astrophysics Data System (ADS)
Mischna, M.; Shirley, J. H.; Newman, C. E.
2016-12-01
To first order, the occurrence and interannual variability of global dust storms (GDS) on Mars is attributable to two factors: the annual cycle of solar insolation (which delineates a specific `dust storm season'), and the changing spatial distribution and availability of dust at the surface. Recent work has now found a remarkable correspondence between the occurrence of GDS on Mars and years in which the orbital angular momentum of Mars is increasing during the dust storm season. A previously undefined acceleration term `couples' this orbital motion to the rotational motion of the planet and atmosphere, and small but persistent atmospheric accelerations (so-called `coupling term accelerations,' or CTA) change the atmospheric circulation in such a way as to seemingly be favorable to storm development. This becomes a third factor, then, that may regulate the occurrence and variability of GDS. Our prior work with the MarsWRF general circulation model (GCM) was performed either with no atmospheric dust, or with simplified, prescribed dust distributions, and illustrated the dual roles of both insolation and CTA on GDS variability. Recent advances in the MarsWRF GCM dust prescription can now tackle the remaining unaddressed factor: the role of dust availability in controlling the initiation of GDS. Simulations with both infinite and finite global sources of dust have been performed. For a prescribed dust lifting threshold, surface dust is removed from the surface, preferentially from locations with larger surface stress values, transported in the atmosphere and deposited at a later time. Compared to simulations without CTA, those with CTA show more realism in the variability of timing and magnitude of atmospheric dustiness during the dust storm season. For infinite surface dust, the primary dust lifting (peak wind stress) regions are spatially restricted, and year-to-year changes are largely due to variations in the CTA at these few locations. By contrast, in simulations with finite surface dust, the peak stress regions are rapidly exhausted, leading to a far greater distribution of primary dust lifting regions; hence, variations in the CTA over a wider area contribute to the interannual variability of GDS. Results from our suite of simulations will be shown, vis-à-vis the historical record of GDS on Mars.
Sierra, C.A.; Loescher, H.W.; Harmon, M.E.; Richardson, A.D.; Hollinger, D.Y.; Perakis, S.S.
2009-01-01
Interannual variation of carbon fluxes can be attributed to a number of biotic and abiotic controls that operate at different spatial and temporal scales. Type and frequency of disturbance, forest dynamics, and climate regimes are important sources of variability. Assessing the variability of carbon fluxes from these specific sources can enhance the interpretation of past and current observations. Being able to separate the variability caused by forest dynamics from that induced by climate will also give us the ability to determine if the current observed carbon fluxes are within an expected range or whether the ecosystem is undergoing unexpected change. Sources of interannual variation in ecosystem carbon fluxes from three evergreen ecosystems, a tropical, a temperate coniferous, and a boreal forest, were explored using the simulation model STANDCARB. We identified key processes that introduced variation in annual fluxes, but their relative importance differed among the ecosystems studied. In the tropical site, intrinsic forest dynamics contributed ?? 30% of the total variation in annual carbon fluxes. In the temperate and boreal sites, where many forest processes occur over longer temporal scales than those at the tropical site, climate controlled more of the variation among annual fluxes. These results suggest that climate-related variability affects the rates of carbon exchange differently among sites. Simulations in which temperature, precipitation, and radiation varied from year to year (based on historical records of climate variation) had less net carbon stores than simulations in which these variables were held constant (based on historical records of monthly average climate), a result caused by the functional relationship between temperature and respiration. This suggests that, under a more variable temperature regime, large respiratory pulses may become more frequent and high enough to cause a reduction in ecosystem carbon stores. Our results also show that the variation of annual carbon fluxes poses an important challenge in our ability to determine whether an ecosystem is a source, a sink, or is neutral in regard to CO2 at longer timescales. In simulations where climate change negatively affected ecosystem carbon stores, there was a 20% chance of committing Type II error, even with 20 years of sequential data. ?? 2009 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Blázquez, Josefina; Solman, Silvina A.
2017-04-01
The interannual variability of the frontal activity over the western Southern Hemisphere and its linkage with the variability of the atmospheric circulation and precipitation over southern South America is studied. The analysis is focused on the austral winter and spring seasons. The frontal activity is represented by an index defined as the product between the horizontal gradient of temperature and the relative vorticity at 850 hPa (FI) and is computed from the ERA Interim and NCEP2 reanalysis. For the two seasons the main mode of variability of FI, as depicted by the first Empirical Orthogonal Function, presents centres of action located in the southern part of the western Southern Hemisphere. This pattern is present in the two reanalysis datasets. The correlation coefficients between the principal component of the leading mode of FI and the two main modes of the 500 hPa geopotential height indicate that both the ENSO-mode and the SAM modulate the leading pattern of FI in winter while during the spring season the ENSO-mode controls the FI variability. The variability of the FI has a robust influence on the interannual variability of precipitation over southern South America and adjacent oceans. Over the continent, it was found that the pattern of precipitation anomalies associated with the variability of the FI depicts significant signals over southeastern South America (SESA), centre and south of Chile for winter and over SESA and southeastern Brazil for spring and agrees with the pattern of the leading mode of precipitation variability over southern South America.
Skilful Seasonal Predictions of Summer European Rainfall
NASA Astrophysics Data System (ADS)
Dunstone, Nick; Smith, Doug; Scaife, Adam; Hermanson, Leon; Fereday, David; O'Reilly, Chris; Stirling, Alison; Eade, Rosie; Gordon, Margaret; MacLachlan, Craig; Woollings, Tim; Sheen, Katy; Belcher, Stephen
2018-04-01
Year-to-year variability in Northern European summer rainfall has profound societal and economic impacts; however, current seasonal forecast systems show no significant forecast skill. Here we show that skillful predictions are possible (r 0.5, p < 0.001) using the latest high-resolution Met Office near-term prediction system over 1960-2017. The model predictions capture both low-frequency changes (e.g., wet summers 2007-2012) and some of the large individual events (e.g., dry summer 1976). Skill is linked to predictable North Atlantic sea surface temperature variability changing the supply of water vapor into Northern Europe and so modulating convective rainfall. However, dynamical circulation variability is not well predicted in general—although some interannual skill is found. Due to the weak amplitude of the forced model signal (likely caused by missing or weak model responses), very large ensembles (>80 members) are required for skillful predictions. This work is promising for the development of European summer rainfall climate services.
Barsugli, Joseph J.; Hobbins, Michael T.; Kumar, Sanjiv
2017-01-01
Several studies have projected increases in drought severity, extent and duration in many parts of the world under climate change. We examine sources of uncertainty arising from the methodological choices for the assessment of future drought risk in the continental US (CONUS). One such uncertainty is in the climate models’ expression of evaporative demand (E0), which is not a direct climate model output but has been traditionally estimated using several different formulations. Here we analyze daily output from two CMIP5 GCMs to evaluate how differences in E0 formulation, treatment of meteorological driving data, choice of GCM, and standardization of time series influence the estimation of E0. These methodological choices yield different assessments of spatio-temporal variability in E0 and different trends in 21st century drought risk. First, we estimate E0 using three widely used E0 formulations: Penman-Monteith; Hargreaves-Samani; and Priestley-Taylor. Our analysis, which primarily focuses on the May-September warm-season period, shows that E0 climatology and its spatial pattern differ substantially between these three formulations. Overall, we find higher magnitudes of E0 and its interannual variability using Penman-Monteith, in particular for regions like the Great Plains and southwestern US where E0 is strongly influenced by variations in wind and relative humidity. When examining projected changes in E0 during the 21st century, there are also large differences among the three formulations, particularly the Penman-Monteith relative to the other two formulations. The 21st century E0 trends, particularly in percent change and standardized anomalies of E0, are found to be sensitive to the long-term mean value and the amplitude of interannual variability, i.e. if the magnitude of E0 and its interannual variability are relatively low for a particular E0 formulation, then the normalized or standardized 21st century trend based on that formulation is amplified relative to other formulations. This is the case for the use of Hargreaves-Samani and Priestley-Taylor, where future E0 trends are comparatively much larger than for Penman-Monteith. When comparing Penman-Monteith E0 responses between different choices of input variables related to wind speed, surface roughness, and net radiation, we found differences in E0 trends, although these choices had a much smaller influence on E0 trends than did the E0 formulation choices. These methodological choices and specific climate model selection, also have a large influence on the estimation of trends in standardized drought indices used for drought assessment operationally. We find that standardization tends to amplify divergences between the E0 trends calculated using different E0 formulations, because standardization is sensitive to both the climatology and amplitude of interannual variability of E0. For different methodological choices and GCM output considered in estimating E0, we examine potential sources of uncertainty in 21st century trends in the Standardized Precipitation Evapotranspiration Index (SPEI) and Evaporative Demand Drought Index (EDDI) over selected regions of the CONUS to demonstrate the practical implications of these methodological choices for the quantification of drought risk under climate change. PMID:28301603
Temporal variation of meandering intensity and domain-wide lateral oscillations of the Gulf Stream
NASA Technical Reports Server (NTRS)
Lee, Tong; Cornillon, Peter
1995-01-01
The path of the Gulf Stream exhibits two modes of variability: wavelike spatial meanders associated with instability processes and large-sale lateral shifts of the path presumably due to atmospheric forcing. The objectives of this study are to examine the temporal variation of the intensity of spatial meandering in the stream, to characterize large-scale lateral oscillations in the stream's path, and to study the correlation betwen these two dynamically distinct modes of variability. The data used for this analysis are path displacemets ofthe Gulf Stream between 75 deg and 60 deg W obtained from AVHRR-derived (Advanced Very High Resolution Radiometer) infrared images for the period April 1982 through December 1989. Meandering intensity, measured by the spatial root-mean-sqaure displacement of the stream path, displays a 9-month dominant periodicity which is persistent through the study period. The 9-month fluctuation in meandering intensity may be related to the interaction of Rosseby waves with the stream. Interannual variation of meandering intensity is also found to be significant, with meandering being mich more intense during 1985 than it was in 1987. Annual variation, however,is weak and not well-defined.The spatially averaged position of the stream, which reflects nonmeandering large-scale lateral oscillations of the stream path, is dominated by an annual cycle. On average, the mean position is farthest north in November and farthest south in April. The first empirical orthogonal function mode of the space-time path displacements represents lateral oscillatins that are in-phase over the space-time domain. Interannual oscillations are also observed and are found to be weaker than the annual oscillation. The eigenvalue of the first mode indicates that about 21.5% of the total space-time variability of the stream path can be attibuted to domain-wide lateral oscillation. The correlation between meandering intensity and domain-wide lateral oscillations is very weak.
Antarctic Surface Temperatures Using Satellite Infrared Data from 1979 Through 1995
NASA Technical Reports Server (NTRS)
Comiso, Josefino C.; Stock, Larry
1997-01-01
The large scale spatial and temporal variations of surface ice temperature over the Antarctic region are studied using infrared data derived from the Nimbus-7 Temperature Humidity Infrared Radiometer (THIR) from 1979 through 1985 and from the NOAA Advanced Very High Resolution Radiometer (AVHRR) from 1984 through 1995. Enhanced techniques suitable for the polar regions for cloud masking and atmospheric correction were used before converting radiances to surface temperatures. The observed spatial distribution of surface temperature is highly correlated with surface ice sheet topography and agrees well with ice station temperatures with 2K to 4K standard deviations. The average surface ice temperature over the entire continent fluctuates by about 30K from summer to winter while that over the Antarctic Plateau varies by about 45K. Interannual fluctuations of the coldest interannual variations in surface temperature are highest at the Antarctic Plateau and the ice shelves (e.g., Ross and Ronne) with a periodic cycle of about 5 years and standard deviations of about 11K and 9K, respectively. Despite large temporal variability, however, especially in some regions, a regression analysis that includes removal of the seasonal cycle shows no apparent trend in temperature during the period 1979 through 1995.
NASA Astrophysics Data System (ADS)
Alavi-Shoushtari, N.; King, D.
2017-12-01
Agricultural landscapes are highly variable ecosystems and are home to many local farmland species. Seasonal, phenological and inter-annual agricultural landscape dynamics have potential to affect the richness and abundance of farmland species. Remote sensing provides data and techniques which enable monitoring landscape changes in multiple temporal and spatial scales. MODIS high temporal resolution remote sensing images enable detection of seasonal and phenological trends, while Landsat higher spatial resolution images, with its long term archive enables inter-annual trend analysis over several decades. The objective of this study to use multi-spatial and multi-temporal remote sensing data to model the response of farmland species to landscape metrics. The study area is the predominantly agricultural region of eastern Ontario. 92 sample landscapes were selected within this region using a protocol designed to maximize variance in composition and configuration heterogeneity while controlling for amount of forest and spatial autocorrelation. Two sample landscape extents (1×1km and 3×3km) were selected to analyze the impacts of spatial scale on biodiversity response. Gamma diversity index data for four taxa groups (birds, butterflies, plants, and beetles) were collected during the summers of 2011 and 2012 within the cropped area of each landscape. To extract the seasonal and phenological metrics a 2000-2012 MODIS NDVI time-series was used, while a 1985-2012 Landsat time-series was used to model the inter-annual trends of change in the sample landscapes. The results of statistical modeling showed significant relationships between farmland biodiversity for several taxa and the phenological and inter-annual variables. The following general results were obtained: 1) Among the taxa groups, plant and beetles diversity was most significantly correlated with the phenological variables; 2) Those phenological variables which are associated with the variability in the start of season date across the sample landscapes and the variability in the corresponding NDVI values at that date showed the strongest correlation with the biodiversity indices; 3) The significance of the models improved when using 3×3km site extent both for MODIS and Landsat based models due most likely to the larger sample size over 3x3km.
Seasonal and interannual cross-shelf transport over the Texas and Louisiana continental shelf
NASA Astrophysics Data System (ADS)
Thyng, Kristen M.; Hetland, Robert D.
2018-05-01
Numerical drifters are tracked in a hydrodynamic simulation of circulation over the Texas-Louisiana shelf to analyze patterns in cross-shelf transport of materials. While the important forcing mechanisms in the region (wind, river, and deep eddies) and associated flow patterns are known, the resultant material transport is less well understood. The primary metric used in the calculations is the percent of drifters released within a region that cross the 100 m isobath. Results of the analysis indicate that, averaged over the eleven years of the simulation, there are two regions on the shelf - over the Texas shelf during winter, and over the Louisiana shelf in summer - with increased seasonal probability for offshore transport. Among the two other distinct regions, the big bend region in Texas has increased probability for onshore transport, and the Mississippi Delta region has an increase in offshore transport, for both seasons. Some of these regions of offshore transport have marked interannual variability. This interannual variability is correlated to interannual changes in forcing conditions. Winter transport off of the Texas shelf is correlated with winter mean wind direction, with more northerly winds enhancing offshore transport; summer transport off the Louisiana shelf is correlated with Mississippi River discharge.
NASA Astrophysics Data System (ADS)
Kim, Jung Jin; Stockhausen, William; Kim, Suam; Cho, Yang-Ki; Seo, Gwang-Ho; Lee, Joon-Soo
2015-11-01
To understand interannual variability in the distribution of the early life stages of Todarodes pacificus summer spawning population, and to identify the key transport processes influencing this variability, we used a coupled bio-physical model that combines an individual-based model (IBM) incorporating ontogenetic vertical migration for paralarval behavior and temperature-dependent survival process with a ROMS oceanographic model. Using the distribution of paralarvae observed in the northern East China Sea (ECS) during several field cruises as an end point, the spawning ground for the summer-spawning population was estimated to extend from southeast Jeju Island to the central ECS near 29°N by running the model backwards in time. Running the model forward, interannual variability in the distribution of paralarvae predicted by the model was consistent with that observed in several field surveys; surviving individuals in the northern ECS were substantially more abundant in late July 2006 than in 2007, in agreement with observed paralarval distributions. The total number of surviving individuals at 60 days after release based on the simulation throughout summer spawning period (June-August) was 20,329 for 2006, compared with 13,816 for 2007. The surviving individuals were mainly distributed in the East/Japan Sea (EJS), corresponding to a pathway following the nearshore branch of the Tsushima Warm Current flowing along the Japanese coast during both years. In contrast, the abundance of surviving individuals was extremely low in 2007 compared to 2006 on the Pacific side of Japan. Interannual variability in transport and survival processes made a substantial impact on not only the abundance of surviving paralarvae, but also on the flux of paralarvae to adjacent waters. Our simulation results for between-year variation in paralarval abundance coincide with recruitment (year n + 1) variability of T. pacificus in the field. The agreement between the simulation and field data indicates our model may be useful for predicting the recruitment of T. pacificus.
Seasonal and Interannual Variabilities in Tropical Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
1999-01-01
This paper presents a detailed characterization of seasonal and interannual variability in tropical tropospheric column ozone (TCO). TCO time series are derived from 20 years (1979-1998) of total ozone mapping spectrometer (TOMS) data using the convective cloud differential (CCD) method. Our study identifies three regions in the tropics with distinctly different zonal characteristics related to seasonal and interannual variability. These three regions are the eastern Pacific, Atlantic, and western Pacific. Results show that in both the eastern and western Pacific seasonal-cycle variability of northern hemisphere (NH) TCO exhibits maximum amount during NH spring whereas largest amount in southern hemisphere (SH) TCO occurs during SH spring. In the Atlantic, maximum TCO in both hemispheres occurs in SH spring. These seasonal cycles are shown to be comparable to seasonal cycles present in ground-based ozonesonde measurements. Interannual variability in the Atlantic region indicates a quasi-biennial oscillation (QBO) signal that is out of phase with the QBO present in stratospheric column ozone (SCO). This is consistent with high pollution and high concentrations of mid-to-upper tropospheric O3-producing precursors in this region. The out of phase relation suggests a UV modulation of tropospheric photochemistry caused by the QBO in stratospheric O3. During El Nino events there is anomalously low TCO in the eastern Pacific and high values in the western Pacific, indicating the effects of convectively-driven transport of low-value boundary layer O3 (reducing TCO) and O3 precursors including H2O and OH. A simplified technique is proposed to derive high-resolution maps of TCO in the tropics even in the absence of tropopause-level clouds. This promising approach requires only total ozone gridded measurements and utilizes the small variability observed in TCO near the dateline. This technique has an advantage compared to the CCD method because the latter requires high-resolution footprint measurements of both reflectivity and total ozone in the presence of tropopause-level cloud tops.
Intraseasonal and interannual oscillations in coupled ocean-atmosphere models
NASA Technical Reports Server (NTRS)
Hirst, Anthony C.; Lau, K.-M.
1990-01-01
An investigation is presented of coupled ocean-atmosphere models' behavior in an environment where atmospheric wave speeds are substantially reduced from dry atmospheric values by such processes as condensation-moisture convergence. Modes are calculated for zonally periodic, unbounded ocean-atmosphere systems, emphasizing the importance of an inclusion of prognostic atmosphere equations in simple coupled ocean-atmosphere models with a view to simulations of intraseasonal variability and its possible interaction with interannual variability. The dynamics of low and high frequency modes are compared; both classes are sensitive to the degree to which surface wind anomalies are able to affect the evaporation rate.
Mars: A Planet with a Dynamic Climate System
NASA Technical Reports Server (NTRS)
Haberle, Robert M.
2013-01-01
Mars is a well-observed planet. Since the 1960s orbiters, landers, rovers, and earth-based telescopic observations show that its climate system is dynamic. Its dynamic nature, largely the result of atmosphere-surface interactions, is most obvious in the seasonal cycles of dust, water, and carbon dioxide that define the planet's climate system. These cycles are linked through the global circulation and MGS, Odyssey, Phoenix, MER, Mars Express, MRO, and now MSL have continuously observed them at Mars for the past 16 years. Their observations show that while the seasonal cycles are largely annually repeatable, there are interannual variations. Planet-encircling dust storms, for example, are quasi-triennial and originate over a broader range of seasons and locations than previously thought. Water moves from pole-to-pole each year in a largely, but not precisely, repeatable pattern that suggests but does not demand non-polar surface reservoirs. And the seasonal CO2 polar caps grow and retreat in a very predictable way with only minor deviations from year-to-year in spite of significant differences in atmospheric dust content. These behaviors suggest a complicated but robust coupled system in which these cycles interact to produce the greatest interannual variability in the dust cycle and least variability in the CO2 cycle. The nature of these interactions is the subject of ongoing research, but clouds, both water ice and CO2 ice, now appear to play a bigger role than believed at the end of the 20th century. There may also be some long-term trends in these cycles as there is evidence from imaging data, for example, that the south polar residual cap may not be stable on decadal to centennial time scales. On even longer time scales, the discovery of as much as 5 mb global equivalent of buried CO2 ice near the south pole, the detection of vast quantities of subsurface water ice at very shallow depths in midlatitudes of both hemispheres, and the presence of remnant glacial features at almost all latitudes, strongly suggests the possibility of significant climate change associated with orbital variations. Some of the major questions these data raise concern how closed the seasonal cycles are and which reservoirs are gaining or loosing, the cause of the large interannual variability of the dust cycle and how it couples to the water and CO2 cycles, and the mechanisms for the origin of past glacial activity and the emplacement and removal of subsurface ice. While many of these questions can be addressed with continued research based on existing data, new observations focused on atmosphere surface-interactions would provide valuable constraints on how dust, water, and CO2 move between the surface and atmosphere.
Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.
2007-01-01
Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the mid-latitudes. Hence the anomalies associated with the tropical Pacific during JJA are forced through an anomalous Walker circulation primarily working on the western basin, and likely a lagged oceanic response in the equatorial region.
NASA Astrophysics Data System (ADS)
Somot, Samuel; Houpert, Loic; Sevault, Florence; Testor, Pierre; Bosse, Anthony; Durrieu de Madron, Xavier; Dubois, Clotilde; Herrmann, Marine; Waldman, Robin; Bouin, Marie-Noëlle; Cassou, Christophe
2015-04-01
The North-Western Mediterranean Sea is known as one of the only place in the world where open-sea deep convection occurs (often up to more than 2000m) with the formation of the Western Mediterranean Deep Water (WMDW). This phenomena is mostly driven by local preconditioning of the water column and strong buoyancy losses during Winter. At the event scale, the WMDW formation is characterized by different phases (preconditioning, strong mixing, restratification and spreading), intense air-sea interaction and strong meso-scale activity but, on a longer time scale, it also shows a large interannual variability and may be strongly affected by climate change with impact on the regional biogeochemistry. Therefore observing, simulating and understanding the long-term temporal variability of the North-Western Mediterranean deep water formation is still today a very challenging task. We try here to tackle those issues thanks to (1) a thorough reanalysis of past in-situ observations (CTD, Argo, surface and deep moorings, gliders) and (2) an ERA-Interim driven simulation using a recently-developed fully coupled Regional Climate System Model (CNRM-RCSM4, Sevault et al. 2014). The multi-decadal simulation (1979-2013) is designed to be temporally and spatially homogeneous with a realistic chronology, a high resolution representation of both the regional ocean and atmosphere, specific initial conditions, a long-term spin-up and a full ocean-atmosphere coupling without constraint at the air-sea interface. The observation reanalysis allows to reconstruct interannual time series of deep water formation indicators (ocean surface variables, mixed layer depth, surface of the convective area, dense water volumes and characteristics of the deep water). Using the observation-based indicators and the model outputs, the 34 Winters of the period 1979-2013 are analysed in terms of weather regimes, related Winter air-sea fluxes, ocean preconditioning, mixed layer depth, surface of the convective area, deep water formation rate and long-term evolution of the deep water hydrology.
NASA Astrophysics Data System (ADS)
Fučkar, Neven-Stjepan; Guemas, Virginie; Massonnet, François; Doblas-Reyes, Francisco
2015-04-01
Over the modern observational era, the northern hemisphere sea ice concentration, age and thickness have experienced a sharp long-term decline superimposed with strong internal variability. Hence, there is a crucial need to identify robust patterns of Arctic sea ice variability on interannual timescales and disentangle them from the long-term trend in noisy datasets. The principal component analysis (PCA) is a versatile and broadly used method for the study of climate variability. However, the PCA has several limiting aspects because it assumes that all modes of variability have symmetry between positive and negative phases, and suppresses nonlinearities by using a linear covariance matrix. Clustering methods offer an alternative set of dimension reduction tools that are more robust and capable of taking into account possible nonlinear characteristics of a climate field. Cluster analysis aggregates data into groups or clusters based on their distance, to simultaneously minimize the distance between data points in a given cluster and maximize the distance between the centers of the clusters. We extract modes of Arctic interannual sea-ice variability with nonhierarchical K-means cluster analysis and investigate the mechanisms leading to these modes. Our focus is on the sea ice thickness (SIT) as the base variable for clustering because SIT holds most of the climate memory for variability and predictability on interannual timescales. We primarily use global reconstructions of sea ice fields with a state-of-the-art ocean-sea-ice model, but we also verify the robustness of determined clusters in other Arctic sea ice datasets. Applied cluster analysis over the 1958-2013 period shows that the optimal number of detrended SIT clusters is K=3. Determined SIT cluster patterns and their time series of occurrence are rather similar between different seasons and months. Two opposite thermodynamic modes are characterized with prevailing negative or positive SIT anomalies over the Arctic basin. The intermediate mode, with negative anomalies centered on the East Siberian shelf and positive anomalies along the North American side of the basin, has predominately dynamic characteristics. The associated sea ice concentration (SIC) clusters vary more between different seasons and months, but the SIC patterns are physically framed by the SIT cluster patterns.
NASA Astrophysics Data System (ADS)
Doermann, L.; Kaminsky, G. M.; Ruggiero, P.
2006-12-01
Beach topographic data have been collected along the 160 km-long Columbia River Littoral Cell in southwest Washington and northwest Oregon, USA as part of the Southwest Washington Coastal Erosion Study and a NANOOS pilot project. The monitoring program includes the collection of cross-shore beach profiles at 49 sites for each of the 34 seasons since 1997 (with few exceptions), enabling the investigation of the seasonal to interannual morphological variability of this high-energy coast. We focus here on the dunes backing the beaches, aiming to quantitatively describe the wide variety of characteristics they exhibit, as well as to relate dune evolution to shoreline change. To analyze the large volume of high-quality data, we use automated algorithms and systematic processes to identify the location of the dune toe, crest, and face, and calculate a volume (where enough data are available) and beach width for each survey. We define the position of the dune face as the elevation half-way between the average dune toe and average dune crest elevations at each profile location, and beach width as the horizontal distance between the 2-m contour (~MSL) and the dune toe. Much like shoreline proxies lower on the beach profile, (e.g., the 3-m contour), the location of the dune toe shows large seasonal variability with onshore deposition of sand in summer months and offshore sand transport in the winter. However, the location of the dune face and the elevation of the dune crest are much less variable and are useful in describing the evolution of the dune/beach system in the horizontal and vertical directions, respectively, over interannual time scales. On beaches with the highest shoreline change rates in the study area, the dune face follows the progradational trend of the shoreline with the dune face prograding at approximately 25-50% of the rate of the shoreline. Along many of these beaches that experienced severe erosion during the El Niño of 1997/98, the dune face recovered quickly and has continued to grow steadily seaward since 1999. The consistency of this dune face behavior may prove to be a reliable indicator of longer-scale beach trends due to its ability to remove the effects of even the most severe seasonal changes. These prograding dunes also accreted vertically by 1-2 m for several years as a distinctly new foredune evolved. However, the dune crest height has remained relatively constant for about the last two years and there is some evidence of a new seaward ridge forming as the beach continues to prograde. Coastal stretches that exhibit large variability in shoreline position also feature more erratic dune behavior. On eroding beaches, the dune face follows the trend of the shoreline, although the rate of retreat is not always steady because of winter scarping. In contrast, beaches with stable shorelines (over interannual-decadal scale) are backed by dunes 8-9 m in height that have shown little to no significant dune face position change over the last nine years. Additionally, across the study area, we observe that wider beaches ( > 100 m) are associated with higher rates of shoreline and dune face accretion, while the narrower beaches ( < 100 m) are either stable or eroding.
Elsawwaf, Mohamed; Willems, Patrick
2012-04-01
Variations in lake evaporation have a significant impact on the energy and water budgets of lakes. Understanding these variations and the role of climate is important for water resources management as well as predicting future changes in lake hydrology as a result of climate change. This study presents a comprehensive, 10-year analysis of seasonal, intraseasonal, and interannual variations in lake evaporation for Lake Nasser in South Egypt. Meteorological and lake temperature measurements were collected from an instrumented platform (Raft floating weather station) at 2 km upstream ofthe Aswan High Dam. In addition to that, radiation measurements at three locations on the lake: Allaqi, Abusembel and Arqeen (respectively at 75, 280 and 350 km upstream of the Aswan High Dam) are used. The data were analyzed over 14-day periods from 1995 to 2004 to provide bi-weekly energy budget estimates of evaporation rate. The mean evaporation rate for lake Nasser over the study period was 5.88 mm day(-1), with a coefficient of variation of 63%. Considerable variability in evaporation rates was found on a wide range of timescales, with seasonal changes having the highest coefficient of variation (32%), followed by the intraseasonal (28%) and interannual timescales (11.6%; for summer means). Intraseasonal changes in evaporation were primarily associated with synoptic weather variations, with high evaporation events tending to occur during incursions of cold, dry air (due, in part, to the thermal lag between air and lake temperatures). Seasonal variations in evaporation were largely driven by temperature and net energy advection, but are out-of-phase with changes in wind speed. On interannual timescales, changes in summer evaporation rates were strongly associated with changes in net energy advection and showed only moderate connections to variations in temperature or humidity.
Seasonal to interannual morphodynamics along a high-energy dissipative littoral cell
Ruggiero, P.; Kaminsky, G.M.; Gelfenbaum, G.; Voigt, B.
2005-01-01
A beach morphology monitoring program was initiated during summer 1997 along the Columbia River littoral cell (CRLC) on the coasts of northwest Oregon and southwest Washington, USA. This field program documents the seasonal through interannual morphological variability of these high-energy dissipative beaches over a variety of spatial scales. Following the installation of a dense network of geodetic control monuments, a nested sampling scheme consisting of cross-shore topographic beach profiles, three-dimensional topographic beach surface maps, nearshore bathymetric surveys, and sediment size distribution analyses was initiated. Beach monitoring is being conducted with state-of-the-art real-time kinematic differential global positioning system survey methods that combine both high accuracy and speed of measurement. Sampling methods resolve variability in beach morphology at alongshore length scales of approximately 10 meters to approximately 100 kilometers and cross-shore length scales of approximately 1 meter to approximately 2 kilometers. During the winter of 1997/1998, coastal change in the US Pacific Northwest was greatly influenced by one of the strongest El Nin??o events on record. Steeper than typical southerly wave angles resulted in alongshore sediment transport gradients and shoreline reorientation on a regional scale. The La Nin??a of 1998/1999, dominated by cross-shore processes associated with the largest recorded wave year in the region, resulted in net beach erosion along much of the littoral cell. The monitoring program successfully documented the morphological response to these interannual forcing anomalies as well as the subsequent beach recovery associated with three consecutive moderate wave years. These morphological observations within the CRLC can be generalized to explain overall system patterns; however, distinct differences in large-scale coastal behavior (e.g., foredune ridge morphology, sandbar morphometrics, and nearshore beach slopes) are not readily explained or understood.
NASA Astrophysics Data System (ADS)
Uitz, Julia; Claustre, Hervé; Gentili, Bernard; Stramski, Dariusz
2010-09-01
We apply an innovative approach to time series data of surface chlorophyll from satellite observations with SeaWiFS (Sea-viewing Wide Field-of-view Sensor) to estimate the primary production associated with three major phytoplankton classes (micro-, nano-, and picophytoplankton) within the world's oceans. Statistical relationships, determined from an extensive in situ database of phytoplankton pigments, are used to infer class-specific vertical profiles of chlorophyll a concentration from satellite-derived surface chlorophyll a. This information is combined with a primary production model and class-specific photophysiological parameters to compute global seasonal fields of class-specific primary production over a 10-year period from January 1998 through December 2007. Microphytoplankton (mostly diatoms) appear as a major contributor to total primary production in coastal upwelling systems (70%) and temperate and subpolar regions (50%) during the spring-summer season. The contribution of picophytoplankton (e.g., prokaryotes) reaches maximum values (45%) in subtropical oligotrophic gyres. Nanophytoplankton (e.g., prymnesiophytes) provide a ubiquitous, substantial contribution (30-60%). Annual global estimates of class-specific primary production amount to 15 Gt C yr-1 (32% of total), 20 Gt C yr-1 (44%) and 11 Gt C yr-1 (24%) for micro-, nano-, and picophytoplankton, respectively. The analysis of interannual variations revealed large anomalies in class-specific primary production as compared to the 10-year mean cycle in both the productive North Atlantic basin and the more stable equatorial Pacific upwelling. Microphytoplankton show the largest range of variability of the three phytoplankton classes on seasonal and interannual time scales. Our results contribute to an understanding and quantification of carbon cycle in the ocean.
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P. C. D.; Cazenave, A.; Gennero, C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981–1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981–1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993–1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system. PMID:14576277
Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales
Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.
2017-01-01
Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288
Contribution of climate-driven change in continental water storage to recent sea-level rise
Milly, P.C.D.; Cazenave, A.; Gennero, M.C.
2003-01-01
Using a global model of continental water balance, forced by interannual variations in precipitation and near-surface atmospheric temperature for the period 1981-1998, we estimate the sea-level changes associated with climate-driven changes in storage of water as snowpack, soil water, and ground water; storage in ice sheets and large lakes is not considered. The 1981-1998 trend is estimated to be 0.12 mm/yr, and substantial interannual fluctuations are inferred; for 1993-1998, the trend is 0.25 mm/yr. At the decadal time scale, the terrestrial contribution to eustatic (i.e., induced by mass exchange) sea-level rise is significantly smaller than the estimated steric (i.e., induced by density changes) trend for the same period, but is not negligibly small. In the model the sea-level rise is driven mainly by a downtrend in continental precipitation during the study period, which we believe was generated by natural variability in the climate system.
New features of global climatology revealed by satellite-derived oceanic rainfall maps
NASA Technical Reports Server (NTRS)
Rao, M. S. V.; Theon, J. S.
1977-01-01
Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed.
NASA Technical Reports Server (NTRS)
Cabanes, Cecile; Lee, Tong; Fu, Lee-Lueng
2008-01-01
The authors investigate the nature of the interannual variability of the meridional overturning circulation (MOC) of the North Atlantic Ocean using an Estimating the Circulation and Climate of the Ocean (ECCO) assimilation product for the period of 1993-2003. The time series of the first empirical orthogonal function of the MOC is found to be correlated with the North Atlantic Oscillation (NAO) index, while the associated circulation anomalies correspond to cells extending over the full ocean depth. Model sensitivity experiments suggest that the wind is responsible for most of this interannual variability, at least south of 40(deg)N. A dynamical decomposition of the meridional streamfunction allows a further look into the mechanisms. In particular, the contributions associated with 1) the Ekman flow and its depth-independent compensation, 2) the vertical shear flow, and 3) the barotropic gyre flowing over zonally varying topography are examined. Ekman processes are found to dominate the shorter time scales (1.5-3 yr), while for longer time scales (3-10 yr) the MOC variations associated with vertical shear flow are of greater importance. The latter is primarily caused by heaving of the pycnocline in the western subtropics associated with the stronger wind forcing. Finally, how these changes in the MOC affect the meridional heat transport (MHT) is examined. It is found that overall, Ekman processes explain a larger part of interannual variability (3-10 yr) for MHT (57%) than for the MOC (33%).
Changes in climate variability with reference to land quality and agriculture in Scotland.
Brown, Iain; Castellazzi, Marie
2015-06-01
Classification and mapping of land capability represents an established format for summarising spatial information on land quality and land-use potential. By convention, this information incorporates bioclimatic constraints through the use of a long-term average. However, climate change means that land capability classification should also have a dynamic temporal component. Using an analysis based upon Land Capability for Agriculture in Scotland, it is shown that this dynamism not only involves the long-term average but also shorter term spatiotemporal patterns, particularly through changes in interannual variability. Interannual and interdecadal variations occur both in the likelihood of land being in prime condition (top three capability class divisions) and in class volatility from year to year. These changing patterns are most apparent in relation to the west-east climatic gradient which is mainly a function of precipitation regime and soil moisture. Analysis is also extended into the future using climate results for the 2050s from a weather generator which show a complex interaction between climate interannual variability and different soil types for land quality. In some locations, variability of land capability is more likely to decrease because the variable climatic constraints are relaxed and the dominant constraint becomes intrinsic soil properties. Elsewhere, climatic constraints will continue to be influential. Changing climate variability has important implications for land-use planning and agricultural management because it modifies local risk profiles in combination with the current trend towards agricultural intensification and specialisation.
Arctic Ocean Freshwater: How Robust are Model Simulations
NASA Technical Reports Server (NTRS)
Jahn, A.; Aksenov, Y.; deCuevas, B. A.; deSteur, L.; Haekkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.-N.; Karcher, M.; Kauker, F.;
2012-01-01
The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the investigated models. While they agree on the general sink and source terms of the Arctic FW budget, the long-term means as well as the variability of the FW export vary among models. The best model-to-model agreement is found for the interannual and seasonal variability of the solid FW export and the solid FW storage, which also agree well with observations. For the interannual and seasonal variability of the liquid FW export, the agreement among models is better for the Canadian Arctic Archipelago (CAA) than for Fram Strait. The reason for this is that models are more consistent in simulating volume flux anomalies than salinity anomalies and volume-flux anomalies dominate the liquid FW export variability in the CAA but not in Fram Strait. The seasonal cycle of the liquid FW export generally shows a better agreement among models than the interannual variability, and compared to observations the models capture the seasonality of the liquid FW export rather well. In order to improve future simulations of the Arctic FW budget, the simulation of the salinity field needs to be improved, so that model results on the variability of the liquid FW export and storage become more robust.
Carbon cycle responses of semi-arid ecosystems to positive asymmetry in rainfall.
Haverd, Vanessa; Ahlström, Anders; Smith, Benjamin; Canadell, Josep G
2017-02-01
Recent evidence shows that warm semi-arid ecosystems are playing a disproportionate role in the interannual variability and greening trend of the global carbon cycle given their mean lower productivity when compared with other biomes (Ahlström et al. 2015 Science, 348, 895). Using multiple observations (land-atmosphere fluxes, biomass, streamflow and remotely sensed vegetation cover) and two state-of-the-art biospheric models, we show that climate variability and extremes lead to positive or negative responses in the biosphere, depending on vegetation type. We find Australia to be a global hot spot for variability, with semi-arid ecosystems in that country exhibiting increased carbon uptake due to both asymmetry in the interannual distribution of rainfall (extrinsic forcing), and asymmetry in the response of gross primary production (GPP) to rainfall change (intrinsic response). The latter is attributable to the pulse-response behaviour of the drought-adapted biota of these systems, a response that is estimated to be as much as half of that from the CO 2 fertilization effect during 1990-2013. Mesic ecosystems, lacking drought-adapted species, did not show an intrinsic asymmetric response. Our findings suggest that a future more variable climate will induce large but contrasting ecosystem responses, differing among biomes globally, independent of changes in mean precipitation alone. The most significant changes are occurring in the extensive arid and semi-arid regions, and we suggest that the reported increased carbon uptake in response to asymmetric responses might be contributing to the observed greening trends there. © 2016 John Wiley & Sons Ltd.
Westgate, John N; Wania, Frank
2011-10-15
Air mass origin as determined by back trajectories often aids in explaining some of the short-term variability in the atmospheric concentrations of semivolatile organic contaminants. Airsheds, constructed by amalgamating large numbers of back trajectories, capture average air mass origins over longer time periods and thus have found use in interpreting air concentrations obtained by passive air samplers. To explore some of their key characteristics, airsheds for 54 locations on Earth were constructed and compared for roundness, seasonality, and interannual variability. To avoid the so-called "pole problem" and to simplify the calculation of roundness, a "geodesic grid" was used to bin the back-trajectory end points. Departures from roundness were seen to occur at all latitudes and to correlate significantly with local slope but no strong relationship between latitude and roundness was revealed. Seasonality and interannual variability vary widely enough to imply that static models of transport are not sufficient to describe the proximity of an area to potential sources of contaminants. For interpreting an air measurement an airshed should be generated specifically for the deployment time of the sampler, especially when investigating long-term trends. Samples taken in a single season may not represent the average annual atmosphere, and samples taken in linear, as opposed to round, airsheds may not represent the average atmosphere in the area. Simple methods are proposed to ascertain the significance of an airshed or individual cell. It is recommended that when establishing potential contaminant source regions only end points with departure heights of less than ∼700 m be considered.
NASA Technical Reports Server (NTRS)
Chao, Benjamin F.; Cox, Christopher M.
2004-01-01
Satellite laser-ranging (SLR) has been observing the tiny variations in Earth s global gravity for over 2 decades. The oblateness of the Earth's gravity field, J2, has been observed to undergo a secular decrease of J2 due mainly to the post-glacial rebound of the mantle. Sometime around 1998 this trend reversed quite suddenly. This reversal persisted until 2001, at which point the atmosphere-corrected time series appears to have reversed yet again towards normal. This anomaly signifies a large interannual change in global mass distribution. A number of possible causes have been considered, with oceanic mass redistribution as the leading candidate although other effects, such as glacial melting and core effects may be contributing. In fact, a strong correlation has been found between the J2 variability and the Pacific decadal oscillation. It is relatively more difficult to solve for corresponding signals in the shorter wavelength harmonics from the existing SLR-derived time variable gravity results, although it appears that geophysical fluid mass transport is being observed. For example, the recovered J3 time series shows remarkable agreement with NCEP-derived estimates of atmospheric gravity variations. Likewise, some of the non-zonal harmonic components have significant interannual signal that appears to be related to mass transport related to climatic effects such as El Nino Southern Oscillation. We will present recent updates on the J2 evolution, as well as a monthly time sequence of low-degree component map of the time-variable gravity complete through degree 4, and examine possible geophysical/climatic causes.
NASA Astrophysics Data System (ADS)
Parazoo, N.; Barnes, E. A.; Worden, J.; Harper, A. B.; Bowman, K. W.; Frankenberg, C.
2014-12-01
The Texas-northern Mexico high plains experienced record drought conditions in 2011 during strong negative phases of ENSO and the NAO. Given predictions of increased frequency and severity of drought under projected climate change [e.g., Reichstein et al., 2013] and recent findings of CO2 growth rate sensitivity to interannual variability of carbon uptake in semi-arid ecosystems [Poulter et al., 2014], we investigate the response of carbon uptake in the Texas high plains to interannual climate variability with the goal of improved mechanistic understanding of climate-carbon cycle links. Specifically, we examine (1) observed tendencies in regional scale carbon uptake and soil moisture from 2010 to 2011 using satellite observations of gross primary production (GPP) (from plant fluorescence) from GOSAT and soil moisture from SMOS, and (2) the interannual relationship between GPP and ENSO & NAO variability using terrestrial biosphere simulations from 1950-2012. Observations reveal widespread decline of GPP in 2011 (0.42 +/- 0.04 Pg C yr-1) correlated with negative soil moisture tendencies (r = 0.85 +/- 0.21) which leads to corresponding declines in net carbon uptake and transpiration (according to model simulations). Further examination of model results over the period 1950-2012 indicates that negative GPP anomalies are linked systematically to winter and spring precipitation deficits associated with overlapping negative phases of winter NAO and ENSO, with increasing magnitude of negative anomalies in strong La Niña years. Furthermore, the strongest decline of GPP, carbon uptake, and transpiration on record occurred during the 2011 drought and were associated with extreme negative phases of ENSO and NAO, with 2011 being the only year since 1950 that both indices exceeded 1 σ standard deviation.
Interannual variability: a crucial component of space use at the territory level.
Uboni, Alessia; Vucetich, John A; Stahler, Daniel R; Smith, Douglas W
2015-01-01
Interannual variability in space use and how that variation is influenced by density-dependent and density-independent factors are important processes in population ecology. Nevertheless, interannual variability has been neglected by the majority of space use studies. We assessed that variation for wolves living in 15 different packs within Yellowstone National Park during a 13-year period (1996-2008). We estimated utilization distributions to quantify the intensity of space use within each pack's territory each year in summer and winter. Then, we used the volume of intersection index (VI) to quantify the extent to which space use varied from year to year. This index accounts for both the area of overlap and differences in the intensity of use throughout a territory and ranges between 0 and 1. The mean VI index was 0.49, and varied considerably, with approximately 20% of observations (n = 230) being <0.3 or >0.7. In summer, 42% of the variation was attributable to differences between packs. These differences can be attributable to learned behaviors and had never been thought to have such an influence on space use. In winter, 34% of the variation in overlap between years was attributable to interannual differences in precipitation and pack size. This result reveals the strong influence of climate on predator space use and underlies the importance of understanding how climatic factors are going to affect predator populations in the occurrence of climate change. We did not find any significant association between overlap and variables representing density-dependent processes (elk and wolf densities) or intraspecific competition (ratio of wolves to elk). This last result poses a challenge to the classic view of predator-prey systems. On a small spatial scale, predator space use may be driven by factors other than prey distribution.
NASA Astrophysics Data System (ADS)
Villate, Fernando; Iriarte, Arantza; Uriarte, Ibon; Sanchez, Iraide
2017-12-01
Seasonal and interannual variations of total mesozooplankton abundance and community variability were assessed for the period 1998-2005 at 3 salinity sites (35, 33 and 30) of the estuaries of Bilbao and Urdaibai (southeast Bay of Biscay). Spatial differences in mesozooplankton seasonality were recognized, both within and between estuaries, related to differences between sites in hydrodynamic features and anthropogenic nutrient enrichment that drive phytoplankton biomass seasonal cycles. The within estuary seasonal differences in mesozooplankton community were mainly shown through seaward time-advances in the seasonal peak from summer to spring along the salinity gradient, linked to differences in phytoplankton availability during the summer, in turn, related to nutrient availability. These differences were most marked in the estuary of Urdaibai, where zooplankton seasonal pattern at 35 salinity (high tidal flushing) resembled that of shelf waters, while at 35 of the estuary of Bilbao zooplankton showed an estuarine seasonal pattern due to the influence of the estuarine plume. Cirripede larvae contributed most to the mesozooplankton seasonal variability, except at the outer estuary of Bilbao, where cladocerans and fish eggs and larvae were the major contributors, and the inner estuary of Urdaibai, where gastropod larvae contributed most. Total mesozooplankton increased at 30 salinity of the estuary of Bilbao and 35 salinity of the estuary of Urdaibai. Interannual variability of mesozooplankton at the lowest salinity of the estuary of Bilbao was mainly accounted for by copepods due to the introduction of non-indigenous species during estuarine rehabilitation from intense pollution. However, bivalve larvae and gastropod larvae showed the highest contributions at 35 salinity of the estuary of Urdaibai. At the rest of sites, the opposite interannual trends of polychaete larvae and hydromedusae generally made the highest contribution.
Interannual Rainfall Variability in the Tropical Atlantic Region
NASA Technical Reports Server (NTRS)
Gu, Guojun
2005-01-01
Rainfall variability on seasonal and interannual-to-interdecadal time scales in the tropical Atlantic is quantified using a 25-year (1979-2003) monthly rainfall dataset from the Global Precipitation Climatology Project (GPCP). The ITCZ measured by monthly rainfall between 15-37.5 deg W attains its peak as moving to the northernmost latitude (4-10 deg N) during July-September in which the most total rainfall is observed in the tropical Atlantic basin (17.5 deg S-22.5 deg N, 15 deg-37.5 deg W); the ITCZ becomes weakest during January-February with the least total rainfall as it moves to the south. In contrast, rainfall variability on interannual to interdecadal time scales shows a quite different seasonal preference. The most intense interannual variability occurs during March-May when the ITCZ tends to be near the equator and becomes weaker. Significant, negative correlations between the ITCZ strength and latitude anomalies are observed during boreal spring and early summer. The ITCZ strength and total rainfall amount in the tropical Atlantic basin are significantly modulated by the Pacific El Nino and the Atlantic equatorial mode (or Atlantic Nino) particularly during boreal spring and summer; whereas the impact of the Atlantic interhemispheric mode is considerably weaker. Regarding the anomalous latitudes of the ITCZ, the influence can come from both local, i.e., the Atlantic interhemispheric and equatorial modes, and remote forcings, i. e., El Nino; however, a direct impact of El Nino on the latitudes of the ITCZ can only be found during April-July, not in winter and early spring in which the warmest SST anomalies are usually observed in the equatorial Pacific.
NASA Astrophysics Data System (ADS)
Chen, B.; Chen, J. M.; Worthy, D.
2004-05-01
Ecosystem CO2 exchange and the planetary boundary layer (PBL) are correlated diurnally and seasonally. The simulation of this atmospheric rectifier effect is important in understanding the global CO2 distribution pattern. A 12-year (1990-1996, 1999-2003), continuous CO2 measurement record from Fraserdale, Ontario (located ~150 km north of Timmons), along with a coupled Vertical Diffusion Scheme (VDS) and ecosystem model (Boreal Ecosystem Productivity Simulator, BEPS), is used to investigate the interannual variability in this effect over a boreal forest region. The coupled model performed well in simulating CO2 vertical diffusion processes. Simulated annual atmospheric rectifier effects, (including seasonal and diurnal), quantified as the variation in the mean CO2 concentration from the surface to the top of the PBL, varied from 2.8 to 4.1 ppm, even though the modeled seasonal variations in the PBL depth were similar throughout the 12-year period. The differences in the interannual rectifier effect primarily resulted from changes in the biospheric CO2 uptake and heterotrophic respiration. Correlations in the year-to year variations of the CO2 rectification were found with mean annual air temperatures, simulated gross primary productivity (GPP) and heterotrophic respiration (Rh) (r2=0.5, 0.46, 0.42, respectively). A small increasing trend in the CO2 rectification was also observed. The year-to-year variation in the vertical distribution of the monthly mean CO2 mixing ratios (reflecting differences in the diurnal rectifier effect) was related to interannual climate variability, however, the seasonal rectifier effects were found to be more sensitive to climate variability than the diurnal rectifier effects.
A two-fold increase of carbon cycle sensitivity to tropical temperature variations.
Wang, Xuhui; Piao, Shilong; Ciais, Philippe; Friedlingstein, Pierre; Myneni, Ranga B; Cox, Peter; Heimann, Martin; Miller, John; Peng, Shushi; Wang, Tao; Yang, Hui; Chen, Anping
2014-02-13
Earth system models project that the tropical land carbon sink will decrease in size in response to an increase in warming and drought during this century, probably causing a positive climate feedback. But available data are too limited at present to test the predicted changes in the tropical carbon balance in response to climate change. Long-term atmospheric carbon dioxide data provide a global record that integrates the interannual variability of the global carbon balance. Multiple lines of evidence demonstrate that most of this variability originates in the terrestrial biosphere. In particular, the year-to-year variations in the atmospheric carbon dioxide growth rate (CGR) are thought to be the result of fluctuations in the carbon fluxes of tropical land areas. Recently, the response of CGR to tropical climate interannual variability was used to put a constraint on the sensitivity of tropical land carbon to climate change. Here we use the long-term CGR record from Mauna Loa and the South Pole to show that the sensitivity of CGR to tropical temperature interannual variability has increased by a factor of 1.9 ± 0.3 in the past five decades. We find that this sensitivity was greater when tropical land regions experienced drier conditions. This suggests that the sensitivity of CGR to interannual temperature variations is regulated by moisture conditions, even though the direct correlation between CGR and tropical precipitation is weak. We also find that present terrestrial carbon cycle models do not capture the observed enhancement in CGR sensitivity in the past five decades. More realistic model predictions of future carbon cycle and climate feedbacks require a better understanding of the processes driving the response of tropical ecosystems to drought and warming.
What Controls the Size of the Antarctic Ozone Hole?
NASA Technical Reports Server (NTRS)
Bhartia, P. K. (Technical Monitor); Newman, Paul A.; Kawa, S. Randolph; Nash, Eric R.
2002-01-01
The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million square kilometers. In the 8-year period from 1981 to 1989, the area expanded by 18 Million square kilometers. During the last 5 years, the hole has been observed to exceed 25 Million square kilometers over brief periods. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre- 1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.
Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography
NASA Astrophysics Data System (ADS)
Jones, T. R.; Roberts, W. H. G.; Steig, E. J.; Cuffey, K. M.; Markle, B. R.; White, J. W. C.
2018-02-01
The presence of large Northern Hemisphere ice sheets and reduced greenhouse gas concentrations during the Last Glacial Maximum fundamentally altered global ocean-atmosphere climate dynamics. Model simulations and palaeoclimate records suggest that glacial boundary conditions affected the El Niño-Southern Oscillation, a dominant source of short-term global climate variability. Yet little is known about changes in short-term climate variability at mid- to high latitudes. Here we use a high-resolution water isotope record from West Antarctica to demonstrate that interannual to decadal climate variability at high southern latitudes was almost twice as large at the Last Glacial Maximum as during the ensuing Holocene epoch (the past 11,700 years). Climate model simulations indicate that this increased variability reflects an increase in the teleconnection strength between the tropical Pacific and West Antarctica, owing to a shift in the mean location of tropical convection. This shift, in turn, can be attributed to the influence of topography and albedo of the North American ice sheets on atmospheric circulation. As the planet deglaciated, the largest and most abrupt decline in teleconnection strength occurred between approximately 16,000 years and 15,000 years ago, followed by a slower decline into the early Holocene.
Hope, A.S.; Boynton, W.L.; Stow, D.A.; Douglas, David C.
2003-01-01
Interannual above-ground production patterns are characterized for three tundra ecosystems in the Kuparuk River watershed of Alaska using NOAA-AVHRR Normalized Difference Vegetation Index (NDVI) data. NDVI values integrated over each growing season (SINDVI) were used to represent seasonal production patterns between 1989 and 1996. Spatial differences in ecosystem production were expected to follow north-south climatic and soil gradients, while interannual differences in production were expected to vary with variations in seasonal precipitation and temperature. It was hypothesized that the increased vegetation growth in high latitudes between 1981 and 1991 previously reported would continue through the period of investigation for the study watershed. Zonal differences in vegetation production were confirmed but interannual variations did not covary with seasonal precipitation or temperature totals. A sharp reduction in the SINDVI in 1992 followed by a consistent increase up to 1996 led to a further hypothesis that the interannual variations in SINDVI were associated with variations in stratospheric optical depth. Using published stratospheric optical depth values derived from the SAGE and SAGE-II satellites, it is demonstrated that variations in these depths are likely the primary cause of SINDVI interannual variability.
Cool-Season Moisture Delivery and Multi-Basin Streamflow Anomalies in the Western United States
NASA Astrophysics Data System (ADS)
Malevich, Steven B.
Widespread droughts can have a significant impact on western United States streamflow, but the causes of these events are not fully understood. This dissertation examines streamflow from multiple western US basins and establishes the robust, leading modes of variability in interannual streamflow throughout the past century. I show that approximately 50% of this variability is associated with spatially widespread streamflow anomalies that are statistically independent from streamflow's response to the El Nino-Southern Oscillation (ENSO). The ENSO-teleconnection accounts for approximately 25% of the interannual variability in streamflow, across this network. These atmospheric circulation anomalies associated with the most spatially widespread variability are associated with the Aleutian low and the persistent coastal atmospheric ridge in the Pacific Northwest. I use a watershed segmentation algorithm to explicitly track the position and intensity of these features and compare their variability to the multi-basin streamflow variability. Results show that latitudinal shifts in the coastal atmospheric ridge are more strongly associated with streamflow's north-south dipole response to ENSO variability while more spatially widespread anomalies in streamflow most strongly relate to seasonal changes in the coastal ridge intensity. This likely reflects persistent coastal ridge blocking of cool-season precipitation into western US river basins. I utilize the 35 model runs of the Community Earth System Model Large Ensemble (CESMLE) to determine whether the model ensemble simulates the anomalously strong coastal ridges and extreme widespread wintertime precipitation anomalies found in the observation record. Though there is considerable bias in the CESMLE, the CESMLE runs simulate extremely widespread dry precipitation anomalies with a frequency of approximately one extreme event per century during the historical simulations (1920 - 2005). These extremely widespread dry events correspond significantly with anomalously intense coastal atmospheric ridges. The results from these three papers connect widespread interannual streamflow anomalies in the western US--and especially extremely widespread streamflow droughts--with semi-permanent atmospheric ridge anomalies near the coastal Pacific Northwest. This is important to western US water managers because these widespread events appear to have been a robust feature of the past century. The semi-permanent atmospheric features associated with these widespread dry streamflow anomalies are projected to change position significantly in the next century as a response to global climate change. This may change widespread streamflow anomaly characteristic in the western US, though my results do not show evidence of these changes within the instrument record of last century.
NASA Astrophysics Data System (ADS)
Ummenhofer, Caroline C.; Kulüke, Marco; Tierney, Jessica E.
2018-04-01
East African hydroclimate exhibits considerable variability across a range of timescales, with implications for its population that depends on the region's two rainy seasons. Recent work demonstrated that current state-of-the-art climate models consistently underestimate the long rains in boreal spring over the Horn of Africa while overestimating the short rains in autumn. This inability to represent the seasonal cycle makes it problematic for climate models to project changes in East African precipitation. Here we consider whether this bias also has implications for understanding interannual and decadal variability in the East African long and short rains. Using a consistent framework with an unforced multi-century global coupled climate model simulation, the role of Indo-Pacific variability for East African rainfall is compared across timescales and related to observations. The dominant driver of East African rainfall anomalies critically depends on the timescale under consideration: Interannual variations in East African hydroclimate coincide with significant sea surface temperature (SST) anomalies across the Indo-Pacific, including those associated with the El Niño-Southern Oscillation (ENSO) in the eastern Pacific, and are linked to changes in the Walker circulation, regional winds and vertical velocities over East Africa. Prolonged drought/pluvial periods in contrast exhibit anomalous SST predominantly in the Indian Ocean and Indo-Pacific warm pool (IPWP) region, while eastern Pacific anomalies are insignificant. We assessed dominant frequencies in Indo-Pacific SST and found the eastern equatorial Pacific dominated by higher-frequency variability in the ENSO band, while the tropical Indian Ocean and IPWP exhibit lower-frequency variability beyond 10 years. This is consistent with the different contribution to regional precipitation anomalies for the eastern Pacific versus Indian Ocean and IPWP on interannual and decadal timescales, respectively. In the model, the dominant low-frequency signal seen in the observations in the Indo-Pacific is not well-represented as it instead exhibits overly strong variability on subdecadal timescales. The overly strong ENSO-teleconnection likely contributes to the overestimated role of the short rains in the seasonal cycle in the model compared to observations.
Matano, Ricardo P; Combes, Vincent; Piola, Alberto R; Guerrero, Raul; Palma, Elbio D; Ted Strub, P; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin
2014-11-01
A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA) , the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high - frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf.
Matano, Ricardo P; Combes, Vincent; Piola, Alberto R; Guerrero, Raul; Palma, Elbio D; Ted Strub, P; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin
2014-01-01
A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA), the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high-frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf. PMID:26213673
NASA Astrophysics Data System (ADS)
Matano, Ricardo P.; Combes, Vincent; Piola, Alberto R.; Guerrero, Raul; Palma, Elbio D.; Ted Strub, P.; James, Corinne; Fenco, Harold; Chao, Yi; Saraceno, Martin
2014-11-01
A high-resolution model is used to characterize the dominant patterns of sea surface salinity (SSS) variability generated by the freshwater discharges of the Rio de la Plata (RdlP) and the Patos/Mirim Lagoon in the southwestern Atlantic region. We identify three dominant modes of SSS variability. The first two, which have been discussed in previous studies, represent the seasonal and the interannual variations of the freshwater plumes over the continental shelf. The third mode of SSS variability, which has not been discussed hitherto, represents the salinity exchanges between the shelf and the deep ocean. A diagnostic study using floats and passive tracers identifies the pathways taken by the freshwater plumes. During the austral winter (JJA), the plumes leave the shelf region north of the BMC. During the austral summer (DJF), the plumes are entrained more directly into the BMC. A sensitivity study indicates that the high-frequency component of the wind stress forcing controls the vertical structure of the plumes while the low-frequency component of the wind stress forcing and the interannual variations of the RdlP discharge controls the horizontal structure of the plumes. Dynamical analysis reveals that the cross-shelf flow has a dominant barotropic structure and, therefore, the SSS anomalies detected by Aquarius represent net mass exchanges between the shelf and the deep ocean. The net cross-shelf volume flux is 1.21 Sv. This outflow is largely compensated by an inflow from the Patagonian shelf.
NASA Astrophysics Data System (ADS)
Taxak, A. K.; Ojha, C. S. P.
2017-12-01
Land use and land cover (LULC) changes within a watershed are recognised as an important factor affecting hydrological processes and water resources. LULC changes continuously not only in long term but also on the inter-annual and season level. Changes in LULC affects the interception, storage and moisture. A widely used approach in rainfall-runoff modelling through Land surface models (LSM)/ hydrological models is to keep LULC same throughout the model running period. In long term simulations where land use change take place during the run period, using a single LULC does not represent a true picture of ground conditions could result in stationarity of model responses. The present work presents a case study in which changes in LULC are incorporated by using multiple LULC layers. LULC for the study period were created using imageries from Landsat series, Sentinal, EO-1 ALI. Distributed, physically based Variable Infiltration Capacity (VIC) model was modified to allow inclusion of LULC as a time varying variable just like climate. The Narayani basin was simulated with LULC, leaf area index (LAI), albedo and climate data for 1992-2015. The results showed that the model simulation with varied parametrization approach has a large improvement over the conventional fixed parametrization approach in terms of long-term water balance. The proposed modelling approach could improve hydrological modelling for applications like land cover change studies, water budget studies etc.
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Liu, Z.; Alkolibi, F.; Fadda, E.; Bakhrjy, F.
2013-12-01
Atmospheric dust significantly influences the climate system, as well as human life in Saudi Arabia. Skillful seasonal prediction of dust activity with climatic variables will help prevent some negative social impacts of dust storms. Yet, the climatic regulators on Saudi Arabian dust activity remain largely unaddressed. Remote sensing and station observations show consistent seasonal cycles in Saudi Arabian dust activity, which peaks in spring and summer. The climatic controls on springtime and summertime Saudi Arabian dust activity during 1975-2010 are studied using observational and reanalysis data. Empirical Orthogonal Function (EOF) of the observed Saudi Arabian dust storm frequency shows a dominant homogeneous pattern across the country, which has distinct interannual and decadal variations, as revealed by the power spectrum. Regression and correlation analyses reveal that Saudi Arabian dust activity is largely tied to precipitation on the Arabian Peninsula in spring and northwesterly (Shamal) wind in summer. On the seasonal-interannual time scale, warm El Niño-Southern Oscillation (ENSO) phase (El Niño) in winter-to-spring inhibits spring dust activity by increasing the precipitation over the Rub'al Khali Desert, a major dust source region on the southern Arabian Peninsula; warm ENSO and warm Indian Ocean Basin Mode (IOBM) in winter-to-spring favor less summer dust activity by producing anomalously low sea-level pressure over eastern north Africa and Arabian Peninsula, which leads to the reduced Shamal wind speed. The decadal variation in dust activity is likely associated with the Atlantic Multidecadal Oscillation (AMO), which impacts Sahel rainfall and North African dust, and likely dust transport to Saudi Arabia. The Pacific Decadal Oscillation (PDO) and tropical Indian Ocean SST also have influence on the decadal variation in Saudi Arabian dust activity, by altering precipitation over the Arabian Peninsula and summer Shamal wind speed. Using eastern tropical Pacific SST as the high-frequency predictor and antecedent accumulated precipitation over the Arabian Peninsula and North Africa as low-frequency predictors, the predicted seasonal dust activity over Saudi Arabia is well correlated with the original time series (correlation above 0.6).
Interannual Variability of Sea Level in Tropical Pacific during 1993-2014
NASA Astrophysics Data System (ADS)
Zhu, X.; Greatbatch, R. J.; Claus, M.
2016-12-01
More than 40 years ago, sea level variability in the tropical Pacific was being studied using linear shallow water models driven by observed estimates of the surface wind stress. At that time, the only available sea level data was from the sparse tide gauge record. However, with the advent of satellite data, there has been a revolution in the available data coverage for sea level. Here, a linear model, consisting of the first five baroclinic normal modes, and driven by ERA-Interim monthly wind stress anomalies, is used to investigate interannual variability in tropical Pacific sea level as seen in satellite altimeter data. The model output is fitted to the altimeter data along the equator, in order to derive the vertical profile for the wind forcing, and showing that a signature from modes higher than mode six cannot be extracted from the altimeter data. It is shown that the model has considerable skill at capturing interannual sea level variability both on and off the equator. The correlation between modelled and satellite-derived sea level data exceeds 0.8 over a wide range of longitudes along the equator and readily captures the observed ENSO events. Overall, the combination of the first, second and third and fifth modes can provide a robust estimate of the interannual sea level variability, the second mode being the most dominant. A remarkable feature of both the model and the altimeter data is the presence of a pivot point in the western Pacific on the equator. We show that the westward displacement of the pivot point from the centre of the basin is partly a signature of the recharge/discharge mechanism but is also strongly influenced by the fact that most of the wind stress variance along the equator is found in the western part of the basin. We also show that the Sverdrup transport plays no role in the recharge/discharge mechanism in our model.
NASA Astrophysics Data System (ADS)
Khandu; Awange, Joseph L.; Forootan, Ehsan
2016-04-01
Poor reliability of radiosonde records across South Asia imposes serious challenges in understanding the structure of upper-tropospheric and lower-stratospheric (UTLS) region. The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission launched in April 2006 has overcome many observational limitations inherent in conventional atmospheric sounding instruments. This study examines the interannual variability of UTLS temperature over the Ganges-Brahmaputra-Meghna (GBM) river basin in South Asia using monthly averaged COSMIC radio occultation (RO) data, together with two global reanalyses. Comparisons between August 2006 and December 2013 indicate that MERRA (Modern-Era Retrospective Analysis for Research Application) and ERA-Interim (European Centre for Medium-Range Weather Forecasts reanalysis) are warmer than COSMIC RO data by 2 °C between 200 and 50 hPa levels. These warm biases with respect to COSMIC RO data are found to be consistent over time. The UTLS temperature show considerable interannual variability from 2006 to 2013 in addition to warming (cooling) trends in the troposphere (stratosphere). The cold (warm) anomalies in the upper troposphere (tropopause region) are found to be associated with warm ENSO (El Niño-Southern Oscillation) phase, while quasi-biennial oscillation (QBO) is negatively (positively) correlated with temperature anomalies at 70 hPa (50 hPa) level. PCA (principal component analysis) decomposition of tropopause temperatures and heights over the basin indicate that ENSO accounts for 73 % of the interannual (non-seasonal) variability with a correlation of 0.77 with Niño3.4 index whereas the QBO explains about 10 % of the variability. The largest tropopause anomaly associated with ENSO occurs during the winter, when ENSO reaches its peak. The tropopause temperature (height) increased (decreased) by about 1.5 °C (300 m) during the last major El Niño event of 2009/2010. In general, we find decreasing (increasing) trend in tropopause temperature (height) between 2006 and 2013.
ENSO Related Inter-Annual Lightning Variability from the Full TRMM LIS Lightning Climatology
NASA Technical Reports Server (NTRS)
Clark, Austin; Cecil, Daniel
2018-01-01
The El Nino/Southern Oscillation (ENSO) contributes to inter-annual variability of lightning production more than any other atmospheric oscillation. This study further investigated how ENSO phase affects lightning production in the tropics and subtropics using the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS). Lightning data were averaged into mean annual warm, cold, and neutral 'years' for analysis of the different phases and compared to model reanalysis data. An examination of the regional sensitivities and preliminary analysis of three locations was conducted using model reanalysis data to determine the leading convective mechanisms in these areas and how they might respond to the ENSO phases
NASA Technical Reports Server (NTRS)
Curtis, Scott; Starr, David OC. (Technical Monitor)
2002-01-01
The summer climate of southern Mexico and Central America is characterized by a mid summer drought (MSD), where rainfall is reduced by 40% in July as compared to June and September. A mid-summer reduction in the climatological number of eastern Pacific tropical cyclones has also been noted. Little is understood about the climatology and interannual variability of these minima. The present study uses a novel approach to quantify the bimodal distribution of summertime rainfall for the globe and finds that this feature of the annual cycle is most extreme over Pan America and adjacent oceans. One dominant interannual signal in this region occurs the summer before a strong winter El Nino/Southern Oscillation ENSO. Before El Nino events the region is dry, the MSD is strong and centered over the ocean, and the mid-summer minimum in tropical cyclone frequency is most pronounced. This is significantly different from Neutral cases (non-El Nino and non-La Nina) when the MSD is weak and positioned over the land bridge. The MSD is highly variable for La Nina years, and there is not an obvious mid-summer minimum in the number of tropical cyclones.
Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.
2003-01-01
Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.
NASA Astrophysics Data System (ADS)
Vico, Giulia; Manzoni, Stefano; Thompson, Sally; Molini, Annalisa; Porporato, Amilcare
2015-04-01
Seasonally-dry climates are particularly challenging for vegetation, as they are characterized by prolonged dry periods and often marked inter-annual variability. During the dry season plants face predictable physiological stress due to lack of water, whereas the inter-annual variability in rainfall timing and amounts requires plants to develop flexible adaptation strategies. The variety of strategies observed across seasonally-dry (Mediterranean and tropical) ecosystems is indeed wide - ranging from near-isohydric species that adjust stomatal conductance to avoid drought, to anisohydric species that maintain gas exchange during the dry season. A suite of phenological strategies are hypothesized to be associated to ecophysiological strategies. Here we synthetize current knowledge on ecophysiological and phenological adaptations through a comprehensive ecohydrological model linking a soil water balance to a vegetation carbon balance. Climatic regimes are found to select for different phenological strategies that maximize the long-term plant carbon uptake. Inter-annual variability of the duration of the wet season allows coexistence of different drought-deciduous strategies. In contrast, short dry seasons or access to groundwater favour evergreen species. Climatic changes causing more intermittent rainfall and/or shorter wet seasons are predicted to favour drought-deciduous species with opportunistic water use.
Interannual Variability of Water Ice Clouds at Gale Crater
NASA Astrophysics Data System (ADS)
Martinez, G.; Giuranna, M.; McConnochie, T. H.; Tamppari, L.; Smith, M. D.; Vicente-Retortillo, Á.; Renno, N. O.; Kloos, J. L.; Moores, J. E.; Guzewich, S.
2017-12-01
The Aphelion Cloud Belt (ACB) is a water ice cloud band that encircles the planet longitudinally at latitudes ranging from about 10°S to 30°N during the northern spring and summer (aphelion season). The ACB has been studied extensively using satellite observations over the last two decades [1], showing little interannual variability from MY 24 to 34. The Mars Science Laboratory (MSL) mission has completed more than 1750 sols of measurements at Gale crater (4.5°S), from Ls 155° in MY 31 to Ls 33° in MY 34. Interestingly, MSL results from various instruments indicate that the ACB produces significant interannual variability at Gale crater during the aphelion season. In particular, near-noon retrievals of water ice opacity by the ChemCam instrument indicate an increase in water ice opacity up to 50% from MY 32 to 33 [2], further supported by analysis of UV [3] and ground temperature [4] data taken by the Rover Environmental Monitoring Station during MY 32 and 33. A weaker ( 5%) increase in water ice opacity in MY 33 relative to MY 32 was also observed from images taken during afternoon hours by the rover's Navigation Cameras [5]. We are analyzing simultaneous and noncontemporary satellite observations at the location of Gale made by the Planetary Fourier Spectrometer [6], Mars Climate Sounder, Thermal Emission Imaging System and Thermal Emission Spectrometer to shed light on the nature of the interannual variability of the ACB at Gale, and to locally understand the relation between the ACB and the water cycle. References:[1] Smith, M.D. (2008), Spacecraft observations of the martian atmosphere, Annu. Rev. Earth Planet. Sci. 36. [2] McConnochie, T. H., et al. (2017), Retrieval of Water Vapor Column Abundance and Aerosol Properties from ChemCam Passive Sky Spectroscopy, Icarus (submitted). [3] Vicente-Retortillo, Á., et al. (2017), Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements, GRL, 44. [4] Vasavada, A.R. et al. (2017), Thermophysical properties along Curiosity's traverse in Gale crater, Mars, Icarus 284. [5] Kloos, J. L., and J. E. Moores (2017), Inter-Annual and Diurnal Variability in Clouds Observed from MSL Over Two Martian Years, LPSC, 48. [6] Giuranna, M. et al. (2016), 12 years of atmospheric monitoring by the Planetary Fourier Spectrometer onboard Mars Express, EGU.
Temporal and spatial characteristics of annual and seasonal rainfall in Malawi
NASA Astrophysics Data System (ADS)
Ngongondo, Cosmo; Xu, Chong-Yu; Gottschalk, Lars; Tallaksen, Lena M.; Alemaw, Berhanu
2010-05-01
An understanding of the temporal and spatial characteristics of rainfall is central to water resources planning and management. However, such information is often limited in many developing countries like Malawi. In an effort to bridge the information gap, this study examined the temporal and spatial charecteristics of rainfall in Malawi. Rainfall readings from 42 stations across Malawi from 1960 to 2006 were analysed at monthly, annual and seasonal scales. The Malawian rainfall season lasts from November to April. The data were firstly subjected to quality checks through the cumulative deviations test and the Standard Normal Homogeinity Test (SNHT). Monthly distribution in a typical year, called heterogeneity, was investigated using the Precipitation Concentration Index (PCI). Further, normalized precipitation anomaly series of annual rainfall series (AR) and the PCI (APCI) were used to test for interannual rainfall variability. Spatial variability was characterised by fitting the Spatial Correlation function (SCF). The nonparametric Mann-Kendall statistic was used to investigate the temporal trends of the various rainfall variables. The results showed that 40 of the stations passed both data quality tests. For the two stations that failed, the data were adjusted using nearby stations. Annual and seasonal rainfall were found to be characterised by high spatial variation. The country mean annual rainfall was 1095 mm with mean interannual variability of 26%. The highland areas to the north and southeast of the country exhibited the highest rainfall and lowest interannual variability. Lowest rainfall coupled with high interannual variability was found in the Lower Shire basin, in the southern part of Malawi. This simillarity is the pattern of annual and seasonal rainfall should be expected because all stations had over 90% of their observed annual rainfall in the six month period between November and April. Monthly rainfall was found to be highly variable both temporally and spatially. None of the stations have stable monthly rainfall regimes (mean PCI of less than 10). Stations with the highest mean rainfall were found to have a lower interannual variability. The rainfall stations showed low spatial correlations for annual, monthly as well as seasonal timescales indicating that the data may not be suitable for spatial interpolation. However, some structure (i.e. lower correlation with distance) could be observed when aggregating the data at 50 mile intervals. The annual and seasonal rainfall series were dominated by negative trends. The spatial distribution of the trends can be described as heterogeneous, although most of the stations in the southern region have negative trends. At the monthly timescale, 37 of the stations show a negative trend with four of the stations, all in the south, showing significant negative trends. On the other hand, only 5 stations show positive trends with only one significant trend in the south. Keywords: Malawi, rainfall trends, spatial variation
Validation of China-wide interpolated daily climate variables from 1960 to 2011
NASA Astrophysics Data System (ADS)
Yuan, Wenping; Xu, Bing; Chen, Zhuoqi; Xia, Jiangzhou; Xu, Wenfang; Chen, Yang; Wu, Xiaoxu; Fu, Yang
2015-02-01
Temporally and spatially continuous meteorological variables are increasingly in demand to support many different types of applications related to climate studies. Using measurements from 600 climate stations, a thin-plate spline method was applied to generate daily gridded climate datasets for mean air temperature, maximum temperature, minimum temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, and precipitation over China for the period 1961-2011. A comprehensive evaluation of interpolated climate was conducted at 150 independent validation sites. The results showed superior performance for most of the estimated variables. Except for wind speed, determination coefficients ( R 2) varied from 0.65 to 0.90, and interpolations showed high consistency with observations. Most of the estimated climate variables showed relatively consistent accuracy among all seasons according to the root mean square error, R 2, and relative predictive error. The interpolated data correctly predicted the occurrence of daily precipitation at validation sites with an accuracy of 83 %. Moreover, the interpolation data successfully explained the interannual variability trend for the eight meteorological variables at most validation sites. Consistent interannual variability trends were observed at 66-95 % of the sites for the eight meteorological variables. Accuracy in distinguishing extreme weather events differed substantially among the meteorological variables. The interpolated data identified extreme events for the three temperature variables, relative humidity, and sunshine duration with an accuracy ranging from 63 to 77 %. However, for wind speed, air pressure, and precipitation, the interpolation model correctly identified only 41, 48, and 58 % of extreme events, respectively. The validation indicates that the interpolations can be applied with high confidence for the three temperatures variables, as well as relative humidity and sunshine duration based on the performance of these variables in estimating daily variations, interannual variability, and extreme events. Although longitude, latitude, and elevation data are included in the model, additional information, such as topography and cloud cover, should be integrated into the interpolation algorithm to improve performance in estimating wind speed, atmospheric pressure, and precipitation.
Interannual variations of light-absorbing particles in snow on Arctic sea ice
NASA Astrophysics Data System (ADS)
Doherty, Sarah J.; Steele, Michael; Rigor, Ignatius; Warren, Stephen G.
2015-11-01
Samples of snow on sea ice were collected in springtime of the 6 years 2008-2013 in the region between Greenland, Ellesmere Island, and the North Pole (82°N -89°N, 0°W-100°W). The meltwater was passed through filters, whose spectral absorption was then measured to determine the separate contributions by black carbon (BC) and other light-absorbing impurities. The median mixing ratio of BC across all years' samples was 4 ± 3 ng g-1, and the median fraction of absorption due to non-BC absorbers was 36 ± 11%. Variances represent both spatial and interannual variability; there was no interannual trend in either variable. The absorption Ångström exponent, however, decreased with latitude, suggesting a transition from dominance by biomass-burning sources in the south to an increased influence by fossil-fuel-burning sources in the north, consistent with earlier measurements of snow in Svalbard and at the North Pole.
Ye, Siyuan; Krauss, Ken W; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F
2016-01-01
Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.
The western Pacific monsoon in CMIP5 models: Model evaluation and projections
NASA Astrophysics Data System (ADS)
Brown, Josephine R.; Colman, Robert A.; Moise, Aurel F.; Smith, Ian N.
2013-11-01
ability of 35 models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to simulate the western Pacific (WP) monsoon is evaluated over four representative regions around Timor, New Guinea, the Solomon Islands and Palau. Coupled model simulations are compared with atmosphere-only model simulations (with observed sea surface temperatures, SSTs) to determine the impact of SST biases on model performance. Overall, the CMIP5 models simulate the WP monsoon better than previous-generation Coupled Model Intercomparison Project Phase 3 (CMIP3) models, but some systematic biases remain. The atmosphere-only models are better able to simulate the seasonal cycle of zonal winds than the coupled models, but display comparable biases in the rainfall. The CMIP5 models are able to capture features of interannual variability in response to the El Niño-Southern Oscillation. In climate projections under the RCP8.5 scenario, monsoon rainfall is increased over most of the WP monsoon domain, while wind changes are small. Widespread rainfall increases at low latitudes in the summer hemisphere appear robust as a large majority of models agree on the sign of the change. There is less agreement on rainfall changes in winter. Interannual variability of monsoon wet season rainfall is increased in a warmer climate, particularly over Palau, Timor and the Solomon Islands. A subset of the models showing greatest skill in the current climate confirms the overall projections, although showing markedly smaller rainfall increases in the western equatorial Pacific. The changes found here may have large impacts on Pacific island countries influenced by the WP monsoon.
Sensitivity of simulated South America Climate to the Land Surface Schemes in RegCM4
NASA Astrophysics Data System (ADS)
Llopart, Marta; da Rocha, Rosmeri; Reboita, Michelle; Cuadra, Santiago
2017-04-01
This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with Biosphere-Atmosphere Transfer Scheme (RegBATS) and Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, concerning the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is in general, wetter) over most of SA. RegCLM also provides smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer and make it reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.
Ye, Siyuan; Krauss, Ken W.; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Xueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca F.
2016-01-01
Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling. PMID:27501148
Nitrous oxide emissions are enhanced in a warmer and wetter world
NASA Astrophysics Data System (ADS)
Griffis, Timothy J.; Chen, Zichong; Baker, John M.; Wood, Jeffrey D.; Millet, Dylan B.; Lee, Xuhui; Venterea, Rodney T.; Turner, Peter A.
2017-11-01
Nitrous oxide (N2O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N2O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N2O mixing ratios from a very tall tower within the US Corn Belt—one of the most intensive agricultural regions of the world—combined with inverse modeling, shows large interannual variability in N2O emissions (316 Gg N2O-Nṡy‑1 to 585 Gg N2O-Nṡy‑1). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N2O emissions that will exceed 600 Gg N2O-Nṡy‑1, on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N2O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N2O emission mitigation efforts to achieve its goals.
Modeling Modern Methane Emissions from Natural Wetlands. 2; Interannual Variations 1982-1993
NASA Technical Reports Server (NTRS)
Walter, Bernadette P.; Heimann, Martin; Mattews, Elaine; Hansen, James E. (Technical Monitor)
2001-01-01
A global run of a process-based methane model [Walter et al., this issue] is performed using high-frequency atmospheric forcing fields from ECMWF reanalyses of the period from 1982 to 1993. We calculate global annual methane emissions to be 260 Tg/ yr. 25% of methane emissions originate from wetlands north of 30 deg. N. Only 60% of the produced methane is emitted, while the rest is re-oxidized. A comparison of zonal integrals of simulated global wetland emissions and results obtained by an inverse modeling approach shows good agreement. In a test with data from two wetlands, the seasonality of simulated and observed methane emissions agrees well. The effects of sub-grid scale variations in model parameters and input data are examined. Modeled methane emissions show high regional, seasonal and interannual variability. Seasonal cycles of methane emissions are dominated by temperature in high latitude wetlands, and by changes in the water table in tropical wetlands. Sensitivity tests show that +/- 1 C changes in temperature lead to +/- 20 % changes in methane emissions from wetlands. Uniform changes of +/- 20% in precipitation alter methane emissions by about +/- 18%. Limitations in the model are analyzed. Simulated interannual variations in methane emissions from wetlands are compared to observed atmospheric growth rate anomalies. Our model simulation results suggest that contributions from other sources than wetlands and/or the sinks are more important in the tropics than north-of 30 deg. N. In higher northern latitudes, it seems that a large part, of the observed interannual variations can be explained by variations in wetland emissions. Our results also suggest that reduced wetland emissions played an important role in the observed negative methane growth rate anomaly in 1992.
Ribeiro, Igor Oliveira; Andreoli, Rita Valéria; Kayano, Mary Toshie; de Sousa, Thaiane Rodrigues; Medeiros, Adan Sady; Guimarães, Patrícia Costa; Barbosa, Cybelli G G; Godoi, Ricardo H M; Martin, Scot T; de Souza, Rodrigo Augusto Ferreira
2018-05-15
The present study examines the spatiotemporal variability and interrelations of the atmospheric methane (CH 4 ), carbon monoxide (CO) and biomass burning (BB) outbreaks retrieved from satellite data over the Amazon region during the 2003-2012 period. In the climatological context, we found consistent seasonal cycles of BB outbreaks and CO in the Amazon, both variables showing a peak during the dry season. The dominant CO variability mode features the largest positive loadings in the southern Amazon, and describes the interannual CO variations related to BB outbreaks along the deforestation arc during the dry season. In line with CO variability and BB outbreaks, the results show strong correspondence with the spatiotemporal variability of CH 4 in the southern Amazon during years of intense drought. Indeed, the areas with the largest positive CH 4 anomalies in southern Amazon overlap the areas with high BB outbreaks and positive CO anomalies. The analyses also showed that high (low) BB outbreaks in the southern Amazon occur during dry (wet) years. In consequence, the interannual climate variability modulates the BB outbreaks in the southern Amazon, which in turn have considerable impacts on CO and CH 4 interannual variability in the region. Therefore, the BB outbreaks might play a major role in modulating the CH 4 and CO variations, at least in the southern Amazon. This study also provides a comparison between the estimate of satellite and aircraft measurements for the CH 4 over the southern Amazon, which indicates relatively small differences from the aircraft measurements in the lower troposphere, with errors ranging from 0.18% to 1.76%. Copyright © 2017 Elsevier B.V. All rights reserved.
Inhibition of microbial biofuel production in drought-stressed switchgrass hydrolysate
Ong, Rebecca Garlock; Higbee, Alan; Bottoms, Scott; ...
2016-11-08
Here, interannual variability in precipitation, particularly drought, can affect lignocellulosic crop biomass yields and composition, and is expected to increase biofuel yield variability. However, the effect of precipitation on downstream fermentation processes has never been directly characterized. In order to investigate the impact of interannual climate variability on biofuel production, corn stover and switchgrass were collected during 3 years with significantly different precipitation profiles, representing a major drought year (2012) and 2 years with average precipitation for the entire season (2010 and 2013). All feedstocks were AFEX (ammonia fiber expansion)-pretreated, enzymatically hydrolyzed, and the hydrolysates separately fermented using xylose-utilizing strainsmore » of Saccharomyces cerevisiae and Zymomonas mobilis. As a result, a chemical genomics approach was also used to evaluate the growth of yeast mutants in the hydrolysates.« less
Can GRACE Explain Some of the Main Interannual Polar Motion Signatures?
NASA Astrophysics Data System (ADS)
Adhikari, S.; Ivins, E. R.; Larour, E. Y.
2016-12-01
GRACE has provided a series of monthly solutions for water mass transport that now span a 14-year period. A natural question to ask is how much of this mass transport information might be used to reconstruct, theoretically, the non-tidal and non-Chandlerian polar motion at interannual time scales. Reconstruction of the pole position at interannual time scales since 2002 has been performed by Chen et al. (2013, GRL) and Adhikari and Ivins (2016, Science Advances). (The main feature of polar motion that has been evolving since the mid 1990's is the increasing dominance of Greenland ice mass loss.) Here we discuss this reconstruction and the level of error that occurs because of missing information about the spherical harmonic degree 1 and 2 terms and the lack of terms associated with angular momentum transfer in the Louiville equations. Using GRACE observations and complementary solutions of self-attraction/loading problem on an elastically compressible rotating earth, we show that ice mass losses from polar ice sheets, and when combined with changes in continental hydrology, explain nearly the entire amplitude (83±23%) and mean directional shift (within 5.9±7.6°) of recently observed eastward polar motion. We also show that decadal scale pole variations are directly linked to global changes in continental hydrology. The energy sources for such motions are likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th century continental wet-dry variability. Interannual variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability. Figure caption: Observed and reconstructed mean annual pole positions with respect to the 2003-2015 mean position. Blue error band is associated with the reconstructed solution; red signifies additional errors that are related to uncertainty in the long-term linear trend. Notice the interannual variability during the GRACE period.
Tropical Forcing of the Summer East Atlantic Pattern
NASA Astrophysics Data System (ADS)
Wulff, C. Ole; Greatbatch, Richard J.; Domeisen, Daniela I. V.; Gollan, Gereon; Hansen, Felicitas
2017-11-01
The Summer East Atlantic (SEA) mode is the second dominant mode of summer low-frequency variability in the Euro-Atlantic region. Using reanalysis data, we show that SEA-related circulation anomalies significantly influence temperatures and precipitation over Europe. We present evidence that part of the interannual SEA variability is forced by diabatic heating anomalies of opposing signs in the tropical Pacific and Caribbean that induce an extratropical Rossby wave train. This precipitation dipole is related to SST anomalies characteristic of the developing El Niño-Southern Oscillation phases. Seasonal hindcast experiments forced with observed sea surface temperatures (SSTs) exhibit skill at capturing the interannual SEA variability corroborating the proposed mechanism and highlighting the possibility for improved prediction of boreal summer variability. Our results indicate that tropical forcing of the SEA likely played a role in the dynamics of the 2015 European heat wave.
NASA Astrophysics Data System (ADS)
Kilbourne, K. H.; Xu, Y. Y.
2014-12-01
Resolving the patterns of climate variability during the Medieval Climate Anomaly (MCA) is key for exploring forced versus unforced variability during the last 1000 years. Tropical Atlantic climate is currently not well resolved during the MCA despite it being an important source of heat and moisture to the climate system today. To fill this data gap, we collected cores from Diploria strigosa corals brought onto the low-lying island of Anegada, British Virgin Islands (18.7˚N, 64.3˚S) during an overwash event and use paired analysis of Sr/Ca and δ18O in the skeletal aragonite to explore climate in the tropical Atlantic at the end of the MCA. The three sub-fossil corals used in this analysis overlap temporally and together span the years 1256-1372 C.E. An assessment of three modern corals from the study site indicates that the most robust features of climate reconstructions using Sr/Ca and δ18O in this species are the seasonal cycle and inter-annual variability. The modern seasonal temperature range is 2.8 degrees Celsius and the similarity between the modern and sub-fossil coral Sr/Ca indicates a similar range during the MCA. Today seasonal salinity changes locally are driven in large part by the migration of a regional salinity front. The modern corals capture the related large seasonal seawater δ18O change, but the sub-fossil corals indicate stable seawater δ18O throughout the year, supporting the idea that this site remained on one side of the salinity front continuously throughout the year. Inter-annual variability in the region is influenced by the cross-equatorial SST gradient, the North Atlantic Oscillation and ENSO. Gridded instrumental SST from the area surrounding Anegada and coral geochemical records from nearby Puerto Rico demonstrate concentrations of variance in specific frequency bands associated with these phenomena. The sub-fossil coral shows no concentration of variance in the modern ENSO frequency band, consistent with reduced ENSO variability found in central Pacific corals growing at the same time.
Variability of the atmospheric energy flux across 70°N computed from the GFDL data set
NASA Astrophysics Data System (ADS)
Overland, James E.; Turet, Philip
The primary energy balance for the arctic atmosphere is through northward advection of moist static energy—sensible heat, potential energy, and latent heat—balanced by long wave radiation to space. Energy flux from sea ice and marginal seas contributes perhaps 20-30% of the outgoing radiation north of 70°N in winter and absorbs a nearly equal amount during summer. Thorndike's toy model shows that extreme climate states with no ice growth or melt can occur by changing the latitudinal energy flux by ±20-30% out of an annual mean flux of 100 W m-2. We extend the previous work on latitudinal energy flux by Nakamura and Oort (NO) to a 25-year record and investigate temporal variability. Our annual latitudinal energy flux was 103 W m-2 compared to the NO value of 98 W m-2 this difference was from greater fluxes during the winter. We found that mean winter (NDJFM) energy flux was 121 W m-2 with a standard deviation of 11 W m-2. There were no large outliers in any year. An analysis of variance showed that interannual variability does not contribute towards explaining monthly variability of northward energy transport for the winter, summer or annual periods. Transient eddy flux of sensible heat into the arctic basin was the largest component of the total energy flux and is concentrated near the longitudes of the Greenland Sea (˜10°W) and the Bering and Chukchi Seas (180°). There is a minimum in atmospheric heating north of Greenland, a known region of thick ice. While there was little interannual variability of energy flux across 70°N, there was considerable month-to-month variability and regional variability in poleward energy flux. Sea ice may playa role in storage and redistribution of energy in the arctic climate.
Seasonal and interannual variability of climate and vegetation indices across the Amazon.
Brando, Paulo M; Goetz, Scott J; Baccini, Alessandro; Nepstad, Daniel C; Beck, Pieter S A; Christman, Mary C
2010-08-17
Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996-2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002-2005. Using improved enhanced vegetation index (EVI) measurements (2000-2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development.
Dargaville, R.J.; Heimann, Martin; McGuire, A.D.; Prentice, I.C.; Kicklighter, D.W.; Joos, F.; Clein, Joy S.; Esser, G.; Foley, J.; Kaplan, J.; Meier, R.A.; Melillo, J.M.; Moore, B.; Ramankutty, N.; Reichenau, T.; Schloss, A.; Sitch, S.; Tian, H.; Williams, L.J.; Wittenberg, U.
2002-01-01
An atmospheric transport model and observations of atmospheric CO2 are used to evaluate the performance of four Terrestrial Carbon Models (TCMs) in simulating the seasonal dynamics and interannual variability of atmospheric CO2 between 1980 and 1991. The TCMs were forced with time varying atmospheric CO2 concentrations, climate, and land use to simulate the net exchange of carbon between the terrestrial biosphere and the atmosphere. The monthly surface CO2 fluxes from the TCMs were used to drive the Model of Atmospheric Transport and Chemistry and the simulated seasonal cycles and concentration anomalies are compared with observations from several stations in the CMDL network. The TCMs underestimate the amplitude of the seasonal cycle and tend to simulate too early an uptake of CO2 during the spring by approximately one to two months. The model fluxes show an increase in amplitude as a result of land-use change, but that pattern is not so evident in the simulated atmospheric amplitudes, and the different models suggest different causes for the amplitude increase (i.e., CO2 fertilization, climate variability or land use change). The comparison of the modeled concentration anomalies with the observed anomalies indicates that either the TCMs underestimate interannual variability in the exchange of CO2 between the terrestrial biosphere and the atmosphere, or that either the variability in the ocean fluxes or the atmospheric transport may be key factors in the atmospheric interannual variability.
NASA Astrophysics Data System (ADS)
Deng, Qimin; Nian, Da; Fu, Zuntao
2018-02-01
Previous studies in the literature show that the annual cycle of surface air temperature (SAT) is changing in both amplitude and phase, and the SAT departures from the annual cycle are long-term correlated. However, the classical definition of temperature anomalies is based on the assumption that the annual cycle is constant, which contradicts the fact of changing annual cycle. How to quantify the impact of the changing annual cycle on the long-term correlation of temperature anomaly variability still remains open. In this paper, a recently developed data adaptive analysis tool, the nonlinear mode decomposition (NMD), is used to extract and remove time-varying annual cycle to reach the new defined temperature anomalies in which time-dependent amplitude of annual cycle has been considered. By means of detrended fluctuation analysis, the impact induced by inter-annual variability from the time-dependent amplitude of annual cycle has been quantified on the estimation of long-term correlation of long historical temperature anomalies in Europe. The results show that the classical climatology annual cycle is supposed to lack inter-annual fluctuation which will lead to a maximum artificial deviation centering around 600 days. This maximum artificial deviation is crucial to defining the scaling range and estimating the long-term persistence exponent accurately. Selecting different scaling range could lead to an overestimation or underestimation of the long-term persistence exponent. By using NMD method to extract the inter-annual fluctuations of annual cycle, this artificial crossover can be weakened to extend a wider scaling range with fewer uncertainties.
NASA Astrophysics Data System (ADS)
Li, Jianying; Mao, Jiangyu
2018-04-01
The 30-60-day boreal summer intraseasonal oscillation (BSISO) is a dominant variability of the Asian summer monsoon (ASM), with its intensity being quantified by intraseasonal standard deviations based on OLR data. The spatial and interannual variations of the BSISO intensity are identified via empirical orthogonal function (EOF) analysis for the period 1981-2014. The first EOF mode (EOF1) shows a spatially coherent enhancement or suppression of BSISO activity over the entire ASM region, and the interannual variability of this mode is related to the sea surface temperature anomaly (SSTA) contrast between the central-eastern North Pacific (CNP) and tropical Indian Ocean. In contrast, the second mode (EOF2) exhibits a seesaw pattern between the southeastern equatorial Indian Ocean (EIO) and equatorial western Pacific (EWP), with the interannual fluctuation linked with developing ENSO events. During strong years of EOF1 mode, the enhanced low-level westerlies induced by the summer-mean SSTA contrast between the warmer CNP and cooler tropical Indian Ocean tend to form a wetter moisture background over the eastern EIO, which interacts with intraseasonal low-level convergent flows, leading to stronger equatorial eastward propagation. The intensified easterly shear favors stronger northward propagation over the South Asian and Eastern Asian/Western North Pacific sectors, respectively. Opposite situation is for weak years. For interannual variations of EOF2 mode, the seesaw patterns with enhanced BSISO activity over the southeastern EIO while weakened activity over the EWP mostly occur in the La Niña developing summers, but inverse patterns appear in the El Niño developing summers.
NASA Astrophysics Data System (ADS)
Robinet, A.; Castelle, B.; Idier, D.; Le Cozannet, G.; Déqué, M.; Charles, E.
2016-12-01
Modeling studies addressing daily to interannual coastal evolution typically relate shoreline change with waves, currents and sediment transport through complex processes and feedbacks. For wave-dominated environments, the main driver (waves) is controlled by the regional atmospheric circulation. Here a simple weather regime-driven shoreline model is developed for a 15-year shoreline dataset (2000-2014) collected at Truc Vert beach, Bay of Biscay, SW France. In all, 16 weather regimes (four per season) are considered. The centroids and occurrences are computed using the ERA-40 and ERA-Interim reanalyses, applying k-means and EOF methods to the anomalies of the 500-hPa geopotential height over the North Atlantic Basin. The weather regime-driven shoreline model explains 70% of the observed interannual shoreline variability. The application of a proven wave-driven equilibrium shoreline model to the same period shows that both models have similar skills at the interannual scale. Relation between the weather regimes and the wave climate in the Bay of Biscay is investigated and the primary weather regimes impacting shoreline change are identified. For instance, the winter zonal regime characterized by a strengthening of the pressure gradient between the Iceland low and the Azores high is associated with high-energy wave conditions and is found to drive an increase in the shoreline erosion rate. The study demonstrates the predictability of interannual shoreline change from a limited number of weather regimes, which opens new perspectives for shoreline change modeling and encourages long-term shoreline monitoring programs.
NASA Astrophysics Data System (ADS)
Yu, Wei; Chen, Xinjun; Yi, Qian
2016-06-01
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model (GLM) and generalized additive model (GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance (catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature (SST), mixed layer depth (MLD), and the interaction term ( SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40°N and 44°N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20°C and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995-2002 and high during 2003-2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.
NASA Astrophysics Data System (ADS)
Kirchner-Bossi, Nicolas; Befort, Daniel J.; Wild, Simon B.; Ulbrich, Uwe; Leckebusch, Gregor C.
2016-04-01
Time-clustered winter storms are responsible for a majority of the wind-induced losses in Europe. Over last years, different atmospheric and oceanic large-scale mechanisms as the North Atlantic Oscillation (NAO) or the Meridional Overturning Circulation (MOC) have been proven to drive some significant portion of the windstorm variability over Europe. In this work we systematically investigate the influence of different large-scale natural variability modes: more than 20 indices related to those mechanisms with proven or potential influence on the windstorm frequency variability over Europe - mostly SST- or pressure-based - are derived by means of ECMWF ERA-20C reanalysis during the last century (1902-2009), and compared to the windstorm variability for the European winter (DJF). Windstorms are defined and tracked as in Leckebusch et al. (2008). The derived indices are then employed to develop a statistical procedure including a stepwise Multiple Linear Regression (MLR) and an Artificial Neural Network (ANN), aiming to hindcast the inter-annual (DJF) regional windstorm frequency variability in a case study for the British Isles. This case study reveals 13 indices with a statistically significant coupling with seasonal windstorm counts. The Scandinavian Pattern (SCA) showed the strongest correlation (0.61), followed by the NAO (0.48) and the Polar/Eurasia Pattern (0.46). The obtained indices (standard-normalised) are selected as predictors for a windstorm variability hindcast model applied for the British Isles. First, a stepwise linear regression is performed, to identify which mechanisms can explain windstorm variability best. Finally, the indices retained by the stepwise regression are used to develop a multlayer perceptron-based ANN that hindcasted seasonal windstorm frequency and clustering. Eight indices (SCA, NAO, EA, PDO, W.NAtl.SST, AMO (unsmoothed), EA/WR and Trop.N.Atl SST) are retained by the stepwise regression. Among them, SCA showed the highest linear coefficient, followed by SST in western Atlantic, AMO and NAO. The explanatory regression model (considering all time steps) provided a Coefficient of Determination (R^2) of 0.75. A predictive version of the linear model applying a leave-one-out cross-validation (LOOCV) shows an R2 of 0.56 and a relative RMSE of 4.67 counts/season. An ANN-based nonlinear hindcast model for the seasonal windstorm frequency is developed with the aim to improve the stepwise hindcast ability and thus better predict a time-clustered season over the case study. A 7 node-hidden layer perceptron is set, and the LOOCV procedure reveals a R2 of 0.71. In comparison to the stepwise MLR the RMSE is reduced a 20%. This work shows that for the British Isles case study, most of the interannual variability can be explained by certain large-scale mechanisms, considering also nonlinear effects (ANN). This allows to discern a time-clustered season from a non-clustered one - a key issue for applications e.g., in the (re)insurance industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Li; Pierce, David W.; Russell, Lynn M.
This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less
NASA Astrophysics Data System (ADS)
Kerandi, Noah Misati; Laux, Patrick; Arnault, Joel; Kunstmann, Harald
2017-10-01
This study investigates the ability of the regional climate model Weather Research and Forecasting (WRF) in simulating the seasonal and interannual variability of hydrometeorological variables in the Tana River basin (TRB) in Kenya, East Africa. The impact of two different land use classifications, i.e., the Moderate Resolution Imaging Spectroradiometer (MODIS) and the US Geological Survey (USGS) at two horizontal resolutions (50 and 25 km) is investigated. Simulated precipitation and temperature for the period 2011-2014 are compared with Tropical Rainfall Measuring Mission (TRMM), Climate Research Unit (CRU), and station data. The ability of Tropical Rainfall Measuring Mission (TRMM) and Climate Research Unit (CRU) data in reproducing in situ observation in the TRB is analyzed. All considered WRF simulations capture well the annual as well as the interannual and spatial distribution of precipitation in the TRB according to station data and the TRMM estimates. Our results demonstrate that the increase of horizontal resolution from 50 to 25 km, together with the use of the MODIS land use classification, significantly improves the precipitation results. In the case of temperature, spatial patterns and seasonal cycle are well reproduced, although there is a systematic cold bias with respect to both station and CRU data. Our results contribute to the identification of suitable and regionally adapted regional climate models (RCMs) for East Africa.
Spring onset variations and long-term trends from new hemispheric-scale products and remote sensing
NASA Astrophysics Data System (ADS)
Dye, D. G.; Li, X.; Ault, T.; Zurita-Milla, R.; Schwartz, M. D.
2015-12-01
Spring onset is commonly characterized by plant phenophase changes among a variety of biophysical transitions and has important implications for natural and man-managed ecosystems. Here, we present a new integrated analysis of variability in gridded Northern Hemisphere spring onset metrics. We developed a set of hemispheric temperature-based spring indices spanning 1920-2013. As these were derived solely from meteorological data, they are used as a benchmark for isolating the climate system's role in modulating spring "green up" estimated from the annual cycle of normalized difference vegetation index (NDVI). Spatial patterns of interannual variations, teleconnections, and long-term trends were also analyzed in all metrics. At mid-to-high latitudes, all indices exhibit larger variability at interannual to decadal time scales than at spatial scales of a few kilometers. Trends of spring onset vary across space and time. However, compared to long-term trend, interannual to decadal variability generally accounts for a larger portion of the total variance in spring onset timing. Therefore, spring onset trends identified from short existing records may be aliased by decadal climate variations due to their limited temporal depth, even when these records span the entire satellite era. Based on our findings, we also demonstrated that our indices have skill in representing ecosystem-level spring phenology and may have important implications in understanding relationships between phenology, atmosphere dynamics and climate variability.
NASA Astrophysics Data System (ADS)
Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.
2016-05-01
The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by coupled air-sea dynamics that are sensitive to precessional insolation forcing. Isolating the exact mechanisms that drive long-term ENSO evolution will require additional high-resolution paleoclimatic reconstructions and further investigation of Holocene tropical climate evolution using coupled climate models.
NASA Astrophysics Data System (ADS)
Smith, Craig R.; Mincks, Sarah; DeMaster, David J.
2008-11-01
The impact of the highly seasonal Antarctic primary production cycle on shelf benthic ecosystems remains poorly evaluated. Here we describe a times-series research project on the West Antarctic Peninsula (WAP) shelf designed to evaluate the seafloor deposition, and subsequent ecological and biogeochemical impacts, of the summer phytoplankton bloom along a transect crossing the Antarctic shelf near Anvers Island. During this project, entitled Food for Benthos on the Antarctic Continental Shelf (FOODBANCS), we deployed replicate sediment traps 150-170 m above the seafloor (total water-column depth of 590 m) on the central shelf from December 1999 to March 2001, recovering trap samples every 3-4 months. In addition, we used a seafloor time-lapse camera system, as well as video surveys conducted at 3-4 months intervals, to monitor the presence and accumulation of phytodetritus at the sediment-water interface. The fluxes of particulate organic carbon and chlorophyll- a into sediment traps (binned over 3-4 month intervals) showed patterns consistent with seasonal variability, with average summer fluxes during the first year exceeding winter fluxes by a factor of ˜2-3. However, inter-annual variability in summer fluxes was even greater than seasonal variability, with 4-10-fold differences in the flux of organic carbon and chlorophyll- a between the summer seasons of 1999-2000 and 2000-2001. Phytodetrital accumulation at the shelf floor also exhibited intense inter-annual variability, with no visible phytodetritus from essentially December 1999 to November 2000, followed by pulsed accumulation of 1-2 cm of phytodetritus over a ˜30,000 km 2 shelf area by March 2001. Comparisons with other studies suggest that the levels of inter-annual variability we observed are typical of the Antarctic shelf over decadal time scales. We conclude that fluxes of particulate organic carbon, chlorophyll- a and phytodetritus to WAP-shelf sediments vary intensely on seasonal to inter-annual time scales, yielding dramatic temporal variability in the flux of food for detritivores to the Antarctic shelf floor.
NASA Astrophysics Data System (ADS)
Crétat, Julien; Pohl, Benjamin; Dieppois, Bastien
2017-04-01
The Angola Low has been suggested in many previous studies to be an important regional feature governing southern African rainfall variability during austral summer, which is, in particular, expressed through modulations of El Niño Southern Oscillation (ENSO) impacts on rainfall at the interannual timescale. Here, we analyse a variety of state-of-the-art reanalyses (NCEP2, ERA-Interim and MERRA2) and rainfall data (in situ rain-gauges and satellite-derived products) for: i) identifying the recurrent regimes of the Angola Low (position and intensity) at the daily timescale; ii) diagnosing how they modulate the spatio-temporal variability of austral summer rainfall; and iii) examining their relationships with synoptic convective regimes and ENSO, both at the interannual timescale. The recurrent regimes of the Angola Low are identified over the 1980-2015 period by applying a cluster analysis to daily 700-hPa wind vorticity anomalies over the Angola sector from November to March. The exact number and morphological properties of vorticity regimes vary significantly among the reanalyses, in particular when using the lowest spatial resolution reanalysis (i.e., NCEP2) that leads to detect less diversity, smoothest patterns and weakest intensity across the recurrent regimes. Despite such uncertainties, the regimes describing active Angola Low are quite robust among the reanalyses. Three preferential locations (locked over eastern Angola, shifted few degrees eastward or south-westward), which significantly impact on the rainfall spatial distribution over tropical and subtropical southern Africa, are identified. Independently from its location, Angola Low favours moisture advection from the southwest Indian Ocean and reduces moisture export towards the southeast Atlantic, hence contributing to increase moisture convergence over the subcontinent. Lead/lag correlations with synoptic convective regimes suggest that Angola Low may be a local precursor of tropical-temperate troughs, but this relationship is far from being systematic and quite sensitive to the reanalyses. Finally, the influence of ENSO on the seasonal occurrence of active Angola Low appears to be highly dependent on the choice of the reanalyses. For instance, active Angola Low tends to be independent from ENSO in NCEP2, while it is clearly driven by ENSO, through increasing occurrence during La Niña conditions, in ERA-Interim and MERRA2. Our results point thus toward strong uncertainties in state-of-the-art reanalyses for studying regional circulation features, and their connection with large-scale climate dynamics at the interannual timescale.
NASA Astrophysics Data System (ADS)
Garner, G.; Hannah, D. M.; Malcolm, I.; Sadler, J. P.
2012-12-01
Riparian forest is recognised as important for moderating stream temperature variability and has the potential to mitigate thermal extremes in a changing climate. Previous research on the heat exchanges controlling water column temperature has often been short-term or seasonally-constrained, with the few multi-year studies limited to a maximum of two years. This study advances previous work by providing a longer-term perspective which allows assessment of inter-annual variability in stream temperature, microclimate and heat exchange dynamics between a semi-natural woodland and a moorland (no trees) reach of the Girnock Burn, a tributary of the Scottish Dee. Automatic weather stations collected 15-minute data over seven consecutive years, which to our knowledge is a unique data set in providing the longest term perspective to date on stream temperature, microclimate and heat exchange processes. Results for spring-summer indicate that the presence of a riparian canopy has a consistent effect between years in reducing the magnitude and variability of mean daily water column temperature and daily net energy totals. Differences in the magnitude and variability in net energy fluxes between the study reaches were driven primarily by fluctuations in net radiation and latent heat fluxes in response to between- and within-year variability in growth of the riparian forest canopy at the forest and prevailing weather conditions at both the forest and moorland. This research provides new insights on the inter-annual variability of stream energy exchanges for moorland and forested reaches under a wide range of climatological and hydrological conditions. The findings therefore provide a more robust process basis for modelling the impact of changes in forest practice and climate change on river thermal dynamics.
The summer North Atlantic Oscillation (SNAO) variability on decadal to paleoclimate time scales
NASA Astrophysics Data System (ADS)
Linderholm, H. W.; Folland, C. K.; Zhang, P.; Gunnarson, B. E.; Jeong, J. H.; Ren, H.
2017-12-01
The summer North Atlantic Oscillation (SNAO), strongly related to the latitude of the North Atlantic and European summer storm tracks, exerts a considerable influence on European summer climate variability and extremes. Here we extend the period covered by the SNAO from July and August to June, July and August (JJA). As well as marked interannual variability, the JJA SNAO has shown a large inter-decadal change since the 1970s. Decadally averaged, there has been a change from a very positive to a rather negative SNAO phase. This change in SNAO phase is opposite in sign from that expected by a number of climate models under enhanced greenhouse forcing by the late twenty first century. It has led to noticeably wetter summers in North West Europe in the last decade. On interannual to multidecadal timescales, SNAO variability is linked to variations in North Atlantic sea surface temperature (SST): observations and models indicate an association between the Atlantic Multi-decadal Oscillation (AMO) where the cold (warm) phase of the AMO corresponds a positive (negative) phase of the SNAO. Observations also indicate a link with SST in the Gulf Stream region of the North Atlantic where, particularly on decadal time scales, SST warming may favour a more positive phase of the SNAO. Influences of Arctic climate change on North Atlantic and European atmospheric circulation may also exist, particularly reduced sea ice coverage, perhaps favouring the negative phase of the SNAO. A new tree-ring data based JJA SNAO reconstruction extending over the last millennium, as well as climate model output for the same period, enables us to examine the influence of North Atlantic SST and Arctic sea-ice coverage, as well as SNAO impacts on European summer climate, in a long-term, pre-industrial context.
Revisiting sea level changes in the North Sea during the Anthropocene
NASA Astrophysics Data System (ADS)
Jensen, Jürgen; Dangendorf, Sönke; Wahl, Thomas; Niehüser, Sebastian
2016-04-01
The North Sea is one of the best instrumented ocean basins in the world. Here we revisit sea level changes in the North Sea region from tide gauges, satellite altimetry, hydrographic profiles and ocean reanalysis data from the beginning of the 19th century to present. This includes an overview of the sea level chapter of the North Sea Climate Change Assessment (NOSCCA) complemented by results from more recent investigations. The estimates of long-term changes from tide gauge records are significantly affected by vertical land motion (VLM), which is related to both the large-scale viscoelastic response of the solid earth to ice melting since the last deglaciation and local effects. Removing VLM (estimated from various data sources such as GPS, tide gauge minus altimetry and GIA) significantly reduces the spatial variability of long-term trends in the basin. VLM corrected tide gauge records suggest a transition from relatively moderate changes in the 19th century towards modern trends of roughly 1.5 mm/yr during the 20th century. Superimposed on the long-term changes there is a considerable inter-annual to multi-decadal variability. On inter-annual timescales this variability mainly reflects the barotropic response of the ocean to atmospheric forcing with the inverted barometer effect dominating along the UK and Norwegian coastlines and wind forcing controlling the southeastern part of the basin. The decadal variability is mostly remotely forced and dynamically linked to the North Atlantic via boundary waves in response to long-shore winds along the continental slope. These findings give valuable information about the required horizontal resolution of ocean models and the necessary boundary conditions and are therefore important for the dynamical downscaling of sea level projections for the North Sea coastlines.
NASA Astrophysics Data System (ADS)
Fiechter, J.; Huckstadt, L. A.; Rose, K.; Costa, D. P.; Curchitser, E. N.; Hedstrom, K.; Edwards, C. A.; Moore, A. M.
2016-02-01
Results from a fully coupled end-to-end ecosystem model for the California Current Large Marine Ecosystem are used to describe the impact of environmental variability on the foraging ecology of its most abundant apex predator, California sea lions (Zalophus californianus). The ecosystem model consists of a biogeochemical submodel embedded in a regional ocean circulation submodel, and both coupled with a multi-species individual-based submodel for forage fish (sardine and anchovy) and California sea lions. For sea lions, bioenergetics and behavioral attributes are specified using available TOPP (Tagging Of Pacific Predators) data on their foraging patterns and diet in the California Current. Sardine and anchovy are explicitly included in the model as they represent important prey sources for California sea lions and exhibit significant interannual and decadal variability in population abundances. Output from a 20-year run (1989-2008) of the model demonstrates how different physical and biological processes control habitat utilization and foraging success of California sea lions on interannual time scales. A principal component analysis of sea lion foraging patterns indicates that the first mode of variability is alongshore and tied to sardine availability, while the second mode is cross-shore and associated with coastal upwelling intensity (a behavior consistent with male sea lion tracking data collected in 2004 vs. 2005). The results also illustrate how variability in environmental conditions and forage fish distribution affects sea lions feeding success. While specifically focusing on the foraging ecology of sea lions, our modeling framework has the ability to provide new and unique perspectives on trophic interactions in the California Current, or other regions where similar end-to-end ecosystem models may be implemented.
Simulated atmospheric response to Gulf Stream variability
NASA Astrophysics Data System (ADS)
Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Latif, Mojib; Minobe, Shoshiro
2010-05-01
Though the ocean variability has a distinct low-frequent component on interannual to interdecadal timescales, a better understanding of the main features of air-sea interaction in the extratropical ocean might increase the predictive skill of climate models significantly. An insufficiently understood region in this context are the sharp SST-fronts connected to western boundary currents, which interact with the overlaying atmosphere by forcing low-level winds and evaporation. Recent studies show, that this response extends beyond the marine boundary layer and so might influence also the large-scale atmospheric circulation. In this work a 5 member ensemble of model runs from the AGCM ECHAM5 was analyzed focussing on the atmospheric response to the Gulf Stream. The analyzed experiment covered a time period of 138 years from 1870 to 2007 and was forced by observed SSTs and sea-ice concentration from the HadISST dataset. The experiment was performed at T106 horizontal resolution (~100km) and with 31 vertical levels up to 1 hPa. Simulated seasonal mean circulation indicate a convective response of the atmosphere in the Gulf Stream region similar to observations, with distinct low-level wind convergence, strong upward motion, and low-pressure over the warm SST flank of the Gulf Stream. An analysis of variance (ANOVA) suggests, that up to 25-30% of the variability of the summer precipitation in the Gulf Stream region are connected to the boundary conditions. The link between oceanic and atmospheric variability on seasonal to interannual timescales is investigated with composite and linear regression analysis. Results indicate that increased (decreased) precipitation is associated with stronger (weaker) low-level wind convergence, enhanced (reduced) upward motion, low (high) pressure, and warm (cold) SST anomalies in the region of the Gulf Stream. Currently sensitivity experiments with the same AGCM configuration are in progress.
Sydeman, William J.; Thompson, Sarah Ann; Piatt, John F.; García-Reyes, Marisol; Zador, Stephani; Williams, Jeffrey C.; Romano, Marc; Renner, Heather
2017-01-01
Seabirds are thought to be reliable, real-time indicators of forage fish availability and the climatic and biotic factors affecting pelagic food webs in marine ecosystems. In this study, we tested the hypothesis that temporal trends and interannual variability in seabird indicators reflect simultaneously occurring bottom-up (climatic) and competitor (pink salmon) forcing of food webs. To test this hypothesis, we derived multivariate seabird indicators for the Bering Sea–Aleutian Island (BSAI) ecosystem and related them to physical and biological conditions known to affect pelagic food webs in the ecosystem. We examined covariance in the breeding biology of congeneric pelagic gulls (kittiwakes Rissa tridactyla and R. brevirostris) andauks (murres Uria aalge and U. lomvia), all of whichare abundant and well-studiedinthe BSAI. At the large ecosystem scale, kittiwake and murre breeding success and phenology (hatch dates) covaried among congeners, so data could be combined using multivariate techniques, but patterns of responsedifferedsubstantially betweenthe genera.Whiledata fromall sites (n = 5)inthe ecosystemcould be combined, the south eastern Bering Sea shelf colonies (St. George, St. Paul, and Cape Peirce) provided the strongest loadings on indicators, and hence had the strongest influence on modes of variability. The kittiwake breeding success mode of variability, dominated by biennial variation, was significantly related to both climatic factors and potential competitor interactions. The murre indicator mode was interannual and only weakly related to the climatic factors measured. The kittiwake phenology indicator mode of variability showed multi-year periods (“stanzas”) of late or early breeding, while the murre phenology indicator showed a trend towards earlier timing. Ocean climate relationships with the kittiwake breeding success indicator suggestthat early-season (winter–spring) environmental conditions and the abundance of pink salmon affect the pelagic food webs that support these seabirds in the BSAI ecosystem.
Climate variability has a stabilizing effect on the coexistence of prairie grasses
Adler, Peter B.; HilleRisLambers, Janneke; Kyriakidis, Phaedon C.; Guan, Qingfeng; Levine, Jonathan M.
2006-01-01
How expected increases in climate variability will affect species diversity depends on the role of such variability in regulating the coexistence of competing species. Despite theory linking temporal environmental fluctuations with the maintenance of diversity, the importance of climate variability for stabilizing coexistence remains unknown because of a lack of appropriate long-term observations. Here, we analyze three decades of demographic data from a Kansas prairie to demonstrate that interannual climate variability promotes the coexistence of three common grass species. Specifically, we show that (i) the dynamics of the three species satisfy all requirements of “storage effect” theory based on recruitment variability with overlapping generations, (ii) climate variables are correlated with interannual variation in species performance, and (iii) temporal variability increases low-density growth rates, buffering these species against competitive exclusion. Given that environmental fluctuations are ubiquitous in natural systems, our results suggest that coexistence based on the storage effect may be underappreciated and could provide an important alternative to recent neutral theories of diversity. Field evidence for positive effects of variability on coexistence also emphasizes the need to consider changes in both climate means and variances when forecasting the effects of global change on species diversity. PMID:16908862
Recent climate variability and its impacts on soybean yields in Southern Brazil
NASA Astrophysics Data System (ADS)
Ferreira, Danielle Barros; Rao, V. Brahmananda
2011-08-01
Recent climate variability in rainfall, temperatures (maximum and minimum), and the diurnal temperature range is studied with emphasis on its influence over soybean yields in southern Brazil, during 1969 to 2002. The results showed that the soybean ( Glycine max L. Merril) yields are more affected by changes in temperature during summer, while changes in rainfall are more important during the beginning of plantation and at its peak of development. Furthermore, soybean yields in Paraná are more sensitive to rainfall variations, while soybean yields in the Rio Grande do Sul are more sensitive to variations in temperature. Effects of interannual climatic variability on soybean yields are evaluated through three agro-meteorological models: additive Stewart, multiplicative Rao, and multiplicative Jensen. The Jensen model is able to reproduce the interannual behavior of soybean yield reasonably well.
NASA Technical Reports Server (NTRS)
Drinkwater, Mark R.
1999-01-01
Strong seasonal and interannual signals in Antarctic bottom-water outflow remain unexplained yet are highly correlated with anomalies in net sea-ice growth in coastal polynyas. The mechanisms responsible for driving salination and replenishment and rejuvenation of the dense shelf "source" waters likely also generate pulses of bottom water outflow. The objective of this research is to investigate time-scales of variability in the dynamics of sea-ice in the Southern Ocean in order to determine the primary sites for production of dense shelf waters. We are using a merged satellite/buoy sea-ice motion data set for the period 1978-present day to compute the dynamics of opening and closing of coastal polynyas over the continental shelf. The Ocean Circulation and Climate Advanced Model (OCCAM) ocean general circulation model with coupled sea-ice dynamics is presently forced using National Center for Environmental Prediction (NCEP) data to simulate fluxes and the salination impact of the ocean shelf regions. This work is relevant in the context of measuring the influence of polar sea-ice dynamics upon polar ocean characteristics, and thereby upon global thermohaline ocean circulation. Interannual variability in simulated net freezing rate in the Southern Weddell Sea is shown for the period 1986-1993. There is a pronounced maximum of ice production in 1988 and minimum in 1991 in response to anomalies in equatorward meridional wind velocity. This follows a similar approximate 8-year interannual cycle in Sea Surface Temperature (SST) and satellite-derived ice-edge anomalies reported elsewhere as the "Antarctic Circumpolar Wave." The amplitude of interannual fluctuations in annual net ice production are about 40% of the mean value, implying significant interannual variance in brine rejection and upper ocean heat loss. Southward anomalies in wind stress induce negative anomalies in open water production, which are observed in passive microwave satellite images. Thus, cycles of enhanced poleward wind stress reduce ice growth by compacting the ice along the coastline and closing open water in leads and polynyas. Model simulations confirm that years of low ice production, such as 1991, coincide with years of lower than normal bottom water outflow. Future plans include the assimilation of satellite ice concentrations and ice drift dynamics to more accurately constrain boundary conditions in the model.
NASA Astrophysics Data System (ADS)
Molcard, A.; Pinardi, N.; Iskandarani, M.; Haidvogel, D. B.
2002-05-01
This work is an attempt to simulate the Mediterranean Sea general circulation with a Spectral Finite Element Model. This numerical technique associates the geometrical flexibility of the finite elements for the proper coastline definition with the precision offered by spectral methods. The model is reduced gravity and we study the wind-driven ocean response in order to explain the large scale sub-basin gyres and their variability. The study period goes from January 1987 to December 1993 and two forcing data sets are used. The effect of wind variability in space and time is analyzed and the relationship between wind stress curl and ocean response is stressed. Some of the main permanent structures of the general circulation (Gulf of Lions cyclonic gyre, Rhodes gyre, Gulf of Syrte anticylone) are shown to be induced by permanent wind stress curl structures. The magnitude and spatial variability of the wind is important in determining the appearance or disappearance of some gyres (Tyrrhenian anticyclonic gyre, Balearic anticyclonic gyre, Ionian cyclonic gyre). An EOF analysis of the seasonal variability indicates that the weakening and strengthening of the Levantine basin boundary currents is a major component of the seasonal cycle in the basin. The important discovery is that seasonal and interannual variability peak at the same spatial scales in the ocean response and that the interannual variability includes the change in amplitude and phase of the seasonal cycle in the sub-basin scale gyres and boundary currents. The Coriolis term in the vorticity balance seems to be responsible for the weakening of anticyclonic structures and their total disappearance when they are close to a boundary. The process of adjustment to winds produces a train of coastally trapped gravity waves which travel around the eastern and western basins, respectively in approximately 6 months. This corresponds to a phase velocity for the wave of about 1 m/s, comparable to an average velocity of an internal Kelvin wave in the area.
Recent Changes in Tropospheric Ozone in the Tropics
NASA Technical Reports Server (NTRS)
Chandra, S.; Ziemke, J. R.; Einaudi, Franco (Technical Monitor)
2000-01-01
This paper presents a detailed characterization of tropical tropospheric column ozone variability on time scales varying from a few days to a solar cycle. The study is based on more than 20 years (1979 to the present) of tropospheric column ozone time series derived from the convective cloud differential (CCD) method using total ozone mapping spectrometer (TOMS) data. Results indicate three distinct regions in the tropics with distinctly three different zonal characteristics related to seasonal, interannual and solar variabilities. These three regions are the eastern Pacific, Atlantic, and western Pacific. Tropospheric column ozone in the Atlantic region peaks at about the same time (September-October) from 20 N to 20 S. The amplitude of the annual cycle, however, varies from about 3 to 6 Dobson unit (DU) from north to south of the equator. In comparison, the annual cycle in both the eastern and western Pacific is generally week and the phase varies from peak values in March and April in the northern hemisphere to September and October in the southern hemisphere. The interannual pattern in the three regions are also very different. The Atlantic region indicates a quasi biennial oscillation in the tropospheric column ozone which is out of phase with the stratospheric ozone. This is consistent with the photochemical control of this region caused by high pollution and high concentration of ozone producing precursors. The observed pattern, however, does not seem to be related to the interannual variability in ozone precursors related to biomass burning. Instead, it appears to be a manifestation of the UV modulation of upper tropospheric chemistry on a QBO time scale caused by stratospheric ozone. During El Nino events, there is anomalously low ozone in the eastern Pacific and high values in the western Pacific indicating the effects of convectively driven transport. The observed increase of 10-20 DU in tropospheric column ozone in the Indonesian region in the western Pacific during the recent 1997-1998 El Nino was associated with large-scale forest fires which may have contributed 5-10 DU of the total increase.
NASA Astrophysics Data System (ADS)
Osborn, B.; Chapple, W.; Ewers, B. E.; Williams, D. G.
2014-12-01
The interaction between soil conditions and climate variability plays a central role in the ecohydrological functions of montane conifer forests. Although soil moisture availability to trees is largely dependent on climate, the depth and texture of soil exerts a key secondary influence. Multiple Pleistocene glacial events have shaped the landscape of the central Rocky Mountains creating a patchwork of soils differing in age and textural classification. This mosaic of soil conditions impacts hydrological properties, and montane conifer forests potentially respond to climate variability quite differently depending on the age of glacial till and soil development. We hypothesized that the age of glacial till and associated soil textural changes exert strong control on growth and photosynthetic gas exchange of lodgepole pine. We examined physiological and growth responses of lodgepole pine to interannual variation in maximum annual snow water equivalence (SWEmax) of montane snowpack and growing season air temperature (Tair) and vapor pressure deficit (VPD) across a chronosequence of Pleistocene glacial tills ranging in age from 700k to 12k years. Soil textural differences across the glacial tills illustrate the varying degrees of weathering with the most well developed soils with highest clay content on the oldest till surfaces. We show that sensitivity of growth and carbon isotope discrimination, an integrated measure of canopy gas exchange properties, to interannual variation SWEmax , Tair and VPD is greatest on young till surfaces, whereas trees on old glacial tills with well-developed soils are mostly insensitive to these interannual climate fluctuations. Tree-ring widths were most sensitive to changes in SWEmax on young glacial tills (p < 0.01), and less sensitive on the oldest till (p < 0.05). Tair correlates strongly with δ13C values on the oldest and youngest tills sites, but shows no significant relationship on the middle aged glacial till. It is clear that growth and photosynthetic gas exchange parameters are sensitive to glacial till surfaces, which is evident by the different responses to SWEmax and Tair across sites.
Driving terrestrial ecosystem models from space
NASA Technical Reports Server (NTRS)
Waring, R. H.
1993-01-01
Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa
1993-01-01
The paper employs a fully prognostic Arctic ice-ocean model to study the interannual variability of sea ice during the period 1955-1975 and to explain the large variability of the ice extent in the Greenland and Iceland seas during the late 1960s. The model is used to test the contention of Aagaard and Carmack (1989) that the Great Salinity Anomaly (GSA) was a consequence of the anomalously large ice export in 1968. The high-latitude ice-ocean circulation changes due to wind field changes are explored. The ice export event of 1968 was the largest in the simulation, being about twice as large as the average and corresponding to 1600 cu km of excess fresh water. The simulations suggest that, besides the above average ice export to the Greenland Sea, there was also fresh water export to support the larger than average ice cover. The model results show the origin of the GSA to be in the Arctic, and support the view that the Arctic may play an active role in climate change.
NASA Astrophysics Data System (ADS)
Evangelista, H.; Sifeddine, A.; Corrège, T.; Servain, J.; Dassié, E. P.; Logato, R.; Cordeiro, R. C.; Shen, C.-C.; Le Cornec, F.; Nogueira, J.; Segal, B.; Castagna, A.; Turcq, B.
2018-03-01
Although relatively rare compared to similar latitudes in the Pacific or Indian Oceans, massive coral colonies are present in the Tropical/Equatorial Southwestern Atlantic Ocean. However, detailed geochemical compositions of these corals are still largely unknown. In this work, we present growth rates, Sr/Ca, and U/Ca ratios of the coral colony (Siderastrea stellata) sampled at Rocas Atoll, off the Brazilian coast. These variables are primarily affected by sea surface temperature (SST) at seasonal scale, and by wind stress at interannual scale, these results represent a broad new finding. A lower significance at the interannual time scale between Sr/Ca and U/Ca with respect to SST is attributed to the low SST amplitude closed to Equator. An investigation on the dependence of coral growth rates with respect to the "cloud shading effect" promoted by the Intertropical Convergence Zone (ITCZ) does not show significant influence. Additionally, rain seems to act on local geochemistry of Sr/Ca ratios and growth rate at the decadal scale.
An Analysis of Inter-annual Variability and Uncertainty of Continental Surface Heat Fluxes
NASA Astrophysics Data System (ADS)
Huang, S. Y.; Deng, Y.; Wang, J.
2016-12-01
The inter-annual variability and the corresponding uncertainty of land surface heat fluxes during the first decade of the 21st century are re-evaluated at continental scale based on the heat fluxes estimated by the maximum entropy production (MEP) model. The MEP model predicted heat fluxes are constrained by surface radiation fluxes, automatically satisfy surface energy balance, and are independent of temperature/moisture gradient, wind speed, and roughness lengths. The surface radiation fluxes and temperature data from Clouds and the Earth's Radiant Energy System and the surface specific humidity data from Modern-Era Retrospective analysis for Research and Applications were used to reproduce the global surface heat fluxes with land-cover data from the NASA Energy and Water cycle Study (NEWS). Our analysis shows that the annual means of continental latent heat fluxes have increasing trends associated with increasing trends in surface net radiative fluxes. The sensible heat fluxes also have increasing trends over most continents except for South America. Ground heat fluxes have little trends. The continental-scale analysis of the MEP fluxes are compared with other existing global surface fluxes data products and the implications of the results for inter-annual to decadal variability of regional surface energy budget are discussed.
NASA Technical Reports Server (NTRS)
Ginoux, P.; Prospero, J.; Torres, O.; Chin, M.
2002-01-01
Global distribution of aeolian dust is simulated from 1981 to 1996 with the Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. The results are assessed with in-situ measurements and the Total Ozone Mapping Spectrometer (TOMS) aerosol products. The annual budget over the different continents and oceans are analyzed. It is found that there is a maximum of 25% difference of global annual emission from the minimum in 1996 to the maximum in 1988. There is a downward trend of dust emission over Africa and East Asia, of 6 and 2 Tg/yr, respectively. The inter-annual variability of dust distribution is analyzed over the North Atlantic and Africa. It is found that in winter most of the North Atlantic and Africa dust loading is correlated with the North Atlantic Oscillation. The GOCART model indicates that a controlling factor of such correlation can be attributed to dust emission from the Sahel. The Bodele depression is the major dust source in winter and its inter-annual variability is highly correlated with the NAO. However, it is not possible to conclude without further analysis that the North Atlantic Oscillation is forcing the inter-annual variability of dust emission and in-turn dust concentration over the North Atlantic.
Refractory periods and climate forcing in cholera dynamics.
Koelle, Katia; Rodó, Xavier; Pascual, Mercedes; Yunus, Md; Mostafa, Golam
2005-08-04
Outbreaks of many infectious diseases, including cholera, malaria and dengue, vary over characteristic periods longer than 1 year. Evidence that climate variability drives these interannual cycles has been highly controversial, chiefly because it is difficult to isolate the contribution of environmental forcing while taking into account nonlinear epidemiological dynamics generated by mechanisms such as host immunity. Here we show that a critical interplay of environmental forcing, specifically climate variability, and temporary immunity explains the interannual disease cycles present in a four-decade cholera time series from Matlab, Bangladesh. We reconstruct the transmission rate, the key epidemiological parameter affected by extrinsic forcing, over time for the predominant strain (El Tor) with a nonlinear population model that permits a contributing effect of intrinsic immunity. Transmission shows clear interannual variability with a strong correspondence to climate patterns at long periods (over 7 years, for monsoon rains and Brahmaputra river discharge) and at shorter periods (under 7 years, for flood extent in Bangladesh, sea surface temperatures in the Bay of Bengal and the El Niño-Southern Oscillation). The importance of the interplay between extrinsic and intrinsic factors in determining disease dynamics is illustrated during refractory periods, when population susceptibility levels are low as the result of immunity and the size of cholera outbreaks only weakly reflects climate forcing.
Warming of the Global Ocean: Spatial Structure and Water-Mass Trends
NASA Technical Reports Server (NTRS)
Hakkinen, Sirpa; Rhines, Peter B.; Worthen, Denise L.
2016-01-01
This study investigates the multidecadal warming and interannual-to-decadal heat content changes in the upper ocean (0-700 m), focusing on vertical and horizontal patterns of variability. These results support a nearly monotonic warming over much of the World Ocean, with a shift toward Southern Hemisphere warming during the well-observed past decade. This is based on objectively analyzed gridded observational datasets and on a modeled state estimate. Besides the surface warming, a warming climate also has a subsurface effect manifesting as a strong deepening of the midthermocline isopycnals, which can be diagnosed directly from hydrographic data. This deepening appears to be a result of heat entering via subduction and spreading laterally from the high-latitude ventilation regions of subtropical mode waters. The basin-average multidecadal warming mainly expands the subtropical mode water volume, with weak changes in the temperature-salinity (u-S) relationship (known as ''spice'' variability). However, the spice contribution to the heat content can be locally large, for example in Southern Hemisphere. Multidecadal isopycnal sinking has been strongest over the southern basins and weaker elsewhere with the exception of the Gulf Stream/North Atlantic Current/subtropical recirculation gyre. At interannual to decadal time scales, wind-driven sinking and shoaling of density surfaces still dominate ocean heat content changes, while the contribution from temperature changes along density surfaces tends to decrease as time scales shorten.
Reed, Bradley C.; Budde, Michael E.; Spencer, Page; Miller, Amy E.
2009-01-01
Impacts of global climate change are expected to result in greater variation in the seasonality of snowpack, lake ice, and vegetation dynamics in southwest Alaska. All have wide-reaching physical and biological ecosystem effects in the region. We used Moderate Resolution Imaging Spectroradiometer (MODIS) calibrated radiance, snow cover extent, and vegetation index products for interpreting interannual variation in the duration and extent of snowpack, lake ice, and vegetation dynamics for southwest Alaska. The approach integrates multiple seasonal metrics across large ecological regions. Throughout the observation period (2001-2007), snow cover duration was stable within ecoregions, with variable start and end dates. The start of the lake ice season lagged the snow season by 2 to 3??months. Within a given lake, freeze-up dates varied in timing and duration, while break-up dates were more consistent. Vegetation phenology varied less than snow and ice metrics, with start-of-season dates comparatively consistent across years. The start of growing season and snow melt were related to one another as they are both temperature dependent. Higher than average temperatures during the El Ni??o winter of 2002-2003 were expressed in anomalous ice and snow season patterns. We are developing a consistent, MODIS-based dataset that will be used to monitor temporal trends of each of these seasonal metrics and to map areas of change for the study area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Youlong; Mocko, David; Huang, Maoyi
2017-03-01
In preparation for next generation North American Land Data Assimilation System (NLDAS), 3 three advanced land surface models (CLM4.0, Noah-MP, and CLSM-F2.5) were run from 1979 4 to 2014 within the NLDAS-based framework. Monthly total water storage anomaly (TWSA) and 5 its individual water storage components were evaluated against satellite-based and in situ 6 observations, and reference reanalysis products at basin-wide and statewide scales. In general, all 7 three models are able to reasonably capture the monthly and interannual variability and 8 magnitudes for TWSA. However, contributions of the anomalies of individual water 9 components to TWSA are very dependentmore » on the model and basin. A major contributor to the 10 TWSA is the anomaly of total column soil moisture content (SMCA) for CLM4.0 and Noah-MP 11 or groundwater storage anomaly (GWSA) for CLSM-F2.5 although other components such as 12 the anomaly of snow water equivalent (SWEA) also play some role. For each individual water 13 storage component, the models are able to capture broad features such as monthly and 14 interannual variability. However, there are large inter-model differences and quantitative 15 uncertainties in this study. Therefore, it should be thought of as a preliminary synthesis and 16 analysis.« less
On the Size of the Antarctic Ozone Hole
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph
2002-01-01
The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million sq km. In the 8-year period from 1981 to 1989, the area expanded by 18 Million sq km. During the last 5 years, the hole has been observed to exceed 25 Million sq km over brief periods. In the spring of 2002, the size of the ozone hole barely reached 20 Million sq km for only a couple of days. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre-1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.
Interannual variability of the atmospheric CO2 growth rate: roles of precipitation and temperature
NASA Astrophysics Data System (ADS)
Wang, Jun; Zeng, Ning; Wang, Meirong
2016-04-01
The interannual variability (IAV) in atmospheric CO2 growth rate (CGR) is closely connected with the El Niño-Southern Oscillation. However, sensitivities of CGR to temperature and precipitation remain largely uncertain. This paper analyzed the relationship between Mauna Loa CGR and tropical land climatic elements. We find that Mauna Loa CGR lags precipitation by 4 months with a correlation coefficient of -0.63, leads temperature by 1 month (0.77), and correlates with soil moisture (-0.65) with zero lag. Additionally, precipitation and temperature are highly correlated (-0.66), with precipitation leading by 4-5 months. Regression analysis shows that sensitivities of Mauna Loa CGR to temperature and precipitation are 2.92 ± 0.20 PgC yr-1 K-1 and -0.46 ± 0.07 PgC yr-1 100 mm-1, respectively. Unlike some recent suggestions, these empirical relationships favor neither temperature nor precipitation as the dominant factor of CGR IAV. We further analyzed seven terrestrial carbon cycle models, from the TRENDY project, to study the processes underlying CGR IAV. All models capture well the IAV of tropical land-atmosphere carbon flux (CFTA). Sensitivities of the ensemble mean CFTA to temperature and precipitation are 3.18 ± 0.11 PgC yr-1 K-1 and -0.67 ± 0.04 PgC yr-1 100 mm-1, close to Mauna Loa CGR. Importantly, the models consistently show the variability in net primary productivity (NPP) dominates CGR, rather than heterotrophic respiration. Because previous studies have proved that NPP is largely driven by precipitation in tropics, it suggests a key role of precipitation in CGR IAV despite the higher CGR correlation with temperature. Understanding the relative contribution of CO2 sensitivity to precipitation and temperature has important implications for future carbon-climate feedback using such ''emergent constraint''.
Potential Predictability and Prediction Skill for Southern Peru Summertime Rainfall
NASA Astrophysics Data System (ADS)
WU, S.; Notaro, M.; Vavrus, S. J.; Mortensen, E.; Block, P. J.; Montgomery, R. J.; De Pierola, J. N.; Sanchez, C.
2016-12-01
The central Andes receive over 50% of annual climatological rainfall during the short period of January-March. This summertime rainfall exhibits strong interannual and decadal variability, including severe drought events that incur devastating societal impacts and cause agricultural communities and mining facilities to compete for limited water resources. An improved seasonal prediction skill of summertime rainfall would aid in water resource planning and allocation across the water-limited southern Peru. While various underlying mechanisms have been proposed by past studies for the drivers of interannual variability in summertime rainfall across southern Peru, such as the El Niño-Southern Oscillation (ENSO), Madden Julian Oscillation (MJO), and extratropical forcings, operational forecasts continue to be largely based on rudimentary ENSO-based indices, such as NINO3.4, justifying further exploration of predictive skill. In order to bridge this gap between the understanding of driving mechanisms and the operational forecast, we performed systematic studies on the predictability and prediction skill of southern Peru summertime rainfall by constructing statistical forecast models using best available weather station and reanalysis datasets. At first, by assuming the first two empirical orthogonal functions (EOFs) of summertime rainfall are predictable, the potential predictability skill was evaluated for southern Peru. Then, we constructed a simple regression model, based on the time series of tropical Pacific sea-surface temperatures (SSTs), and a more advanced Linear Inverse Model (LIM), based on the EOFs of tropical ocean SSTs and large-scale atmosphere variables from reanalysis. Our results show that the LIM model consistently outperforms the more rudimentary regression models on the forecast skill of domain averaged precipitation index and individual station indices. The improvement of forecast correlation skill ranges from 10% to over 200% for different stations. Further analysis shows that this advantage of LIM is likely to arise from its representation of local zonal winds and the position of Intertropical Convergence Zone (ITCZ).
NASA Astrophysics Data System (ADS)
Schofield, Oscar; Saba, Grace; Coleman, Kaycee; Carvalho, Filipa; Couto, Nicole; Ducklow, Hugh; Finkel, Zoe; Irwin, Andrew; Kahl, Alex; Miles, Travis; Montes-Hugo, Martin; Stammerjohn, Sharon; Waite, Nicole
2017-06-01
The coastal waters of the West Antarctic Peninsula (WAP) are associated with large phytoplankton blooms dominated by large (>20 μm) diatoms however, nanoplankton (<20 μm) are also an important component of the food web. The dominant nanoflagellates in the WAP are cryptomonad algae. Using a twenty-year time series collected by the Palmer Long Term Ecological Research program at the United States Palmer Research Station, we assessed long-term patterns and stability in the coastal phytoplankton communities in the WAP. There was significant interannual variability in the integrated water column chlorophyll a (chl-a) concentrations, which varied by a factor of 5 over the 20-year time series. There has been a significant positive increase in the seasonally integrated concentration of chl-a over the time series. The dominant phytoplankton were diatoms, with cryptophytes the second most abundant. Mixed flagellates also constituted a significant fraction of the chl-a but showed less interannual variability than diatoms and cryophytes. Peak phytoplankton biomass was observed in summer months, when monthly averaged wind speed was lower than in the fall and autumn. Cryptophytes were most abundant during the summer months (December-January) after the seasonal retreat of sea ice. While diatoms were observed over the full range of observed salinities 32-34.5) as well as over the full range of in situ temperatures (-1.5 to 2.5 °C), the cryptophyte populations were observed in locations with lower salinity 32.5-33.75) and colder water (-1 to 1 °C). Environmental factors that favored a shallower seasonal mixed layer resulted in larger diatom blooms compared to the other phytoplankton taxa. During summer with lower phytoplankton biomass, a larger proportion of the chlorophyll a was associated with cryptophytes. These results demonstrate that continued temperature changes along the West Antarctic Peninsula will result in changes in phytoplankton concentration and community composition, which has significant ramifications for the food web.
Are GRACE-era terrestrial water trends driven by anthropogenic climate change?
Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.
2016-01-01
To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less
Are GRACE-era terrestrial water trends driven by anthropogenic climate change?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.
To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less
NASA Astrophysics Data System (ADS)
Biederman, J. A.; Scott, R. L.; Smith, W. K.; Litvak, M. E.; MacBean, N.
2017-12-01
Global-scale studies suggest that water-limited dryland ecosystems dominate the increasing trend in magnitude and interannual variability of the land CO2 sink. However, the terrestrial biosphere models and remote sensing models used in large-scale analyses are poorly constrained by flux measurements in drylands, which are under-represented in global datasets. In this talk, I will address this gap with eddy covariance data from 30 ecosystems across the Southwest of North America with observed ranges in annual precipitation of 100 - 1000 mm, annual temperatures of 2 - 25 °C, and records of 3 - 10 years each (160 site-years). This extensive dryland dataset enables new approaches including 1) separation of temporal and spatial patterns to infer fast and slow ecosystem responses to change, and 2) partitioning of precipitation into hydrologic losses, evaporation, and ecosystem-available water. I will then compare direct flux measurements with models and remote sensing used to scale fluxes regionally. Combining eddy covariance and streamflow measurements, I will show how evapotranspiration (ET), which is the efflux of soil moisture remaining after hydrologic losses, is a better metric than precipitation of water available to drive ecosystem CO2 exchange. Furthermore, I will present a novel method to partition ET into evaporation and transpiration using the tight coupling of transpiration and photosynthesis. In contrast with typical carbon sink function in wetter, more-studied regions, dryland sites express an annual net carbon uptake varying from -350 to +330 gC m-2. Due to less respiration losses relative to photosynthesis gains during winter, declines in winter precipitation across the Southwest since 1999 are reducing annual net CO2 uptake. Interannual variability of net uptake is larger than for wetter regions, and half the sites pivot between sinks in wet years to sources in dry years. Biospheric and remote sensing models capture only 20-30 % of interannual variability in ET and CO2 fluxes, suggesting the impact of dryland regions on the variability of global CO2 may be up to 3 - 5 times larger than current estimates. Finally, I will highlight progress in ongoing work to develop improved remote sensing models of dryland CO2 uptake using novel indices including solar-induced fluorescence.
Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating
NASA Astrophysics Data System (ADS)
Merrick, R. A.; Hutchings, J. K.
2015-12-01
The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.
NASA Astrophysics Data System (ADS)
Riveros-Iregui, Diego A.; Lenters, John D.; Peake, Colin S.; Ong, John B.; Healey, Nathan C.; Zlotnik, Vitaly A.
2017-10-01
Despite potential evaporation rates in excess of the local precipitation, dry climates often support saline lakes through groundwater inputs of water and associated solutes. These groundwater-fed lakes are important indicators of environmental change, in part because their shallow water levels and salinity are very sensitive to weather and climatic variability. Some of this sensitivity arises from high rates of open-water evaporation, which is a dominant but poorly quantified process for saline lakes. This study used the Bowen ratio energy budget method to calculate open-water evaporation rates for Alkali Lake, a saline lake in the Nebraska Sandhills region (central United States), where numerous groundwater-fed lakes occupy the landscape. Evaporation rates were measured during the warm season (May - October) over three consecutive years (2007-2009) to gain insights into the climatic and limnological factors driving evaporation, as well as the partitioning of energy balance components at seasonal and interannual time scales. Results show a seasonal peak in evaporation rate in late June of 7.0 mm day-1 (on average), with a maximum daily rate of 10.5 mm day-1 and a 3-year mean July-September (JAS) rate of 5.1 mm day-1, which greatly exceeds the long-term JAS precipitation rate of 1.3 mm day-1. Seasonal variability in lake evaporation closely follows that of net radiation and lake surface temperature, with sensible heat flux and heat storage variations being relatively small, except in response to short-term, synoptic events. Interannual changes in the surface energy balance were weak, by comparison, although a 6-fold increase in mean lake level over the three years (0.05-0.30 m) led to greater heat storage within the lake, an enhanced JAS lake-air temperature gradient, and greater sensible heat loss. These large variations in water level were also associated with large changes in absolute salinity (from 28 to 118 g kg-1), with periods of high salinity characterized by reductions in mass transfer estimates of evaporation rate by up to 20%, depending on atmospheric conditions and absolute salinity. Energy balance estimates of evaporation, on the other hand, were found to be less sensitive to variations in salinity. These results provide regional insights for lakes in the Nebraska Sandhills region and implications for estimation of the energy and water balance of saline lakes in similar arid and semi-arid landscapes.
USDA-ARS?s Scientific Manuscript database
Rangeland ecosystems are characterized by substantial temporal variability in weather overlaid on spatial variability associated with topography and soils (Fuhlendorf et al. 2012). Semiarid rangelands in particular are characterized by more extreme intra- and inter-annual variation in precipitation ...
Effects of climate change and variability on population dynamics in a long-lived shorebird.
van de Pol, Martijn; Vindenes, Yngvild; Saether, Bernt-Erik; Engen, Steinar; Ens, Bruno J; Oosterbeek, Kees; Tinbergen, Joost M
2010-04-01
Climate change affects both the mean and variability of climatic variables, but their relative impact on the dynamics of populations is still largely unexplored. Based on a long-term study of the demography of a declining Eurasian Oystercatcher (Haematopus ostralegus) population, we quantify the effect of changes in mean and variance of winter temperature on different vital rates across the life cycle. Subsequently, we quantify, using stochastic stage-structured models, how changes in the mean and variance of this environmental variable affect important characteristics of the future population dynamics, such as the time to extinction. Local mean winter temperature is predicted to strongly increase, and we show that this is likely to increase the population's persistence time via its positive effects on adult survival that outweigh the negative effects that higher temperatures have on fecundity. Interannual variation in winter temperature is predicted to decrease, which is also likely to increase persistence time via its positive effects on adult survival that outweigh the negative effects that lower temperature variability has on fecundity. Overall, a 0.1 degrees C change in mean temperature is predicted to alter median time to extinction by 1.5 times as many years as would a 0.1 degrees C change in the standard deviation in temperature, suggesting that the dynamics of oystercatchers are more sensitive to changes in the mean than in the interannual variability of this climatic variable. Moreover, as climate models predict larger changes in the mean than in the standard deviation of local winter temperature, the effects of future climatic variability on this population's time to extinction are expected to be overwhelmed by the effects of changes in climatic means. We discuss the mechanisms by which climatic variability can either increase or decrease population viability and how this might depend both on species' life histories and on the vital rates affected. This study illustrates that, for making reliable inferences about population consequences in species in which life history changes with age or stage, it is crucial to investigate the impact of climate change on vital rates across the entire life cycle. Disturbingly, such data are unavailable for most species of conservation concern.
NASA Astrophysics Data System (ADS)
Maurer, G. E.; Krofcheck, D. J.; Collins, S. L.; Litvak, M. E.
2016-12-01
Recent observational and modeling studies have indicated that semiarid ecosystems are more dynamic contributors to the global carbon budget than once thought. Semiarid carbon fluxes, however, are generally small, with high interannual and spatial variability, which suggests that validating their global significance may depend on examining multiple productivity measures and their associated uncertainties and inconsistencies. We examined ecosystem productivity from eddy covariance (NEE), harvest (NPP), and terrestrial biome models (NEPm) at two very similar grassland sites and one creosote shrubland site in the Sevilleta National Wildlife Refuge of central New Mexico, USA. Our goal was to assess site and methodological correspondence in annual carbon uptake, patterns of interannual variability, and measurement uncertainty. One grassland site was a perennial carbon source losing 30 g C m-2 per year on average, while the other two sites were carbon sources or sinks depending on the year, with average net uptake of 5 and 25 g C m-2 per year at the grassland and shrubland site, respectively. Uncertainty values for cumulative annual NEE overlapped between the three sites in most years. When combined, aboveground and belowground annual NPP measurements were 15% higher than annual NEE values and did not confirm a loss of carbon at any site in any year. Despite differences in mean site carbon balance, year-to-year changes in cumulative annual NEE and NPP were similar at all sites with years 2010 and 2013 being favorable for carbon uptake and 2011 and 2012 being unfavorable at all sites. Modeled NEPm data for a number of nearby grid cells reproduced only a fraction of the observed range in carbon uptake and its interannual variability. These three sites are highly similar in location and climate and multiple carbon flux measurements confirm the high interannual variability in carbon flux. The exact magnitude of these fluxes, however, remains difficult to discern.
NASA Astrophysics Data System (ADS)
Sedigh Marvasti, S.; Gnanadesikan, A.; Bidokhti, A. A.; Dunne, J. P.; Ghader, S.
2016-02-01
Recent years have shown an increase in harmful algal blooms in the Northwest Arabian Sea and Gulf of Oman, raising the question of whether climate change will accelerate this trend. This has led us to examine whether the Earth System Models used to simulate phytoplankton productivity accurately capture bloom dynamics in this region - both in terms of the annual cycle and interannual variability. Satellite data (SeaWIFS ocean color) show two climatological blooms in this region, a wintertime bloom peaking in February and a summertime bloom peaking in September. On a regional scale, interannual variability of the wintertime bloom is dominated by cyclonic eddies which vary in location from one year to another. Two coarse (1°) models with the relatively complex biogeochemistry (TOPAZ) capture the annual cycle but neither eddies nor the interannual variability. An eddy-resolving model (GFDL CM2.6) with a simpler biogeochemistry (miniBLING) displays larger interannual variability, but overestimates the wintertime bloom and captures eddy-bloom coupling in the south but not in the north. The models fail to capture both the magnitude of the wintertime bloom and its modulation by eddies in part because of their failure to capture the observed sharp thermocline and/or nutricline in this region. When CM2.6 is able to capture such features in the Southern part of the basin, eddies modulate diffusive nutrient supply to the surface (a mechanism not previously emphasized in the literature). For the model to simulate the observed wintertime blooms within cyclones, it will be necessary to represent this relatively unusual nutrient structure as well as the cyclonic eddies. This is a challenge in the Northern Arabian Sea as it requires capturing the details of the outflow from the Persian Gulf - something that is poorly done in global models.
NASA Astrophysics Data System (ADS)
Mitchell, J.; Ding, Q.
2017-12-01
The prolonged drought in California has by now largely subsided due to the large number of land-falling atmospheric rivers in the 2016-2017 winter season. Here we explore intraseasonal, interannual and decadal variabilities in winter AR activity along the California coast, especially in Southern California, with a special focus on the leading modes of covariance between tropical SSTs and the 200-hPa geopotential height in the Northern Hemisphere and an understanding of how the tropical related teleconnections modulate the AR activity in the North Pacific. This new approach explores a path towards improved intra-seasonal to seasonal predictions of climate variability in Southern California and may help explain how the most recent winter, which is not the anomalously strong el Niño as that in the last winter, brought California out of drought. Finally, we will suggest a way forward to better understand the causes of the recent drought over Southern California and how we may improve projections of its future change.
Multicriteria evaluation of discharge simulation in Dynamic Global Vegetation Models
NASA Astrophysics Data System (ADS)
Yang, Hui; Piao, Shilong; Zeng, Zhenzhong; Ciais, Philippe; Yin, Yi; Friedlingstein, Pierre; Sitch, Stephen; Ahlström, Anders; Guimberteau, Matthieu; Huntingford, Chris; Levis, Sam; Levy, Peter E.; Huang, Mengtian; Li, Yue; Li, Xiran; Lomas, Mark R.; Peylin, Philippe; Poulter, Ben; Viovy, Nicolas; Zaehle, Soenke; Zeng, Ning; Zhao, Fang; Wang, Lei
2015-08-01
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modeled well in the low and middle latitudes but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore, the 30 year trend of discharge is also underestimated. For the interannual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e., models account for 50% of observed interannual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modeling capability, a regional-weighted average of multimodel ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.
Multi-criteria Evaluation of Discharge Simulation in Dynamic Global Vegetation Models
NASA Astrophysics Data System (ADS)
Yang, H.; Piao, S.; Zeng, Z.; Ciais, P.; Yin, Y.; Friedlingstein, P.; Sitch, S.; Ahlström, A.; Guimberteau, M.; Huntingford, C.; Levis, S.; Levy, P. E.; Huang, M.; Li, Y.; Li, X.; Lomas, M.; Peylin, P. P.; Poulter, B.; Viovy, N.; Zaehle, S.; Zeng, N.; Zhao, F.; Wang, L.
2015-12-01
In this study, we assessed the performance of discharge simulations by coupling the runoff from seven Dynamic Global Vegetation Models (DGVMs; LPJ, ORCHIDEE, Sheffield-DGVM, TRIFFID, LPJ-GUESS, CLM4CN, and OCN) to one river routing model for 16 large river basins. The results show that the seasonal cycle of river discharge is generally modelled well in the low and mid latitudes, but not in the high latitudes, where the peak discharge (due to snow and ice melting) is underestimated. For the annual mean discharge, the DGVMs chained with the routing model show an underestimation. Furthermore the 30-year trend of discharge is also under-estimated. For the inter-annual variability of discharge, a skill score based on overlapping of probability density functions (PDFs) suggests that most models correctly reproduce the observed variability (correlation coefficient higher than 0.5; i.e. models account for 50% of observed inter-annual variability) except for the Lena, Yenisei, Yukon, and the Congo river basins. In addition, we compared the simulated runoff from different simulations where models were forced with either fixed or varying land use. This suggests that both seasonal and annual mean runoff has been little affected by land use change, but that the trend itself of runoff is sensitive to land use change. None of the models when considered individually show significantly better performances than any other and in all basins. This suggests that based on current modelling capability, a regional-weighted average of multi-model ensemble projections might be appropriate to reduce the bias in future projection of global river discharge.
Forcing, variability, and pathway of a freshwater-driven current in the Eurasian Arctic
NASA Astrophysics Data System (ADS)
Janout, Markus; Aksenov, Yevgeny; Hölemann, Jens; Rabe, Benjamin; Schauer, Ursula; Polyakov, Igor; Bacon, Sheldon; Coward, Andrew; Karcher, Michael; Lenn, Yueng-Djern; Kassens, Heidi; Timokhov, Leo
2015-04-01
Siberian river water is a first-order contribution to the Arctic freshwater budget, with the Ob, Yenisey, and Lena supplying nearly half of the total surface freshwater flux. However, few details are known regarding where, when and how the freshwater transverses the vast Siberian shelf seas. This paper investigates the mechanism, variability and pathways of the fresh Kara Sea outflow through Vilkitsky Strait towards the Laptev Sea. We utilize a high-resolution ocean model and recent shipboard observations to characterize the freshwater-laden Vilkitsky Strait Current (VSC), and shed new light on the little-studied region between the Kara and Laptev Seas, characterized by harsh ice conditions, contrasting water masses, straits and a large submarine canyon. The VSC is 10-20 km wide, surface-intensified, and varies seasonally (maximum from August-March) and interannually. Average freshwater (volume) transport is 500 ± 120 km3 a-1 (0.53 ± 0.08 Sv), with a baroclinic flow contribution of 50-90%. Interannual transport variability is explained by a storage-release mechanism, where blocking-favorable summer winds hamper the outflow and cause accumulation of freshwater in the Kara Sea. The year following a blocking event is characterized by enhanced transports driven by a baroclinic flow along the coast that is set up by increased freshwater volumes. Eventually, the VSC merges with a slope current and provides a major pathway for Eurasian river water towards the Western Arctic along the Eurasian continental slope. Kara (and Laptev) Sea freshwater transport is not correlated with the Arctic Oscillation, but rather driven by regional summer pressure patterns.
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Xu, Peng; Xu, Tengfei
2017-01-01
An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.
NASA Astrophysics Data System (ADS)
Suriano, Zachary J.
2018-02-01
Synoptic-scale atmospheric conditions play a critical role in determining the frequency and intensity of snow cover ablation in the mid-latitudes. Using a synoptic classification technique, distinct regional circulation patterns influencing the Great Lakes basin of North America are identified and examined in conjunction with daily snow ablation events from 1960 to 2009. This approach allows for the influence of each synoptic weather type on ablation to be examined independently and for the monthly and inter-annual frequencies of the weather types to be tracked over time. Because of the spatial heterogeneity of snow cover and the relatively large geographic extent of the Great Lakes basin, snow cover ablation events and the synoptic-scale patterns that cause them are examined for each of the Great Lakes watershed's five primary sub-basins to understand the regional complexities of snow cover ablation variability. Results indicate that while many synoptic weather patterns lead to ablation across the basins, they can be generally grouped into one of only a few primary patterns: southerly flow, high-pressure overhead, and rain-on-snow patterns. As expected, the patterns leading to ablation are not necessarily consistent between the five sub-basins due to the seasonality of snow cover and the spatial variability of temperature, moisture, wind, and incoming solar radiation associated with the particular synoptic weather types. Significant trends in the inter-annual frequency of ablation-inducing synoptic types do exist for some sub-basins, indicating a potential change in the hydrologic impact of these patterns over time.
NASA Astrophysics Data System (ADS)
Zhou, T.; Song, F.
2014-12-01
The climatology and inter-annual variability of East Asian summer monsoon (EASM) simulated by 34 Coupled Model Intercomparison Project phase 5 (CMIP5) coupled general circulation models (CGCMs) are evaluated. To estimate the role of air-sea coupling, 17 CGCMs are compared to their corresponding atmospheric general circulation models (AGCMs). The climatological low-level monsoon circulation and mei-yu/changma/baiu rainfall band are improved in CGCMs from AGCMs. The improvement is at the cost of the local cold sea surface temperature (SST) biases in CGCMs, since they decrease the surface evaporation and enhance the circulation. The inter-annual EASM pattern is evaluated by a skill formula and the highest/lowest 8 models are selected to investigate the skill origins. The observed Indian Ocean (IO) warming, tropical eastern Indian Ocean (TEIO) rainfall anomalies and Kelvin wave response are captured well in high-skill models, while these features are not present in low-skill models. Further, the differences in the IO warming between high-skill and low-skill models are rooted in the preceding ENSO simulation. Hence, the IO-WPAC teleconnection is important for CGCMs, similar to AGCMs. However, compared to AGCMs, the easterly anomalies in the southern flank of the WPAC make the TEIO warmer in CGCMs by reducing the climatological monsoon westerlies and decreasing the surface evaporation. The warmer TEIO induces the stronger precipitation anomalies and intensifies the teleconnection. Hence, the inter-annual EASM pattern is better simulated in CGCMs than that in AGCMs. Key words: CMIP5, CGCMs, air-sea coupling, AGCMs, inter-annual EASM pattern, ENSO, IO-WPAC teleconnection
Seasonal and interannual variability of surface CDOM in the South China Sea associated with El Niño
NASA Astrophysics Data System (ADS)
Ma, Jinfeng; Zhan, Haigang; Du, Yan
2011-04-01
Satellite imagery of SeaWiFS from October 1997 to November 2007 is used to investigate the dominant seasonal and interannual variations of the surface light absorption due to Colored Dissolved Organic Materials (CDOM) in the South China Sea (SCS). Results show that the spatial distribution of CDOM mimics the major features of the SCS basin-scale circulation. High values of CDOM are found in upwelling regions like southeast of Vietnam in summer and northwest of Luzon in winter. At a basin scale, CDOM is high in winter when upwelling is strong, solar shortwave radiation and stratification weak, and vertical mixing intense. Opposite conditions exist in spring and summer. Interannual variability of the basin-wide CDOM is characterized by abnormal troughs during the El Niño events. A strong relationship exists between the time series of the first EOF mode (for both winter and summer) and Niño 3.4 Index. Associations of these events with climatic and hydrographic properties (i.e. wind forcing, solar shortwave radiation, Ekman pumping, vertical mixing, sea surface height and temperature) are discussed.
Preface and brief synthesis for the FOODBANCS volume
NASA Astrophysics Data System (ADS)
Smith, Craig R.; DeMaster, David J.
2008-11-01
In this volume we present results from the FOODBANCS Project, which examined the fate and benthic community impact of summer bloom material on the West Antarctic Peninsula shelf floor. The project involved a 5-cruise, 15-month time-series program in which sediment-trap moorings, core sampling, radiochemical profiling, sediment respirometry, bottom photography, and bottom trawling were used to evaluate: (1) seafloor deposition and lability of POC, (2) patterns of labile POC consumption and sediment mixing by benthos, and (3) seasonal and inter-annual variations in biotic abundance, biomass, reproductive condition, recruitment, and sediment community respiration. We find that the seafloor flux and accumulation of particulate organic carbon on the West Antarctic Peninsula shelf exhibit intense seasonal and interannual variability. Nonetheless, many key benthic processes, including organic-matter degradation, bioturbation, deposit feeding, and faunal abundance, reproduction and recruitment, show relatively muted response to this intense seasonal and inter-annual variability in export flux. We thus hypothesize that benthic ecosystems on the Antarctic shelf act as "low-pass" filters, and may be extremely useful in resolving the impacts of climatic change over periods of years to decades in Antarctic Peninsula region.
Interannual Variability in Amundsen Sea Ice-Shelf Height Change Linked to ENSO
NASA Astrophysics Data System (ADS)
Paolo, F. S.; Fricker, H. A.; Padman, L.
2015-12-01
Atmospheric and sea-ice conditions around Antarctica, particularly in the Amundsen and Bellingshausen seas, respond to climate dynamics in the tropical Pacific Ocean on interannual time scales including the El Nino-Southern Oscillation (ENSO). It has been hypothesized that the mass balance of the Antarctic Ice Sheet, including its floating ice shelves, also responds to this climate signal; however, this has not yet been unambiguously demonstrated. We apply multivariate singular spectrum analysis (MSSA) to our 18-year (1994-2012) time series of ice-shelf height in the Amundsen Sea (AS) region. This advanced spectral method distinguishes between regular deterministic behavior ("cycles") at sub-decadal time scale and irregular behavior ("noise") at shorter time scales. Although the long-term trends of AS ice-shelf height changes are much larger than the range of interannual variability, the short-term rate of change dh/dt can vary about the trend by more than 50%. The mode of interannual variability in the AS ice-shelf height is strongly correlated with the low-frequency mode of ENSO (periodicity of ~4.5 years) as represented by the Southern Oscillation Index. The ice-shelf height in the AS is expected to respond to changes in precipitation and inflows of warm subsurface Circumpolar Deep Water (CDW) into the ocean cavities under the ice shelves, altering basal melt rates. Since both of these processes affecting ice-shelf mass balance respond to changes in wind fields for different ENSO states, we expect some correlation between them. We will describe the spatial structure of AS ice-shelf height response to ENSO, and attempt to distinguish the precipitation signal from basal mass balance due to changing CDW inflows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi; Tang, Qiuhong
2013-09-16
Previous studies on irrigation impacts on land surface fluxes/states were mainly conducted as sensitivity experiments, with limited analysis of uncertainties from the input data and model irrigation schemes used. In this study, we calibrated and evaluated the performance of irrigation water use simulated by the Community Land Model version 4 (CLM4) against observations from agriculture census. We investigated the impacts of irrigation on land surface fluxes and states over the conterminous United States (CONUS) and explored possible directions of improvement. Specifically, we found large uncertainty in the irrigation area data from two widely used sources and CLM4 tended to producemore » unrealistically large temporal variations of irrigation demand for applications at the water resources region scale over CONUS. At seasonal to interannual time scales, the effects of irrigation on surface energy partitioning appeared to be large and persistent, and more pronounced in dry than wet years. Even with model calibration to yield overall good agreement with the irrigation amounts from the National Agricultural Statistics Service (NASS), differences between the two irrigation area datasets still dominate the differences in the interannual variability of land surface response to irrigation. Our results suggest that irrigation amount simulated by CLM4 can be improved by (1) calibrating model parameter values to account for regional differences in irrigation demand and (2) accurate representation of the spatial distribution and intensity of irrigated areas.« less
Seasonal and interannual variability of climate and vegetation indices across the Amazon
Brando, Paulo M.; Goetz, Scott J.; Baccini, Alessandro; Nepstad, Daniel C.; Beck, Pieter S. A.; Christman, Mary C.
2010-01-01
Drought exerts a strong influence on tropical forest metabolism, carbon stocks, and ultimately the flux of carbon to the atmosphere. Satellite-based studies have suggested that Amazon forests green up during droughts because of increased sunlight, whereas field studies have reported increased tree mortality during severe droughts. In an effort to reconcile these apparently conflicting findings, we conducted an analysis of climate data, field measurements, and improved satellite-based measures of forest photosynthetic activity. Wet-season precipitation and plant-available water (PAW) decreased over the Amazon Basin from 1996−2005, and photosynthetically active radiation (PAR) and air dryness (expressed as vapor pressure deficit, VPD) increased from 2002–2005. Using improved enhanced vegetation index (EVI) measurements (2000–2008), we show that gross primary productivity (expressed as EVI) declined with VPD and PAW in regions of sparse canopy cover across a wide range of environments for each year of the study. In densely forested areas, no climatic variable adequately explained the Basin-wide interannual variability of EVI. Based on a site-specific study, we show that monthly EVI was relatively insensitive to leaf area index (LAI) but correlated positively with leaf flushing and PAR measured in the field. These findings suggest that production of new leaves, even when unaccompanied by associated changes in LAI, could play an important role in Basin-wide interannual EVI variability. Because EVI variability was greatest in regions of lower PAW, we hypothesize that drought could increase EVI by synchronizing leaf flushing via its effects on leaf bud development. PMID:20679201
Climate variability controls on unsaturated water and chemical movement, High Plains aquifer, USA
Gurdak, J.J.; Hanson, R.T.; McMahon, P.B.; Bruce, B.W.; McCray, J.E.; Thyne, G.D.; Reedy, R.C.
2007-01-01
Responses in the vadose zone and groundwater to interannual, interdecadal, and multidecadal climate variability have important implications for groundwater resource sustainability, yet they are poorly documented and not well understood in most aquifers of the USA. This investigation systematically examines the role of interannual to multidecadal climate variability on groundwater levels, deep infiltration (3-23 m) events, and downward displacement (>1 m) of chloride and nitrate reservoirs in thick (15-50 m) vadose zones across the regionally extensive High Plains aquifer. Such vadose zone responses are unexpected across much of the aquifer given a priori that unsaturated total-potential profiles indicate upward water movement from the water table toward the root zone, mean annual potential evapotranspiration exceeds mean annual precipitation, and millennia-scale evapoconcentration results in substantial vadose zone chloride and nitrate reservoirs. Using singular spectrum analysis (SSA) to reconstruct precipitation and groundwater level time-series components, variability was identified in all time series as partially coincident with known climate cycles, such as the Pacific Decadal Oscillation (PDO) (10-25 yr) and the El Nin??o/Southern Oscillation (ENSO) (2-6 yr). Using these lag-correlated hydrologic time series, a new method is demonstrated to estimate climate-varying unsaturated water flux. The results suggest the importance of interannual to interdecadal climate variability on water-flux estimation in thick vadose zones and provide better understanding of the climate-induced transients responsible for the observed deep infiltration and chemical-mobilization events. Based on these results, we discuss implications for climate-related sustainability of the High Plains aquifer. ?? Soil Science Society of America.
NASA Technical Reports Server (NTRS)
Thomas, A. C.; Huang, F.; Strub, P. T.; James, C.
1994-01-01
Monthly composite images from the global coastal zone color scanner (CZCS) data set are used to provide an initial illustration and comparison of seasonal and interannual variability of phytoplankton pigment concentration along the western coasts of South and North America in the Peru Current system (PCS) and California Current system (CCS). The analysis utilizes the entire time series of available data (November 1978 to June 1986) to form a mean annual cycle and an index of interannual variability for a series of both latitudinal and cross-shelf regions within each current system. Within 100 km of the coast, the strongest seasonal cycles in the CCS are in two regions, one between 34 deg and 45 deg N and the second between 24 deg and 29 deg N, each with maximum concentrations (greater than 3.0 mg m(exp-3)) in May-June. Weaker seasonal variability is present north of 45 deg N and in the Southern California Bight region (32 deg N). Within the PCS, in the same 100-km-wide coastal region, highest (greater than 45 deg S) and lowest (less than 20 deg S) latitude regions have a similar seasonal cycle with maximum concentrations (greater than 1.5 mg m(exp -3)) during the austral spring, summer, and fall, matching that evident throughout the CCS. Between these regions, off northern and central Chile, the seasonal maximum occurs during July-August (austral winter), contrary to the influence of upwelling favorable winds. Within the CCS, the dominant feature of interannual variability in the 8-year time series is a strong negative concentration anomaly in 1983, an El Nino year. The relative value of this negative anomaly is strongest off central California and is followed by an even stronger negative anomaly is strongest off central California and is followed by an even stronger negative anomaly in 1984 off Baja, California. In the PCS, strong negative anomalies during the 1982-1983 El Nino period are evident only off the Peruvian coast and are evident there only in the regions 100 km or more from the coast. Although negative anomalies associated with the El Nino were not present at higher latitudes (more than approximately 20 deg S) in the PCS, the extremely sparse sampling weakens our confidence in the results of the interannual analysis in this region. An upper estimate of the systematic winter bias remaining in the global CZCS data after reprocessing with the multiple scattering algorithm is given in the appendix.
NASA Technical Reports Server (NTRS)
Robertson, Franklin R.
2003-01-01
Considerable uncertainty surrounds the issue of whether precipitation over the tropical oceans (30" NE) systematically changes with interannual sea-surface temperature (SST) anomalies that accompany El Nino (warm) and La Nina (cold) events. Although it is well documented that El Nino-Southern Oscillation (ENSO) events with marked SST changes over the tropical oceans, produce significant regional changes in precipitation, water vapor, and radiative fluxes in the tropics, we still cannot yet adequately quantify the associated net integrated changes to water and heat balance over the entire tropical oceanic or land sectors. Robertson et al., [2001 GRL] for example, showed that substantial disagreement exists among contemporary satellite estimates of interannual variations in tropical rainfall that are associated with SST changes. Berg et al., [2002 J. Climate] have documented the distinct differences between precipitation structure over the eastern and western Pacific ITCZ and noted how various satellite precipitation algorithms may respond quite differently to ENSO modulations of these precipitation regimes. Resolving this uncertainty is important since precipitation and latent heat release variations over land and ocean sectors are key components of the tropical heat balance in its most aggregated form. Rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) averaged over the tropical oceans have not solved this issue and, in fact, show marked differences with estimates from two TRMM Microwave Imager (TMI) passive microwave algorithms. In this paper we will focus on findings that uncertainties in microphysical assumptions necessitated by the single-frequency PR measurement pose difficulties for detecting climate-related precipitation signals. Recent work has shown that path-integrated attenuation derived from the effects of precipitation on the radar return from the ocean surface exhibits interannual variability that agrees closely with the TMI time series, yet the PR rainfall interannual variability (and attenuation derived predominantly from reflectivity) differs even in sign. We will explore these apparent inconsistencies and detail their impact on estimates of how ENSO events perturb the tropical rainfall. We will place these results in perspective by considering requirements for precipitation accuracy for global climate variability and change studies involving ENSO, monsoon dynamics and variations, and climate model improvement and validation. The discussion will conclude with an assessment of the implications of these findings for Global Precipitation Mission (GPM) requirements.
NASA Technical Reports Server (NTRS)
Pfister, G. G.; Emmons, L. K.; Edwards, D. P.; Arellano, A.; Sachse, G.; Campos, T.
2010-01-01
We analyze the transport of pollution across the Pacific during the NASA INTEX-B (Intercontinental Chemical Transport Experiment Part 8) campaign in spring 2006 and examine how this year compares to the time period for 2000 through 2006. In addition to aircraft measurements of carbon monoxide (CO) collected during INTEX-B, we include in this study multi-year satellite retrievals of CO from the Measurements of Pollution in the Troposphere (MOPITT) instrument and simulations from the chemistry transport model MOZART-4. Model tracers are used to examine the contributions of different source regions and source types to pollution levels over the Pacific. Additional modeling studies are performed to separate the impacts of inter-annual variability in meteorology and .dynamics from changes in source strength. interannual variability in the tropospheric CO burden over the Pacific and the US as estimated from the MOPITT data range up to 7% and a somewhat smaller estimate (5%) is derived from the model. When keeping the emissions in the model constant between years, the year-to-year changes are reduced (2%), but show that in addition to changes in emissions, variable meteorological conditions also impact transpacific pollution transport. We estimate that about 113 of the variability in the tropospheric CO loading over the contiguous US is explained by changes in emissions and about 213 by changes in meteorology and transport. Biomass burning sources are found to be a larger driver for inter-annual variability in the CO loading compared to fossil and biofuel sources or photochemical CO production even though their absolute contributions are smaller. Source contribution analysis shows that the aircraft sampling during INTEX-B was fairly representative of the larger scale region, but with a slight bias towards higher influence from Asian contributions.
NASA Astrophysics Data System (ADS)
Dassié, Emilie P.; Linsley, Braddock K.; Corrège, Thierry; Wu, Henry C.; Lemley, Gavin M.; Howe, Steve; Cabioch, Guy
2014-12-01
The limited availability of oceanographic data in the tropical Pacific Ocean prior to the satellite era makes coral-based climate reconstructions a key tool for extending the instrumental record back in time, thereby providing a much needed test for climate models and projections. We have generated a unique regional network consisting of five Porites coral δ18O time series from different locations in the Fijian archipelago. Our results indicate that using a minimum of three Porites coral δ18O records from Fiji is statistically sufficient to obtain a reliable signal for climate reconstruction, and that application of an approach used in tree ring studies is a suitable tool to determine this number. The coral δ18O composite indicates that while sea surface temperature (SST) variability is the primary driver of seasonal δ18O variability in these Fiji corals, annual average coral δ18O is more closely correlated to sea surface salinity (SSS) as previously reported. Our results highlight the importance of water mass advection in controlling Fiji coral δ18O and salinity variability at interannual and decadal time scales despite being located in the heavy rainfall region of the South Pacific Convergence Zone (SPCZ). The Fiji δ18O composite presents a secular freshening and warming trend since the 1850s coupled with changes in both interannual (IA) and decadal/interdecadal (D/I) variance. The changes in IA and D/I variance suggest a re-organization of climatic variability in the SPCZ region beginning in the late 1800s to period of a more dominant interannual variability, which could correspond to a southeast expansion of the SPCZ.
Sensitivity of crop cover to climate variability: insights from two Indian agro-ecoregions.
Mondal, Pinki; Jain, Meha; DeFries, Ruth S; Galford, Gillian L; Small, Christopher
2015-01-15
Crop productivity in India varies greatly with inter-annual climate variability and is highly dependent on monsoon rainfall and temperature. The sensitivity of yields to future climate variability varies with crop type, access to irrigation and other biophysical and socio-economic factors. To better understand sensitivities to future climate, this study focuses on agro-ecological subregions in Central and Western India that span a range of crops, irrigation, biophysical conditions and socioeconomic characteristics. Climate variability is derived from remotely-sensed data products, Tropical Rainfall Measuring Mission (TRMM - precipitation) and Moderate Resolution Imaging Spectroradiometer (MODIS - temperature). We examined green-leaf phenologies as proxy for crop productivity using the MODIS Enhanced Vegetation Index (EVI) from 2000 to 2012. Using both monsoon and winter growing seasons, we assessed phenological sensitivity to inter-annual variability in precipitation and temperature patterns. Inter-annual EVI phenology anomalies ranged from -25% to 25%, with some highly anomalous values up to 200%. Monsoon crop phenology in the Central India site is highly sensitive to climate, especially the timing of the start and end of the monsoon and intensity of precipitation. In the Western India site, monsoon crop phenology is less sensitive to precipitation variability, yet shows considerable fluctuations in monsoon crop productivity across the years. Temperature is critically important for winter productivity across a range of crop and management types, such that irrigation might not provide a sufficient buffer against projected temperature increases. Better access to weather information and usage of climate-resilient crop types would play pivotal role in maintaining future productivity. Effective strategies to adapt to projected climate changes in the coming decades would also need to be tailored to regional biophysical and socio-economic conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.
The Role of Low-Level, Terrain-Induced Jets in Rainfall Variability in Tigris Euphrates Headwaters
NASA Technical Reports Server (NTRS)
Dezfuli, Amin K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Evans, Jason; Peters-Lidard, Christa D.
2017-01-01
Rainfall variability in the Tigris Euphrates headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, the Weather Research and Forecasting (WRF) Model, driven by the NCEP-DOE AMIP-II reanalysis (R-2), has been implemented to better understand these interactions. Simulations were performed over a domain covering most of the Middle East. The extended simulation period (1983 - 2013) enables us to study seasonality, interannual variability, spatial variability, and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R-2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R-2, with a substantially larger benefit in April. This improvement results primarily from WRFs ability to resolve two low-level, terrain-induced flows in the region that are either absent or weak in R-2: one parallel to the western edge of the Zagros Mountains, and one along the east Turkish highlands. The first shows a complete reversal in its direction during wet and dry days, when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50 of interannual variability in both WRF and observations for April and October precipitation.
The role of low-level terrain-induced jets in rainfall variability in Tigris-Euphrates Headwaters
Zaitchik, Benjamin F.; Badr, Hamada S.; Evans, Jason; Peters-Lidard, Christa D.
2018-01-01
Rainfall variability in the Tigris-Euphrates Headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, we have implemented the Weather Research and Forecasting (WRF) model, driven by NCEP/DOE R2, to better understand these interactions. Simulations were performed over a domain covering most of the Middle-East. The extended simulation period (1983–2013) enables us to study seasonality, interannual variability, spatial variability and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R2, with a substantially larger benefit in April. This improvement results primarily from WRF’s ability to resolve two low-level terrain-induced flows in the region that are either absent or weak in NCEP/DOE: one parallel to western edge of the Zagros Mountains, and one along the East Turkish Highlands. The first shows a complete reversal in its direction during wet and dry days: when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50% of interannual variability in both WRF and observations for April and October precipitation. PMID:29726552
The Role of Low-Level Terrain-Induced Jets in Rainfall Variability in Tigris-Euphrates Headwaters
NASA Technical Reports Server (NTRS)
Dezfuli, Amin K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Evans, Jason; Peters-Lidard, Christa D.
2017-01-01
Rainfall variability in the Tigris-Euphrates headwaters is a result of interaction between topography and meteorological features at a range of spatial scales. Here, the Weather Research and Forecasting (WRF) Model, driven by the NCEPDOE AMIP-II reanalysis (R-2), has been implemented to better understand these interactions. Simulations were performed over a domain covering most of the Middle East. The extended simulation period (19832013) enables us to study seasonality, interannual variability, spatial variability, and extreme events of rainfall. Results showed that the annual cycle of precipitation produced by WRF agrees much more closely with observations than does R-2. This was particularly evident during the transition months of April and October, which were further examined to study the underlying physical mechanisms. In both months, WRF improves representation of interannual variability relative to R-2, with a substantially larger benefit in April. This improvement results primarily from WRFs ability to resolve two low-level, terrain-induced flows in the region that are either absent or weak in R-2: one parallel to the western edge of the Zagros Mountains, and one along the east Turkish highlands. The first shows a complete reversal in its direction during wet and dry days: when flowing southeasterly it transports moisture from the Persian Gulf to the region, and when flowing northwesterly it blocks moisture and transports it away from the region. The second is more directly related to synoptic-scale systems and carries moist, warm air from the Mediterranean and Red Seas toward the region. The combined contribution of these flows explains about 50 of interannual variability in both WRF and observations for April and October precipitation.
NASA Astrophysics Data System (ADS)
Seaby, L. P.; Tague, C. L.; Hope, A. S.
2006-12-01
The Mediterranean type environments (MTEs) of California are characterized by a distinct wet and dry season and high variability in inter-annual climate. Water limitation in MTEs makes eco-hydrological processes highly sensitive to both climate variability and frequent fire disturbance. This research modeled post-fire eco- hydrologic behavior under historical and moderate and extreme scenarios of future climate in a semi-arid chaparral dominated southern California MTE. We used a physically-based, spatially-distributed, eco- hydrological model (RHESSys - Regional Hydro-Ecologic Simulation System), to capture linkages between water and vegetation response to the combined effects of fire and historic and future climate variability. We found post-fire eco-hydrologic behavior to be strongly influenced by the episodic nature of MTE climate, which intensifies under projected climate change. Higher rates of post-fire net primary productivity were found under moderate climate change, while more extreme climate change produced water stressed conditions which were less favorable for vegetation productivity. Precipitation variability in the historic record follows the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), and these inter-annual climate characteristics intensify under climate change. Inter-annual variation in streamflow follows these precipitation patterns. Post-fire streamflow and carbon cycling trajectories are strongly dependent on climate characteristics during the first 5 years following fire, and historic intra-climate variability during this period tends to overwhelm longer term trends and variation that might be attributable to climate change. Results have implications for water resource availability, vegetation type conversion from shrubs to grassland, and changes in ecosystem structure and function.
NASA Astrophysics Data System (ADS)
Marushchak, M. E.; Voigt, C.; Gil, J.; Lamprecht, R. E.; Trubnikova, T.; Virtanen, T.; Kaverin, D.; Martikainen, P. J.; Biasi, C.
2017-12-01
Southern tundra landscapes are particularly vulnerable to climate warming, permafrost thaw and associated landscape rearrangement due to near-zero permafrost temperatures. The large soil C and N stocks of subarctic tundra may create a positive feedback for warming if released to the atmosphere at increased rates. Subarctic tundra in European Russia is a mosaic of land cover types, which all play different roles in the regional greenhouse gas budget. Peat plateaus - massive upheaved permafrost peatlands - are large storehouses of soil carbon and nitrogen, but include also bare peat surfaces that act as hot-spots for both carbon dioxide and nitrous oxide emissions. Tundra wetlands are important for the regional greenhouse gas balance since they show high rates of methane emissions and carbon uptake. The most dominant land-form is upland tundra vegetated by shrubs, lichens and mosses, which displays a close-to-neutral balance with respect to all three greenhouse gases. The study site Seida (67°03'N, 62°56'E), located in the discontinuous permafrost zone of Northeast European Russia, incorporates all these land forms and has been an object for greenhouse gas investigations since 2007. Here, we summarize the growing season fluxes of carbon dioxide, methane and nitrous oxide measured by chamber techniques over the study years. We analyzed the flux time-series together with the local environmental data in order to understand the drivers of interannual variability. Detailed soil profile measurements of greenhouse gas concentrations, soil moisture and temperature provide insights into soil processes underlying the net emissions to the atmosphere. The multiannual time-series allows us to assess the importance of the different greenhouse gases and landforms to the overall climate forcing of the study region.
Ye, Siyuan; Krauss, Ken W.; Brix, Hans; Wei, Mengjie; Olsson, Linda; Yu, Xueyang; Ma, Yueying; Wang, Jin; Yuan, Hongming; Zhao, Guangming; Ding, Xigui; Moss, Rebecca
2016-01-01
Global management of wetlands to suppress greenhouse gas (GHG) emissions, facilitate carbon (C) sequestration, and reduce atmospheric CO2 concentrations while simultaneously promoting agricultural gains is paramount. However, studies that relate variability in CO2 and CH4 emissions at large spatial scales are limited. We investigated three-year emissions of soil CO2 and CH4 from the primary wetland types of the Liaohe Delta, China, by focusing on a total wetland area of 3287 km2. One percent is Suaeda salsa, 24% is Phragmites australis, and 75% is rice. While S. salsa wetlands are under somewhat natural tidal influence, P. australis and rice are managed hydrologically for paper and food, respectively. Total C emissions from CO2 and CH4 from these wetland soils were 2.9 Tg C/year, ranging from 2.5 to 3.3 Tg C/year depending on the year assessed. Primary emissions were from CO2 (~98%). Photosynthetic uptake of CO2 would mitigate most of the soil CO2 emissions, but CH4 emissions would persist. Overall, CH4 fluxes were high when soil temperatures were >18°C and pore water salinity <18 PSU. CH4 emissions from rice habitat alone in the Liaohe Delta represent 0.2% of CH4 carbon emissions globally from rice. With such a large area and interannual sensitivity in soil GHG fluxes, management practices in the Delta and similar wetlands around the world have the potential not only to influence local C budgeting, but also to influence global biogeochemical cycling.
NASA Astrophysics Data System (ADS)
Pätsch, Johannes; Kühn, Wilfried; Dorothea Six, Katharina
2018-06-01
For the sediments of the central and southern North Sea different sources of alkalinity generation are quantified by a regional modelling system for the period 2000-2014. For this purpose a formerly global ocean sediment model coupled with a pelagic ecosystem model is adapted to shelf sea dynamics, where much larger turnover rates than in the open and deep ocean occur. To track alkalinity changes due to different nitrogen-related processes, the open ocean sediment model was extended by the state variables particulate organic nitrogen (PON) and ammonium. Directly measured alkalinity fluxes and those derived from Ra isotope flux observation from the sediment into the pelagic are reproduced by the model system, but calcite building and calcite dissolution are underestimated. Both fluxes cancel out in terms of alkalinity generation and consumption. Other simulated processes altering alkalinity in the sediment, like net sulfate reduction, denitrification, nitrification, and aerobic degradation, are quantified and compare well with corresponding fluxes derived from observations. Most of these fluxes exhibit a strong positive gradient from the open North Sea to the coast, where large rivers drain nutrients and organic matter. Atmospheric nitrogen deposition also shows a positive gradient from the open sea towards land and supports alkalinity generation in the sediments. An additional source of spatial variability is introduced by the use of a 3-D heterogenous porosity field. Due to realistic porosity variations (0.3-0.5) the alkalinity fluxes vary by about 4 %. The strongest impact on interannual variations of alkalinity fluxes is exhibited by the temporal varying nitrogen inputs from large rivers directly governing the nitrate concentrations in the coastal bottom water, thus providing nitrate necessary for benthic denitrification. Over the time investigated the alkalinity effluxes decrease due to the decrease in the nitrogen supply by the rivers.
Long-term remote monitoring of salt marsh biomass
NASA Astrophysics Data System (ADS)
Gross, M. F.; Klemas, V.; Hardisky, M. A.
1990-12-01
An objective of NASA's Biospheric Research Program is to understand biogeochemical cycling on a global scale. Being both very biologically productive and anoxic, wetlands are major sites of carbon dioxide, mean, and sulfur gas flux on a per area basis. Biogeochemical cycling in wetlands is intricately linked to vegetation biomass production. We have been monitoring biomass dynamics of the dominant salt marsh grass Spartina alterniflora for over ten years using remote sensing. Live above ground biomass is highly correlated (r = .79) with Laridsat Thematic Mapper ('IN) and SPOT spectral data transformed into normalized difference vegetation indices. Live belowg round biomass is, in turn, highly correlated (r = .86) with live above ground biomass. Therefore, below ground biomass, a source of carbon substrates for microbial gas production, can be measured using remote sensing indirectly. These relationships have been tested over a wide latitudinal range (from Georgia to Nova Scotia). Analysis of TM and SPOT satellite images from several years has revealed substantial interannual variability in mean live aerial biomass of this species in a 580ha Delaware marsh. Additionally, interannual spatial variability in biomass distribution within the marsh is evident and seems to be linked to precipitation. The aerial biomass of high salinity areas least influenced by upland runoff is the most sensitive to precipitation, whereas marsh areas adjacent to large upland areas or freshwater creeks are the least sensitive. In summary, remote sensing is an effective tool for studying aboveground and belowground biomass in salt marshes. Once the relationship between gas flux data and vegetation biomass is better understood, satellite data could be used to estimate biomass arid gas flux over large regions of the world.
NASA Technical Reports Server (NTRS)
Lim, Young-Kwon; Kim, Hae-Dong
2014-01-01
The large-scale impacts of the Arctic Oscillation (AO) and the East Atlantic/West Russia (EA/WR) teleconnection on the East Asian winter climate anomalies are compared for the past 34 winters focusing on 1) interannual monthly to seasonal temperature variability, 2) East Asian winter monsoon (EAWM), and 3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and EA/WR over mid-latitude East Asia during their positive phase and vice versa. The EA/WR impact is found to be comparable to the AO impact in affecting the East Asian temperature and monsoon. For example, warm (cold) months over mid-latitude East Asia during the positive (negative) AO are clearly seen when the AO and EA/WR are in the same phase. Near zero correlation is found between temperature and the AO phase when both teleconnections are in an opposite phase. The well-known negative relationship between SH and the AO phase is observed significantly more often when the AO is in the same phase with the EA/WR. Also, the indices of EAWM, cold surge, and SH are found to be more highly negative-correlated with the EA/WR rather than with the AO. The advective temperature change and associated circulation demonstrate that the anomalous large-scale field including the SH over the mid-latitude Asian inland is better represented by the EA/WR, influencing the East Asian winter climates. These results suggest that the impact of EA/WR should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.
Sensitivity of simulated South America climate to the land surface schemes in RegCM4
NASA Astrophysics Data System (ADS)
Llopart, Marta; da Rocha, Rosmeri P.; Reboita, Michelle; Cuadra, Santiago
2017-12-01
This work evaluates the impact of two land surface parameterizations on the simulated climate and its variability over South America (SA). Two numerical experiments using RegCM4 coupled with the Biosphere-Atmosphere Transfer Scheme (RegBATS) and the Community Land Model version 3.5 (RegCLM) land surface schemes are compared. For the period 1979-2008, RegCM4 simulations used 50 km horizontal grid spacing and the ERA-Interim reanalysis as initial and boundary conditions. For the period studied, both simulations represent the main observed spatial patterns of rainfall, air temperature and low level circulation over SA. However, with regard to the precipitation intensity, RegCLM values are closer to the observations than RegBATS (it is wetter in general) over most of SA. RegCLM also produces smaller biases for air temperature. Over the Amazon basin, the amplitudes of the annual cycles of the soil moisture, evapotranspiration and sensible heat flux are higher in RegBATS than in RegCLM. This indicates that RegBATS provides large amounts of water vapor to the atmosphere and has more available energy to increase the boundary layer thickness and cause it to reach the level of free convection (higher sensible heat flux values) resulting in higher precipitation rates and a large wet bias. RegCLM is closer to the observations than RegBATS, presenting smaller wet and warm biases over the Amazon basin. On an interannual scale, the magnitudes of the anomalies of the precipitation and air temperature simulated by RegCLM are closer to the observations. In general, RegBATS simulates higher magnitude for the interannual variability signal.
Nitrous oxide emissions are enhanced in a warmer and wetter world.
Griffis, Timothy J; Chen, Zichong; Baker, John M; Wood, Jeffrey D; Millet, Dylan B; Lee, Xuhui; Venterea, Rodney T; Turner, Peter A
2017-11-07
Nitrous oxide (N 2 O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N 2 O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N 2 O mixing ratios from a very tall tower within the US Corn Belt-one of the most intensive agricultural regions of the world-combined with inverse modeling, shows large interannual variability in N 2 O emissions (316 Gg N 2 O-N⋅y -1 to 585 Gg N 2 O-N⋅y -1 ). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N 2 O emissions that will exceed 600 Gg N 2 O-N⋅y -1 , on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N 2 O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N 2 O emission mitigation efforts to achieve its goals. Published under the PNAS license.
Quantifying Interannual Variability for Photovoltaic Systems in PVWatts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryberg, David Severin; Freeman, Janine; Blair, Nate
2015-10-01
The National Renewable Energy Laboratory's (NREL's) PVWatts is a relatively simple tool used by industry and individuals alike to easily estimate the amount of energy a photovoltaic (PV) system will produce throughout the course of a typical year. PVWatts Version 5 has previously been shown to be able to reasonably represent an operating system's output when provided with concurrent weather data, however this type of data is not available when estimating system output during future time frames. For this purpose PVWatts uses weather data from typical meteorological year (TMY) datasets which are available on the NREL website. The TMY filesmore » represent a statistically 'typical' year which by definition excludes anomalous weather patterns and as a result may not provide sufficient quantification of project risk to the financial community. It was therefore desired to quantify the interannual variability associated with TMY files in order to improve the understanding of risk associated with these projects. To begin to understand the interannual variability of a PV project, we simulated two archetypal PV system designs, which are common in the PV industry, in PVWatts using the NSRDB's 1961-1990 historical dataset. This dataset contains measured hourly weather data and spans the thirty years from 1961-1990 for 239 locations in the United States. To note, this historical dataset was used to compose the TMY2 dataset. Using the results of these simulations we computed several statistical metrics which may be of interest to the financial community and normalized the results with respect to the TMY energy prediction at each location, so that these results could be easily translated to similar systems. This report briefly describes the simulation process used and the statistical methodology employed for this project, but otherwise focuses mainly on a sample of our results. A short discussion of these results is also provided. It is our hope that this quantification of the interannual variability of PV systems will provide a starting point for variability considerations in future PV system designs and investigations. however this type of data is not available when estimating system output during future time frames.« less
NASA Astrophysics Data System (ADS)
Chamizo, Sonia; Serrano-Ortiz, Penélope; Sánchez-Cañete, Enrique P.; Domingo, Francisco; Arnau-Rosalén, Eva; Oyonarte, Cecilio; Pérez-Priego, Óscar; López-Ballesteros, Ana; Kowalski, Andrew S.
2015-04-01
Recent decades under climate change have seen increasing interest in quantifying the carbon (C) balance of different terrestrial ecosystems, and their behavior as sources or sinks of C. Both CO2 exchange between terrestrial ecosystems and the atmosphere and identification of its drivers are key to understanding land-surface feedbacks to climate change. The eddy covariance (EC) technique allows measurements of net ecosystem C exchange (NEE) from short to long time scales. In addition, flux partitioning models can extract the components of net CO2 fluxes, including both biological processes of photosynthesis or gross primary production (GPP) and respiration (Reco), and also abiotic drivers like subsoil CO2 ventilation (VE), which is of particular relevance in semiarid environments. The importance of abiotic processes together with the strong interannual variability of precipitation, which strongly affects CO2 fluxes, complicates the accurate characterization of the C balance in semiarid landscapes. In this study, we examine 10 years of interannual variability of NEE and its components at a subalpine karstic plateau, El Llano de los Juanes, in the Sierra de Gádor (Almería, SE Spain). Results show annual NEE ranging from 55 g C m-2 (net emission) to -54 g C m-2 (net uptake). Among C flux components, GPP was the greatest contributing 42-57% of summed component magnitudes, while contributions by Reco and VE ranged from 27 to 46% and from 3 to 18%, respectively. Annual precipitation during the studied period exhibited high interannual variability, ranging from 210 mm to 1374 mm. Annual precipitation explained 50% of the variance in Reco, 59% of that in GPP, and 56% for VE. While Reco and GPP were positively correlated with annual precipitation (correlation coefficient, R, of 0.71 and 0.77, respectively), VE showed negative correlation with this driver (R = -0.74). During the driest year (2004-2005), annual GPP and Reco reached their lowest values, while contribution of VE to annual NEE reached its highest value. There were also positive correlations with annual evapotranspiration (R = 0.71 for Reco and 0.64 for GPP), which explained 51% and 42% of the variance in Reco and GPP, respectively. Despite the variability in CO2 fluxes depending on the year, we can conclude that this ecosystem is approximately carbon neutral over a decade. Our results highlight the importance of considering interannual variability in CO2 fluxes, and also the need to account for abiotic contributions to the C balance in semiarid ecosystems, especially during dry years, to better predict the roles of these ecosystems in the global C balance.
NASA Astrophysics Data System (ADS)
Sun, Bo
2018-03-01
This study investigates the variations in the tropical ascending branches (TABs) of Hadley circulations (HCs) during past decades, using a variety of reanalysis datasets. The northern tropical ascending branch (NTAB) and the southern tropical ascending branch (STAB), which are defined as the ascending branches of the Northern Hemisphere HC and Southern Hemisphere HC, respectively, are identified and analyzed regarding their trends and variability. The reanalysis datasets consistently show a persistent increase in STAB during past decades, whereas they show less consistency in NTAB regarding its decadalto multidecadal variability, which generally features a decreasing trend. These asymmetric trends in STAB and NTAB are attributed to asymmetric trends in the tropical SSTs. The relationship between STAB/NTAB and tropical SSTs is further examined regarding their interannual and decadal- to multidecadal variability. On the interannual time scale, the STAB and NTAB are essentially modulated by the eastern-Pacific type of ENSO, with a strengthened (weakened) STAB (NTAB) under an El Niño condition. On the decadal- to multidecadal time scale, the variability of STAB and NTAB is closely related to the southern tropical SSTs and the meridional asymmetry of global tropical SSTs, respectively. The tropical eastern Pacific SSTs (southern tropical SSTs) dominate the tropical SST-NTAB/STAB relationship on the interannual (decadal- to multidecadal) scale, whereas the NTAB is a passive factor in this relationship. Moreover, a cross-hemispheric relationship between the NTAB/STAB and the HC upper-level meridional winds is revealed.
Srichandan, Suchismita; Kim, Ji Yoon; Kumar, Abhishek; Mishra, Deepak R; Bhadury, Punyasloke; Muduli, Pradipta R; Pattnaik, Ajit K; Rastogi, Gurdeep
2015-12-15
One of the main challenges in phytoplankton ecology is to understand their variability at different spatiotemporal scales. We investigated the interannual and cyclone-derived variability in phytoplankton communities of Chilika, the largest tropical coastal lagoon in Asia and the underlying mechanisms in relation to environmental forcing. Between July 2012 and June 2013, Cyanophyta were most prolific in freshwater northern region of the lagoon. A category-5 very severe cyclonic storm (VSCS) Phailin struck the lagoon on 12th October 2013 and introduced additional variability into the hydrology and phytoplankton communities. Freshwater Cyanophyta further expanded their territory and occupied the northern as well as central region of the lagoon. Satellite remote sensing imagery revealed that the phytoplankton biomass did not change much due to high turbidity prevailing in the lagoon after Phailin. Modeling analysis of species-salinity relationship identified specific responses of phytoplankton taxa to the different salinity regime of lagoon. Copyright © 2015 Elsevier Ltd. All rights reserved.